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ABSTRACT

The general behavior of plane orbits in a simple spiral
magnetic field is studied both analytically and numerically
(for a specific sample case). Techniques employed are
heavily geometrical in nature and the motivation is the
search for some simple conditions in the field parameters
which control orbit stability and orbit economics.  Pragmatic
simplicity dictates a choice of approach which is only
justified by a final numerical test. But reasonable rigor is
accorded the fdndamental equations in order to avoid getting

lost from the very start.
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I. Introduction

An orbit problem, which is of more practical interest
than it may seem at first look, can be conceived in the
following manner: Given a small number, A , representing the
maximum oscillation amplitude of the orbits a system can
tolerate, given a large number, p , representing the minimum
desired time span within which these orbits are to have their
oscillation bounded by A ; then let F enumerate the parameters
which characterize the magnetic field structure under study.
We ask what conditions (the best choice, a compromise, etc.)
there are among the F's so that a maximum number of orbits
can be admitted by the structure under the desired conditions
in the most economical manner. Such a problem is not trivial,
neither is it hypothetical. The trouble with it is that it is
too idealistic, and, with our present available techniques,
barring individual case studies through the aid of digital
computation in a purely numerical manner, it is unlikely that
we can glve it a rigorous analytical survey and arrive at
some'intelligibiy simple conclusion. In such a problem, two
aspects of the orbit properties are involved, viz., orbit
stability and orbit economics. To achieve good orbit
economics {such as the usual notion of a small circumference
factor of a structure), one has to deal with such structures
that a simple linear approach to their stability properties
is in general not realistically adequate. Confining oneself
to a simple spiral magnetip field and taking only a one

dimensional problem (plane orbits) into consideration, so that
0w
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the dynamics involved is Hamiltonian in nature, one would
immediately have the notion that to follow Moser's general
transformation theory and carry ocut a resonance neighborhéod
study for those important resonances considered as in
Sturrock’s theofy, one should be on the right track to break
through the stability aspect of the problem. However, such a
handling, conceptually simple, is technically greatly
difficult, particularly in respect to the transformation of
working variables. Nonlifeaz problems create new transcendenbil
functions which are intimately associated with irrational
numbers and the analytiéal manipulation of them is
discouragingly cumbersome,

This study, initiated by George Parzen, is aimed at a
much restricted interest regarding the above problem.
Although it has been constantly kept in mind how far we can go
in 6rder to at least scratch the surface of such a general
problem, due preparation is always made for eventual retreat
into an oversimplified situation by glving up much of the
theoretical delicacies in order to obtain some numerical idea
.from a pdrely pragmatic viewpoint. A simple spiral field with
Parzen's prearranged parameters is taken as a numerical sample
case. The general theory of plane orbits is examined at first
in search of some working variables believed to be appropriate
for this purpose. Some kind of stability criterion is looked
for, based on realistic simplicity rather than sufficiency and
necessity. Numerical study on some sample orbits is carrled

out in order to gain some sophistication in the general
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tendency of orﬁit behavior so that an “orbit model™ can be
conceived. Such a medel eases out much of the transformation
procedure. It is rather an awkward approach but is perhaps
the only short cut that can lead to some simple result.

Most of the numerical intuition needed in this study is
supplied by GeorgelParzen. Background in acceleratior physics
is obtained from E.'T. Cole's Notes on Accelerator Theory
(TN-259), and findings resulting from numerocus discussions
with H. K. Meier are freely used in this report. Computer
numericals are based on FLEXIBLE FIVER (Program 280, MURA-604)
with the aid of M. R. Storm.

‘Relevant blots regarding the behavior of these sample
orbits are partially made available in the figures with some
brief explanations.

I1TI. General

The theory of plane orbits of a charged particle in a
magnetic field can be most conveniently formulated by basing
the geometrical aspect of the problem on one of the Frenet
formulas which essentially defines a curvature function, and
theﬁ incorporating half a physics law,.viz., the magnetic
part of Lorentz force law, into the problem. In Fig. 1 is
shown a piece of plane curve, which, if represented in polar
coordinate system, can be put as

r = f(&)

H
i.e., the radius vector is a function of the pelar angle. To

avoid the occurrence of loops and cusps, one may require that

this f{#) be a single valued function of # so that the arc
A
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length measured from any arbitrarily chosen reference point
on this curve, A4(#), is a monotonically increasing function
of & . Then, using .4 itself as a parameter, we see the
three intrinsic unit vectors associated with this curve:

éd : defined positive along increasing 5,

ék : directed upward from the plane of the curve

and kept constant (for plane curves),
6, : defined by €, =%, x & (right-handed

convention},

are functions of .5 . The Frenet formula says

A
%%4 = |K| aqle usually defined as a scalar
)

and the law of physiés $3YS

A R N ~
-2, | K| = 5 e, x e‘GIH (4)'

in which p is the particle scalar momentum, H{s) is the
magnetic field intensity as a function of the arc length.
The electronic charge and light velocity are set equal to

unity here. Then with appropriate sign convention one has
K(4) =L H(4)

Since H{4) is almost always prescribed as a function of r = f(8),
i.e., H(4) %x?r (8),8 ), the most natural course to follow is

to express K(4) in terms of r(®) and its derivatives in the
polar system

2 o+ 2 92 "
K(lﬂ) - I I =rr
(I‘2 + I,,Q)S/Q

The differential equation
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serves as the starting point of plane orbit study. Of course,
one can always choose a Lagrangian or a Hamiltonian function
in one form or another to start with and arrive at the same
" result in a more elegant manner and better prepared for
systematic approximation in the event (almost a certainty) the
equation cannot be rigorously solved. No matter.which course
is followed, the basic difficulty in approximating this
equation is a tremendous one, particularly when £ is of
periodic structure, the only case of practical interest.
More particularly, one's interest i's not just to obtain an
approximation for a prescribed field function; rather, it is
instead to explore the behavior of the solutions in their
dependence upon the parameters which charabterize the field
function, For this kind of interest, a systematic proﬁedure,
such as Moser's theory,l becomes technically too arduous to
épply. In this note, an approach motivated by this interest
1s explored, emphasizing the geometrical aspect of the
problem, with the hope that-while analytical expressions may
be lengthy and their meaning obscure, some inference from
the behavior of those variables which have a precise
geometrical meaning will help to socothe the difficulty.

One can start the problem from the viewpoint of
elementary plane geometry, such as the following angle

relations among the three angles associated with the curve
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in Fig. 1
:]T...o(-i-e
t =3 ’

in which all ahgles are defined positive in fhe sense shown
and the requirement that r(#) be everywhere single-valued
implies q’ being bounded within j-g. Obviously, #’ and o
- are just the'direction angles of the unit vector'g; and €4
in the polai system, They are functions of the polar angle

8 . so analytically

Yo =T -x(8)+8, . (2)

A closer examination shows that, unlike & (8), ‘f(@) is
numerically invariant under coordinate rotation and should be
regarded as more suitable for the description of the curve

than o{(#). We, therefore, set out to eliminate o in the

following manner.
aff ) b
X (8) = fdu((s) + o (o) =jd69-fi'-’-+ X (o)
dg 46

Elementary calculus supplies the following information:

a%

eyl K(s)

.d...é r2+

where prime refers to 4
dg

de

and tan4’= %l .

Consequently

Y (o)

9
0 - o(o) -jdo L K(4)

SR |

cos

Il

: +n+%f9d9 e Ae)9)

7=
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in which the constant'% -6, (0) is replaced by the symbol L2
representing the value cf E?(a) on the initial polar axis
=0 . This expression may be called an "integral
relation" which can readily be converted into an integral
equation. For example, by integrating tanq' , we have

fjdﬂ tanﬂ' = 1n r(#) - 1n r(o)

o

I‘(B) - Ae fd& tan‘l’

or ’

in which the symbol A is used to designate the value of r on
the initial axis. While 1#(9) itself is numerically

invariant under rotation of the initial axis, its integral

8
¥ (8) = f d® tan '4’(9)

is numerically invariant under scale transformation (i.e., -
independent of the unit used in measuring r) as is evident
from its definition.

We now have a transcendental integral equation:

A ° 46 % 4 tany® 8
‘f(e)—‘-ﬂ +_Q_+5Jme° J{(AI detany (6),9)

0 (3)
which, along with the easily proved kinematical relations:
_r'(®) _pr o = p cos W(8)
tan 1#(9) = T(e) p g = (p = scalar momentum),

(4)
constitutes the dynamics of plane orbits,
However, this equation, as it stands, promises little
hope of soothing our original difficulty. Integral equations

of such complicated structure discourage further attempt at

8-
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proceeding with the problem in any mathematically rigorous
manner, Nevertheless, this equation, from a physicist's
point of view, can serve a rich source of information in
connection with certain aspects of the orbit problem. So the.
study here, instead of seeking a solution, will be centered
on how to extract as much information as possible to meet
with our special interest.

Tncidentally, it should be pointed out that the equation,
except. for minute details, 1s really just the first integral
of the original differential equation, In fact, if we
differentiate the angle relation (2) with respect to 8§ , we

can obtain a "differential relation"

Lo (0) = xis) §5 (5)

which is generically the predecessor of a differential
equation. For, by eliminating +‘ () in favor of r(f)

through the elementary formula

2
1 no_
q' (8) = %@“ arctan 2; = i%%:f;%?“ '

this relation leads back to equation {1).

The justification for‘%nugsting time and effort in the
study of the orbit problem igﬁthis approach is based on the
belief that:

(l)_ Whilst differentiation 1s basically a coarsening

operation, integration tends to smoothen out

roughness. Approximations based on integral methods
can lead to analytical results of relatively compact

structure, if a systematic procedure striving for

- 9.
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better accuracy is not a desired feature.

(2) Whilst causality is "hidden" in a differential
equation, it is brought out in some taﬁgible forms
in an integral equation. The retrospect nature of
integral equation should be more appropriate for
the study of problems in which initial conditions
are of prime interest. The formal presence of
initial parameters from the very start could be
visually a guide to searching for a method suitable
for a particular aspect of the problem.

We specialize the curvature functior@ﬂr{@),ﬂ) to that of

a spiral field having the following structure _
H(x(8),0) = -Brkn[N® -Kinr+)]
in which k is the momentum compaction constant, K the spiral
ridge wave number and N the number of periods of the field
structure in an angular span of 2T (i.e., N sectors per one
complete revolution). )/is an arbitrary phase subject to
choice at one's option.2 The function h is to have its
fundamental normalized to unity and is to have only one
leading harmonic of amplitude not greaterrthaﬁ unity.
Essentially, we shall take
h () = 1 + sin'¢ $=N@ - Klnr +{
as the object function for discussion and, for numerical
illustration, Parzen's numbers N = 48, k = 63, K = 450 will
be used (to be referred to as #4863450).

It is appropriate, at this early stage, to narrow down

our interest in the usual manner. That is, we shall not be

=10~
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concerned with motions vigorously transient in nature. For a
relatively steady oscillation of the particle Withih a finite
region in the field, the initial parameters, particﬁlarly A,
the accepting radius, must be prescribed compatibly for a
given scalar momentum. Such a compatibility requirement can
be stated in thé following manner: For a given scalar
momentum ? , there is a unique choice of R (with the
dimension of length) such that

p=BrE* 1 (6)
that ‘the exponent should be kt+l is dictated by dimensional
requirements. Then, for A to be compatible to this P , it

must be sufficiently close to R such that if

Al lf (7)

R-°
then e?221'+f shall always prevail, implying § must be
reasonably smaller than unity. R so defined can be
conveniently (but not 6ecessarily) used as the unit of length
in the.system. As usual, the Qnit circle defined by R will
be referred to as the reference circle. f will be referred
to as the oscillation parameter and the condition in (B) is
to be referred to as the unit gauge.

"In terms of the above language, we summarize: an orbit
characterized by two initial parameters ( f, f%. ) is
represented by an orbit state function *%}(9) defined by

the equation

o -
MORERF-a grismpll i TR JUSR

COS?(Q)

5
where E(8) 'i.f 46 tan 2 (8)

-11=
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k+1

subject to the gauge condition p = BR and the scale

A I

" condition == The corresponding differential

gquation is

q; (8) = 1 - —torrs e(k+l)[i(9)+fjh[wo -K(B(8)+f)].
f

Tt is appareﬁt that the equation will respond only to
the numerical values of-f fed into it aﬁd is unaware of fhef
extra scale-gauge conditiohs adopted by the observer. So,‘&‘
is twofpld degenerate with respect to the parameters A and R
(which defines p). This degeneracy érecisely'implies thé
well-known scaling symmetry of the orbits in a spiral fiéid}

The orbit-state function7+ and its inteéral'E mutually
define each other through the medium of the initial .
ﬁérameters and the field parameters in a very intricate .
mahner. In addition to their geometrical meaning, they have
a ve?y direct connection with the con&entionél‘canonical-
variébles px(ﬂ) and X(8) as used in computer prog;ams from
~ which numerical results are derived for COmpariS6ﬁ with

theoretical prediction. Essentially

g (8)+f % 2
ei'+ -l=(i(9)+f)+(£(22)+f) +

should be identified with the total oscillation Xx(#) while
3

. ' 8)
p sin ¥(8) = p Y(®) - p —;%%:L—l *.
is obviously equivalent to the oscillation momentum pX(O).
These apparently rather complicated relations are actually

only formal, for insofar as the practical ranges of numerical

-12-
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values are concerned, the simple approximation

x(e) & ¥(o)+f %(e) =f (p=1 understood)
py(9) 2 Y (8) pxle) = 0

always prevails. = The conditions for validity of such
simplification lie in the fact that in no case shall we be
interesfed in orbits with oscillation momentum (px) exceeding
10% of the total scalar momentum (e.g., in a particle
accelerator of 1 Bev. energy, the betatron oscillation
momentum certainly is well below %5 Bev./c). Confining
interest to this range of P.s ohe can always take the

advantage of the extremely accurate numerical approximation:

tan P P e I$[<o0.1. (10}

We shall refer a problem in which this approximation is valid
as a problem of O,l-boundedness interest and in problems of
this nature, (9) and (10) are understocod to be numerically
good,

Before concluding the general discussion in this section,
let us describe in a very preliminary manner the topic of
interest in this study. Thé word "stability" needs a precise
definition in order to attain an unambiguous and concrete
meaning. In this respect, we shall define an ideal stable
orbit as one which will remain oscillating about the reference
circle for an infinitely long time with its maximum amplitude
bounded by some prescribed finite quantity. Such an

idealization implies that only two cases are possible:

-13-
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(1) . The orbit is a "closed" orbit, by which is meant
that if the orbit is reﬁresehted by the state ( § ,
1) on sector axis no. I, it will come back to
this same state after a finite number of sectors
and in the transit, its maximum oscillation
amplitude stays bounded within some finite
prescribed value,

(2) fhe other alternative is that it must be "quasi-
closed", i.e., it will come back arbitrarily close
to its initial phase of the motion but never
precisely so, This 1s merely a consequence of the
ergodic hypothesis which we shall take for granted.

This idealization is now relaxed, We shall say an orbit

is stable with respect to a spatial limit A (finite), 1f its

L
oscillation will stay within this bound for a very long time

lpL'(e.g., time measured in number of sectors and p; stands
‘for some large integer). In this sense, the meaning of the

" word "stability" is brought out by two definitive numbers and

thelr dependence upon the field parameters 1s what we want to

study,

I1T. Formulation of the Problem

Equation (8) defines the orbit-state function 1&(6)
 labeléd by two parameters (.f , j?f ), in the same sense as
a quantum mechanical state labeled by two quantum numbers.

Its dependence on field parameters is not notationally

brought out and it shall be understood that these field

parameters are not firmly prescribed entities. Two numbers

-14-



MURA-661

( f:I,ll_I) given on the initial axis ( & = © ) define an
“orbit state I(@). As the motion is propagatéd to the axis
II (¢ = ggL), the function 1P1(2ﬁL) assumes a numerical
value JQ;I’ while the function gLI(E%L) + £ I agsumes a3
numerical value j’II. These two numbers ( f>II, !111) certainly
can also be used on axis! to define an orbit state 1yI;(s).
representing the same orbit but at a diffefehi inital phase.
And, in the Sense of stability defined eariier, this

L I) is

difference reflects one important fact: if state ( [}
expected to have a stable life of Py sectdrs, the staté

(,f 11, ILII) can only be expected to have3é stable 1life one
sector shorter. ‘In other words, states ( 1 I,Jlbl)'and

IT T , .
( § y S0 I) represent the same orbit at different "ages",

(¢ I

This situation can be generalized to any number of sectors

T
,IliI) being younger than ( ?'-I,_fLII)

by one sector,
aﬁd we conclude that different pairs of ( f ; {1 ) specified
on an axis do ndt necessariiy represent‘different orbit
identities; they might fepresent £he same orbit at its
different agé §£ates (different substates of the same orbit).
We now wish to set up a chronological standérd through which
the age of an orbit can be referenced in order to bick out
only those states which, by some arbitrary convenient
standard, represent the "youngest" states of each individual
orbit for study. Such a procedure is obviously ve}y
arbitrary; nevertheless, it is a useful notion when one wishes
to compare the relative properties of diffé;ent orbits. To

achieve this aim, one must ask the question: what intrinsic

-15-
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property does a state function‘+ havé that Characterizes the
identity of the orbit irrespective of its state of age. An
answer to this qﬁéstion is that the absolute maximum numerical
value of q* may be used to characterize the orbit idenfity.
(The statement is equivalent to: the maximum value of the
oscillation momentum p, attainable by a particle along its
orbit characterizes the identity of this orbit). The
geometrical meaning of ¥ hints that wherever the orbit has a
point of inflection,¥ has a local maximum (or minimum) so the
absolute maximum of ? occurs at one of these local maxima.
We now demonstrate that, in a 0.1 bounded problem, this
absolute maximum can be made to occur in the immediate
vicinity of the origin {but never precisely at the origin),
if the field function has the form 1 + sin[N® - K( & +§ )]
which is the function we have chosen for study.

If 4’ is to have a maximum at 8 =0 , 1*'( 8 =0 ) must
vanish, and if this maximum is in the immediate neighborhood
of the origin, § must be very small, Then the differential

relation in {8) gives:

(k1) [ ®(o)+p) _ _

(k+1)p
1 - gm—[l - sin Kf} where Y(o)= W,

y'(9=e ) =0

I

Since W is 0O.l-bounded such that cos W*_l—l/QW2 always

prevails, and f is to be made small, we have
_ L
§ =32 TR

-16~
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Consequently, given a number W representing the maximum

numerical value of 4' , defines an orbit state on axis I:

( oI 1 We ne A1
§ 5 K=(k+1J ;ST o= W),
Since the numerical significance of P 1 s almost nil, we may
‘often regard the;simpler state ( ©, W) as the "birth state"
of an orbit whose identity is recognized through a single
label W. In a sense, W on axis I serves as a total quantum
number while a pair of ( f , £L ) on successive axes may be
regarded as subquantum numbers that remove the many-fold
degeneracy in the problem. By referring to Fig. (6), in
which a conventional phase plot {constructed with fhe aid of

| the computer)_for se&eral sample orbits is illustrated, it
can be easily seen that W is nothing but the pinnacle point
in each of these idealized phase "curves" while ( £ .0 )'s
represent other points in the plect. As George Parzen puts it,
the computer.numericals are a theoretical worker's experimenta]
data; he is saying the pairs { § , @& ) are dynamical
"observables." Such observables supply us an abundance of
information regarding orbit behavior, but they need not be
the appropriate variéble for use in theoretical analysis. It
is because of this very difficulty that we cannot straight-
forwardly follow Moser's rigorous theory in this study. For,
transformation back and forth, with different working
variables carrying along in the transformation coefficients

the complicated dependence on field parameters, is algebraical.
very difficult even in a lowest order estimate. In the

17~
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interest of simplicity, we have to approach the problem in a
less rigorous and systematic manner by recoufse to some kind
of simplified physical picture of the orbits, for example, a
model, which eases the transfofmation difficulty at the
expense of theoretical soundness.

No matter how the particle is accepted into the field,
the mere fact that it is to stay oscillating about the
reference circle implies that the state of the motion must
inherit from the structure of the field ce:fain modes of
vibration characterized by the field parameters. We cbnclude
that the basic frequency N of the field must constitute one of
the modes of vibration in the orbit. The fact that the
harmonic part of the fileld, viz., the sine term in h, should
on the average fluctuate out implies that in the long range
behavior of the orbit there must be exhibited a mode of
vibration whose frequency is predominantly dependent upon k,
which dictates the avérage intensity of the field. This
“frequency, referred {o as the propagation frequency M ,3
dépends on N and K only weakly and its dependence on the
state of orbit W will be discussed in section IV and V.
Therefore as a first survey we may conceive a model based on
a doubly periodic syétem with both the oscillating periods
confined on the real axis (N is given real, while » must be
arranged real). The commensurability of thése two numbers,
refiected in the orbit behavior as a result of interaction of

these two modes of vibration, is the center of all complications

that affects orbit stability. These complications cannot be

-18-
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directly examined if the orbit states are represented, as so
far it has been done, in the f‘—representation alone, The
usual notion of phase shift must be introduced, amounting to
a8 transformation from the § -representation to some other
representation more intimately associated with the propertiés
of the two numbers N and » .

In this respect, we must first examine in a purely formal
manner, how motion is propagated, once the particle is
accepted into the field, from the viewpoint of the definition
of the state function #;(9).

If'initially at 8 =¢ the state of motion is ('f ,I§,),

then at 9-1' the state function becomes:

thvidp 8'-148 (o) g 00)
q}(s-;() = 8-+ - € P e 4 [w-x(sctmfn (n}

A dummy variable transformation brings this equation to the

form
thel) P k[ j’? § 1] 49 entpy)

"'""l’”’"'!*‘n)' [I falcntm-y)‘we
L [ww-«,)—rf K f’( o‘fh,‘ho-?)]_

At certain values of 1 such that

-1

1
!dﬂ tan 4}( & - ) (= - é_ dé tan#%(a

is satisfied, a new constant {J can be defined

1
=]9-
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J" (k1) B (0-1) 208 1]
Q,=0a,-1+ a @ & ACE h[Ni—p-'l )-KE(8 -9 )
(13)
Then equation (11) adjusted in notation can be put in the form
8
qe (Re1) &, (8) 7
‘]f\(o) =8 +.a1-s 0051}:’ Te ! h{N(sfnl )_Kg(e)] (14)
K]

which defines a function '*(8) in the same manner as equation
(8) defines 1}}(é), except that now a phase } in the field
function has taken the place of £ in the exponential. The
meaning of this change of representation is really trivial if
one takes a look at Fig. (4), in which the geometrical
situation is quite lucid. The transformation equations (12)
and (13) are quite involved; however, we shall use them only
in a very simplified case. Essentially, the two functions
4}(0) and *}9) are orbitstate functions in two different
representations. In the § -representation, two numbers

{ 4 ,Q?) are specified on the sector axis representing the

state of the orbit: § stands for the oscillation while Lp
stands for the oscillation mementum, both being computer
observables. In the 1 -representation, two numbers ( 1 ,JH_)

are specified on the reference circle representing the state

of the orbit: 1 stands for the location where the orbit has
a zero, while ILtstands for the oscillation momentum at this
zero. In the limiting situation fxe and h xo , Rr‘-‘ﬂlfx w,
so for the birth state, the two representations almost coincide.

We are going to compare all orbits in their birth states

on the initial @=¢ axis. As motion is propagated to

-20~
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successive axes, each orbit becomes capable of two very
different representations. By studying the transformation
equations, we expect to find some kind of criterion to

judge the stability of these orbits as a function of the state
number W and the field parameters.

To establish this connection, we have to introduce the
notion of the conventional equilibrium orbit which defines
the central fixed point in the phase plot. This orbit, for
all intents and purposes, can be defined (i.e., to avoid
bothering about its existence) to be periodic of a period
equal to that of the fielg structure. The state of this
orbit is therefore (%Kg%ﬁiTT =0 | WO) and it has no substate.
The numerical value of Wy as a function of field parameters
will be discussed in section IV, The unique properties this
orbit possesses can be summarized:

(1) Itisimmortal: once a birth state is defined for

it (o, Wy), it will never age.

(2) Tt is simply periodic and only one mode of vibrétion
of frequency number N characterizes the motion.

(3) Its long range average behavior is that of a circle,
i.e., the amplitude associated with the propagation
part of its motion is zero.

This orbit owes its immortality to its capability of

rejuvenating its state after each cycle of the motion. If
such a rejuvenating process can also be incorporated into

other orbits, we can expect long stable life of these orbits

too. We certainly cannot achieve this for a wide range of

-2]-
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EVvalues; however, we may attempt to arrange the situation
such that each orbit within a narrow W-cone at the origin
after a certain period (e.g., after every propagation period)
will come back to a state resembling its birth state. Such
a rejuvenation process is not compléte, but we at least can
expect a slower rate of aging of these orbits,

The birth state, as defined, is characterized by the
simultaneous smallness of £ and 4 in the two representations
discussed. With ¢ and numerically small, the transformation

equations (12) and (13) render the very simple relations:

£ 25'1111

2 _
S (o Q
&T—l ={K - ()], - =T (15)
They are solved for 9§ and,n1 :
o] 27
Q, = ; [_1+j1+2f-4[1<-(k+1)-f-—2-] (15a)
. L
1= &,

Since,(,').,l must be real, the following condition must. be

observed:

'__‘ 1f1+2f - ]
2 J KTk+I) ~ 2(K-(k+l)) - Q'Gﬂmi (16)

which says that for any substate ( §, QT )} to "resemble" the

birth state, this inequality must be satisfied in addition to
§ and R being both very small. The requirement that the

orbits after approximately each propagation period will
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assume a state satisfying this condition implies that we must
arrange the field parameters so that the orbits will have a
spectrum of zeroes, rather regularly spaced, to fall within a
“linear" neighborhood of a sector axis which will be referred
to as the "propagation axis®™ {on which the condition (16) is
to be observed). The word "linear' is used instead of "very
small” so as to make the condition more concrete in the
following sense: If the zero occurs at a distance 7 from the
foot of the propagation axis, then 1 must be sufficiently
small as to satisfy sini‘x‘l . Figure 3 illus?rates the
situation.

We must now define what a propagation axis is. We shall
see that the bropagation frequency » in general is an
irrational number smaller than N. One propagation period is

therefore an angular span of 23%;corresponding to

s

v
— = N

2n vy
N

Em —3 sectors, with m an integer and ﬁ|< %

Let a state W start its trip from axis I. After a little more
or less than one propagation period, it arrives at axis M (m
segtors away from axis I #=© } to assume a substate ( 'S;M,
.41;“) which shall be arranged to satisfy (16)., Starting from
axis M, it continues its trip another propagation period and
arrives at an axis on which it is to assume a substate to

satisfy (16) again. This axis would be 2 m sectors away from

axis I if 2|5|<-% and would be 2 m * 1 sectors away from axis I

=03~
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if 2|5|>'%. (Equality never occurs since ¥ is irrational).
In general, after p {integer) propagation periods, the
propagation axis on which the propagation condition (16) is

to be observed méy be represented by the symbol

. :
£ %,")E q sector away from axis I, (17)

~ The integer q is defined by: Let p)g = an integer i + a
fraction f,

then q=mp ~ i if f<%

g =mp - i-1 if fs3h,

For lack of a good general orbit solution, to formulate
a stability condition in which initial parameters, field
parameters and'fdesired" parameters (such as the parameters
in ¢onnection with the minimum stable life time and maximum
tolerable oscillation amplitude the user may desire) all
appear in a fully analytical manner, in terms of some
necessary and sufficient language, is bélieved to be impossible,
The criterion established in (16) is neither necessary nor
sufficient; it is just & humble criterion for the particular
case of a simple spiral field with parametérs in the range
of practical interest. Only actual numerical sophistication
can lure one into the confidence that this condition could
serve as a reliable guide to the problem we wish to explore.
Although considerable time and effort have been invested in
the search of a "better" condition, nothing more intelligible

and éimple can be materialized than {16). The rest of the

study is devoted to interpreting the meaning of this condition.
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TV, The Central Fixed Point and Harmonic Gauge Curves

It was defined that the central fixed point (corr%sponding
to the equilibrium orbit) shall have the state (% K:g%z4:o,_wo)
with Waidependent upon the field parameters. This dependence
is now to be studied with the aid of the integral equation in
(8). We shall approach the problem by a method which can oély
be modestly called "probing for information." NeVerthelesé;
this method will give us a very accurate numerical result in
connection with the f.p., (central fixed point) state and a
good physical picture in connection with other orbits.

From the analytical point of view, the équilibrium orbit
is perhaps the most singular orbit, but looking at it just as
a curve, a geomgtrical entity, it has the simplest outward
form; for whatever it is, it by definition should be represent-

able by

?.;E” sin {(nN§& - é‘n)

And, corréspgnding to a simple one-harmonic field function as
the one under study, an approximate representation E sin(N® -¢ )
should be adequate for the purpose. We shall refer the following

pne-harmonic form

Esinpe (8 -€ ) (18)

as a one-harmonic prober, to be fed into equation {(8) in order
to look for conditions that bind the three parameters E, A~
and € . In the event sa is made to approach N, we obtailn

information regarding the fixed point state. If/& is made to
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approximate ' , we obtain some first-order information regard-
ing other orbits, such as the general propagation properties
of these orbits in their one-harmonic average. We are here
taking advantage of the integral structure of our fundamental
equation (8), which overlooks local roughness of a function
and is willing to respond to an oversimplified probing
function by yielding information which is not critically 
dependent upon such local roughness as possessed by the:-true
~solution. Just.like any approximation.method in mathematical
physics, be it perturbaticnal or variational in nature, one
needs a zeroth-order function to start with. Form (18) serves
a similar purpose. We replace %(8) +§ in equation (8) by
this form: |

A+ E S /u.ta-él
{! + $im (0 8-KE ft-‘w/mls-é'}}

o) = ern-J‘;“ o)

This function 1#(9), thus defined, represents only the first
harmonic average of the orbit (and is not the true orbite
state function). So at @_.m_ +& ?’ '*e ) should

have a zero. Equation {(18) then gives an 1nformat1ve relatlon:

I}*+:s  h)[E S paBr)] ]}
i . .

O — +E&E+0~ i+ &N[MG_KESW\}‘-L"&’

J}‘- CW[FEG&}AQM)] { (20)

The evaluation of integrals of the type in this expression 1is

guite a difficult problem; however, approximation methods for

-6
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two extreme cases are rather well explored. In the case
(k+1)E is a large positive number, then an asymptoﬁiq
treatment in one férm or another (such as the_saddle point-
méthod, or a very simple Laplace's method of crifical points)
is in line.% 1If E is sufficiently small, such that expansion
of the integrand in terms of Bessel's functions con%erge #ery
rapidly that only the leading term is important, then an
accurate and simpie result can be made availablé although at
times the calculation may be lengthy. The details of this
second methad are presented in the appendix. The resﬂlt of
the evaluation bfings equation (20) into the form
I-Cos (BT +nve) _L[

Ab

: {ﬁ)zn,' (21)

-kl
M
E (h+1) [c.s (BT ane)qy sé«»/xé’}ﬁ- Kf iﬁ-(ﬁ«gme)?c.s/m} ]

This result is accurate to a maximum error of 1% if (1) the
numerical values of E and K (k«K assumed) are such that
Eé% and (2) if the ra’ciog‘ is kept away from an integer
).l by at least two orders of KE. Both these conditions
come about because of truncation of the series involving
Bessel's functions in the approximationrand'are in general
very easily satisfied in a O.l-bounded problem.

If we let}uiN ahd approximatee=oand further dbsérve
that if the initial parameter §2 in {(21) is that of the
equilibrium orbit, W,, so that Efﬁ%, we ébtain-the resuit:

W L : (22)

0 Tikt+l K
N - (17)%g~ » =y
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.Simple as it is, this formula is quiteAadcurate. For the
field #48634507, it yields woz1.985'x 1072, while the computer
result is.1.98783 x 10-2.° o

We can-see from the left-hand side of equatfon (21) thét;
if 4 is made close to Jk+l, then the dependence on £ (the
initial condition, and numerically equal to W for a bifth
state) ih this relation is minimized.- This implies thét the -
propagation frequency M discussed in III mhst be something
l'ikem (1+ A l) with a small 4 . This serves as a guide
to the study of the propagation properties of the orbits in V.

Let us prescribe a family of harmonicAcurves of_arbitrary
amplitude A and-cbnstant-frequenty Vv A sin (-118 J?ﬁ with
¥on , in the field structure, in the same mannef aé we
prescribed a reference circle before. Just as the reference
circle was used to define a constant unit gauge'(éq. 6}, these
harmonic curves define a system of oscillating gauges. Further,
just as the reference Circle,-which is itself not a possible
orbit, represeﬁﬁs the average motion of the equilibrium orbit,
these harmonic gauge curves, which are not orbits themselves,
represent the average motion of the other orbits in a W-cone
for which a constant ¥ is a meaningful.cbncept. A mode. of
vibration with frequency equal to thé frequency of the
structure riding on the reference circle yields the equilibrium
orbit; a mode of vibration with frequency almost equal to the
frequency of the structure riding on a'harmonic.éauge curve A
should yield the orbit corresponding té an average oscillation

amplitude A (whi@h should be a function of W); This mode of
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vibration will be termed the "modulator" as against the gauge
curve itself which will be called thel"propagatorP The concept
of propagator vs. modulator is of cohrse relafive in nature.
The observer may at his gption use the mode N as a gauge

curve and treat the mode s as the fiding component such as in
the conventional approach in the linear betatron oscillation
theory. For orbits of oscillation.so large that the equilibrium
orbit as seen by these orbits is;just a small wiggling component,
the approximation procedure in which the ;’—mode'is used’to
define the gauge curve should be in favor. To complete the
description of the orbit model here, we need the answer to a
very important question. An orbit with state numbar W |
geometrically means it is accepted into the field on the
initial -axis at an angle W with the circle. To this orbit W
corresponds 4 gauge curve A which makes an angle VA with

the circle at the origin. We ask the question at what angle
relaﬁive to the propagation is the modulator accepted into

the field, i.e., what is the difference W - LJAyz We éxpressed
as a function of A and field parameters? The nature of this
question is shoWn in Fig., 2. A rigo;ous answer to this
question calls for a good orbit solution whicﬁ we do not have.
Nevertheléss, éince the guestion concerns dnly the limiting
sitﬁation 8—e¢ , an answer approximate to within a first-
order infinitesimal can be supplied using a scaling trick in
the résult already obtained for the equilibrium orbit. For

very small ¥#® (which eventually is to go to zero), the gauge -

A sin ¥® behaves like AV@ and may be replaced by a tangent

..,29_
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liDEJA?a at thé origin. The situation then 1s similar to
that of ‘the equilibrium orbit problem with the coordinate
systemlrotated counterclockwise an angle ¥A, This rotation
incuré two consequences: the apparent periodicity of the
structure is now N-KA¥ instead of N, and the unit gauge
condition is now @-dependent, being scaled by a factor
e(k+1) yoa . These are seen simply by replacing the form

AV® + E sin u® for (18) so that the integmnd in (19) now

has the form- )
| JAKFL)AYE 4 (k+1)E sinm® { L+ ein] (N-KAY )8 -KE Sinﬂ,]}

For arbitrarily small Ay8® e(k+l)AVg# 1+{k+1)A¥® , so
that integrand after some manipulation can be made to equal

g (k*1)E Sin/’“e[l-i'sin [ (N-(K-k-1) ¥ A) B - KE sin/...e]}v 0%,
where 02 is a term which approaches zero faster than ¥@ and
is-one‘order smaller than the first term, being of the form

a(l+sin b - cos b) with a =~ 0O{A)

and lim 2% 0, 1im {i+sin b - cos b)-—s 0.

Y00 ¥§-%0
02jis therefore negligible. This approximation amounts to
tfénsferping the effect due to a small difference AR in the
gauge condition (8) to the equivalent effect due to & phase
;y in the field function. For R sufficiently small, it

is numerically very accurate.5

Following thersame procedure as in the fixed point

problem, we should come to a result similar to (22) with all

N replaced by N-{K-k-1) ¥ A, i.e.,
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1
W & =
s - K
Ne (K-k=1) ¥ A% 145 (k+1)
N-{¥-k-1) A
L - SVA ~ with sﬁﬁzﬁ:;'

1
TN (T sy AR
- ~1
( Sy)*(NW;)
This result will be used in the modulation theary in Section VI.

V., Theory of Propagation

Ih this section we will analyze in some detail the
imporfant number » defined to represent the mode of,vibration
in the average long range behavior of those orbits within a
particular W-cone. If, as we expect, this » should depena
on W very wéakly, it is more appropriate for us to start the
investigation from the differential relation in (8) in which:

the initial parameters are not present:
¥(8) = 1- EEE%$T§T e(k+l)(§(9)+f){1+ sin[N® -K(Z(#)+f )]}

For notational simplicity, let us denote E(N-*f*_—:_x(ﬂ) SO

that

x" =1 - gg%;f“ o lk¥1)X { 1 + sin (N® - KX)} (24)

If this equation can be solved for X as a function of 8 , we
may expand the solution about some neighborhood center a, so

that

a

1 2 2 ‘
x(e8) = ;{_(e - ag)- T3 (@ - ao)2+ -a‘%' (2a, -aja5)(@ —a)3+--.
1 1

(25)

-3]1-



MURA-661

in which the expansion coefficients are so arranged that if

we invert the series, we may have
- 2
B =a +tax +a,x <. ' (25a)

The:procedure is similar to inverting a sine series to:obtain
itslcyélometric counterpart. We note that the coefficients

an‘é are functions of thelneighborhood center a . They depend
on,HOW'we choose a,. The following series-expaﬁsions are then

Vreédily obtained:

o 2
’ _ 1 ) 282 . 4&12 383

. . 1
X === - - + (..\}m——-)
a al2 : al3 alQ al

2
2a 6a 3a
1 2 2 3 2
oix’:l+232_a3x +(a4-a3)x+ (26)
cosa 1 1 1 1

sin(N® -Kx ) = sin Na, + x.(Nal - K) cos Na, - x %LNalaK)Qsin

' , 2
e(k"’l) =1+ (k+1)x +.L.l.(=ﬂ-=)._x1 +...
2

and equation (24) assumes the form

oM 1 ]
X =1- {1+ 2) (1 + sin Nao)

2a1
1 y 1 a
- 2i(1+ —=—){Na, -K) cos Na +{1+sin Na )((l+ Y (k+1)-—=
| [ 28y ey ° 7 2a12 a1’

of 1 2a,
X [(Nal-K) cos Na, ((l+ ;‘a—’F)(k+l) - ';'-5)
1

2
- % (1 + Eglz_) sin Nag (Naqp-K)
1 ~30-

+
NaO .es



: 2 2a,, 6a,2 3a
+(14! L,y Lerl)” 22 22 )]
(rsin Nag) (1 =dy) L - (i) 2 =2 =2) [ ()
1 1 1 "1

o+ 0(xT) +...
2G - Py - D'x2 - st to..

We wisﬁ to extract from this equation of motion the first
harmonic average part of ¥(®) and find out what is the
natural frequency associated with this average harmonic métion,
The conception of such a natural frequency is useful and will
depend on the state of the orbit W very weakly only if the
maximum value of X , say"xnlis sufficiently small that
of )cm3)<< X,- If this is not the case, introduction of such
a natural frequency, although it would be still meaningful
and'could be unambiguously done, would be of little use in
the problem. Iq either case, we may justify the truncation of
the series (27) at 0( x3) term by defining a "practical zero"
in the problem. Whatever x» _ is (it is always much smaller

than unity by definition), we agree to treat 3ﬂ;3§c> so that
xm_agoo . Such a notion permits us to set all expansion

. coefficients a, with n 3 equal to zero, and, in exchange,

~ we have plaéed ourselves under the obligation that any results

deduced from the theory should be interpreted as valid at

most for a time span of 0( X ~3) beyond which the deductions
) m

are meaningless.
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We now choose the first neighborhood center at @ =Y =0
(for numerically very small ¥ )} in the expansion (25), the
second neighbofhood center at Naor+ Y and the third at 2Nao+7’,
etc. This procedure implies that we mean to extréc£ from

%x(0) its odd harmonic component (i.e., the sinusoidal part

which is 0 at =¥ =© ) which has a period of Nag, with
"Na, yet to be.sought. Since in the odd function there should
be no even:power terms, the contribution from the coefficient
a, should be rejected. Consequently, we have
(1). Thé coefficient of'x2 term in (27)

D: (1+ ng)kNal-K) cos Na, (k+l)-%_(Nal—K)Qsin Nag
b . , (28)
+ (1+ sin Nao) Lﬁiil_ J
7 2
(2). The coefficient of x térm in (27)
. 1 . .
P:  (1+ 2alz)[(Nal-K) cos Na_+ (1% sin Nao)(k+l%(283)

We are going to minimize D (setting it equal to 0) by an
appropriate choice of a, and ay. The condition 1s fed into
P, Wthh then plays the role of the natural frequency );2 in
a typlcal 51mple harmonic motion. Then by definition of Na

belng the period associated with a frequency )JE}P we have
Ng = 2L

o] ¥
frem which the number » is obtained in terms of field parameters

through a The procedure so far outlined involves rather

o
‘complicated algebraic operations. We simplify the work by
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introducing a small ‘quantity A as has been commented in

Section_Iv; such that P can be put as

Il Nai-K - ] : 5
AR + T + 1 + si = (k+ + 4
(1 2a12) (k l)l R Ll cgs‘Nao | 1 + sin Na0 (k+1) (1 l)
| (29)
and the expression D that is to be minimized is
Naj-K ' iy 2 '
. ; . fNaij=K \ .
) COS NaO + 1 f sin Nao (jjhfa sin N?o“*@ (29a)
o ' . _ 2% 2 I .
which together with Na, = = S-—mf—————— constitute a set of
°© ¥ T kFI(1+4y)

equations for us to investigate ‘dl‘
" The problem is approached by the method of perturbation

starting from the assumption that A1_defined is small and by

invoking the negligibility of the geometrical factor 2;i2
which by definition of a; in (26} in e 0.l-bounded problem
has at most an effect of 0.005 compared with 1, amounting to
a numerically very insignificant correction which can be

incorporated afterwards, if such a connection is desired.

Let Al(o) denote the first approximation of A by

setting §£L§‘° 0 in (29), so that
1

A (o) Na1-K

2 A"y din cos Nag + sin Nag . (29b)

Neglecting the 1\1(0)2 term in {(29a), we can solve for

oy T

S =

2
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211- ~ Sin | 21T
[k+1(1+a )  Jfk+l

which, when equated with sin

vields the approximate solution

(30)

:SQ in the first approximation, Al_depends only on k+l1,
Its dependence on N and K is brought in through the geometrical
conrection, which can be gffected in the following manner:

From 29b and 29c¢ we approximate

(0)

NI K 2 A - sin N
a1 o 1 St e 5 - [1+ 9-45 4 (o)]
k+1 cos Nao - 2 g8 1

so that

2
by N2

e (12424 (1004 (0§, 1 : iy
e = (1= 47 = (1028 ){1 2 [K+(k+lF—;_JI(l+-—£9'é 41(0))]@}

and A« 4 (0) 41 N o
o n 1 '4[K*(k+ly’55—l-]2 - (80a)

For the sample field #4863450, 61(0) is 0.0379 and the
correction is about 0.0023, giving ¥= 8.32. The computer
result is ¥ = 8,3140004 which is obtained under the guise of
linear tune number" which has a slight difference in
meaning from the propagation frequency » being referred to

here.
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VI. Theory of Modulation

We are now in a position to introduce an explicit,
represehtation of our orbit model with our interest retreated
into the following hideout:.

(1) Spatially we stay within a narrow W-cone which
enumerates all those orbit states with average
oscillation amplitude A satisfying

A2 nand A% & o

(2) Temporally we can only afford to look forward to a

finite future defined by |
g < a3

Under these circumstances, two aspects of the field
properties, which may be deemed as intrinsic in the structure
and as completely independent of the orbit state, can be
summgrized by two numbers, viz., the fixed point state number
W0 and the propagation frequency v,

To every orbit state W, we associate a number A, thus
defining a propagator for this state A sin ( ¥& -¥7 ) with ¥
dependent on W {or A) analytically but numerically Y=~ O shall
always be understood.- This propagator 1is now subject to a
process of modulation as a refinement toward the true orbit
picture.- The process of modulation is certainly not unique.
Different approaches can lead to equivalent approximate
results and choice of the type of modulation in the
representation calls for parameters of different nature which

supply different information one desires to learn. The
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purpose here is to study the condition (16) for which we
desire to learn only the orbit behavior in a small neighbor-
hood about the foot of every propagation axls and for such
neighfuorhoods, both »@& (mod. 2 ) and N& (mod. 2 ) are
véry small. Further, we are concerned only with standard
initial states (% E¥§:T'Q;O’ W) on the P = 0 axis, so a
modulator approximated by one odd harmonic function of the
form B sin (N & - Yb) with Yb::o should be adequate.
However, the modulation amplitude B must itself be further
modulated by the propagator. Whether such a modulation
process should be effected through amplitude modulation or
phase modulation is immaterial; we may generally assume B to
be a function of both & and A, i.e., B{(A,® ) so that what-
ever B(A,8 ) is, the orbit picture should look like

Asin(ve® -Y) + B(A,8 ) sin (N#& - YO) -~ (31)

with ¥ and Yo very small. The structure of B(A,® ) can be
’aéxcomplicated as we wish to imagine. Nevertheless, the
requirement that as A% 0, the whole thing should approach

the representation of the equilibrium orbit, which in l1ts
one-harmonic approximation has the form 2@ sin (N8 -¢& ) with

& ~ 0, defines the limiting behavior of B(A,8® ):

Lim B(A, ® )%E’ﬁq for all O
A0 .

And as has been discussed in Section III, as 8-+ 0 (or both
8 {mod. 27 ) and N® (mod. 27 ) becomes very small), we
should have

Lim B(A, & )~» Vs with W, dependent on A.
80 N
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This much information regarding B(A, & ) is all we need. It
should be pointed out here that the propagator amplitude A is
defined to depend sheerly on the state W, implying that it is
temporally a constant. Consequently, if there is any
monotonic growth in the oscillation amplitude of the orbit,
such growth will have to be taken care of by the function
B(A, ©® ). If the monotonic dependence on 8§ in B{A,® ) is
strong, condition (16) cannot be satisfled for any time
duration long enough to be of interest. We can therefore
afford to stay ignorant of what the detailed structure of
B(A,® ) is and get along with this representation (31) which
actually is ﬁore general than its simple'form would suggest.

The two lowest derivatives of this representation are:

5.]-'(0): VAcos (V8 ~-Y )+ B (A0 Jsin(NG& - }’O)

+N B{(A,® )cos(N& - YO)

4«'( )= —y2A sin (N® - Y )+2NB'(A,® )cos(N @ —YO)

+B"(A,8 )sin(N8 - Y ) - N°B(A,0 )sin(NO- [ ).

To satisfy the standard initial conditions, the following

relations are observed: ( 1’0 ~ 0 used)

2
W
“A sin Y=e—r———— 0 so that ~ 0
sin ¥ 2[K-k-1) r
VA cosY +NB(A,0)=W so that W ~~ ¥ A+NB(A,0) - (32)
2 2
2, . , ¥ o w
A + 2NB'(A,0)= BV, = ~ 0.
y“A sinY¥ + 2NB'(A,0)=0 so that B'(A,0) 2N 2k 0
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On any sector axis, say on the qgth axis, the state of the

orbit 1is

v )= a2 sin Y

=

f ~ Asin (211‘1,

-y )+ NB(A,RTH—) cos ¥ (33)

=i

Jl~W\ws(2ﬂ$

- B (a2 Xk ) sinY g

N

If this qth axis is a propagatlon axls as defined in Section

111, qs(%l\!,» , we can approximate B(A,&ENL) by a linear
extrapolation from B(A,EQ%ﬁimmJ ~ B{A,0) so that

N

B(A,Z_l%i-):B(A,OHBf (A,0) &1~ { ’\%L? "I'\I;F}

This correction term is of the same order as Y and y’o and if
we mean to neglect Y and YO, this small correctlon can also
be consistently disregarded. In the interest of analytlical
simplicity with little loss of numerical accuracy, this will
be done.

Condition {16) can now be put in its simplest possible

form:
2y _s NP }
o N R
§ -l (34)
2 Y _¢NP N l'x %ng
cos N 7 /+'Tﬁ N
NB(A,0) s 1 1-S V¥V A
where P= 2 = e (35
P v A »A ¥ N A [(lnS)’A)Q 4_(_1_ —l)] )

=l O
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This inequality, along with (32), which is now expressed as-

W= VA Lo SEA. (36)
(1=S v A) *('ﬁ“—“l)
o
and its derivative with respect to A
= _ W % 1 |
=57 SVETY =5 (37)

(1-S>JA)2+(-I\-I-W%E-1)

which shall be called the “admissibility® of the field
structure, constitute the set of equations we wish to study.
In looking for infdrmation from these equations, one must
clearly observe their 1imitations. In addition to the
conditions that must be fulfilled in deriving the numbers »
and Wos the neglect of small numerically insignificant
quantities like Y and the rather arbitrary choice of an
explicit representation in (31), all should have profound
influence on the kind of information they are capable of
supplying. From the manner these equatlons are derived, we
cannot expect them to yleld such delicate predictions as
concerning a particular resonance phenomenon. They are only
ready to glve numerical ideas pertinent to the over-all
properties of the field structure, the orbit states, and
their mutual dependence. They do give some guldance in such
matters as the choice and the compromise to be made among
the fleld parameters, but whenever a quantity whose
numerclogical struéture enters into the problem in some

critical manner, to loak for information from these equations
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without refined considerations extended to the analytically
non-vanishing small phases like Y , Y})and other connections
so far disregarded, will do us no justification.

VII. Conclusion

To apply and discuss the equations (34-37), we start
from the admissibility function, the definition of which
impliés that a structure with large $ is preferred. For If
a slight increase in A would bring about a large increase of
W this implies more orbits can be admitted for a prescribed
fixed average oscillation amplitude. &ince Nng:Ej large k
is of first choice,. This deduction is consistent with the
fact that large momentum compaction gives small circumference
factor of a structure. Equation (37) also tells that if the
f.p., state number Wy is made such that E%E.v 1, & can be

enhanced. Wy as a function of the field parameters (equation

(22)) is subject to the validity condition in the evaluation:

W
ﬁg < %K— (Section IV). So the best we can do is to arrange
NQ
NWO“'?IEN 1 _
| 48° 2304
F i i = &t oo 1.03.
or the field #4863450, this is ExA50 S0 1.03

If these preliminaries are observed, the quantities P and W

assume much simpler dependence on other parameters:

T=—m Ty & (or VA=% -[757 - 5% ! (38)
N 11 ‘
W & YA+ RITTVE (39)
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and we may proceed to ask what conditions there are in the
ratio % br g), so that the satisfactlon of the inequality
(34) can most favorably be effected with as small a value of
T" as possible for all possible integers p . We note here,
small I imples large A (or W) and therefore large stablility
limit.

| Certainly, if the argument

- 20 Np
Qg &< S->
can be arranged to be small for all integers F , this inequality

would accommodate small values of [' for fixed field

parameters, To explore this condition, let

N__ i _ m A
vy IT+a ~®TTFET (40)
in which m is an integer and 4 a small numbei, being very
| N _ N ;
-Involvedly dependent on k, N, 4, (c.f. v (I A ) tn

Section V). Then

('%%i> = Flﬂ—-‘Ji&ﬁL>

1 + 4

and

Qmod. 27 ) = o At | pERE (o Fas >}. (40a)

in which the bra¢e, By definltion, is a number always smaller

i ra

than i in absolute value and the ratio is just %.

2
Apparently a large m will insure a small Q whatever k 1s.
However, we cannot make m very large since on the RHS of this
inequality there is also a factor % (in addition to other

conflicts which may arise for too large an m). The compromise

~43-
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is to arrange m sufficiently large such that if the value of
the brace is stretched to its maximum possible % , Q will.
satisfy

sin Q = Q ;

i.e., Q assumes value about or smaller than %; orm 2 6 so

a
that the factor % in Q and same in the bound on RHS may in
effect cancel out. This cancellation implies that, when m

is sufficiently large, the dependence on m in the satisfaction
of (34) becomes very weak, being only in the brace whose value
is firmly bounded by 5. If one notlces that the ratio ¥ is
equivalent to -?-i%, where ¢~ is the linear phase shift in
Floﬂyet's theory one immediately sees that choice of m large

enough implies keeping 5%% away from such dangerous fractions

as % or %. For m 2 6, the lowest resonance nearby would be %
which 1s not very harmful (even exactly at resonance). This

latter statement is concluded from Moser-Sturrock's theories,
a coordinated study of which is available in Cole's notes.
With m chosen sufficiently large being agreed upon, the

propagation condition may now be put in the simplest possible

‘form
pmao -< Pma | m26
D L [E "
1 +&4 | pme Pma AW
.C°Si2‘T [ T 122 <3

The argument Q in the cosine function is formally very
complicated, but its numerical value is quite constant, being

usually 0.92 + small fluctuations depending on choice of m > 6.
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Without going into details regarding the small number
A , we can now derive an estimate of the stability limit as

a function of field parameters.

Take the extreme situationgl EEA -(l f%ﬁ-}, x %

whatever p and 4 may be, and define the marginal value of r

by the equality

1
COSSJ,FL = ﬁjg_, (42)
. -
s that Vhxgg - '2‘187[1 "N 2?{[%}{- cos Q
{a3)
and W x VA *§ Ty

W gives the size of the stable cone and A gives the
propagation amplitude at the stability limit. If to A_ 1is
added the maximum modulation amplitude, which differs negligibly
from that of the equilibrium orbit amplitude, one obtains the
numerical value of this stability limit usually referred to.
For the field #48634R0, m is 6 so that cos Q = 0.88,8 is 8.04
with ¥= 8.314 so that A_ = 0.0017 while W_= 0.038., The
amplitude of the equilibrium orbit is approximately 0.0004.
The estimate thus gives a stability limit of about 0.002
corresponding to a phase plot curve with a pinnacle value at
0.038. Such a number is meaningful for a time span estimated
to be of order (2 x 1073)-2. 10° sectors or better. George
Parzen's computer numerical analysis also concludes a number
about 0.002 with a stable life expectation adequately long
for application.
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We cenclude this study with a discusslon of the small
number & defined in (40) by ralsing the question: What kind
of small member this 4 we would like to choose and why? The
question is meaningful only if more refined considerations
are incorporated into the propagation conditilon. Iﬂe neglect
of small phases and the notion of standardization of all orbit
initial states are no longer justifiable. In fact, the
assumed existence of a continous W-cone at the origin which
defines the limit of stabllity in such a cleérmcut manner as
so far has been conceived is really a fiction. Condition (41)
can only supply us some ldea in the limiting case p-eoee (o0
defined in the sense of Section VI} and A—¢A,_ " . To assoclate
some A beyond this A~ with some & smaller than thisﬁ; in
order to answer the question mentioned in the Introduction
will call for an approach in which every substate of the same
orbit be considered on an equal footing and only under this
general situation will some scrutiny into the structure of 4

be meaningful and essential.
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Appendix

We are concerned with the evaluation of the following

two integrals:

A :
9 _,_.J' 46 e(k+l)[€sln,u(0-t-)
o~ ) cos| mEcosmle -¢ )]
o
[
9 = ‘ d6 JNE K ¥ sinu(s -€)
+ cos| m€ cosu{@ - &)
o

1 =K

2 4 (k+l)2 and ?z tan 3T

where k12=:-: K

The transformation ® ¥ 4(® - &) and the approximation

el ﬁgfggsgéa
2

cos[/u,E cos@] > 1 -

are first effected. Then up to order O(E fa gz can be very
simply handled by guadratizing the integrand. Straightforward
integration leads to the result:

w3z mf st B (1)) 18 - (111) € [cospl g =€)

- cos/ae-] "%52(,%2- (k+l)2)[sin 2p(8 ~€)

+ sin %#@,]

up to O(E) with 8 = ; te this yields

'2 = ii(-—g‘ + me ) +[(k+l)E cos,u.e-‘)}.

.
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For 3* » the expansions
klei¢E sin® §i im@® id
e = . @ Jp (1 ky e )
I =@
mt2
and (L )" (£ 2)
Jm(Z) = i bl -'m—-*'ﬂjw +.e.
m 1t{m +1)!

are used. Only the leading terms in Jm(z) need be considered

if the argument Z is bounded as ;z]é% » Or approximately

- l Nﬁ-m;l-'m
’tlisk& 5R

2.2
for an accuracy of about 1% in error. Then up to O(kl ET),

integration leads to (in terms of variable ® )

-4 ME _ %1 @&5-@: £ gi“¢g Y Y ([-Q)ani&;.(!-g)@
M);l'e Q:(H-i'ﬂtﬁ ) ‘f"';;’w o ¢ [ pre PR
&}1 lq—j”i

+

& ] M _N; - .
-G (1+2)-L 85y (m,,na,*. 1 ?'méfﬁaeﬁéj [ 5}..(%5}@%@;(:«-5 )q‘? S (3,5)@;,“@ (,,ﬁ,@.J

&

»

NM— 8 R“ﬁ A 2
e

Up to O(RlE) and transformed back to variable € , one has

e8| Lete 1 ot vive e o ol-cue  _oue
YR - Rl . L [ -2 . - e

M 34 ' Loy ¥ -
Vo M+'
With 91 = 21r +& as the integration limit, one has

L S (ﬁ%f&@) g [ i
Mj* - a;/ + T E[(gu)fm(ﬁgﬁue)"k(;ﬂ(Eg*"&)‘!{S&/‘é]
- (&)~

- 8
-(‘H)Cw;&é-} + i{ e lfEwe) € ¥ [k (B X ve)
2 (Xt

+ Ksm (B X ue)e (fe) Siapne ] »szes,m.-} }

The complex conjugate of 3.1, defines 3m . The three integrals
3, 9... . are used in Section gv.
¢ ! -=-4 -
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yields p~1.9878307 x 1072, %~ -2,1537204 x 10™4 giving an
accuracy up to third decimal place. This phase=gauge
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ABSTRACT

The resonant beam extraction method proposed by C. L. Hammer
and L. J. Laslett for constant gradient and alternating gradient accel-
erators has been extended to fixed field alternating gradient accelerators.
It is possible to find field perturbations which are effective in causing
the radial betatron oscillations to grow exponéntiaily at a particular
azimuthal position, and which at the same time have an effect upon the
equilibrium orbit which greatly enhances ease of extraction. Digital
calculations verifying the analytical predictions are presented. It re-
mains necessary, however, to choose field perturbations which do not

introduce nonlinear effects having unfavorable extraction characteristics.

*AEC Research and Development Report. Research supported by the
U. S. Atomic Energy Commission, Contract No. AT (11-1)-384,



I, INTRODUCTION

Fixed field alternating gradient accelerators as compared to
ordinary alternating gradient accelerators have the distinct advantage
of a much larger internal beam intensity. This advantage could be ex-
ploited in performing high-intensity scattering experiments in the ener-
gy machines or storage rings. However, only single-turn extraction
has been demonstrated for this machine, whereas many-turn extraction
is desirable because its more extended beam burst aids in coincidence
studies. Also, when one is using the fixed field accelerator as an in-
jector into a larger machine, a longer beam burst will enable one to fiil
more completely the phase space of the larger accelerator.

Integral or half-integral resonant beam extraction is deemed
particularly suitable for use as an injection process into a higher ener-
gy machine for it is anticipated that the resonant extraction process
will reduce the radial phase space of the beam. In addition, the per-
turbation may be applied spatially so that long term extraction can be
achieved by slowly moving the beam into the extraction region. Reso-
nant beam extraction has been investigated analytically and checked by
digital computations only for constant gradient and alternating gradient
synchrotrons. 1 In the above cases the betatron scolutions may be writ-
ten in the Floquet form if the dynamic nonlinearity oi‘ the equation of
motion of the betatron oscillation is omitted, which is reasonable for
these machines. The type of perturbation used in this analysis is an

azimuthally dependent perturbation of the azimuthally dependent part



3

of the field. This perturbation drives the operating point into the inte-
gral or half integral radially unstable zone, which opens up with a width
proportional to the perturbation strength and within which the solution
for the exponentially increasing betatron oscillations attainé its maxi-
mum value at one particular azimuth regardless of the initial conditions
of the particle, Therefore, in principle, the beam can be extracted on
successive revolutions with no spread in the angle tangent to the equi-
librium orbit, thus making the radial phase space of the extracted beam
Zero.

Because of the high nonlinearity of the guide field of a fixed field
alternating gradient accelerator, it is an interesting question whether
a fair approximation to a Floquet solution for the betatron oscillations
may be made and the resonant beam extraction method applied to ex-
ploit its obvious advantages. This paper will consist of a linearization
of the equation of motion for the fixed field machine and the application
of the resonant beam extraction method to these equations. Determina-
tion of the feasibility of the method will be established by the use of
digital computations.

II. THEORY

A, Derivation of the Linear Equation of Motion

The equations of motion of particles in a fixed field alternating

2
gradient accelerator are:



2 2, -1/2
x'=(1+x)Px(1-px-py) !
. 2 2, -1/2
y' = 0 +x)Py(d-p-py)
2 2. 1/2

' = (-pf-p P+ ot + %) [ (By/By) - (Py Bg/By) x

y
(1-p2-p)) 'UZJ

¥
P/ = O +x [(PxBg/B,) (1 - py - pJ) -tz Bx/BOJ (1)
where :
x = (r-rollrg y = zfrg T = erygBg/mge = 1

a prime indicates differentiation with respect to 8
Py = (dx/ds), Py = (dy/ds) .

One sees that the radial motion and.the vertical motion are
coupled. For the accelerator considered, if is assumed the perturhba-
tion of the radial motion due to this coupliﬁg is small so that the radial
equation of motion may be written with no vertical motion. The coupling
effect will be investigated by digital computations only. Further, to
make possible an analytic calculation, the radiai equation of motion is
linearized and pérturbation theory is applied to this linear equation to
determine the field perturbations necessary to give the beam an ex-
ponential growth and to properly orient the beam so that it will enter
the extractor region without loss of the beam to the walls at other azi-

muths.
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Thus, for motion in the median plane, in which case the mag~

netic field of the accelerator is
By/Bg = - (1 + ¥ G (8)
Bg = B, = 0,

the equation of motion becomes

1+ x)%x" (1 + x)% + x'%) -3/2
(2)

st 2 42D @+ + 02+ 2320y 95 .

12

Ignoring all terms of order xx', xz, x'”, and higher order, one ob-

tains
x”=1-(3(9)+x[1-(k+2)G(9)J. (3)

Making the substitution x = w - 1/(k + 2), one obtains
w'+ [+ 2)G (@) - 1J w = (k+1)/(k+2). (4)
B. Derivation of the Betatron Oscillations

If w is separated into w = wge + Wy, with w, representing the
periodic solution to the inhomogeneous equation, (4), i.e., the equi-
librium orbit, one is left with the desired linear equation of the beta-
tron oscillations, wp, about the equilibrium orbit. Thus the equation

of motion of the betatron ogcillations is



W'+ [+ 2E@-1] w, = 0. (5)
Witha G (8) given by

G(@®) = F(® + Af(9)
where F (6) represents the unperturbed field,

F(®) = A+ [m,,/(k +2)] H(0)

while H (8), the field flip~flop, is given by

H (9) 1 for -77/2N < (8, mod 21 /N) < 11/2 N,

H(@) = -1 for 7/2N < (8, mod 2, /N) < 3 [2 N,

and the perturbation of strength A has the form

£(8) = Z_ Ed_cos (g8 + 5s). (6).
T

The solutions to equation (5) may be written in the Floquet form,

wy = B+ e & )

2

in which A is real for operation inside an unstable zone and where ) 1
and , are functions periodic il',l"i:WO revolutions about the machine in
the case of the half-integral regonance, These functions are deter-

1
mined by the structure F (8) and the perturbation At (9).
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The problem is to determine f (8) such that the unstable zone
is opened and so that y has a value which permits the ascending solu-
tion to dominate and @1 has the spatial dependence and periodicity
required for beam extraction.
Perturbation theory may be used to solvé equation (5) conven-

iently, using the complete set of functions, x;i,ﬂ. , where

A" [kt A -1+ mE ©) x, o= -al, o,

»,T

The latin superscript refers to the parity of the eigenfunction,
the subscript 7 refers to the fundamental frequency of oscillation in
the eigenfunction le)’f and the subscript v is the fundamental fréquency
of the unperturbed eigenfunction,

To first order, the exponential growth factor u is

_ 1/2
e (m(lz)- miz {2y || v (L) 11, fe -e)] T (8

where
' -1
m] = - (L] tliv DLy E[LY)
fo (1t -DL)JIIZ’—“ 1/2
<j;vff,|j,v>z'1‘%zvcos(SZv-jﬂ)+ Eocos go (9)

4t '
<j,7‘ff |:i.1‘> = J ij,-r (8) £ (8) xJ,,),r (8) dB .
(o]



The stopband is thus opened to first order if

vty 4 (avltlz) .

Only a EZ cos (2v 8+ § 21") perturbation term will accomplish
v
this.

A first-order approximation to él is
@13 cos V(8 -0,/v)+ B, cos[(N— v)(®-9,/v)+ NGO/UJ

+ C , cos [(N+v)(9—¢0/v)+N¢o/u]

(1 -1 )
7+(2av,v+p) €2v+p{cos [(v+p)(9 8, /V) + );.9]
+B, o cos[(N- v-o)(@-d./v)- ¥, + (Naolv)]

+cu+p cos[(N+v +p)(e—¢o/u)+3;,+(N¢°Iv)J (10)

where

Y = Szv+,a+(/0¢°lv)+2¢°’ p= 1, rz2,

The maximum of $ . occursat 8, = @_/r , with the dominant
1 o o

terms reinforcing the fundamental if one chooses

- ({v+pl =Y ) g )
Bavio * [veo 0) & ovip  NBolv = 2rl o

L=1,2 3 -

-1
SZv+p = -(2¥,+ $,/v)=217N (2v +,0). Operation in



the center of the stopbgnd gives the auxiliary condition
bo = @+ D, n=1,23 -, sothat f= (@)  (4n+ IN.

A first-order approximation to & , is

B, = -cos [vie-0,/v)+ 20 ]
- B, cos [(N-u)(e-ao/u)-zeo+ﬁiolu]
-C, cos[m+v)(e-dolv)+2¢0+N¢°/v].

-(E

+ Bv+p cos[(N-V.-p) (0-0o/v)- Yo + Nis/u + Zﬂo]

}{cos [(vepr@-do/v)+ X, -20,]

Zv-i-p

+CV+,o cos [_(N+ v+p)(@-08,/V)+ J:o+N¢°IV -Zﬁo]}.

For operation in the center of the stopband, the auxiliary condition

holds, and @2 becomes

1}

, = sin V@ -98,/v)-B ,sin(N-v)(@-9,/»)

+C,ein(N+V)(@-9,/v)

- EZV-FP {sm[(wr,o)(e ¢/u)+3’p]

2a
V,V+ip

.i.Bv“:J sin[(N- vV -p)(@-6,/V)- Y/" + Nﬂolv]

+ Cv+,o sin [(N-&- YV +e)(@-6,/v)+ ?,’a+ Nﬂolv]}’.(lz)
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The conditions which maximized @ ; 3t 8= g,/ thus give ¢ 2

a value of zero at 8 = §,/V .

The coefficients of equations {10) and (12) are

Zmu

[(N T) -(k+2)A+1-a,,,;.}

Cr = 22 [(N Tkt AL -ai,,ﬁ,:]'l
e, [72 -vzj[1 +a(vin?]

%i[v2+1-(k+ Z)A][(N-V)?‘-(k+ Z)A+1J x

2
<
B

[(N +v)‘?’- (k+ 2 A + 1][N2+ vz-- {k + 2) A + 1]
C. Derivation of the Equilibrium Orbit Solution

Since the homogeneous equation (5) does not contain first
derivatives of wp,, the Wronskian is equal to a constant. That is, for
properly normalized independent solutions wgl) (@) and wﬁz) {0} of the

homogeneous equation,

Wil @ = N X8 (0 and w0 = N, 0D @),
wil? (0) w ()
= 1 .
wl()l)- {8) wl()Z} {8)

Hence, one can construct the periodic solution of equation {4) using the

Green's function,
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G, 8 = w! @) W @), 0<0' <0, G,

= wg” (@) ‘wé}z) (@), 8< @ < 4.

The general solution to the inhomogeneous equation therefore becomes

MO

- 149
w, = Ae @1(9}+Beﬂ @2(9)

e
k+1 - U9 +u0!
+k+ZN1Nze @2(9) j e @1(9')%'
(+]

447
k+1 MO - 48! . ,
+k+_2 Ny Ny e @1(9) ( e Ql(e)do.
; )

To obtain the equilibrium orbit, the constants A and B must be
chosen so that the nonperiodic parts of w, vanish. Thus, an approxi-

mation to w, to first order in the pertw bation is
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where
e'=e—¢olv,
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Tt is evident that the coefficients of the harmonica added to the
‘equilibrium orbit which contain the factor 1/{v+ o) are large if-
{V+ /b) is small. Thus the largest harmonic added to the equilibrium
orbit is that for which (V + 0 )= - L , in the case of the half integral
resonance. One always has two choices of P in picking the field per-
turbation introducing the harmonic with the fundamental frequency
(V+ /0) into the ascending betatron solution. That is, one can choose
such that (V+ o) = + [(¥+,2)[. The choe of 0 <0 such that
(v+p) < 0 always has 2 much more favorable effect on the equilibrium
orbit than the other choice, because it a.lwa:ys adds harmonics to the
equilibrium orbit which have their maximum at the extraction azimuth.
In the case of @ <0, the choice (V+2 ) > 0 has a deleterious effect
gince the largest harmonic added to the equilibrum orbit has its mini-
mum at the extraction azimuth. The choice, for 2 >0, { V+,0) >0
adds its largest perturbation harmonic to the equilibriurm orbit such
that its maximum is at the extraction azimuth, but its maximum is
usually much smaller than the choice o <0, (V+.) < 0, In addition,
éome of the smaller harmonics added have their minima at the extrac~
tion azimuth,
Although it may not be poasible to make ( V+,0) small in intro-
ducing certain harmonics into the ascending betatron solution, it should
be poasible to choose a perturbation so that a favorable effect on the

equilibrium orbit is obtained,
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The terms in the equilibrium orbit which are multiplied by the
growtli factor 4 have, in general, a deleterious effect upen the extrac-
tion properties of the equilibrium orbit since these terms take on the
value 0 at the extraction azimuth, while they may add to peaks at other
azimuths. Hence, one ahould usually avoid large values of « .

II. APPLICATION OF THE THEORY TO THE MURA
50 MEV RADIAL SECTOR MACHINE

The MURA machine tuned for one-way operaticn operates on
the V= 4.5 resonance and has an unperturbed magnetic field in the
median plane, G (8) = 0,57015 + 5,65325 cos 16 8 plus small harmonics
of 16 8, k= 9,3,

It is desired to chopose a perturbation for the field that enhances
03] 1 at some particular az_imuth. From equation (11), chaesing 2= 4,
one obtains §,/V = T7/2 as the extraction azimuth. By equation (10)

the unperturbed function is
@1’:: cos 4.5 (8 - 717/2) + 0.298 cos 11.5 (8 - 77/2)
+ 0.091 cos 20,5 (8 - 77/2).

To aid in extraction, it was decided to add harmonics to the
function ® 1 such that its magnitude at any azimuth other than the ex-
traction azimuth is no greater then 0. 8 of the magnitude of & p at the
extraction azimuth, In particular, the harmonics added to the unper-

turbed function must reduce the absolute value of the function at
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azimuths other than the extraction azimuth where it takes on large
values, It remains, therefore, to find an economical combination of
harmonics which will accomplish this, In addition, one must recognize
that the magnetic field perturbations used to produce these harmonics
in ® | may affect the equilibrium orbit in a way which may greatly
enhance ease of extraction or may have a deleterious effect. Keeping
in mind that perturbation harmonics closest to the resonant frequency
have the greatest effect on the osacillation amplitude, one obtains by
trial and error a sum of the harmonics cos 0.5 (@ - 77/2) and cos
5.5 (8 - Tr/2) as a combination which gives the proper shaping of é K
The perturbations required to introduce these harmonics are found from
equations (6), {10), and {(11). Thus the perturbation added to F (8) to

introduce cos 0,5 (8 - 17/2) into @ is either - IE4 lcos 40 or

1
- l% 5 l sin 5@, The pez:’gprbation introducing a harmenic of
cos 5,5 (8 - T7/2) is eith; - 1%10\ cos 10 8 or - \El\ gin @,

It remains to choose between the alternate perturbations intro-
ducing the desired harmonics into @1 that combination of perturbations
which has the most favorable effect on the equilibrium orbit. One sees,
from equation (13}, that the two alternate perturbations of equal per-
turbat.ion strength which introduce identical harmonics into @ 12 intro-
duce into the equilibrium orbit different harmonics which may be of

greatly different magnitudes and may even be of opposite sign. To

clarify this, consider the principal harmonic of the equilibrium orbit
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ZZV+,0 £ cos (2V +0) (8 - 77/2)

Zay, Vip V(Vie)

added by a perturbation term of the form

cos[(z V+/0)9+

E2 Vip gZ 1}+/0]'

Here only the main coefficient of the principal harmonic is incluhed.
Thus, the perturbation -~ ’E 4 ‘ cos 4- @ adds a positive harmonic of
cos 4 (8 - TI/2) to the equilibriﬁm orbit, of magnitude 0. 65 times
the magnitude of the principal harmonic cos 16 8 for if4 l = 0,05,
On ihe other hand, the perturbation - 155\ 8in 5 8 adds a negative
harmonic of cos 5 (8 - TI/2) of the same order of magnitude., Hence,

the perturbation - l'§4l cos 4 8 is chosen since it enhances the maxi-

mum at the extraction azimuth, while the - §5\ g8in 5 @ perturbation
depresses the maximum at the extraction azimuth with respect to
maxima at other azimuths., Similarly, - |§ \ cos 10 8 adds a
' 10

cos 10 (8 - 7T/2) harmonic and a cos 6 (8 - 77/2) harmonic to the
equilibrium orbit, both of magnitude 0, 05 times the magnitude of the
principal harmonic, for J-El(), = 0,08. The perturbation
- \E \ cos 10 8 produces an equilibrium orbit in which the extrac-

10

tion azimuth maxima is enhanced over all other maxima by a magnitude
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0.2 times the principal harmonic except for the a.zimuth 8 =3 TT/2,
at which point the maximum is equal to the extraction azimuth maxi-
mum, Since the ascending betatron oscillation amplitude is near zero
at 8 = 3 TI'/2, this equilibrium orbit is also very favorable for extrac-

tion purposes.

IV. DIGITAL CALCULATIONS

A. Radial Motion

The perturbed azimuthal field component, G (8), used in the

digital calculation is

G (@) = 0,57015 + 5,5¢cos 16 8 - 0.05 cos 46

~ 0,08 cos 108 - 00,0113 cos 90, (14)

The cos 9 @ term is used to open the stopband. The approximate

normalized function @1 then becomes .

@1 = 0.678 cos 4.5 8' + 0,194 cos 11,5 8' + 0,061 cos 20 8
+ 0,012 cos 0.5 8" + 0,040 cos 5.5 @'

- 0.004cos7.58"+ 0.015cos 10,5 8' + ¢.003 cos 21 @
8 = 0- T0/2.

This function has the property of having in no region other than @' = 0,

mod. 2, an absolute value greater than 0, 8.

(15)
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The approximate equilibrium orbit is obtained from equation (13),

- (k + 1) ][ .
We [N1 Nm 0.21i5 + 0. 064 cos 16 @

+ 0,042 coe 48"+ 0,011 cosl2@' + 0.004 cos 10 & {16)
+ 0,003 com 6 9'].

The factor N; N, could be obtained by using the approximate solutions

of , and o , innormalizing the Wronkskian,
: -1
| & ;@ =0 @2 (8' = 0) , = (N _NZ) . (17)

This is impractical since the higher frequency harmonics, which have
small coefficients and therefore are neglected in the approximate solu-
tions, have a large effect on the normalization of the Wronskian. There-
fore, an empirical determination &f Nl N, H is made. This is
done by equating the average value of the equilibrium orbit calculated

digitally to the average value of the equilibrium orbit,

(xe)digital = 0,215 [Nl N, 10, 3/11.3] -1/11.3. (18)
One obtains
Ny N, 10,3/11.3 = 0.34. (19)

This is in contrast to a value of 0. 23, obtained from equation (16).
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!
Figure 1 represents the analytic calculation of (-3""9 @1 (e'),
and the digital calculation of the displacement from the equilibrium

orbit for the Initial conditions
-3 -5
u(e'=0) = 1x10 7, u'(@=0) = -2,86x10 , u = x-x,.

Figure 2 represents the digital calculation of u (8') for the larger

initial conditions,

u{e'=0) = 1x10_2, u' (8 =0) = +2.86x10-4.

The initial conditions of u used in the digital calculations were chosen

to pick out only the ascending solutions. The growth factor of the ana-

lytic solution portrayed in Fig. 1 is chosen to match the digital results.
Figure 3 represents the digital and the analytic calculations of the

equilibrium orbit. The total motion for the initial displacement

u(@' =0) = 1x10°°2

is shown in Fig, 4.
B, Vertical Motion Effects

In all the perfurbation fields investigated, care was taken to keep
the vertical tune as far from an integral or half-integral vertical reso-
nance as practical, This was done, when necessary, by adjusting the
relative strengths of the field perturbation terms, thus putting a restric-

tion on the form of the perturbation field. For the perturbation field
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under present consideration, y = 2,80, well between the integral
and half-integral vertical resonances.

Coupling effects due to the vertical motion were investigated
for two ranges of vertical amplitude. For a total vertical amplitude,
¥i» of magnitude 0.004 and 0.0048, corresponding to initial radial
amplitudes of 0.001 and 0. 01, respectively, the coupling effecta were
entirely negligible. For a 200 cm radius machine, these vertical ampli-
tudes are 0,8 ¢cm and‘.o. 96 cm. For total vertical amplitudes of 0,04
and 0, 05, corresponding to radial amplitudes of 0. 001 and 0,01, re-
spectively, qoupling effects were quite pronounced., This range of
vertical amplitudes 1s much larger than would be encountered practi-
cally, however, Table I compares the radiai oacillations for the un-

coupled cases, y; = 0, and the coupled cases.
C. An Additional Perturbation Fileld
One additional perturbation field studied is of the form

G(8) = 0.57015 + 5,91 cos 168 ~0,01l cos 98 -0,1cos 108

~0.28in118 . (20)
With this perturbation field the approximate function Gl is

¢1 = 0.632 cos4.58' + 0,190 cos 11,.58"' + 0,058 cos 20,5 @'
+ 0.042 cos 5.58' + 0.017 cog 10.50' + 0,038 cos 6,5 8!

+ 0,023 cos 9,5 8!
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The analytic calcuiations for the betatron oscillations and for the
equilibrium orbit drastically fail to agree with the digital calculation,
Figures 5, 6, 7, 8, and 9 represent the digital calculations of the
equilibrium orbit and of the ascending solution with the initial ampli-
tudes u = 0,001, 0,003, 0; 006, 0,01, The form of the solution is
dependent on the magnitude of the initial conditions, which is an un-
desirable result. Figure 8 demonstrates an extreme nonlinear effect.
The large peak is very smooth when the equilibrium orbit is added in.
It is possible that this large oscillation can be used as a feasible ex-
traction process. At the present time this behavior is not under-

stood and should be investigated further.
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V. CONCLUSIONS

The first field perturbation used is very favorable for extraction
from the particular machine considered. The favorable equilibriuvm or-
bit shape relaxes the requirements on the ascending betatron solution,
requiring only that the ascending solution have an amplitude at the ex-
traction azimuth significantly larger than the amplitude at the azimuth
8 = 3 71 /2 and have their extraction azimuth peaks enhanced over all
other peaks. In addition, but for the difference in the exponential growth,
these two ascending solutions are almost exactly the same, the one of
larger initial amplitude being almost a photographic enlargement of the
other when the exponential growth are factored out. This enlargement
characteristic suggests strongly that all amplitudes between the two
amplitudes investigated will similarly be enlargements, and the particles
will be brought from small amplitudes to extraction amplitude without
any beam loss,

In addition, it has been shown that for some fields the process
of linearizing the equation of motion and applying the perturbation theory
developed by C. L. Hammer and L. Jackson Laslett produces results in
remarkable agreement with the digital calculations of the ascending
betatron oscillation solutions when one considers the appreciable non-
linearities inherent in the problem. Thus, the linear theory provides
an excellent guide to the important features of the betatron oscillations

of a guide field with azimuthal perturbations present.
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The analytic solution derived in the text for the equilibrium or-
bit provides a convenient method of finding the approximate values of
the magnitudes of the various harmonics added to the equilibrium orbit
by a given perturbation, However, as pointed out 1n the text, the aver-
age value of the equilibrium orbit as determined by the Wronkskian was
inaccurate by approximately 30%.

The magnitude of the growth factor A may be estimated analyti-

cally from equation (8) using the approximation
<2V | dalae |1,V> = V-BZ (N-U)+ P +V) .

This gives 4 = 0,055/2 77, as compared to a digitally calculated value
using small oscillations, of A = 0,063/2 7. The width of the stopband
may also be calculated from equation {8). The analytic calculation of
the width is 3.01, as compared to the digital result of 1. 95,

A complete breakdown occurred for the linear theory in the case
of the second guide field studied. It is therefore apparent that careful
.consideration of the extraction problem is necessary when the operating
point is chosen for the accelerator. That is, the operating point should
be close to a half-integral resonance that does not introduce severe non-

linear characteristics.
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