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Abstract We present a systematic framework to study the
threshold contributions of the differential rapidity distribu-
tion for the production of any number of colorless particles in
the hadronic colliders. This has been achieved based on the
universality structure of the soft enhancements associated
with the real emissions, along with the factorization prop-
erty of the differential cross section and the renormalization
group invariance. In this formalism, we present a universal
soft-collinear operator to compute the soft virtual differential
cross section for a generic 2 — n scattering process up to
next-to-next-to-next-to-next-to-leading order (N*LO) in per-
turbative QCD. We also provide a universal operator to per-
form the threshold resummation to next-to-next-to-next-to-
leading logarithmic (N3LL) accuracy. We explicitly present
the approximate analytical results of the rapidity distributions
at N*LO and N3LL for the Higgs boson production through
gluon fusion and bottom quark annihilation, and also for the
Drell-Yan production at the hadronic collider. We extend our
framework to include the next to threshold contributions for
the diagonal partonic channels.

1 Introduction

The upcoming era of high energy physics will confront a
huge boom of data driven by the upgraded run of the Large
Hadron Collider (LHC). The High-Luminosity LHC will also
come into effect in a few years of time. In order to fully
exploit the increased quantity of data which will not only
help to detect a rare phenomena but also improve the preci-
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sion, an enhanced amount of effort by the theoretical physi-
cists will be called for. In improving theoretical precision,
the higher order quantum chromodynamics (QCD) and elec-
troweak (EW) corrections play an important role. Among dif-
ferent observables, since the differential cross-section allows
a wider range of comparisons with the experimental data,
over the past few decades several attempts have been made
to incorporate the higher order QCD and EW radiative cor-
rections to this observable. The topic of this article is con-
cerning the differential cross-section with respect to rapidity,
in particular, we address the question of computing the higher
order QCD corrections to this observable for any generic pro-
cess at a hadron collider with all the final state particles as
colorless.

Despite its high importance, unlike the inclusive cross-
section, the differential rapidity distribution and its radiative
corrections are computed only for a limited number of scat-
tering processes. The rapidity distributions in Drell-Yan and
of the scalar Higgs boson were computed to next-to-next-to-
leading order (NNLO) QCD in Refs. [1,2] and [3], respec-
tively. In case of the scalar Higgs boson produced through
gluon fusion, the next-to-NNLO (N*LO) QCD correction
was incorporated in Ref. [4]. Shortly before, it was approxi-
mated in Ref. [5] in the formalism of g7 -subtraction. For the
Higgs boson production through bottom quark annihilation,
it was computed to NNLO in Ref. [6].

Needless to say, achieving a full QCD correction to any
order is not easy and with increasing perturbative order, the
complexity level increase substantially which often prevents
us from achieving it. In absence of the full QCD correction,
it is often desirable to find an alternative method averting the
full complexity to capture the dominant contribution. In this
article, we discuss such a method, called soft-gluon or soft-
virtual (SV) approximation. In the soft limit, the momenta
of all the real emission diagrams are assumed to be infinites-
imally small which leads to an all order exponentiation of
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this contribution. In Refs. [7,8], a formalism to incorporate
the soft-gluon contribution to the rapidity distribution for the
production of a colorless final state in hadron collider is pre-
sented which, in this article, is extended to the case of any
number of final state colorless particles. The formalism is
based on QCD factorization, which dictates that the soft part
of the real emission diagrams factorizes from the hard con-
tribution, and renormalization group (RG) invariance. The
factorized soft part is conjectured to fulfil a Sudakov type
differential equation with respect to the final state invariant
mass square and as a consequence, it is found to get exponen-
tiated which not only provides us with the fixed order result
under soft limit but also enables us to perform a resummation
in the soft limit. For the production of arbitrary number of
colorless particles in hadronic collision, the soft part essen-
tially remains identical to the case of Sudakov type process
since the real emission can only takes place from the ini-
tial state partons. Using this idea, in this article, we extend
the formalism [7] to the case of 2 — n scattering, where
n denotes the number of final state colorless particles. We
show that combining the virtual matrix element that captures
the process dependence, the universal soft part and mass-
factorization kernel in an elegant way, we can calculate the
SV differential rapidity distribution for any generic 2 — n
process. In addition, we also show how naturally it leads to
the threshold resummation for the same observable. Need-
less to say, in some kinematic regions such as when partonic
center-of-mass energy becomes very close to threshold, the
logarithms often become so large that it endangers the valid-
ity of the perturbation theory and we are left with no other
choice but to perform an all order resummation in order to
get a reliable prediction.

In the literature, several results for the rapidity resumma-
tion employing different methods are available. In Ref. [9],
following the conjecture given in [10], the resummation of
rapidity of W* gauge boson and in Ref. [11] of Drell-Yan
are computed in Mellin-Fourier (M-F) space. A detailed
theoretical underpinnings and phenomenological implica-
tions of threshold resummation of rapidity are examined
in Ref. [12] emphasizing the role of prescriptions that take
care of diverging series at a given logarithmic accuracy. Our
method belongs to a category, so called direct QCD approach
[13], which is based on Refs. [7,8, 14] resums the soft gluons
in two dimensional Mellin space (M—M). In [15], the merits
of different approaches are discussed in details.

Over the past decade, the formalism [7] for the 2 — 1
scattering has been tested extensively through the compu-
tations of the rapidity distribution of several Sudakov type
process. In Ref. [7], the observable was computed partially
at N3LO under the SV approximation for the Higgs boson
production through gluon fusion and for di-lepton in Drell-
Yan. Later, some of us completed the full SV correction at
N3LO in Ref. [16] by incorporating the missing part from
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real emission diagrams. One of the salient features of our
formalism is that the soft part that enters into the rapid-
ity distribution is shown to be connected to the respective
part of inclusive cross-section through a very simple rela-
tion involving gamma function of the dimensional regulator.
This relation was used to extract the required soft part from
the respective quantity of the SV cross-section [17,18,76].
The SV rapidity distribution at N*LO is also computed for
the Higgs boson production through bottom quark annihila-
tion [19]. The threshold resummed results at next-to-next-to-
leading log (NNLL) for the Higgs boson [14] and Drell-Yan
[20] are also obtained. In this article, we extend the formalism
for computing the SV differential rapidity distribution and its
resummation to any 2 — n scattering process at the hadron
collider and we provide the results to next-to-N3LO (N*LO)
and next-to-NNLL (N3LL) in terms of generic quantities in
Online Resource. We also provide the approximate results of
the rapidity distributions at N*LO and N3LL explicitly for
the Higgs boson production through gluon fusion and bot-
tom quark annihilation, and for the Drell-Yan production.
The approximation comes from the unavailability of the full
four loop virtual matrix elements and the soft-collinear dis-
tributions. In recent times, there has been a surge of interest to
understand the next-to SV (NSV) contributions to inclusive
as well as differential distributions, see [21-33] for more
details. In [34,35,77], some of us have demonstrated how
these contributions can be systematically included for single
colorless particle productions. This was done for the diago-
nal partonic channels. In the context of rapidity distributions,
it was shown that like soft virtual terms, NSV terms can
also be resummed to all orders both in z and double Mellin
{N1, N2} spaces [35]. The goal of this article is to present the
formal methodology of computing threshold rapidity correc-
tions including NSV terms for any generic process of 2 — n
kind at hadron collider.

The paper is organized as follows: in section 2, we intro-
duce the notion of soft-virtual correction in the context of dif-
ferential rapidity distribution and then describe our formal-
ismin details in section 2.1. The universality of soft part leads
us to define a quantity called the differential soft-collinear
operator that essentially captures the process independent
part is also introduced in section 2.1. In the next section 3,
we extend our formalism to incorporate the threshold resum-
mation of the rapidity distribution. In section 4, we discuss
how next-to soft virtual corrections can be included in the
rapidity distribution in particular for diagonal channels. All
the results to N*LO and N3LL in terms of generic quanti-
ties are presented in Online Resource in Mathematica format
which can be used for any generic 2 — n process once the
corresponding virtual matrix element becomes available pro-
vided the soft distribution function for Sudakov type process
is known.
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2 Soft-virtual rapidity distribution

We begin by introducing the regime of soft gluon contribu-
tion to differential rapidity distribution for the production of
n-number of colorless particles in hadron collisions within
the framework of perturbative QCD. Our prescription that
we will develop subsequently to capture this contribution is
within the scope of QCD improved parton model where the
collinear divergences factorize to all orders in strong coupling
constant oy = gx2 /4m. We consider a generic hadronic col-
lision between two hadrons Hj () having momentum Pj(y)
that produces a final state consisting of n-number of colorless
particles, denoted as F;(g;)

Hi(P\) + Hy(Py) — Y Fi(g) + X . ()

i=1

Through the quantity X, we represent an inclusive hadronic
state. g; stands for the momentum of corresponding colorless
particle F;. We denote the invariant mass square of the final
state by g2 which is related to the momenta {g;} through
q°> = (Zl q,-)z. Without loss of generality, the rapidity of
the final state invariant mass system is defined as

1 P -q
= —1 . 2
y 20g<Pl.q) 2

The differential rapidity distribution at the hadronic level can
be written as

d2
dydg?

1 1 . . 1
W= Z /0 dxl/() dxy fa (x1) fb (XZ)/O dzé(t — zx1x2)

a,b=q.9.8
= 2., 1 P-q
x/fdp&wm]me\s<y 2bg<qu)>

2
x 8 qz—(z:%) , (3)

o (r, 7% y) =op(t,qgHW(r,q%, y) with

where op is the leading order inclusive cross section. The
dimensionless variables, T and z, are respectively defined
as the ratios of invariant mass square of the final state to
the square of hadronic (§) and partonic (§) center-of-mass
energies i.e.

T

2 2
K and z qT . 4)
S S
We denote the fraction of the initial state hadronic momentum
carried by the partons (a, b) that take part in the scattering at

the partonic level as x(2), and these are constrained through

the relation T = zxxo as reflected by the presence of the
respective §-function in the definition of W. The remaining
delta functions reflects the momentum conservation and also
the rapidity of final state invariant mass system as defined by
(2). fa(;,) are the bare parton distribution functions (PDF).
The spin and color averaged square of the scattering matrix
element is denoted by [Mgp|?. The corresponding m + n-
particle phase space is given by [d P S;,,+,,] where the integer
n indicates the number of colorless particles at the final state.
Note that the numerical value of the integer m depends on
the number of radiated partons which is solely controlled by
the perturbative order we are interested in.

The scattering matrix element or equivalently the partonic
differential distribution can be perturbatively expanded in
powers of strong coupling constant ay (/L%?) = o (,u%) /4
with g being the renormalization scale. In this article, we
confine ourselves to the regime where the leading order (LO)
processes can only be initiated through color neutral quark
or gluon channels,

n n
a(p1) +d(p2) > Y Fi(gi) and g(p1) +g(p2) > Y _Filg)  (5)

i=1 i=1

with the corresponding momenta pj2). Moreover, we are
interested in computing the differential rapidity distribution
only in the soft limit which constrained all the partonic radi-
ation to be only soft i.e. those can only have nearly vanishing
momenta. The goal of this article is to present a prescription
to compute the leading contribution of the differential rapid-
ity distribution in the soft limit which is commonly referred
as soft-virtual (SV) contribution. In addition, we also discuss
how the current formalism can be extended to study the next-
to-soft virtual (NSV) contribution. In order to define the soft
limit for the rapidity distribution, we choose to work with a
set of symmetric scaling variables x?(z) instead of y and 7
which are related through

1 xp 0.0
y=zlog| | and 7=xx;. (6)
2 x5

Note that unlike the inclusive cross-section, the choice of
variables which one needs to take in order to define the soft
limit is not unique and as it turns out, our choice of these
new set of variables is crucial for our prescription. In terms
of these variables, the partonic contributions arising from the
subprocesses are found to depend on the ratios

i =—-, )

which play the role of scaling variables at the partonic level.
After performing the mass-factorization and also evaluating

@ Springer
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the §-function integration over z, the W(z, qz, y) in (3) can
be rewritten as

dzl dzg
w19, 4% = Z/ fa

Oz S 2

0 0
X X
1 2 2 2
x| —, -,
(Zl H—F> fb(zz Mp)

x / [dPSul Ad.ab (zl,zz, o Apj i) u%)

o)) (2] )

®)

where pF is the factorization scale. In (8) , Ay 4p 1S the par-
tonic coefficient function which can be expressed as

S TP Sntn] [Map|* 8162
f [dPSy] ]ab

® @),

__ 2
Ad,ab = ’»///ab’ rH e

3182

©))

where §; and §; are the shorthand notations for the two
8-functions appearing in the last line of (8). In the above
equation, .7, is the UV renormalized pure virtual correc-
tions for the 2 — n scattering while the quantity inside the
square brackets encapsulates all the real emission contribu-
tions as it is already normalised by the pure virtual contri-
butions after the phase space integration. The I"’s are the
mass-factorization kernels which are introduced to cancel
the initial state collinear singularity present in both virtual
and real emission contributions in (9). In the next section,
we will study the IR factorisation property of .#,;. Being a
scattering process containing n-number of final state color-
less particles, the partonic coefficient function does, in fact,
depend on the Mandelstam variables constructed out of all the
independent external momenta which is concisely denoted
through {p; - gi}. In order to find the definition of soft limit
in terms of the new partonic scaling variables, we take the
double Mellin moment of W with respect to the variables
N1(2) which turns out to be

W(Ny, No) = / dxd(x0)M-1 / AN W (0, x9)

=" fa(ND fo(N2D) Ag.ap(N1, N2) . (10)

ab

All the quantities with functional dependence of Ny(y) are
in Mellin space where the soft limit is defined by the simul-
taneous limit of Nj@) — oo. In terms of partonic scaling
variables this condition gets translated to zi2) — 1. Note
that we normalize the coefficient function A4 45 in such a
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way that at the leading order W satisfies
Wi 2, g% k) =W =81 —x)s1 —x3). D)

In the following section, we will present the prescription to
calculate the infrared safe SV differential rapidity distribu-
tion to N*LO in QCD forany 2 — n scattering process which
can be computed order by order in perturbation theory:

o0
k),s
AV =al ) Y ki) Al (12)
k=0

A is the order of strong coupling constant at the leading
order partonic process. Here the arguments in A3 , are sup-
pressed.

2.1 Universal soft-collinear operator for SV rapidity
distribution

In this section, we setup a framework to compute the soft-
virtual corrections to the rapidity distribution to all orders in
strong coupling constant. The infrared safe SV rapidity dis-
tribution can be obtained by combining the ultraviolet (UV)
renormalized virtual matrix elements with the soft gluon con-
tribution and performing appropriate mass factorization to
get rid of initial state collinear singularities.It is well-known
that the combined soft and collinear divergences, conve-
niently denoted as infrared (IR), in virtual matrix elements
factorize from the corresponding UV renormalized part to
all orders in perturbation theory and thereby in dimensional
regularization we can write

Mavsn (1) Aar). 1k ) = lim 2! 0 (@7, 1k ©
x Map ({pj) i), €) (13)

with the space-time dimensions D = 4 4 €. Without loss of
generality, we choose the renormalization scale to be equal to
the scale of aforementioned factorization which, of course, in
general can be different. Upon multiplying the renormaliza-
tion constant Z,, 1r, the IR divergent part of the UV renor-
malized matrix element .7, gets compensated and we end
up with the finite part of the matrix element .#p fin. The
renormalization constant is a universal quantity as it is inde-
pendent of the details of the process, it only depends on the
nature of external color particles. It is fully independent of
the number and nature of external colorless particles. The
exponentiation of the Sudakov form factor in dimensional
regularization was first demonstrated in Refs. [36-38]. For
the multiparton amplitudes, the universal structure of the IR
divergences in dimensional regularization, up to the single
pole in € at two-loop, was first depicted in Ref. [39] and
subsequently analyzed in Ref. [40]. For scattering involving
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only two external colored particles, the universality of the
single pole at two-loop was established in terms of soft and
collinear anomalous dimensions in Ref. [41] which was ver-
ified at three-loop in Ref. [42]. An all order conjecture on
the form of IR divergences in QCD for any generic scatter-
ing process is depicted in terms of soft anomalous dimension
matrix in Refs. [43,44]. An elaborated discussion on the uni-
versality of subleading infrared poles in form factors is given
in Ref. [45]. We provide the results of the renormalization
constant to four loops in Online Resource.

Before moving further, we wish to iterate a well-known
fact. For processes involving only conserved operator, such
as Drell-Yan, the coupling constant renormalization is suffi-
cient to get rid of all the UV divergences. However, for other
processes, such as the Higgs boson production in heavy quark
effective theory, an additional renormalization which often
called the operator renormalization is needed. This is a prop-
erty inherent to the operator itself.

In order to get the infrared safe and finite differential rapid-
ity distribution, we need to combine the UV renormalized
virtual matrix element to the real emission contributions in
the soft limit and perform mass factorization which ensures
the removal of collinear singularities arising from the initial
state colored particles. Therefore, the universal nature of IR
divergences in virtual matrix element implies that the com-
bined contribution from the real emission diagrams and mass-
factorization kernels must exhibit the same universality. By
employing the criteria of universal IR structure and impos-
ing the finiteness property of the rapidity distribution, we
develop the prescription to compute the rapidity distribution
under SV approximation for any generic 2 — n scattering
process and present the result in terms of universal quantities
to N*LO QCD. Once the pure virtual matrix element for any
process of the kind under consideration becomes available,
our expression can immediately be employed to calculate the
SV rapidity distribution at that order in QCD.

In this article, we extend the prescription, which was intro-
duced for the Sudakov type process in Ref. [7], to the case of
2 — n scattering. We propose that the coefficient function
for the rapidity distribution in (12) can be written as a Mellin
convolution of the pure virtual contribution .%, soft-collinear
distribution @, and mass-factorization kernel I", which read
as

AY o = 1AG 21 Faa(ip) - ak). 4% )8 @)
X §(22) ® € exp <2¢d,aa (le 22, qz, E)
— Glog Ta(z1. n%. €)8(22)

— €log Iia(z2, uF. 6)3(21)> ; (14)

where §(z;) = §(1 — zy) forl =1, 2.

The pure virtual contribution is captured through the form
factor .%,; that is defined as

> %0 OP)
MM

Faa=1+) diFg =1+ ! “<66>| 75)>, (15)
k=1 o (AT

where A a(? represents the k-th order UV renormalized
matrix element of the underlying partonic level process
a(p1) +a(pr) — 27:1 F;(g;). The symbol “&” stands
for the convolution whose actions on a distribution g(z1, z2)
is defined as

1 1
Fet21,22) — 8(z1)8(z2) + Fg(zl, 22) + 2 (g ®g) (z1,22)
e (16)

where ® denotes Mellin convolution. In this article in the
context of SV corrections, we encounter only 6(1 — z;) and
P;(zi), where

Di(zi) = |: (17)

log/ (1 — Zi)}

(-2 1y
The contribution from the real emission diagrams is con-
tained in @4,z which we call as soft-collinear distribution.
The soft divergences arising from the real emission and vir-
tual diagrams, which are respectively encapsulated in @4 and
7, get cancelled. The final state collinear singularity is guar-
anteed to go away, as dictated by Kinoshita-Lee-Nauenberg
(KLN) theorem, once the sum over all the final states is per-
formed. The mass factorization kernel takes care of the ini-
tial state collinear singularities. As a result, the coefficient
function A7 - in (14) becomes finite. By demanding the
finiteness of this quantity we can put a constraint on the
soft-collinear distribution which turns out to be a Sudakov
type renormalization group (RG) equation. This has profound
implications which not only reveals a significant amount of
insights about the IR world but also it enables us to perform
threshold resummation as we will see in the next section.
To be more precise, the solution of the RG equation results
an all order exponentiation of the soft-collinear distribution.
So, the whole job of computing the SV correction depends on
our ability to determine and explore the unknown distribution
D4 4z to which we now turn to.!

As we have discussed, the soft-collinear distribution
essentially captures the contribution arising from real emis-
sion diagrams which only can occur from colored partons.
Naturally, @4 4z for Sudakov form factor i.e. 2 — 1 and

! It is interesting to compare the Eq. (14) to the corresponding one for
computing the SV cross-section which is proposed in another publica-
tion [46].

@ Springer
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2 — n scattering should essentially be identical. The pres-
ence of more Mandelstam variables in the latter process just
makes it more involved in its kinematic dependence when it
is expressed in terms of {p; - gx}. However, in terms of the
total invariant mass square of the final state colorless particles
i.e. ¢, it has to be exactly same as that of Sudakov process.
In Ref. [7], it was conjectured to satisfy a integro-differential
RG equation to all orders in QCD coupling constant. The
underlying reason behind this all order conjecture is inspired
by the akin integro-differential Sudakov equation [36,37,47]
fulfilled by the form factor whose solution is present explic-
itly to five loops order in massless QCD in Refs. [42,48-50].
By integrating the differential rapidity distribution, we get
the inclusive cross-section. Upon taking the Mellin moment
with respect to the same Mellin variable N of this relation
we get

1 1 do 1
/ dx?/ dxg(x?xg)N_ld— :/ detV o, (18)
0 0 y 0

By taking the limit N — oo on both sides of this relation,
we can relate the soft-collinear distributions in rapidity and
that of inclusive cross-section. This is remarkable in a sense
that given the soft-collinear distribution for inclusive cross-
section, we can automatically calculate it for the rapidity.
Since this is the only quantity that is unknown in comparison
to the ingredients for the computation of SV cross-section, we
can immediately calculate the SV rapidity distribution. The
D 4.4z for the Sudakov form factor is determined to NNLO in
Ref. [7] and in [16] at N°LO in QCD. In the current article,
for the first time we present the general analytical form of
D44z interms of universal quantities at N*LO for any generic
2 — n scattering. One of the most notable features of this
quantity is it satisfies the maximally non-Abelian property
ie.

Ca

Cr ¢d,qq s (19)

Pi,gg =

where the quadratic Casimirs in Adjoint and fundamental
representations of SU(n.) are denoted by C4 = n. and
Cr = (n% — 1)/2n,, respectively. The property says that
the soft-collinear distribution for quark and gluon initiated
processes which are respectively denoted by ¢qg and gg are
related by simple scaling of quadratic Casimirs. This essen-
tially signifies the universality of the real emission in the soft
limit i.e. it is independent of the details of the process, it
solely depends on the nature of the external partons. Need-
less to say, it is also quark flavour blind. The relation in (19)
was explicitly verified to NNLO in Ref. [7] and at N3LO in
[16]. The flavour dependence of the @4 ,; was exploited in
Ref. [19] in order to calculate the SV rapidity distribution
at N°LO for the Higgs boson production in bottom quark
annihilation. We expect the Casimir scaling to hold true to
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all orders in perturbation theory since it originates entirely
from the soft-collinear part of the differential cross-section,
and therefore it would indeed be interesting to see whether
truly it holds beyond N3LO with generalised Casimir scaling
[51].

We decompose all the quantities into its singular (sing)
and finite (fin) parts as

Dy ua = P, aa,sing + Pd,aa.fin »
log I'uz = log 'z sing + 10g oz fin » (20)

(14) can be recast into

. e
Vi = AL P Faainlp - ai). 4% nR)1P8GE18E2)
® € exp <2<Dd,aa,ﬁn (Zl .22, 47, M%e)
— €log Tuafin (21, 15, 13)8(Z2)

— € log Tz fin(22, U ué)a(zn) @Liga, (1)
where

iz = | Zaar (@2 1%, €128 (Z1)8(Z2)
® ¥ exp <2®d,aa,sing (Zl, 22, qz, u%, e)
— ¢ log I'y.qa sing (21, H%ea €)8(z2)

— €108 Itz sing (2. W 6)5(21)> : (22)

Through the decomposition of the quantities into singular and
finite parts in (20), we put together all the singular compo-
nents of the rapidity distribution into I; ,z which must be unit
distribution §(Z1)8(z2) in order to get a finite A3’ -.In (21),
the form factor and the leading order matrix element are the
only process dependent quantity. The remaining part which
comprises of the finite segments of the soft-collinear distri-
bution and mass factorization kernel is a process independent
universal quantity which we call as differential soft-collinear

operator

Sa.aa(z1, 22, 4% whs 13) = Cexp <2‘1’d,aa,ﬁn (11, 2,4% /‘v%g)
— ¢ log I'yz fin (21, M%q» M%)B(Zz)

— Glog L in(z2. 13, M%mz])) @23

The expression of S 4,z being process independent can be
used for any generic 2 — n scattering process. Since we are
confining our discussion to only those scattering processes
with initial state quark-antiquark pair of same flavours or a
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pair of gluon, we conveniently rewrite the (21) as
A = 1P| T n8Z1)8(Z2) ® Su (24)

where I = qq, gg. We can calculate the SV coefficient func-
tion for the rapidity distribution order by order in perturbation
theory by expanding it in powers of a; according to (12). We
provide the results of S ; and A%, for any generic process,
which can be expressed in terms of universal light-like cusp
(A", eikonal or soft ( f1) and virtual or collinear (B! ) anoma-
lous dimensions along with the process dependent form fac-
tors, in Appendix A and Appendix B up to N>LO QCD,
respectively. The results beyond N>LO can be found in the
Online Resource provided with this article. Though the scale
dependence can be restored employing the renormalization
group evolution, nonetheless for users’ convenience we pro-
vide the results of A%, by keeping the explicit scale depen-
dence in Online Resource. Once the virtual matrix element
becomes available, one can directly use our generic results to
calculate the SV rapidity distribution for any generic process
of the kind under consideration. The anomalous dimensions
are expanded in powers of a; (M%e) as

x'ud) =" al (X!, (25)
j=1

where X = A, B, f. Thanks to recent calculations, the light-
like cusp anomalous dimensions are available to four loops
[52-56] in QCD. The soft and collinear anomalous dimen-
sions can be extracted [41,42] from the quark and gluon
collinear anomalous dimensions [57,58] through the con-
jecture [41]

yI =2B" + f! (26)

to three loops. At four loop, only partial results are available
in Refs. [56,59-61].

We present the new results of A%, for 2 — 1 pro-
cesses such as the Drell- Yan and the Hi g;gs boson productions
through gluon fusion as well as bottom quark annihilation
at N*LO in Appendix D. This has been achieved by using
the explicit results of the recently computed four loop cusp
anomalous dimension [52-56] along with the form factors
for Drell-Yan and the Higgs boson productions which are
approximately available to fourth order in QCD [56,62—-66].
The previously missing coefficients of §(z1)8(z2) in Ay, at
N4LO were due to the missing & (€%) results of form factors
and the soft gluon contributions at four loop. The full explicit
results of the quark and gluon form factors corresponding to
Drell-Yan and the Higgs boson production in gluon fusion
are available at three loop to & (€2) in Refs. [67,68] which
are also required. The corresponding partial four loop form

form factors are computed in several articles over the past few
years [56,62—66]. For the case of Higgs production through
bottom quark annihilation, the three loop [65,69] and par-
tial four loop results are available in Ref. [65]. Moreover,
the one- and two-loop results are needed to expand to ()
and 0'(e3), respectively. Similarly for the coefficient which
contributes to the @(¢®) part of four loop form factor, the
one-, two-, and three-loop results are needed to order & (66),
O(e*) and 0 (€?), respectively. The four loop explicit results
which we present in this article are still incomplete due to
the unavailability of the full explicit results for form factors
as well as soft contributions resulting from the real emission
processes at four loop, so far these are the state-of-the-art
available results in the literature.

In Online Resource, the explicit expressions of all the
anomalous dimensions including the QCD B-functions to
three loops can be found. In the following section, we
describe how our formulation of SV rapidity distribution nat-
urally leads us to the soft gluon resummation for any generic
2 — n scattering process.

3 Threshold resummation and its universal
soft-collinear operator

Here in this section, we develop the resummation formalism
for the differential distribution with respect to the rapidity
variable y, for the production of n-colorless particles which
also paves the way for a wider range of comparisons with the
experiments. Earlier we have seen that there exists an opera-
tor, Sy, 1, referred as the differential soft-collinear operator,
which embeds the universality of all the soft enhancements
associated with the soft gluon emissions in the production of
n-colorless particles in the hadronic collision. The universal-
ity lies in the fact that the operator, Sy 7 in (23), for the SV
differential cross-section depends only on the initial state par-
tons and is completely independent of the hard process under
study. Besides being the process independent operator, inter-
estingly it also exhibits an exponential behaviour. Recall that
the threshold resummation [46] relies on the fact that the
soft contribution exponentiates to all orders in perturbation
theory, owing to the Sudakov differential equation and the
renormalization group invariance. Following the same argu-
ment we proceed towards the resummation formalism for
differential cross-section as well.

The relevance of resummation of differential cross-section
arises from the fact that, in the limit zy (o) — 1, the logarithms

of type (a? log”! (1 —21) log" (1 =) ) /(1 = 21)(1 = 22))
for m; + my < 2(n — 1), give rise to large contributions
which could potentially spoil the reliability of the pertur-
bative series. Hence a systematic way of exponentiating
these large logarithms and resumming them to all orders in
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perturbation theory becomes indispensable. In Ref. [13] it
was shown, in the context of differential distribution with
respect to the Feynman variable x, that the potential log-
arithms which give dominant contributions in certain kine-
matic regions can be resummed to all orders in perturba-
tion theory in Mellin—-Mellin (M-M) space approach. This
approach was also extended to rapidity distributions in the
earlier works by one of the authors of this paper (See [14,20]
for details). Note that this approach is different from the
Mellin—Fourier (M-F) approach [10] proposed by Laenen
and Sterman which was earlier discussed in the introduc-
tion. In M—F formalism partonic cross-section is expressed
in terms of scaling variable z and rapidity variable y and then
the threshold limit is taken only for z — 1 which resums delta
(8(1 —z)) and distributions ([%]4_) in z, but for rapidity
variable y only delta (§(y)) piece is resummed. In Ref. [20],
one of the authors of this paper has made a detailed numerical
comparison of M—M approach against the M—F approach and
found that both the approaches converges to a few percent
correction to the fixed order prediction at NNLL level. In the
following we further extend the M-M approach and derive
the resummation formalism for the production of n-colorless
particles in a partonic collision.

Within the framework of M-M approach, both the par-
tonic scaling variables zj(2) are simultaneously taken to the
threshold limit 1 and the corresponding delta, §(1 — z;), and
log™i (1-z;)

I—z;
in perturbation theory. Due to the involvement of convolu-
tions in the zj(2) space, the resummation is performed in
two dimensional Mellin space where the differential cross-
section is expressed in terms of simple normal products along
with the aforementioned exponential structure in form. In the
following we derive the generic formalism in terms of the
Mellin variables N1 and N, corresponding to the z1 and z
variables, respectively. Hence the threshold limit 712y — 1
translate to Ni2) — oo in Mellin space and the large loga-
rithms proportional to log N2y are resummed to all orders
in perturbation theory.

To derive the all order behaviour of the SV differential
cross-section, AZ" ; (21, 22), in the two dimensional Mellin

plus distributions, [ ] , are resummed to all orders
+

space with N; = Nje?%, we begin with the Mellin moment
of the same, which takes the following form:

ANZV,I(NMNZ) = AZ\Q({PJ' “qk} 21, 22) -

1_[ f dz,z

i=1,2
(27)

yE is the Euler-Mascheroni constant. In the previous section
in (14), Ay} is decomposed into constituents corresponding
to the virtual as well as the soft-collinear real emission con-
tributions. Now in this section, we further decompose those
contributions into a process dependent and a process indepen-

@ Springer

dent quantities. We denote the process dependent coefficient
Cé o in the context of 2 — n scattering process as,

0 7
Cho(pj - anh.a® k) = 12" PIF 1m0 - ax) a2 i) P

d,1
X Sres,ﬁ(qz"u“%i’u%’)' (28)

Here C é,o accounts for all the finite contributions coming
from the virtual corrections and the coefficients proportional
to §(Z1)8(z2) of the real emission contributions. Besides, it
also contains the finite part of the mass factorized kernel
I'7 fin in terms of log (143 v/ R) which results from the cou-
pling constant renormalization. The quantity s o 6 which we
name as the differential soft-collinear operator for threshold
resummation, embeds the §(1 — z;) contributions from the
soft distribution function @4 ; and from Iy g in the follow-
ing way:

d.I
S,.es’(g(qz, u«%, M%:) = exp (24’(1,1,5(612, u%g, M%) —2log F/,a(uzp)) .
(29)

The subscript § indicates 6(z1)8(Z2) coefficients of the afore-
mentioned quantities. In a similar way, we denote the process
independent contributions to A’; as @7 which comprises
of the terms proportional to plus distributions from @, ; and
I't fin. Mathematically it can be written as,

@, (21, 22, 9> u3) = 2®,.1.9(21, 22, Ve
— G log I, (21, 13)8(22)
—Clog I7.9(z2, u3)8@z1),  (30)

where the subscript Z indicates the terms proportional to plus
distribution which includes, %;(z1)8(z2) , Zi(z2)8(z1) and
2;(21)%(22). Now following the approach givenin Ref. [7],
the above equation can be written in an integral form which
is given as,

.
: 1 - dAz
PG 1,22, 4% 1p) = [8(@) ( { p

HE

Al (a;(A%)

(ZIZZ

dDd(a (z12)) })
dlogziz +

+ D} (as(¢°71) })

{A (as(z12)) +
+(z1 < Zz)i| , 3D

here the subscript + indicates the standard plus distribution
and the other constants are defined as z; = (1 — z;) and
z12 = ¢*Z172. The finite functions, D/, = Y%, ainLi,
are related to the threshold exponent DiI of inclusive cross
section owing to the relation given in (18) ( See [7,14] for
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more details). For completeness, we provide the coefficients
Al and D}, ; in the Online Resource.

Consequently the SV differential cross-section decom-
poses into a process dependent and a process independent
way and can be re-written in the following form:

Ai,prqUJLZLq%u%)=C£o@m~%kqaui)
x 8(z1)8(z2)
® € exp(®)°) (21, 22,47 7))
QL. (32)

Substituting (32) in (27) and after doing the two dimensional
Mellin transformation systematically, we obtain

AY (N1, Ny) = Ch ({Pj “qr)s 42, va)

X exp (G(ILO(qZ, u%) + GCILN(st M%r, w)) ) (33)

with w = Boas (M%) log(N 1 N»). The first coefficient of QCD
B-function is denoted by o = (11C4 — 2ny)/3, ny is the
number of active light quark flavours. Here, the decomposi-
tion in the exponent is done in such a way that the coefficient
Gé, 7 contains Nj(2) dependent terms, and the remaining

o- Besides this, GI (q ,uF, w)
also vanishes in the 11m1t w — 1. Needless to say that both
of these coefficients has a universal structure in terms of the
anomalous dimensions A’ and process independent coeffi-
cients Dfi and thus are dependent only on the incoming par-
tons. Further we combine the N1(2) independent coefficients
G(ILO with Cé,o from (33) and define,

ones are embedded in G

gholpi-ad. 4> up) =Chy <{Pj “qi}, 47, va)

X exp (Gégo(qz, ,u%)) (34)

which can be expanded in terms of a; (,u%-(,) as,

o0
gho= Y alukerh- (35)

i=0

From (34) it can be seen, that the coefficient gé,o contains
finite contribution from virtual corrections, differential soft-
collinear operator for threshold resummation and N inde-
pendent terms coming from Mellin transformation of plus
distribution. Consequently, (33) gets modified as,

AY (N1, N2) =g <{Pj “qk}, g% u%)

X exp (Gzll.N (qz, ,u%, a))) . (36)

where the exponent G § can be organized as a resummed

perturbation series in Mellm space as,
Gl 2@, nF, ®) = gj 1 (@) log(N1 Na)

o
+ Yl hgh e (0% 1h 1d) -
i=0
(37)

The explicit form in (47) when expanded till k-th order in
powers of ag (u%e), gives the logarithmically enhanced con-
tributions to the fixed order results AZ" I(]\_f 1, N2) up to the
same order. The successive terms in the above series given
in (37) along with the corresponding terms in (35) define the
resummed accuracy as LL, NLL, NNLL, N3LL and so on.
In general for NFLL accuracy, terms up to gé k1 Mmust be

included along with g/ 4.0 Up to order ak (u R) The general

expression for the coefficients g d o and gl 4. upto N3LL are
provided in the Online Resource.

The coefficients G/ 4N remains unaltered even for 2 —
n scattering process owing to its umversahty However, the
process dependent coefficient function g’ 4.0 Changes for the
production of n-colorless particles due to the inclusion of
process specific form factor via (28) and (34). The results of
these coefficients appear as a product of N1 and N in the
Mellin space, and all those terms which are only function of
Ny or Nj cancel internally.

We have also observed that the coefficients gé’o and G zlz' v

coincides with their inclusive counterparts g(I) and Gf\-] respec-
tively in the limit Ny — Ny — N, provided the coefficients
Dfi in (31) is expressed in terms of D’ of inclusive soft distri-
bution function using the relation (18). Hence we infer that all
the above observations which hold true for 2 — 1 scattering
processes are further extended and verified for any generic
system of n-colorless particles in the final state.

4 Beyond soft virtual rapidity distribution

Having obtained the results for the SV part of coefficient
functions, namely A% a1 both in z; and N; spaces, we would
like to extend our approach to include NSV terms. These are
logarithms of the form log(1 — z;), k > 0 present in coef-
ficient functions that are often comparable or even larger
than SV contributions. Recently, some of us have developed
a formalism to study the NSV structure in inclusive reac-
tions, namely, the production of leptons pairs in Drell-Yan
process, Higgs boson production in gluon fusion or in bot-
tom quark annihilation [34] and deep inelastic scattering and
semi-inclusive eTe™ annihilation processes [77]. Later the
formalism has been extended to rapidity distributions in [35].
We considered the observables such as invariant mass (total

@ Springer
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cross section) and/or rapidity distributions of a lepton pair
(a Higgs boson) in Drell-Yan (gluon fusion or bottom quark
annihilation). We restricted ourselves to only diagonal chan-
nels where either quark and anti quark annihilate (light quarks
in Drell-Yan, bottom quarks for Higgs boson) or gluon fusion
in Higgs boson production. We used the principles, namely
mass factorization, RG invariance that we had used for study-
ing SV logarithms. Remarkably, the IR structure of the NSV
terms in the coefficient functions can be understood in terms
of the corresponding contributions in real emission processes
and mass factorization kernels which are the building blocks.
In the case of production of a single colorless state, we found
that a part of the NSV terms is controlled by certain universal
anomalous dimensions similar to the case of SV terms and
the remaining terms in NSV depend on the process under
study beyond second order in ag [34,35]. In particular, the
differential soft-collinear operator for the NSV terms turns
out to be process dependent. To the end, we have shown that
both SV and NSV logarithms can be systematically summed
up to all orders both in z; and N; space and this allowed us to
predict certain SV and NSV logarithms for all i > n at every
order in a!, using results known up to order a”.

In the following, we apply the same formalism to study
the NSV logarithms present in the rapidity of a state of
n-colorless particles. We restrict ourselves to the diagonal
coefficient functions (dCFs). For the diagonal channels, it is
straightforward to show that the NSV terms in dCFs arise
only from diagonal partonic sub processes and diagonal part
of mass-factorization kernels. The pure virtual part of the
partonic sub-processes does not contain any NSV terms and
hence can be factored out from them. Hence, in the mass
factorization formula, we need to keep both SV as well as
NSV terms in @4 47 and in Iz. The latter is process inde-
pendent and is known to third order [53,54]. Recall that the
challenging task was to determine @ ,z. It contains singu-
lar and finite terms and the singularities are from IR region
.The mass factorization demands that the soft part of singu-
larities must cancel with those from pure virtual part of the
partonic channels and the initial state collinear singularities
should cancel against those from mass factorization kernels.
The cancellation of singularities and the knowledge of dCFs
allowed us to parametrise the SV part of @4 4z in terms of
8(1 — z;), plus distributions containing logarithms and we
can use the same method to determine the NSV logarithms.
We find that the logarithmic structure of finite part in @4 4z
does not depend on the process under consideration, while
their numerical coefficients will depend on the process. As
it was done for the SV case, these numerical coefficients can
be determined using the inclusive results by working in the
Mellin N space. To end, we obtain

AT = | D P Pz in(p - i), 4% nB)P8(EDE(E2)

®Sd.az @ Ly.az » (38)

@ Springer

with

Si.aa = % exp (243d.aa,ﬁn (Zl, 22,42, M%)
— G10g Tz fin (21, 113y 113)8(Z2)

— G 10g Tz fin(22, 1%, /ﬁF)a(zl)) : (39)
and

Liua = 1 Zaa R (@7, 1%, ©178(Z1)8(22)
® %Zexp (205d,aa,sing (Zl, 22, q2, /L%, e)
— €108 1.z sing (21, 1%, €)8(Z2)

— € 10g T, az sing (22, 1%, e)a(zo) , (40)

which again reduces to identity in zi, z» space, namely
8(1—2z1)8(1 —z2). We provide the results of NSV part of the
dCFs in (38) denoted by A%’} and Sd, ; for any generic pro-
cesswith I = (gg, qq)in Af)pendix F and Appendix G up to
N?LO QCD, respectively. The results beyond N?LO can be
found in the Online Resource provided with this article. In
summary, the coefficient functions for the diagonal terms tak-
ing into account the NSV contributions reduce to (24) with
the replacement of Sy 4z by Sd,aa- Note that the modified
differential soft-collinear operator Sd,aa contain additional
NSV terms in CISd,ag and faa and we need to keep both SV and
NSV terms when ¢ operator acts on the functions like expo-
nential and logarithms in (16), (39) and (40). We find that the
NSV terms being proportional to Z (z;) logl(l —2zj). k1 >
0,i,j =1,2and logh(1 — z)6(1 — z;), k > 0,i, j = 1,2,
do not alter the §(1 — z1)8§(1 — z2), Zk(z1)%(z2) and
D (zi)8(1 —z;),i, j = 1,2,k > 0 terms in the coefficient
functions. This results in

A3 = Cho (1 - anda® /ﬂp) NG

® <gexp(fpm(m,m i) ey, 41)
with
- § o) dk
(D:]” = (Z]) u\(k2), Zz) + Qé (as (q%),fz))
+

1

*Z( {fﬂ’(as(qlz) 2) + 2L (a5(g},). 72)

+q dq - (o@d(as(f]]z) Z2)+2<ﬂd 1(‘15((112) ZZ)) })
+

+71 < 22, (42)
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where g7 = ¢° (1 —z;) and ¢}, = ¢*Z1Z>. The function &’

in (42) is given as

"(as)

2 (ay, =2
(@, 2 <(Zz)+

v L a, m) 43)

with A7 is the cusp anomalous dimension and Li(as,7) =
C'(ay)log(z;) + D' (ay). The subscript 4 denotes plus dis-
tribution. The function 2!1 in (42) is given as

_ 2 -
2ias,7) = ZDjlas) + 2] (a5, %) . (44)

The constants C’ and D' can be obtained from the the split-
ting functions givenin [53,54] and are known to three loops in
QCD. The finite function (pi ; dependsonagand z;,1 = 1,2
and we use explicit fixed order results to parametrize in the
following way,

oo i
9] @027 =Y > dl Dy P logh 7. (45)

i=1 k=0

We determine the upper limit on the sum over k by studying
the dimensionally regularised Feynman integrals that con-
tribute partonic cross sections in fixed order perturbation
theory. We know that z space result in the case of SV part
[7,16,19] can predict all the distributions to dCFs to all orders
starting from a provided the lower order results up to ai ~ !
are known. In the present case, the inclusion of NSV part can
predict terms of the form 8(z;) logk Zj,n+1<k=<2n-1
and Z;(z)) loghz; fori,k =0,1,...,n;i +k <2n — l at
every order ai provided the form factors, differential soft-
collinear and mass factorization kernels are known to order
a?_l. Using the second order inclusive results, some of the
authors obtained the third order NSV contributions to dCFs,
for the first time in [34], that are contributing to Drell-Yan
process and Higgs boson productions. Further the rapidity
NSV coefficients (pé:l(.k) and dCFs to third order are obtained
in [35] using third order inclusive results in [34] and also with
the use of (18). The complete third order results for the Higgs
production in gluon fusion are already known in [4,15]. For
the DY, the third order prediction of [35] using the same for-
malism for 2 — 1, is in complete agreement with the [15]
for terms of the type Z; (z;) log/ (Tm). i, j = 0,1,m = 1,2.
The remaining 8(z;) log’ (Z,,) terms in DY and the complete
NSV predictions for Higgs production in bottom quark anni-
hilation channel at third order are new and can be found in
[35]. The generic expression for the NSV rapidity coeffi-
cients (pi;k) in terms of NSV inclusive counterparts (p;]fl.) and

anomalous dimensions like cusp Al soft f I SV coefficients

¢!"® and C! and D from NSV part of splitting function,
is given as,

1

0 I, 1

go _Clé_ +¢()_§AI g0()_g0;i’
1 1

1, 0

‘Pd,(z):‘P;%_* _*ﬁofl

+6C) = BoD] +3C{ otz — o) 020 -

1,(1) 1) I 1,(2) (2)
‘pdz =¥r2— C1§2ﬂ0, (ﬂdz =®12>

1
1,(0) (0) I I
Pa3 —¢13—§A3—551f1

— Bofd +6BoCles — 2824
+ 4<P(2)ﬁoé“% + 6y — D] i
—20B0D3 — 2(290(1)130 +3CI 58

—4B3D{ 3

38
+ = 5 Cl 52 ﬂo + 2‘/9(0)(2,30

1 1
— A{B] — 6011 B30 — op1 0B s

o = o = 202p0CL — 40201 Bo
—4C] B33 — Cleapr + 201 | 0283 .

1,2 _ () 1,(3) 3)
i3 =13 Pa3 —‘/’13’

1,(0) (©0)

is =¢14— yAL - —ﬁzf1 —BLfS +6Ci53p

*5of3 — 580819V + 960031 + 6ﬂo§3<ﬁ(2)
— 1060D] t31 — 3834, — 12/3 3D}
— 6839 — 18013 8203 + 403531
+0Ch — 2681 D5 — 02D Br — 36280 DY — 3§2ﬂ0§0(1)
+ 6czﬁ5¢§ O —308AL =3B £l - 20005081
- —cz 2 Bow 55—7:22ﬂ30f

138
+ —{%so}z%ﬁo +3CL 3B +90C! Bt

+ 30C1 52504'3 + 19C1 Cz BoBi

+ 1201 B33 + 501 6201 — 6ALBiEs —

114
+ ?522,336‘5 -

Afézﬁom

114
1 1
- 15(/)(,%;304“3;31 <.01 14“2/32 - 7¢( )szﬂo ,

o = ofh +18B0t30) — 1283Ch 65 — 36¢(2)ﬂ0<§3
—25,CIB1 —302B0CH — 64“2,30§0

+ 660,283 — 4bapi 21 — 10C] fots i

~ Claapy = S CLG A + 12011630 + 507122
v = 0l — 900w ) + 600 B2
!,:f) =0h P =ias (46)

where ; are the coefficients of QCD-f function which are
known to five loops [70-73]. The SV coefficients & /.I’ ® from

@ Springer



943  Page 12 of 27

SV part of soft-collinear distribution as well as the NSV
anomalous dimensions C! and D! for I = g, ¢ up to third
order are provided in the Online Resource supplied with this
article. The NSV inclusive coefficients gogk; for I = g,q up
to third order can be found in [34]. For completeness, we
also provide the explicit results of (p d b for Higgs produc-
tion and Drell-Yan process up to thlrd order along with the
partial fourth order results in the Online Resource.

The z space result for coefficient functions expressed in
the integral representation in (42) is suitable for studying
large N behaviour of the rapidity distribution and hence we
use the modified differential soft-collinear operator to obtain
the resummed result in N space taking into account the NSV
terms. The Mellin moment of dCFs is found to be

AT (N W) = gl ((p) - k4 1E) %

xexp GV (7 uh0) ). @)

d,N
1, sv+nsv .
canbe organized as aresummed

where the exponent G
perturbation series in Melhn space as,

G = (gdl(w)+ : gd1<w>> log N
+Z (360200 + 380
+i§:a"hé-(w,ﬁl)+(ﬁl < Ny)., (48)
N
with

hl (@, Np) = h} go(@) + hl o1 (@) log Ny,

1
hy (@, Ni) =Y hl (@) log" Ny .

(49)
k=0
The NSV resummation coefficients are §2’i and héz,r The

coefficient §[IL1 is found to be zero. The coefficients E‘IL 4
depend on universal cusp anomalous dimension A’ and D[IJ,
while A fl s are determined by the NSV coefficients gog ; as
well as by C!, D! from @ (aq, Z1) as glven in (50). The
resummation coefficients g 4 0, gl 2. (@), 2! 4.i(@) and hl (@)
contain leading, next-to-leading, . . ., SV and NSV logarlthms
in the dCFs. _, o
Rescaling the constants by By as A; = A{/,B(’), D,; =
D}/ Cai = Cii/By Dy = Djyi/8y and B,
,B, / By 1 we present below the results of the NSV exponents
gl (@) and hé’ij () after setting % = p3 = g>. The full
list of these exponents with explicit dependence on M%e and
,u% are provided in the Online Resource supplied with this
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In summary, thanks to the remarkable simplification of
mass factorised formula for the rapidity distribution for diag-
onal channels and the knowledge of logarithmic structure of
differential soft-collinear distribution and the mass factoriza-
tion kernels from fixed order results, we can systematically
resum both SV and NSV terms in z as well as in double
Mellin space. Note that we could extend the framework that
was used for the production of a single colorless state to
the state of n-colorless particles. This was possible simply
because of the fact that IR structures of the building blocks,
namely, the pure virtual contribution, soft-collinear distribu-
tions and the mass factorization kernels for 2 — n isidentical
to those for 2 — 1. In addition, the IR singularity struc-
ture of these quantities in dimensional regularisation plays
an important role to understand the leading SV distributions
and sub-leading NSV logarithms in the real emission pro-
cesses. In the case of SV, there exist two universal or process
independent soft-collinear functions, namely for quark-anti
quark (gg) and gluon-gluon (gg) initiated processes. For the
NSV, we find that a part of the soft-collinear functions is par-
tially determined by universal anomalous dimensions and the
remaining part depends on the underlying hard process. How-
ever, for a given process, the resummed results either in z or
{N1, N2} can be used to predict SV and NSV terms at higher
orders provided the lower order results are known. With this
in mind, we have derived a general formula for coefficient
functions up to fourth order and resummed results to N°LL
accuracy which will be useful when the complete four loop
form factor, soft-collinear functions and lower order process
dependent terms become available.

5 Conclusions and outlook

In today’s era reducing the theoretical uncertainties remain
one of the main motivations for higher order radiative correc-
tions. It is also particularly relevant for constraining beyond
SM scenarios and validation of the SM itself. Among sev-
eral observables, differential cross-sections allow a wider
range of comparisons with the experiment and hence several
attempts were made in the past for better theoretical under-
standing of the same. In this article, we restrict ourselves
to the discussion of differential rapidity distribution for the
production of n-number of colorless particles in the hadronic
collision within the realm of perturbative QCD.

Through this publication, we intend to present a system-
atic framework for the study of soft-plus-virtual corrections
to the differential distribution with respect to the rapidity
variable y, for the production of n-colorless particles in the
hadron collider. The infrared structure of rapidity distribution
which was earlier studied in Ref. [7] for Sudakov type pro-
cesses is further extended to the case of 2 — n scattering. We
employ the universality of the soft enhancements associated

with the real emission diagrams. The main deviation from
the Sudakov type formalism comes from the virtual correc-
tions where the kinematic dependence is much more involved
and hence these are now expressed in terms of scalar prod-
ucts of the kind {p; - gx}. The rest of the formalism relies
on the collinear factorization of the differential cross sec-
tion, the renormalization group invariance, universality of
perturbative infrared structure of the scattering amplitudes,
and the process independence of the soft-collinear distribu-
tion. Besides this, we also use an additional fact that the
N-th Mellin moment of the differential distribution has a
relation with its inclusive counterpart in the limit N — oo,
as depicted through (18). The mere use of this fact enables us
to to get an all order relation between the soft-collinear distri-
bution of inclusive cross-section and that of rapidity. Hence
from the given quantity in inclusive part, we can determine
it for the rapidity and thereby avoid performing the explicit
computation of the real emission processes for rapidity dis-
tribution. The goal of this current article is to present the
general structure for the SV differential rapidity distribution
up to N*LO and also the resummed predictions till N’LL
level in QCD, which can be expressed in terms of univer-
sal anomalous dimensions along with the process depen-
dent virtual matrix elements. The former, which comprises
of process independent finite segments of soft-collinear dis-
tribution and the mass factorized kernels, remains unaltered
irrespective of the number of colorless particles in the final
states. Furthermore, the soft-collinear distributions for the
quark and gluon initiated processes are found to be related to
each other through simple quadratic Casimir scaling, known
as the maximally non-Abelian property.This is explicitly ver-
ified up to N°LO. However, whether the validity will remain
intact beyond this order with generalized Casimir scaling,
that will be an interesting thing to look into. Often, one finds
that in certain kinematic regions, the sub-leading logarithms,
namely NSV terms can not be ignored in phenomenolog-
ical studies. Our investigation on these terms for diagonal
partonic channels reveals that there are similarities in the
structure of IR terms with those of 2 — 1 process allowing
us to propose resummed predictions for NSV terms within
the same framework.

In summary, in order to obtain the fixed order as well
as resummed prediction for the differential rapidity distribu-
tions of a generic n-colorless final states, one merely requires
the form factor corresponding to the hard process under study
provided the soft-collinear distribution for Sudakov type pro-
cess is known. We present the analytical results for the fixed
order up to N*LO and the resummed predictions up to N3LL
level in the appendix for the scale choice of /,L%e = ,u% =g¢>
and the same with the explicit scale dependence are provided
in the Online Resource supplied with this article.
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Appendix A: Soft-collinear distribution for rapidity
distribution

In this section, we present soft-collinear distribution Sy ;, as
defined in (23), in powers of a; (M%e) up to N2LO. Expanding
the quantity in powers of a; as

Sa.1(z1, 22, 4%, Wk, 1%
o .
=8G18@) + Y al(uk) Sy (1. 22. 4% 1k 13 .

i=1
(A1)

we present the results for ,u% = pLZF = ¢?. The results up to
N*LO with explicit scale dependence can be found from the
Online Resource supplied with this article.

(1 _ _
s{) = %@0{5/4{} +s(21)@1{A{} +s(zl)@0{ - f{}
N PR
+5(Zl)5(22){5¢¢1 }+(Zl < 22),
s = 217, | 2 aly?
a1 =N 5( 0
_ (3 _
+ %@2{5(4)2} + %91{ —3algl —ﬂOA{}

— (1 1 1a 1
+ @o@o{i(f{)z + 543+ AT — (D + 5/30f11}
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+s<21@3{%<A{>2} +5<21>%{ ~2als - %ﬁoA{}
+8EN7 {(f,’)2 +Ab 2l (D — 24D + ﬂof{}

+6<m§o{ —f—2rlgp Y 2aln fl+ 24D - 2/30%;;{”}
+ 3(21)6(22){ g2+ @) - %Cz(f{ )2 — Al

1,(1)

+rAD + oS }+ (1 22). (A2)

The symbols {!Z[,;j that appear in the aforementioned soft-
collinear distributions are provided explicitly in the Online
Resource with this article.

Appendix B: Soft-virtual partonic rapidity distribution

We expand the A% o> 3S defined in (24), in powers of ag (/,L%e)
through

A = 8@1)8@)| A, 1

+ Za (up) Ay " <{Pj Lk}, 21022, 470 W /ﬁe) :
i=1
(B.3)
Here, we present A}'; to N2LO for the specific scale choice
M% = ,u% = ¢. The results up to N*LO with explicit depen-
dence on g and pp are provided in the Online Resource
supplied with this article.
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In the aforementioned equations, we define

(m.n) _ (m), )

A = Real (4" (B.6)

where |.# 1(") ) is the UV renormalized pure virtual amplitude
at n-th order in a as introduced in (13).

Appendix C: Soft-collinear distribution for threshold
resummation

The universal soft-collinear operator that is required to obtain
the resummed cross-section in z-space, defined in (29), is
expanded in powers of ag (M%e) as

o
d,l [ d,l,(i
Spess(@ Wronp) =1+ Za;(u'%?)sres,él)(qza oy 1) .
i=l1

(C.7)

We present the results for g2 = “%e = u% below to fourth
order in coupling constant. The result with explicit scale
dependence can be obtained from the Online Resource pro-
vided with this article.
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Appendix D: Explicit results at N*LO for Drell-Yan and
the Higgs boson production

In this section, we present the explicit results of Afi‘f > as
defined in (24) and (F.16), for the Drell-Yan (I = ¢), and the
Higgs boson productions through gluon fusion (I = g) as
well as bottom quark annihilation (I = b) at fourth order in
coupling constant. Setting ,u,% = l‘%e = ¢2, in the following,
we provide only the new results, and the old results for Drell-
Yan and Higgs boson productions can be found in [7,16,
19]. The results with explicit dependence on i and ur are
provided up to N*LO in the Online Resource files supplied
with this article.
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weighted sum of the quark flavours and Ns = (n% —4)/n.
[67]. Following [55], we have
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Ny - 24 ’ Ny 48
bed jabed
debed gabe znf—6n%+18’ D.11)
Ny 96ng
ng — 1 2
Ca=n., Cp= , Na=n;—1, (D.12)
2n,
Np = ne. (D.13)

Appendix E: Explicit results at N’LL for Drell-Yan and
the Higgs boson production

Here, we provide the full explicit result of the resummation
constant gé 4» given in (37), at N3LL for the Drell-Yan and
the Higgs boson productions.
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In the aforementioned equation, L,, = In(1 —w), R = A for B
gluons(/ = g) and R = F for quarks(/ = g, b). 0% 1 17 fin
The general results of the resummation constants in terms
of universal quantities are presented to N3LL accuracy in the + DL, {C2’ |4 ,(f)gn ?+2cla ;%i)

Online Resource file supplied with this article.
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The results up to N*LO with explicit scale dependence are
provided in the Online Resource supplied with this article.
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