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CHAPTER 1 INTRODUCTION AND MOTIVATION

1.1 Standard Model of Particle Physics

The standard model of particle physics (SM) is a framework that organizes and synthe-
sizes the results of particle physics experiments into a concise prescription for producing
quantitative predictions. The framework is based on quantum field theory and symmetry
groups. The initial form of the SM was the work of Glashow, Salam, and Weinberg [1].
Other theorists provided important support to the theory and experimental provided ev-
idence for additional particles that added to the framework (¢ [2, 3], 7 [4], b [5] and ¢
[6, 7]) or filled in predictions (W= 181, Z° [91, and, H [10]). The latter provided much of
the critical support for the SM over competing proposals. The SM can be viewed a set of
fundamental particles, their properties (mass, spin, and couplings), and the rules for inter-
actions among them. The particles of the SM are summarized in Figure 1. They come in
two main groups: bosons, particles of integer spin; and fermions, particles of half integer
spin.

Fermions are divided into quarks and leptons of 3 generations as shown in Figure 1. In
the SM, fermions interact among one another by exchanging bosons. There are 4 types of
gauge bosons with spin 1, hence called vector bosons; g, v, Z°, and W=. The electromag-
netic, weak, and strong interactions are mediated by v, Z° and W¥*, and g, respectively.
Furthermore, W* mediate the weak interaction by acting on left handed particles and
right handed antiparticles. The massive W boson is very short lived with a mean lifetime
of about 3 x 10”**s [11]. Gluons mediates the strong force that confine the quarks inside

mesons or baryons. However, in very high energy interaction, quarks and gluons interact



three generations of matter

Standard Model of Elementary Particles
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Figure 1: Fundamental elementary particles with their masses, charges, spin values [12].

weakly and form a guark-gluon plasma. This phenomenon is known as the asymptotic
freedom of the strong interaction. In addition to the force carrying particles, we have six
quarks (v, d, ¢, s, t, b) and six leptons (v,, v,, v, ¢, i 7). Each quark or lepton has a cor-
responding antiquark or anti-lepton respectively. All the ordinary matter and antimatter
in the universe can be described as the combination of quarks, anti-quarks, leptons and
anti-leptons. The quarks carry color charge, electric charge, and weak isospin, so they
interact via the strong electromagnetic and weak interactions. The three leptons e, u and 7
are charged and interact electromagnetically and weakly whereas v, v, and v, are neutral
and hence interact via the weak force only. Figure 1 shows the organization of 3 gener-

ations of fundamental particles with their principle properties. The interaction between



fermions and a photon can be described by the following electromagnetic Lagrangian

‘CQED - ‘Cfermion + Ephoton + ‘Cinteraction (11)

= i+ M) — {Fu " — i A 1.2)

The first term describes the kinematics of the spin-% fermion field represented by « and
1. The second term describes the kinematics of the photon field A,, where F,, is the
electromagnetic field tensor defined as F,, = 9,A, — 0,A,. The third term describes the
interaction between the photon and fermion fields.

The tty vertex probes a coupling between photons and top quarks. The lepton interacts
via the weak interaction and are divided into left-handed doublet (l”_l)Land right-handed
singlet /. The left-handed doublet carry weak isospin. The doublet has eigenvalues
I; = —1 for charged lepton and I; = 3 for neutral leptons respectively. However the
right-handed singlet has eigenvalues / = 0. All the neutrinos are massless in the SM.
However, the existence of neutrino oscillations from one flavor to another indicates that
neutrinos are not massless [13]. The quarks interact via the electromagnetic, weak and
strong forces. These are also divided into doublet and singlet states. In addition, the cross-
family coupling between the quarks exists and is representd by the CKM matrix [14]. The
mass eigenstates of quarks are given by (ZZ)L, ¢u,r> and g4 r where the left-handed doublets
the up quarks have ; = 1 and down quarks have I; = —3. Similarly, right-handed singlets

have weak isospin as [ = 0.



1.2 The Top Quark

The discovery of the bottom quark (b) at Fermilab in 1977 [5] motivated the search
for its weak isospin partner, the top quark (t), as needed by the SM. The top quark was
discovered by the CDF and DO experiments [15] at the Tevatron at Fermilab in 1995. The
top quark is the heaviest elementary particle. It is the only particle that decays into a real
W boson and b quark. It has a very short life time insufficient for it to hadronize. The study
of the top quark offers an opportunity to understand and test the perturbative and non-
perturbative strong interaction. The Yukawa couplings of the top quark to the Higgs boson
is of order unity, and hence the top quark has a special role in testing the Higgs sector. The
precise measurement of top quark properties probes interactions at the electroweak scale,
symmetry breaking, and the physics beyond the SM. The physics of the top quark is an
interesting area for validation of the SM.
1.2.1 Production, Decay and Properties of the Top Quark in Brief

Top quarks are predominantly created in pairs at the LHC via the strong interaction.
The LHC is sometimes called a top quark factory [16]. The top pairs are produced via
gluon-gluon fusion (gg — g — tt) as shown in Figure 4 (left) and quark-antiquark anni-
hilation (¢q7 — g — tt ) as shown in Figure 4 (right) in the pp collsion. Almost 90% of the
tt are produced via gluon-gluon fusion at /s = 13 TeVcollision energy. The cross section of

tt production can be given as a function of center of mass energy (/s) and top mass (m;,)



as

Upp—ﬁf (\/57 mt) = Z /dxzdwjfz(xw ﬂ?‘)fz(‘%]? ,U?e) ’ 6—ij_>tf (mt7 \/E, s, xj> Oés(:u??)? ,U?%),

4,J=4,9

(1.3)

where fi(l'i,[l,?c) are the parton distribution functions (PDF) for parton ¢ and (x;) esti-
mates the fraction of the proton momentum. The PDF functions are calculated using a
factorization scale ., which separates non-perturbative from perturbative QCD. These are
experimentally determined as explained in [17]. The perturbative QCD term, 6%, ex-
presses the cross section as a function of the center of mass energy, the top-quark mass,
coupling constant «, and renormalisation scale i p.

The SM top quark decays into a W-boson and b quark essentially 100 % of the time; the
decay into s and d quarks are strongly suppressed by the CKM factors. The W-boson decays
leptonically into a charged lepton and the corresponding neutrino around 33 % of the time.
It decays hadronically to quarks the remaining 76 % of the time. Based on the types of W
decays, the top pair events are divided into 3 categories; dileptonic, hadronic and semi-
leptonic. When both of the W-bosons decay leptonically, the top decay is categorized as
dileptonic as in tt — W1TbW b — [T 5,bl” v,b. This occurs 9% of the time. When both of
the W-bosons decay into quark anti-quark pairs, it is categorized as a hadronic decay as in
tt — WTbW b — qgq'q'bb. This occurs 46 % of the time. When one of the W-boson decays
leptonically and the other decays hadronically, the event is categorized as semileptonic

as in tt — WTbIWW b — [Tpqgbb. This occurs 45% of the time. A breakdown of the

branching ratios of tt decays is shown in Figure 2. Figure 3 shows a schematic diagram of



the semi-leptonic decay of a top pair at the LHC.
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Figure 2: Branching ratio (left) and decay channels (right) for tt decay [18].

1.3 tt~ Production at the LHC

A cross section measurement of a top quark pair produced with a prompt photon probes
the electromagnetic coupling of the top quark, ttyvertex. The SM Lagrangian of interaction
between a top quark and photon is —eQ,tty,A,. The Lagrangian for the interaction of a

top quark with a photon is given by

i
Lz, = —eQytty,A, — efM(d?, +id)y5)tA, 1.4

my

where, e is the proton charge, m, is the top quark mass, @, is the top quark electric charge,
dy; is the electric dipole moment, d; is the magnetic dipole moment, the first term is tree-
level contribution in the SM, and the second term is the contribution from the first order
loop correction.

Any anomalous top quark coupling can modify the cross section and affect the P spectrum
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Figure 3: A schematic diagram of semi-leptonic decay of a tt event in pp collision at the
LHC [19].

of the photon [20]. The photon in the tt~ signal can originate from an incoming quark,

directly from one of the top quarks, or from a decay product of the top quarks. In ¢g

&

Figure 4: Two LO Feynman diagrams of the ttysignal process in the semileptonic final state.
The tt pair is produced via gluon-gluon fusion (left) where the photon is radiated from the
top quark and via quark-antiquark annihilation (right) where the photon is radiated as a
ISR from an incoming quark.

production (Figure 4 (right)) the incoming quarks may emit a photon known as initial



state radiation (ISR). The decay products include W-bosons, leptons, and b-quarks. The
tty process can be represented with the same diagram as tt production with an additional
photon. Figure 4 shows leading order (LO) ttyproduction mechanisms via gluon-gluon fu-
sion (left) and quark anti-quark annihilation (right). The contribution of the signal photon

radiated from the incoming quarks is about 10 % of the total tty production. A theoretical

Figure 5: Some LO Feynman diagrams for the tty process in the single lepton channel
where the high energy photon originates from the top quark (left, middle), or is emitted
from a lepton (right). The tt~ interaction is indicated by a red circle in the left and middle
diagrams.

prediction of the tty production cross section at leading order (LO) and next-to-leading
order (NLO) with the center of mass energy of 14 TeV is presented in [21] with the QCD
correction at NLO. The NLO calculation includes the emission of a gluon, quark, and loop
correction from both processes. Figure 6 shows the gluon emissions (top left and top right),

quark emission (bottom left) and a loop correction (bottom right) in NLO calculation.

1.4 Previous tty Measurements

The CDF experiment was the first to find evidence of tt production using 6.0 fb™' of
pp collisions at /s = 1.96 TeV [24]. They performed a search requiring a lepton, a photon
(with B > 10GeV), MET, and M, (invariant mass of the three highest Py jets) in an event.

They estimated the cross section value of oz, = 0.18 & 0.08 pb and cross section ratio



Figure 6: Real gluon emissions (top left and top right), real quark emission (bottom left)
and the loop correction (bottom right) in the NLO calculation [22].
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Figure 7: The production cross section of various physics processes measured by CMS for
7 TeV, 8 TeV, and 13 TeV center of mass energies [23].
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0, /o = 0.024 £ 0.009. In the ratio measurement, some of the systematics and experi-
mental uncertainties of tty and tt processes cancel out resulting in reduced uncertainties.

ATLAS performed a tty measurement in pp collisions at /s = 7 TeVusing of 4.6 fb™' of
data in a single lepton channel requiring large transverse momentum of the lepton, and
a photon with £, > 20GeV [25]. The production of tty events was observed with a
significance of 5.3¢ in the fiducial region. The fiducial cross section was found to be o3, x
BR = 64 &+ 8(stat) f}g(syst) + 1(lumi) fb per lepton flavor. It is consistent with the leading
order (LO) SM prediction. ATLAS also performed another analysis at /s = 8 TeV in the
semi-leptonic channel with an integrated luminosity of 20.2 fb~! [26]. The fiducial cross
section was found to be o3, = 139 & 7(stat.) & 17(syst.) fb. ATLAS measured the tt~y cross
section again at /s = 13 TeVwith a total integrated luminosity of 36.1 fb~' [27]. Machine
learning (neural network) techniques were applied to separate signal from background.
The fiducial cross sections of a{{j’ = 521 £ 9(stat) £+ 41(syst)fb and a{{j‘ = 69 £ 3(stat) £+
4(syst)tb were found for the semileptonic and dileptonic channels, respectively.

CMS performed an analysis at /s = 8 TeV center of mass energy using data cor-
responding to an integrated luminosity of 19.7 fb~! in the semileptonic channel [28] .
The ratio of tty to tt cross sections was found to be o, /oy = (5.2 £1.1) x 10~*. The
tty cross section was calculated using the measured ratio and the tt cross section in the
semi-leptonic channel and found to be o, x BR = 515 & 108(stat+syst) fbper chan-
nel. Very recently CMS measured the ttvy cross section at /s = 13 TeVwith a total inte-
grated luminosity of 137 fb™' [28]. The fiducial inclusive cross section was found to be
a{{j‘ = 800 £ 46(stat) £+ 7(syst)fb with a photon of Py > 20GeV. The result is in good

agreement with the SM prediction. All the above measurement results are summarized
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as a function of luminosity, and center of mass energy in Figure 8. The x-axis is the ra-
tio of the measured cross section to the NLO calculation. The y-axis represents the total

integrated luminosity.

= CMS

= ATLAS
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Theory uncertainty
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Figure 8: Summary of the previous tt~y cross section measurements performed at the Teva-
tron and LHC (CMS and ATLAS), scaled and compared to the respective theoretical pre-
dictions. The shaded regions represent the theoretical uncertainties in each analysis. The
luminosity for the CMS measurement is scaled by 0.5 to avoid overlapping text.

1.5 Motivation
The top quark has unique properties that make its study of particular interest. It decays

before it can form bound states, unlike the other quarks, so it can be studied as an unbound
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quark [29]. It is the most massive particle known and therefore is particularly sensitive to
the effects of possible, new physics that only manifest at very high energies. The study of
tty production is sensitive to new physics.

The tt cross section is sensitive to the electric charge of the top quark and hence can
be used to test models with a modified charge or higher moments. As the Wtb vertex
occurs in beyond the standard model (BSM) searches, tty production is sensitive to BSM
effects such as magnetic and electric dipole moments [30]. Similarly, if the Py spectrum of
photons in tty production is different from the SM prediction, then it could be a sign of
new physics via anomalous top quark couplings [31]. And tty events are background to
Higgs physics, SUSY searches, and rare physics searches. The determination of a precise
cross section for tty production reduces the uncertainty for other analysis.

The analysis is carried out in the semileptonic (electron and muon) decay channels.
Backgrounds are constrained by extensive studies in control regions. We extract the
tty cross section with a simultaneous maximum likelihood fit of control regions with the
signal region. The simultaneous fit controls for backgrounds (for instance ttwith additional

photons, V' + ~, etc) in the fit model.
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CHAPTER 2 THE LHC AND CMS EXPERIMENT

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is a circular synchrotron that collides beams of high
energy protons (or heavy ions) circulating in opposite directions inside parallel vacuum
pipes [32]. It began operations in 2009, and has produced large numbers of proton-
proton (pp) collisions at center of mass energies (1/s) of 2.36, 7, 8, and 13 TeV. The study
of such high energy collisions is expected to illuminate the understanding of electroweak
symmetry breaking via the Higgs mechanism and potential new physics beyond the stan-
dard model. For this purpose, seven different experiments use LHC collisions. They are
CMS, ATLAS, ALICE, LHCb, TOTEM, LHCf and MoEDAL. The CMS experiment is dedicated
to study a wide range of possible physics topics [33].

The series of accelerators used to supply protons to the LHC is displayed in Figure
9. Protons are produced by breaking apart hydrogen gas (H,) molecules with an applied
electric field. The protons are injected into the Proton Synchrotron Booster and accelerated
to 25 GeV energy. The protons are transferred from the Proton Synchroton to the Super
Proton Synchrotron and accelerated to an energy of 450 GeV. These protons are injected
into the LHC beam pipe where they are accelerated to an energy of 6.5 TeV before collision.
The bunches of protons are kept in circular orbit by superconducting dipole magnets and
the bunches are separated by 7.5 m (or 25 ns). Each proton beam has 2802 bunches and
each bunch has about 1.15 x 10" protons. Bunches cross the interaction point 40 million
times per second and in each bunch crossing there is up to about 40 collisions. This results

in production of about 1 billion collisions per second [34].
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Figure 9: Layout of accelerators and major experiments at the LHC [35].

2.1.1 Luminosity
The instantaneous luminosity £,,, is the number of collisions that are produced per
unit time and per unit area and defined as

n1Mo

FB*U, (21)

Einst = f

where n, and n, are the number of particles per bunch, f is the frequency of bunch cross-
ings. ¢ is the transverse emittance and 3" is the amplitude function [36]. The emittance of
a beam is defined as how close two protons in a bunch are in position-momentum phase
space and the amplitude function represents how much the beam squeezes in a short

length. These parameters are related with the size of the proton bunches in the transverse
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direction and given as ¢3" = no,0,, where o, and o, are the Gaussian transverse beam
profiles in the horizontal (bend) and vertical directions [36]. The typical average values
for these parameters are ¢ = 3.75mm prad and ° 0.55 m, however these values were
tuned during different data taking periods. The rate of the number of events, N, for a

process with a cross section o is

dN

% = O-‘Cinst (22)

where L,,, is the instantaneous luminosity. The integral of the instantaneous luminosity

over time is called integrated luminosity

Figure 10 shows the integrated luminosity delivered to and recorded by CMS in 2016,

2017 and 2018. A total of 137 fb~' data is used in the tty cross section measurement.

2.2 The Compact Muon Solenoid (CMS) Detector

The Compact Muon Solenoid (CMS) detector is a general purpose detector at the LHC.
The aim of the CMS experiment is to study particle physics at the TeV energy scale, search
for physics beyond the standard model such as super symmetry or extra dimensions, and
study the properties of the newly discovered Higgs boson. Every 25 nanoseconds debris
from the collisions of protons are measured in detail by the CMS detector. The CMS detec-
tor is 21 meters long, 15 meters in diameter, and weighs about 14,000 tonnes [38]. It is

located in a cavern in Cessy, France near the border with Geneva, Switzerland. The central
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Figure 10: The integrated luminosity profiles for 2016 (left), 2017 (top right), and 2018
(bottom) data taking periods. The blue is the total delivered and the yellow is the total
recorded by CMS as a function of a time [37].

element of the CMS detector is a superconducting solenoid. The solenoid creates a homo-
geneous axial magnetic field of 3.8 T which bends the paths of charged particles emerging
from pp collisions. The detector contains subsystems designed to measure the energy,
momentum, and trajectory of final state particles such as photons, electrons, muons, and
hadrons. These subdetectors are arranged in concentric layers around the incoming proton
beams, referred to as the beamline. The protons collide in a small region at the center of
the detector known as the interaction point. A schematic view of the CMS detector with all

subdetectors is shown in Figure 11. The innermost detector layer is a silicon-based tracker.
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It is surrounded by a scintillating crystal electromagnetic calorimeter, which is itself sur-
rounded with a hadronic calorimeter. The tracker and the calorimeters are located inside
the solenoid magnetic. The muon detector is situated inside the iron yoke on the outside
of the magnet.

The tracking volume is a cylinder of 5.8 m length and 2.6 m diameter. Three (in
2016) or four (in 2017, 2018) layers of silicon pixel detectors are placed close to the
interaction point and surrounding them are 10 layers of silicon strip tracking detector. The
pixel detector is used to give a precise measurement of charged-particle positions near the
collision, needed to determine the impact parameter of charged-particle tracks and the
position of secondary vertices. Strip layers provide the required granularity and precision
to measure the charged-particle positions over a large volume necessary for an accurate
determination of momentum.

The electromagnetic calorimeter (ECAL) uses lead tungsten (PbWO4) crystals corre-
sponding to about 25.8 radiation lengths and covering the region || < 3. By using the
position and magnitude of the energy depositions, the ECAL measures the kinematic prop-
erties of electrons and photons.

The ECAL detector is surrounded by the hadronic calorimeter (HCAL). It is a brass-
scintillator sampling calorimeter of about 10 nuclear interaction lengths thickness. It mea-
sures the energy of hadrons.

The last layer of the CMS detector is the muon detector which is located outside the
solenoid. It identifies muons and measures their momenta and positions. CMS uses 3
different types of muon sub detectors: drift tubes (DT), cathode strip chambers (CSC) and

resistive plate chambers (RPC). The DT and the CSC measure the trajectory in the barrel
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and end cap respectively. The RPC provides fast signals for the muon trigger system.

A schematic view of the CMS detector is shown in Figure 11. The barrel wheels and
endcap are shown in their retracted positions and the elements within the solenoid are
cut away to allow the central detector structures to been seen. The details of the CMS

subdetectors are explained in the following sections.

3.8T Solenoid
ECAL

IRON YOKE

Muon System
Endcap
(CSC+RPC)

15m

TRACKER

Figure 11: A schematic diagram of the CMS detector [39]. The barrel wheels and endcap
are shown in their retracted positions and the elements within the solenoid are cut away
to allow the central detector structures to been seen.
2.2.1 Coordinate System

CMS uses a coordinate system whose origin is at the center (interaction point) of the
CMS detector. The x-axis points horizontally towards the center of the LHC ring, the y-axis
points vertically upward and the z-axis points along the direction of one of the proton

beams as shown in Figure 12. It is convenient to use cylindrical coordinates R, ¢, and

polar angle 6. The variables R, #, and ¢ are the radial distance in the x-y plane, polar
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Figure 12: Coordinate systems for CMS detector [40]

angle, and azimuthal angle of the coordinate system respectively. The collision of partons
within the protons can be asymmetric such that the center of mass (CoM) of the collision
is boosted along the beam direction (z-axis), but polar angle differences (Af) are not
invariant under a boost. Two other useful quantities that behave better under a relativistic
boost are rapidity (y) and pseudorapidity (). The rapidity is defined as

1

B
y=3n St Pr (2.4)

E—pp

where F and P, are the energy and longitudinal momentum of the particle. It is difficult

to measure the rapidity precisely without knowing the particle mass, however for ultra-
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Figure 13: The CMS detector layout displaying the position in terms of both § and 7 [41]

relativistic particle, the rapidity can be approximated with pseudorapidity

P
n = —Intan (g) = sinh ! <P_Z> (2.5)
T

which only depends on the direction of a particle. Pseudorapidity of = 0 corresponds
to particles in the transverse plane, § = 90", whereas large values correspond to particles
approaching the beamline as in Figure 13. The transverse energy and momentum are given

by £ = E'sinf and Pr = Psin 6 respectively. The momentum of a particle is measured in
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terms of transverse momentum, azimuthal angle and pseudorapidity

Py = (E,ps,py,0.)

= (mq coshy, pysin ¢, pp cos ¢, mp sinh ) (2.6)

where, m; = \/py +m?® is the transverse mass of a particle. The spatial components of

particle momentum are

Py = P COS
py =DPr sin ¢7
and p, = ppsinhn. (2.7)

The subdetectors of the CMS system are explained briefly in the following sections.
Figure 14 shows a radial section of the CMS detector and examples of how particles behave
when traversing the subdetectors [38].

2.2.2 The Tracker

The tracker system is the innermost part of the CMS detector [43, 44]. It is designed
to provide a precise and efficient measurement of the trajectories of charged particles
emerging from the pp collisions and a precise reconstruction of secondary vertices from
particle decays. A detector technology featuring high granularity and fast response is
required to identify the trajectories from the same brunch crossing. The tracker must be
designed for radiation tolerance. A minimum amount of material should be used to limit

the multiple scattering, bremsstrahlung, photon conversion and nuclear interactions in
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Figure 14: A radial section of CMS detector [42]

the tracker. CMS chose silicon detectors for the tracker [45]. The tracker consists of two
main components: a pixel detector which covers the range of R = 4cmto R = 15cm and
|Z| < 49cm, and a strip detector which covers the range of R = 25cmto R = 110 cm and
|z] <280cm.

The pixel detector has 66 million active elements with a total surface area of about
1m?. The active elements are 100 zm x 150 xm pixels which are oriented in the azimuthal
direction with 100 pm pitch in the barrel and in the radial direction in the disks. In 2016,
it has 3 barrel layers at radii of 4.4, 7.3 and 10.2cm and 4 endcap layers at distances of
z = £35.5 and +48.5 cm from the interaction point. It provides efficient three-hit coverage
in the region of pseudorapidity |n| < 2.2 and two-hit coverage in the region |n| < 2.5. The
pixel detector produces a 3-D measurement on the path of a charged particle with a (hit)

resolution between (10-20) um . At the end of 2016, the pixel tracker was upgraded and
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its current configuration was used for data taking in 2017 and 2018 [45]. The upgraded
version of the pixel tracker has four layers of 124 million pixels in total, corresponding to
total active area of 2m? in the barrel. The inclusion of a fourth layer with a minimal radius
improved the pattern recognition and track reconstruction.

Figure 15 shows an rz-view of the CMS tracking detector in the 2016 configuration.
The strip tracker has 9.3 million active elements with a total surface area of 198 m?®. It
is a hollow cylinder of length 5.8 m and diameter 2.4 m with 4 layers of inner barrel, 6
layers of outer barrel and 3 inner disks and 9 endcap disks. The strip tracker is located
at radii between 0.2 to 1.2m from the z axis and consists of three components. The
tracker inner barrel and disks (TIB/TID) are located from 20 cm to 55 cm in radius and
are composed of four barrel layers and three disks at each end as shown in Figure 16.
The TIB/TID measures R-¢ positions (maximum of four) of a trajectory using 320 ym thick
silicon microstrip sensors. In the barrel, these strips are oriented parallel to the beam axis
whereas in the disks, they are radial. The strip pitch is 80 ymin the inner pair of TIB layers
and 120 ymin the outer pair of TIB layers. In the TID, the mean pitch varies between (100
- 141) ym . The TIB/TID are enclosed by the tracker outer barrel (TOB) from radius of
55cmto 116 cm . The TOB consists of six barrel layers of 500 m thick microstrip sensors
with strip pitches of 183 um in the first four layers and 122 ym in the last pair of layers.

The third component of the tracker is the tracker endcaps (TEC) which are located in
the regions 124 < |z| < 280cm and 22.0 < R < 113.5cm . Each TEC is composed of nine
disks with up to seven rings of radial-strip silicon detectors. The sensor thicknesses are
thin (320 um ) in the inner four rings and thick (500 zum ) in the outer three rings. The

inner two layers of the TIB and TOB, the inner two rings of the TID and TEC, and the fifth
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Figure 15: A r-z view of a tracker slice. Pixel modules are shown in red around the z = 0.
The single-sided strip modules are shown in black whereas strip stereo modules are shown
in blue [46].

ring of the TEC include a second microstrip detector module that is mounted back-to-back
at a stereo angle of 100 mrad enabling an estimate of the orthogonal coordinate. A r-z

view of the tracker slice is shown in Figure 15.

As particles travel through the tracker, they leave ionization signals (hits) that are
amplified and detected by readout electronics. We measure the curvature of a particle
track in the solenoidal magnetic field to determine the momentum of the particle with
excellent resolution. The helical trajectory of a charged particle traveling through the
tracker is described by the five parameters; curvature (k, inverse of radius), azimuthal
angle (¢), pseudorapidity (1), transverse impact parameter (d,) and longitudinal impact
parameter (z,). The pixel detector is used online for fast tracking, for primary vertex

reconstruction, electron and photon distinction, muon reconstruction, tau identification,



Figure 16: CMS tracker barrel layers in plane perpendicular to the beam. Three pixel
layers are shown in green around the beam pipe. Four inner barrel layers, 2 double-sided
outer barrel layers, and 4 single-sided outer barrel layers are shown by arrows [47].

and b-tagging. For offline use, the pixel detector forms high quality seeds for the track
reconstruction algorithm. A combinatorial tracker finder algorithm is used to find the
trajectory of charged particles [48].

The average track reconstruction efficiency for a charged particles with transverse mo-
menta P+ > 0.9 GeV is 94 % and 85 % for pseudorapidities of || < 0.9and 0.9 < || < 2.5,
respectively. The momentum resolution of tracks with 1 < P; < 10 GeV is approximately

1.5% in the barrel region. The precision of transverse (longitudinal) impact parameter
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determination decreases from 90 ym (150 ym) at Py = 1 GeV to 25 ym (45 ym) at Pr = 10
GeV.
2.2.3 Electromagnetic Calorimeter

Information about the energies of the particles produced in each collision is collected
by the CMS calorimeters; electromagnetic (ECAL) and hadronic (HCAL) calorimeters. The
ECAL is the innermost of the two and measures the energy of electrons and photons by
stopping them with high Z atoms. It is a hermetic detector divided into barrels and endcaps
along with preshower detectors. The inner surface of the central region or barrel (EB)
is at a distance of 1.29 m from the interaction point with a pseudorapidity coverage of
In| < 1.479. The two endcaps cover the pseudorapidity range of 1.479 < |p| < 3 and are
located at |z| = 3.15m from the detector center. The preshower detector (ES) is placed
in front of the two endcaps to discriminate a single photon from a pair of photons coming
from neutral pion decays. The ECAL is located inside the solenoid tho reduce the amount
of material electrons and photons will traverse and improve the energy resolution. It is
a homogeneous calorimeter made of 61200 lead tungstate (PbWO,) scintillating crystals
of about 25 radiation length to contain the showers of photons and electrons produced
in pp collisions providing both their position and energy [49, 50]. Figure 17 shows a
longitudinal section of the electromagnetic calorimeter. The thickness of all the layers of
the central barrel (endcap) are 25.8 (24.7) radiations lengths [51].
2.2.4 Hadronic Calorimeter

The hadronic calorimeter (HCAL) is a sampling calorimeter made of alternating layers
of brass plates and plastic scintillator tiles. The brass plates serve as the passive absorber

and plastic scintillator is the active material. The HCAL measures a particle’s position,
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Figure 17: A longitudinal view of the CMS electromagnetic calorimeter with the respective
pseudorapidity coverage [42]

energy and arrival time using a fluorescent scintillator material that produces a rapid light
pulse when an ionizing particle passed through. The light is collected using optical fibers
and delivered to readout boxes where photosensors and amplifiers integrate the signal and
send it to the trigger and data acquisition systems. The total amount of light produced by a
shower is a measure of the energy of the particles that initiated that shower. The thickness
of all the layers of the central barrel is about six interaction lengths which is sufficient to
contain most of a hadronic shower [51].

A longitudinal section of the hadronic calorimeter is shown in Fig. 18. The hadronic
calorimeter is divided into inner and outer barrel and endcaps. The barrels cover the
pseudorapidity range —1.4 < 1 < 1.4 and endcaps cover the pseudorapidity range 1.3 <
In| < 3. The inner surface of the inner barrel starts from the outer surface of the ECAL and
extends up to the inner surface of the magnetic coil. The surface of the outer hadronic

calorimeter starts from the outer surface of the magnetic solenoid and extends to the inner
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Figure 18: A quarter of the the CMS hadronic calorimeter with its four sub systems; HCAL
barrel, endcaps, and forward. [53]

surface of the muon detector.

The hadron forward calorimeter (HF) is made of quartz fiber and steel [52]. It is lo-
cated outside the detector wheels and covers pseudorapidies of 3.0 < || < 5.2. When a
particle passes through the fiber, it emits Cerenkov light. Photo-multipliers are used to reg-

ister the Cerenkov light and generate the signal. By measuring the energy deposition, HF

separates showers generated by electrons and photons from those generated by hadrons.

2.3 The Muon System

The muon system is located outside the solenoid as muons with momenta above 5 GeV
can penetrate several meters of iron. The muon system is inserted among the layers of the
steel magnetic flux-return yoke. A cross-section view of the barrel muon system is shown

in Figure 19. A muon leaves a curved trajectory in four layers of muon detectors. There are

three subsystems used: the drift tube chambers, resistive plate chambers and cathode strip



29

Figure 19: A cross section view of the CMS barrel Muon system. A muon leaves a curved
trajectory in four layers of muon detectors [53].

chambers as shown in Figure 20. The combination of all these systems creates a highly
efficient muon detector that covers || < 2.4 with a hit resolution of 200 - 350 ym in the
DT, 40 - 150 ym in the CSC, and 0.8 - 1.4 cm in the RPC, with a time resolution of about 3
ns. The efficiency for muon reconstruction is from (94 — 99) % when using all the chamber

information.

Drift Tubes The drift tube (DT) chambers are located in the barrel wheels and cover
pseudorapidity of |n| < 1.2. The DT is constructed of drift tube cells. When a charged
particle traverses the cell volume, it generates a signal (hit) in its anode wire. The signal is

amplified and discriminated for time digitization [54]. Hence, the position of the charged
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Figure 20: An r-z view of a quadrant of the CMS detector where the interaction point is
at the lower left corner. The muon subsystems: drift tubes (DT), resistive plate chambers
(RPC), and cathode strip chambers (CSC) in green, red, and blue respectively. The grey
areas represent the solenoid and the steel flux-return disks. [53]

particle can be related to the time measurement The DT cell has a central anode wire
at a high voltage (3600 V), two electrodes (cathodes) on the sides at -1800 V, and two
electrodes above and below the wires at +1800 V. The gas mixture is 85 % Ar and 15%
CO,, slightly over pressured by 2-10 mbar with a saturated electron drift velocity of about

55 um /ns. The maximum drift time is almost 400 ns with a typical cell size of 42 mm .

Cathode Strip Chambers The cathode strip chambers (CSC) are installed in the end-
cap region where muon rates and backgrounds are higher and the magnetic field is non-

uniform and strong. As the drift length is short, the CSC has fast response time. Hence
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CSCs are finely segmented to tolerate the non-uniformity of the magnetic field. The CSCs
have four stations at each endcap located in a direction perpendicular to the beam and
designated as ME+1 to ME4+4. ME1 is composed of three rings of chambers in the radial
direction and the others are composed of two. In the inner rings of stations 2, 3, and 4,
each CSC chamber subtends a ¢ angle of 20 degrees, whereas the other chambers subtend
an angle of 10 degrees (18 and 36 chambers in each ring, respectively). The outermost
chambers are about 3.4 m long and 1.5 m wide. All chambers use a gas mixture of 50 %

CO,, 40 % Ar, and 10 % CF,.

Resistive Plate Chambers The resistive plate chambers (RPC) are installed in both the
barrel and endcap regions. The RPCs are double-gap chambers operated in avalanche
mode and are primarily designed to provide timing information for the muon trigger. They
provide a fast, independent trigger with a lower Py threshold over a large portion of the
pseudorapidity range (|n| < 1.9). An RPC gap is made by two parallel bakelite plates
separated by 2 mm and filled with a gas mixture of 96.2 % C,H,F,, 3.5% C,H;0 and 0.3 %
SFs. A charged particle passing through the RPC produces an avalanche of electrons in
the gap between the two plates. This charge induces a signal on an external strip readout

plane to identify muons from collision events with a precision of a few ns.

2.4 The CMS Trigger System

The pp collisions occurs at an average rate of 40 MHz. However, only a very small
fraction of collisions with hard interactions are useful for further study. The rate of event
collection is lowered by the CMS trigger system and triggered events are saved on tape for

offline analysis. The trigger system function"s in two levels: the level 1 trigger (L1), which
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is hardware-based, and the high level trigger (HLT), which is software-based.
2.4.1 The L1 Trigger System

The L1 trigger system takes data from the CMS subdetectors and selects events at a rate
of 100 kHz from pp collisions. The architecture of the L1 trigger system is shown in Fig.
21. It is capable of generating a decision to save or discard an event within 4 us. The full
information from local, regional and global trigger components of the muon trigger system
and the calorimeter trigger system are used in the L1 decision. Once the L1 selects the
event, then data from the full CMS detector is extracted for high level trigger processing.

The L1 muon trigger first forms segments of muon tracks using the hits from the CSC
and DT. Then, a track finder algorithm is used to reconstruct the path of muon candidates
and measure the transverse energies. The RPC provides trigger information with timing
resolution that help the CSC and DT systems in finding tracks. The hits on the RPC are
used for finding muon candidates in different chambers, then eliminating duplicates and
selecting those with the best quality and the largest transverse momentum. For each can-
didate the Py, charge, and position in (¢, n) are estimated. All the muon candidates (with
minimum Ppof 10 GeV) from the Barrel Muon Track Finder (BMTF), the endcap muon
track finder (EMTF), and the Overlap Muon Track Finder (OMTF) are fed into the global
muon trigger (GMT). The GMT merges candidates, removes duplicates, estimates an op-
timized momentum and ranks the candidates according to the quality of the tracks and
momentum. Finally, the eight best candidates are sent to the L1 global trigger (GT).

In the ECAL, arrays of 5x5 cells covering 0.087 in n and 0.087 in ¢ are used to measure
the energy depositions from electrons and photons. This energy is used to generate the

trigger for electrons and photons. In the HCAL, a granularity 0.087 in n and 0.087 rad in
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Figure 21: The schematic architecture of the level 1 trigger [55].

¢ in the barrel, and 0.17 in n and 0.17 rad in ¢ in the endcaps is used. The information
from the ECAL, HCAL and HCAL Forward (HF) is fed to the layer 1 calorimeter trigger. The
layer 2 calorimeter computes other global quantities, such as the total transverse energy,
the transverse energy of the jets alone, the missing transverse energy (MET) and the jet-
based equivalent of the MET. It estimates the pileup contribution of an event and subtracts
the energy in calorimeter objects.

Finally, the global trigger collects all the candidates and forwards them to the high level
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trigger (HLT) if the selection criteria satisfy a trigger path. Each trigger path requires an
object or a combination of objects to pass the selection criteria. These physics objects are
fed to the global trigger from the global muon trigger and calorimeter trigger.
2.4.2 The High Level Trigger System

The HLT trigger system must have large acceptance for physics signal while keeping the
output rate and CPU time under control [56]. To keep the output rate low, algorithms with
high reconstruction efficiency, good identification and quality selection of main physics
objects are used. To keep CPU time low, we use a modular structure of the trigger path, a
sequence of reconstruction and filtering blocks of increasing complexity. The trigger path
runs the faster algorithm first and filters their products. If the filter fails, the rest of the
paths are skipped. The HLT selects events at the rate of about 1 kHz for offline storage.

The HLT filtering is carried out by a computer farm that uses sophisticated algorithms
to reduce the event rate from 100 kHz to 1 kHz. The algorithms are more closely related to
the offline reconstruction criteria and use physics object candidates. It also uses the tracker
information which was not used in the L1 trigger. The overall output rate of the trigger
system is adjusted by prescaling the number of events that pass the selection criteria of spe-
cific algorithms [57]. The event data are stored locally on disk and eventually transferred

to the CMS Tier-0 computing center for offline processing and permanent storage.

2.5 The CMS computing system
The raw data are stored on tape as backup, as well as on disk for processing into
analysis form. The amount of information is large enough to require petabytes of storage

capacity per year. The LHC uses the World-wide LHC Computing Grid (WLCG) to overcome
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the storage requirement. It spreads the work and resources necessary into different tiers.
The CMS offline grid computing system is arranged in four different layers or tiers shown
schematically in Figure 22. Tier-0 is connected to the output of the trigger system and
the online data acquisition system of CMS and performs a prompt reconstruction of the
raw data to create datasets with the physics objects. These data are distributed to the
seven Tier-1 centers, and these centers process, reconstruct, and calibrate the data. Tier-2
centers receive data from Tier-1 and skim the data to reduce the size. They also provide
storage and computing capacity for analysis and simulation of Monte Carlo (MC) events.
Tier-3 centers are small capacity and resources for data analysis at individual institutes.
The data analysis is performed using the CMS software framework (CMSSW). The
CMSSW framework is written in object-oriented C++ and python code. It is equipped
with all the information needed by the simulation, calibration and alignment, and recon-
struction modules that process event data. In a computing sense, an event is a C+ + object

container for all raw and reconstructed information for a particular collision event. [58]
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Figure 22: The CMS computing system with different tier layers [59].
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CHAPTER 3 MONTE-CARLO SIMULATION AND DATASET
We use samples of simulated data to determine the acceptance and efficiency of the
signal process, estimate backgrounds to the signal, and calculate systematic uncertainties
of the result. The simulated samples are generated using the SM predictions for processes
such as tt, W + ~, Z + v, and others, as well as the tty signal. The physics processes
are modeled by event generators such as MADGRAPH5 aMC@NLO [60], PYTHIA8 [61],
and POWHEG [62]. A pp collision simulation using Sherpa [63] is shown schematically in

Figure 23. The steps for generating a simulated event are:

* We calculate the cross section of a hard interaction between two incoming partons for
a physics process at LO or NLO. The calculation is done using perturbation theory at
a fixed order of « . The hard interaction includes creation of short lived resonances

and their decay products.

* The partons present before and after the hard interaction can produce QED and QCD
radiation as long as they conserve energy and momentum. For example, an incoming
quark can split into a quark and a gluon. The quark and gluon can further split into
more quarks and gluons creating a shower of partons. The parton shower interaction

is added to the simulation process.

* The partons are allowed to fragment and hadronize into a colorless bound state

which quickly decay into baryons, mesons, leptons and photons.

* The colliding protons leave remnants which form colorless bound states perhaps
after multiparton interactions. This is called the underlying event and added to the

simulation.



38

* A random number of additional soft pp interactions are generated and added to the

events to incorporate the pile-up.

* Finally, the particles are propagated through a GEANT4 simulation of the CMS detec-

tor. GEANT4 simulates physics process and the detector response. These simulated

datasets contain raw data in the same format as recorded collision events.

3.1 Description of Dataset

3.1.1 Observed Dataset

We use the full Run-II dataset collected at the center of mass energy /s = 13 TeV cor-

responding to an integrated luminosity of 137 fb™' of pp collisions. Events are selected

from the SingleElectron and SingleMuon primary datasets. Events are selected from the

centrally produced nanoAOD version 6 (NANOAOD V6 ). For reference, the nanoAOD files

of the primary data set are listed in Table 1 for 2016. The 2016 data are processed with

Table 1:

Run range

Primary data set for the 2016 data period

data set name

272007-275376
275657-276283
276315-276811
276831-277420
277772-278808
278820-280385
280919-284068

the

Run2016B_ver2-Nano250ct2019_ver2-v1/NANOAQOD
Run2016C-Nano250ct2019-v1/NANOAQGD
Run2016D-Nano250ct2019-v1/NANOAQGD
Run2016E-Nano250ct2019-v1/NANOCAQGD
Run2016F-Nano250ct2019-v1/NANOAQOD
Run2016G-Nano250ct2019-v1/NANOCAQGD
Run2016H-Nano250ct2019-v1/NANOAQGD

Cert_271036-284044_13TeV_ReReco_07Aug2017_Collisions16_JSON

golden JSON file where all CMS subdetectors are flagged as good. The nanoAOD files in
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Figure 23: An example of event generation for a pp collision at the LHC. It shows the
various processes from the hard interaction (red) of incoming partons, parton shower
(blue), fragmentation and hadronization (light green) and decay (green), beam remnant

and underlying event (purple), and emission of gamma ray (yellow) from the particles
[64].
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the 2017 primary data set are listed in Table 2.
Table 2: Primary data set for the 2017 data period

Run range data set name

297047-299329 Run2017B-Nano250ct2019-v1/NANOAQD
299368-302029 Run2017C-Nano250ct2019-v1/NANOAOD
302031-302663 Run2017D-Nano250ct2019-v1/NANOAQD
303824-304797 Run2017E-Nano250ct2019-v1/NANOAOD
305040-306462 Run2017F-Nano250ct2019-v1/NANOAOD

The 2017 data are processed with the
Cert_294927-306462_13TeV_EQY2017ReReco_Collisions17_JSON_v1
golden JSON file where all CMS subdetectors are flagged as good.
For 2018, events are selected from EGamma and SingleMuon primary data sets. The
nanoAOD files used for primary data set are listed in Table 3 for 2018.
Table 3: Primary data set for the 2018 data period

Run range data set name

315257-316995 Run2018A-Nano250ct2019-v1/NANOAOD
317080-319310 Run2018B-Nano250ct2019-v1/NANCAQD
319337-320065 Run2018C-Nano250ct2019-v1/NANOAQD
320500-325175 Run2018D-Nano250ct2019_ver2-v1/NANCAQOD

The 2018 data are processed with
Cert_314472-325175_13TeV_17SeptEarlyReReco2018ABC_PromptEraD_Collisions18_JSON
golden JSON file where all CMS subdetectors are flagged as good.

3.1.2 Simulated Signal and Background Samples
All simulated samples (backgrounds and signal) are centrally produced by the CMS

during nanoAOD version 6 campaigns (NANOAODv6) as shown in Table 4.
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Table 4: MC and data production campaign

year campaign

2016 RunIISummer16NanoAODv6-PUMoriond17_Nano250ct2019_102X_mcRun2_asymptotic_v7
2017 RunIIFall17NanoAODv6-PU2017_12Apr2018_Nano250ct2019_102X_mc2017_realistic_v7
2018 RunITAutumn18NanoAODv6-Nano250ct2019_102X_upgrade2018_realistic_v20

The tt~y signal sample is generated at leading order (LO) using a 2—7 process,
q3(gg) — (Fvbqgby, with the MADGRAPH5 aMC@NLO generator and then processed with
PYTHIA 8.2 and TuneCP5 for parton showering and hadronization. The generated photon

is required to have P > 10 GeV, |n| < 5.0, and a minimum separation of AR = 0.1, where

where, ARis AR =v/ (An)* + (A¢)?, from any lepton, jet, or other photon. The photon
can be produced as initial state radiation (in the case of quark anti-quark annihilation)
or from the top quark or its daughter particles. Three separate samples are produced for
tt via different decay channels: dileptonic decay, semileptonic decay, and fully hadronic
decay. The leading order (LO) production cross sections for dileptonic, semileptonic and
hadronic channels are extracted from MC simulation files and 1.495 pb, 5.056 pb, and
4.149 pb respectively.

For the signal samples, an inclusive k-factor (defined as the ratio of agfo to U%o ) is
calculated using MADGRAPH5 aMC@NLO v2.6.5.

The LO and NLO cross sections are computed in the fiducial phase space region, re-
sulting in an inclusive NLO k-factor of 1.4852. Finally, the k-factors are multiplied by the
LO cross sections calculated in the production samples, to define NLO cross sections for

use in scaling the ttv simulation. Photons from top decay products are not simulated in

the NLO sample, and therefore the overlap removal with the tt NLO POWHEG sample is
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modified such that this contribution is included again in the NLO case. One of the major
backgrounds is ttwith a nonprompt photon. The ttsample is generated at NLO by POWHEG
v2 and then combined with PYTHIA 8 with the TuneCP5 [65] tune to simulate the parton
showers and hadronization, assuming a top quark mass, m,, of 172.5 GeV.

The background processes W+jets — (v+jets and Z — (¢ +jets are simulated us-
ing MADGRAPH5 aMC@NLO (MLM) [66] along with PYTHIA 8 and TuneCUETP8M1 tune
to simulate the parton shower and hadronization. These samples are normalized to their
NNLO cross-section. The single top quark processes are separated into the t-channel, s-
channel, tW channel and TGJets (top quark, v +jets). The t-channel and tW channel
samples are generated with POWHEG v1 and then combined with PyTHIA 8 and TuneCP5
tune to simulate the parton shower and hadronization. The s-channel is generated using
MADGRAPH5 aMC@NLO and PyTHIA 8. The samples are normalized using the NLO cross-
section. The tt +V processes are generated by MADGRAPH5 aMC@NLO (MLM) and show-
ering with PYTHIA 8. Diboson (WW/WZ/ZZ) samples are generated with PYTHIA 8 [65].
The QCD multijet processes are generated with PYTHIA 8.226 (8.230) the 2016 (2017,
2018) data-taking periods. The simulated QCD samples are used to estimate the Z+jets
cross section in the signal region. Eventually, all the simulated QCD samples are replaced
by a data driven estimation. The details of data driven QCD estimation are explained in
Section 6.4. Double counting of the partons generated with MADGRAPH5 aMC@NLO and
PYTHIA are removed using the MLM [67] and the FxFx [68] matching schemes for LO and
NLO samples, respectively. The simulated signal and background samples for 2016, 2017
and 2018 are listed in Table 5 and Tables 6-10, respectively. The references for the CMS

cross section measurements of all the samples can be found at [69].
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Table 5: Signal samples for the tty process for all three years.

Process x-sec (pb) Dataset

thy 1.495%x1.4852 TTGamma_Dilept TuneCP5 PSweights 13TeV-madgraph-pythia8
5.056x1.4852 TTGamma SingleLept TuneCP5 PSweights 13TeV-madgraph-pythia8
4.149x1.4852 TTGamma_Hadronic TuneCP5 PSweights 13TeV-madgraph-pythia8

3.1.3 Event Overlap Removal in Simulated Samples

The ttv signal is generated at leading order (LO) as a 2 — 7 process including all
decay channels (dileptonic, semi-leptonic, and hadronic) with MADGRAPH5 aMC@NLO.
The signal events must have a photon radiated from a top quark, the intermediate W
bosons, the W decay products, the b quarks, or radiation from initial state quarks (for
quark-antiquark annihilation). These are called prompt photons and are required to satisfy
P; > 10 GeV and pseudorapidity || < 5. There are no P cuts for the lepton but it must
be within pseudorapidity of || < 5. It is required that the angular separation between the

photon and any of the six final state particles (with P < 5 GeV) is AR > 0.1 where, AR is

AR = V(An)® + (A¢)>. (3.1)

On the other hand, no photons are simulated at the matrix element 1 (ME) level in the
tt process but initial and final state radiation may produce photons in the samples. In such
cases, we remove the ttevents if they contain a photon that passes the photon requirements
within the phase space of the ttv signal. We also require that the photon is produced by

quarks, leptons, or fundamental SM bosons but not from mesons. The portion of phase

'The matrix element method provides a direct connection between the underlying theory of particle
physics processes and detector-level physical observables [70].
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space with photons originating during the hadronization of jets, or hadronic activity is
covered by the tt sample.

A similar overlap removal process is applied to Drell-Yan and W + jets samples, in
order to remove double counting in Z + v and W + ~ samples. Events are removed from
Drell-Yan and W + jets if they contain photons with Py > 15 GeV, || < 2.6, or with
AR < 0.1 requirements. The specific isolation (AR) value is used to match with the
generator settings in the simulation. The isolation requirement for W + ~ (Z + ~) is
applied with AR > 0.1 (0.05). Finally, overlap removal is applied to the single top samples
(via t-channel) to remove events from the single-top + jets which are already included
in the t+~+jets sample. The generator level cuts are matched to the phase space of the
single top quark plus photon sample: Pr > 10 GeV, |n| < 2.6, and isolation of AR < 0.05.
As the ty sample does not include photons originating from the decay products of the top
quark, such photons are not counted for the removal of single-t events.

All selection criteria for overlap removal are summarized in Table 11.
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Table 6: Background MC samples for the year 2016.

Process x-sec (pb)  Dataset

tt 87.315 /TTTo2L2Nu_TuneCP5 PSweights 13TeV-powheg-pythia8
380.095 /TTToHadronic_TuneCP5 PSweights 13TeV-powheg-pythia8
364.352 /TTToSemiLeptonic_TuneCP5 PSweights 13TeV-powheg-pythia8

W +jets 11775.9345 /W1lJetsToLNu TuneCUETP8M1 13TeV-madgraphMLM-pythia8
3839.4345 /W2JetsToLNu_TuneCUETP8M1_ 13TeV-madgraphMLM-pythia8
1165.8108 /W3JetsToLNu TuneCUETP8M1 13TeV-madgraphMLM-pythia8
5929176  /W4JetsToLNu_TuneCUETP8M1_13TeV-madgraphMLM-pythia8

ZJets 18610 /DYJetsToLL_M-10to50_ TuneCUETP8M1_ 13TeV-madgraphMLM-pythia8
6077.22 /DYJetsToLL, M-50 TuneCUETP8M1 13TeV-madgraphMLM-pythia8

Single top 3.68064 /ST s-channel 4f leptonDecays TuneCP5 PSweights 13TeV-amcatnlo-pythia8

136.02 /ST _t-channel top 4f InclusiveDecays TuneCP5 PSweights 13TeV-powheg-
pythia8
80.95 /ST _t-channel antitop_4f InclusiveDecays TuneCP5_PSweights 13TeV-powheg-
pythia8
35.85 /ST tW_top 5f inclusiveDecays TuneCP5 PSweights 13TeV-powheg-pythia8
35.85 /ST _tW_antitop 5f inclusiveDecays TuneCP5 PSweights 13TeV-powheg-pythia8
2.967 /TGJets_TuneCUETP8M1_13TeV_amcatnlo_madspin_pythia8
W+~ 489 /WGToLNuG_TuneCUETP8M1 13TeV-madgraphMLM-pythia8
Zgamma 98.3 /ZGToLLG_01J_5f lowMLL_TuneCP5_13TeV-amcatnloFXFX-pythia8
tt + W  0.4062 /TTWJetsToQQ TuneCUETP8M1_13TeV-amcatnloFXFX-madspin-pythia8
0.2043 /TTWJetsToLNu_TuneCUETP8M1 13TeV-amcatnloFXFX-madspin-pythia8
[ext]l+ext2]
tt + 2 0.5297 /TTZToQQ_TuneCUETP8M1_13TeV-amcatnlo-pythia8

/TTZToLLNuNu_M-10_TuneCUETP8M1 13TeV-amcatnlo-pythia8
/TTZToLL._M-1to10_TuneCUETP8M1_13TeV-madgraphMLM-pythia8

[ext]l +ext2+ext3]
t7Z 0.09418 /tZq 1l 4f 13TeV-amcatnlo-pythia8
wWw 49.997 /WWToLNuQQ 13TeV-powheg [+extl]
51.723 /WWTo4Q 13TeV-powheg
WZ 3.033 /WZTolL3Nu_13TeV_amcatnloFXFX madspin_pythia8
10.71 /WZTolL1Nu2Q 13TeV_amcatnloFXFX madspin_pythia8
5.595 /WZTo2L2Q_13TeV_amcatnloFXFX madspin_pythia8
4.42965 /WZTo3LNu_TuneCUETP8M1_13TeV-powheg-pythia8 [+extl]
77 /ZZTo21L.2Q 13TeV_powheg pythia8
4.04 /ZZTo2Q2Nu_13TeV_amcatnloFXFX madspin_pythia8

/ZZTo4L 13TeV_powheg pythia8
VV(202v) 11.95 /VVTo2L2Nu_13TeV_amcatnloFXFX madspin_pythia8 [+ext1]
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Table 7: Background MC samples for the year 2017.

Process x-sec (pb) Dataset
tt 87.315 /TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8
380.095 /TTToHadronic_TuneCP5 PSweights 13TeV-powheg-pythia8
364.352 /TTToSemiLeptonic_TuneCP5 PSweights 13TeV-powheg-pythia8
W + jets 11775.9345 /W1lJetsToLNu_TuneCP5_13TeV-madgraphMLM-pythia8
3839.4345 /W2JetsToLNu_TuneCP5_13TeV-madgraphMLM-pythia8
1165.8108 /W3JetsToLNu_TuneCP5_13TeV-madgraphMLM-pythia8
592.9176 /W4JetsToLNu_TuneCP5_13TeV-madgraphMLM-pythia8
ZJets 18610 /DYJetsToLL,_M-10to50 TuneCP5_ 13TeV-madgraphMLM-pythia8 [+ext1]
6077.22 /DYJetsToLL M-50 TuneCP5 13TeV-madgraphMLM-pythia8 [ext]1+ext2]
Single top  3.68064 /ST _s-channel 4f leptonDecays_TuneCP5_ PSweights_13TeV-amcatnlo-
pythia8
136.02 /ST _t-channel top 4f InclusiveDecays TuneCP5 PSweights 13TeV-powheg-
pythia8
80.95 /ST _t-channel antitop_4f InclusiveDecays TuneCP5_PSweights 13TeV-
powheg-pythia8
35.85 /ST tW_top 5f inclusiveDecays TuneCP5 PSweights 13TeV-powheg-
pythia8
35.85 /ST_tW_antitop_5f inclusiveDecays_TuneCP5_PSweights 13TeV-powheg-
pythia8
2.967 /TGJets_TuneCP5_13TeV_amcatnlo_madspin_pythia8
W+~ 463.9%1.295 /WGToLNuG_TuneCP5_13TeV-madgraphMLM-pythia8
Zgamma  105.4 /ZGToLLG_01J 5f lowMLL_TuneCP5_13TeV-amcatnloFXFX-pythia8
tt + W 0.4062 /TTWJetsToQQ_TuneCP5_13TeV-amcatnloFXFX-madspin-pythia8
0.2043 /TTWJetsToLNu_TuneCP5_PSweights 13TeV-amcatnloFXFX-madspin-
pythia8
tt + 2 0.5297 /TTZToQQ_TuneCP5_ 13TeV-amcatnlo-pythia8 [+ext1]
/TTZToLLNuNu_M-10_TuneCP5 PSweights 13TeV-amcatnlo-pythia8
/TTZToLL M-1to10_TuneCP5_13TeV-amcatnlo-pythia8
t7Z 0.09418 /tZq 1l 4f ckm NLO TuneCP5 PSweights 13TeV-amcatnlo-pythia8
ww 49.997 /WWToLNuQQ NNPDF31 TuneCP5 PSweights 13TeV-powheg-pythia8
51.723 /WWTo4Q NNPDF31 TuneCP5 PSweights 13TeV-powheg-pythia8
WZz 3.033 /WZTo1L3Nu_13TeV_amcatnloFXFX madspin_pythia8 v2
10.71 /WZTo1lL1Nu2Q 13TeV_amcatnloFXFX madspin_pythia8
5.595 /WZTo2L2Q_13TeV_amcatnloFXFX madspin_pythia8
4.42965 /WZTo3LNu_13TeV-powheg-pythia8
VA /ZZTo21.2Q 13TeV_amcatnloFXFX madspin_pythia8
4.04 /ZZTo2Q2Nu_TuneCP5_13TeV_amcatnloFXFX madspin_pythia8
/ZZTo4L, 13TeV_powheg pythia8 [+extl+ext2]
VV(202v) 11.95 /VVTo2L2Nu_13TeV_amcatnloFXFX madspin_pythia8
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Table 8: Background MC samples for the year 2018.

Process x-sec (pb) Dataset
tt 87.315 /TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8
380.095 /TTToHadronic_TuneCP5_13TeV-powheg-pythia8
364.352 /TTToSemiLeptonic_TuneCP5_ 13TeV-powheg-pythia8
W + jets 11775.9345 /W1lJetsToLNu_TuneCP5_13TeV-madgraphMLM-pythia8
3839.4345 /W2JetsToLNu_TuneCP5_13TeV-madgraphMLM-pythia8
1165.8108  /W3JetsToLNu_TuneCP5_ 13TeV-madgraphMLM-pythia8
592.9176 /W4JetsToLNu_TuneCP5_13TeV-madgraphMLM-pythia8
ZJets 18610 /DYJetsToLL_M-10to50 TuneCP5_ 13TeV-madgraphMLM-pythia8 [+ext1]
6077.22 /DYJetsToLL M-50 TuneCP5_ 13TeV-madgraphMLM-pythia8
Single top  3.68064 /ST _s-channel 4f leptonDecays_TuneCP5_ PSweights_13TeV-amcatnlo-
pythia8 [ext1]
136.02 /ST _t-channel top 4f InclusiveDecays TuneCP5_ PSweights 13TeV-powheg-
pythia8
80.95 /ST _t-channel antitop_4f InclusiveDecays TuneCP5_PSweights 13TeV-
powheg-pythia8
35.85 /ST tW_top 5f inclusiveDecays TuneCP5 PSweights 13TeV-powheg-pythia8
[extl]
35.85 /ST_tW_antitop_5f inclusiveDecays_TuneCP5_PSweights 13TeV-powheg-
pythia8 [ext1]
2.967 /TGJets_TuneCP5_13TeV_amcatnlo_madspin_pythia8
W+~ 463.9%1.295 /WGToLNuG_TuneCP5_13TeV-madgraphMLM-pythia8
Zgamma  105.4 /ZGToLLG_01J_5f lowMLL_TuneCP5_13TeV-amcatnloFXFX-pythia8
tt + W 0.4062 /TTWJetsToQQ_TuneCP5_13TeV-amcatnloFXFX-madspin-pythia8
0.2043 /TTWJetsToLNu TuneCP5 PSweights 13TeV-amcatnloFXFX-madspin-pythia8
tt + 2 0.5297 /TTZToQQ_TuneCP5_13TeV-amcatnlo-pythia8 [+ext1]
/TTZToLLNuNu_M-10 TuneCP5 PSweights 13TeV-amcatnlo-pythia8
/TTZToLL. M-1to10_TuneCP5_13TeV-amcatnlo-pythia8
tZ 0.09418 /tZq 1l 4f ckm NLO TuneCP5 13TeV-madgraph-pythia8
WWw 49.997 /WWToLNuQQ NNPDF31 TuneCP5 PSweights 13TeV-powheg-pythia8
51.723 /WWTo4Q NNPDF31 TuneCP5 PSweights 13TeV-powheg-pythia8
WZ 3.033 /WZTol1L3Nu_13TeV_amcatnloFXFX madspin_pythia8
10.71 /WZTolL1Nu2Q 13TeV_amcatnloFXFX madspin_pythia8
5.595 /WZTo2L2Q_13TeV_amcatnloFXFX madspin_pythia8
4.42965 WZTo3LNu_TuneCP5_13TeV-amcatnloFXFX-pythia8 [+extl]
YA /ZZTo2L.2Q 13TeV_amcatnloFXFX madspin_pythia8
4.04 /ZZTo2Q2Nu_TuneCP5_13TeV_amcatnloFXFX madspin_pythia8
/ZZTo4L_TuneCP5_13TeV-amcatnloFXFX-pythia8
VV(202v) 11.95 /VVTo2L2Nu_13TeV_amcatnloFXFX madspin_pythia8
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Table 9: QCD MC samples used for additional checks for the year 2016.

Process x-sec (pb) Dataset
QCD (u enriched) 2960198.40 /QCD_Pt-20to30_MuEnrichedPt5 TuneCUETP8M1_13TeV_pythia8
1652471.46 /QCD_Pt-30to50_MuEnrichedPt5 TuneCUETP8M1 13TeV pythia8
437504.10  /QCD_Pt-50to80 MuEnrichedPt5 TuneCUETP8M1 13TeV pythia8
106033.66  /QCD_Pt-80to120_MuEnrichedPt5 TuneCUETP8M1_13TeV_pythia8
25190.51 /QCD_Pt-120to170_MuEnrichedPt5 TuneCUETP8M1_13TeV_pythia8
8654.49 /QCD_Pt-170to300_MuEnrichedPt5 TuneCUETP8M1 13TeV pythia8
797.35 /QCD_Pt-300to470 MuEnrichedPt5 TuneCUETP8M1 13TeV pythia8
79.03 /QCD_Pt-470to600_MuEnrichedPt5 TuneCUETP8M1 13TeV_ pythia8
25.10 /QCD_Pt-600to800_MuEnrichedPt5 TuneCUETP8M1_13TeV_pythia8
4.71 /QCD_Pt-800t0o1000_MuEnrichedPt5 TuneCUETP8M1 13TeV pythia8
1.62 /QCD_Pt-1000toInf MuEnrichedPt5 TuneCUETP8M1 13TeV pythia8
QCD (EG enriched) 5352960 /QCD_Pt-20to30_EMEnriched TuneCUETP8M1_13TeV_pythia8
9928000 /QCD_Pt-30to50_EMEnriched TuneCUETP8M1 13TeV pythia8
2890800 /QCD_Pt-50to80 EMEnriched TuneCUETP8M1 13TeV pythia8
2890800 /QCD_Pt-50to80_EMEnriched TuneCUETP8M1_13TeV_pythia8
350000 /QCD_Pt-80t0120_EMEnriched_TuneCUETP8M1_13TeV_pythia8
62964 /QCD_Pt-120to170_EMEnriched TuneCUETP8M1 13TeV_pythia8
18810 /QCD_Pt-170to300_EMEnriched TuneCUETP8M1 13TeV pythia8
1350 /QCD_Pt-300toInf EMEnriched TuneCUETP8M1_13TeV_pythia8
QCD (bcToE) 328999.93  /QCD Pt 20to30_bcToE TuneCUETP8M1 13TeV pythia8
405623.40  /QCD_Pt 30to80 bcToE TuneCUETP8M1 13TeV pythia8
38104.43  /QCD_Pt 80to170 bcToE_TuneCUETP8M1 13TeV_pythia8
2635.81 /QCD_Pt_170t0250_bcToE_TuneCUETP8M1_13TeV_pythia8
711.92 /QCD_Pt 250toInf bcToE TuneCUETP8M1 13TeV pythia8
y+jets 20730 /GJets HT-40To100_ TuneCUETP8M1_13TeV-madgraphMLM-
pythia8
9226 /GJets HT-100To200_TuneCUETP8M1_13TeV-madgraphMLM-
pythia8
2300 /GJets HT-200To400_TuneCUETP8M1_13TeV-madgraphMLM-
pythia8
274.40 /GJets HT-400To600_ TuneCUETP8M1_13TeV-madgraphMLM-
pythia8
93.38 /GJets HT-600ToInf TuneCUETP8M1_13TeV-madgraphMLM-

pythia8
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Table 10: QCD MC samples used for additional checks for the year 2017 and 2018.

Process x-sec (pb) Dataset

QCD (u enriched) 2960198.40 /QCD_Pt-20to30 MuEnrichedPt5 TuneCP5 13TeV pythia8
1652471.46 /QCD_Pt-30to50_MuEnrichedPt5 TuneCP5_13TeV_pythia8
437504.10  /QCD_Pt-50to80 MuEnrichedPt5 TuneCP5_13TeV_pythia8
106033.66  /QCD _Pt-80to120 MuEnrichedPt5 TuneCP5 13TeV pythia8
25190.51 /QCD_Pt-120to170_MuEnrichedPt5 TuneCP5 13TeV_pythia8
8654.49 /QCD_Pt-170to300_MuEnrichedPt5 TuneCP5_13TeV_pythia8
797.35 /QCD_Pt-300to470_MuEnrichedPt5 TuneCP5_13TeV_pythia8
79.03 /QCD_Pt-470to600_MuEnrichedPt5 TuneCP5 13TeV pythia8
25.10 /QCD_Pt-600to800 MuEnrichedPt5 TuneCP5 13TeV pythia8
4.71 /QCD_Pt-800to1000_MuEnrichedPt5 TuneCP5 13TeV pythia8
1.62 /QCD_Pt-1000toInf MuEnrichedPt5 TuneCP5_13TeV_pythia8

QCD (em enriched) 5352960 /QCD_Pt-20to30 _EMEnriched TuneCP5 13TeV pythia8
9928000 /QCD_Pt-30to50 _EMEnriched TuneCP5_13TeV_pythia8
2890800 /QCD_Pt-50to80_EMEnriched TuneCP5_13TeV_pythia8
350000 /QCD_Pt-80to120 EMEnriched TuneCP5 13TeV pythia8
62964 /QCD_Pt-120to170_EMEnriched TuneCP5_13TeV pythia8
18810 /QCD_Pt-170to300_EMEnriched TuneCP5_13TeV_pythia8
1350 /QCD_Pt-300toInf EMEnriched TuneCP5_13TeV_pythia8

QCD (bcToE) 328999.93  /QCD_Pt 20to30_bcToE_TuneCP5 13TeV_pythia8
405623.40  /QCD_Pt 30to80_bcToE_TuneCP5_13TeV_pythia8
38104.43 /QCD_Pt_80to170_bcToE_TuneCP5_13TeV_pythia8
2635.81 /QCD_Pt 170t0250 bcToE TuneCP5 13TeV pythia8
711.92 /QCD_Pt_250toInf_bcToE_TuneCP5_13TeV_pythia8

~v+jets 20730 /GJets HT-40To100_TuneCP5_13TeV-madgraphMLM-pythia8
9226 /GJets HT-100To200_TuneCP5_13TeV-madgraphMLM-pythia8
2300 /GJets HT-200To400 TuneCP5_13TeV-madgraphMLM-pythia8
274.40 /GJets_ HT-400To600_ TuneCP5_13TeV-madgraphMLM-pythia8
93.38 /GJets HT-600ToInf TuneCP5_ 13TeV-madgraphMLM-pythia8

Table 11: Summary of the cuts for the overlap removal of simulated samples.

samples
Cuts tty/tt W~/ Wjets Z+~/Z4+jets ty/single-t (t-channel) ~+jets/ QCD
Pr (%) (GeV) >10 > 15 > 15 > 10 > 25
Il (4™ <5.0 <2.6 <26 <2.6 <25

AR cone size 0.1 0.05 0.05 0.05 0.4
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CHAPTER 4 EVENT RECONSTRUCTION AND DATA TIER

4.1 Trigger

At the LHC, proton bunches collide at a rate of 40 MHz i.e., every 25ns, but only about
1kHz of data are registered for analysis. The upper limit of 1 kHz is determined by the
capacity to save the data. CMS uses a two level trigger system, level 1 (1) and high level
(HLT) that selects events at a rate of 1kHZ. The L1 trigger is hardware based and uses
calorimeter and muon information to reduce the rate from 40MHz to 100kHz. It makes a
decision to accept an event within 4us. Once the event is selected by L1, full readout of the
CMS detector takes place. The HLT is a computer farm running sophisticated algorithms
that select events at a rate of 1kHz i.e., 1 event every 260 ms. It is composed of hundreds

of HLT trigger paths which are sequences of reconstruction and filtering modules [71].

The HLT electron: The Gaussian-sum filter track algorithm is used to reconstruct the
track information of the electron in the HLT. The track information is then combined with
an ECAL energy deposition to reconstruct the HLT electron. The online electron recon-
struction efficiency in the HLT is very high (> 99%) [71]. To reduce the rate of jets and
photons misidentified as electrons, tight identification requirements are applied. The tight

identification selection helps in lowering the Py threshold value in trigger.

The HLT muon: At HLT, muons are reconstructed using the information from both muon
subdetectors and tracker. The reconstruction efficiency of muons is greater than 99% [71]

and computed using muon Py and 7.
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4.2 Event Reconstruction and the Particle Flow Algorithm

The particles produced in a collision propagate through the detector, interacting with
the detector material. The signals left by the interactions are used to reconstruct the event,
including energies and positions of jets and photons, and momentum and trajectories of
electrons and muons. This is known as event reconstruction. An example of event recon-
struction of a top-quark pair is shown in Figure 24. Offline event reconstruction is based
on the particle flow algorithm [72]. When a particle traverses the detector it produces
signals which are digitized and locally reconstructed in the subdetectors (inner tracker,
outer tracker, electromagnetic calorimeter, hadronic calorimeter, and muon detector). The
reconstructed particle flow (PF) elements are combined to form particle-flow-object can-
didates used in this analysis: photons, jets, electrons, muons, missing transverse energy,
primary vertices, and secondary vertices.

Particle flow uses the information from tracks formed from tracker and muon chamber
signals and the information of energy deposition in the ECAL and HCAL to estimate the
trajectory of a stable particle in an event. All the stable particles are reconstructed by
linking the responses from the appropriate subdetectors. Composite objects like jets, taus,
and MET are also reconstructed from the particle flow candidates. For example, when an
electron candidate passes through the inner and outer tracker it leaves signals in different
layers. These hits are used to create track candidates and the tracks are used to create
vertices. The electron, a charged particle, will follow a curved path in the tracker due
to the presence of the magnetic field. The photon will travel straight. They both deposit

energy and get absorbed in the ECAL. However, charged and neutral hadrons can traverse
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CMS Experiment at LHC, CERN
CMS Data recorded: Thu Jul 9 01:29:29 2015 CEST
4 Run/Event; 251252 / 85041479
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Figure 24: Event reconstruction of a top-quark pair in the xy view. The event has one
isolated muon and five hadronic jets. Two of the jets pass the tight threshold on the b-
tagging discriminant and are interpreted as originating from the b quarks from top quark
decay. Two of the others form a hadronically-decaying W boson [73].

the ECAL and deposit energy in the HCAL. Similar to electrons and photons, charged
hadrons bend in the magnetic field but neutral hadrons do not. The muon chambers
are used to detect muons since they can penetrated the ECAL and HCAL without being
stopped whereas neutrinos leave the detector undetected. The subdetector information is
linked together by the particle flow (PF) algorithm to create a collection of physics objects:

electron, muon, photon, and jets are the PF objects used in this analysis [51].
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4.2.1 Tracking

The reconstruction of the track made by a charged particle is based on a Kalman fil-
ter algorithm. First, a track seed is generated from hits* in the pixel tracker. Using the
Kalman filter track extrapolation, more hits are added to the current track candidate from
successive tracker layers [74]. New track candidates are created in the process if mul-
tiple hits match with the extrapolated track. Once all the hits are included in the track
candidate from all layers in the pixel and strip tracker, any duplicate tracks are removed,
tracks with the most missing hits are removed, and tracks with the highest y* are removed.
The charged particle properties such as production vertex, Py, and charge are determined
from final track fitting. The process is done recursively with additional track quality re-
quirements such as minimum Py > 0.9 GeV, x” requirement, and primary vertex distance.
Once the track is accepted then all the hits associated with the tracks are removed from
the collection and the search starts again for additional tracks [75].
4.2.2 Clustering in the Calorimeters

The clustering algorithm takes the values of energy depositions, positions, indices to
neighbors, and index from subdetector and uses them to generate the seed selection. The
seed cluster must have more energy than its neighbors and an energy greater than the
threshold, F,,. The threshold energy is 0.23 GeV and 0.8 GeV in the ECAL and HCAL,
respectively. Then we determine the topological cluster by selecting the set of cells having
a common side or corner with the seed. Sometimes it is possible to have several seeds in

the same topological cluster. Then we calculate the fraction of energy contributed to the

2"hits" are the signals in the tracking detector
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cluster using particle flow rechits  information. The sharing of the energy is calculated
iteratively a maximum of 50 times to find the final cluster energy and position [77].
4.2.3 Linking Algorithm

When a final state particle emerges from a pp collision, it traverses the detector creating
PF elements in different subdetectors. The particle flow algorithm links those elements
to reconstruct a particle. If two elements are found to be linked, a quality test is done
by finding a distance between the elements. Then the algorithm produces PF blocks of
elements from common linked elements. Finally particle flow objects are identified and
reconstructed as explained below.
4.2.4 Particle Flow Objects

This physics analysis is based on the counting of well identified physics objects such as
muons, electrons, jets, b-tagged jets, photons, and MET. In this section we will describe
briefly how we identify those objects using the particle flow algorithm. The algorithm
uses the PF blocks as input and performs reconstruction and identification in the following

order.

Particle flow muons: PF muons are identified using global muon and tracker muon
properties. The muons are identified in three different ways in the CMS detector. First, the
hits in the drift tube (DT) and cathode strip chambers (CSC) are used to form a segment of
a track. This track is used as a seed to match with a possible muon path using all the hits
from DT, CSC and resistive plate chambers (RPC). The muon candidate identified in this

way is called a particle flow standalone muon. Signals from muon chamber and tracker

*Raw data from the detector are unpacked offline into integer-based objects called “digis.” The informa-
tion stored in the digis is processed to produce a collection of objects called "rechits" [76]
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tracks are aligned to reconstruct the full path of a muon. The muon identified in such
case is called a particle flow global muon. A muon with P, < 200 GeV will have a very
good momentum resolution. If the muon candidate has P less than 10 GeV, it may have
few hits in the muon chambers yet be well reconstructed in the tracker. When there is a
match between muon system hits and an extrapolated track from a tracker, it is called a
tracker muon. To identify a tracker muon, the transverse momentum of the track should
be greater than 0.5 GeV and total momentum should be greater than 2.5 GeV.

As the objects are not exclusive, a muon candidate can be classified as both tracker
muon and global muon. If both match to the same track, then they are classified as the
same object. It is possible that an energetic charged hadron may penetrate to the muon
chambers and be classified as a muon candidate. To avoid the misidentification, the parti-
cle flow algorithm checks if there exists on ECAL or HCAL energy cluster that aligns with
the muon track. Once the muons are identified, the clusters are removed from the particle

flow blocks.

Particle flow electrons: When an electron traverses material, it can emit Bremsstrahu-
lung photons and, if sufficiently energetic a photon can convert into an e*e™ pair. These
electron-positron pairs can again emit photons. Hence, electrons and isolated photons
show similar properties in the tracker and ECAL and are reconstructed together in the par-
ticle flow algorithm. At first, a gaussian-sum filter (GSF) track is used to seed an electron
candidate. The GSF track corresponds to the ECAL cluster which is linked with zero, one
or two tracks. Any track with P > 2 GeV is used as a seed. A photon candidate is seeded

from an the ECAL supercluster with transverse energy larger than 10 GeV and no links



56

to GSF track. For electron and photon candidates, the ratio of HCAL energy and ECAL
energy must be less than 10% where the total HCAL energy is measured within AR of
0.15 from the supercluster position in ECAL. As electrons and positrons can emit photon
when traversing tracker material, the total energy deposited in the ECAL is calculated in
a supercluster with small n but wide ¢ variables as the emitted photons travel in the di-
rection emitted while the magnetic field bends the electron in ¢. To separate electrons
from photons, an isolation criteria is used. There are several isolation techniques applied

to improve the reconstruction efficiencies [78].

Particle flow photon: Photon reconstruction primarily relies on the ECAL using a pseu-
dorapidity range of |n| < 3.0 with a small gap between barrel and endcap around |n| =
1.479. The particle flow algorithm uses the shape and size of the cluster in the ECAL to
identify photons with P > 15 GeV. The photon reconstruction consists of sequential steps
as explained below

First the individual channel in the ECAL is calibrated using
1. the ¢ symmetry of the energy deposited by the pileup and underlying event,
2. the invariant mass of the decays of 7° — v+ and  — ~~, and

3. the momentum measured by the tracker for isolated electrons from W and Z boson

decays.

The energy is collected from radiating electrons and converted photons to reconstruct a
cluster. A cluster is built starting from a seed crystal which registers an the energy greater

than neighboring crystals and exceeds a predefined threshold. The energy contained in a
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Figure 25: The distribution of R, for photons in the ECAL barrel. The red histogram
represents the photons that converted in the tracker while the blue histogram represents
the photons that did not convert or convert later before reaching the ECAL. The figure is
taken from [79].

5 x 5 matrix around the seed crystal is used to reconstruct an unconverted photon. Several
criteria are used to identify photons such as tracker isolation, ECAL isolation, hadron cal-
orimeter isolation, hadronic to electromagnetic ratio and Ry. The Ry variable is the ratio of
the energy contained in 3x3 matrix and the supercluster energy, and behaves as shown in
Figure 25. For example, R, values for 7° and 1 meson decay will be lower than an isolated
photon.

The raw energy E,,,, obtained from the supercluster must be corrected to estimate the
true energy, £,,,.. The correction values are determined as a function of n, £ and Ry. In
the analysis, we apply photon E; smearing and scaling corrections. Photon energy scaling

is applied to adjust the number of electrons from the di-electron decay of the Z boson.
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The mismatch in the energy resolution between data and simulation is accommodate by
smearing. A random Gaussian smearing is added to the photon energy resolution to smear
the photon energy assuming the same degradation in resolution between data and MC

events for photons.

Particle flow jets: Quarks and gluons hadronize to form colorless hadrons. High energy
quarks and gluons, like those from a hard interaction, tend to hadronize into a narrow
beam of particles called a jet. Once the isolated muons, electrons, and photons are re-
constructed they are removed from the particle flow blocks. The blocks consist of the
remaining hadrons, leptons, and photons. Jets are reconstructed using the information
from the tracker, ECAL, and HCAL as they leave tracks while traversing the tracker mate-
rial and deposit energy in the ECAL and HCAL. The charged hadrons leave tracks in the
tracker, and deposited energy in both the ECAL and HCAL. First we identify the neutral
hadrons and photons and remove them from the PF blocks. Then the remaining charged
hadrons are reconstructed. CMS uses a sequential clustering algorithm to reconstruct jets
as it is collinear safe, infrared safe and fast [80]. The anti-k, jet clustering algorithm, an
idealized cone algorithm, is used to reconstruct jets. For each pair of the particles i, j, and

the distance d,; is

diB = 5 (401)
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Figure 26: Reconstruction of jets in an event using the anti-k, algorithm. The high P, jets
are circular and the boundary is defined by the respective hardness among neighboring
jets. [80]

where, d,5 is distance of closest approach between particle i and the beamline. As the
distance d;; is calculated using the inverse of the particle transverse momenta, the high
transverse momentum particles are used in clustering at first, then the soft particles are
clustered together with nearby hard particles rather than nearby soft particles. The hard
jets (jets with high P;) reconstructed by the anti-£, algorithm are exactly circular in the
y — ¢ plane [81]. CMS uses a cone of radius R=0.4 for anti-k, jet reconstruction. An
examples of anti-k, jet reconstruction is shown in Figure 26. Before jet reconstruction, any
charged hadrons that match with a vertex other than the primary vertex or a secondary
vertex of the event are removed from the jet. This is called charged hadron subtraction
and it removes tracks from particles originating from other collisions. Once the particle

flow jets are reconstructed it is necessary to apply jet energy corrections on data to remove
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Figure 27: The corrections for a reconstructed jet are applied sequentially to MC and data
to get the final calibrated jets. The sketch is taken from [77].

contamination and on simulation to match with the observed resolution in the data.

JET energy correction: To match the measured jet energy with the true parton en-
ergy, we apply jet energy corrections. CMS uses a factorized approach to apply jet energy
corrections for both MC and data at each level sequentially as outlined in Figure 27. The
L1 pile-up correction removes the energy contributed by pile-up events in a jet. The cor-
rection is applied to both data and simulation and is determined from simulation of QCD
dijet events with and without pileup. The offset information is extracted as a function of

p, jet area, jet n, and jet Py. The corrected transverse momentum of the jet is
L1
pT,jCOTT — p};{LjCOTT - PUoffset(prTeco, n, p, A) (42)

where p is energy density. After the L1 pileup correction, we correct the jets for uniform
response over jet Pr and jet n, called the L2L3 response correction. The response correction
is determined by comparing the reconstructed P to the particle level P, of a jet in dijet

QCD simulation. The jet energy response scale factor (S;) is defined as

L1,corr

S; = 1Ls (4.3)

L1,corr
pT,GenJet
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Next we correct the residual differences between jet response in data and MC. Part is an 7
dependent correction and part is P dependent. The residual correction is applied only to

data.

Jet energy resolution(JER): The uncertainty of a measured jet energy in the data is
higher than in the MC samples. The jet energy in MC is smeared to match with the jet
energy resolution in data [82].

4.2.5 Higher Level Observable

In pp collisions, a jet can originate from b, c, s, u, and d quarks and are classified into
b jets, c jets, and light jets. A b jet contains at least one bottom-hadron, c jets contains
at least one charm-hadron and no bottom hardron, and the rest of the jets are light jets
[83]. CMS uses a b-tagging algorithm to identify jets originating from a b-quark. The
b-quark can be distinguished from the light and c-quarks by its larger mass (4.2 GeV) and
typical lifetime of 1.5 psec. Due to the 1.5 psec lifetime, b hadrons travel a few millimeters
from the primary vertex before decaying. The decay vertex of the b hadron is called the
secondary vertex. Hence the b jet originates from the primary vertex and has a secondary
vertex within the jet. This is used by the b-tagging algorithm to infer the presence of a
b-jet in the CMS detector. Figure 28 shows schematically the signature of a b jet in a pp
collision.

The sum of all transverse momenta in a pp collision is zero due to conservation of

momentum. But due to the presence of invisible and undetectable particles, there can
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Figure 28: The signature of b-quark jet that originates from the primary vertex. It has a
secondary vertex with transverse impact d, and a decay length indicated by the red dashed
line. The picture is taken from [84]

exist an imbalance in the sum of P; of all visible particles which is known as missing

transverse energy (MET). MET is calculated [85] as

—> P (4.4)
i=1

where n is the total number of reconstructed particles and p7, is the transverse momen-
tum of the i"" final state particle. The computation of MET depends on the application
of jet energy correction (JEC) during PF object reconstruction. If an event has an usu-

ally large missing P, the PF algorithm is applied for a post processing such as checking
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for cosmic muons, poorly reconstructed muons or overlapping muon and neutral hadron
misreconstructed as a charged hadron.

The lepton and photon isolation criteria are applied during their reconstruction. We
apply the PF relative isolation (/,.;) to the PF objects to have strict criteria which are often
required in physics analysis. The PF relative isolation is defined as the ratio of the sum
of the P; of all the particles around the lepton within a cone to the P, of the lepton.
The charged particles from pile-up are removed but neutral particles cannot be removed
directly. So we estimate the ratio of charged hadron to neutral hadron (plus photon) Pt in
inelastic collisions to estimate the neutral contribution from pileup. This is known as the

AS correction. The PF relative isolation is

p;harged + maX(O, zp%eutral + zp% . AB Z p%harged)

1 pileup
I, = l (4.5)
pr
where p). is the transverse momentum of a photon, p5*"%* is the transverse momemtum
of a charged particle, p<“"* is the transverse momentum of a neutral particle, and AS is

beta correction. The lepton and photon reconstruction algorithm requires a basic level of
isolation. A stricter relative isolation (/,.;) requirement is applied to leptons and photons

selected for the analysis.

4.3 CMS Data Tier:
The raw data recorded by the CMS data acquisition system undergoes successive stages
of processing to refine the data, apply calibrations, and create high level physics objects

for analysis purposes. Event information in the simulation and reconstruction chain is
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grouped into what is called a data tier [86]. A data set may consist of multiple data tiers
such as analysis object data (AOD), miniAOD, and nanoAOD.

There are several data tiers in CMS. The first is zero suppressed raw data, the standard
raw data event format. The size of the RAW data is about 1MB per event. The second data
tier is the reconstructed (RECO) data which contains the detailed information about the
reconstructed physics objects and has a size of about 3 MB per event. The analysis object
data (AOD) format contains physics objects used in analyses (400-500kB per event).

MiniAOD is a high level data tier which has a size of 30-50 kB per event. MiniAOD
format is produced for real and simulated events. It has a very large flexibility as it in-
cludes all observed particles. It allows us to do reclustering of jets or re-calibration of jet
energies and helps to design new identification techniques. The nanoAOD data format has
a size of 1-2kB per event. It consists of all physics objects, trigger information, generator
information, event weight, cleaning flags, primary and secondary vertex, isolated tracks,
boosted jets, and their substructures. It contains the top level information typically used
in a physics analysis [87]. We skimmed nanoAODs to produce ntuples of selected events
with a format specialized for our analysis.

4.3.1 The production of ntuples from the nanoAOD

The Monte Carlo events are generated with a pile-up distribution, however the dis-
tribution may differ from that of data. We determine the average number of pile-up in
data and using Poisson statistics and adjust the number in the corresponding simulation to
match. Next, we select only the events that passed the HLT triggers listed in Table 12 and
recommended Run 2 MET filters by JETMETPOG [88]. The MET filter checks if an event

has passed the following filter requirements
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1. A good primary vertex filter: The definition of a good primary vertex as described in

Section 5.2.

2. Halo beam filter: When a proton interacts with gas or beampipe material it induces
particles traveling parallel with the beam but at large radius, up to 5m, are called
halo particles. For example, a high energy halo muon can interact in the calorimeter

and effect jet+met, photon+met and trigger efficiency.

3. HCAL barrel and endcap (HBHE) noise filter and HBHE isolated noise filter: These

filters are applied to remove events that have noise signals originating from HCAL.

4. ECAL trigger primitive filter: When the energy based on the trigger primitives (TP) is
near the saturation energy”, the recovered energy is likely underestimated, leading
to high MET events. The ECAL trigger primitive filter is used to tag these events and

remove them from analysis.

5. Bad particle flow muon filter: Events where a muon is low quality and therefore not
declared a PF muon, and this non-PF muon makes it into the PF-MET calculation as

a charged hadron candidate, are removed.

All the selected events from the nanoAOD are saved in an ntuple files containing a

selected subset of information to further compress the data.

“The trigger primitive (TP) information saturates above 127.5 GeV [89].
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CHAPTER S5 EVENT AND OBJECT SELECTION

Events are reconstructed using the CMS software (CMSSW); the 80X series of CMSSW
is used for the year 2016, 94X for the year 2017, and 102X for the year 2018. However, the
nanoAOD data tier is produced with 102X in all years. Signal region events are required
to pass the trigger (either single electron or single muon), to have a well defined primary
vertex, with exactly one high P;and well isolated lepton (electron or muon), with >4 jets
and > 1 b-tagged jet, and exactly one high P photon. Control region events are required
to pass the trigger (either single electron or single muon), to have a well defined primary
vertex, with exactly one high Prand well isolated lepton (electron or muon), with any
number of jets and/or any number of b-tagged jets, and with or without a photon. The

following trigger selection, object definitions, and event selections are applied.

5.1 Trigger Selection

Unprescaled trigger with the lowest thresholds are used in both data and simulation,
for all data taking periods as listed on the TopTriggerTwiki [90]. Each event must pass
either the single electron trigger or single muon trigger for different data periods. For
the electron channel, the high level trigger selection requires an electron with P> 27
GeV, P> 32 GeV, and Pt > 32 GeVfor 2016, 2017, and 2018 data respectively, and
within |n| < 2.4. For the muon channel, the high level trigger selection requires an isolated
muon with Pr> 24 GeV, P> 27 GeV, and Py > 24 GeVfor 2016, 2017, and 2018
data respectively, and within |n| < 2.4. A detailed object selection criteria are explained
in Section 5.2. The list of triggers for 2016, 2017, and 2018 data taking eras is shown in

Table 12.
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Table 12: Trigger requirements from the TopTriggerTwiki [90].

year Primary Dataset trigger comment

2016 SingleElectron HLT_Ele27_WPTight_Gsf_v*
SingleMuon HLT_Iso(Tk)Mu24_v*

2017 SingleElectron HLT_Ele32_WPTight_Gsf_L1DoubleEG_vx L1 SingleEG seed

required
SingleMuon HLT_IsoMu27_vx*
2018 EGamma HLT_Ele32_WPTight_Gsf_v*
SingleMuon HLT_IsoMu24_vx*

5.2 Object Selection

This precision analysis is based on the requirement of well-identified physics objects
such as jets, b-tagged jets, and leptons (electrons or muons). The events are selected on
the basis of such objects in the signal and control regions. A details of the object selection
are discussed below.
5.2.1 Primary Vertex

The vertex with the largest scalar value of summed physics-object P; is called the pri-
mary vertex of the event. Primary vertices are reconstructed by clustering tracks together
and performing fits to determine the maximum likelihood that they originated from a

common vertex. These tracks must satisfy

* minimum number of degrees of freedom > 4,
* longitudinal vertex position |z| < 24 cm, and
* track transverse position d, < 2 cm.

Tracks that are pointing to other vertices are considered as pile-up.
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5.2.2 Electrons

The baseline for the electron selection is the "cut-based" tight ID [91], with transverse
momentum P > 35 GeV and || < 2.4. The relative isolation requirement is a part of
the cut-based ID, so separate isolation criteria are not necessary for electrons. Electrons
must not be in the EB-EE ®> ECAL gap ( |n|sc < 1.4442 or |5|sc > 1.566) and must satisfy
the impact parameter requirements dyy < 0.05 (0.1) in EB (EE); d, < 0.1 (0.2) in EB (EE).
The POG © veto IDs are used with P; > 15GeV and || > 2.4 to veto any extra lepton
in the event. This requirement suppresses dileptonic tty, Z + v and Z+jets events. A

detailed CMS electron ID selection requirements are given in Table 13 for 2016 data. The

requirements for 2017 and 2018 can be found at [91].

Table 13: Electron ID requirements

Requirements Tight Veto

Full 5x5 0;,,, < 0.0104 0.0128
abs(An seed) < 0.00353 0.00523
abs(dPhiln) < 0.0499 0.159
Cy’ 0.026  0.356
rellsoWithEA< 0.0361 0.175
abs(1/E-1/p) < 0.0278  0.299
expected missing inner hits < 1 2

pass conversion veto yes yes

Figures 29 and 30 show electron kinematics plots for 2016, 2017, and 2018 data taking

periods. A detailed selection criteria are displayed in Table 15.

’EB = Electromagnetic Barrel, EE = Electromagnetic Endcap
°POG = Physics Object Group
"H/E < C, + 1.12/E + 0.0368*rho/E.
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5.2.3 Muons

The baseline for the muon selection is the tight POG ID [92] with a transverse momen-
tum requirement of P > 30 GeV and |n| < 2.4. The relative isolation requirement is not
a part of the cut-based ID for muons, and is implemented separately using Particle Flow
(PF) relative isolation with a cone size of 0.4 with A3 corrections (I°;} ) for PU mitigation.
The muon relative isolation variable is defined as ratio of a sum of transverse energies

(momenta) of all particles in a cone of AR < 0.4

7 YPr (ch. had. from PV) + maz(0, ZEr (neu. had.) + ¥ Ey (pho) — 0.5 * ¥P¢ (ch. had. from PU))
rel —
Pr(n)

(5.1)

where, ch. had. means charged hadrons, neu. had. means neutral hadron, and pho means
photon. All the selected muons must satisfy the relative isolation cut of 0.15. The POG
veto ID requirements with Py > 15 GeV and || < 2.4 are applied. The I,/ cut for loose
muons is relaxed to 0.25 to veto events with an extra muon. This requirement suppresses
the dimuonic tty, Z + v and Z+jets events. A detail selection criteria are provided in
Table 15. A detailed muon ID selection requirements are listed in Table 14 for 2016 data.
The similar tables for 2017 and 2018 can be found at [92].
5.2.4 Photons

Photons must pass the POG MediumID cut for photons [93]. In addition, P+ > 20 GeV
and |n| < 1.4442 are required. The POG veto ID requirement of Fr > 20 GeV and |n| <
1.4442 are applied. The veto ID includes a medium photon ID without requirements on
o;in and charge isolation and have no track seed in the pixel detector. A detailed selection
criteria are listed in Table 17. A detail medium photon ID selection requirements in the

barrel region are listed in Table 16 for 2016, 2017, and 2018 data [91].
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Figure 33: Leading photon Er (top) and 7 (bottom) distribution for signal region in
e + jets for 2016, 2017, and 2018 data.
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Figure 34: Leading photon Er (top) and 7 (bottom) distribution for signal region in
i+ jets for 2016, 2017, and 2018 data.
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Table 14: Muon ID selection criteria

Selection criteria TightID LooselD
Reconstructed Global Muon yes -
PF Muon ID yes yes
Global or Tracker Muon - yes
normalized y* of the global-muon track fit < 10 -
muon-chamber hit included in the global-muon track fit >0 -
Muon segments in at least two muon stations > 1 -
d,, (cm) < 0.2 -
d. (cm) < 0.5 -
number of pixel hits >0 -
Cut on number of tracker layers with hits >5 -

Table 15: Lepton identification requirement based on the cut-based tight IDs for elec-
trons [91] and muons [92].

Observable Lepton Selection
e 0
Nominal ID Veto ID Nominal ID Veto ID
P; (GeV) > 35 > 15 > 30 > 15
In] < 2.4 <24 < 2.4 <24
) eons - - <0.15 <0.25

|dyy| (cm) < 0.05EB (0.1 EC) < 0.05EB (0.1 EC)
d,| (cm)  <O0.1EB(0.2EC) < 0.1EB (0.2EC)
ID cut-based tight ID  cut-based veto ID cut-based tight ID PF

global p

or tracker p
5.2.5 Jets and b-tagging

Several jet multiplicity requirements are used in the analysis. In the signal region,

there must be at least four jets out of which at least one must be b-tagged °. The jets must
have at least two constituents, where at least one must be charged. The electromagnetic

and hadronic energy fractions must both be smaller than 99%, to reduce misidentified jets

from photons and pions respectively.

8'b-tagging" is defined as tagging of b jets arising from the process of hadronization of b quarks
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Table 16: The detail of photon ID requirements

Variables values
H/E < 0.027
T i < 0.01015

p-corr charged hadron isoltion < 0.141

p-corr neutral hadron isolation 1.189 + 0.01512 x pr(y) +2.259 x 107% x pp(y) >
p-corr photon isolation 2.08 4+ 0.004017 x pr(7)
has Pixel seed veto yes

Table 17: Photon identification requirements for the cut-based medium ID [93] .

Observable Photon Selection
Nominal ID Veto ID
P;(GeV)  >20 > 20
| < 1.4442 (barrel) < 1.4442 (barrel)
cut-based medium ID cut-based medium ID
no pixelSeed w/0 requirements on o;,,;, and chg.Iso

no pixelSeed

We use (standard) AK4 PF CHS’ jets that pass the ID requirements listed in Table 18
with Pt > 30 GeV and || < 2.4. The difference between loose ID and tight ID jets are
described in Table 19

Jets identified as b-tagged must pass the same criteria as the other jets and additionally
pass the medium working point cut of the Deep CSV discriminator of greater than 0.6321,
0.4941, and 0.4184 for the years 2016, 2017, and 2018, respectively, as specified by the
BTV POG [94]. Details and DeepCSV thresholds for the other years are summarized in
Table 18. The jet energy scale is corrected using the centrally produced jet energy
corrections (Summer16_07Aug2017_V11, Fall17_17Nov2017_V32, and Autumnl18_V19) and

these corrections are propagated to MET (type-1 corrections).

° AK4 PF CHS = Anti-K; algorithm with cone radius 0.4, particle flow, charged hadrons subtraction
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Figure 35: Leading photon charged hadron isolation (Chlso) distribution in e + jets (top)
and p + jets (bottom) for signal region for 2016, 2017, and 2018 data.

Table 18: Jet identification criteria and selection thresholds.

Observable Nominal ID

P (GeV) > 30

7] <24

ID loose PF ID (2016), tight PF ID (2017/2018)
b-Tag (DeepCSV) | > 0.6321 / 0.4941 / 0.4184 (2016/2017/2018)
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Figure 36: Jet P distributions for tt (top) and tty (bottom) selections in e + jets for 2016,
2017, and 2018 data.
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Figure 37: Jet P distributions for tt (top) and ttvy (bottom) selections in y + jets for 2016,
2017, and 2018 data.
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Figure 38: Leading jet n distributions for tt (top) and tty (bottom) event selections in
e + jets for 2016, 2017, and 2018 data.
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Table 19: Jet loose and tight ID requirements for || < 2.7

Variables Loose Jet tight jet

Neutral hadron fraction < 0.99 < 0.90
Neutral EM fraction < 0.99 < 0.90
Number of constituents > 1 > 1
Charged hadron fraction >0 >0
Charged multiplicity >0 >0
Charged EM fraction < 0.99 < 0.99
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Figure 39: Leading jet n distributions for tt (top) and tty (bottom) event selections in
i+ jets for 2016, 2017, and 2018 data.
5.2.6 Missing Energy

Standard PF missing transverse energy (MET) is used and corrected by type-1 correc-
tions. We used the MET observable to form mrin the QCD estimation procedure in this
analysis. However, there is not a minimum MET requirement for signal event selection.
There exist a large MET variation due to the jet energy uncertainties. For reference, more

plots comparing data and simulation are included in Appendix E.
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5.2.7 Object Disambiguation
The electron, muon, photon, and jet object collections are not necessarily exclusive.
The following cleaning procedure is applied sequentially to the objects satisfying the above

ID criteria.

1. Photons are removed if there is a tight lepton within AR < 0.4. This requirement

removes photons radiated from leptons.

2. Jets are removed if there is a tight lepton within AR < 0.4. This requirement removes

jets that are clustered from prompt leptons.

3. Jets are removed if there is a photon within AR < 0.1. This requirement removes

jets that are clustered from prompt photons.

5.3 Corrections at the Object and Event Level

We apply corrections to several observables in both data and simulation. This is es-
sential to correct for biases in detector response, mismodeling of physical observables in
simulation, and to ensure that the simulation correctly models the key features of the sig-
nal and background processes. In most cases, the background is determined in a data
driven manner, nevertheless the following corrections are applied.
5.3.1 Pileup Reweighting

Monte Carlo events are generated according to an assumed pileup profile and are
reweighted to match the pileup profile in data. The distribution of the true number of
interactions in data is estimated using the instantaneous luminosity per bunch crossing for

each luminosity section and assuming a total pp inelastic cross section of 69.2 mb [95].
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A variation of +4.6% on this cross section is used to estimate the uncertainties due to the
pile-up modeling. The true number of interactions in simulation is taken from each simu-
lated sample and reweighted to the estimated distribution in data separately in each data
taking period. All the experimental corrections for muons, electrons, jets, and b-jets have
been derived applying only the official pileup reweighting, hence they should already take
into account the effect of residual differences in pileup between data and simulation.
5.3.2 L1 EGM Prefiring Correction in 2016 and 2017

The time alignment of the endcap ECAL readout electronics drifted during the data-
taking, reaching a severe condition in 2017 Run F. The L1 trigger system of CMS has
been designed to forbid triggering events in consecutive bunch crossings [89]. The trigger
primitives generated by the ECAL deposits and reconstructed as belonging to the previous
bunch crossings are therefore able to generate an inefficiency in the L1 trigger decision.
It is found that L1 prefiring issues effect events with high-P;jets with 2.4 < || < 3.0.
We don’t use reconstructed objects in that 7 region directly, however additional objects
from the event may be affected by this issue [96]. Prefiring inefficiency is measured using
a special set of triggered events called "un-prefirable” events. This inefficiency has been
measured by the JME POG' as a function of both photon and jet Py in the forward 7 region
of endcap, 2.5 < || < 3.0. The event efficiency factor (¢; = 1 — P) is applied to the MC

simulation and it is accounted using all jets in the event, as

j€Ejets

%Jet and missing energy physics object group
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A detail explanation of the L1 trigger prefiring can be found at [97].
5.3.3 HEM Correction in 2018

In 2018, one end of the hadronic endcap calorimeter (HEM) lost power during the
data-taking period [98]. To correct the HEM effect, we veto events for run numbers after
319077 if there is an electron or photon with P > 15, —3 < n < —1.4, and —1.57 <
¢ < —0.87. This removes spurious EGM objects formed from the ECAL deposit of hadronic
activity in the absence of the corresponding HCAL signal in the affected region. In 2018
simulation, events with an object that satisfy these criteria are weighted by the luminosity
fraction (0.3518) of the affected data taking period.
5.3.4 Object Level Scale Factors

The reconstruction efficiency of the reconstructed objects is not perfectly simulated.

Suitable scale factors are applied to account for the respective differences.

* b-tagging: The simulated efficiencies for the identification of b-quark jets and for the
misidentification of c-quark, light-quark or gluon jets of the DeepCSV tagger are cor-

rected using scale factors provided by the BTV POG and applied using method 1a [94].

* Photon efficiency: Corrections of the simulated efficiencies for photon identification
and pixel seed veto [99] for the medium EGM POG WP are applied to simulated
samples. Specifically, the Fa1118V2 102X 2D ID efficiency map is used for 2018 data,
the 94X 2D map for the year 2017 and the 94X map for the 2016 legacy rereco. The
PixelSeed Veto SF is applied for each year as well: ScalingFactors_80X_Summer16
and PixelSeed_ScaleFactors_2017 (inclusive in R9) [99]. For 2018 the measure-

ment of the PixelSeed Veto scale factors were recreated and are in good agreement
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with the centrally provided scale factors (HasPix_2018).

* Electron efficiency: Corrections of the simulated efficiencies for electron trigger, iden-
tification, and isolation [100] for the tight EGM POG WP are applied to simulated
samples. Again, the Fal118V2 102X 2D efficiency maps for reco and ID are used for
2018 data, the 94X 2D reco and ID maps are used for the year 2017, and the 94X

reco and ID maps are used for the 2016 legacy rereco.

* Photon and energy scale uncertainties: EGM provides residual corrections to scale
the data to the MC and smear the MC to the resolution in data. The systematic un-
certainties for the electron and photon objects are applied as prescribed in Ref. [101].
In contrast to the identification efficiency systematics, the p, () scale uncertainties

have negligible impact on the measured cross section.

* Muon efficiency: The simulated efficiencies for the trigger, identification, and iso-
lation of muons are corrected in simulated samples using the MUO POG efficien-
cies [102-104]. The 2D scale factors are factorized in ID, isolation, and trigger effi-
ciency. An extra uncertainty of 0.5% is added to cover extrapolation effects of muon

ID uncertainties [105].

All scale factors are provided with systematic uncertainties which are taken into ac-

count and propagated to the predicted yields.
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CHAPTER 6 ANALYSIS STRATEGY

The measurement is performed in e + jets and u + jets channels, requiring one isolated
lepton (electron or muon), at least four jets out of which at least one must be b-tagged
and the presence of an isolated hard photon with P+ > 20 GeV in the final state, the se-
lection for the inclusive tty event candidates. However, the signal region is contaminated
with irreducible backgrounds such as semi-leptonically decaying tt events with an iso-
lated photons or a nonprompt photons. For instance, the isolated photon may arise from
a misidentified electron or from any other processes (or fake process) that is not from
tt vertex (such as misidentified photon, a Bremsstrahlung photon or photon from hadronic
activity). Other backgrounds arise from the production of a leptonically decaying W/Z +
~ with jets in the final state. Figure 40 shows how the major backgrounds are constrained
during the extraction of the tt cross section value. The final state selection includes top
and non-top events with genuine and nonprompt photons. To differentiate top vs non top
events, the M, observable is used. The M; observable is the invariant mass of 3 jets (out of
which at least one must be b-tagged) with the highest summed P;. Shape of distribution
of the M, observable for top events has a peak at the top mass (172.5 GeV). Conversely,
non-top events have a flatter distribution throughout as shown in Figure 40 [left box].
To differentiate events with a genuine from a non prompt*' photon, the photon charged
hadron isolation (ChlIso) variable is used. Chlsois difference between photon P;and the
sum of the transverse momenta of all the charged hadrons that lies within a cone of radius

AR < 0.4 about the photon. The events with genuine'? photon have a negative exponen-

"¥or this analysis, nonprompt represents photons from hadronic activities, fake photons, or photons from
PU events.

2For this analysis, genuine represents the prompt isolated photon and misidentified electrons.
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tial shape as shown in the left plot in bottom box in Figure 40. On the other hand, events
with hadronic or fake photons have a wider shape with little dip and then slight bump as

shown in the right plot in the bottom box in Figure 40.

: Top and Non-top

i samples canbe :

i distinguished with ; 4
M3 variable |

2
S| Wr. || Other
S, 8 zr || Bk

AL g' tty tt

Genuine and fake y
i can be distinguished \/\
i with Ch. Iso variable >

Figure 40: Analysis strategy for the separation of tty from backgrounds.

Before explaining the fit procedures, it is worth while to explore the basic properties of
photon p;(7) to understand the major backgrounds. In Figure 41 we show the p;(v) spec-
trum in terms of simulated samples (left) and in photon categories (right). The genuine-~y
contribution in Figure 41 (right) is larger than the signal contribution (tty in Figure 41
(left)), because a contribution from tt , tW~ and tv is included in the latter.

First, we normalize the Z + jets cross section by fitting a data in dilepton selection re-
gion satisfying all tt selection criteria. The detail explanation is found in subsection 6.5.1.
Although QCD is a minor background in our final signal region, it has significant effects

while we extract Z/W+~, misidentified electrons and Z + jets . A QCD data driven tem-
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Figure 41: Photon Py distribution for e + jets channel in the signal region, N; > 4, N, > 1,
for 2016 data categorized in terms of simulated samples (left) and in photon cate-
gories(right).

plate is extracted from side band region of high relative isolation distribution of M with
0-btag control region. The detail explanation is found in subsection 6.4. Hadronic and
misidentified photons are called nonprompt photons and they are one of the major back-
grounds. Data driven estimation is done using the side band region of the data distribution

of the o;,,,

variable. It is explained in detail in the later section 6.6. Electrons misidentified
as photons, and scale factors for W+~ and 7+~ are estimated together using the invariant
mass distribution of lepton (electron or muon) plus photon, explained in detail in Section

6.5. The estimation of background components and how they are used in the signal region

is sketched in Figure 42.

6.1 Signal and Control Regions

Once the PF algorithm identifies the physics objects (e, u, 7, jets), we impose additional
criteria to make sure that the objects are reconstructed correctly. If strict identification
criteria are applied then the selection efficiency of an object decreases accordingly. Thus,

tighter selection criteria are used if we have sufficient statistics or when we need high
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Figure 42: A sketch for estimation of major backgrounds and application in the signal
region.

purity objects. As the tt production cross section is high, we require tight lepton and
jets, and b-tagged jet identification for event selection. But the production of a photon in
association with tt is low, so we require medium ID photon selection. In the signal region,
events are selected with one high Py, well isolated lepton with at least 4 jets out of which
at least one is b-tagged, and a high P; photon.
6.1.1 Reconstruction Level Event Selection

Events that pass the trigger selection are further required to pass the MET filters as
recommended by the JETMET POG [88]. A single lepton (electron or muon) satisfying
the identification criteria in Secs. 5.2.3 5.2.2 is required. If there is an additional lepton
in an event other than tight lepton, the event is discarded. The requirements of tight and
veto lepton are shown in Table 15. A single photon satisfying the criteria of Sec. 5.2.4

is required. A requirement on the number of jets of N, > 4 among which at least one
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must be b-tagged, NV, s > 1, defines the baseline selection as summarized in Table 20.

The other control regions are defined with respect to the baseline selection and can have

looser requirements on jet and b-tag multiplicities as shown in Fig. 43. Other requirements

and the roles of these control regions are defined in the following sections.

1b Jet 22 b Jets

0bJet

2 Jets

=0Y =]'Y

22 b Jets

V+y
ttbar
Ztjets

1blJet

V+y
Z+jets
QCD(data driven)

0bJet

CR2

3 Jets 24 Jet 2 Jets 3 Jets 24 Jet

Figure 43: Definition of control and signal regions for 0~ (left) and 1 (right) with different
jets and b jets requirements.

Table 20: Summary of the baseline selection.

Trigger selection
PV

MET filters

Table 12
leading PV satisfies requirements in Sec. 5.2.1

Flag HBHENoiseFilter

Flag HBHENoiselsoFilter

Flag goodVertices

Flag globalTightHalo2016Filter

Flag EcalDeadCellTriggerPrimitiveFilter

Flag BadPFMuonFilter
ecalBadCalibReducedMINIAODFilter (2017 and 2018)

(the selected lepton also passes the veto electron selection)

vV
e

(the selected photon also passes the veto photon selection)
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6.2 Fit Strategy

The ttvy cross section measurement requires estimation of tty events with a well iso-
lated photon mainly from tt events with nonprompt photon, tt events with isolated pho-
ton, W + ~vand Z + ~ with isolated photon, and Single top, W + jets , and Z + jets '3
with isolated photon. The ttv cross section extraction is outlined in Figure ??. The signal
region is dominated by the tty but there are significant backgrounds from tt (with both
isolated and nonprompt photons), W + v, and a collection of other processes. The es-
timation of the nonprompt photon contribution comes from the Chlso distribution. The
M, distribution in the zero photon control region is used to confirm the tt contribution,
and the lepton+photon invariant mass of the zero b-tag control region is used to estimate
a number of backgrounds including W + v and Z + ~. Any sample that has misidentified
electrons is scaled with the misID SF '*. The QCD data driven template were estimated
and were used in the signal and control regions. The Chlso distribution is split into iso-
lated and nonprompt templates to have a better handle on nonprompt tt in the signal
region. The zero photon M distribution is introduced to estimate the tt normalization in
the Chlso control region and signal region. Furthermore, the zero b-tagged control region
is used to have a better handle on W + ~ and Z + « normalization in all the control and
signal regions. Finally, a simultaneous binned maximum likelihood fit of the signal region

and three control regions is done to extract the parameter of interest. A detailed discussion

of the fit method can be found in Section 6.7.

3They are combined into a single template called other 1+ isolated
“misID SF = misidentified electron SF
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Figure 44: Analysis strategy and fit method sketch for extraction of signal.

6.3 Photon Categories and Background Overview

6.3.1 Photon Categories

The tty cross section measurement requires differentiation of tty events with a well
isolated photon from tt events with a nonprompt photon. The events in simulation are cat-
egorized based on the origin of the reconstructed photon. The categorization is performed
by matching the reconstructed photon with generator level particles. The reconstructed
photon is matched to a generator particle with stable status, if the Pris within 50% of
the reconstructed photon and if the angular separation, AR, is within value of 0.3. The

minimum value of AR is taken to match the reconstructed photon with the generator par-
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ticle. If the generator matching fails to match the reconstructed photon, additional checks
are performed to categorize the photon. In case of the decay of a neutral pion into two
photons with similar Py, the matching algorithm fails if both generated photons are recon-
structed as one with higher P; then the sum of both. Then, neither of the P values of the
generated photon is within 50% of the reconstructed photon. The reconstructed photon
is categorized as a hadronic photon, if a generator pion and a generator photon without a
requirement on stable status are found within a cone of AR < 0.3. If no generator particle
without status requirement is found within a cone of AR < 0.3, the reconstructed photon
is categorized as a pileup photon. Based on the nature of the matched generator particle,

four categories are established:

1. Genuine photon:

* the reconstructed photon is matched to a generator photon, and

* the generator photon originates from a lepton, a boson or a quark

2. Misidentified electron:

* the reconstructed photon is matched to a generator electron

3. Hadronic photon:

* the reconstructed photon is matched to a generator photon, and the generator

photon originates from a hadronic source, or

* the reconstructed photon is not matched to a generator particle, and a genera-
tor neutral pion and a generator photon without status requirement are found

within AR < 0.3
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4. Misidentified or pile-up photon:

* a photon from PU event when there is no generator particle without status re-

quirement is found within AR < 0.3

The term "non-prompt photons” is short for hadronic photons, and misidentified or
pile-up photons, whereas the term "isolated photons” stands for genuine and misidentified
electrons. The terms are introduced, because respective contributions are estimated to-
gether for each. Figure 45 shows the distribution of simulated events by photon category
such as genuine, misidentified electron, hadronic, and hadronic pile-up photon for both
e + jets channel and y + jets channel for Monte-Carlo simulation for 2016, 2017 and 2018.

Tables 21 to 26, shows the event yields for each samples classified by photon categories
in the signal region (N; > 4, N, > 1) with the percentage values for both e + jets (left)

and u + jets (right) final states for 2016 (top), 2017 (middle) and 2017 (bottom) dataset.
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Figure 45: The distribution of genuine, misidentified electron, hadronic, and pile-up pho-
tons in the signal region (IV; > 4,N, > 1 ) classified by samples in e + jets (left) and
i+ jets (right) for 2016 (top), 2017 (middle), and 2017 (bottom).



92

Table 21: Number of events in the e + jets final state in each of the 2016 MC simulated
processes in the signal region(N; > 4, N, > 1), classified into the four event categories
based on the origin of the photon. The last row and column show the percent of events in
simulation coming from each event category and process, respectively. Uncertainties are
derived from the MC statistics.

Sample GenuinePhoton MisIDEle Hadronic Pile-up Total Percent
TTGamma | 1982.5 £ 7.7 5.8+ 0.2 0.8+ 0.4 42+£03 1998.3 £ 7.7 | 60.55 £ 1.08
TTbar 25.7+£1.1 263.8+24 311.8+5.6 1284 +3.7 | 7297+ 7.2 22.114+0.44
SingleTop | 154.8 + 8.7 9.1£1.0 13.9+£18 7.7+1.3 185.5+£9.0 5.62 +0.29
Wlets 0.0£0.0 0.0£0.0 14.5+ 3.4 10.8+4.4 | 25.3+5.6 0.77£0.17
ZJets 1.7£1.7 109.0 £ 84 44426 5.0£29 1206 £ 9.4 3.65 + 0.29
WGamma | 138.6 +20.9 0.0£0.0 0.0£0.0 0.0£0.0 138.6 =209 | 4.20£0.64
ZGamma | 39.6+4.1 14405 0.0+£0.0 1.2£0.6 422+4.1 1.28 £0.13
Diboson 99+1.1 5.3+ 0.6 0.7+£0.3 0.9+04 16.8+1.4 0.51 £0.04
TTV 13.2+£0.8 5.3£0.2 1.94+0.3 0.5£5.3 209+£54 0.63 £ 0.16
QCD_DD 0.0£0.0 0.0£0.0 22.24+5.3 0.0£0.0 222453 0.67£0.16
MC 2366.1 +£24.4 399.6 £8.8 3750.2+7.3 159.246.6 | 3300.1 + 28.7

Percent 71.70 £0.97 1211 £0.29 11.37£0.24 4.82+0.20 | 100.00 100.00
Data 2910.2

Table 22: Number of events in the . + jets final state in each of the 2016 MC simulated
processes in the signal region(N; > 4, N, > 1), classified into the four event categories
based on the origin of the photon. The last row and column show the percent of events in
simulation coming from each event category and process, respectively. Uncertainties are
derived from the MC statistics.

Sample GenuinePhoton MisIDEle  Hadronic Pile-up Total Percent
TTGamma | 3147.1 £9.8 6.3 +£0.2 9.24+0.5 5.7£04 3168.2£9.8 | 62.29 £ 0.89
TTbar 414+14 4079+ 3.0 5103+73 21414+£49|1173.6+£94 | 23.07£0.37
SingleTop | 264.3 +11.1 125+1.2 20.0£22 133+1.7 |310.2+11.5 | 6.10+0.24
Wlets 0.0+0.0 0.0£0.0 17.5+£3.8 2494+5.0 |424+6.3 0.83 £0.12
ZJets 7.1+£34 40+£18 9.2+£38 6.1+£3.2 26.3£6.3 0.52£0.12
WGamma | 218.0 £ 26.3 0.0£0.0 3.6£3.6 0.0£0.0 221.6 +£26.5 | 4.36 +0.53
ZGamma 56.2 £5.1 0.0£0.0 0.3+0.3 0.4+£0.3 56.9 £5.1 1.124+0.10
Diboson 16.7 £ 1.7 0.3+£0.2 1.7+£04 0.4+£0.2 19.1+£18 0.37£0.04
TTV 20.7+£1.0 5.0£0.3 3.6£04 1.0+8.8 30.3£8.9 0.60 £0.18
QCD DD |0.0+0.0 0.0£0.0 37.8 £ 8.8 0.0£0.0 37.8 £ 8.8 0.74 +£0.17
MC 3771.5 4+ 30.9 436.0 £ 3.7 613.14+10.0 265.947.9 | 5086.4 & 35.9

Percent 74.15 4+ 0.80 8.57+0.09 12.05£0.21 5.23+0.16 | 100.00 100.00
Data 4506.2

6.3.2 Overview of Background Components

Figure 46 shows the Fr; distribution of photons classified by the simulated samples

(left) and by the photon categories(right). The genuine photon contribution in Figure 46

(right) is larger than the photon contribution by signal sample tty in 46 (left). There are
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Table 23: Number of events in the e + jets final state in each of the 2017 MC simulated
processes in the signal region(N; > 4, N, > 1), classified into the four event categories
based on the origin of the photon. The last row and column show the percent of events in
simulation coming from each event category and process, respectively. Uncertainties are
derived from the MC statistics.

Sample GenuinePhoton MisIDEle Hadronic Pile-up Total Percent
TTGamma | 2175.7 £8.1 6.8+ 0.2 6.9+ 0.5 4.7+04 2194.1+8.1 | 58.26 £0.97
TTbar 34.5+1.3 3422428 3779+64 1674+45|921.9+84 24.48 £ 0.46
SingleTop | 154.2 + 8.6 10.6 £0.9 13.7+1.5 111+£1.2 | 189.6 £8.9 5.03 +£0.25
Wlets 0.0£0.0 0.0£0.0 13.4+6.8 8.1+4.4 21.5+8.1 0.57£0.22
ZJets 0.0£0.0 1625+ 142 4.6+£34 1.7£1.7 1689+ 14.7 | 448 £0.40
WGamma | 145.9 + 25.6 0.0£0.0 3.6 3.6 0.0£0.0 149.54+25.8 | 3.97 £0.69
ZGamma |31.9+4.1 1.0£0.3 0.0+0.0 0.7+0.5 33.6 4.1 0.89£0.11
Diboson 141+14 49+£0.3 1.0£04 0.6+0.2 20.7£1.5 0.55 £0.04
TTV 176 +£0.6 7.51+0.2 28+£0.2 0.8£5.1 288 +5.2 0.76 £0.14
QCD_DD 0.0£0.0 0.0£0.0 37.3£5.1 0.0£0.0 37.3£5.1 0.99 +0.14
MC 2573.8 £28.6 535.6 £14.5 461.2+10.7 195.246.6 | 3765.8 £ 35.2

Percent 68.35 £ 0.99 14.22 £ 041 12.25+£0.31 5.18 +£0.18 | 100.00 100.00
Data

Table 24: Number of events in the u + jets final state in each of the 2017 MC simulated
processes in the signal region(N; > 4, N, > 1), classified into the four event categories
based on the origin of the photon. The last row and column show the percent of events in
simulation coming from each event category and process, respectively. Uncertainties are
derived from the MC statistics.

Sample GenuinePhoton MisIDEle = Hadronic Pile-up Total Percent
TTGamma | 3364.2 £ 10.5 81+0.3 9.0+0.5 6.5£0.5 3387.8 £10.5 | 61.69 £ 0.85
TTbar 54.0+ 1.7 51044+3.6 571.3+£8.2 260.3+5.8 | 1396.0+ 10.8 | 25.42 £ 0.40
SingleTop | 253.2 4+ 11.1 15.7+1.1 204+1.9 1794+ 1.7 | 307.1+11.5 | 5.59+0.22
Wlets 0.0+£0.0 0.0£0.0 6.94+4.0 6.7+ 3.6 13.54+54 0.25+£0.10
ZJets 92+5.3 0.0+£0.0 125 +£6.2 8.7+4.5 30.4+9.3 0.55+0.17
WGamma | 168.3 4+ 28.5 0.0£+0.0 0.04+0.0 0.04+0.0 168.3 £28.5 | 3.06 £0.52
ZGamma | 68.2+5.6 0.0£0.0 0.34+0.3 0.0£0.0 68.5 £ 5.6 1.254+0.10
Diboson 19.14+1.7 0.5+0.1 1.44+0.5 09+0.3 21.8+1.8 0.40 4+ 0.03
TTV 26.8 + 0.8 5.6 +£0.2 44403 1.0£12.0 | 37.8+12.1 0.69 + 0.22
QCD_DD 0.0+£0.0 0.0£0.0 60.6 £12.0 0.0+£0.0 60.6 £12.0 1.10+£0.22
MC 3962.9 £+ 33.3 540.4 4+ 3.8 686.8+11.2 302.048.4 | 5492.1 £+ 40.1

Percent 72.16 + 0.80 9.84 +£0.10 12.51+£0.22 5.50+£0.16 | 100.00 100.00
Data
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Table 25: Number of events in the e + jets final state in each of the 2018 MC simulated
processes in the signal region(N; > 4, N, > 1), classified into the four event categories
based on the origin of the photon. The last row and column show the percent of events in
simulation coming from each event category and process, respectively. Uncertainties are
derived from the MC statistics.

Sample GenuinePhoton MisIDEle Hadronic Pile-up Total Percent
TTGamma | 3412.3 £ 12.8 103+ 0.5 9.7+0.7 6.84+0.5 3439.1 £12.8 | 58.73 + 0.80
TTbar 589+ 2.3 466.2 £5.0 541.44+10.0 223.84+6.5 | 1290.3 +13.2 | 22.04 +0.37
SingleTop | 253.4 +13.1 13.54+14 18. 74+ 2.1 1224+ 1.7 297.8+13.5 | 5.094+0.24
Wlets 0.0+0.0 0.0+£0.0 224+148 33.6£123 | 56.0+19.3 0.96 £0.33
ZJets 4.1+4.1 297.1+£31.0 6.2+6.2 14.0 £ 8.1 321.4+£32.9 | 549+0.57
WGamma | 219.9 +45.8 0.0+0.0 0.0+0.0 0.0+0.0 219.9£458 | 3.76 +0.78
ZGamma | 73.3+38.7 09406 0.0£0.0 1.1+£1.1 75.3 £ 8.8 1.294+0.15
Diboson 21.0+1.6 7.8+ 0.5 1.1+0.3 1.1+04 31.1£18 0.53 £0.03
TTV 280+ 1.5 11.84+0.5 3.24+0.5 0.8 +10.6 43.8 £10.8 0.75£0.18
QCD DD | 0.04+0.0 0.0+0.0 80.7+10.6 0.0+£0.0 80.7 +10.6 1.38 £ 0.18
MC 4070.9 £50.4 807.6 £31.5 683.4+19.1 293.5+ 16.3 | 5855.4 + 66.2

Percent 69.52 £ 1.17 13.79£0.56 11.67£0.35 5.01 £0.28 | 100.00 100.00
Data

Table 26: Number of events in the u + jets final state in each of the 2018 MC simulated
processes in the signal region(N; > 4, N, > 1), classified into the four event categories
based on the origin of the photon. The last row and column show the percent of events in
simulation coming from each event category and process, respectively. Uncertainties are
derived from the MC statistics.

Sample GenuinePhoton MisIDEle  Hadronic Pile-up Total Percent
TTGamma | 5168.5 £+ 16.0 11.24+05 14.94£0.9 7.9+ 0.6 5202.5£16.1 | 61.40 £0.69
TTbar 80.3 £ 2.6 725.0+6.5 839.7+129 351.7+£83 | 1996.6+ 16.9 | 23.57 £0.32
SingleTop | 376.8 + 16.8 162416 30.3+2.9 20.3 £2.1 443.7+17.3 | 5.24 £0.21
Wlets 0.0+£0.0 0.0+£0.0 209 +£10.5 13.0£7.5 33.9+£129 0.40 +£0.15
ZJets 25,6 £11.0 6.24+4.1 37.1£28.6 0.04+0.0 68.9 £+ 30.9 0.81 £0.36
WGamma | 376.7 +61.5 0.0+£0.0 0.0+£0.0 0.0£+0.0 376.7+61.5 | 4.45+£0.73
ZGamma 113.0 £ 11.1 0.0+£0.0 0.0+£0.0 —0.14+0.1 1129+ 11.1 | 1.33£0.13
Diboson 302+1.9 0.64+0.3 2.3+0.6 1.1+0.3 34.1£2.1 0.40 £0.02
TTV 43.1+£19 6.94+0.5 6.84+0.7 1.3£19.9 58.1 £20.0 0.69 £0.24
QCD_DD 0.0+£0.0 0.0+£0.0 145.1£199 0.0+0.0 145.1£19.9 | 1.71+£0.24
MC 6214.2 £ 67.7 766.0+ 7.9 1097.24+33.2 3953+ 11.4 | 8472.7 +81.7

Percent 73.34 £ 1.07 9.04 £0.13 12.95+0.41 4.67+£0.14 | 100.00 100.00
Data




95

genuine photons contribution from other processes such as tt, tW~ and t~ in photon cate-
gory plots. All background processes are scaled by theirs respective scale factors obtained
from the maximum likelihood fittings. The overview of the background contributions in
the signal region N; > 4, N, > 1 for both e+ jetsand p + jets channels in 2016, 2017,
and 2018 data are tabulated in Table from 21 to 26. This analysis does binned template
fits using the Higgs Combine Tool [106] to get normalization factors for the background

processes as well as the signal strength.
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Figure 46: Photon FEr distribution for e + jets (left) and u + jets (right) channels in the
signal region N; > 4, N, > 1 for 2016 dataset classified in simulated samples(left) and in
photon category (right).
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6.4 Data Driven Estimation of QCD background

QCD is a minor background in our final signal region but it has significant effects while
we extract Z+jets, Z/W+~, and electrons misidentified as photon, because for those es-
timates are made in separate control regions with a lower number of jets. For the QCD
multijet background we use a data driven estimation. First we select a QCD enriched
region by relaxing the b-tag requirements. In the electron channel we invert the electron
relative isolation cut in the 0 b-tag control region. In the muon channel we look at a control
region with 0 b-jets and the muon relative isolation reversed to Rellso > 0.15. We subtract
all non QCD Monte Carlo from data as seen in Figure 47. But to use this QCD data driven
template in our signal region we need to scale it properly. A fitting method is used to get
the scale factor, called the QCD transfer factor, where data and all other MC histograms
are from the tight lepton isolation region except QCD as seen in Figure 47. We do fitting
in two selections : (1) Ny, = 2, N, = 0,N,_j; = 0 and (2) N, = 2, N, = 0, Np_jor > 1,
where QCD statics are higher and expected to give a better fit result. The QCD transfer
factor applied to higher N,., and N, selections with an N,., dependence correction factor.
This correction factor is taken from simulation and accounts for a linear N;,, dependence
fo the transfer factor for N, ;. > 1, although for N,_,., = 0 this correction factor is 1.

Table 27: Binning choices for estimation of the QCD template

pr(l) bins 0 45 65 80 100 120 oo
n(l)bins 0 1.479 1.7 21 24

(Sdata)vin = (H1)pin X (SQCD>bin + o X (Swtgets )pin + ( Z Sbkg)bz’n (6.1)

all bkg
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where, bin € [1, 24],5,,.,) is the data distribution from sideband region. For fitting we
use the Mj" distribution, split in 24 bins on the basis of different p; and 7 of leptons as
listed in Table 27. All bins are fitted simultaneously. QCD and W+Jets normalization are
allowed to float. As a result we get 24 different QCD transfer factors along with one global

W+Jets scale factor in each e + jets and p + jets channels.
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Figure 47: left: QCD (Data -all MC) in QCD CR for e + jets channel. right: All histograms
to be fitted in the signal region for e + jets channel

6.5 Estimation of Backgrounds from Misidentified Electron, W + ~,

and Z + ~ Processes

6.5.1 Estimation of Z + jets Scale Factors

Dilepton events that satisfy the tt selection criteria are selected with two same flavor
leptons and opposite charges that pass all the lepton selection requirements as explained
in the Section 5.2. The correct estimation of Z+jets is important for the misidentified
electron scale factors. The templates with the dilepton invariant mass is created for the

binned shape analysis in both ee + jetsand uu + jets +jets channels for 2016, 2017, and
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Figure 48: post fit plot in N; = 2, N, = 0 with with O photon . left e + jets channel for
2016 (top), 2017 (middle), and 2018 (bottom). right u + jets channel for 2016 (top),
2017 (middle), and 2018 (bottom)
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2018 simulation era. The templates have the Z + jets sample as the signal process and all
the other samples merged as the background processes as shown in the left plots in Figure
50. The dilepton invariant mass prefit plots are shown in Figure 51 on the left for both
ee + jets (top) and pu + jets (bottom). A simultaneous maximum likelihood fit to data is
performed on the binned shaped distributions in ee 4 jets and pu + jets final state to extract
the Z + jets scale factors. Backgrounds are fixed while the signal is allowed to float freely
during the fit. The average Z + jets scale factor is obtained from a control region with
N; > 2, N, = 0 and the other control regions are used to validate the obtained scale factor
as listed in Table 28.

We find a scale factor of 1.09 £ 0.027(syst) £ 0.002(stat), 1.13 +0.027(syst) 4 0.002(stat),
and 1.37+0.027(syst) £0.002(stat) in simultaneous fitting of ee +jets and ..+ jets for 2016,
2017, and 2018 data respectively, as shown in Table 28. The systematic and statistical
uncertainties of the post fit is less than 2.7% and 0.2%, respectively. Figure 52 is a graphical
representation of Table 28. A comparison of both e + jets and u + jets channels and 2016,
2017, and 2018 dataset for control regions N, = 2, N, = 0, N; > 2,N, = 0 and N, =
2,N, =0, N; > 4,N, = 0 is displayed in Appendix B. The mismodelling of the Z + jets
process for higher jet multiplicity are studied and scaled by the average scale factor in later
steps of the analysis.

We used the HiggsCombineTools to measure the best-fit signal strength and and its un-
certainties, broken down into systematics and statistical components. The explicit scan of
the profile maximum log-likelihood of the parameter of interest is used as it shows any

unexpected features in the shape of the likelihood curve. Figure ?? shows the scan of
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Z + jets scale factor for Asimov'® dataset and observed dataset for a control region with
N; >2,N, =0 for 2016 (top), 2017 (middle) and 2017 (bottom) era respectively. The
classification of systematics and statistical uncertainties are also shown. The intersection
points on the horizontal lines at 1 and 4 with the curve represent the +10 and +20 confi-
dence interval around the best-fit value respectively.

To study the effects of systematics and statistical uncertainties on the signal strength
measurement, we generate the "impact" plot. It shows the shift in the signal strength with
respect to the best-fit value that is induced if a nuisance parameter is shifted by its +1o
post-fit uncertainty values. The correlation coefficients between the signal strength and the
nuisance parameters are calculated in the plot. The impact plots shows the postfit pulls and
constraints on nuisance parameters for Z + jets scale factor fit to Asimov dataset (left) and
observed dataset (right) for 2016 (top), 2017 (middle) and 2017 (bottom) respectively in

Figure 53.

Table 28: The extraction of Z + jets scale factors for several control regions with different
number of jets and btagged jets multiplicity by simultaneous fitting of ee + jetsand up +
jets for year 2016, 2017 and 2018 dataset. The average scale factors for different years of
dataset are given in the first row in a control region with N; > 2, N, = 0.

Control Regions 7 + jets SF 2016 7 + jets SF 2017 Z + jets SF 2018

N;>2,N,=0 1.0990:03 1.167001 1.147053
N;=2,N, = 1.1015:53 1171354 1.147553
N;=3,N,=0 1124003 1.15+:9% 1.1249:93
N;>4,N,=0  1.005003 1114998 1.09+9:93
N;=2N,=1 114500 1.2350:02 1.2210-09
N; =3,N, = 1115562 1.3355:07 1.3250:0¢
N;=2,N,=2 11980 1.1650:08 1.1970-03
N, =3,N,>2 122800 1.24%018 1.247015

15 Asimov data is defined as a number of toy data exactly equal to the number of expected events.
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Figure 50: The prefit and postfit templates in a control region with N, = 2, N, = 0,
N; > 2, N, = 0 in ee + jets channel(left) and pu + jets channel(right) for 2016 dataset.
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Figure 51: The prefit(left) and postfit(right) plots of an invariant mass distribution of
dilepton samples in a control region with N, = 2, N, = 0, N; > 2, N, = 0 in the diejets
channel(top) and the pu + jets channel(bottom) for 2016 dataset.
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Figure 53: The impact plot shows postfit pulls and constraints on nuisance parameters for
the Z + jets scale factor fit to Asimov data (left) and data (right) for 2016 (top), 2017
(middle), and 2017 (bottom), respectively.
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6.5.2 Estimation of Misidentified Electron, Z + v, and W + ~ Scale Factors

When an electron loses its track information, it can be identified as a photon. It may
be well isolated and have the same shape as a genuine photon in the charged hadron iso-
lation distribution. This background is measured in a control region with with 1 photon,
N; > 2,N, = 0 with a |m(e,y) — mz| < 10 where, one of the electrons is misidentified
as a photon, as the invariant mass m(e, ) makes a Z boson mass peak in e + jets channel.
However, other processes will have a wider distribution and effect the misidentified elec-
tron scale factor (misIDE SF) estimation as shown in Figure 54(left). Such other processes
are W + v and Z + v which contribute a well isolated electron and a prompt photon to
the |m(e,~)| peak. Figure 63(left) shows the sizable contributions from those processes
under the Z boson mass peak. Hence it is necessary to estimate them before we extract the
misIDE SF. The Z + ~ contribution tends to populate the lower band of the Z mass peak
which helps to de-correlate the Z + v scale factor from W +~ scale factor. So, the invariant
mass of the photon and the electron is required to lie in a mass range of 0-180 GeV to
enable the background components to be extracted in the fit. In the e + jets channel, there
is a contribution from QCD in the Z mass region. The use of the m(u,~) control region
from the p + jets channel helps in to separate the QCD multijet prediction from W + ~
and Z + v scale factors as it does not contain both the misidentified electron and the QCD
contribution. We separate the W + ~ from the Z + ~ region in the u + jets channel at the

Z. mass.
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Figure 54: Sketch of the Z + v, W + v, and misidentified electrons control region in terms
of m(¢,~) the e + jets (left) and u + jets (right) channels.
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Figure 55: The misIDEle template consist of the shape of the distributions in the misiden-
tified electron category. The Z + v, W + ~, and other templates consist of the shape of the
events in genuine, hadronic and pile-up photon categories.

The fit templates consist of all the events in the misidentified electron category whereas
Z + v, W + v, and other samples in genuine, hadronic and pile-up photons categories,
considered as a non-misidentified electron category, as shown in Figure 55. The template
distributions of m(¥, v) before the fit are shown in Figure 62 (left) for e + jets and u + jets .
We used the QCD data driven template as described in Section 6.4 and photons from
the QCD template are categorized as hadronic photons to create the misidentification fit
templates. The Z + jets scale factors are applied to all Z + jets events in the template
before the extraction of misidentified electron scale factor (misIDSF), W + ~ scale factor
(WGSF), and Z + scale factor (ZGSF). We used the HiggsCombineTools [107] to measure

the best-fit misidentified electron, Z + -, and W + ~ scale factors and their uncertainties
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for control region with 1 photon and N; > 2,N, =0, N; =2,N, =0, N, =3,N, =0,
and N; > 4,N, = 0 . Details about the HiggsCombineTool can be found in Appendix
A. The fit results to these regions in 2016, 2017, 2018 are shown in Table 29 where the
parameter of interest (POIs) are misidentified electron SF, Z + ~ SF, and W + ~ SF. Figure
56 merely shows the graphical display of the Table 29 data. The signal region requires
the presence of a b-tagged jet. The b-tagging SF uncertainties cover the component of
these processes that enter the SR with a b-tag requirement via a light jet that is mis-
identified as a b-tagged jet. The template prefit and postfit plots are shown in Figure 62
for with 1 photon, N; > 2, N, = 0 in e + jets and y + jets channels for 2016 dataset. The
corresponding profile maximum likelihood scan and impact plots are shown in Figure 57
to 60 respectively for the control region with with 1 photon, N; > 2, N, = 0 for 2016, 2017
and 2018. The full detail plots for each year and each channel can be found in Appendix

B.

Table 29: MisIDEle, Z + v and W + ~ SF for different control regions for 2016, 2017 and
2018

Control Regions MisIDEIeSF 7 +~ SF W + ~ SF

N;>2,N,=0 224705% 0.82701%  1.157018
N;=2,N,=0 221708 0.78%7518 1187018
N;=3,N,=0 2424031 0.80+937  1.19+027
N, >4,N, =0 2424037 L1730 1255037
N;>2,N, = 2.317°9% 0.877025  1.1970%
N;=2,N, = 2.3519:39 0.83193%  1.17X3%
N; =3,N, = 2.28+5-2 1.03403  1.24%52
N;>4,N,=0 2494941 0.94+58L  1.561031
N;>2,N,=0 1.6350%9 0.84700%  1.08%0%%
N;=2,N,=0 1.66701 0.8175049  1.08738%
N;=3,N,=0 1.647013 0.95704% 1115013
N, >4,N,=0 1.68%)3} 0.61+5-2¢  1.324024
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Figure 56: The misidentified electron, W+, and Z 4 scale factors comparison for several
control regions accross the 2016, 2017, and 2018 dataset from the simultaneous fitting of
e + jets and p + jets channels.

6.6 data driven Estimation of Non Prompt Photons

In the signal region, the M5 distribution has contributions from isolated and nonprompt
photons. We use a Chlso distribution separated by isolated and nonprompt photon cate-
gories to have a better handle on them. We rely on MC simulation for the isolated pho-
tons templates. However, a data driven method is used to extract the templates for the
nonprompt photons to avoid any mismodeling in simulation and also to mitigate sys-
tematic uncertainties. The nonprompt photons dominate the side band region of the

;i distribution, and hence the sideband is used to produce templates from the data dis-
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Figure 57: The profiled maximum log-likelihood scan of misidentified electron estimator
for Asimov dataset (left) and observed dataset (right) for the control region with 1 photon,
N; > 2, N, = 0 for 2016 (top), 2017 (middle) and 2017 (bottom).
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Figure 58: The impact plot that shows postfit pulls and constraints on nuisance parameters
for misidentified electron scale factors fit to Asimov dataset (left) and observed dataset
(right) for 2016 (top), 2017 (middle) and 2017 (bottom) respectively in the control region
with 1 photon, N; > 2, N, = 0.
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Figure 59: The impact plot that shows postfit pulls and constraints on nuisance parame-
ters for parameter of interest 1 + ~ SF fit to Asimov dataset (left) and observed dataset
(right) for 2016 (top), 2017 (middle) and 2017 (bottom) respectively in the control region
with 1 photon, N; > 2, N, = 0.
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Figure 60: The impact plot that shows postfit pulls and constraints on nuisance parame-
ters for parameter of interest Z + ~ SF fit to Asimov dataset (left) and observed dataset
(right) for 2016 (top), 2017 (middle) and 2017 (bottom) respectively in the control region
with 1 photon, N; > 2, N, = 0.
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Figure 61: The bias test for misidentified electron scale factor(top), W + ~ SF(middle)
and Z + ~y(bottom) SF with 500 toy data for 2016(left), 2017 (middle) and 2018(right)
respectively in the control region with 1 photon, N; > 2, N, = 0.
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Figure 62: The prefit (left) and postfit (right) templates in a control region with
with 1 photon, N; > 2, N, = 0 in the e + jets channel (a,b,e,f,i,j) and the p + jets channel
(c,d,g,h,k,D.
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Figure 63: The prefit and postfit plots in a control region with with 1 photon, N; > 2, N, =
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tribution and normalized to the different nonprompt processes in the simulation.

The Chlso variable in the sideband region of the ¢,,,, is dominated by nonprompt pho-

min
tons as shown in Figures 64, 65, and 66. We take the shape of the nonprompt photon

templates from the data in the o;,,, sideband region and normalize it to the different pro-

nin
cesses in simulation. The detail plots for each year and each channel can be found in

Appendix F.

We compare the different windows of the o;,,, in the sideband region to check whether

nin

the shape depends on the o;,,, cut or not. The shape of nonprompt photon is studied

nin
in three different categories; nonprompt photon shape in the signal region, nonprompt

photon shape in the ¢;,;, sideband in data, and nonprompt photons in MC from sideband

nin
as shown in Figures 67. The shapes of the templates are more or less similar, the small

variation is taken into account as a systematic uncertainty in the final fit.

6.7 Extraction of ttv Cross Section

We measured two observables, signal strength parameter (u= USZ{O—;LO ) and ratio
0.7, . . . - . . . . . .
(R, = ﬁ). First, the inclusive tty cross section is obtained by multiplying the pwith

osmnro- The R allows for the cancellation of factors and their associated systematic un-
certainties, such as luminosity, ISR/FSR systematics, trigger efficiency, etc. The o, cross
section is obtained by multiplying the measured value of R with a recent tt cross section
measurement.

The RooStats-based statistics tool provided by the Higgs PAG [107] is used to create a
physics model for the analysis. To measure the production cross section of tty, we define

a model that predicts different expected yield for the signal and fit the parameters of this
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Figure 64: The distribution of o,,,, variable (top), with no cut in Chlso (middle), and fo-
cused on the sideband in e + jets (left) and p + jets (right) for 2016. The sideband region

is 0.011 < 0y,;, < 0.02 in barrel.
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Figure 65: The distribution of o,,,, variable (top), with no cut in Chlso (middle), and fo-
cused on the sideband in e + jets (left) and p + jets (right) for 2017. The sideband region

is 0.011 < 0y,;, < 0.02 in barrel.
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Figure 66: The distribution of o,,,, variable (top), with no cut in Chlso (middle), and fo-
cused on the sideband in e + jets (left) and p + jets (right) for 2018. The sideband region

is 0.011 < 0y,;, < 0.02 in barrel.
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Figure 67: Comparison of nonprompt photon shape in the signal region, nonprompt

photon shape in o;

nin

sideband in data, nonprompt photons in MC from sideband for

e + jets (left) and u + jets (right) for 2016 (top), 2017 (middle), and 2018 (bottom) data.
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model to the data. The model is a function of the observed data, signal strength, and
expected signal and background rates where they are expressed as a function of nuisance
parameters. For the binned shape template, a physics model is the product of models for
each bin. A datacard contains the information about the shape of observed and expected
events for various physical processes and their systematic variations. The datacard defines
the likelihood function used in the HiggsCombineTool. The test statistic is the profile likeli-
hood ratio, ¢(r) = —21n L(r, 8,)/ L(#,0), where 6, are the values of the nuisance parameters
that maximize the likelihood function for signal strength r. The function ¢(r) is used to de-
termine the uncertainties on the fitted value of r. The ¢(r) can be treated as a x* with one
degree of freedom which means 68% confidence interval (CI) for r is defined by ¢(r) < 1.

A simultaneous binned maximum likelihood fit is done to extract the signal strength
parameter value on ttvy cross section using the two distributions: photon charge hadron
isolation (Chlso) and M;. The shape of these distributions are used to discriminate the
signal from the background in the analysis. The expected shape of the Chlso distributions
is distinguishable for genuine photons and for nonprompt photons. Similarly, the expected
shape of the M, distribution distinguishes top from non-top events as shown in Figure 40.

Photon charged hadron isolation (Chlso) is the sum of the transverse momenta of all
the charged hadrons that lies within a cone of radius AR < 0.4 of the photon. Prompt pho-
tons, originating from physics processes such as tt~y, W+, etc, will have fewer nearby par-
ticles, whereas nonprompt photons, originating from hadronic activity, will be surrounded
by more particles. The variable the M, is an invariant mass of the 3 jets have the highest
vector summed P;. Hence, the simultaneous maximum likelihood fit of Chlso, distinguish-

ing genuine and non-prompt photons, and M, can differentiate the signal (ttywith genuine
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photon) from all other background processes such as tt with non-prompt photons; W + v
and Z + ~ with genuine photons; and SingleTop, V' + jets , Diboson, tt V, and QCD with

non-prompt photons.
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CHAPTER 7 SOURCES OF SYSTEMATIC UNCERTAINTIES

7.1 Systematic Uncertainties

The precise measurement of the cross section is affected by numerous uncertainties
arising from theoretical mismodeling, experimental bias, statistical fluctuations, and back-
ground estimation of the measurement. The theoretical systematic uncertainties are ob-
tained by changing the corresponding values of the sources. For example, we vary the
renormalization (up) and factorization scale (i) during the MC simulation to get the
systematic effect of higher order contribution to the ME calculation. Then, we did the
maximum log-likelihood fit to estimate the corresponding fit values due to the shift of the
renormalization and factorization scale in comparison to the nominal value. The difference
will be the uncertainty on measured POI due to the uncertainty. [108]

The typical origins of systematic uncertainties are imperfect modeling and simula-
tion, uncertainties in parameters used, miscalibration of the detector, uncertainties as-
sociated with the corrections, and theoretical limitations. We divide systematic uncertain-
ties into three different categories: experimental uncertainties related to uncertainties of
the physics object selection efficiencies and uncertainties of their calibrations; theoreti-
cal uncertainties in normalization of the simulated processes, modeling of parton shower,
hadronization, and underlying events; and uncertainties related to background estima-
tions. We followed the "Top systematic uncertainties for Run 2" recommendation from Ref.
[109] for estimation of experimental and theoretical uncertainties. These uncertainties
are correlated year by year and shown in Table 30 Table 31 summaries the systematic

uncertainties in the inclusive measurement discussed in Sec. 8.
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7.1.1 Experimental Uncertainties
 Luminosity uncertainty: The integrated luminosity is 35.92 fb™', 41.53 fb™', and
59.74 fb~* for 2016, 2017, and 2018 respectively. Uncertainties of 2.5%, 2.3%, and
2.5% on the luminosity are used to calculate the systematic uncertainties for 2016,

2017, and 2018 respectively [110-112].

* Pile-up uncertainty: The average pile-up is calculated using an inelastic cross sec-
tion of 69.2 mb for all 3 years. The uncertainty in the pileup estimation is affected
by the uncertainty in the inelastic cross section and the uncertainty in the luminosity.
The luminosity uncertainty is smaller than the minimum bias cross section uncer-
tainties. The cross section is varied up and down by 4.6% to produce the re-weight
distributions. The difference between the reweighed and nominal distributions rep-

resent the pile-up uncertainty. It is fully correlated across the years.

* b-tagging uncertainty: The analysis uses the medium b-tagging combined secondary
vertex version 2 working point (WP) of 0.8484. A b-tagging scale factors is applied
on an event by event basis as a function of jet Prand . We introduce a variation
of the b-tagging uncertainty varied by +o according to the BtagPOG'® recommenda-
tion. The variations are performed by recalculating the event probability using all
jets and their true flavor (such as light and heavy flavor) using method 1a of Ref.

[94]

* Lepton efficiency uncertainty: A combination of lepton trigger, identification and

isolation scale factors makes up the lepton efficiency in this analysis. The uncertain-

16BtagPOG is the physics object group (POG) expert on btagging and vertexing [113].
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ties on scale factors for electron and muon trigger, identification and isolation are

taken as recommended by the TOP EGM of Ref. [114] and MUOPOG of Ref.[115].

* Photon efficiency uncertainty: The photon efficiency scale factors are calculated to
take into account effects from identification and pixel seed veto ID. The uncertainties
on those variables are taken from EGM POG and adopted in our analysis as in Ref.

[114].

* Jet energy correction uncertainty: The jet energy measured in the detector is cor-
rected to match the jet energy at the particle level simulations.The jet energy scale
is classified into different sources: Absolute, Absolute_201%, BBEC1, BBEC1_201%,
EC2, EC2_201%, HF, HF_201%, RelativeSample_201%*, RelativeBal, FlavorQCD. We
follow the POG recommendations about their year-by-year correlations [116]. The
differences in the distributions are obtained by rescaling the jet momenta in the sim-

ulation.

» Jet energy resolution uncertainty: Separate uncertainties in the jet energy resolu-
tion are introduced. The uncertainties are uncorrelated among the years. The differ-
ences in the distributions are obtained by rescaling the jet momenta in the simulation.

The JER parameters are Summer16_25nsV1_MC, Fall17_V3_MC, and Autumn18_V7_MC.

* Photon and electron scaling uncertainty: The EGM POG provides residual cor-
rections to scale the data to the MC and systematic uncertainties for each year of
Run 2. The scale uncertainties correct for slew-rate in ECAL electronics which af-

fects the pulse shape of the reconstructed electrons and photons which encounter
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the gain-switch turning point. The nominal scale value is applied to data only and
the uncertainties are used to calculate the up and down systematic uncertainties in

simulation. The scaling factors are implemented before object selections.

e Photon and electron smearing uncertainty: The EGM POG provides residual cor-
rections to smear the MC to the resolution matched in data and systematic uncer-
tainties for each year of Run 2. The smearing correction has two components: rho

and phi. It is a guassian with a mean of 1 and sigma of the given uncertainty.

7.1.2 Theoretical Uncertainties
* Factorization and Renormalization scales uncertainty: The effect of higher order
contributions to the ME calculation are estimated per event by varying the renormal-

ization (uy) and factorization scale ().
* first fix yup and vary pp by 2 and 1/2 (for up and down uncertainties respec-
tively).
* then fix yup and vary up by 2 and 1/2
* the combination where both yf, 1 are either up or down.
A total of seven combinations are accounted for in the higher order correction and

are included as a shape uncertainty in the fit. Since we use the same method of ME

calculation, the uncertainties are fully correlated among the years.

e Parton distribution function uncertainty (PDF): We use 100 replicas generated
with NNPDF3.1 and construct an envelope from the acceptances using the corre-

sponding event weights. On the tty sample, the PDF uncertainties affect the shape
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while keeping the normalization constant on the tt background PDF normalization.

The uncertainties are correlated across years.

e Parton Shower (PS) uncertainties: The sources of uncertainties that aries from the
modelling of perturbative and non perturbative QCD effects are studied in parton
shower MC generators. First a single parton shower model approach is considered
and all the possible aspects are modeled such as ISR, FSR, and ME-PS matching.
Although underlying event uncertainties and color reconnection uncertainties are
not purely parton shower, for convenience they are included under the PS category.
PyTHIA 8 is used as a default MC which means energy scales and efficiencies (i.e.,
isolation efficiency, jet energy scale, and b-tagging) are calibrated using PYTHIA 8 as

the nominal MC.

 ISR/FSR uncertainty: The value of the strong coupling constant ogat scale @’
has corresponding uncertainties which are evaluated by varying the renormaliza-
tion scale for QCD emissions in initial and final state radiation by a factor of 2 and
0.5. These variation effectively vary the values of o, and contain NLO compensation

that preserve the soft-gluon limits.

* Color reconnection uncertainty: The nominal color reconnection model is based
on multi-parton interaction (MPI). The other models are QCD-inspired (CR1) and
gluon move (CR2). The largest difference between these variations and nominal is

used to assess the uncertainties in color reconnection.

* Statistical uncertainty: The Barlow-Beeston ”light” bin-by-bin nuisances [117] are
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used to account for the statistical uncertainties in simulated event yields above an
event count of 20 events. Below that, individual Poissonian nuisances separately for

each background component are included.

7.1.3 Background Estimation Uncertainties
* Drell Yan normalization uncertainty: The DY cross section uncertainty is measured
in 0 b-tag and 0 ~ control regions and found to be 5% where as an 8% uncertainty is

applied for control or signal regions with greater than or equal to 1 btag.

* QCD normalization uncertainty: We estimated two QCD normalization uncertain-
ties for O b-tag and >1 b-tag control regions and found both to be 50%. The uncer-

tainty accounts for mismodeling of the QCD data driven template.

* Non prompt photon estimation uncertainty: The data driven templates are cre-

ated from the o,,,, sideband region of the photon charged hadron isolation (Chlso)

inin
variable. To incorporate the uncertainties in the template creation, a bin by bin differ-

ence of the data driven template from the nonprompt photon template in simulation

is used to estimate the up and down uncertainties.

» Misidentified electron uncertainty: The uncertainty of 20% from the misID fit is
used to make up and down templates which are incorporated in the signal region
fit as a nuisance parameters. The additional 10% uncertainties are added in signal

region to account for a possible differences in Drell-Yan and tt dominated regions.

* W + ~vand Z + ~ SF estimation uncertainty: The cross section uncertainties on

W + ~, and Z + « are 19% and 21% respectively. These uncertainties are applied
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on signal region fitting as a gaussian constraint with a +10. These uncertainties are
estimated from the simultaneous fitting of the invariant mass distribution of photon

and lepton in e + jets and  + jets channels.

e Other uncertainties: The "other" samples mainly consists of multiboson processes

and a normalization uncertainty of 30% is used.

 Additional uncertainties on tt processes: The tt background process has a unit
(0 = 1) gaussian constraint applied on them. The cross section uncertainty on tt is

5.5%
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Table 30: List of experimental and background estimation related uncertainties and their
correlations among years.

Source 16/17 (%) 16/18 (%) 17/18 (%) Comments
L Using Lumi POG recomm.,
Luminosity 21 29 30 correlation from Ref. [118].
Pileup 100 100 100 4.6 % on ¢(MB)=69.2 mb
Jet energy correction mult. mult. mult. reduced sources (6, JME
_ POG)
g Jet energy resolution 0 0 0 JME POG, uncorrelated
@ Electron trigger, reco, and id 100 100 100 EGM recommendations
g Muon trigger, reco, and id 100 100 100 MUO recommendations
& Photon and pixel seed veto id 100 100 100 EGM recommendations
% B-tagging 0 0 100 BTV contact recommenda-
tions
EGamma energy scale/reso- 100 100 100 EGM recommendations
lution
L1 prefiring 100 - - only in 2016 and 2017
= Tune 100 100 100 using CP5 tune for all years
-2 color reconnection 100 100 100 erdOn, QCD based, gluon
g Move
& ISR 100 100 100 using same «g for all years
= TSR 100 100 100 using same «g for all years
Q2 100 100 100 using same «g for all years
PDF 100 100 100 using same PDF set for all
years
ME-PS matching (%441, 100 100 100
QCD normalization 100 100 100 50 %, see Sec. 6.4.
tt normalization 100 100 100 5.5 % on tt MC
misidentified electron 0 0 0 free parameter, extract SF
Z~ normalization 100 100 100 free parameter, extract SF
W+~ normalization 100 100 100 free parameter, extract SF
Other” bkg. 100 100 100 30 % on "other”
normalization

Background
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Table 31: Summary of the sources of systematic uncertainties. The first column lists the
source of the uncertainty. The last column gives the corresponding systematic uncertainty
in the tty cross section using the fit result.

Nuisance Parameter Total uncertainty on tty Relative Uncertainty (%)

Photon Efficiency +0.0241/-0.0244 1.85
One v other bkg normalization +0.0135/-0.0132 1.03
tt normalization +0.0121/-0.0121 0.92
ISR +0.0103/-0.0111 0.85
Mis-identified ele shape and norm +0.0106/-0.0104 0.81
Tune +0.0001/-0.0087 0.66
Shape of DataDriven templates +0.0083/-0.0086 0.66
Pile Up +0.0071/-0.0077 0.58
Renorm/Fact Scale +0.0073/-0.0076 0.58
hadronic photon normalization +0.0071/-0.0073 0.56
Jet Energy Resolution 172017 +0.0062/-0.0073 0.55
lumi 161718 +0.0072/-0.0072 0.55
b tagging 2016 -0.0000/-0.0063 0.48
lumi 2016 +0.0061/-0.0061 0.47
Zero -y other bkg normalization +0.0047/-0.0047 0.36
FSR +0.0044/-0.0040 0.33
Jet Energy Resolution 02016 +0.0041/-0.0042 0.32
Single top +0.0042/-0.0041 0.32
lumi 2017 +0.0038/-0.0040 0.31
1 tagging 2016 +0.0039/-0.0039 0.30
Jet Energy Correction 1vy +0.0022/-0.0030 0.23
Photon Energy Scale 2016 +0.0029/-0.0012 0.22
Z~ normalization +0.0025/-0.0028 0.21
W~ normalization +0.0022/-0.0026 0.19
Jet Energy Resolution 172018 +0.0023/-0.0025 0.19
Photon Energy Smearing +0.0005/-0.0025 0.19
L1 prefire Efficiency +0.0024/-0.0025 0.19
Color Reconnection -0.0003/-0.0020 0.15
Photon Energy Scale 2018 +0.0018/-0.0015 0.13
Photon Energy Scale 2017 -0.0014/-0.0017 0.13
| tagging 2018 +0.0016/-0.0016 0.12
1 tagging 2017 +0.0015/-0.0015 0.11
b tagging 2017 +0.0013/-0.0014 0.11
lumi 2018 +0.0013/-0.0014 0.11
PDF +0.0012/-0.0012 0.09
Jet Energy Resolution 02018 +0.0010/-0.0011 0.08
Jet Energy Resolution 02017 +0.0009/-0.0011 0.08
Electron Efficiency +0.0010/-0.0011 0.08
Jet Energy Resolution 172016 +0.0008/-0.0010 0.08
Muon Efficiency +0.0009/-0.0010 0.08
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CHAPTER 8 RESULT

The strategy to obtain the cross-section measurements is to maximize the profile log-
likelihood in a set of signal and control regions. For the inclusive cross section measure-
ment, we perform a simultaneous maximum likelihood fit in the signal region variable
M, with photon Py > 20 GeV along with three different control region variables: a)
charged hadron isolation of photon in N; > 4, N, > 1 region, b) M;distribution with
zero photon control region in N; > 4, N, > 1, and ¢) invariant mass distribution of lep-
ton and photon in N; > 4, N, > 1 region. The fits are done separately in e channel and
1 channel for each year and eventually done simultaneously for all years combined.

Initially, the fit is performed only on MC data (Asimov and toys), to show the effect
of the systematic uncertainties. The Asimov fits are studied for each year separately in
e channel, p channel, e + u channel , and for e channel, p channel, e + i channel for
all years combined. In this test, we fit the simulation to itself, and check that the injected
signal strength is reproduced. A closure test is performed on the inclusive cross section
measurement with toy data. The impacts of the nuisances in the inclusive fit for each year
and for the full Run II data set are analyzed. Likelihood scans of a parameter of interest

(POL such as a signal strength or a ratio) are scrutinized.

8.1 Checks with Toy Data

To consider various uncertainties of the measurement, hundreds of nuisance parame-
ters (NP) are introduced in the likelihood fit. They may affect the normalization or/and
shape of the observable distribution differently. The constraints of a nuisance parame-

ter and its impact on the parameter of interest (POI) are the main concerns for a precise
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measurement. For example, the post-fit uncertainty for a systematic source may be much
smaller than its initial estimation in a measurement. In other words, the corresponding
nuisance parameter turns out to be constrained in the fit. Then the measurement may be
biased as the fit doesn’t consider the full uncertainty. In the analysis, approximately 65% of
the uncertainty is due to systematic sources and the rest from statistics. So we care which
systematic sources have large contributions to the uncertainty of the POI. When a sys-
tematic is constrained post-fit, then investigation is necessary. We give particular scrutiny
to results which contradict established models, previous measurements, or conventional
wisdom [119].
8.1.1 Check for tt~ Signal Strength

To check the sensitivity to the tty signal and to make sure systematics behave as ex-
pected the fit is first done using Asimov data. The Asimov data is defined as data with the
total number of expected events in the MC. For shape analyses with templates, the Asimov
data set will be constructed as a histogram using the same binning defined for the analy-
sis. Figures 68-72 show the effect of the various systematic uncertainties in Asimov data

constructed under a signal strength hypothesis of . = 1 for e + jets and yu + jets channels.
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Figure 68: The impact plot that shows postfit pulls and constraints on nuisance parameters
for ttv fit in e + jets (left) and p + jets (right) separately to Asimov data for 2016.
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Figure 69: The impact plot that shows postfit pulls and constraints on nuisance parameters
for ttv fit in e + jets (left) and u + jets (right) separately to Asimov data for 2017.
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Figure 70: The impact plot that shows postfit pulls and constraints on nuisance parameters
for ttv fit in e + jets (left) and p + jets (right) separately to Asimov data for 2016.
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Figure 71: The impact plot that shows postfit pulls and constraints on nuisance parameters
for ttv fit in e + jets (left) and pu + jets (right) separately to Asimov data for full Run 2.
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Figure 72: The impact plot that shows postfit pulls and constraints on nuisance parameters
for tt fit to Asimov data for full Run 2.

To check if the fit is biased by any of these parameters the fit was performed assuming
a variety of other signal strength and nonprompt photon correction factors values while
producing toy data. We set the signal strength parameter equal and run the fit with 500 toy
datasets to get the measured values as shown in Figure 73 (top left). The comparison of
the expected signal strength (used for the creation of the toy data) and the signal strength
parameter measured as a result of the fits is shown in Figures 73-76 along with the com-
parison of the expected nonprompt photon correction factor and the measured nonprompt

photon correction factor extracted from the fit.
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Measured non prompt normalization values
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Figure 73: Closure test: e + jets (tty (left) and non prompt (right)) for 2016 (top), 2017

(middle), and 2018 (bottom).
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Figure 74: Closure test: p + jets (tty (left) and non prompt (right)) for 2016 (top), 2017

(middle), and 2018 (bottom).
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Figure 75: Closure test: e + jetsand pu + jets (tty (left) and non prompt (right)) for full
Run 2.
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Figure 76: Closure test: (tty (top) and non prompt (bottom)) for full Run 2.

The explicit scan of the profile maximum log-likelihood (minimum of the negative log-
likelihood [NNL]) of the parameter of interest is used as it shows any unexpected features
in the shape of the likelihood curve. A well behaved fit will have a quadratic shape near
the minimum of the NLL. The width of the parabola is the uncertainty on the POI. When
all the nuisance parameters are frozen in the minimization, the width of the parabola is
due to statistical uncertainty only. When the nuisance parameters are allowed to float, we
get the combined systematic and statistical uncertainty.

We used the HiggsCombineTools [106] to measure the best-fit signal strength and its

uncertainties as shown in Figures 77-79.
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Figure 78: Double negative log likelihood distribution for tty in e + jets (left) and
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Correlation matrix of fit parameters
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Figure 80: Double negative log likelihood distribution for tty with Asimov fit for full Run
2 data.

The correlation matrices of signal strength with systematic and statistical uncertainties
are shown in Figure 140 with toy MC.
8.1.2 Check for R, = %
To check the sensitivity to the R, and to make sure systematics behave as expected the
fit is first done using Asimov data. Figures 81-85 show the effect of the various systematic

uncertainties in Asimov data constructed under a signal strength hypothesis of R, =0.02

for e + jets and p + jets channels.
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Figure 81: The impact plot that shows postfit pulls and constraints on nuisance parameters
for R, fitin e + jets (left) and p + jets (right) separately to Asimov data for 2016.
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Figure 82: The impact plot that shows postfit pulls and constraints on nuisance parameters
for R, fitin e + jets (left) and y + jets (right) separately to Asimov data for 2017.
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Figure 83: The impact plot that shows postfit pulls and constraints on nuisance parameters
for R, fitin e + jets (left) and p + jets (right) separately to Asimov data for 2016.
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Figure 84: The impact plot that shows postfit pulls and constraints on nuisance parameters
for R, fitin e + jets (left) and p + jets (right) separately to Asimov data for full Run 2.
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Figure 85: The impact plot that shows postfit pulls and constraints on nuisance parameters
for R, fit to Asimov data for full Run 2.

To check if the fit is biased by any of these parameters the fit was performed assuming
a variety of other R, , tt cross section and nonprompt photon correction factors values
while producing toy data. The comparison of the expected R, (used for the creation of the
toy data) and the R, measured as a result of the fits is shown in Figures 86-89 along with
the comparison of the expected nonprompt photon correction factor and the measured

nonprompt photon correction factor as a result of the fit.
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Figure 86: Closure test: e + jets (R, , non prompt, and tt ) for 2016 (top), 2017 (middle),
and 2018 (bottom).

We used the HiggsCombineTools [106] to measure the best-fit i, and and its uncer-

tainties as shown in Figures 77-79.
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Bias test for non prompt normalization
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Figure 89: Closure test: (R, , non prompt, and tt ) for full Run 2.

The correlation matrices of R. with systematic and statistical uncertainties are shown

in Figure 140 with toy MC.
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Figure 90: Double negative log likelihood distribution for R. in e + jets (left) and
1+ jets (right) channels with Asimov fit 2016 (top), 2017 (middle), and 2018 (bottom)
data taking periods.
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Correlation matrix of fit parameters
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Figure 93: Double negative log likelihood distribution for R, with Asimov fit for full Run
2 data.

8.2 Inclusive and Fiducial cross-section

The tt cross section can be measured inclusively for specific kinematics of the photon.
The simulation of the tt~ process is performed with Py (y) > 10 GeV, || < 5.0. However,
the cross section is measured and reported in the kinematic phase space visible within the
selection cuts applied in this analysis, Py (y) > 20 GeV, |n| < 1.4441. The inclusive cross
section measured is related to the total cross section of the full MC simulation sample by

the photon acceptance A” through
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oy (Pr(7) > 20 GeV, || < 1.4441) =0y, (Pr(y) > 10 GeV, |n| < 5.0) x A7 (8.1)

where, oz, is the cross section for the fiducial requirements specified.

The photon acceptance can be measured from simulation, using generator level pho-
tons. Photons are required to be prompt, final state particles, with Pr > 20 GeV and
In| < 1.44. The acceptance is defined as A” = N9 /N/." , where N/." is the total number
of generated tty events in all top decay channels, and N?" is the total number of events
with the photon in fiducial the phase space. The photon acceptance values are found to
be A" = (38.56 + 0.02)%, (43.05 + 0.01)%, and (38.54 + 0.20)% for 2016, 2017, 2018
respectively. The weighted average photon acceptance for full Run 2 is (40.05 + 0.02)%.

The fiducial cross section is measured in the visible phase space of the final particles in
tty event where the top quark pair decays leptonically. The fiducial phase space is defined
by the presence of exactly one lepton (either an electron or muon), at least four jets of
which one originates from a b quark decay, and a photon. Electrons are required to be
prompt final state particles with Py > 35 GeV and || < 2.4. Muons are required to be
prompt final state particles with Py > 30 GeV and || < 2.4. Jets are clustered from
generator particles with the anti-k, algorithm of cone size 0.4, and must have Py > 30 GeV
with || < 2.4. The cross section in this fiducial phase space is related to the inclusive
tty cross section via the tt acceptance.

In Table 32, we define the particle level objects that are used to define the fidu-

cial phase space. The fiducial phase space is then defined as N, fid — 9, N4 = g,



157

Table 32: Definition of objects used to define the fiducial phase space.

Selection criteria gen-Photon

P (GeV) >20

In| <1.4442
|pdgID| 22
status 1

Njet fid- > 4 and Ny jer fid- > 1. The total tty acceptance can be measured from simula-
tion where photons are required to be prompt, final state particles, with P (y) > 20 GeV
and |n| (v) < 1.44 along with a tt pair decaying semi-leptonically. The acceptance is de-

fined as A" = Nf’ﬁfe“ed /N2, where the N/ is the total number of generated tty events

N{elected

iy is the total number of events in the signal phase

in all top decay channels, and
space. The acceptance values are found to be A = (6.28 + 0.01))%, (6.05 £ 0.01))%,
and (7.98 4+ 0.01))% for 2016, 2017, 2018 respectively. The weighted average acceptance
for full Run 2 is (6.86 4+ 0.01))%.

The fiducial cross section in terms of tty acceptance is defined as

o, (Pr () > 20 GeV, || < 1.4441) =0y, (Pr(v) > 10 GeV, || < 5.0) x A (8.2)
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Figure 94: The impact plot that shows postfit pulls and constraints on nuisance parameters
for tt fit in e + jets (left) and p + jets (right) separately to observed data for 2016

8.3 Fit to Data

8.3.1 ttv Cross Section from Signal Strength

meas

First we do a fit to extract the signal strength parameter p = 2. Figures 94 - 112 show

Utf’y

the pulls on nuisance parameters and their impacts on p, and maximum likelihood scan
for 2016, 2017, 2018, and for all years combined. The extraction of the signal strength
along with other important postfit scale factors is shown in Tables 41-43 for 2016, 2017,

and 2018 data in e + jets and p + jets channels.
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Figure 95: The impact plot that shows postfit pulls and constraints on nuisance parameters
for tt fit in e + jets (left) and p + jets (right) separately to observed data for 2017
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Figure 96: The impact plot that shows postfit pulls and constraints on nuisance parameters
for ttv fit in e + jets (left) and . + jets (right) separately to observed data for 2016
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Figure 97: The impact plot that shows postfit pulls and constraints on nuisance parameters
for ttv fit in e + jets (left) and pu + jets (right) separately to observed data for full Run 2
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Figure 98: The impact plot that shows postfit pulls and constraints on nuisance parameters
for tt~ fit to observed data for full Run 2
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The detail values of extraction of the scale factors can be found at Appendix C. The
full Run 2 pre-fit and post-fit Data/MC agreement plots in the signal region for M;and
Chlso variables are shown in Figure 103. The pre-fit and post-fit Data/MC agreement plots

in in zero btag (top) and zero photon (bottom) control regions are shown in Figure 104.
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Figure 99: Double negative log likelihood distribution for tty in e + jets (left) and
1+ jets (right) channels with observed data fit 2016 (top), 2017 (middle), and 2018 (bot-
tom) data taking periods.
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Figure 100: Double negative log likelihood distribution for tty in e + jets (left) and
i+ jets (right) channels with observed data fit for full Run 2 data.
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full Run 2 data.
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Correlation matrix of fit parameters
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Figure 102: Double negative log likelihood distribution for tty with data fit for full Run 2
data.
8.3.2 Fit to Ratio (R, = ™)

The ratio of the tty cross section to the tt cross section is used to study anomalous
couplings of the top quark in phenomenological studies. An advantage of measuring a
ratio as compared to measuring the tty cross section directly is that some of the common

sources of systematic uncertainties cancel out.

Fit Function First, the constraint on the normalization of the tt cross section is removed,
allowing the normalization of the ttcross section to float. In order to fit directly to the cross
section, rather than to a signal strength parameter, the templates for the tty production

and tt production are re-normalized by the inverse of their theoretical cross sections. This
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Figure 103: Pre-fit (left) and post-fit (right) plots for data MC agreement in the signal
region for M, (top) and Chlso (bottom) with all years combined.

effectively removes the normalization that was put in when the samples were scaled to an
integrated luminosity. To start out, we have a fit function, with free floating parameters

for both the tt and tt scale of:

d d
Fttsiy s 1155) = iy - Ngre™ 4 g - Ng P + N (8.3)
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Figure 104: Pre-fit (left) and post-fit (right) plots for data MC agreement in zero btag (top)
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and zero photon (bottom) control regions with all years combined.
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The number of events in tty and tt can be expanded to:

expected ___theory B B
Neg, =0, Gy iy o Ly

(8.4)

expected __theory B B
Nz =o0; = & Ag - L.

Substituting back into the fit function we get:

h h
f(ﬂtf’y?/%f) = Py - UE{jory " €ty ‘Atfry - L+ g 'Uifeory e A - L+ Nikg (8.5)

The observed cross section is equal to the theoretical value multiplied by the signal strength

parameter (u):

obs. __ theory
tty — Htty " O,
obs. theory
tt — Mg "0

(8.6)

o o __ arexpected theory
Etty Att’}’ L= Ntf'y / tty

~ ~ _ arexpected theory

Thus, by scaling the number of events by the theoretical cross-section, we get a fit function

in which the parameters are directly the measured cross sections.

bs. bs.\ ___obs. expected theory bs. expected theory
flogyox ) =0y - (Ngy Jog, ) +og - (Ng Joz ") + Noxg (8.7)

Finally, if the tty portion is multiplied by ¢%* /0% = 1, the terms can be rearranged

obs. /Uobs.

into the cross section ratio R = oy /oi; . Thus, by scaling both the tt and tt~ portions of
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obs. bs.

the fit function by ;7™ , the fit function can be redefined in terms of o) and the ratio R

bs.\ __ bs. expected theory bs. expected theory
f(R'y 70-%8 ) - R’Y ’ U%S ’ (Ntf); /Utf»y ) + O-%S ’ (Ntfx /O-tf ) + kag (88)

Finally we can calculate the R, directly from Higgs Combine Tool.

R Oty ina(Pr (7) = 20 GV, < 1.44)

(8.9

meas
tt ,incl
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Figure 105: The impact plot that shows postfit pulls and constraints on nuisance parame-
ters for R, fitin e + jets (left) and y + jets (right) separately to 2016 data.

Figures 105 - 109 show the pulls on nuisance parameters and their impacts on y, and
the maximum likelihood scans for 2016, 2017, 2018, and all years combined. The ex-
tracted values for R, , nonprompt photon correction factor, and measured ttcross section in
the signal phase space are shown in Tables 44 - 46 for the e + jets and the p + jets channels
respectively for 2016, 2017, and 2018 data. A description of the implementation in the

HiggscombineTool is in Appendix D. The correlation plots can be found in Appendix G.
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Figure 106: The impact plot that shows postfit pulls and constraints on nuisance parame-
ters for R, fitin e + jets (left) and y + jets (right) separately to 2017 data.
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Figure 107: The impact plot that shows postfit pulls and constraints on nuisance parame-
ters for R, fitin e + jets (left) and y + jets (right) separately to 2018 data.
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Figure 108: The impact plot that shows postfit pulls and constraints on nuisance parame-
ters for R, fitin e + jets (left) and y + jets (right) separately to full Run 2 data.
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Figure 109: The impact plot that shows postfit pulls and constraints on nuisance parame-

ters for R, fit to full Run 2 data.
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8.4 Summary Result for Full RunlI

measured ; _NLO :
tf’y /O-tE’Y 5 fOI‘ e +]etS N

Finally, we extracted the signal strength (u), defined as o

i+ jets, and [ + jets channels for full Run 2 and shown in Table 39. We found photon
acceptances, A7, (38.56 + 0.02)%, (43.05 + 0.02)%, and (38.54 + 0.01)% for 2016,
2017, 2018 respectively in the signal phase space defined by Equation 8.2. The weighted
average for full Run 2 is (40.05 =+ 0.01)%. The tty acceptances, A", for fiducial phase
space defined as in Table 32 are found to be (6.28 + 0.01)%, (6.05 + 0.01)%, and (7.98
+ 0.01)% for 2016, 2017, 2018 respectively. The weighted average for full Run 2 is (6.86
+ 0.01)%.
The measured inclusive cross section is 3.81 £ 0.15 (syst.) & 0.10 (stat.) pb in e channel,
3.87 + 0.11 (syst.) £ 0.07 (stat.) pb in x channel , and 3.96 + 0.10 (syst.) & 0.06 (stat.) pb in
e + u channel , respectively for full Runll data. The fiducial semileptonic cross section
is 0.65 £ 0.03 (syst.) &+ 0.02 (stat.) pb in e channel, 0.66 + 0.02 (syst.) & 0.01 (stat.) pb in
u channel , and 0.68 £ 0.02 (syst.) £ 0.01 (stat.) pb in e + p channel , respectively.

Finally we extract the R, (as defined in Equation 8.9). The extracted values for R,
nonprompt photon correction factor, and measured tt cross section in the signal phase
space are shown in Table 40 for e channel, i channel, and e + i channel, respectively for
all years combined. The measurement of the ratio of ttv to tt is 0.02055 £ 0.00099 (syst.) +

0.00099 (stat.) in e channel, 0.02156 + 0.00068 (syst.) & 0.00068 (stat.) in x channel , and

0.02203 4 0.00064 (syst.) & 0.00064 (stat.) in e + p channel , respectively.
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Figure 110: Double negative log likelihood distribution for R, in e + jets (left) and
1+ jets (right) channels for 2016 (top), 2017 (middle), and 2018 (bottom) data taking
periods.
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Correlation matrix of fit parameters
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Figure 113: Double negative log likelihood distribution for R, with full Run 2 data.

Table 39: Summary of the signal strength extraction for all years combined

FullRun2 ttySF  nonPrompt SF

e + jets 1.2719:09 0.94705S
p+jets  1.204004 0.96+0.04
I+jets  1.327001 (0.95+004

Table 40: Summary of the ratio (R, ) extraction for all years combined

FullRun2 2% nonPrompt SF  tt cross section (pb)
tt

e + jets 0.020550:95095  1.023:99 873.69123-80

©+ jets 0.021560:990%  1.0313:99 870.28+12:39

I + jets 0.02203+9:99064  1.01+9-99 876.9571384
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CHAPTER 9 CONCLUSION AND OUTLOOK

We make a step towards the direct quantification of the electromagnetic interaction of
the top quark using the CMS detector at the LHC. We present fiducial and inclusive cross
section measurements of the semileptonic pp — tty process using the full Run 2 data
with a corresponding integrated luminosity of 137 fb™' collected by the CMS detector at
the center of mass energy of \/s = 13TeV. We used the centrally produced primary and
Monte-Carlo data set for signal and backgrounds. To normalize the tt~y signal sample to
NLO level, we calculated the k-factor using MADGRAPH5 aMC@NLO . Events are required
to pass the HLT trigger (either single electron or single muon trigger), to have a well
defined primary vertex, with a high P;and well isolated lepton (electron or muon), with
>4 jets and > 1 b-tagged jet, and exactly one high P;photon. All the selected events
and objects are corrected according to the recommendation provided by CMS Top Quark
Physics Group. All the major backgrounds are estimated using data driven techniques.

The analysis strategy is separate the events into genuine, misidentified, hadronic, and
fake/pile-up category based on the origin of photon. A data driven estimation of hadronic

and fake photons is performed using a photon isolation variable (o;,,, ) in the signal region.

inin
A data driven estimation of misidentified electrons is performed along with W+~ and Z+~
using the invariant mass of lepton and photon in a control region with no b-jet. The effects
of misidentified electrons, W +~, and Z + ~ are carried to the signal region. A data driven
QCD multijet background is estimated in a control region with no b-jet by inverting lepton

isolation. The QCD template is used to replace the MC simulation in signal region.

Experimental, theoretical, and data driven estimation uncertainties are implemented in


https://twiki.cern.ch/twiki/bin/viewauth/CMS/TWikiTopQuark
https://twiki.cern.ch/twiki/bin/viewauth/CMS/TWikiTopQuark
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a fit as recommended by TOP Systematic Uncertainties (Run 2). The maximum likelihood
fit to Asimov and toy MC are performed to check the following: closure test of param-
eter of interest, diagnostics on uncertainty model, correlation between the parameter of
interest and nuisances, and profile maximum log-likelihood features of fit parameters. The
hadronic photon normalization and tt cross section normalization enters as free-floating
parameters in the fit. The cross section of tty and the ratio % are extracted using a
maximum likelihood fit to data in e + jets and p + jets channels for each of the data taking
periods 2016, 2017, and 2018 separately, and data from both the channels and all years
combined to extract the cross section and ratio for full Run 2 data. The measurement of
the ratio of tt to tt is 0.02203 =+ 0.00064 (syst.) £ 0.00064 (stat.) in e + p channel and the
measured inclusive cross section is 3.96 + 0.10 (syst.) £ 0.06 (stat.) pb in e 4+ p channel for

full RunlI data. The total inclusive cross section with a photon of transverse momentum >

20 GeV agrees with the NLO SM predictions within uncertainties.


https://twiki.cern.ch/twiki/bin/viewauth/CMS/TWikiTopQuark
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APPENDIX A
A simple Higgs combine model: Let n be the observed number of events, b be the
number of background events from Monte Carlo (MC) simulation and s be the number of
signal events to be determined in a counting experiments. Let 6 and A be the MC statistical

uncertainty and systematic uncertainties. The likelihood function in this model is

L(s,a,v) = P(nls +vb + aA) x P(m|ym) x G(a|0,1) ,

3 . . 2 3
where s is the parameter of interest, « and ~ are two nuisance parameters; m = 2—2 is a

constant; P(n|\) = %e“ is the Poisson distribution function with the expectation value A,

(z—w)?

G(x|p,0) = \/21706_ 20> is the Gaussian distribution function with mean p and standard

deviation o. The log likelihood function is then
062
InL=nln(s+vb+ al) — (s + b+ al) — 7—|—mlnfy—fym.

Maximizing the likelihood function leads to the following estimation of the best-fit values.

S5=n-—>,

[oN
Il
]
Y
I
—_

Let V be the covariance matrix of the fitting parameters, the inverse of its estimation

at the best-fit values,

&*In L£(6;,0,)
L VY S L L
(V7 96,00,
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where 6;s denote the parameters (0, 6,,05) = (s, «, ). The inverse of V is

with the determinant det |V ™'| = %22 The diagonal elements of V give the uncertainty of
n

the fitting parameters [119].
)
b=V =Vn+A"+8*, 6,=/Vyu=1, 6,=/Vy=—.

A higgs combine Ratio model: The default model of combine is just to include a scale

factor (with a range of 0 to 20) that multiplies whatever template is declared as signal.

Sdata = “/Ssignal + ESbkg

where 1/ is just a correction factor combine needs to apply to S, to get the best fit.
Typically, when we normalize the signal template to the number of events we expect to see
from a predicted cross section, p can be interpreted as how much we need to correct the
predicted cross section, i.e., [t = Opmeasured /Otheory - HOWever, if we do a new fit where we
scale the Sg,,, by some constant, the meaning of the fit parameter y of this fit would be

different
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Sdata = M,-(C'Ssignal) + ESbkg

W=
C
where, 1/ is just the initial 4 from the first fit over the constant factor C. Now, replace C

with 1/Utheory .

Si nal
Sdata = MI'(ﬁ) + ZSbkg

Otheory

’
H = [-Otheory

O measured ) o
-Utheory
Otheory

= Omeasured

This result in fitting to a cross section. We also need to fit for ratio R = tty /tt . First, we

allow tt to float and scale it with y ;.
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Sdata = ,utffy '(Stf'y /Jsftlzory) + Ntf '(Stf /O—ttlgeory )ESbkg

Next, we scale S;ty by -

Sdata = :U’”-:utf '(Stfv /O-:lg;:yory> + :LLtE '(Stf /O-tt}tleory)zsbkg

which means signal template is scaled by . ; over the tt theory cross section and p " will

be the ratio of ttv to tt cross section.

tty
Utheory )

= p.( tt
O measured
Ty tty
ag
_ (Umeasured) ( theory )
tty tt
g theory Omeasured
tty
O measured
tt
O measured

"

For the combine implementation, we introduce three parameters a) a scale factor of 1/c0,t~y
which is multiplied to ttytemplate and freeze it b) a scale factor of 1/t which is multiplied
to tt template and freeze it ¢) a parameter that multiplies both tt and tty templates and let

it float.
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Figure 114: The prefit(left) and postfit(right) plots of an invariant mass distribution of
dilepton samples in a control region with N, = 2, N, = 0, N; > 2, N, = 0 in the ee +
jets channel and the yuu + jets channel for 2016, 2017, and 2018 dataset.
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Figure 116: The prefit(left) and postfit(right) plots of an invariant mass distribution of
dilepton samples in a control region with N, = 2, N, = 0, N; > 4, N, = 0 in the ee +
jets channel and the yuu + jets channel for 2016, 2017, and 2018 dataset.
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APPENDIX C
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Table 47: Summary of the signal strength extraction for full Runll data

Postfit Asimov:

Full Runll tty SF nonPrompt SF
e+jets  1.0079%4 1.00+001
p+jets  1.007003  1.001093
I +jets  1.007992 1.00+002
Postfit Toy:
Full Runll ttySF  nonPrompt SF
e+jets 097905 (.99+002
p+jets  1.007994  1.00%993
[ +jets  0.981993 1007092
Postfit Data:
Full Runll ttvy SF nonPrompt SF
e + jets 1.27+996  (0.94+9-9
p+jets  1.291904 0.96+904
[ + jets 1.3270:01  0.9576:03
Postfit Toy:
Full Runll 2o nonPrompt SF
e+jets  0.019417990095 1 0+003
p+jets  0.0200975:00083  1.00+5:03
I +jets  0.019767900068 1 p+0-02

Postfit Data:

Full RunlI U% nonPrompt SF  tt cross section (pb)
e + jets 0.0205558:00099  1.02X0:09 873.69122-80
p+jets  0.0215658:000%8  1.035009 870.28+1%-39
[+jets  0.02203X500061 1.017509 876.95 1304
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APPENDIX D

tty

The technical implementation for fitting to ratio (R = -7~ is done combine input datac-

ards by adding the following scripts. The rescaling of the tt and tt templates is done by

scaling with 1/ (a?gjory %) and 1/ (og‘eory by, respectively, which are frozen to their particu-

lar values. A rate parameter used to scale both the tty and tt templates.

renormTTGamma rateParam * *TTGamma* 0.06292616746918506
nuisance edit freeze renormTTGamma ifexists

renormTTbar rateParam * *TTbarx* 0.0012022698855439068
nuisance edit freeze renormTTbar ifexists

TTbar_SF rateParam * *TT* 831.76
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Figure 117: The distribution of the number of vertices in 0 + control region with N; >
4, N, > 1in e + jets and pu + jets for 2016(top), 2017(middle), and 2018 (bottom).
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Figure 119: The electron(L) and muon(R) 7 distribution in O +y control region with N; >
4, N, > 1in e + jets and pu + jets for 2016(top), 2017(middle), and 2018 (bottom).
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Figure 137: The distribution of the focused o;,,, with no cut in Charge hadron isolation in

the signal region (N; > 4, NV, > 1) split by photon category in e + jets (L) and p + jets (R)
for 2016(top), 2017(middle), and 2018(bottom). The sideband region is defined as
0.011 < gy,,,, < 0.021.
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Figure 139: Double Negative log likelihood distribution for tty in e+ jets (L) and
i+ jets (R) channels with Asimov fit for full RunlII data.
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Figure 140: Double Negative log likelihood distribution for tty with Asimov fit for full
RunlI data.
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Figure 141: Double Negative log likelihood distribution for Ratio in e + jets (L) and
i+ jets (R) channels with Asimov fit 2016 (top), 2017 (middle), and 2018 (bottom) data
taking periods.
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Figure 142: Double Negative log likelihood distribution for Ratio in e+ jets (L) and
i+ jets (R) channels with Asimov fit for full RunlII data.
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Figure 143: Double Negative log likelihood distribution for Ratio with Asimov fit for full
RunlI data.
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Figure 144: Double Negative log likelihood distribution for Ratio in e + jets (L) and
i+ jets (R) channels with data fit 2016 (top), 2017 (middle), and 2018 (bottom) data
taking periods.
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Figure 145: Double Negative log likelihood distribution for Ratio in e+ jets (L) and
i+ jets (R) channels with data fit for full RunlI data.
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Figure 146: Double Negative log likelihood distribution for Ratio with data fit for full RunlI
data.
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APPENDIX H
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Figure 150: Pre-fit (left) and post-fit (right) plots for Data MC agreement for o3, fitting in
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the signal region for M, (top) and Chlso (bottom) for e channel in 2016 data.



226

35.92 fb! (13 TeV) 35.92 fb (13 TeV)
A F A F
> = ¢ Data Y uncertainty > r ¢ Data Y uncertainty
o 70 CMS fiyiso iy non prompt o 70— CMS tiy iso iy non prompt
9 | prelimina M iiso B i non prompt 9O L preliminar Mo B t non prompt
%] - ry 7] - y
S 60— e+iets I Wy iso B8 Wy non prompt e 60— e+iets Il Wy iso B8 Wy non prompt
[ C ] W zy iso B zy non prompt [3) C J M zy iso B2 zy non prompt
o sof N24, Nh=0 I other_1yiso S5 other_1y non prompt o sof N24, szo Il other_1y iso & other_1y non prompt
v E v E
40 L] 40 LJ
30 30f-
20 20
108 108
o L12F = o 12
s =
3 1%\\\\%\\\\\\\\\\\\\\\\\&\\&\\\\\\\\\\\\%\\\\\\\\\% 3 ..
© ©
O 08 ~——50 20 60 80 100 120 140 160 180 O 082020 60 80 100 120 140 160 180
m(ly)(GeV) m(ly)(GeV)
35.92 fb (13 TeV) 35.92 fo! (13 TeV)
N N
> o ¢ Data RjUncertainty > 7000 e Data [ Uncertainty
§ 7000 CMS fy  Emt 3 r CMS tty [t
2 £ Preliminary mwy  Ezy 2 6000~ Preliminary mwy 2z
L%, 6000 e+jets t I Other 0Oy g E etjets t I Other 0Oy
¥ 5000~ N24, N21 v S000E" N=4, N 21
4000 a 4000
3000 ; 3000 ;7
2000 ; 2000 ;
1000 f— 1000
018 018
s o s
T It o--—--—-g SR YU W T 1. - 'y |
Sos : : - : - : - : Sos : : - : - : - :
- 100 150 200 250 300 350 400 450 500 - 100 150 200 250 300 350 400 450 500
M3(GeV) M3(GeV)

Figure 151: Pre-fit (left) and post-fit (right) plots for Data MC agreement for o, fitting
in zero btag control region (top) and zero photon control region (bottom) for e channel in
2016 data.
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Figure 152: Post-fit plots for Data MC agreement in ?—gj fitting for M;and Chlsoin the

signal region (top left and top right, respectively), and zero btag control region and zero
photon control region (bottom left and bottom right) for e channel in 2016 data.
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Figure 153: Pre-fit (left) and post-fit (right) plots for Data MC agreement for oy, fitting in
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Figure 154: Pre-fit (left) and post-fit (right) plots for Data MC agreement for o, fitting
in zero btag control region (top) and zero photon control region (bottom) for i channelin
2016 data.



<Events/GeV>

Data/MC

<Events/GeV>

Data/MC

Figure 155: Post-fit plots for Data MC agreement in U;—gj fitting for M;and Chlsoin the
signal region (top left and top right, respectively), and zero btag control region and zero

35.92 b (13 TeV)

45 =  Data Uncertainty

E C MS tty iso tty non prompt
40 Preliminaw M it iso BZ& tt non prompt

E +iets I Wy iso &8 Wy non prompt
35 Kt Wl 2y iso & zy non prompt
20F NJ24, szl I other_1yiso BEZ other_1y non prompt
25F-

E ¢ .
20
15 ; ®

F .

E .
10—

E Ll

5 C L

1.2F
08 100 150 200 250 300 350 400 450 500
M3(GeV)
35.92 fb™ (13 TeV)
® Data Uncertainty
35 C MS tty iso tty non prompt
pre"minary = ttiso % £t non prompt
B Wy iso Wy non prompt
U+Jet5 [ ] Zyv\so B2 Zyvnon pprompl:
NJ24, Nb=0 I other_1yiso S5 other_1y non prompt

-0 20 40

60 80 100

120 140 160

180

m(Ly)(GeV)

230

<Events/GeV>

<Events/GeV>

35.92 fb™ (13 TeV)
E ¢ Data Y uncertainty
4000 C M S tiy iso tty non prompt
F Preliminar M ttiso B tt non prompt
3500 = +Hets y Il Wy iso {22 wy non prompt
= Kt M zy iso B zy non prompt
3000 Nj24, Nb21 I other_1y iso ] other_1y non prompt
2500
2000
Fe
1500
E .
L]
1000
500
o 12
s . A
FRE S ¢ > »
8
08— 7 6 ] 10 12 14 16
Chlso(GeV)
35.92 fb™ (13 TeV)
C ¢ Data Uncertainty
10000~ CMS fty
 Preliminary . Wy -th
soool HHets ! i Other_by
E N4, N >1
L b
6000{—
4000/~
2000
018
s
E -8 -—-0-0-—0--—-0-—---0 @ @i aen o @ s |
©
a 0.8 L L L L " L L L
: 100 150 200 250 300 350 400 450 500
M3(GeV)

photon control region (bottom left and bottom right) for 1 channel in 2016 data.



41.53 ™ (13 TeV)
A =
> 40— ¢ Data Uncertainty
[0} E C MS tty iso tty non prompt
% 35 E Preliminary Wl iiiso B tt non prompt
€ E etiets I Wy iso &% Wy non prompt
g 30f ] Blzviso B2y non prompt
o E NJ24, szl I other 1y iso B8 other_1y non prompt
V. 25
g 4
20
g b
15
= .
E .
— .
o
=
3
8
100 150 200 250 300 350 400 450 500
M3(GeV)
41.53 ™ (13 TeV)
A -
> o ¢ Data XY Uncertainty
g 3000 F CMS ty iso fty non prompt
> o Preliminary B iiiso B tt non prompt
< 2500( . I Wy iso &% Wy non prompt
c E e+ets
0>J - W zy iso B zy non prompt
L\If 2000 - NJ24, szl I other_1y iso B8 other_1y non prompt
1500}
e
1000 o
500
ol
=
FEESA SN W
T
0 08— 7 6 ] 10 i) 14 16
Chlso(GeV)

Figure 156: Pre-fit (left) and post-fit (right) plots for Data MC agreement for oy, fitting in
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Figure 157: Pre-fit (left) and post-fit (right) plots for Data MC agreement for o, fitting
in zero btag control region (top) and zero photon control region (bottom) for e channel in
2017 data.
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Figure 158: Post-fit plots for Data MC agreement in ?—gj fitting for M;and Chlsoin the

signal region (top left and top right, respectively), and zero btag control region and zero
photon control region (bottom left and bottom right) for e channel in 2017 data.
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Figure 159: Pre-fit (left) and post-fit (right) plots for Data MC agreement for oy, fitting in
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Figure 160: Pre-fit (left) and post-fit (right) plots for Data MC agreement for o, fitting

in zero btag control region (top) and zero photon control region (bottom) for i channelin
2017 data.
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Figure 161: Post-fit plots for Data MC agreement in U;—gj fitting for M;and Chlsoin the

signal region (top left and top right, respectively), and zero btag control region and zero
photon control region (bottom left and bottom right) for x channel in 2017 data.
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Figure 163: Pre-fit (left) and post-fit (right) plots for Data MC agreement for o, fitting
in zero btag control region (top) and zero photon control region (bottom) for e channel in
2018 data.
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Figure 164: Post-fit plots for Data MC agreement in ?—gj fitting for M;and Chlsoin the

signal region (top left and top right, respectively), and zero btag control region and zero
photon control region (bottom left and bottom right) for e channel in 2018 data.
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Figure 165: Pre-fit (left) and post-fit (right) plots for Data MC agreement for oy, fitting in
the signal region for M, (top) and Chlso (bottom) for i channel in 2018 data.
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Figure 166: Pre-fit (left) and post-fit (right) plots for Data MC agreement for o, fitting

in zero btag control region (top) and zero photon control region (bottom) for i channelin
2018 data.
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Figure 167: Post-fit plots for Data MC agreement in U;—gj fitting for M;and Chlsoin the

signal region (top left and top right, respectively), and zero btag control region and zero
photon control region (bottom left and bottom right) for 1 channel in 2018 data.
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ABSTRACT

MEASUREMENT OF THE CROSS SECTION OF TOP QUARK PAIRS PRODUCED
IN ASSOCIATION WITH A PHOTON IN LEPTON + JETS EVENTS AT
v/s = 13 TEV WITH FULL RUNII CMS DATA

by
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Degree: Doctor Of Philosophy

The inclusive production cross section of top quark pairs in association with a photon
is measured in proton-proton collisions at the LHC with 13 TeV energy using the full RunII
data collected by CMS in 2016, 2017, and 2018 with a total corresponding integrated lumi-
nosity of 137 fb™". The relative fraction of tty events normalized to inclusive tt production
is measured. The cross section measurement provides important information about the
electromagnetic coupling of the standard model top quark and is sensitive to physics be-
yond the standard model. The analysis is carried out in the in semileptonic decay channel
with a well isolated high P lepton (electron and muon), at least four jets out of which at
least one must be b-tagged, and an isolated photon. Photons may be emitted from initial
state radiation, top quarks, and decay products of top quarks. The fiducial phase space
with a photon of transverse momentum > 20 GeV and |n| < 1.4441 is used. A simultaneous
likelihood fit of control regions with the signal region is done to constraint the backgrounds

and to extract the tt~y cross section. The measurement of the ratio of ttvy to tt is 0.02055 +
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0.00099 (syst.) & 0.00099 (stat.) in e channel, 0.02156 + 0.00068 (syst.) £ 0.00068 (stat.) in
i channel , and 0.02203 + 0.00064 (syst.) + 0.00064 (stat.) in e 4+ p channel , respectively.
The measured inclusive cross section is 3.81 £ 0.15 (syst.) £ 0.10 (stat.) pb in e channel,
3.87 + 0.11 (syst.) £ 0.07 (stat.) pb in x channel , and 3.96 + 0.10 (syst.) & 0.06 (stat.) pb in
e + p channel , respectively for full Runll data. The total inclusive cross section with a
photon of transverse momentum > 20 GeV is found to be 3.96 £ 0.10 (syst.) +0.06 (stat.) pb
with full RunIl CMS data. The results are in agreement with the standard model next to

leading order prediction.
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