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DISCRETIZED LIGHT-CONE QUANTIZATION:
APPLICATION TO QUANTUM ELECTRODYNAMICS

In this work, a general method for solving quantum field theories, Discretized
Light-Cone Quantization (DLCQ), is presented. The method is very straightfor-
ward and essentially consists of diagonalizing the light-cone Hamiltonian matrix
for the mass spectrum and wavefunctions. This method has been applied success-
fully in the past to various one space, one time dimensional theories. In each of
these past applications, the mass spectrum and wave functions were successfully

obtained, and all results agree with previous analytical and numerical work.

The success of DLCQ in 1+1 dimensions provides the hope of solving theories
in three space and one time dimensions. The application to higher dimensions is
much more involved than in 141 dimensions due to the need to introduce ultravi-
olet and infrared regulators, and invoke a renormalization scheme consistent with
gauge invariance and Lorentz invariance. This is in addition to the extra work
involved implementing two extra dimensions with their added degrees of freedom.
In this paper, I will present the application of DLCQ to 3+1 dimensional Quantum

Electrodynamics.

The theoretical framework of DLCQ in the context of 3+1 QED is shown in
the first 8 sections. Issues addressed include the question of self-induced inertias
and normal ordering, the agreement of Feynman rule and light-cone answers for
one-loop radiative corrections, and ultraviolet and infrared regulation. Many of the
results presented here are applicable to quantum field theory in general. Unfortu-

nately, solving 3+1 QED in this general framework has so far proven elusive due to

il



a number of difficulties. These problems and a way around them using a truncated
Fock space are presented in Section 7, with renormalization in this truncated space
presented in Section 8. The next 5 sections show attempts to numerically solve
341 QED in a truncated Fock space by diagonalization of the Hamiltonian and by

a variational calculation for the positronium system.

The numerical results shown are not competitive with state of the art calcu-
lations for positronium, but do demonstrate that the theoretical underpinnings
of DLCQ are sound and that applications to other field theories such as Quan-
tum Chromodynamics should be achievable. Further improvements in numerical

technology may provide competitive answers.
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1. INTRODUCTION

Discretized Light-Cone Quantization (DLCQ) is a general method for solving
quantum field theories for their mass spectrum and wave functions. This method
was developed for and applied successfully to Yukawa theory, ¥1¢, in one space
and one time dimensions by Pauli and Brodsky” Other successful applications in
1+1 dimensions include Eller, Pauh and Brodsky[ Tto 1+1 QED and the Schwinger
model, Harindranath and Vary“ to ¢ theory in 141 dimensions, and Hornbostel,
Brodsky and Pauli to 1+1 QCD for N¢ = 2,3,4. In each of these applications,
the mass spectrum and wave functions are successfully obtained, and all results
agree with previous analytical and numerical work. For details, please refer to the

original papers.

The success of DLCQ in 141 dimensions provides the hope of solving 3+1
theories. The application to higher dimensions is much more involved than in
141 dimensions due to the need to introduce ultraviolet and infrared regulators,
and invoke a renormalization scheme consistent with gauge invariance and Lorentz
invariance. This is in addition to the extra work involved implementing two extra
dimensions with their added degrees of freedom. In this paper, I will present the
application of DLCQ to 3+1 dimensional QED.

Sections 2 and 3 outline the general methodology of DLCQ. The results here are
applicable to all field theories. Section 4 applies the general method to 3+1 QED.
A variety of interesting problems are exposed and (hopefully) solved, including the

" inversion of the operators :3% and (:0%)?, the question of self-induced inertias and
normal-ordering, and the derivation of the fermion mass renormalization insertion.
With the introduction of ultraviolet and infrared regulators in Section 5 and 6,
the general framework is outlined for 3+1 field theories. Unfortunately, solving
3+1 QED in this general framework has so far proven elusive due to a number of
difficulties. These problems and a way around them using a truncated Fock space
are presented in Section 7, with renormalization in this truncated space presented

in Section 8. The next five sections describe attempts to numerically solve 3+1



QED in this truncated Fock space by diagonalizing the Hamiltonian and by a

variational calculation for the ground state.

Those familiar with the language of DLCQ may wish to skip Sections 2 and 3
and continue to Sections 4 through 8 where the groundwork for 3+1 QED is laid.
For those mainly interested in numerical results, these are in Sections 9, 10, 12,
and 13. A variational method for finding the ground-state is described in Section

11. Most of the mathematical details are relegated to various appendices.



2. OVERVIEW OF LIGHT-CONE QUANTIZATION

An age old question of modern physics has been how to combine relativity
(covariance) with a Hamiltonian formulation of dynamics. Typically, one might
do this by specifying a particle’s dynamical coordinates, say its position and mo-
mentum, at various time slices ¢ = tp. The system is_quantized by specifying
commutation relations between the various dynamical quantities on these equal-
time surfaces. The particle is then propagated forward in time by the Hamiltonian,
H. However, as Dirac" points out, one is not confined to specifying conditions
on a surface of equal-time; in fact, any space-like hypersurface can be used. This
is shown in Figure 1. The dynamics should be independent of the hypersurface
chosen. Three specific forms are detailed by Dirac. The instant form is the tradi-
tional formulation given by hypersurfaces of equal time, t = tg. The point form is
described by surfaces with z,z# = k2, where & is a constant. The form that the
rest of this paper focuses on is the front form, now commonly referred to as light-
cone quantization. In this form, dynamical quantities are specified on surfaces of
equal light-cone time, 7 = t + z/c. A comparison of these various forms is given
in Figure 2. One advantage of the front form is immediately evident. Whereas the
Hamiltonian in the instant form, Hinstant = \/m, involves the square root
operator, the light-cone Hamiltonian, Hyyon: = (iﬁ_ + m?)/p*, does not. In fact,
all other forms other than the front form involve the square root operator. This
turns out to provide numerous simplifications, including only positive light-cone
- momenta and a simple vacuum structure. A comparison of light-cone quantization

with equal-time quantization is shown in Table 1 and various definitions are given

in Table 2.

The general method of quantizing a field theory proceeds as follows. The

stress-energy tensor is derived from the Lagrangian in the usual fashion,

— T = 8¢ — g L. (2.1)




The four plus components are conserved quantities,

0 1 ]

—P# = b= —-d’z +u .

a"_P 0, P 2/d.1: &z, T, (2.2)
and correspond to the light-cone energy (p = —), light-cone momentum (¢ = +),

and transverse momentum (g = 1,2). One can question whether the boundary
at £~ = oo is handled correctly. A good discussion of this matter can be found
in McCartor' He shows for massive theories that the above four quantities are
not only conserved, but also are equivalent to the conserved quantities one would
normally write down in an equal-time theory. That is, for massive theories,
1

Pt =2 / dz~d*zZ, T* = / ez T . (2.3)

The theory is then quantized by imposing equal light-cone time commutation rela-

tions between the various independent degrees of freedom, ¢, and their momenta,
aL

T = 3(0-9)
[¢(z*,2), 7(c*,2)] = i6®)(z ~ 2') . (2.4)

The above procedure is shown in more detail for 3+1 QED in Section 4.

A mathematically similar but conceptually different approach to light-cone
quantization is infinite momentum frame physics. This method involves observing
the system in a frame moving past the laboratory at the speed of light and was
first uncovered by Weinberg!” It should be pointed out that though light-cone

" quantization is similar to infinite momentum frame quantization, it differs since
no reference frame is chosen for calculations and is thus manifestly Lorentz co-
variant. The only aspect that “moves at the speed of light” is the quantization
surface. Other works in infinite momentum frame physics include Drell, Levy and
Yan'® Susskind and Frye,m Bjorken, Kogut and Soper,[m] and Brodsky, Roskies and
Suaya.[ul This last reference presents the infinite momentum frame perturbation
theory rules for QED in Feynman gauge, calculates one-loop radiative corrections,

“and demonstrates renormalizability.



Important papers in light-cone quantization include Casher,m] Chang, Root
and Yan" Lepage and Brodsky! Brodsky and Ji’ and Lepage, Brodsky, Huang
and Mackenzie® Casher gives the first construction of the light-cone Hamiltonian
for non-Abelian gauge theory and gives an overview of important considerations
in light-cone quantization. Chang, Root and Yan demonstrate the equivalence
of light-cone quantization with standard covariant Feynman_analysis. Detailed
rules for QCD and applications to exclusive processes are provided by Lepage and
Brodsky. They also present a table of light-cone spinor properties in Appendix A.
A summary of the light-cone perturbation theory rules for QED in light-cone gauge
and their derivation is given in Appendix B of Ref. 15 and Appendix A of Ref.
16. The notation used in this paper will follow that used in these two references.

A recent summary of QCD in light-cone quantization can be found in Brodsky[”]

and Brodsky and Lepage.[w]



3. DISCRETIZED LIGHT-CONE QUANTIZATION

An outstanding problem of modern quantum field theory is solving for bound
states. The best available method at present is the Bethe-Salpeter formalism.
However, calculations using this method are extremely complex and may be in-
tractable beyond the ladder approximation. It may al§o not be_p;actically possible

to extend the method to systems with more than a few constituent particles.

A more intuitive approach would be to solve the equation
H ) =\ P2+ M2 ) (31)

for the particle’s mass, M, and wavefunction, |¢). Here, one imagines that |¢) is
an expansion in multi-particle occupation number Fock states and that the oper-
ators H and P are second quantized Heisenberg picture operators. Unfortunately,
this method is severely complicated by the presence of the square root. This first
of all introduces the mathematical difficulty of interpreting the square root as an
operator. But more importantly, it leads to a very complicated vacuum structure
involving spontaneous particle creation from the vacuum. This problem persists
even if the above equation is replaced by a Dirac or Klein Gordon type of equa-
tion. Fortunately, light-cone quantization offers an avenue of escape. As already
mentioned in Section 2, the square root operator does not appear in light-cone for-
malism, and as we will see in Section 4, there is no spontaneous pafticle creation

" in this theory.

The method of Discretized Light-Cone Quantization (DLCQ) was first devel-
oped by Pauli and Brodsky (see Refs. 1 and 2) as a general method for solving
field theories. They applied the method to 141 Yukawa theory and 1+1 QED. The
method was later extended to numerous other field theories (see Introduction). The

derivation of the method follows.

The mass shell condition for a particle such as a pion with 4-momentum P*



written in light-cone variables is

_ P M

P~ T

(3.2)

where P~ and Pt are the light-cone energy and momentum, respectively. This

condition is equivalent to the usual space-time expression,

— - -

- P’ =4/P24 M2 . (3.3)

Because the pion is an eigenstate of the system, it must satisfy this equation.
In the spirit of second quantization, one imagines that P—, P, P ') are Heisenberg
picture operators and that the pion wavefunction is expanded in a complete set of

multi-particle occupation number Fock states,
(1) =Y tasa In) - (34)
n

|'l/)n/,|.|2 is the probability of finding the Fock state |n) inside the pion. For example,
the pion can be expanded into a quark pair Fock state, a Fock state with a quark

pair and a gluon, and so forth,

|7T) = |qq) ")bqi/r + qug) ¢q7g/1r +.... (35)

A single-particle state such as |g) is defined to be a quark creation operator acting

on the Fock state vacuum,
lg) = a}|0) , (3.6)

and the many-body Fock state with n, quarks, n; anti-quarks and ny gluons is
described by

|Tl) = VNlnq 241,92, - -qngy; n(j:q_l,q_%---q—nq; ng:gl7g2""gng> (37)

where vV is a normalization factor that keeps (n|n) = 1 and ¢;, §;, and g; are

-_generic labels that describe all the quantum numbers of the ith component. The



decomposition of |r) into its Fock basis is shown schematically in Figure 3. The

variables are explained below.

If one is working with a Lorentz invariant theory (i.e.: £ transforms as a Lorentz
scalar), the infinitesimal generators of Lorentz boosts, P* and M*¥ (energy-momentum

and angular momentum), must satisfy the Poincare algebra,

— -

[P*, P"] =0 ,
; [M’”’,P"] = —gMP¥ 4 g P (3.8)
i [MPY M%) = —ghP MY® + g"P MM — ghT M + ¢*° MP*

In particular, P*, P~, and P | form a commuting set. One should verify this for
the specific Lagrangian one is interested in. If the basis set |n}) is chosen such that
P* and P, are diagonal — this can be done by choosing the set of plane waves
— then one can replace the operators Pt and P ', by their respective eigenvalues.
One then has

P} + M?

P“}r:_P+,ﬁl> =57

T P+,P‘_L> . (3.9)
Assuming that the basis set |n) is complete, one can project out the nth component,

- P? + M?
Z (nl P lm) d)m/x = ___L_P+_ "/)n/t . (310)

m

tn/x is the amplitude for finding the state |n) in |r) and is therefore a Lorentz
invariant quantity. As a result, it can only be a function of the Lorentz invariant
_ quantities z; and k ;- x; is the light-cone momentum fraction of the :th constituent
of |n) and k) ; is the momentum of the ith constituent perpendicular to the total
momentum of the pion. One can show by Lorentz transformation that the con-
stituent’s plus momentum and momentum perpendicular to the z direction, k;F

and k 1, are related to the pion’s plus and perpendicular momenta, P, P |, by
k;"::c,'P+ s ’-C'J_,‘::II,'P._L-{-IC_L,' . (3.11)

Tz; is also the antilog of the ith constituent particle’s rapidity. Momentum conser-



vation requires

Zz;:l, ZE_L,‘zﬁ_L. “ (3.12)

The Fock state expansion for the pion now reads,

n: :c,'P;, :c.'-ﬁJ_ +"l-cl,~> (3.13)

l7r : P+,I3_L> = ZI/)n/x(miI, E_Li’ Ai)

with normalization

|7y =1". (3.14)

The sum is over all Fock states, momenta, and spins, and wn/,,(x;,l-c‘_u,)\,-) is
the amplitude for finding the Fock state |n) with constituents with momenta
(z.'P'*,x,'I-’. L+ k 1i). Note that if the coefficients ¥/, are determined for some
P* and P, then v, /x are known for all P* and P/ since v, /x is independent of
these quantities. In partiéular, one may as well choose P | = 0, and P* = M,.
These are the values of the pion’s plus and perpendicular momenta at rest. It
should be emphasized that this choice does not imply that further calculations are
being done in the pion’s rest frame. The choice ﬁ.L =0, and P* = M, is only
made for convenience because the coefficients ¢,/ are independent of P* and P,.

Any other convenient choice is also acceptable.

We now define the light-cone Hamiltonian, Hyc, to be P* P~. Henceforth, the
light-cone Hamiltonian is taken to mean the product of P+ and P~. The light-cone

bound state equation reads,

> (nl Hio Im) $umya(@i ELis M) = M7 Yo pn(@is kris Xi) - (3.15)

m

If one discretizes the Fock basis by requiring periodicity or anti-periodicity of the

-_quark and gluon fields along the zt = ¢t — z and 7, directions, one sees that the



bound state equation is a discrete matrix equation for the eigenvalues, M2, and

eigenvectors, ¥y /.,

i Yoa/r (9alVgd) (93lVladg) -7 [ Yog/r
(M,%—Eﬁ;——') Yoqo/x | = | (9291V l9@) (q29lV'leqg) --- | | Yago/x
(3.16)

Here, Hyc has been split into an interacting piece, V, and a non-interacting piece,
Hy = Zi(kii+m?/x,'). m; is the mass of the ith constituent particle. For the case
of the pion, it is either the quark mass or the gluon mass. Diagonalization of this
equation can now be done on a computer (after implementing ultraviolet and in-
frared regulators) to reveal the complete spectrum of pion states and multi-particle
scattering states with the same quantum numbers, along with their corresponding
wavefunction expansion coefficients, 1, /,. Solving field theory has now been re-
duced to obtaining the solution to this fairly simple equation. In the next section,

a specific application to 3+1 QED is detailed.

10



4. DLCQ: APPLICATION TO 3+1 QED

In this section, the light-cone Hamiltonian, Hyc = P*P~, is derived from
the 341 dimensional QED Lagrangian. The approach given here is a heuristic,
loosely structured approach ba.éed on canonical quantization similar to that used
in Refs. 1 and 2. A more rigorous treatment can be made using Dirac’s methods
for handling constrained Hamiltonians. This is explored in Appendix A. One issue
that will arise is how to invert the operators i3+ and (:07)2. The method used

[19)

here was suggested by Hamer ~ and involves using the symmetrized form of the

Lagrangian and making some simple arguments based on momentum conservation.

We begin with the familiar form for the 3+1 QED Lagrangian,

[_'7“6 - ] Y- me’b"/’ - —F;wFlw - gd”Y”‘bA (4.1)

F#¥ is the electromagnetic field tensor and is equal to 9#AY — ¥ A*. We will
assume that the system obeys periodic boundary conditions in the i o= 1,2
directions with period 2L, and periodic or anti-periodic boundary conditions in
the £~ direction with period 2L. We also choose to work in light-cone gauge,
At = A%+ A3 = 0. It turns out, as will be shown shortly, that this gauge has
the advantage of having only two, physical photons. This is very useful in the
context of DLCQ since it makes the Fock state expansion easy to interpret. It also
turns out that the development of light-cone gauge in light-cone quantization is
very similar to axial gauge (A% = 0) in usual equal-time quantization™ It will be

useful to define the projection operators

1
Ay = 29%* 70(7" 4%,

2 (4.2)
Pt = A:H/) :
The operators Ay and A_ have the following properties,
— ALb=As, Ay+A_=1, Al=A:, AjA_=0. (4.3)

11



Using the expression for the canonical momenta for the various fields,

"= 50 “4)
results in
1 +=i1/)i,' 7r¢1+'=‘—i1,b+-, Ty =0, ‘7r¢t_?—‘0, (45)
ma, = —0TA', w4, =0
where we recall that 7 = 2~ = £% + 3 is the light-cone time. Since the fields #_,

1/)i and A~ do not have canonical momenta, they must be eliminated. This can

be done by solving the classical equations of motion for these fields,

10ty = [—idia’ + gAic® + Bme] ¥4 ,
ity = tbl ib_,'ai + gAie + Bme| (4.6)

(i0%)2A™ = 2070, A + 499l Yy .

—
0 means the derivative acts to the left. These classical equations of motion are

obtained from the usual Euler-Lagrange equation, aﬂa(‘g—fﬂ = %, and can be

inverted by defining ¢ = 31:g to be the solution, including homogeneous terms, of
0:¢ = g. This gives

po= ;+[ 00t + B Yy — S Moy

yl = 5;‘/4 [ib_,-ai + ,Bme] + ,——z/)iA'a' ; (4.7)

08, A" +

_ 2
A (Za+)2 1 ( a+)2"/)+¢+

More details concerning 1/:0% and 1/(i8%)? will be provided later. Observe that
the only remaining independent degrees of freedom are ¥4 and the two transverse,

" physical photons, A 1. Upon substituting the expressions for the dependent fields,

12



writing everything in light-cone variables, and partial integrating d; (this is per-
missible due to periodic boundary conditions in z'), the light-cone energy density

(density of P~), P~ =2, 740+¢ — 2L, becomes
P~ =Py +9P; +¢*P;

16+18 A’}

T ATt A _ Ot J '+'~

sym

42 {wi [itia + Bme] [-ia,-af +fm] ¢+} ,

sym
7_)1— =—9 {’(,L':‘;_A‘ 1_1_:_5‘? [..zaia‘ + ﬂme] 1Z)+} + h.c.

. . ym (4.8)
4 {ﬂmmiaﬂa/ﬂ} ,

sym

Py = 2{¢1A' oo A:aa¢+} +4{¢+¢+( )w+¢+}
sym

sym

{-..}sym are defined to be

1 1 1
{A;a_JrB} = e ()]

{AGE}TPB } = At (; 5+A> (%B> * ((—811)_2"‘> i

The system is now quantized by imposing canonical commutation relations on

the independent fields,

(4.9)

{¢+a($ 3 ) ¢+ﬁ($ vﬂ); = A+°‘ﬂ‘5(3)(£_£) ’ (4.10)

[A'(z",2),0% A’ (2%,y)

Once again, the above can also be derived rigorously using Dirac’s method for

—constrained Hamiltonians. Recall also that the light-cone Hamiltonian, Hyg, 1s

13



related to P~ by

1
Hic=PtpP~ = [5 / dztd®z, Pt

(4.11)

B- / detd*z, ’P‘] )

The extra factors of 1/2 arise from the Jacobian transformation between Z and

(z*,Z1). Also note that in the above development, no use is"ever made of the

-relation

7 1 : 1
/da:AZBz-—/da: (6—1A>B.
L

(4.12)

The system is discretized by expanding the fields in terms of solutions to the

free equations of motion (plane waves), and requiring periodic boundary conditions

for the photon field in the £~ and «*,7 = 1,2 directions, periodic boundary condi-

tions for the fermion field in the z*,7 = 1,2 directions, and periodic or anti-periodic

boundary conditions in the 2~ direction. The numerical results depend very lit-

tle on this last choice, and in the remainder of this paper anti-periodic boundary

conditions will be used

1
Y+(e) = —=
s,n
- 1
Alz) = =
Q0 o
. niw
fermions : k' =
Ly
k=20
L
. piw
photons : k' = —
Ly
- =P
L

n'=0,+1,42,...
2,4,6, (periodic b.c.)
"= { 1,3,5,. (anti-periodic b.c.) (4.13)
p=0,£1,£2,...
p=2,4,6,...,

14



1
m==|"]. xw=2|
X "“‘/5 1 " X _\/é 0 ’
0

EL(T) = —2(1,i), &u(l) = —=(1,~i
f.L(T) - \/5(1, ) ’ J.(l) \/iﬁl, - ) T

- Note that only positive k* are allowed. This is because the mass shell condition,

2 2
k= %}T’l : (4.14)
only allows for k¥ and k™~ both positive or both negative. As one does in equal-
time considerations, the modes with negative energy (in our case, negative k™)
are re-defined to be anti-fermions. The result is that in light-cone quantization,
one only has states with both positive k* and positive k~. The k* = 0 mode is
eliminated because it turns out to be outside the range permitted by the ultraviolet
cut-off (see Section 5). Besides which, the zero mode is not a solution to the free
equation of motion for the‘ fermion anyway. The canonical commutation relations
are preserved by choosing

{bam by} = {domrdlp } = 60800 s [arpoaly] = Ernsll

{bs,ﬂ, dh}=0. (4.15)

Before continuing, the expressions for some of the other conserved quantities

should be written down:
1 2 . -2
Q=3 [ daiit =g [a Pz vlu,

Pt = % / dz=d*%, T+ = / dz=d’z,

. 1.,
¥ (0% )y + 5074 )2] ;o (4.16)
P = % / dz—d*3, T* = / dz=d*%, [¢1(ia‘)¢+ + %amia*Af] :
“The 2~ integrals run from —L to L and the z*,i = 1,2 integrals run from —L; to

15



L, . Inserting the expansions for ¥4 and A 1 into these expressions is straightfor-

ward if one remembers that

kE
ONCETE (4.17)
CEL ) EL(N) = &

Q /d:r d’z, e~ iE-k)z _ §0B)

Doing so and normal-ordering to remove vacuum values results in

Q=g Z (B nben =l gdea]
Z k+a’\pa,\p+z k+[ +dl,ﬁd3’3:| ’ (4.18)

Z k'axpa,\’p-#z k'[ 3n+d3nd3n} .

The last two equations are just statements of k* and k; momentum conservation:
Pt is just the sum of the individual k*s and ﬁ_L is just the sum of the individual
k 18. These expressions are especially simple, and since they are already diagonal,
the wavefunction, [¢), can immediately be chosen to be an eigenstate of them.
Choosing the eigenvalues to be P+ = 2m, and P =0, (recall that this choice is

not necessary, only convenient — see Section 3) gives

{Z palyong + 3 [Phatua + dladea] }14) = 2mel )~ Ky

{Z p'a/\’za,\,z + Z n' [bl,gbs,u'*'dz,gds,ﬂ] }W) = 0]y) ,
s,n

Ap
p=2,4,6,..., n=123,5,...or 2,4,6,... ,

pont=0,41,42 ... .
(4.19)

From now on, only those expansion states that satisfy these equations need be

considered. In the first expression, the integer K is defined to be the eigenvalue
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Pt times L/,

+- 27
Fr=7

In the past, K has been referred to as the harmonic resolution (Refs. 1 and 2).

(4.20)

Now turn to the expansion of the light-cone Hamiltonian Hyc = PYP~. The

expressions : o S -

B L
STV L [go ferte L -gre
= () 5 [ o {7 e )

(3]

' (4.21)
1 - t Lt .- 1 k+ -
{n|m} = ) —/da: { thno ~3kme }
( 2L—-L 10t sym
occur frequently and are taken to be
;lyén,m n,m#0
[njm] = ¢ & nand m=0
0 otherwise , (4.22)

(nlmy = { wbom o #0

0 norm=20 .

The derivation of these results is shown in Appendix B and makes use of k1 and
k | momentum conservation to eliminate various homogeneous solutions that arise
from inverting :0% and (:8%)2. The value of the constant & will turn out to be
irrelevant as long as it is not infinity because the quantity [0]0] never occurs with

* the inclusion of the gauge invariant ultraviolet cut-off (see Section 5). The following

spinor identities will also be necessary to complete the expansion of Hyc:

vjxf( )c ‘ol (t 284,1694 ,\e,\v ,

85,625 2NV

\/§ s -—t623,/\ ’
= V265,-1695 _» -

Using all of the above relations and normal-ordering the Hamiltonian to remove

4.93
X' (s)eha’ Bx(t (4.29)

x'(s)e¥a’ Bx(t

H

x(
Vxi(s)e¥atad x(t
(
(

)=
)=
)
)
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vacuum values and the self-induced inertias (more on these in Section 8), one finally

obtains

tHic: = Ho+ Hiy+ Hy
Hl = Vflip + Vnofh'p ) HZ = Vinstphot + Vinstfcrm 3

K P17 2 2
HO:%; (H) + A a,\,p _ _

¥ é % _(ZLJ—:ZL) + m [bit b”ﬂ + dl,gds,ﬂ] 3

Km,
VfliPZQZ\/;nL_LZ Z \/_

s pmn

1 1
{ + a2s,;_1b1,mb_3,n 6,(:?_? m <; —_ —,r;;) +h.c.
1 1
— azs,gdl,md—s,n ,(33,, m (7—1- — E) + h.c.
+

i 1 1
+ a;s,gb-’,_"_ldsyﬂ 61(3{)—m 2 (_T; ;{)

Vaostip = Z Z

s pmn

{ + GZS,pr’ bs, 6,(;21,"1 €l2s - (p_l _ _—‘-_) +h.c.
1A P n
o . m

+ a—ZS,BbI’mbg’ﬁ 6§£Bvﬂ €1-2s" (p-;l - ’_"L" + h.C.

—_a2s,gdl,_m_d 6,(;2,”” €1og (IQ _ _7_;_-) +h.c. (4.24)

- 7 m
_ G—ZS,I_JdI,mds,n 6,(l+)p m €l—2s" (% — ﬁ) + h.c.
+

3 pL fL
— G;S,Ebs,m_d_s,n 61(1-1)-m 8] E.:LZS (_ - ’;’) h.c.

- aizs,gbs,md—s,n 5,(,32mp & g5 (%- - E“L-) + h.c.} ,
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‘/mstphot = 27!'L2 Z Z

klm,n
3

{ b:ka,bsmbtnél(c_zlm+n2[k m| — 1+ m)]
3

- i L ]

— b} ¢ dt, bmd_om 65 0y [k F Ul 4]
+bt kd tlb3 md“t" 61(:-21m+n [k ml —l+n]

+d! ydyyde bt s®)

“+m+n[k—m|l+n]+h.c.

+ b ¢ bu1bemd-tn 657 pyn [F — m|l+n]+hc} :

Vinstferm = 247FL2 Z Z

s pam

{ +al,, po- ~26,gb}, mbs.n 5(+m g+n{P+mlg+n}
- a;s 328,90 qbs mbs,n 5;(:32m,q+a{P ~nlg —m}
+ a_2s %= 23,qd mds, 61(,1),” q+n{p + m|q + n}
— a}, 2204} s 5<+>,,, ginlp —nlg —m)
—a, 0l o, bomd—sn 60 mialp —m|— g+ 1} +hec.
- a;3,£a23,gb—s,md3 n 6,(,3q)+m+ﬂ{p —nlg+m} + h.c
+al, 020 gb0md—on 650 mia{p —mlg+n} +hoc.

— a-2s pGZs,qbg mbs n 6( p+q+n{p + TLI —q+ m} + h.c.

— 0—23,3‘123,1‘11,&‘13,2 52’)2+2+E{p +n|l—qg+m}+ h.c.} .

" As explained before, p,q,m,n, ... are allowed to take on the integer values
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pi’qi,ki,li,mi,ni :0,:1:1,:*:2,... , 1= ]_,2 ,
g =2,4,6,..., "

2,4,6,... (periodic b.c.)
k,l,m,n=
1,3,5,... (anti-periodic b.c.) ,

(4.25)

and X is a small, fake photon mass. In the above, all terms mvolving [0|0] have
- been removed since these are eliminated by the gauge invariant ultraviolet cut-off.

Also, as described above, one effectively has

L nm n,m#0
[nfm]=4{ ™

norm=0,
(4.26)

{n|m} = { lpm n,m#0
0

norm=20 .

One still needs to include fermion mass renormalization terms in Hic (see
Section 8). Vjip is the spin-flip amplitude for a (anti-) fermion to emit (absorb) a
photon and V,,,f4;p is the no spin-flip amplitude for this process. The familiar three-
point Dirac QED vertex is just the sum of these two amplitudes. Two other types
of vertices appear in light-cone quantization: a four-point instantaneous photon
exchange, Vinsiphot, and a four-point instantaneous fermion exchange, Vi, ferm-
These are just the graphs needed to reproduce the usual covariant Feynman S-
matrix result for scattering amplitudes. An example of this for Mglier scattering

-(e"e”™ — e"e”) is shown in Appendix C. One can think of the instantaneous
photon exchange graph in light-cone gauge as being analagous to the Coulomb
exchange graph in Coulomb gauge. All the interactions conserve k+ and &, as

they must, and are shown schematically in Figs. 4, 5, 6 and 7.

One very interesting feature of Hc is that it does not involve the longitudinal
boz size, L! This is because P* = 7K /L is proportional to 1/L, whereas it can be
shown easily that P~ is proportional to L. Recall that Hyc has been defined to

“be PP
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Finally observe that because of kit momentum conservation and positivity of
k*, there are no interactions involving spontaneous creation or annihilation of a
fermion pair and a photon from the vacuum. Because of this fact, the Fock state
vacuum (the state with no particles) is an eigenstate of the light-cone Hamiltonian

with mass zero,
Hic|0) =0]0) . (4.27)
This immensely simplifies solving for bound states because it removes the need to

constantly recalculate the vacuum.

We now proceed to solve the bound state equation Eq. (3.15) by implementing
a Fock state expansion for the system we are interested in. In these considerations,

we will focus mainly on positronium:

Ir) = Z'd)n/r("[’ EJ.) n)
= Zd)e*‘e‘ Ie+e—> + ¢e+e'7 |e+e_7> +....

(4.28)

The sum is over all Fock states |n) with constituent momenta z; and k;;. The
overlap of positronium with the ete™v Fock state is shown in Figure 8. The Fock

states are eigenstates of P, P, and Hy,

P |nckfEL) = -IiLf|n:k,.+,EL,-> ,
Piin:kf L) = 5¢‘nrk.-+”3h> _— (4.29)
Ho n:k;",];?‘_l_,'> =Z-k—i—’-—:-'—m—'2 n:k?,ic]_,'>,

“but not of the interactions, V. After implementing ultraviolet and infrared cut-offs,
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the matrix equation that must be solved for the positronium mass spectrum is

ete— —-—ﬁ ete-
I:MZ—Z L i] etemy | _ ete—y

zi ] Dm . WY

- - ' ; (4.30)

In summary, the DLCQ procedure is fairly straightforward. One derives the
light-cone Hamiltonian from the Lagrangian by a procedure very similar to stan-
dard canonical quantization. The commuting operators, the light-cone momen-
tum Pt = Kn/L, transverse momentum P 1, and light-cone Hamiltonian Hr¢c =
P* P~ are constructed by expanding in Fock states and are simultaneously di-
agonalized. The expressions for P* and P ') are already diagonal if one expands
in plane waves. The system is discretized by requiring periodic or anti-periodic
boundary conditions in the light-cone spatial dimensions and the system is quan-
tized by imposing canonicé.l commutation relations between the independent fields
and their canonical momenta. The bound state equation Hyc |r) = M2 |x) is di-
agonalized to obtain the invariant mass spectrum and wavefunctions. All of these
quantities are independent of L. To recover the continuum theory, one lets K and

L, approach infinity (this is equivalent to letting L, L) — 00).
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5. COVARIANT ULTRAVIOLET REGULATOR

Before continuing, a method of regulating the k 1 Fock space and other ultra-
violet divergences is necessary. Recall that the Fock space for QED is constructed
by choosing the set of all states with n.- electrons, n.+ positrons and n., photons
with appropriate quantum numbers (charge, total k¥, total k 1,---)- The longitu-
dinal momenta k% are taken to be odd or even multiples of 7/L (depending on
boundary conditions — see Section 4), the transverse momenta k ) are taken to be
integer multiples of /L , the total longitudinal momentum is taken to be Kx /L,

and the total transverse momentum is taken to be 0 1.

The Fock space is naturally finite in k¥ because the total k¥ is just the sum of
the individual k*s. Combining the fact that all the individual ks are positive, non-
zero integers with the fact that there are only a finite number of ways of summing
a set of positive, non-zero integers to form a given positive number demonstrates
finiteness of the k* space. As an example, a Fock state with one electron and
two photons with K = 9 can have the following quantum numbers (anti-periodic

boundary conditions),

Fock State 1 2 3 4 5 6
Electron 1 1 1 3 3 5
Photon 1 2 4 6 2 4 2
Photon 2 6 4 2 4 2 2 .

In contrast to k*, the Fock space is naturally infinite in k | because k | can
take values that are positive or negative. An ultraviolet regulator must therefore
be introduced. We will choose one such that the sum of the (k% + m?)/z of each
Fock state is less than a cut-off value, A% (see Ref. 14);

k2. 2
Z Flitmy < A?. (5.1)

; Iy
:

* A local ultraviolet regulator has been shown to give better numerical convergence in higher-
loop perturbation theory calculations. Applying such a regulator to bound state calculations
is under investigation.
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The sum is over all the individual particles in the Fock state under considera-
tion. The left hand side of this equation is just the invariant mass (for a single
particle state, the invariant mass is the rest mass) squared of the Fock state,
M?=ptp- 4 PJ2_. It is also the value of the light-cone Hamiltonian at zero cou-
pling. So, the ultraviolet regulator can be stated simply as requiring the invariant
mass squared of the individual Fock states be less than A2. Since the invariant
mass is frame independent, this regulator is Lorentz invariant. It also turns out,

with a modification described below, to be tree-level gauge invariant.

The off-shellness of a certain Fock state is given by

- _ (Elg+xiﬁl)2+m2- P_2L+M2
kT — = Ll —
Z i =P Z z; P+ P+
' ' 2 \ - (5.2)
1 1i +m; 2
=pr| XM
% J

One sees immediately that the ultraviolet cut-off given in Eq. (5.1) removes Fock
states that are far off-shell; this is a reasonable procedure because far off-shell
states give only a small contribution to a physical wavefunction. In fact, one sees

from Egs. (3.15) and (3.16) that a typical wavefunction in QED will have the form

- 1
n .,k 1" Al = V‘I’ 5-3
¢ (xz 1 ) M2_E,(k_2]_,+m,2)/xl ( ) ( )
which tends to vanish as
k2. 2
Z'L—'-{-ﬂl-'——Mz—roo. (5.4)
T

In principle, one lets A go to infinity to recover the full theory. Practically,
we will make all further deliberations at finite values of A and include all effects
from A in the bare quantities a(A) and m.(A). Furthermore, since we are mainly
interested in bound state properties, one would imagine that Fock states with large
invariant mass squared (i.e: are far off-shell) have little effect. As a result, one can

even calculate with fairly small values of A.
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Cutting off the photon’s momentum &, can lead to problems with gauge invari-
ance because the various graphs involved in photon exchange are cut-off in a differ-
ent way. That is, one can imagine a situation in Mgller scattering (e"e™ — e~e™),
for example, in which the exchange of a real, physical photon is cut-off (the relevant
Fock state is the e™, e, v intermediate state) but the exchange of an instantaneous

photon is not (there is no intermediate state in this graph).

We now introduce a new method to restore gauge invariance by considering
the instantaneous photon in the instantaneous photon exchange graph to have
quantum numbers as if it were a real photon. One then cuts it off in a manner
similar to the Fock state cut-off for a real intermediate state. That is, one requires

> —————-ki': ™ g (5.5)
i
where the sum is over the individual particles in the Fock state plus the instanta-
neous photon. Though it does not affect gauge invariance, a similar procedure is
taken for the instantaneous fermion interaction so the correct Feynman S-matrix
amplitudes are restored in this sector also. As a concrete example, consider the
graphs involved in Mgller scattering shown in Figure 9. Assume that k1+ is larger
than k3. In the first graph, the photon’s momenta are fixed by momentum con-

servation, and the three particle intermediate state is cut-off by

k§L+mg+k%.L+mg+gi<A2 (56)
T3 2 tg — '

In the second graph, one assigns momenta to the instantaneous photon, ¢t =

kf - k;‘, JL = EIL - Eg_l_, and then requires

b tme Ky tme 0Ly (5.7)
z3 xo Ty = ' '

With this requirement, whenever the instantaneous photon exchange graph occurs,
a corresponding graph with the exchange of a real, intermediate photon occurs be-

cause both graphs are now cut-off in exactly the same way! As shown in Appendix
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C, the sum of the graphs is simply the gauge invariant Feynman rule answer, 1/ q%.
Thus, we see that this method maintains gauge invariance of the ultraviolet cut-off
for tree-level diagrams. It is not clear if this conclusion can be carried over to loop

diagrams.

We have now completed the ultraviolet regulation of light-cone theory. All

Fock states are cut-off by requiring the invariant mass squared to be less than A2,

k2. 4+ m?
Z FLitmy <A, (5.8)
- Iy
]
Graphs involving an instantaneous photon or instantaneous fermion are treated as
if they were real particles and cut-off in the same fashion. With this inclusion, the
ultraviolet regulator is both Lorentz invariant and (tree-level) gauge invariant. We

also note that this regulator is a continuum regulator: the cut-off condition is not

changed by discretization.
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6. COVARIANT INFRARED REGULATOR

There are a number of potential sources of infrared singularities and divergences

in light-cone quantized QED. These are
1. Singularities in Hp, VI and Vr from fermions at z = 0 (k* = 0),

2. Singularities and divergences in Hyp, Vi and V¢ from photons at and near

=0,

3. Singularity in Vjpsiferm from the exchange of an instantaneous fermion at

z =0, and

4. Singularity and divergence in Vipgphot from the exchange of an instantaneous

photon at and near r = 0.

A singularity is defined to be an expression of the form 1/0; whereas a di-
vergence is taken to be an expression that approaches infinity as = approaches 0.
The definitions and equations for Ho, VI, V1, Vinstferm and Vipsiphot Were given in

Section 4.

The singularity described in item 1 can be removed by requiring anti-periodic
boundary conditions for the fermions in the ™ direction. Similarly, the singularity
in item 3 is removed if the fermions obey anti-periodic boundary conditions and
the photons periodic boundary conditions because the momentum exchange will

never be zero. Recall that the instantaneous fermion interaction is proportional to
1/q* where ¢* = k7

outgoing photon kincoming fermion®
The singularity arising from photons with £ = 0 (point 2) is eliminated by the
cut-off described in the previous section if §; # 0, because the invariant mass

squared of such a photon would be greater than any finite A2. That is,

‘1.2L 2
- A (6.1)

-

for ¢t = 0. The case of §| = 0 is dealt with below. The singularity from
0

instantaneous photons at z = point 4) and §; # 0, is eliminated because
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instantaneous photons are treated for purposes of the cut-off as if they were real

photons. As a result, they are also eliminated because

q2
L5 A2 (6.2)
z
where ¢t and ¢ are assigned to the instantaneous photon according to momen-
tum conservation as explained in Section 5. Again, the situation for ¢, = 0 1 1s

described below.

If periodic boundary conditions had been chosen for the fermions instead of
anti-periodic conditions, the singularities at £ = 0 for real and instantaneous
fermions would be eliminated by the same reasoning as for real and instantaneous

photons.

The divergence as « approaches 0 for real and instantaneous photons is removed

by invoking an infrared cut-off,

gt
L>e. .
e (6.3)

All Fock states with real photons not satisfying this condition and all instantaneous
photon interactions not meeting this criterion are removed. Once again, ¢t and
g1 for a real Fock state photon are taken to be their actual values; g% and ¢ for
an instantaneous photon are assigned according to momentum conservation as if
it were a real photon. Similarly to the ultraviolet cut-off of Section 5, this cut-
off is Lorentz invariant because it only involves a Lorentz invariant quantity, the
photon’s invariant mass, and is gauge invariant (at least for tree-level diagrams)

because it treats all photons, real and instantaneous, alike.

Note that if € is chosen to any number smaller than (7/L)? but greater than
0, then the only effect of the infrared cut-off is to remove photons with § = 0.
Since the effect of the cut-off is identical for all € less than (7 /L )?, one may as well
take the limit € — 0 right away. Since the point ¢ = 0, has now been removed,

the problem of the z = 0 singularity for real and instantaneous photons with zero
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¢y described above has been taken care of. Another way of removing the point
z = 0 when ¢ = 0, is to imagine that the photon has a small mass A. Then z = 0

would be eliminated for all §| by the ultraviolet cut-off, Eq. (5.1).

One might ask why an extra infrared cut-off is necessary. After all, the main
problem we are interested in, the spectrum and wavefunction of positronium, has
no infrared divergence. As compared to scattering processes that involve exposed
charges, the positronium system’s charges are “hidden” in the bound state. There-
fore, there should be no infrared divergence from emitting an infinite number of
long wavelength photons. As long as any infrared singularities are removed and any
infrared divergences are properly regulated, the various infrared divergences aris-
ing from the fermion self-energy diagram and exchanges of real and instantaneous

photons should cancel.

Unfortunately, matters are not so clean numerically. Without the infrared
photon cut-off, one would expect that the infrared behavior is controlled by the
parameter K. Once the point £ = 0 is removed, the closest point to £ = 0 is
x = 1/K, which approaches zero as K approaches infinity. Figure 10 shows the
behavior of the lowest energy level in a variational calculation as K is increased.
Details of this calculation are described in Section 13. For now, the point is that
the energy level diverges as K — oo if an infrared cut-off is not included. This
divergence is apparently removed by the inclusion of the cut-off. An explanation
for this behavior is that the integral that must be reproduced to obtain the ground

state energy level,
(ol Hic o) = M§ (6:4)
has an integrand that diverges like

1
z(qh + m2) — ¢%

(6.5)

for small z,q). Of course, the integral itself is still finite. In the continuum, the

points near = 0, §; = 0, are a set of measure zero and give a finite contribution
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to the integral. Unfortunately, in the discrete case, any one Fock state has a finite
measure since there are only a finite number of Fock states. Each (ete~v) Fock
state contributes one point to the sum, Eq. (6.4). As a result, the Fock states with
photon z near zero and §| = 0 1 give a contribution proportional to 1/z ~ K. In
the absence of a better solution, photons with §§ = 0; must be removed by an
infrared cut-off such as Eq. (6.3) to keep the sum Eq. (6.4) finite as K — oco. An

approximate form for the ground state integral is given in Eq. (F.29), Appendix
F.

In summary, an infrared regulator is included by requiring that all photons,

real and instantaneous, have invariant mass squared greater that e,

2
q] >
=2 (6.6)

This Lorentz invariant, (tree-level) gauge invariant regulator ensures that all in-
frared divergences are well defined and cancel in a charge neutral system such as
positronium. The numerical proof for this last statement is shown in Section 13.
Since the only effect of the cut-off is to remove photons with ¢ = 0, for any
0 < e < (m/Ly)? the limit ¢ — 0 can be taken immediately. Also note that this
infrared regulator is a continuum condition: the cut-off requirement is unaffected

by discretization.
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7. TRUNCATED FOCK SPACE

The basic layout for solving 3+1 QED has been set: The light-cone Hamiltonian

and bound state equation are given in Section 4, ultraviolet regulation is described

in Section 5, and infrared regulation in Section 6. Unfortunately, there are still

a number of outstanding problems that prevent the solving of Eq. (3.15) for the

spectrum of 3+1 QED. These include, but may not be limited to the following.

1. As of yet, no non-perturbative prescription is available for renormalization

to all orders.

2. It is not clear if one needs to keep track of Fermi statistics in instantaneous

interactions and renormalization counter-terms. Note that these may in fact

be points of measure zero in the continuum.

(a)

Figure 11 shows two graphs that occur in the analysis of QED. It is
clear that the intermediate state in the first graph requires Fermi statis-
tics because it involves real fermions. Unfortunately it is not so clear
whether Fermi statistics is required in the second graph. Furthermore, if
statistics is necessary in the second graph, it is not clear how one would
assign quantum numbers to the instantaneous fermion. In particular,

the “spin” of the instantaneous fermion would be ambiguous.

A similar situation occurs in the consideration of renormalization pieces.
The first graph in Figure 12 shows an interaction in QED. The inter-
mediate state obeys Fermi statistics because it is constructed by a Fock
state expansion in photon and fermion fields that necessarily abides by
Fermi statistics. There is some question whether this first graph should
even obey statistics. Given that it does, the problem is whether the
second graphs should also. This graph is needed to renormalize the pho-
ton’s mass. As a parenthetical comment, photon mass renormalization
is not necessary in standard Pauli-Villars regulation because it is a sub-

tractive regulation scheme. It turns out that the subtracted piece with

31



massive Pauli-Villars particles exactly cancels the self-mass of the origi-
nal diagram. On the other hand, our regulator is not subtractive, so an
explicit photon mass counter-term must be constructed. More on this

in Appendix E.

3. Full QED has light by light scattering graphs as shown in Figure 13 that
need to be regularized. As of yet, a method of regularizing these diagrams

compatible with DLCQ has not been found.

The above problems, and possibly others, need to be answered before the full
3+1 QED light-cone Hamiltonian can be diagonalized. We will circumvent these
difficulties by considering a truncated Fock space that allows only one extra photon.
To be specific, for the case of Q = 0, the Fock space will be limited to just (e*,e™)
and (et,e™,y). For Q = —1, the only Fock states will be (¢~) and (e~,v). The
number of interactions effectively allowed in this truncated Fock space is very much
reduced from the full set shown in Figs. 4, 5, 6, and 7. All graphs involving pair
creation are effectively removed because the truncated Fock space does not allow
for extra fermion pairs (diagrams 3, 6, 9, 11, 12, 17, 18, and 19). Diagrams 14,
16, 20, and 21 are effectively removed because they involve two photons in flight.
Finally, diagram 10 is eliminated when it occurs in the presence of a spectator
photon because such a situation also has two photons in flight. Taking all these

removals into account, the only diagrams that need to be considered are 1, 2, 4, 5,

10, 13, and 15.

Limiting the Fock space may bring gauge invariance into question. However, we
have carefully made sure that everytime an intermediate state with real photons is
removed, the corresponding intermediate state with instantaneous photons is also
removed. This restores gauge invariance because photons are thus removed from
the theory in gauge invariant sets. For example the interaction ete™ — v — ete™
is removed from consideration because the intermediate state with one real photon

has been eliminated. To restore gauge invariance, we have been careful to drop
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diagram 9 which involves the same process, but through an instantaneous photon.”

It should be emphasized that though the Fock space is limited, the analysis
remains non-perturbative because the allowed Fock states can be iterated as many
times as one wishes. In particular, keeping only (ete™,e*te ) is similar to the
ladder approximation in Bethe-Salpeter methods, which is an all orders calcula-
tion. Since this approximation has been solved in Bethe-Salpeter formalism for the
spectrum of positronium, we have reasonable hope that diagonalizing the light-cone
QED Hamiltonian in this truncated Fock space will also reproduce the positronium
spectrum. Recall that the full Coulomb potential is completely contained in the
exchange of a single photon; therefore, we should be able to reproduce the Bohr

spectrum (non-relativistic Coulomb spectrum),

1 VA 2
€n = —5Mred (7) , (7.1)

in our truncated Fock space. Also included are L - S coupling, the hyperfine
interaction, and the part of the Lamb shift coming from the fermion’s self-energy

diagram.

We expect that diagonalizing Hyc in the space (ete™,ete™7) gives back the
positronium Bohr spectrum (actually, the muonium Bohr spectrum since the anni-
hilation channel has been removed), plus continuum states. It should also contain
the hyperfine splitting since this comes from the spin-spin interaction between the
positron and the electron, and the first bit of the Lamb shift coming from Fig-
ure 14. Obtaining the true spectrum of positronium would require putting back

the annihilation channel (fermion pair creation diagrams).

Diagonalizing the space (e™,e™ %) gives back the “spectrum” of the electron
g g g

in the cloud of a single photon, plus continuum states. Since the electron is an

* Recent investigations have revealed a spurious 1/¢* singularity in light-cone gauge in a
truncated Fock space which vanishes when the full Fock space is restored. This singularity
is eliminated in this work by the choice of wavefunction used in the variational calculation
presented in Section 11.
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elementary particle, there is only one state in its spectrum: diagonalization is

actually a check that mass renormalization is being done correctly.

All further work in this paper will be limited to solving 3+1 QED in the space
(e7,e™7) or (ete,ete ). Solving the first case checks fermion mass renormal-
ization; solving the second reproduces the first-order positronium spectrum plus

some second-order corrections.
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8. RENORMALIZATION: SELF-INDUCED
INERTIAS AND MASS COUNTERTERMS

Two issues are of concern regarding renormalization. First is the question of
the self-induced inertias that appear in the theory if one does not normal-order
the light-cone Hamiltonian. The second is whether the light-cone perturbation
theory results for the one-loop radiative corrections agree with the usual Feynman

S-matrix answers. Let us investigate the first question.

If one begins with a Hamiltonian that is not normal-ordered and proceeds to
normal-order, one finds extra terms arising from interchanging operators in the
instantaneous photon and instantaneous fermion interactions. These terms have
been referred to in the past as “self-induced inertias” (Refs. 1 and 2) and have
been the source of much discussion concerning their role in light-cone physics. In

3+1 QED, these extra terms would take the form

20 1
T2 Gatelrs Jp =52 Hp-mlp=—m)—{p+mlp+m}] (1)
1 Ap - m

for the photon and

2
77 |20 Babsa (T + Ku) +d} yden (In + M) |
L Lsn

1
I, = 5; {ln=m|n—m]l—[n+m|n+m]},

= (82)
Kp, = 5; E{n—QIn—Q} ,

1 1
M, = 5; Jintaln+g}

for the fermion. Remember that for fermion anti-periodic boundary conditions and
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photon periodic conditions,

pqg = 2,4,6, ..., mn = 1,3,5,.... (8.3)

The photon’s self-induced inertia J, comes from interchanging fermion operators
in the instantaneous fermion interaction Vipstferm. In comes from interchanging
fermion operators in the instantaneous photon interaction Vinstphot and Ky, My,
come from interchanging photon operators in the instantaneous fermion interac-

tion. Note that the fermion self-induced inertias are not charge conjugate invariant
because K, # M,.

The question then arises: should the self-induced inertias remain in the theory
or should they be removed? Simply starting with a normal-ordered Hamiltonian
eliminates these inertias. A satisfactory answer for the truncated Fock space we
are considering is that they are not needed. In fact, a procedure that properly
renormalizes the fermion mass in the truncated Fock space requires the addition of
mass counterterms that are equal to the one-loop light-cone perturbation theory
mass counterterms. This will be covered shortly. It even turns out that one may
keep the self-induced inertias in the theory if one wishes, but they just get cancelled
by an appropriate mass counterterm. Therefore, the self-induced inertias can be
kept, but are unnecessary. Because they will be dropped or cancelled anyway, the
problem of the self-induced inertias being not charge conjugate invariant is moot.
Before continuing, it should be noted that this result, which will be detailed below,
only holds in the truncated space (e*e™,ete™7) or (¢7,e”v). A more general
procedure that includes higher Fock states may in fact require the presence of the

self-induced inertias.

In our truncated Fock space, the full set of proper one-loop radiative corrections
is shown in Figure 15 (improper graphs do not need to be renormalized). Again,
there is no vacuum polarization because the Fock space does not allow an extra

fermion pair to be created. Mass counterterms are needed to cancel these self-mass
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diagrams. The discretized counterterms are

§HY = - m

2c Z 2n(;—q ["2(-‘1—% nL 2+92ﬂj]+%:' (ﬁl—% ﬁ_l_)2 (84)
- K=
L‘2L 9,91 n? (‘7-'-—% ﬁl)2+q2ﬂf+n(n—q) B
and
N=2 Yuhy | L
2
8.5)
=z g (
= —K By m’ [ T (iL-% ﬁL)2+q’ﬂ1+n(n—q) By
I 7 1+2 n—gq
’ T e (ed ) s anemn) £,
where

2 2
() e () et
n =1235,... (anti-periodic b.c.) , (8.6)
q =2,4,6,...,
n',gt =0, 1, £2, ... .
(n,7i1) are the quantum numbers for the incoming fermion and X is a small, fake

photon mass. The sum is over 2 < ¢ < n — 1 and must satisfy both the ultraviolet

and infrared cut-offs,

dd+8 (- + 8 i(ALl){ m} + 8
q n—gq K £

The sum in the last equation is over the quantum numbers (m, ;) of all the
spectator particles (i.e.: particles that go from the initial to final state without an

interaction). The derivation of these results is given in Appendix D.
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Inclusion of these mass counterterms and diagonalizing the space (e™,e™7)
reproduces the real electron mass to be one to 12 significant figures on an IBM 3090
running 64-bit (double precision) real variables and thus verifies that this is indeed
the correct fermion mass renormalization prescription. The numerical results are
shown in Section 9. If self-induced inertias are retained, the mass counterterm is
modified to include -(self-induced inertias). This just cancels the original inertias

and diagonalizing again reproduces the real electron mass = 1.000. .. m..

Now turn to the second question posed above, the equivalence of the mass
counterterms derived from Feynman S-matrix theory and light-cone perturbation
theory. A caveat must be made here: the comparison will actually be made be-
tween time-ordered perturbation theory in the infinite momentum frame (Ref. 11)
(TOPTh ) and S-matrix theory rather than between light-cone perturbation the-
ory (LCPTh) and S-matrix theory because the mathematics is easier to extract in
TOPThe. It is believed that LCPTh and TOPTh,, are mathematically equivalent,
though conceptually different; therefore, it is likely that the following statements
also hold in light-cone formulation. If not, one can for argument’s sake consider
that all considerations up to this point have actually been made in the infinite
momentum frame and that we are attempting to diagonalize the infinite momen-
tum frame 3+1 QED Hamiltonian. The comparison will also be made in Feynman
gauge rather than light-cone gauge; again, it is believed that the basic result carries

over.

The actual derivations for the mass counterterms are given in Appendix E;
only the results are mentioned here. The fermion self-energy diagram shown in

Figure 16 has the value

3 7"(#— K+ me)yuu(p)
Tyi = (27r /d4k — k)2 —m? +ie] (k2 — A2 + de) (88)

according to the Feynman rules in Feynman gauge. Doing the numerator algebra,

combining denominators, shifting variables to ¢ = k — zp, doing the ¢° integral by
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contour integration, and finally doing the ¢3 integral gives the result

1
2 2
g 27 2m; (14 z)
i = ——= [ d d°k
Ty 8x3 :1:/ t k2 +m2z2 + A2(1 —z) —ie
0

(8.9)

Note that this result diverges like In ki for large k3. A regulation scheme such as
including a heavy, negative metric Pauli-Villars particle is needed to perform the

remaining integrations.

The two graphs contributing to the fermion self-energy in time-ordered pertur-
bation theory are shown in Figure 17. The expression for the first graph in regular

time-ordered perturbation theory is

o _ & T .1 a(p)gu(ks) ks)g u(p)
Ty = r) P/dx/d"'kl BB  E—FE —F, 43 (8.10)

where momenta have been assigned as follows:

p=(E, 0., P) .k =(E1,El, :z:P) k= (Eg, —k, (l—x)P) ,

E=+\PP¥m?, Ej=./22P?4)\? | E2=\/(1-x)2P2+m?L,

M=k +2, mi=k4m?. (8.11)

A heavy, negative metric Pauli-Villars particle must be subtracted to facilitate
ultraviolet regulation. The correct method of evaluating this expression in the
infinite momentum frame would be to do the z integral first and then let the
observer’s momentum go to infinity in the —z direction by letting P — oco. In
contrast, what is normally done is to take the limit P — oo first and then do the

z integral. The two are the same only if interchanging the limit and the integral
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is allowed. Using the usual method (take limit first) gives the result

2 2 2
e /x l —z K} +a?ml+ (1 - 2)A2 —ie (A= 4) (812)

which diverges like A% for large A. It turns out not to matter if one interchanges
the limit and the z integral in this expression, so this answer is indeed the correct

answer for this graph.

Now turn to the Z-graph contribution, which is

3 -~ 1 —u(p)¢v(ke) 0(ks)du(p)
P—/ dl'/dzk_l_ E ’

7@ _ 9
fi 4(27)3 1Ey, —E —FE; — Ey +ie

p= (E 0., P) . k= (El, E, —:cP) . k= (Eg, —F, —(l—x)P) :

=P +ml, Ej=./s2P2+)}, Ezz\/(1—x)2p2+mi,
M=E4+2, mi=K4+m? (8.13)

in time-ordered perturbation theory. Taking the limit P — oo first gives an answer
of zero. The correct method is to do the z integral first and interchange the limit
and the integral only where allowed. Doing so, one finds a non-zero contribution

to the Z-graph from the region z near zero leading to an answer of

2 2
7O = /d2 log 4 +§

(8.14)

X +2m?z
= de [ d*k :
87r3/ z/ ‘Lk2-{—m2 +(1—z) X2 —ie - (=4

Brodsky, Roskies and Suaya (Ref. 11) and Lepage and Brodsky (Ref. 14) present

a rule for including backward moving particles in tree graphs. Naively applying
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this rule to calculate the Z-graph gives an incorrect answer, showing that this rule
should not be extended in this simple manner. Of course, their rule still holds for

tree graphs.

If this result for the Z-graph is added to the result for the usual time ordering,
Eq. (8.12), and one is added and subtracted from the integrand, one obtains

1

2 2
() @ _ 9 2 2me(1 + ) — (A=A 1
Ty + Ty 87r3/d$/d + k3 4+ m2z? 4+ (1 — ) A2 —ie (A= 4). (8.15)

0

which agrees with the Feynman answer, Eq. (8.9)! This demonstrates that the
TOPThe and Feynman rules results for the one-loop fermion self-energy in Feyn-
man gauge are identical if one is careful to do the « integral first and interchange
limit and integral only when allowed in the TOPThe, calculation. If one takes
the limit first, one obtains Eq. (8.12) as the complete answer, which agrees with
the usual LCPTh answer for the one-loop fermion self-energy, but disagrees with
the Feynman answer. The discrepancy is found in a non-zero contribution from
the Z-graph in TOPThe near £ = 0. In order to reconcile the LCPTh and Feyn-
man rules answers for the one-loop fermion self-energy, an extra piece equal to the
TOPThe Z-graph must be added to the light-cone Hamiltonian and the LCPTh
rules. However, since this piece is a self-mass, it is cancelled by including the
appropriate mass counterterm. As a result, in practice the extra piece from the

Z-graph can be ignored.

Notice that the usual time-ordering contribution in TOPThs,, Eq. (8.12),
diverges like A2, but the full Feynman rules answer, Eq. (8.9), diverges like In A.
Apparently, the leading A% divergence in the usual time-ordering graph is exactly

cancelled by a similar divergence in the Z-graph.

A consideration much like the above can also be made for the vacuum polar-

ization graph. Details are in Appendix E.

This completes the discussion of electron mass renormalization. Due to the ab-

sence of pair creation, there is no renormalization arising from vacuum polarization
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in the truncated Fock space consideration. This leaves just electron wavefunction
renormalization, which is equivalent to simply stating that the real electron’s wave-
function is normalized. The probability of finding the bare Fock electron inside the
real electron is given by the expansion coefficient .- for the single electron Fock

state shown in Eq. (4.28). This coeflicient is just the wavefunction renormalization

constant /2.

To summarize, there is no photon wavefunction renormalization (charge renor-
malization) in the truncated Fock space, (ete™,ete~v) or (e, e™v), because there
is no allowance for pair creation. Electron wavefunction renormalization is auto-
matic because the real electron’s wavefunction is normalized. If one is careful
about the behavior near the endpoints, z = 0, 1, the one-loop self-mass corrections
in TOPThe and probably LCPTH agree with the answer from S-matrix analy-
sis. Mass renormalization is then done by inserting mass counterterms into Hyc
that exactly cancel the one-loop self-mass contributions. If one decides to keep the
“self-induced inertias”, these are also cancelled by mass counterterms. Since the
self-mass endpoint corrections and self-induced inertias are just cancelled anyway,
what one effectively does is start with a normal-ordered Hamiltonian (i.e.: without
self-induced inertias) and inserts the mass counterterms given in Eqgs. (8.4) and
(8.5) . Once again, this prescription is valid only in the truncated Fock space of
one additional photon. If higher Fock states are included, a rﬁore general method

is necessary which may in fact include the self-induced inertias in a crucial way.

Since only elementary particles require renormalization, no further renormal-
ization needs to be done. That is, there is no positronium mass or wavefunction
renormalization. The full light-cone Hamiltonian given by Eq. (4.24) plus mass

counterterms given by Eqs. (8.4) and (8.5) is now ready to be diagonalized.
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9. DIAGONALIZATION: CHARGE -1 SPACE

The prescription for diagonalizing the QED light-cone bound state equation
Eq. (3.15) is then the following. Hc is equal to Ho + Hy + Hz + Hgi5 where Ho,
H,y, and H; were given in Eq. (4.24) and H,y is the mass counterterms given in
Egs. (8.4) and (8.5). The Fock space is generated by keeping all Fock states that
satisfy » o - T
' 2

t <A (9.1)
: Ti

and have photons that satisfy

2
S
o 2€- (9.2)

These two cut-off conditions are also applied to the instantaneous fermion and
photon interactions with the instantaneous particles treated as if they were real
particles. Diagonalizing gives the full mass spectrum of bound states and scattering

states and their corresponding wavefunctions as a Fock state expansion,
%) = ) use(@,E1) In) - (93)
n

In principle, the true continuum theory is reproduced by taking the limits K, L, ,A —
oo and € — 0. Recall from Section 6 that the results are identical for any choice of
€ less than (n/L)?; therefore, one is allowed to take the limit ¢ — 0 immediately.
In this paper, the Fock space is limited for various reasons discussed in Section 7
_to just (e, e~ %) for charge -1 and (ete~,ete™7) for charge zero. Doing so checks
fermion mass renormalization to one-loop and reproduces the Bethe-Salpeter lad-

der approximation for positronium.

Diagonalizing the light-cone Hamiltonian in the charge -1 space of (e7,e™%)

for any value of a, K, L, A and € reproduces
M? =1.000...m? (9.4)
for the ground state. Remember that as pointed out in Section 7, in this truncated
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Fock space consideration, diagram 14 must be dropped from the full set of light-
cone diagrams in Fig. 7 . The accuracy of this result is only limited by machine
precision. On an IBM 3090 running 64-bit real variables, this is 12 places behind the
decimal point. This result numerically proves that fermion mass renormalization
is being done correctly in the truncated space (e™, e~ v) because the physical mass
of the fermion (i.e.: the ground state mass, M) is equal to the bare fermion mass,

Me.

One also obtains the fermion’s structure function by summing the ground state

wavefunction over all modes with a fixed z,

f(x)dx = Z |¢n/r(xa ]-c‘.L)l2 . (95)

n, fixed z

Typical structure functions for & = .3 and .6 are shown in Figure 18 and Figure 19.
As expected, the structure function is peaked at z = 1 and has a characteristic

long radiative tail.
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10. DIAGONALIZATION: CHARGE ZERO SPACE

A summary of the diagonalization prescription was given at the beginning of
Section 9. Diagonalizing the truncated Fock space (ete™,e*e™v) omitting dia-

grams 9, 14, 16 from Figs. 6 and 7 should return the Bohr answer

1 Za\?
M = 2me - Zme _ n= 1‘, 2"3,- T (10.1)
n

for the positronium bound state spectrum plus L - S coupling, the hyperfine split-
ting, and the part of the Lamb shift from the one-loop fermion self-energy diagram
(actually, the muonium spectrum is returned since the annihilation channel has
been removed in this truncated Fock space). We should also obtain the full spec-
trum and wavefunctions of scattering states, along with the bound states. The four
lowest wavefunctions should be the one parapositronium and three orthopositron-

ium states.

To give an example of the potential power of the method, a typical spectrum
obtained from diagonalizing is shown in Figure 20. A 420 by 420 matrix was di-
agonalized on an IBM 3090 in 6 minutes to obtain this spectrum. Unfortunately,
the number of Fock states is very limited by computer space (~ 500 states, max-
imum). The typical ground state wavefunction extends outward one point in the
k 1 direction and one or two points in the z direction. One hardly expects such a
course ground state wavefunction to reproduce the correct mass eigenvalue. This
is borne out by examining the convergence in K and L. Figure 21 and Figure 22

. show no convergence in these parameters, or at most convergence to the free value
M? = 4m?2.

One can estimate how large K, L, and A need to be for a given a by consid-

ering the expected ground state wavefunction,

A 1
Vete- = 2 s Mgoh: = 2m, — cha2

[$HE55 - MEa

—This wavefunction has its peak at k L =0,,z= % and falls to % of its peak value

(10.2)
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at

z==, kzorky==2mea; T =

i%, kL =0, . (10.3)

Ol W

If one wants the njth point in EJ_ and the nth point in z to lie at these points,
then

ngT . n ao_ .- -
_——— — ™, P
Ly

S~
et
(]
NS

S

= SO =
el

K 2

One must still choose A large enough so that these points are actually included in
the Fock space. One can estimate this A to occur when the electron and positron
have z = % — %, kg or ky = %mea and the photon = = «a, k; or ky = —mea. This

gives

A% =

(%mea)2 + mg (%m‘ga)2 + mg 4 (mea)2

) 2732 (10.5)

Note that the largest contribution is from the last term, the photon’s invariant
mass squared. If one wants at least five points in each of the directions z, k;, and

ky (n,ny = 5in Eq. (10.4)), one must choose K, L}, and A to be at least

4
I(:%;O, L.L": o , A=2me 1+a/ . (106)

MeQ l—-a

For a = .3 and .6, the numerical values are

52
a=.3: K=68, Lyj=—, A=25m,
| g‘g (10.7)
a=.6: K=3, Li=—, A=34m,.

Me

These are far larger than the typical K, L, A used above. The total number of
Fock states for these values is 10,773,680 for K =68, L; = 52;1:, A = 2.5m, and
8,362,468 for K = 34, L| = 265, A = 3.4m,.
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That the method of diagonalizing the light-cone Hamiltonian to obtain bound
state mass eigenvalues and wavefunctions works in principle is demonstrated in
Sections 12 and 13. If one were able to diagonalize the large matrices necessary
by either better numerical techniques, making the matrices smaller by theoreti-
cal considerations, or using a larger computer, one should be able to obtain the

spectrum and wavefunctions for positronium.

— - -
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11. VARIATIONAL METHOD

As seen in Section 10, diagonalizing the light-cone Hamiltonian directly to find
mass eigenvalues and wavefunctions is limited numerically. The computer time
and storage needed to handle the large matrices necessary to produce reasonable
results are unyieldingly large using present techniques. A possible solution is to
reduce the size of the matrices by implementing various symmetries that have been

" so far ignéred. Possibilities include reflection symmetries, charge conjugation, and
angular momentum. Another solution is to make use of the sparseness of the
Hamiltonian matrix by implementing a Lanczos method or other algorithm to

diagonalize.

In lieu of diagonalization, a third alternative is to do a variational calculation to
find an upper bound on the mass eigenvalues and approximate the wavefunctions.
A variational ansatz is made for the ground state wavefunction in the charge zero
sector. For example, if one restricts to the truncated Fock space (ete™,ete™ ),
the expectation value of the light-cone Hamiltonian is calculated to find an upper

limit on the ground state mass squared,
(Y| Hic |[¥) = M* > M§ (11.1)
with the variational wavefunction
%) = Yete- |eYe™) + thete—y [eTeT7) . | (11.2)

Pe+te~ and the+ .- are functions of z and E 1 as explained in the paragraphs before
Eq. (3.11). Hyc is the expression derived in Section 4 (Eq. (4.24)) plus fermion

mass renormalization terms (Eqgs. (8.4) and (8.5)).

Here, we choose t¢+.- to be

Vetem = ) (11‘3)

for 5,5’ = +1,+1. £ = k*/P+ and k, are the electron’s plus momentum fraction
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and perpendicular momentum and s, s’ are the electron and positron spins. vy, vs,
and v3 are variational parameters. This choice of ¥ +- is from Brodsky and Ji .
and is the relativistic extension of the Bohr result for the ground state (with vy,
v, and v3 set equal to one),

AI

Petem = — s o - (11.4)
[k2 - %mgai’]

written in light-cone coordinates. t.+.- is chosen to be

V4 + - +,-
Vete—y = 5 <e € 'YIHLC Ie € >¢e+e‘ )
(e;e-)stfziohr - Me+e‘7
11.5)
k% .+ m? (
2
1=ct e,y '

The meaning of this equation will be explained shortly. M?

cte—y 18 the invariant

mass squared of the (e*e™y) state, Mpoy; is defined to be 2m, — %meaz, which is
the non-relativistic Bohr answer for the ground state mass. A is a normalization

constant chosen such that

(’le'l/)) = E l¢e+e'|2 + |¢e+e—7|2 =1. (116)

”
zikii

Such a choice of wavefunction should put a bound on the mass of the triplet
S =1 positronium state, orthopositronium (or more precisely, orthomuonium since
the annihilation channel has been eliminated by restricting the Fock space to ex-
clude pair creation). If the ete™ wavefunction had been chosen to be +t.+,- for
5,8 = +1,—1 and —te+.- for s,s' = —1,+1, a mass bound for the singlet S =0
positronium state, parapositronium, would be found. We choose to work with or-
thopositronium for the numerical reason that it requires only the storage of spin

=up fermions, which reduces the computer storage requirement by }T'
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e+e-+ for an electron, positron, photon Fock state with given quantum num-
bers is determined by looping over all (ete™) states and summing all non-zero
. . . . . 2 2
light-cone Hamiltonian matrix elements with a factor vs/(vs Mgy, — M2 -, ). The
first-order perturbation theory answer for ¥+~ would be to multiply ¢+~ by a
factor of (ete=+|P~|ete™)/D where D is the light-cone energy denominator (i.e.:

difference of P~s). Since Hc = PTP~ and M}%Ohr - M62+e.7 = P*D, we see that

our choice of +e-y is just what one would write down from perturbation theory

(with v4 and vs set to one).
Excited states could in principle be calculated by doing a variational calculation

with variational wavefunctions chosen orthogonal to the ground state and any other

lower states.

An analagous construction can be made in the charge —1 sector. A variational

wavefunction is chosen,

%) = ¥ Ie_> + Pe-vy le—7> ) (11.7)

with

T = A bz — 1)6P (kL) (11.8)

for s = +1 and
vy

d’e“y <6—’)’l Hic |6—> Ye

vgmg - M3_7

k2. +m?
2 _ 1 1
Me_Y— E L

Ti

(11.9)

1=,y
Again, vy and vq are variational parameters and A is the normalization constant.
Calculating the expectation value Hyc returns an upper bound on the real elec-

tron’s mass, M, in terms of the bare electron’s mass, me:
($| Hre ) = M* > mg . (11.10)
~H fermion mass renormalization has been done properly, M should equal m,.
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That the variational equation,

(| Hic lv) = M? (11.11)

is equivalent the momentum space Schroedinger equation for positronium (muo-

nium), : o . -
2y K o T 1 1
Bk kz_———/d3k'd3k “(k k) ———— = —= e2,
JERw@E T~ o [ PR R s = e
(11.12)
in the charge zero sector and
M=m, (11.13)

in the charge -1 sector in the non-relativistic limit is demonstrated in Appendix F

and Appendix G.
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12. VARIATIONAL METHOD: CHARGE -1 SPACE

The variational calculation described in Section 11 is applied here to the trun-

cated Fock space (¢e™,e™v). Recall that the wavefunction is chosen to be

) = ¥ |e7) + ey [e77)
T = Abz —1)EDEL), ey = v1

{e"vtHic e ) ¥y -
(12.1)

vy and vy are variational parameters. The expectation value of the light-cone

vom? — M2

Hamiltonian
(¥ Hro ) = M* 2 m} (12.2)
is calculated to obtain an upper limit on the physical mass of the electron. Hy¢ is

the sum of Eq. (4.24) and the mass counterterms Egs. (8.4) and (8.5), but excludes

diagram 14 (see Fig. 7) since we are working with a truncated Fock space.

Note from Appendix G that if one drops the instantaneous fermion interaction
Vinstferm and its associated mass counterterm, Eq. (8.5), M? is equal to m? for
all a, K, L, and A with v;,v2 = 1. This is borne out numerically: for every set

of a, K, L, and A investigated, we obtained
M? =1.000...m? (12.3)

to 10 places behind the decimal point.

If Vinstferm is retained, the expectation value is not minimum at v;,v; = 1.
Varying the parameters for a = .6, K =25, L = 12"%, A = 3.5m,, one finds the

minimum at v; =.99934, vy = .99834, at which point the expectation value is
M? = 1.0002431502 m? . (12.4)

The wavefunctions for this case is shown in Figure 23. It shows the expected

“photon cloud around the bare electron at z =1, k L =0,.
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Thus, the result from diagonalizing the charge —1 space, M = m,, has been
reproduced as a variational calculation, once again demonstrating that choosing
the mass counterterms given in Section 8, Eqs. (8.4) and (8.5), is the correct
renormalization prescription to keep the fermion’s bare mass equal to its physical
mass. Since there is no further renormalization arising from composite objects
such as positronium (i.e.: no positronium “mass renormalization” or “wavefunction
renormalization”), we may carry these mass counterterms over to the charge zero

sector and proceed to calculate for positronium.
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13. VARIATIONAL METHOD: CHARGE ZERO SPACE

As described in Section 11, the expectation value

(¥| Hre |¢) = M? > M§ (13.1)

SO P A

RIS § ST VN M LA AN Ve
1gNi-cone riamiitonian given In .q. (4.44) pius I1ass

£
o1 wne

[—

3

0
and 8.5)“is calculated in this section in the truncated Fock space (ete™,ete™y

with wavefunction

|¥) = Yete- |e+e—> + tete—+ le+e~7> )

A
Vete- = k2 oim? ) 2v3
[ z(1-z) szBohr] (13'2)
V4 - + -
"pe*’e‘*/ = <e+e 7| Hic Ie € >¢e+e‘
(C+Z,3-)05Mleohr - Me2+e"y

to obtain an upper limit on the ground state of positronium. In this section, the
variational parameters v; through vs are set equal to one. As explained in Section
7, since the Fock space is truncated, diagrams 9, 14, and 16 from Figs. 6 and
7 must be dropped from Hyc. Diagram 10 must also be dropped when another
photon is present. All Fock states are required to have invariant mass squared less
than A2,

2 L2
Y El—'—;iﬂ < AZ, | (13.3)

and photon invariant mass squared greater than e,

q2
2> (13.4)
z

In these equations, instantaneous particles are treated as if they were real particles.
Also, as explained in Section 6, the limit ¢ — 0 can be taken immediately. Numer-

Tcally, this means € can be chosen equal to the computer’s machine precision. For
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computational reasons, the spins of the fermions and anti-fermions are all chosen
to be up; therefore, the bound will be placed on the 1s%/2 level, orthopositronium.
Extending to include all spin states is a simple matter given enough computer

capabilities.

First, we demonstrate numerically the need for an infrared cut-off on the photon
states. This contention was made in Section 6 and requires alt- photons to satisfy

- Eq. (13.4). Figure 24 and Figure 25 show the behaviorin K fora = .6, L; = 20"%,
A = 2.4m, with and without an infrared cut-off, respectively. KE and PE are
defined in Appendix F, Eq. (F.23). Quite clearly, the latter case does not converge.
As mentioned in Section 6, this lack of convergence is due to the discrete sum
placing too much weight on the points near z, = 0, k 1y = 0 1. Barring a better
solution, the points k 1y = 0. must be removed by a cut-off such as Eq. (13.4) to

give convergence as K — oo.

Before continuing, we summarize some results first shown in Section 10. Note
that most of the (e¥e™) wavefunction given in Eq. (13.2) occurs for electrons with
z between %——% and %+% énd ks, ky between —m.a and +m.a. The wavefunction
has fallen to 1/25 of its peak value at these points. The Coulomb binding is mainly
due to electrons inside this binding region. If one wants 2n points in « and 2n
points in each of k; and ky to lie inside this region, one must choose K and L to
be at least

4n n|T

K=—, L, = . . (13.5)

o MeQ

"To ensure that all electrons and positrons inside the binding region are indeed kept,

one needs A at least

Z
A =2m, 11+ o/t (13.6)

-

which for a = .6 is A = 3.4m,.

Also note that the instantaneous fermion interaction, Vinstferm, contributes

—Only a small amount to the expectation value (| Hyc |¢). For example, at a = .6,
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K =26,L, =20, A =28m,,

(%| Vinstferm [) = 0.001196 m? ,
M? = (| Hye [y = 4.076754 m? (13.7)
PE = —.129765 m? .

PE is defined in Appendix F, Eq. (F.23) and is approximately the contribution
of the-potential energy to M2. The instantaneous fermion contribution is only .03
percent of M? and .92 percent of PE. We therefore choose to ignore Vst ferm in
all further deliberations since the computer time needed to calculate just this con-
tribution turns out to be far greater than the time needed to calculate everything

else. For consistency, the mass counterterm Eq. (8.5) must also then be removed.

So, dropping the instantaneous fermion interaction and counterterm Eq. (8.5)
and calculating M? = (¢| Hyc |¢) for a = .6 gives the results shown in Figure 26,
Figure 27, and Figure 28. The graphs plot the quantities M2, KE, PE, PEy;,,
PE,,fiip, and PE;pgph0t in units of m2. M? is equal to 4m? + KE + PE and
PE = PEjiip + PE,o5iip + PEinsiphot- KE, PE, PEgip, PEyog1ip and PEjqstphot
are defined in Appendix F, Eq. (F.23) and are approximately the contribution of
the kinetic energy to M2, the potential energy to M?, the contribution of Vy,
to PE, the contribution of V;, 41, to PE and the contribution of Vipstphot to PE.
PEf, is actually zero in our case because we have chosen to keep only fermions

and anti-fermions with spin up.

Note that M2, KE, and PE have the following numerical values for a pure

"Bohr spectrum at a = .6:

1 1 1
Egonr = *Zmeaz , KEgon = Zmea2 ) PEBoh, = _§mea2 ,

M? = (2me + Epon;)® = 3.648 m? | (13.8)
KE = (2m¢ + K Epop;)? — 4m? = 368 m? |
PE =~ (2m¢ + PEpoy;)? — 4m? = —.688 m? .

“The cross term between the kinetic and potential energies of order %a“ = .03
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has been dropped to obtain the last two numbers. We see from the figures that
K E converges to the Bohr answer rapidly, whereas PE converges rather slowly.
Also note that PE,, s, and PEjngpnet are individually infrared and ultraviolet
divergent — they each diverge as K — oo and A — oo - but their sum, PE, is
convergent. This cancellation is extremely sensitive, and is destroyed by increasing
or decreasing the strength of Vinsipaot relative to Vyqg1ip by the smallest amount.
This delicate cancellation increases our confidence that the correct form of the
potential has been used in Hc. The cancellation also fails if the infrared regulator,
Eq. (13.4), is removed. A typical wavefunction for o = .6, K =42, L = 32m%’
A = 2.5m, is exhibited in Figure 29.

Unfortunately, we find that our computer resources are exhausted before rea-
sonable answers are realized. For example, the rightmost point in Fig. 30 is barely

bound,

M? = 3.9984843235 m? | (13.9)

but requires 1,621,435 Fock states and approximately 11 Cray YMP service units”

to calculate.

However, we show in Appendix F that (v| Hrc |¢) is approximately equal to

2

k2 +m2 4K~n : [
§ : / 2 M| e E : !f* A
- - - 1 -10
I ere | x(l—:c) etemTete qlzﬂ‘R (3 )

z,kL zi,zf,k1i,kLy

where
A

k2 +m? 2 12
417 M
[z(l—z) Bohr]

'Qbe"'e" =

(13.11)

and the normalization A is determined by

Y [ere-P=1. (13.12)

-
z,k1

* One service unit at the Pittsburgh Supercomputing Center is approximately .75 CPU hours
— or .375 MWordhours of CPU memory. One Word is the storage needed for one double
precision word.
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g% is given in Eq. (F.25) in Appendix F. The set of points in Fig. 30 labelled
“C” show the value of this quantity as a function of A. Thése data points will be
referred to from now on as “Coulomb data”. The points labelled “V” are obtained
by calculating the expectation value (y| Hrc |¢) and will be referred to as “light-
cone data”. The closeness of the two sets of data points in Fig. 30 demonstrates
numerically that the approximation Eq. (13.10) for (3| Hyc |¢) is justifiable. One
can therefore reasonably believe that the light-cone data points, if ever calculated,

will follow the Coulomb data points as K, L;, A are increased.

Now turn to a consideration of Coulomb data. From Figs. 31 and 32 we see
that M? converges like 1/L% for reasonably large L, and like 1/K for reasonably
large K (points at smaller values of K, L, have been omitted from the plots and
are more erratic due to the smallness of K and L, ). Fitting the data to the form
M? = A(1+ B/L2)(1 + C/K) gives

453 31.1
M? = 4.000 m? — .242 (1 - —) (1 - ——) m? . (13.13)
| L K

The upper bound placed on orthopositronium from this fit is

M? = 3.758 m? , (13.14)
which should be compared to the pure Bohr answer

M? =3.648 m? . | (13.15)

The data used to produce these fits is in Appendix I. Due to the smallness of A, we
have been unable to fit the data to this parameter. One would expect M? to fall

6 : : 2 2 1 1
off as A+ B/A® because PE is proportional to [ d*k, ;d kyf LA G EL ) — e
for large A (see Eq. (F.29) in Appendix F).

We see that the M? value obtained from fitting Coulomb data in K and L with

“Vinstferm ignored gives a bound on orthopositronium of M? = 3.758m?2. This result
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is at least within the ballpark from the true answer at a = .6 which is estimated
from the Bohr formula to be M? = 3.648m2. This answer can be improved by
running at larger A and then fitting in this parameter. There is also room for
improvement from varying the variational parameters v; through vs. Restoring

Vinstferm should change the answer by only a small amount.

One can fairly confidently say that the light-corfe variatiGhal method does a
reasonable job of reproducing the orthopositronium state. If one had the com-
puter resources necessary, the correct answer can most likely be obtained without

approximating (Y| Hic [¢) by Eq. (13.10) and dropping Vst ferm.
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14. SUMMARY

Discretized Light-Cone Quantization (DLCQ) has been presented as a fully
relativistic discrete representation of quantum field theories and has been demon-
strated to work in principle for Quantum Electrodynamics in three space and one
time dimensions. Covariant, (tree-level) gauge invariant ultraviolet and infrared
regulation were presented in Sections 5 and 6 and a complete renormalization
scheme in the truncated Fock space of (e7,ey) or (ete™,ete™v) was outlined in
Section 8. The numerical proof of the renormalization method is the demonstration
that the electron’s bare mass is equal to its physical mass using diagonalization
or a variational calculation. These were shown in Sections 9 and 12. Most of the
positronium spectrum is contained in this truncated Fock space: the Bohr levels,
L - S coupling, the hyperfine interaction, and the part of the Lamb shift from the
fermion self-energy diagram are all included (the results obtained in this truncated
Fock space will actually be for muonium because the annihilation potential is not

present).

The best numerical result to date for the 1s3/2 state of positronium, or-

thopositronium, is an upper bound for a = .6 of
M? <3.758 m? . (14.1)

This result is from fitting what was described as “Coulomb data” in Section 13 and
extrapolating in the parameters K and L,. It compares with an estimate of the
- true value using the Bohr formula of M? = (2m, — 4lmeozz)2 = 3.648m2. Two ap-
proximations are made in this result: (4| Hic |¢) is approximated by Eq. (13.10)
and the instantaneous fermion interaction is dropped. The validity of the first
approximation is demonstrated mathematically in Appendix F and numerically in
Section 13. The second approximation is shown numerically in Section 13 to have
only a very small effect on the answers. Both approximations are not fundamental
and are done only to reduce the amount of computer resources needed to do the

“calculations. Given enough computer time and memory, the bound of 3.758m2 can

60



be reproduced without these approximations. Calculating the 151/2 level, para-
positronium, and finding the hyperfine splitting can be done by including all spin
states for the electron and positron. This can be done with no modifications to the
method described, only more computer resources or better numerical technology

to store the added electron and positron spin states is needed.

The success of the variational calculation has tested the foundations of DLCQ
. and shown them to be sound. There should be no fundamental reason why the

light-cone bound state equation

Hic ) = M? |4) (14.2)

can not be diagonalized to obtain the mass spectrum and wavefunctions in the
Fock space of (ete™,ete™ 7). A series of numerical approximations were made to

actually solve Eq. (14.2) . These were to replace (14.2) by a variational calculation,
(Yl Hicly) = M? > Mg, (14.3)

drop Vinstferm, and to replace (¢| Hrc |¢) by Eq. (13.10). Again, the only reason
these approximations were made is lack of numerical technology or computer facil-
ities. There is no theoretical barrier to directly solving (14.2). An estimate of the
number of Fock states needed for reasonable answers using the methods described

in this paper is 9,444,569 fora = .6, K =42, L| = 32;1:, A = 3.5m,.

A possible method of extending to include the Fock state with two photons,
(ete™77), is to include mass counterterms for the fermion self-mass diagrams with
two photons in flight. A subset of these are shown in Figure 33. Including this
Fock state with two photons should reproduce the full Lamb shift excluding the
Uehling term from vacuum polarization. The Uehling term can be included by
further extending the Fock state to include (ete~ete™). This extension can be
implemented by introducing photon mass counterterms for the graphs in Figure 34.

—As explained in Appendix E, photon mass counterterms are necessary because we

61



are using a non-subtractive ultraviolet regulation scheme. A test of whether this
is done correctly is to check that the ground state has M? = 0. This would verify
that the bare photon mass remains equal to the physical photon mass. Including
this extra Fock state also puts back the annihilation potential needed to calculate

true positronium levels.

Possible methods of improving the numerical technology that deserve further

- consideration include:

1. Implementing symmetries that have been so far ignored. These might include
angular momentum, charge conjugation, and so forth. Choosing the Fock
states to be eigenstates of these operators would dramatically reduce their

number.

2. Using a Monte Carlo method to calculate the expectation value (| Hrc |¢)
in the framework of a variational calculation. Doing so may eliminate the
need to store all the Fock states in computer memory simultaneously, thus

allowing the consideration of many more states than is now permitted.

3. Using a numerical method such as the Lanczos method to take advantage of
the sparseness of the light-cone Hamiltonian matrix. Such a diagonalization
routine would reduce the amount of computer time and memory needed since

the whole matrix would not have to be stored at once as is done now.

One or more of these improvements may yet provide the numerical accuracy needed

to make calculations of positronium to higher precision.

A new ultraviolet cut-off method proposed by Pauli 2 has shown much promise
in this area. His suggestion is to only keep Fock states that satisfy the condition

Z k.21.l+m12_M2 <A2

min -——
. z;
]

. k. + m?
Mﬁﬁn = min [Z _-LL:::,_]

(14.4)

“The first term on the left-hand side is a sum over all the constituent particles in the
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state. The second term is the minimum value that this sum can take for that type

of Fock state. That is, there is one value of Mzﬁn

for all Fock states containing
an electron and a positron, one value for all Fock states containing an electron, a
positron, and a photon, and so on. For example, M;‘;ﬁn is equal to 4m2 for (ete™)
Fock states (this occurs at k) =0,z = 1) and 16m? for (ete~ete™) Fock states
(at kL =0,,z= ). In order to maintain gauge invariance at.the tree-level, this
cut-off is.also applied to states with instantaneous particles in the same manner
as explained in Section 5. Work is now in progress with this new cut-off and is

showing signs of much improved convergence properties.
The method of DLCQ has a number of important positive attributes:

1. The technique is straightforward, non-perturbative, and fully relativistic, and
can be applied to quantum field theories in general, the most obvious can-
didate being Quantum Chromodynamics. Even the truncated Fock space
analysis is non-perturbative since the Fock states that are allowed are iter-

ated an infinite number of times.

2. Due to the positivity of P, there are no interactions in the theory that create
particles out of the vacuum. As a result, the vacuum structure is simple: the
perturbative vacuum is the Fock state vacuum is the true vacuum, and they

are all eigenstates of Hyc with M? = 0.

3. Diagonalization has the potential of giving the full spectrum of bound states
and scattering states along with their respective wavefunctions. The struc-
ture functions needed in calculations of high-energy scattering processes are

obtained from the wavefunctions simply,

f((L‘)d.’l) = Z I‘/"n/r(za EJ.)Iz . (14'5)

n, fixed

4. The fermions are treated in a natural way. There are no fermion determinants

or fermion doubling.

5. In AT = 0 gauge, there are only two physical photons.
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6. As shown in Appendix F, DLCQ is equivalent to the momentum space

Schroedinger equation in the non-relativistic limit.

To emphasize once again, the framework for DLCQ has been established for
quantum field theories in three space and one time dimensions in a truncated Fock
space. No further theoretical considerations need to be made; better results are
a matter of improved numerical technology and computer reseurces. Pauli’s new
- ultraviolet cut-off is a promising avenue of hope in this regard. Extensions to other
field theories such as Quantum Chromodynamics should now be possible. Though
the numerical results presented here are not as good as one might like, hopefully

the appetite has been whetted.
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APPENDIX A

In this appendix, Dirac’s method for quantizing constrained Hamiltonian sys-
tems such as QED is briefly described and then applied to space-time QED in
temporal gauge (A° = 0) and light-cone QED in light-cone gauge (At = 0). A
more complete discussion can be found in Dirac™ and Hanson, Regge and Teitel-
boim (Ref. 20). Hanson et al also present specific applications of the method to
space-time QED in a variety of gauges. Steinhardt™ discusses the application of
Dirac’s method to light-cone QED. Much of the application below to QED is from

Hanson et al and Steinhardt.
The general method is as follows:

1. One finds the canonical momenta p® = g an from the Lagrangian L(gn,gn)-
This may lead to a number of constraint equations relating g, and p" (i.e.:
equations that are independent of ¢,). These equations are referred to as

primary constraints,
¢m(pg) =0, m=1,...M. (A1)

M is the number of primary constraint equations. The wiggly equal sign
means that the equation is a weak equality because the Poisson bracket of
¢m with some of the canonical variables may not equal zero. The normal
equal sign will be used to denoted strong equalities which have zero Poisson
brackets with all the canonical quantities. Assume Poisson bracket relations

between the p" and ¢,
{p"qm} = —bp, . (A.2)

The Poisson bracket is defined to be

0AIB OAOB
{A,B} = Z,.:@—qfa_ﬁ_ 3 Be. (A.3)
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2. The canonical Hamiltonian H, is derived from the Lagrangian as
H.=p"¢n - L(‘]mdn) . (A4)

This Hamiltonian is not unique because any multiple of one of the primary

constraints can be added to give

H=H+ Umém (P, q) - (A.5)

The equations of motion can be generated by taking the Poisson bracket with

H,

?6'% = {9, H} = {g, H} + um{g, m} - (A.6)

To have a consistent system, the primary constraints must stay zero. There-

fore, ¢ = %—f must equal zero. That is,

J’n ~ {¢nch} + um{¢na¢m} ~0. (A'7)

This new set of equations can lead to one of four outcomes.

(a) The result may be an inconsistency. If this is so, the Lagrangian is no

good.
(b) These equations may provide no new information.
(c) They may result in conditions on the coefficients uy,.

(d) The equations may cause a new condition (independent of the un,’s) on

the p", gn. These are secondary constraints and are collectively denoted
¢a(p,q) = 0, a=M+1,...T. (A.8)

One then requires ¢4 ~ 0. This may lead to further secondary con-
straints. This procedure is continued until all secondary constraints are

found. T is the total number of constraints, primary and secondary.
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3. Define first and second class constraints. If

{da, 0} =0 (A.9)

forall b=1,...,T, then ¢, is first class. Otherwise ¢, is second class. The

first class constraints are collectively denoted
bilp,q) =0, i=1,...1. (A.10)

I is the number of first class constraints.

4. The number of first class constraints is equal to the number of gauge degrees
of freedom, which are eliminated by imposing gauge conditions as secondary
constraints. These gauge secondary conditions may generate more secondary

constraints as in point 2. The total number of gauge conditions,
7t(p,Q)z0’ i=1,...1, (All)

should equal the number of first class constraints. Upon imposing these

gauge conditions, all constraints become second class.

5. Now form the matrix
Cap = {ba> b3} (A.12)

where ¢q, @3 run over all the second class constraints. This matrix is inverted
to give C_ ,,; Dirac has shown that if {v;, ¢;} is well defined and non-singular,

then C;ﬂl exists.

6. Replace all Poisson brackets by the Dirac bracket,
{A,B}* = {A,B} — {A,44}C.3{¢s, B} . (A.13)

One can show that {¢q, A}* = 0 for all second class constraints. As a result,
all second class constraint equations (or all constraints if a full set of gauge

constraints has been imposed) can now be set strongly equal to zero.
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7. The total Hamiltonian is taken to be
H = H, + vii(p, q) (A.14)

where the sum is over any remaining first class constraints. Since the second
class conditions ¢, = 0 are now strong equalities, they can be used in the
right hand side of Eq. (A.14). If I gauge constraints had been imposed, the

total Hamiltonian would just be H.. The new equations of motion are

dg

o ={oHY (A15)

and the Poisson bracket relations are given by {A, B}*.
8. The system is quantized by replacing {A, B}* by —i[A, B].

As a first example of Dirac’s method, consider ordinary space-time QED in
temporal gauge (A° = 0). In just this example, the metric tensor g#* will be
chosen to have diagonal elements (—1,1,1,1). In the rest of this paper, g*” has
diagonal elements (1,—1,—1,—1). The canonical momenta are derived from the

Lagrangian to be

=0, #=A-VA, (A.16)

from which one obtains the canonical Hamiltonian
3=(la2 130 o &0
H = | &% 3% +§B —7-VA"| . (A.17)

The relationship for #°

is a primary constraint since it does not involve the velocity
fields A#. This primary constraint turns out to give one secondary constraint,
V - # 2 0. These two constraints are both first class, which means that a total of

two gauge conditions may be chosen. The temporal gauge condition A° ~ 0 leads

68



to a secondary gauge constraint V - A = 0. Collecting the constraints, which are

now all second class,

X
=

primary constraint : =«

N
X
o

-
secondary constraint: V.

(A.18)

Q
=

gauge constraint : A°

—y

secondary gauge constraint : V-A=0 ,

forming the matrix C,g between these four second class constraints, and inverting

leads to the Dirac bracket conditions

0? 1

0z, 02! 4n|Z - 3|’

{zh(t, ), A (£, 7))} = (—g" - ¢"°%™) 6Oz - &) +

{r#, 7"} = {A*, 4"} =0,

(A.19)
total Hamiltonian
1 -,
H:/ff-#+lw : (A.20)
2 2
and equations of motion
A={AHY =7,
. .. . (A.21)
7={7,H}*=-VxB=V?4.

These two equations of motion can be combined into one equation to reproduce

the familiar result

OA=0. (A.22)

Since the second class constraints are now strong equations, one also has V-A= 0,
which is the condition one normally writes for the Coulomb gauge. We find in

Dirac’s formalism that Coulomb gauge and temporal gauge are equivalent!
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Light-cone QED in light-cone gauge (A% = 0) is considered as a second exam-

ple. In this example only, g#¥, z+ and z~ are defined to be

01 O 0
1 0 O 0 1 1
v + __ 3 0 - 3 0
= , = —(z° + , = — - , (A.23
I 0 0 +1 O ’ \/_2_(x =) ’ \/i(x =) )
0 0 0 +1

which differs from the notation used in the rest of this paper given in Table 2. The

canonical momenta and Hamiltonian are found from the Lagrangian to be

T = §* AT — 9T A |

1 1 : A24
Hc = /dx_dzfl [‘5(7(_)2 + §(F12)2 + (7!'_6_ + W’a,')A_ ( )
This gives two primary constraints and one resulting secondary constraint,
primary constraint : =+ ~ 0
primary constraint: w — §;AT +0_A' =0 (A.25)

secondary constraint: O_m~ + &r' ~0 .

Recall that the velocity fields in light-cone formalism are 94 A#. The first and third
of these constraint equations are first class and the second second class. We are
thereby accorded two gauge conditions. Choosing A* & 0 leads to one secondary

gauge constraint. The full set of constraints is

primary constraint: 7t =0
primary constraint: © — §AT +0_A' ~ 0
secondary constraint : O_x~ + dr* ~ 0 (A.26)
gauge constraint : AT ~0

secondary gauge constraint: n~ +90_A” =0.

All of these constraints are now second class. Again, the matrix Cyp is formed and

inverted to convert the five constraints into strong equations and give the total
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Hamiltonian and equations of motion,

1 1 :
H= [ded*z, |-2(8TA)? + =(F?)? - 97A'5;A" | ,
[ u[Q( 2+ 5 (F?) .
OA' =0.

The Dirac bracket conditions are given in Steinhardt (Ref. 24) on page 446. If one

had included a current in this last example, the five constraints would have been

primary constraint : 7+ ~ 0
primary constraint: w — §;AT +0_A' =0
secondary constraint : O_x~ + drt + it =0 (A.28)
gauge constraint : At ~0

secondary gauge constraint: 7 +0-A" =0.

Solving for C;; gives

H= / do=d*7, [—%(a’f/r)z + %(F”)2 _ Ot AAT — A — j‘A’]
(A.29)
This turns out to be just the Hamiltonian that is derived in Section 4 (if one in-
cludes the free fermion Hamiltonian). Three of the now strong constraint equations

can be re-written
a—— L L T =-0%A",

| (A.30)
(97)2A + 8+3AY = jT .

One recognizes the first of these as just the definition of 7* used in Section 4 (Eq.

(4.5)) and the third equation as the constraint equation used to solve for A~ (Eq.
(4.6)).

One important point should be noted regarding light-cone gauge. One fre-

quently finds mentioned in the literature that A* = 0 gauge still has residual
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gauge degrees of freedom (i.e.: an z~ independent gauge condition can still be im-
posed). Dirac’s method for constrained Hamiltonians shows that light-cone gauge

is actually two conditions (corresponding to two first class constraints),
At =0, 71 40_-A"=0. (A.31)

This second condition arises from requiring that the first condition remain valid
for all light-cone time z% and uses up any residual gauge freedom. One also finds
a similar phenomenon in axial gauge (A% = 0): the gauge condition is really
two conditions, which uses up any residual gauge freedom allowed in axial gauge.

Details are in Hanson, Regge and Teitelboim (Ref. 20).
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APPENDIX B

The derivation of the quantities

s 2 1 / _ { ipto- 1 —ipt —}
n|lm] = (=) == [ dz”™ qe?™* ez m? ,
[ ] (L) 2L—L (10+)2 sym
L (B.1)
T 1 - ipte— 1 —ipt -
{n|m} = ——/dz {62 I — e 2 z} ,
(L) 2L—L 10t sym

is given in this appendix following a method suggested by Hamer (Ref. 19). The

definition of {...}sym was given in Section 4. The following two definite integrals

occur frequently and their values are given here:

L
/dw_ i LAC
-L

0 kt=0
(e (30 w20m (20)] w070

L
/da:— (z7)? L
°r

aL® k=0
- { Zki—)s [(k+L)2 sin (E%L) + 4kt L cos (l‘%) — 8sin (%—L” kT #0 .
(B.2)
We start with the most general form of gl,re_%k:"_ and (TBITFG_%H;I_’
1 _igt,- —%x‘+A0 m=0

ot ¢ z{zl;;n-e—ék't"_ +An m#0
(B.3)

1 ikt —%—(z“)2+Boa:'+Co m=0

(10t)? ’ { ﬁ’_ e~ 5%m" 4 Bpa= +Cm m#0 .
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This form is substituted into the definition of {n|m} to give

0 n,m=1_0
+
or Am — k+Lcosk2L + (k*L)ﬁ s1nk2L n=0,m#0
{n|m} = x4 BL, 3 _gnkL 520 .m0 (B4)
—3r - k*L cos =8~ (k*L)2 sin2= n#0,m=
#5,,,,,, n,m#0 .

{n|m} appears in the instantaneous fermion interaction. For example, the inter-
action shown in Figure 35 is proportional to {p + m|q + n} (see Fig. 7 in Section
4). Since we require conservation of light-cone momentum P*, {n # 0/0} and
{0|m # 0} must equal zero. Otherwise, this interaction would not conserve P¥.
This requirement fixes A, to be

1 kL 1 kXL

An = 2L 2k$LCOS 5 _(k,'l',L)ZSin 5 ,

m#0.  (B.5)

Making use of this equality, we similarly evaluate [n|m] by substituting the general

form, Eq. (B.3), into the definition of [n|m] to arrive at

T
2.

(3]

VammaN

ar |- L3+4Lco+2LA2] n,m#0
9LCom + 2L Ag Am k+ sin 5L 4 4zLBoA ] n=0,m%0
2 [20C_a +2LA0A_, - | n#om=0

{ 3176,,,,,, + (I) RLARA_, + 4zLBmA_,, +4iLB_p,Ap] n,m#0 .
(B.6)

As in the case for {n|m}, [n|m] must be proportional to é,m. A representative

1
3

e E I E N
[ %]

N N

R .
(3]
[

diagram proportional to [k — m|— [+ n] is shown in Figure 36. This gives the

following conditions on By, and Cy, for m # 0:

Bm = ZAm,
L . kL (B.7)
Cm = —AgAm + 4k,'7':, S 9 — 2tByA



Using the values for Ay, Bm, and Cy, given above and defining

_ T\ 2 1 1 3 2
K = (L) 57 |-3L° +4LCo +2L4]

gives us the final answer,

0 norm=1_
{nlm}“{%énm n,m#0 ,

K nand m=0
[nlm] = { & épm n,m#0

0 otherwise .

(B.8)

Though & is an undetermined quantity, its value turns out to be irrelevant in DLCQ

as long as it is finite because the ultraviolet cut-off removes all occurrences of [0/0]

(see Section 5).
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APPENDIX C

In this appendix the answer for tree-level Mgller scattering (e"e™ — e7e™)
derived using Feynman’s S matrix approach is shown to be identical to that derived
from light-cone perturbation theory (LCPTh). The rules for LCPTh are given in

Appendix B in Ref. 15 and Appendix A in Ref. 16 and can be derived from the
light-cone Hamiltonian Hy¢ given in Eq. (4.24).

The diagrams that must be considered in LCPTh are given in Figure 37 with
light-cone time z+ flowing from left to right and momenta assigned as shown.

Using P* and P, momentum conservation, q and ¢' are
gt =1 — I =k} -k,

GL=0;-lp=k—Fki,

= g3 + A2 (C.1)
gt
qu' = —q" .

Note that the photon’s 4-momentum, ¢, is on mass shell. Remember that P~ is

not necessarily conserved, so

¢ Flh -l #Fk -k (C.2)
Using the LCPTh rules found in Ref. 15 or 16 and performing the sum over photon
polarizations gives the following for the three LCPTh graphs,

BV
Th) = & alp)yulk) alkshu(h) T35

(Y = e 0(q%) ally)yuu(ls) alky)vou(k:)

n'q” +1"¢" ] 1
—ght
S I ey 7 e )
T3 = &2 g(—q*) a(l 1) a(k k;
i — € (—q™) a( f)'?’uu( i) u( f)‘)’uu( i)
[ n*q” +n"q"] 1
x [—g" + .
|7 ¢" ] —qt(k] —kp) —qtgT +ie

where n# = (0,2,0, ). Note that Tj(-,l-) diverges like 1/(g%)? for small ¢*. The sum

76



of these three amplitudes is

o(a*) s 0(=¢") J } (C.4)
gt - l;) —qtq~ +ie  —qt (k] — kf') —qtqg + e ’

Ay = a(lg)yuu(ls) , B, = u(ks)yu(ki) .

Writing out the components p,v = 4, —, 1,2 explicitly, one finds after some alge-

bra,
n,,v i u+nuqu 1
B e )[(q+>2 ) -t e
(C.5)
0(q+) 1 u v v u
= AuB [l = 1) + 0" (L = 1)

Tt gty - 17) —gtg +ie

This expression can be summed with a similar expression for the §(—g¢%) term to

give

Tri = e a(ly)yuu(l) a(ks)yu(ks)

1% 0(q+) 0(_q+)
q(ll-—lf)—q_L—)\ +ie  qt(ky — k) —qf — A% +ie
Bli= 1) + 07 (i = Lp)* 1
+6(q7) prs (7 —17) = ¢f = 2 +ie
Plky — ki)” + 0¥ (ks — ki) 1
o(—gt) TS T .
+6(—q™) qt q+(k}'—k,~—)—q_2L—)\2+z'e
(C.6)

This result is valid for on- or off-shell electrons and does not assume P~ momentum
conservation. Now note that this final expression for Ty, diverges only like 1/¢*
for small ¢*. The leading 1/(¢%)? behavior from T}p is exactly cancelled by a
similar singularity from T}?) and Tf(?).
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The Feynman rules answer can be obtained by first enforcing four-momentum

conservation (i.e.: k;” + 1 = kp +15),

] w o =1 +07(i=1)*]  (C)
X — — 2 . -9 + ’
gt —17) —q] — A2 +ie 7

and then requiring the electrons to be on-shell (i.e.: u(lf)(Ai— Af)u(li) = u(ky)
(i Jp)ulk) = ... = 0),

v

Ty = —e a(ly)yuu(l) @k pulk) ——2

_ C.8
qlsz—)\z+ie (C3)

g is defined to be I — l’f‘ = k’f‘ — k. This last answer is recognized as the familiar

answer for Mgller scattering using Feynman rules.

78



APPENDIX D

The calculation of various self-mass diagrams is given in this appendix. The
first to be considered is the familiar one-loop fermion self-mass diagram shown in

Figure 38. The various momenta are

2,.2 2
z°p] +me
D= (IP’—_-—L"_e’pr.) ’

zP
EL+ypl)? 40 .
k1=(yP,(l y;;) ki +ypL ), (D.1)
—kL+ (e —y)F)?+mdE 4
k2=<(x—y)P,( = ((z_z))l;f) S, —ki+(z—y)pL ) -

The light-cone perturbation theory (LCPTh) amplitude for this process is

2 T
g 1 273 1 N
T =32 [ ay [ 2% _
f 167r3P/ y/ 'Ly(z—y)D+ze
0

N = a(p)gu(ks) al(ks)gu(p) , (D2
D= a?pf +ml (RL+yp )2+ X (kL + (2 —y)pL)? + m?
zP yP (z—y)P ’

The rules for LCPTh QED are derived in Appendix B in Ref. 15 and Appendix A

in Ref. 16. The photon spin sum can be done by making use of the relation

3 V+ vVl
Z hef* = —g + 7_7_q_T7_7__q__, (D.3)
3 q

which holds for the spinors given in Eq. (4.13) with n# = (0,2,0,). Doing the

numerator algebra and simplifying the denominator produces the desired answer

z
2 ;[z2k2+ 2m2]+ 2 [12k2 +z(z—- ))‘2]
o g 2 z(a=—y)lf “LTY MelTyTIE P !
Tfi = ——633/ @- x/dy/d k_l_ z2k3_+y2m§+/\21(z—y)—ie . (D4)
0

dss 1s a delta function between the incoming and outgoing fermion spins. Note

that as expected from Lorentz invariance, this answer is independent of 5| . If one
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changes variables to z = y/z, one also finds that the answer is independent of P
and z. Since Ty; evidently does not depend on any of the quantum numbers of the

incoming fermion, Ty, can be considered to be a pure mass renormalization.

The quantities actually discretized are z, y, '} = = and Eﬁ_ = I-c‘_l_ + ypy or
—k 1 + (z — y)p1L- The choice between these last two is irrelevant. Rewriting T'y;

in terms of these quantities gives

2 r 1  Yoov2,.2 2], 2 [ 20 Y2 )2

8 22 (k) — L5, 2 +y2m2+ 02 z(z~y)—ie
0
(D.5)
This answer is discretized by replacing
= i —q— 5 = T ﬁ'L g = E.._qLL_
r I{ ’ y I( ? p_L L_L k) _L L_L ?
9 . . (D.6)
dy = — d’k; = [ —
Ju=zs. [ea-(5) 2
4

where 7n/L and 77i, /L are the P and 13_1_ of the incoming fermion, respectively,
and ¢ = 2,4,6,.... A factor of 1/z is also necessary because in the continuum,
factors of 1/4/z from external wavefunctions are conventionally associated with the
wavefunctions themselves; whereas in the discretized case, the factors of 1//x are

absorbed into P~. These steps give the result

2 2 2
+q2ﬂj] +§7 (li'.L—%ﬁ.L)

ey mea o

fi s L? ~ n? (d‘;—%ﬁ;)zﬂfﬂf'*"("—ﬂ B+

where By = (mLy/7)? and B, = (ALy/7)*. The photon mass, A, has been set

equal to zero in the numerator in this last expression.

Ultraviolet and infrared regulators are implemented by requiring that the in-
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termediate state in Fig. 38 satisfy

Z kit + mt2 < A2 (El + yi)".l.)2 + Az (D 8)
z; = y '

which in terms of the discrete variables given above reads

Qi+ﬂ7 (L —qL)* +ﬂf<1 AL} 2_Zmi+ﬁ
q n—gq K s

‘14_+ﬂ1 L.L ¢
q K

Here, B; is equal to (m;L J_/r)z. The sum is over any spectator particles that

m
spec (D.9)

might occur during the process. The correct mass counterterm that should be
inserted in Hyc to ensure that the fermion’s bare mass is equal to its physical
mass is the negative of Eq. (D.7) where the sum is over ¢* = 0,+1,+2,... and
q=2,4,6,...,n —1 that satisfy Eq. (D.9).

The next self-mass diagram to consider is shown in Figure 39 . The momenta

are assigned to be

2,2 2
zépl +mg
p= (:BP’__L_____C,pr_> )

zP
ky = <yP, (zl+y5;) +X ’u+ym> ,
ky = ((m—y)P, (—ELHQ;:ZW L)+ me ,—kL+ (z - y)pL ) ., (D.10)
I = (zP, (11 + ZZL)) l_L + zpl>
12=<(x—z)P,( l¢+((9;:zz))% —ll+(x—2) L)

81



and the answer in LCPTh is

2 b 4
L 1 gz 27 12 1 N
Thi= 2z P (16%3) O/dy dz/d kidly y(z—y)2(z—2) D’

N = a(p)dh)u(lz) a(l)Al1)*y* flkr)u(kz) a(ke) k1) u(p) ,

po|TmE  (kityp )+ N (Rt @-y)) mE
i T y T—y
| FPAme (et (Dt @-p) 4 mE
T y T—z ’
) (D.11)

The numerator algebra is done by using the photon spin sum relation Eq. (D.3),
applying symmetric integration to eliminate various terms proportional to k* and
I* (upon simplification, the denominator turns out to only involve k_zL and 1_21_), and
making use of the spinor properties shown in Appendix H. The answer for the

numerator,

N=8rPm? s, (D.12)
x

turns out to only have a contribution from the spin-flip interaction of Hy¢. s and
s' are the spins of the incoming and outgoing fermion, respectively. The complete

answer 1s then

2

2 z
meg 27 Yy .
Tgi = bss dy | d°k . D.13
AR S / y/ . 22k + y?m2 + N2z(z — y) — ie ( )
0

Again, changing variables to z = y/r demonstrates that this result is independent

of z, P, and p; and is therefore a pure mass renormalization.

Next, consider the case of N one-loop fermion self-mass pieces all connected
by instantaneous fermions shown in Figure 40. As above, momenta are assigned

and the LCPTh answer is written down for Ty;. The numerator and denominator
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are both factorizable, giving an answer of

. z
2
(N) __ g 27 1 1 )
157 = 15e% /dy/d ki y mi_ B ¥ Himi Ty (D.14)

me __ 1€
0 z y -y +

where T(?) is the answer for the diagram in Fig. 39. Using

i = 1 (D.15)

= l1—12

and substituting in Eq. (D.13) for Tf(?) yields

2

2 2 T - y
Me [59;5 fﬂ dyfdzk-'- 2k +y2mi+A2z(z—y)—ie

e 2k z—y
1+ 59;3- fo dy fd ki 22kS +y°mi+ A2z (z—y)—ie

Tf, == 633' (D.16)

as the amplitude for the process shown in Figure 41. Similarly to above, this result
is discretized by re-writing in terms of z, y, p| = zp) and l-c‘fj_ =k, +ypL and

making the substitutions in Eq. (D.6) to give

a q
xZ Zq, JL 2(
n

1 2
7-27.) +a28y+n(n—0)fy

n L?L 1+ % Zq’ - i >
n? (él—nrh) +¢?Bs+n(n—g)8,

(D.17)

This answer is subject to the same regulation conditions as above, Eq. (D.9). The
mass counterterm necessary in Hyc is the negative of Eq. (D.17) subject to the
conditions, Eq. (D.9). A combination of the mass counterterms, Eq. (D.7) and
Eq. (D.17), provides the full mass renormalization needed in the truncated Fock

space (e”,e™7) or (eTe™,ete™).
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An added result that is not needed in this truncated Fock space but is in-
cluded for information is the one-loop photon self-mass shown in Figure 42. The

continuum answer for this graph is

T P [ dy [ d%k (;'L’; i %!) (k1 + ) + 2me D.18
P = - r - ’ 1
f AN g3 a:/ y/ + z2(k3 + m2) — Ay(z — y) — i€ ( )

which is a pure photon mass renormalization. The familiar answer derived from
Feynman rules of zero is obtained because a term with massive, negative metric
Pauli-Villars particles is subtracted that exactly cancels the original integral (more
on this in Appendix E). Eq. (D.18) gives a non-zero photon mass renormalization

since subtractive regulation has not been invoked.
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APPENDIX E

The equivalence of answers derived using Feynman’s S-matrix analysis and
using infinite momentum frame time-ordered perturbation theory (TOPThe) is
demonstrated in this appendix for the one-loop fermion self-energy diagram in
Feynman gauge and the one-loop vacuum polarization graph in light-cone gauge.
Since it is believed that light-cone perturbation theory (LCPTh) and TOPTh are
mathematically equivalent, this demonstration makes the equivalence of LCPTh
and Feynman rules results for one-loop radiative corrections plausible. The analysis
for the fermion self-energy is done in Feynman gauge for convenience, though the

analysis should be similar for light-cone gauge.

First, the Feynman rules answer for the fermion self-energy graph shown in

Figure 43 is described briefly. We start with the familiar result

= 19 u(p*(F= £ + me)ruu(p)
Ty = - / k [(p— k)2 —m2+ie] (2~ A2 +ie) (E-1)

A factor of —i has been included to facilitate comparison with TOPThe. Doing the
numerator algebra, combining denominators, changing variables to ¢* = k# — zp#,

and eliminating terms proportional to ¢# by symmetric integration gives

o zg m2(1 + z)
Ty = —bss /d4Q/d q —(12+ze] ) (E.2)

a? = m2z? 4+ /\2(1 —z).

The delta function is between the spin of the incoming and outgoing fermion.
Doing the ¢° integral by contour integration and then the ¢ integral by standard

methods results in

1
2
g 2 2m; (1 + z)
Ty = 64y 2 [dz [ d . (E3
f * 87r3/ /qlqi+mzmg+z\2(1—x)——ie (E:3)
0

This answer diverges like log qﬁ_ for large ¢ ; it is therefore necessary to introduce

a regulator such as subtracting a Pauli-Villars contribution.
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Now consider the same process in TOPThy,. The TOPTh rules for QED in
Feynman gauge are given in Ref. 11. Two graphs need to be considered, the usual
time-ordering and the Z-graph. These are pictured in Figure 44. Momenta are

assigned to the various legs of the usual time-ordering contribution,

pz(E, 0., P) : k1=(El,El, zP) : k2=(E2, —k, (l—x)P) ,

E =./P2+m?, Ey =,/2?2P2 + )% | E’2=\/(1-—x)2P2+m2l,

M=k 4+, mi=k+m?. (E.4)

The TOPTh answer for this graph is

1 N
o 27 _
Ty 4(% /d:c/d T el (IR

N =a(p)gu(ks) a(kz)¢ u(p) ,
D=F—-F -FE,.

(E.5)

A Pauli-Villars contribution has been subtracted for ultraviolet regulation. The
TOPThy answer is gotten by letting P approach infinity, and the numerator is
evaluated with the help of the relation

DA =—g", (E.6)
A
which is valid in Feynman gauge. This gives the result
2 o0
Tyi= Jim Suws [ do [@F0 00\P) - 18, PY)
-0
2 2 me
IO, P) = I \/1+ % \/(1—z)2+('2"—P*) ~(1-z)-2( %)’
Vo () VO (BT Ve (B - o () - Jumer e (B ) i
(E.7)

for the usual time-ordering in TOPTh. Note that all the square roots are assumed

to be positive.
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The usual procedure is then to take the limit P — oo inside the integral to
simplify I(A, P). This is valid as long as one is not near the points x = 0, 1, which
are singular for P = oo. It is necessary to do a more detailed analysis near these

two points. The integral is split into three regions: z < 0,0 <z <1,z > 1.

z

(1-z)P [1 + (Zl——:ﬁ) ] as P — oo. I(), P) approaches

1. In the first region, E — P [1 + %(7) ], Ey - —zP [1 + 3 Aﬁ) ] and E; —

m2

11 —2)m + 1 9
1 3(l=2)pr+ 3T — 25 0 (ES)
z(l - x) 2z Pooo '

which is non-singular. Therefore, taking the limit before doing the z integral

is allowed, giving the result

T =0. (E.9)

2. In this region, E — P[1+3(%)?], E1 — zP [1+ (;\ )}, Ey, —
(1-=2)P [1 + ((1—;3?)2] and

1 (1 — z)m? +—4-m 4m?
A
I( ,P) — z(l—:c) m2_k-2'-+'\2 k2+mc+ze
1 (1-2)’m2+ k2 + m?2 —4m?(1 ~ z)
Cl-z z(1-z)m2—(1—z)(k2 + 2) — z(k2 + m2) + e

(E.10)
as P — oo. I(A, P) has a singularity near z = 1. The integral for region 2 is

split again into two parts

1—¢ 1
T = lim lim 6 [ / / d:c] / d*k, [I(\,P)—I(A,P)] .
0 1—¢
(E.11)

(a) In the region 0 < z < 1 — ¢, we are away from the singularity so the
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limit P — oo can be taken inside the integral to produce the answer

k% 4+m?
27 1 (1- :c)m,+-"‘—i —4m?
/dl‘/d kJ_ z(l—-.’c) 2 k2 +A2 k2 +m (A — A) .
me—""%

-z e e

T}fa) - llIl'l 533'

(E.12)
(b) The non-singular part of I(\, P) is expanded in powers of (1 —z) to give
the form
1 00
I(A, P) > An(\P) (1-2)" (E.13)

a3y
for I(A, P). The contribution to TY; is then

2b
Tf =lim lim bust 5 /dz/dm
Ze (E.14)
o0

=) " [An(\, P) — An(A, P)] (1 — 2)"

Va- w— (B)

Since A and A appear in I only as A/P and A/P, it must be that
An(X, P) — An(A, P) approaches zero at least like 1/P as P — co. One

can expand A, in powers of 1/P to see this. As P — oo, the most

|_A

divergent z integral is

0 e+y/e2+( 5 2
/dm (1 z) =y log( HerH) ) P log 2¢P (E.15)
(1 -

-x)2 !2PLI Im.Ll
The final answer as P — oo is then

T — —}1-)-logP ~0. (E.16)

3. Finally, in the third region, z > 1,

1

I(\,P » ,
( )P—voo IE(l—.’E)

(E.17)
which is singular near z = 1. As above, the integral is split into two pieces,
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one for 1 <z <1+ € and one for 1 + € < z < 0. In the first region, the
non-singular part of I(A, P) is expanded in powers of (z — 1), similarly to
Eq. (E.13). Again, we find that Ap(\, P) — Ap(A,P) —» 1/P as P — oo and
that the z integrals diverge at most like log P. Thus, this region gives a zero
contribution to T;. The limit P — oo can be taken inside the z integral for

1+ € < z < oo since we are away from the singularity to give

T -

= llm 633‘

< 7 i [ ¢E [x(ll—z)‘z(ll—w) =0 (B

1+¢

The contributions from the three z regions are now summed to give the final answer

for the usual time-ordering, one-loop fermion self-energy diagram,

1 1+mi 2
g 1 (1- :z:)m + —*—i —4m
Tyi = ———/ / 2 - (A=4)
8m? ) z(l=z) 2 _ X —"ilf;"°+ie
1 (2 -2z —2z2%)ym? - k%
= ss/ d dzk - (A A) .
83/-"3/ J'l-—.r k2+m2m§+(1-x))\2 ie ( — )
(E.19)
Note that this result diverges like A2 for large A. A term
k2 2,2 1-— /\2
o Ftem +(1-a) (E.20)

k2 4+ 22m2 + (1 — z)A2

can be added to the first term in the integrand and an analogous term with A

replaced by A subtracted from the second term to give

1

2 2 2
g 97 2mg + A
T =65 —= [ d d’k — (A=A). (E21

0

Now turn to the Z-graph contribution. A procedure similar to the above for

the usual time-ordering is applied. The momenta are assigned to be
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p= (E 0, P) . k= (El, kL, —xP) . k= (Ez, _F,, —(1—m)P) ,

E=PPaml, Ei=,[e2P+X,  Ey=,/(1-2)2Pt4+m},

M=k 4+, mi=k4+m?. (E.22)

The TOPTh result for the Z-graph including Pauli-Villars regulation is

B g 7 - 1 N
Ty = th;om _4 dx/dzk_l_ E1E; D +ie (A= A), -
— ﬁ(p)fv(kz) ’l-)(k2)¢u(p) ) |

D=-F-FE -F.

Doing the numerator algebra gives

Tfi = hrn 633 /dx/dzkl [I(), P) = I(A, P)] ,

I\ P) = 1 \/”(‘P‘ VO-epH () -+ )
+

_\/x2+(%)2\/(1—z)2+ (B’ \/1+ \/z2+(’\P) (1—z)2+( B ) —ic
(E.24)

Again, we find potential singularities in J(A, P) near z = 0,1. The integral is again
split into three regions: z > 1,0 <z < 1,z < 0.
l.Forz > 1, E - P[1+1(%)?, B1 - zP[1+ (%-}'5) ], and B2 —
(z—1)P {1+ %((Tzl:)?)z] as P — oo and

2

1 m2 | 1_m] m
1 zle-1)pt+ 5 gp — 25
I0P) s o = -0, (E25)

which is non-singular. The limit P — oo can be taken inside to give
1
T =0. (E.26)
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2. In the second region,

IO, P) — 2, (E.27)

P—asoo T

which is singular near z = 0. The integral is split into two pieces,

1
T = lim lim 5”, [ / dz + / dx] / &2, [I(\,P)—I(A,P)] .
) (E.28)

(a) The non-singular part of I(A, P) is expanded in powers of z for the region
0 <z < e€togive

(e <]

1
I\ P) = An(), P) 2" . E.29
(A, P) m2+(%)2 ; (A, P) (E.29)

Focus specifically on the contribution of the term Aq to T¥;,

T(2“°) = lim 5,3 /d?kl Ap(, P)/ — (A= A)
‘/1:2+
2 - e+ 62+( )
= Jim 8L / &% | Ao(), P)log (A= A)
(E.30)
As P — oo, Ag(A, P) and Ag(A, P) both approach one and the log
approaches log %A%E[ Using these relations, we find
k2 + A?
T = 5,8, / d*ky log 177 = basr | 6 = / d*k log - —
(E.31)

Analysis of the other terms A,,n = 1,2,3,... reveals that their contri-

bution to T}; all approach zero as P — oo. So, the complete answer for

91



the region 0 < z < € is

2 - k2 +A2
(2¢) _ g 2 1
Tfi = 5331 167['3 / d k_[_ log W . (E32)

(b) For € < z < 1 the integrand is non-singular, so the limit can be taken

inside the integral to give

1
2 - 1
T = 5, Lo / dz / d®k, [l - —] =0. (E.33)
€

8 T I

3. For z < 0, the results are similar to 0 < z < 1. There is a singularity
in I(X\, P) near ¢ = 0. Expanding I in powers of —z for —e¢ < = < 0
reveals a contribution identical to Eq. (E.32) from the term Ag. All other

contributions vanish as P — oo.

Summing contributions from £ > 1,0 < £ < 1 and z < 0 gives the total result

2 - k2 + A2
_ g 2 1+
Tji = bss gﬁ/d k; log e (E.34)

for the Z-graph contribution to the one-loop fermion self-energy diagram. This

answer can be re-written as

1

2 2 2

g 95 —A 4 2mz

Ty = bsg == [ dz [ d°k — — (A—=A). (E35
0

Note that this answer disagrees with the Z-graph answer using a naive application
of the tree graph rule for including backward moving particles given in Ref. 11 and

Ref. 14. Of course, their rule continues to remain valid for tree graphs.

Summing this result with that for the usual time-ordering Eq. (E.21) yields
an answer identical to the Feynman rules answer Eq. (E.3), demonstrating the
equivalence of using TOPThy and Feynman rules for the one-loop fermion self-

energy. The final answer in TOPThy, is just the Feynman rules answer.
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Summarizing, the usual time-ordering graph gives an answer in TOPTh, that
diverges like A% and is equal to the usual LCPTh answer for the fermion self-energy.
There are no contributions to this graph from the regions near z = 0 or 1. The
Z-graph contribution in TOPThy, only has a contribution near z = 0 and sums
with the usual time-ordering graph to give the familiar Feynman rules answer.
This final answer diverges like In A because the leading A% divergence cancels. In
order to reconcile the LCPTh and Feynman rules answers for the one-loop fermion
self-energy, an extra piece equal to the TOPThy, Z-graph must be added to the
light-cone Hamiltonian and the LCPTh rules.

Now consider the one-loop vacuum polarization graph. The answer in TOPTh,,
is dealt with first. There are two contributions, which are shown in Figure 45. Mo-

menta are assigned to the first graph,

p= (E 0., P) . k= (El, ki, :cP) R - (Eg, —FL,Q —x)P) ,
E=P, Ey = \/22P? + m} | E2=\/(1-—3:)2P2+m§_,
m? = k% +m?, (E.36)

giving a TOPTh, answer for the usual time-ordering of

9 o0
Tri = pm tore P/d‘”/d’” E1E; D+ie '
= (E.37)
N = —ii(k1) g v(k2) v(k2)du(kr) ,

D=FE-F —-E,.

The numerator algebra is shown in detail.

N = —Tr{(f1 + me)¢ (K2 — me)d}

(E.38)
= —4{(k1-€)(k2 - €)* + (k1 - €)*(k2 - €) — (k1 - k2)(e- €)* —mZ(e- €*)}
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The light-cone gauge photon spinors are

€1°PL . €-p1 -
e“:( € ) = (0,€,,0),
E+Pz, .L’E+pz il=0( €1, )

; (E.39)
L) = —= (1 i)
C.L( ) \/'2'( t )
and satisfy
€x- €y = —€1x- €Ly == - (E.40)

Returning to the evaluation of the numerator after using Eq. (E.39),
N = —4{-2(E5 k1 )€ n k1) + 6an [E1E2 + k2 — 2(1 — 2)p® + m?]} . (E41)
The first term can be expanded by writing out the form of the spinor explicitly,
AN

(ELr-EL)E L) = 5 [k2 + koky(iX — iX') + AN'KZ] . (E.42)

The rest of the integrand only depends on ki_, so the symmetric integration relation
. 1 . -
/ &’k K F(KR) = 5 8 / d*k) K3F(k3) (E.43)
may be used to give
- T — g 1 2
(ELx-kL)(ELn ki) =5 ban kL - (E.44)
Substituting this result into Eq. (E.41) produces
N = —4 b\ [ElEz —z(1 - :I))p2 + me] . (E.45)

Using this result for the numerator yields the following expression for the usual
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time-ordering contribution

oo o0
2
. g T

I(m2, P) = \/ﬁ+(”‘r*) \/<1 o4 () o104 ()

\/z"’+ \/(]—z)2+ z’-{— \/(1 z)2+(—15“) +i€
(E.46)

The integral over g(A)dA is included as an ultraviolet regulator.

The remainder of the analysis is similar to that for the fermion self-energy
described above. One sees that I(m2, P) is potentially singular near z = 0,1. In
the region away from these singularities, the limit P — oo can be taken inside the
z integral. Near the singularity £ = 0, the non-singular part of I is expanded in
powers of z to find the contribution to T; from this region. A similar analysis
is done for z near one. The answer for the usual time-ordering contribution to

one-loop vacuum polarization has the following pieces:

1.
- 2
—6»1 dz/dzk_L/g [(ﬁ+$)+aﬁ‘—;g—(m3qm§+,\2)
(E.47)
frome<z <1—c¢,
2.
2 1 00
b iz [[do [ @EL [o0) ar log (8 +md) — (m? — m? 437
0 0

(E.48)

from —e < z < ¢,

3. and an identical contribution to Eq. (E.48) from 1 — e < z < 1 +¢, and zero

contribution from other z regions.
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Summing these pieces gives the final answer for the usual time-ordering contribu-

tion,

1 0o
2 =
= &xnr —3/dx/d2kl/g(,\) dXx [I(m?) — I(m2 + A?)] ,
0 0

2

€

k% + m?

(E.49)

m

I(m;) = log (k1 +m;) ~

This answer is in fact the complete answer for one-loop vacuum polarization in
TOPThy because the Z-graph turns out to be zero. One can also show by doing
the k 1 integral that this answer is in fact zero, which is the expected answer for
the vacuum polarization between on-shell photons. This zero result only occurs
because a subtracted regulator term I(m2 + A2, P) has been included that exactly

cancels the contribution from the original term I(m2, P).

The Feynman rules answer for the one-loop vacuum polarization graph shown

in Figure 46 is

o ig’ Tr [d(#+ K+ me) (¥ +me)]
Tyi = (2m)* /d4k [(p+ k)2 —m2 + ie] (k2 — m2 +ic) (E.50)

The numerator algebra is done in a fashion paralleling the steps Eq. (E.38) through
Eq. (E.44) using the light-cone spinors given in Eq. (E.39). The result after
changing variables to ¢* = k* + zp# and eliminating terms proportional to ¢* by

symmetric integration is

N = Trlfp+ F+me) F(F+me)] = 46y [¢d + 2 —m?]

1

4ig? 2 4¢P —m? (E.51)

Tsi = —6x g4/dx/d4q 1L79 "M
(2m) , [¢2 — m2 + i€]

The denominators have already been combined and p? set equal zero in this last
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expression for T;. The ¢° integral is done by contour integration to give

1
2 _._2 2 __ 2 _2m2
Tf,.=5n,-égr—3/dx/d3q 53 qj e (E.52)
. [¢% + m2 — i¢]?

Invoking an ultraviolet regulator and doing the ¢3 integral yields the answer for
one-loop vacuum polarization,

1 00
2
Ty = Exn Zgﬁ / dr / d’q, / g(A) dx [I(m?) — I(m? + )?)] ,
0 0

2
q
I(m?) = log (¢} + m? )+flm2’

(E.53)

which is identical to the TOPThy, result Eq. (E.49) after adding and subtracting
k2 +m?
kl+me '

The numerator algebra has been done in a “non-standard” way in this analysis

Let’s see what happens if the numerator algebra is done the standard way,

N = eue;, Tr[y*(F + K+ me)y" (¥ + me)]
eue, TrV(d+ (1 —2) P+ me)y"(d — 2 §+me)]

{l¢"+(1-2)p*)l¢" -2’ - ¢" g+ (1 — 2) p] - [g — zp] (E.54)

+[¢" + (1 - 2) p"][¢" — zp"] + g**m?}

=4 eue; [~39""¢° + g"'mi + ¢ p'a(1 - z)

= (2¢% — 4m?) 6yy .

— *
=4 ¢u€,

- 2ptpz(1 — 2) ]

Variables were changed to ¢* = k* +2p# in the first step, the symmetric integration
relations

(E.55)

/d"q ¢'F(¢) = /d"qq ¢'F(¢*) = —g’“’/d‘*qq

were used in the third step, and the spinor relations ¢ - € = —éyy/, €- p = 0 were
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used in the fourth step. Using this answer for the numerator gives

1
4ig? —3¢* + m?
Tfi = 6,\» —-WL/d.’L‘/(fiq 2 T2 (E56)
0

which differs from the “non-standard” numerator algebra answer, Eq. (E.51).
Doing the ¢° integral by contours, regulating, and doing the ¢* integral gives the

result

1 00
=8y g [de &g [ g() dX [I(md) = I(m? +A%)] ,
0/ / / (E.57)

2
I(mg) = log (g1 + md) + =t s
which is half of the result Eq. (E.49) or Eq. (E.53). Since all of these results
are zero after doing the ¢ integral, the discrepancy of % is a zero form, 0 = %0.
The formal % difference comes from setting p? and ¢ - p equal to zero at different
points in the two methods of evaluating the numerator algebra. So, the answers
for the one-loop vacuum polarization graph using Feynman rules and TOPThq

are identical if one is careful to do the numerator algebra the same way.
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APPENDIX F

In this appendix, the approximate equivalence of the light-cone variational

equation,
($|Hrc lp) = M?, (F.1)

in the Fock space (ete™,ete™v) and the momentum space Coulomb Schroedinger

equation is shown for the choice

M = MBohr )
[0) = Wete- Ie+e~> + Pete—o |e+e—‘7> ’
A A
¢e+e— = = ) 3 ~ %2 +m? ) 2 )
[k2 - nga2] [EJ(T——:J - MBohr:| (F?)
1
Yetemy = ete v Hic lete™) thpte-
o (ge:-) Msem = Moy ( [ o |ee) o
1 + - + -
~~ eTe vy HrcleTe™ ) Yete-
Z: Mlz?»ohr _M62+e‘7 < I l > e

(e*e)

This demonstration establishes the correspondence principle. The definitions of A4,

Mpgohr, Me+e-, and M+~ are just those given in Section 11,

1
Mgy = 2me — Zmeaz 3
k2. 4+ m?
M2 = 11 1 ,
S P )
k2. +m?
]\4‘32%_‘r = Z _J-tz__L .
i=€+,€_,‘f !

First, the momentum space Coulomb Schroedinger equation is derived. We

start with the familiar expression

2mred r

=09 N
/ & "/’*(F) [ i - —] P(F) = _%mred o . (F.4)
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This equation is Fourier transformed according to

- 1 - b7
4B = Goom [ @7 ui (F.5)
to give
= -
/ &F [p(F)? ,’; FaR &Ry g (k) GRS (F.6)
= —imeaz .

Note that this choice for the Fourier transform leaves the norm of the wavefunction

unchanged,
[ #rw@r = [ EFwdEE =1, (F.7)

Making use of the equality,

2
32Q gy _ €
/ d ; e'? = -q:q— ; (F8)
results in the momentum space Coulomb Schroedinger equation we are after,
/d3k|¢ 2 '“-2 =2 SR PR (R e(R) e = —imed®. (F.9)
1] - - - - .
(ks — ki)? 4

Now turn to the light-cone variational equation. The contribution from the
instantaneous fermion exchange, Vinsiferm, Was shown in Section 13 to be small

compared to the other interactions so it can be ignored. t¢+,-, may be symbolically

written
k;. e ki e
d’e"‘e‘-y Z D 7»be"'e
> 7 \/Tw \/q——zT ‘_*5
(F.10)
D and  are defined to be
D = ete P‘;e y = P+ [Me+e Me+e 7] ’ (F.11)
Q = 2L(2LJ_) ]

The diagrams represent the light-cone perturbation theory (LCPTh) answer for
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these interactions, gu(ks) f*u(k;) and —gv(ly) f*v(l;). Note that whereas the in-
coming state is usually on the left and the outgoing on the right, in these diagrams,
we have chosen to show the incoming state on the right and the outgoing on the
left. The upper line in each diagram will always be the electron and the lower
line the positron. The relationship P* = 7 K/L and the fact that the DLCQ an-
swer given in Eq. (4.24) for the three-point vertex shown in Figure 47 is equal

the LCPTh answer, gu(kys) £*u(k;), times a factor W are used. One

also has that the DLCQ answer for the four-point instantaneous photon interac-

tion shown in Figure 48 is —"——— times the LCPTh answer for this graph,
g LQ,/k'*k'-"l"’lf grap

_g? a(ky)vtu(k)o(ly)rtok)
(k7 —kF)? '

The contribution to (¢|Hrc|y) from Hj is just

k;
(| Ha| $) = 2 Yol o~ : (F.12)
ete” Vete- LQ /k+k+l+l+
‘F 'R

Similarly, the contribution from Hges is

k

_ o Km | S
(1 Hoarg|9) = 3 [bererI* 7 ~ | B

k) k

Once again, the diagrams represent LCPTh expressions. Now consider the contri-
bution to (¥|Hrc|¥) from Hj. It is

ke ki ke k;
H L
("/)| lld)) e+e \/m \/;F_l'*'—l; :I d)e‘*’e v
+ h.c.

(F.14)
In this and upcoming expressions, a sum over xi,mf,]g_]_i,]:lf is implied where

appropriate. Using Eq. (F.10) for t¢+,-,, collecting terms, and using the LCPTh
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relationships

ke ki ke k;
_ S, 11 .
-—ISI'L—— - 1 gt D :‘-L_‘x—’
4 % % & (F.15)

k¢

k 3 L
1 1 7——'

where D was defined in Eq. (F.11) produces

ke ki ke k;
2K= 1 '
Hil) =227 . — ete-
(I Hil ) =~ | D r——-k:rk_;l?l?m( o+ f )

oy L 4
) k
+ Z_I¢e+6"2( U + )] .
k+
Z o

(F.16)
The factor of two comes from the hermitian conjugate term. Finally, turn to the

contribution from Hy to (¢ |Hrc|v),
("Z’I HOI"/’) = |¢e+e"|2Me2+e- + l¢e+e“7|2M3+e--y . (F'17)

M.+~ and M,+.-, were defined previously in Eq. (F.3). Now add and subtract

a term [e+e—v |2 M2

2, - where M?%, _ is the invariant mass squared of the (e*e™)

states from which t¢+ -, is obtained (see definition of %¢+-4, Eq. (F.10)) to arrive

at

(¢| HOl ":b) = (l"/’e‘*’e"z + Id’e*e“ylz) M52+e— - |¢e+€"‘7|2 (M62+6_ - Me2+e—7) .
(F.18)
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Inserting Eq. (F.10) into the second term gives

_ ke k; _
1 1

1 /k+k}'q+ A /l;"l}'q l{. %
X \/W ; ‘

ke Xe k
K‘ﬂ' ( i
= 1'.51& + X ete—
k+k+l+l+

____Me+e _Mez+e ¥ "/’
0 ete~

D?

z,k_L

z¢, kJ_f x‘ ’:l

£

k

+Z—]:T|¢e+e‘|2 ( U +

Z,El
(F.19)
= P*D has been used. If the norm of .+.- is

redefined to include the contribution to the norm from te+¢-,

The relation M? cte= — M 2

ete—y

Z Id)e‘*e Inew Z |¢e+e‘|(2>1d + |¢6+6—‘)‘|2 = 1’ (FQO)

z kl z,kJ.

then first term can be approximated as
2
[ete-|* M, . (F.21)

Collecting the contributions to (¥|Hpc|v) from Ho, Hy, Hy, Hgey, we find

that the self-mass bubble completely cancels. What remains 1s

leLCW) lee‘*e |2

T k_L
Kn o ke ki % ko ke '3
T™Yes "
+ ete Yete~ 1’1'1‘ + ‘j + %‘
I'Zki LQ k+k+l+l+
LY ie L 7 L 73 %

(F.22)
Note that the real photon exchange diagrams (first two graphs in the [...]) come
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from two places, H; and Hp. For convergence studies, it is convenient to define
K "»b + i+ -
P thp Z ete— Vete

1 ,f ]

=% (Y| Hi|¥) g + 1 <’/"H“’f |'/’>fhp ’

Kr ¢e+e e+e
PEnofI:p Z LO k+k+l+l+ \ /

Fir ':.L
’f"‘.Lj

1
=3 (O H ¥} posrip + 3 <¢’ | Hsei |’J’>nofh'p ’

¢ ; fee ki
. (T ete— Tete— i _
PE;nstphot Z Je) k+k}*‘l+l";‘ I: } - (17/} l H2 |’¢)> ’
iK1 1 1

flip

noflip

xi kg
IJ'E.JL.j k [N

KE =Y |thete-| "M% - —4m? = (| Ho 1)) + <w|H1 ) — 4m?
I,EJ_

PFE =PEfI§p + PEnaflip + PEinstphot y

M? =4m? + PE+ KE = (¢ |Hic [¢) .
(F.23)

[ - J 15, means that the spin-flip potential Vj;, occurs at each of the two vertices.

Note that the graph with Vyy;, at one vertex and Vyo51ip at the other is zero.

In Appendix C, we showed that the sum of the three LCPTh graphs in Eq.
(F.22) is equal to

uv
2 q i) U w0 (1 g .
g th) o0 Pe(h) o (F.21)
where
o [k — kDK — k) = (bip— ki) k> EF P os
9rR = + _ (- - I AV + o 7+ (F.25)
(lf—l,-)(lf—l,-)—(lu—lu) lf >li .
In the non-relativistic regime, the largest contribution is from g, = 0 since

104



a(k)y ul(ki) > a(ks)v'u(ki) for i = 1,2,3. So, the numerator can be approxi-

mated as
a(kg)ytu(ki) o)y o(k:) - (F.26)

Using this relation and %(p)y*tu(q) = 24/ptqtéss from Appendix A in Ref. 14

gives the result

2
fo01 PR \N s 2 a42 ¢ 4K~ f* i € _ 2
(PlHLoW) = D [ere-"Mere-+ ) T Vere-Vete-77- = Mionr -
I,EJ_ ’i'EJ.I qFR
-“f»k_x_j

This equation can be converted to the continuum by the replacement

L L, \? 27r7r
—;/dk*, Z-+(7l> /dzk_L, et e »ﬂ/ (F.28)
ki

Making these replacements produces the light-cone equation,

o k2 2
[t R e
Sam nE . (F.29)
+ - /dkfdzkli dkfd®ky g 9" (kp)w(ki) 2 M3 g -

The relations o = €?/4r and Kn/L = P* =~ 2m, , which is approximately true

can be re-written as
k% +m?
z(1—1z)

for non-relativistic Pt, have been used to derive this answer. The kinetic energy
_ p+ ki+mg +ki+m3
k+ e kt

N
= (Pt + PL) (P + P3)
= (P~ + P% + P% + P3) (P - PL + P4 — P%) (F.30)
= (PL +P%) (PL +PY)
—-Eom—4<k2+m) .

In the fourth step, Pe?’_ + Pe3+ = total P? of the system equals zero was used.
Substituting this result in Eq. (F.29) and approximating dk* as dk3, g% as —¢*
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and M3, as 4m? — mZa?, which are valid for nonrelativistic k°, ¢° and small o?

respectively, results in
4 / 43k |p(E))? k® — 72— / ki &k p*(kp)p(ki) z = —m2a? |, (F.31)

which is identical to the momentum space Coulomb Schroedinger equation, Eq.

(F.9).

106



APPENDIX G
In this appendix, it is shown that the light-cone variational equation,
(| Hrelp) = M? (G.1)
in the truncated Fock space (¢7,e™7) is equivalent to
M=m,. (G.2)

The e~ and e~ wavefunctions are chosen as in Section 11,

[9) = the- |6_> + "»be“y |6—'7> s
- = A 61 —z) 6D (Ey),

1 - -
"/)e‘-y = mg _Meg_‘{ (e 7|HLC|6 ) Pe- (G3)
k2. +m?
2 — 11 1
Miw = 2 =5
i=e~,y

As in Appendix F, the instantaneous fermion interaction will be ignored because
it is numerically small compared to the rest of the interactions. Also following

Appendix F, 1.~ can be symbolically written

kp k:
11 1 7
"/)e—‘y = T i+ "[’e‘ ’
_ - 171 9
D =PI -Po, =7 [m-ML,] .

The diagram represents the light-cone perturbation theory (LCPTh) answer for
the three-point interaction, ga(ks)g* u(k;).
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The contribution to (Y|Hrc|¢) from Hyey is

o Km
<¢|Hselfl¢> Zld’e l LQIC

:L‘k_L

SEAY } . (G.5)

k
The contribution to (¢|Hrc|¥) from Hj is

P AR -
(Y| Hilyh) = ‘g{\ J L the . (G.6)

The relation that the DLCQ answer for the three-point vertex is just

T

L\/ﬁ, / k'}'k'-+ gt

times the LCPTh answer was used. As was the case in Appendix F, sums over z
and k, should be assumed wherever appropriate and outgoing states are shown to
the left of a diagram and incoming states to the right. Substituting Eq. (G.4) for
e~y and using the LCPTh result,

5 = X Ep G (6D

k ke ’ 1 ks

results in

(|l = 3 o e IZ{ ™ } (G3)

z k_L k
The factor of two comes from the hermitian conjugate. Finally, the contribution
to (Y|Hrc|¢) from Hy is

(B Hol$) = [whe-’mi + [e-s*M-, . (G.9)

Again, as in Appendix F, a term lz,be-.,]sz is added and subtracted to give
(W1 Ho9) = (el + lbes?) md = eyl (m2 = MZ)) . (G10)
The first term is just the norm, equal one, multiplied by m2. The second term can
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be written out using Eq. (G.4),

1m§—M62_7 fx 1 }r"‘ '\_&l 1 b
QD e | [t | ©
Al s P AN a R A o

The numerator m2 — M3—~, = P*D cancels one of the Ds in the denominator.

Using the relation Eq. (G.7) gives

K
(WIHol) =mi =3 zorslwe-l | g™ |- (G1Y

z,ky k

Summing the contributions from Hy, H; and Hj, we see that the one-loop

self-mass bubble completely cancels, resulting in the final answer
(| Hicly) = M* =mZ . (G.13)

Note that whereas the equivalence of the light-cone variational equation and the
momentum space Coulomb Schroedinger equation in the (e*e™, ete™7) space shown
in Appendix F was an approximate result, this result for the (e, e™v) space is ex-

act in the absence of the small instantaneous fermion interaction.
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APPENDIX H

A set of useful spinor properties is given in this appendix.

T—1 11
u(k,s)...u(k,s') 11— (s =) l—1
uu 2me, 0
uytu 2k# 0
ayty~u 4dm, 4 [:l:kl + ikz]
v~y u 4m, 4 [Fk! — k%
ayty'u 0 2kt [:i:éil + i6i2]
a7 ytu 0 2kt [;6‘1 - i5i2]
ay vty u 8 [ﬁ#] 0
gy~ vy ytu 4 [ki F ieijkj] 4m, [:i:5i1 + i6i2]
Ay vty u 4 [ki + z'e"jkj] 4me, [q:&il - i&iz]
ay'ytyu 2kt [6’5 + ieij] 0

(k,8)v(k,s') = —2mbqq
(k,s)vFv(k,s') = 2kH6sq
(k, s)u(k, s'
(k

v

<

,s)u(k,s') = a(k,s)v(k,s') =0

»S) [V + T A ulk, §) = Bk, ) [YEy T + Y0y v (k, )
= (49" kT — 4gHTRY + 4977 kH] 6,

o(k, s)y*y" v v(K', s') = a(k', s )y v v u(k, s)

1=3=1,2 p,v,0 =0,1,2,3 or +,—,1,2

[+

I~
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APPENDIX I

The Coulomb data used to produce the fit, Eq. (13.13), is given below. All

values are for @ = .6 and A = 3.5m.. L is in units of mLe

K L | M?—4m?
42 32 —0.03429031
42 36 —0.04021676
42 40 —0.04467159
42 44 —0.04791342
42 48 —0.05024107
42 52 —0.05215458
42 56 —0.05386172
42 60 —0.05514933
50 32 —0.05123963
58 32 —0.06340757
66 32 —0.07111165
74 32 —0.07938879
82 32 —0.08432295
90 32 —0.08854387
98 32 —0.09114766
106 32 —0.09459545
114 32 —0.09765245
122 32 —0.09978784
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APPENDIX J

Two computer codes are presented in this appendix. The first is the program
needed to implement the light-cone variational calculation described in Section
11. The results shown in Sections 12 and 13 for the charge -1 and zero sectors
were produced by this code The second program 1ncluded runs what is described

in Section 13 as “Coulomb data”. That is, it numerlcally returns values for Eq.

(13.10). All programs are written in Fortran.

The variational code is run by choosing values for the various parameters in the
file QEDVAR.DATA. An example of this file is included. The Fortran code QED-
VARIN is then run interactively. This program handles all inputs for the main code,
QEDVAR. After successfully running QEDVARIN, a file named FILE20.FILE
should be created. The main code QEDVAR is now run in interactive or batch
mode. FILE20.FILE is the input file to QEDVAR, and QEDVAR.OUTPUT and
STATES.OUTPUT are the output files. A sample of QEDVAR.OUTPUT is given.

The Coulomb code is run in a similar fashion: The initial parameters are chosen
in COULOMB.DATA, COULOMBI is run first to set up inputs to the main code,
the main code COULOMB is run in interactive or batch mode, the input file to
COULOMB is FILE20.FILE and the output files are COULOMB.OUTPUT and
STATESC.OUTPUT.
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QEDVAR.DATA

Notes: 1)
2)
3)

4)
5)

26 ! start value of kplustot
26 ! end value of kplustot
0 ! kxtot kxtot must be = 0
0 ! kytot kytot must be = 0
0 ! icharge ibc = 1 to keep only odd fermion kplus
1 ! ibe ibc = 2 to keep only even fermion kplus
.6 ! alphag
2.500 ! start value of alambda in units of elecmass
2.600 ! end value of alambda
20.000 ! start value of alperp units of 1/elecmass
20.000 ! end value of alperp
.0001 ! start value of epsilon in units of elecmass**2
0001 ! end value of epsilon
1.00 ! variational parameter 1
1.00 ! variational parameter 2
1.00 ! variational parameter 3
1.00 ! variational parameter 4 (not used)
1.00 ! variational parameter 5 (not used)
0. ! photmass in units of electron mass
0. ! rphomass " " "
1. ! fermmass " " "
1. ! rfermass " " "
1 ! fermions, afermions all have spin up.
0 ! uv cut-off only applied to fermions, anti-fermions
1 ! put in states with one photon
o] ! remove ints. w/ afermion
1 ! turn on hO
b ! turn on hil
1 ! turn on instantaneous photon interaction
0 ! turn on instantaneous fermion interaction
1 ! turn on hself
0 ! print variational fock states
1 ! print output

all input in free format
photmass occurs in hO and hself
rphomass occurs in the covariant regulator
(i.e.: in the generation of states
and in self-induced inertias)
fermmass occurs in hO, vertex term and hself
rfermass occurs in the covariant regulator
(i.e.: in the generation of states
and in self-induced inertias)
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QEDVAR . OUTPUT

INPUT (MASSES ARE IN UNITS OF ELECMASS):

KPLUSTOT ICHARGE IBC = 26 O 1
ALPHAG = 0.6000
ALAMBDA = 2.5000
ALPERP = 20.0000+1/ELECMASS = 12.0000%BGHKR (RPERP = 15.9165)
EPSILON = 0.0001
PHOTMASS = 0.0000 . o - - -
RPHOMASS = 0.0000
FERMMASS™ = 1.0000
RFERMASS = 1.0000
VAR PARAMETERS = 1.0000 1.0000 1.0000 1.0000 1.0000
# OF FOCK STATES WITH NO PHOTONS = 363
# OF FOCK STATES = 7651
CPU TIME TO FIND FOCK STATES = 0.26 SEC
CPU TIME TO WORK OUT VAR WF = 4.0b6 SEC
CPU TIME TO FIND HO MATRIX EL = 0.05 SEC
CPU TIME TO FIND Hi MATRIX EL = 4.75 SEC
CPU TIME TO FIND H2 MATRIX EL = 0.42 SEC
CPU TIME TO FIND HSELF MATRIX EL = 0.31 SEC
TOTAL CPU TIME USED = 9.84 SEC
CONTRIBUTION TO M#%2 FROM HO = 4.3599108941
LONG VERTEX = HiL = 0.0000000000
TRANS VERTEX = HIT = -0.2277568924
INSPHOT = -0.3626713082
INSFERM =  0.0000000000
LONG PART OF 1 LOOP SE = SEFIL = 0.0000000000
TRANS PART OF 1 LOOP SE = SEFIT = 0.3518339387
N CHAINED INST SE = SEF2 =  0.0000000000
2 CHAINED INST SE = SEF3 = 0.0000000000
LONG PHOT = .BHiL+SEFiL = 0.0000000000
TRANS PHOT = .6H1T+SEF1T = 0.2379554926
INST PHOT = INSPHOT = -0.3626713082
PE = L+T+I PHOT = -0.1247158157
KE = HO+.BH1-4 = 0.2460324479
SUM+4 = HO+H1+INSPHOT+SEFt = 4.1213166323
SUM+4+INSFERM+SEF2 = 4.1213166323
SUM+4+INSFERM+SEF3 = 4.1213166323

FOCK STATE DECOMPOSITION: 94.19% 1 PAIR,0 PHOT 5.81% 1 PAIR,1 PHOT
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STRUCTURE FUNCTION:
NOTES: 1) VALUES SHOULD BE MULTIPLIED BY 1/10000 (*#%=10000)
X= 2692 3462 4231 5000 5769 6538 7308

51 463 2289 4654 2127 373 43

WAVE FUNCTION SQUARED AT KY=0:

NOTES: 1) VALUES SHOULD BE MULTIPLIED BY 1/10000 (***=10000)
2) KX IS IN UNITS OF ELECTRON MASS

6283 | 0 0 1 1 1 0 0
4712 | 0 3 8 9 5 2 0
3141 | 2 14 43 62 35 9 1
1570 | 4 34 210 461 203 31 3
o | 5 53 475 1259 467 52 4
-1570 | 4 34 210 461 203 31 3
-3141 | 2 14 43 62 35 9 1
~-4712 | 0 3 8 9 5 2 0
-6283 | 0 0 1 1 1 0 0

KX X 2692 3462 4231 5000 5769 6538 7308
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COULOMB.DATA

-t e sum  tmm  tmm  sem s smm  sem

Notes: 1)
2)
3)

4)
5)

start value of kplustot
end value of kplustot

alphag

ed = — e

end value of alambda
end value of alperp

end value of epsilon
variational parameter
variational parameter
variational parameter

W N e

rphomass " "
fermmass " "
rfermass " "

print fock states
print output

o
(=
(=4
rrg

all input in free format
photmass occurs in hO and hself

kxtot kxtot must be = 0
kytot kytot must be = 0
icharge ibc = 1 to keep only odd fermion kplus
ibe ibc = 2 to keep only even fermion kplus

PR VoL Al 2
stvaIl value 01 aliambaa i

start value of alperp units of 1/elecmass

start value of epsilon in units of elecmass#**2

variational parameter 4 (not used)
variational parameter 5 (not used)
photmass in units of electron mass

"

uv cut-off only applied to fermions, anti-fermions

rphomass occurs in the covariant regulator

(i.e.: in the generation of states

and in self-induced inertias)

fermmass occurs in hO, vertex term and hself
rfermass occurs in the covariant regulator

(i.e.: in the generation of states

and in self-induced inertias)
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COULOMB.OUTPUT

INPUT (MASSES ARE IN UNITS OF ELECMASS):

KPLUSTOT ICHARGE IBC = 26 0 1

ALPHAG = 0.6000

ALAMBDA = 2.5000 »

ALPERP = 20.0000%1/ELECMASS = 12.0000+«BOHR (RPERP = 15.9155)

EPSILON = 0.0001
PHOTMASS = 0.0000
RPHOMASS = 0.0000 : - - = -
FERMMASS = 1.0000
RFERMASS = 1.0000
VAR PARAMETERS = 1.0000 1.0000 1.0000 1.0000 1.0000
# OF FOCK STATES = 363
CPU TIME TO FIND FOCK STATES =  0.09 SEC
CPU TIME TO WORK OUT WF =  0.01 SEC
CPU TIME TO FIND KE =  0.00 SEC
CPU TIME TO FIND PE =  0.54 SEC
TOTAL CPU TIME USED =  0.64 SEC

KE = 0.2829467565

PE = -0.1481503188

ENERGY = 0.1347964378

WAVE FUNCTION SQUARED AT KY=0:

NOTES: 1) VALUES SHOULD BE MULTIPLIED BY 1/10000 (*+#=10000)
2) KX IS IN UNITS OF ELECTRON MASS

6283 | 0 0 1 1 1 0 0
4712 | o 2 6 8 6 2 0
3141 | 1 9 36 62 36 9 1
15870 | 3 32 211 469 211 32 3

0 | B B5 476 1261 476 55 5
-1570 | 3 32 211 469 211 32 3

T -3141 | 1 9 36 62 36 9 1
-4712 | 0 2 6 8 6 2 0
-6283 | 0 0 1 1 1 o 0

KX X 2692 3462 4231 5000 5769 6538 7308
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EDVARIN

THIS ROUTINE HANDLES INPUT, VARIABLE PARMETERS FOR QEDVAR.
IT GENERATES INPUT FILES FOR THE ROUTINE QEDVAR.

INPUT PARAMETERS ARE READ FROM THE FILE QEDVAR DATA.
MASSES ARE IN UNITS OF ELECMASS.

LENGTHS ARE IN UNITS OF 1/ELECMASS.

IBC = 1 MEANS KEEP ONLY ODD FERMION KPLUS - - -
_ = 2 MEANS KEEP ONLY EVEN FERMION KPLUS

FERMIONS ASSUMED TO HAVE CHARGE -1.

CODES HAVE BEEN VECTORIZED ON AN IBM 3090 FORTRAN COMPILER.
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
IMPLICIT INTEGER (I-N)

OPEN (UNIT=13,FILE='qed.data’,STATUS="UNKNOWN")
OPEN (UNIT=20,FILE='file20.file’,STATUS='UNKNOWN')

PI = 3.1415926535689793D0

WRITE (6,900)
900 FORMAT (° WANT TO SEE INTRODUCTION? TYPE i IF YES, O IF NO’)
READ (5,*) INTRO

IF (INTRO .EQ. 1) THEN
WRITE (6,901)
901 FORMAT

WELCOME TO 3+1 VARIATIONAL QED IN DISCRETE LIGHT-CONE
QUANTIZATION. DO THE FOLLOWING TO RUN THIS PROGRAM.
TO RUN PROGRAM "PROGRAM"

A) ON IBM, JUST TYPE "PROGRAM",

B) ON DEC, TYPE "@PROGRAM".

1) RUN "QEDVARIN" (INTERACTIVE).
THIS ROUTINE HANDLES INPUT PARAMETERS SUCH AS
PHOTMASS, FERMMASS, G.... AND SETS UP INPUT
FILES FOR THE ROUTINE QEDVAR. INPUT PARAMETERS
* ARE READ FROM THE FILE QEDVAR DATA.
WRITE (6,902)
902 FORMAT
$C |
$ ° | 2) RUN "QEDVAR". THIS ROUTINES CALLS THE SUBROUTINES,
$ ' | IN ORDER, STATESNR, VARWF, HONR, HINR, H2NR, HSELFNR,
$ | PRINTOUT.
$ '
$ ' |

DAL OLOHLOLEAOLOLOLG®O

STATESNR FINDS THE FOCK STATES CONSISTENT WITH THE
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VALUES OF KPLUSTOT, ALAMBDA, ALPERP.

VARWF FINDS THE VARIATIONAL WAVE FUNCTION FOR THE
ABOVE FOCK STATES.

HONR FINDS THE VALUE OF HO BETWEEN THESE VAR STATES.

e e e e e S S N

HINR FINDS THE VALUE OF H1 BETWEEN THESE VAR STATES.

HSELFNR FINDS THE VALUE OF HSELF BETWEEN THESE
VAR STATES.

1

PRINTOUT PRINTS OUT THE RESULTS.

NOTE 1: TO RUN ON DEC, UNCOMMENT SECTION FOLLOWING
"FOLLOWING NEEDED FOR DEC" IN QEDVAR, QEDVARIN.
NOTE 2: ABOVE CODES HAVE BEEN VECTORIZED
ON AN IBM 3090 FORTRAN COMPILER.

I
I
I
!
I
|
I
I
I
* H2NR FINDS THE VALUE OF H2 BETWEEN THESE VAR STATES.
I al ook YAR 524
!
|
I
I
I
I
I
I
I

PGB ALV IO OLOLHLOHLOL
N — — e e —— — o —— e . s — — —

READ INPUT DATA.

NOTE: COVARIANT CUT-OFF SCHEME PRESENTLY ASSUMES KXTOT,KYTOT = O.
CAN GET OTHER VALUES FOR KXTOT,KYTOT BY BOOSTING
(SEE NOTES ON BOUND STATES).

MASSES ARE IN UNITS OF ELECMASS.

LENGTHS ARE IN UNITS OF 1/ELECMASS.

READ (13,*) KPLUSBEG

READ (13,#*) KPLUSEND

READ (13,*) KXTOT

READ (13,s) KYTOT

READ (13,%) ICHARGE

READ (13,#*) IBC

READ (13,*) ALPHAG

READ (13,#) ALAMBBEG

READ (13,*) ALAMBEND

READ (13,#) ALPERBEG

READ (13,%) ALPEREND

READ (13,%) EPSILBEG

READ (13,%) EPSILEND

READ (13,%) PARA1

READ (13,+%) PARA2

READ (13,*) PARA3

READ (13,+%) PARA4

READ (13,#%) PARAS

READ (13,+) PHOTMASS

—_ READ (13,*) RPHOMASS

READ (13,*) FERMMASS
READ (13,+) RFERMASS
READ (13,+) IFERMUP
READ (13,#*) IUVFERM
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READ (13,*) IONEPHOT
READ (13,+) NOAFERI
READ (13,*) IHO

READ (13,s) IH1

READ (13,+) IH2PHOT
READ (13,*) IH2FERM
READ (13,*) IHSELF
READ (13,#*) IPRIWF
READ (13,+) IPRIOUT

IF (KPLUSBEG .LE. 0) THEN
VRITE (6,920)
920 FORMAT (* MSG FROM QEDVARIN: KPLUSBEG MUST BE .GT. 0')
STOP
ENDIF

IF (KPLUSEND .LE. 0) THEN
WRITE (6,921)
921 FORMAT (* MSG FROM QEDVARIN: KPLUSEND MUST BE .GT. 0')
STOP
ENDIF

IF ((IBC .NE. 1) .AND.
$ (IBC .NE. 2)) THEN
WRITE (6,922)
922 FORMAT (* MSG FROM QEDVARIN: IBC MUST BE 1 OR 2°)
STOP
ENDIF

IF ((ICHARGE .NE. 0) .AND.
$ (ICHARGE .NE. -1)) THEN
WRITE (6,923)
923 FORMAT (' MSG FROM QEDVARIN: ICHARGE MUST BE O OR -1’)
STOP
ENDIF

IF ((IBC .EQ. 2) .AND. (MOD(KPLUSBEG,2) .EQ. 1)) THEN
WRITE (6,924)
924 FORMAT(' MSG FROM QEDVARIN: KPLUSBEG MUST BE EVEN IF IBC
STOP
ENDIF

IF ((IBC .EQ. 2) .AND. (MOD(KPLUSEND,2) .EQ. 1)) THEN
WRITE (6,925)
925 FORMAT(* MSG FROM QEDVARIN: KPLUSEND MUST BE EVEN IF IBC
STOP
ENDIF

IF ((ICHARGE .EQ. O) .AND. (MOD(KPLUSBEG,2) .EQ. 1)) THEN
WRITE (6,926) i
926 FORMAT (* MSG FROM QEDVARIN:'®,
$ ' KPLUSBEG MUST BE EVEN IF ICHARGE = 0°')
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STOP
ENDIF

IF ((ICHARGE .EQ. 0) .AND. (MOD(KPLUSEND,2) .EQ. 1)) THEN
WRITE (6,927)
927 FORMAT (° MSG FROM QEDVARIN:'®,
$ * KPLUSEND MUST BE EVEN IF ICHARGE = 0°')
8TOP
ENDIF

IF ((IBC .EQ. 1) .AND. (ICHARGE .EQ. -1) .AND.~ ~ -
$. . (MOD(KPLUSBEG,2) .EQ. 0)) THEN
WRITE (6,928)
928 FORMAT (° MSG FROM QEDVARIN:',
$ * KPLUSBEG MUST BE ODD IF IBC = 1 AND ICHARGE = -1')
STOP
ENDIF

IF ((IBC .EQ. 1) .AND. (ICHARGE .EQ. -1) .AND.
$ (MOD (KPLUSEND,2) .EQ. O0)) THEN
WRITE (6,929)
929 FORMAT (* MSG FROM QEDVARIN:'®,
$ * KPLUSEND MUST BE ODD IF IBC = 1 AND ICHARGE = -1')
STOP
ENDIF

IF ((KXTOT .NE. O) .OR.
$ (KYTOT .NE. 0)) THEN
WRITE (6,930)

930 FORMAT (* MSG FROM QEDVARIN: KXTOT AND KYTOT MUST BE'/

$ * EQUAL TO ZERO. OTHER VALUES CAN BE OBTAINED’/
$ * BY LORENTZ BOOSTING.')

STOP

ENDIF

IF (EPSILON .LT. 0.0D0O) THEN
WRITE (6,931)
931 FORMAT (* MSG FROM QEDVARIN: EPSIOON MUST BE .GE. 0.0DO’)
STOP
ENDIF

IF ((IFERMUP .NE. 0) .AND.
$ (IFERMUP .NE. 1)) THEN
YRITE (6,932)
932 FORMAT (* MSG FROM QEDVARIN: IFERMUP MUST BE O OR 1°)
STOP
ENDIF

IF ((IUVFERM .NE. O) .AND.
$ (IUVFERM .NE. 1)) THEN

-— WRITE (6,933)
933 FORMAT (* NSG FROM QEDVARIN: IUVFERM MUST BE O OR 1°)
STOP

ENDIF
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IF ((IONEPHOT .NE. O) .AND.
$ (IONEPHOT .NE. 1)) THEN
WRITE (6,934)

934 FORMAT (’ MSG FROM QEDVARIN:
STOP
ENDIF
IF ((NOAFERI .NE. 0) .AND.
$ (NOAFERI .NE. 1)) THEN
VRITE (6,935)
935 FORMAT (* MSG FROM QEDVARIN:
- 8BTOP
ENDIF
IF ((IHO .NE. 0) .AND.
$ (IHO .NE. 1)) THEN
WRITE (6,937)
937 FORMAT (* MSG FROM QEDVARIN:
STOP
ENDIF
IF ((IH1 .NE. O) .AND.
$ (IH1 .NE. 1)) THEN
VRITE (6,938)
938 FORMAT (* MSG FROM QEDVARIN:
STOP
ENDIF
IF ((IH2PHOT .NE. 0) .AND.
$ (IH2PHOT .NE. 1)) THEN
WVRITE (6,939)
939 FORMAT (° MSG FROM QEDVARIN:
STOP
ENDIF
IF ((IH2FERM .NE. 0) .AND.
$ (IH2FERM .NE. 1)) THEN
WRITE (6,940)
- 940 FORMAT (* MSG FROM QEDVARIN:
STOP
ENDIF
IF ((IHSELF .NE. O) .AND.
$ (IHSELF .NE. 1)) THEN
WRITE (6,941)
941 FORMAT (° MSG FROM QEDVARIN:
STOP
ENDIF
IF ((IH1 .EQ. 1) .AND.
i | (IONEPHOT .NE. 1)) THEN
YRITE (6,942)
942 FORMAT (° MSG FROM QEDVARIN:
STOP
ENDIF

IONEPHOT MUST BE O OR 1°)

NOAFERI MUST BE O OR 1')

IHO MUST BE O OR 1°)

IH1 MUST BE O OR 1°)

IH2PHOT MUST BE O OR 1°)

IH2FERM MUST BE O OR 1°)

IHSELF MUST BE O OR 1°)

JONEPHOT MUST = 1 IF IH1 = 1°)
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IF ((IH2FERM .EQ. 1) .AND.
$ (IONEPHOT .NE. 1)) THEN
WRITE (6,943)
943 FORMAT (' MSG FROM QEDVARIN: IONEPHOT MUST = 1 IF IH2FERM = 1°')
STOP
ENDIF

WRITE (20,954) KPLUSBEG,KPLUSEND,KXTOT,KYTOT, ICHARGE, IBC

WRITE (20,955) ALPHAG

WRITE (20,955) ALAMBBEG,ALAMBEND

WRITE (20,955) ALPERBEG,ALPEREND

WRITE (20,955) EPSILBEG,EPSILEND

WRITE (20,955) PARA1

WRITE (20,955) PARA2

WRITE (20,955) PARA3

WRITE (20,955) PARA4

WRITE (20,955) PARAS

WRITE (20,955) PHOTMASS

WRITE (20,955) RPHOMASS

WRITE (20,955) FERMMASS

WRITE (20,955) RFERMASS

WRITE (20,954) IHO,IH1i,IH2PHOT,IH2FERM, IHSELF

WRITE (20,954) IFERMUP,IUVFERM, IONEPHOT,NOAFERI,IPRIWF,IPRIOUT
954 FORMAT (6I8)
9556 FORMAT (2D30.22)

STOP
END
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THIS ROUTINE EVALUATES THE HAMILTONIAN MATRIX BETWEEN
VARIATIONAL STATES.

P_NINUS IS DEFINED TO BE L/PI+HAMILTONIAN.

MASSES ARE IN UNITS OF ELECMASS.
LENGTHS ARE IN UNITS OF 1/ELECMASS.

FERMIONS ASSUMED TO HAVE CHARGE -1.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
IMPLICIT INTEGER (I-N)

DIMENSION REALWF (75655) ,AIMWF(76555),
$ NPHOT(76555) ,NFERM(76555) ,NAFER(75555),

$ KPHOT(75556) ,KXPHOT(75565) ,KYPHOT(75656) ,1SPHOT(75555) ,

KFERM(75555) ,KXFERM(75555) ,KYFERM(76555) , ISFERM(75555) ,
KAFER(75555) ,KXAFER (75555) ,KYAFER (75555) , ISAFER(75555)

DIMENSION WORK1(75555) ,WORK2(75555) ,WORK3(75555),
$ TEMPWF(1222)

DIMENSION WAVEFCN(222)

LOGICAL TOOMANY

OPEN (UNIT=14,FILE=’'states.output’,STATUS='UNKNOWN®)
OPEN (UNIT=15,FILE='qedvar.output’,STATUS='UNKNOWN’)
OPEN (UNIT=16,FILE='qedvar.diagnose’,STATUS="UNKNOWN')
OPEN (UNIT=20,FILE='file20.file’,STATUS="UNKNOWN')
OPEN (UNIT=21,FILE=’longphot.file’,STATUS='UNKNOWN"')
OPEN (UNIT=22,FILE=’tranphot.file’,STATUS="UNKNOWN’)
OPEN (UNIT=23,FILE='instphot.file’,STATUS="UNKNOWN')
OPEN (UNIT=24,FILE=’pe.file’,STATUS="UNKNOWN’)

OPEN (UNIT=25,FILE='ke.file’,STATUS='UNKNOWN'’)

OPEN (UNIT=26,FILE='energy.file’,STATUS="UNKNOWN')

DIM(REALWF ,AIMWF ,NPHOT,...) = NSIZE. NSIZE SHOULD BE CHOSEN

.GE. THE NUMBER OF FOCK STATES (NSTATES).
DIM(TEMPWF) = NSIZEO. NSIZEO SHOULD BE CHOSEN

.GE. THE NUMBER OF FOCK STATES WITH NO PHOTONS (NSTATEOP).

124



DIM(WAVEFCN) = KPLUSMAX. KPLUSMAX SHOULD BE CHOSEN

.GE. KPLUSTOT.

NSIZE = 75555
NSIZEO = 1222
KPLUSMAX = 222

IF (KPLUSEND .GT. KPLUSMAX) THEN

WRITE (15,900) KPLUSMAX

900 FORMAT (™ KPLUSTOT .GT. KPLUSMAX =’,I5/
$ * RE-COMPILE QEDVAR WITH LARGER VALUE OF KPLUSMAX.’)

STOP
ENDIF

PI = 3.1415692663589793D0

READ (20,904) KPLUSBEG,KPLUSEND,KXTOT,KYTOT, ICHARGE, IBC

READ (20,905) ALPHAG

READ (20,905) ALAMBBEG,ALAMBEND
READ (20,905) ALPERBEG,ALPEREND
READ (20,905) EPSILBEG,EPSILEND

READ (20,905) PARA1
READ (20,905) PARA2
READ (20,905) PARA3
READ (20,905) PARA4
READ (20,905) PARAS
READ (20,905) PHOTMASS
READ (20,905) RPHOMASS
READ (20,905) FERMMASS
READ (20,905) RFERMASS

READ (20,904) IHO,IH1,IH2PHOT,IH2FERM,IHSELF
READ (20,904) IFERMUP,IUVFERM, IONEPHOT,NGAFERI, IPRIWF, IPRIOUT

904 FORMAT (618)
905 FORMAT (2D30.22)

WRITE (21,911) ALPHAG
. 911 FORMAT (’ ALPHAG =’,F9.4/

$ * KPLUSTOT ALAMBDA ALPERP EPSILON LONG PHOT’/
‘ B e e e - — ———_————————————— - " - = = " " 7 o - n)
VRITE (22,912) ALPHAG
912 FORMAT (' ALPHAG =',F9.4/
$ * KPLUSTOT ALAMBDA ALPERP EPSILON TRAN PHOT*/
‘ D e e e e — — — ——————_——————————— = " = "= o~ = T = — - n)
WRITE (23,913) ALPHAG
913 FORMAT (' ALPHAG =',F9.4/
$ * KPLUSTOT ALAMBDA ALPERP EPSILON INST PHOT'/
s P e e e e e e e o = = = -~ ———— —— -)
WRITE (24,914) ALPHAG
~—914 FORMAT (’ ALPHAG =',F9.4/
$ * KPLUSTOT ALAMBDA ALPERP EPSILON PE '/
‘ D e e e e e e e . =~ - . — - — = = = = v)

WRITE (25,915) ALPHAG
915 FORMAT (° ALPHAG =’,F9.4/



$ ' KPLUSTOT  ALAMBDA  ALPERP  EPSILON KE
s L e L LSSy Ry gLy gy gy g g g g Y
VRITE (26,916) ALPHAG -
916 FORMAT (* ALPHAG =',F9.4/
$ ' KPLUSTOT  ALAMBDA  ALPERP  EPSILON ENERGY
‘ Y v — e — e e e - e e e o
DO 100 KPLUSTOT = KPLUSBEG,KPLUSEND,4
DO 100 ALAMBDA = ALAMBBEG,ALAMBEND, .06
DO 100 ALPERP = ALPERBEG,ALPEREND,2.0
DO 100 EPSILON = EPSILBEG,EPSILEND, .01

CALL VTTIME(IVIRTIME,ITOTTIME)
START = DFLOAT(ITOTTIME)/100.0DO

CALL SUBROUTINE STATESNR TO GENERATE STATES CONSISTENT
WITH K, ALPERP, ALAMBDA.

'/

CALL STATESNR(NSIZE,KPLUSTOT,IBC,ICHARGE,ALAMBDA,ALPERP,EPSILON,

$ RPHOMASS , RFERMASS , IFERMUP , IUVFERM , IONEPHOT,
$ NSTATES ,NSTATEOP, TOOMANY,
$ NPHOT, NFERM, NAFER,
$ KPHOT ,KXPHOT ,KYPHOT, ISPHOT,
$ KFERM,KXFERM, KYFERM, ISFERM,
$ KAFER,KXAFER,KYAFER, ISAFER)
IF (TOOMANY) THEN
WRITE (15,918) NSIZE
918 FORMAT (* NUMBER OF STATES GENERATED BY SUBROUTINE'®,

$ * STATESNR .GT. NSIZE =’,IS/
$ * RE-COMPILE QEDVAR WITH LARGER VALUE OF NSIZE'’)
STOP
ENDIF
IF (NSTATEOP .GT. NSIZEO) THEN
WRITE (15,919) NSIZEO
. 919 FORMAT (° NUMBER OF STATES WITH NO PHOTONS GENERATED BY'/
$ * SUBROUTINE STATESNR .GT. NSIZEO =’,I5/
$ * RE-COMPILE QEDVAR WITH LARGER VALUE OF NSIZEO')
STOP
ENDIF

CALL VTTIME(IVIRTIME,ITOTTIME)
TIME1 = DFLOAT(ITOTTIME)/100.0DO-START

b CALL VARWF (REALWF,AIMWF,NSIZE,NSIZEO,NSTATES,NSTATEOP,

ALPHAG ,KPLUSTOT, ICHARGE , ALPERP,
PHOTMASS ,FERMMASS , TFERMUP , NOAFERI,
PARA1,PARA2,PARA3,PARA4 ,PARAS,
NPHOT, NFERM, NAFER,
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”» NN

KPHOT ,KXPHOT, KYPHOT, ISPHOT,
KFERM ,KXFERM, KYFERM, ISFERM,
KAFER ,KXAFER ,KYAFER, ISAFER,
WORK1,WORK2,WORK3, TEMPWF)

Cxkx*x4x+*++*DIAGNOSTICS: PRINT OUT RESULTS FROM VARWF
RPERP = ALAMBDA*ALPERP/PI

920

921

922

923

924

DPOPPLLOLLALILAOLOLML «”» »

»w e “» Ve

”" NN

”» NN

XALPERP =

ALPERP*ALPHAG

WVRITE (14,920) KPLUSTOT,ICHARGE, IBC, L o
ALPHAG, ALAMBDA , ALPERP , XALPERP , RPERP ,EPSILON , PHOTMASS , RPHOMASS,
- FERMMASS , RFERMASS , NSTATEOP , NSTATES

FORMAT (’

INPUT (MASSES ARE IN UNITS OF ELECMASS):'/

KPLUSTOT ICHARGE IBC =',3I4/

ALPHAG =’ F11.4/

ALAMBDA =’ ,F11.4/

ALPERP =' ,F11.4,'*1/ELECMASS =' F8.4,
'*BOBR (RPERP =',F8.4,')'/

EPSILON =’ F11.4/

PHOTMASS =',F11.4/

RPHOMASS =’ ,F11.4/

FERMMASS =',F11.4/

RFERMASS =' ,F11.4/' '/

# OF FOCK STATES WITH NO PHOTONS =',I9/

# OF FOCK STATES =' 19)

IF (IPRIWF .EQ. 1) THEN
WRITE (14,921)
FORMAT (' *'/

’ PHOTON | FERMION |  AFERMION | */
' STATE °’,
*K+ KX KY 8] K+ KX KY 8| K+ KX KY 8| REALWF AIMWF '/

DO 20 ISTATE=1,NSTATES
IF ((NPHOT(ISTATE) .EQ. 1) .AND. (NAFER(ISTATE) .EQ. 1))
WRITE (14,922) ISTATE,
KPHOT (ISTATE) ,KXPHOT (ISTATE) ,KYPHOT (ISTATE) , ISPHOT (ISTATE),
KFERM(ISTATE) ,KXFERM (ISTATE) , KYFERM (ISTATE) , ISFERM (ISTATE),
KAFER (ISTATE) ,KXAFER (ISTATE) ,KYAFER (ISTATE) , ISAFER (ISTATE),
REALWF (ISTATE) ,AIMWF (ISTATE)
FORMAT (I6,3(1X,I3,1X,I3,1X,I3,1X,I2),2(1X,F7.4))
IF ((NPHOT(ISTATE) .EQ. 1) .AND. (NAFER(ISTATE) .EQ. 0))
WRITE (14,923) ISTATE,
KPHOT(ISTATE) ,KXPHOT (ISTATE) ,KYPHOT (ISTATE) , ISPHOT (ISTATE),
KFERM(ISTATE) ,KXFERM(ISTATE) ,KYFERM (ISTATE) , ISFERM(ISTATE),
REALWF (ISTATE) ,AIMWF (ISTATE)
FORMAT (I6,2(1X,I3,1X,I3,1X,13,1X,I2),15X,2(1X,F7.4))
IF ((NPHOT(ISTATE) .EQ. O) .AND. (NAFER(ISTATE) .EQ. 1))
WRITE (14,924) ISTATE,
KFERM (ISTATE) ,KXFERM (ISTATE) ,KYFERM (ISTATE) , ISFERM (ISTATE) ,
KAFER (ISTATE) ,KXAFER (ISTATE) ,KYAFER (ISTATE) , ISAFER (ISTATE),
REALWF (ISTATE) ,AIMWF (ISTATE)
FORMAT (I6,15X,2(1X,I3,1X,13,1X,13,1X,12),2(1X,F7.4))

127



IF ((NPHOT(ISTATE) .EQ. O0) .AND. (NAFER(ISTATE) .EQ. 0))
$ WRITE (14,925) ISTATE,
$ KFERM(ISTATE) ,KXFERM(ISTATE) ,KYFERM(ISTATE) , ISFERM(ISTATE),
$ REALWF (ISTATE) , AINWF (ISTATE)
925 FORMAT (I6,15X,1X,I3,1X,I3,1X,I3,1X,I2,15X,2(1X,F7.4))
20 CONTINUE
ENDIF
c************

CALL VTTIME(IVIRTIME,ITOTTIME) - - -
TIME2 = DFLOAT(ITOTTIME)/100.0DO-START-TIMEL

c _________________________________________________________
c CALL SUBROUTINES HONR, HINR, H2NR, HSELFNR,

c TO FIND HAMILTONIAN MATRIX ELEMENT.

c _________________________________________________________

IF (IHO .EQ. 1)
$ CALL HONR(REMSQHO,NSIZE,NSTATES,REALWF,AIMVWF,
$ ALPERP ,PHOTMASS , FERMMASS,
$ NPHOT, NFERM, NAFER,
$ KPHOT ,KXPHOT, KYPHOT,
$ KFERM, KXFERM, KYFERM,
$ KAFER,KXAFER, KYAFER)

CALL VTTIME(IVIRTIME,ITOTTIME)
TIME3 = DFLOAT(ITOTTIME)/100.0DO-START-TIME1-TIME2

IF (IH1 .EQ. 1)

CALL HINR(REMSQHIL, REMSQHAT,
NSIZE,NSTATES,NSTATEOP ,REALWF , AINWF,
ALPHAG, ICHARGE , ALPERP ,FERMMASS , NOAFERI,
NPHOT, NFERM, NAFER,
KPHOT ,KXPHOT, KYPHOT, ISPHOT,
KFERM, KXFERM, KYFERM, ISFERM,
KAFER,KXAFER ,KYAFER, ISAFER,
WORK1,WORK2,WORK3)

L K R B N N & N J

CALL VTTIME(IVIRTIME,ITOTTIME)
TIME4 = DFLOAT(ITOTTIME)/100.0DO-START-TIME1-TIME2-TIME3

IF ((IH2PHOT .EQ. 1) .OR. (IH2FERM .EQ. 1))
$ CALL H2NR(REMSQH2P,REMSQHZF,
$ NSIZE,NSTATES,NSTATEOP , REALWF , AIMWF,
$ ALPHAG ,KPLUSTOT, ICHARGE , ALAMBDA , ALPERP , EPSILON,
$ " RPHOMASS , RFERMASS , IUVFERM,, NOAFERT , IH2PHOT , TH2FERM,
$ NPHOT, NFERM, NAFER,
$ KPHOT,KXPHOT,KYPHOT, ISPHOT,
$ KFERM, KXFERM, KYFERM, ISFERM,
$ KAFER,KXAFER,KYAFER, ISAFER,
$ WORK1,WORK2)

CALL VTTIME(IVIRTIME,ITOTTIME)
TIMES = DFLOAT(ITOTTIME)/100.0DO-START-TIME1-TIME2-TIME3-TIME4

IF (IHSELF .EQ. 1)
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CALL HSELFNR(REMSQHSL,REMSQHST,REMSQHS2,REMSQHS3,
NSIZE,NSTATEOP ,REALWF ,AINVF,
ALPHAG ,KPLUSTOT, IBC, ICHARGE ,, ALAMBDA , ALPERP ,EPSILON,
PHOTMASS ,FERMMASS , RPHOMASS , RFERMASS , NOAFERT,
IFERMUP, IUVFERNM, NPHOT, NFERM, NAFER,
KPHOT,KXPHOT ,KYPHOT,
KFERM, KXFERM,KYFERN,
KAFER ,KXAFER ,KYAFER)

CALL VTTIME(IVIRTIME,ITOTTIME) L _
TIME6 = DFLOAT(ITOTTIME)/100.0DO-START-TIME1-TIME2-TIME3-TIME4
- -TIMES

REMSQHO = DFLOAT (KPLUSTOT) *REMSQHO
REMSQHIL = DFLOAT(KPLUSTOT)+REMSQH1L

REMSQHIT = DFLOAT(KPLUSTOT)*REMSQH1T
REMSQH2P = DFLOAT(KPLUSTOT) *REMSQH2P
REMSQH2F = DFLOAT(KPLUSTOT) *REMSQH2F
REMSQHSL = DFLOAT (KPLUSTOT) *REMSQHSL
REMSQHST = DFLOAT(KPLUSTOT) *REMSQHST
REMSQHS2 = DFLOAT(KPLUSTOT) *REMSQHS?2

REMSQHS3 = DFLOAT(KPLUSTOT) «*REMSQHS3

IF (IPRIOUT .EQ. 1)

CALL PRINTOUT(WAVEFCN,TIME1,TIME2,TIME3,TIME4,TIMES, TIMESG,
KPLUSTOT, ICHARGE, IBC,NSTATES,NSTATEOP,NSIZE,
KPLUSMAX, ALPHAG, ALAMBDA , ALPERP ,EPSILON,
PARA1 ,PARA2,PARA3,PARA4 ,PARAS,
PHOTMASS ,RPHOMASS ,FERMMASS , RFERMASS,
REMSQHO, REMSQH1L ,REMSQH1T ,REMSQH2P , REMSQH2F,
REMSQHSL , REMSQHST , REMSQHS2, REMSQHS3,
REALWF , AIMWF ,NPHOT , NFERM, NAFER,
KPHOT , KXPHOT, KYPHOT, ISPHOT,
KFERM, KXFERM, KYFERM, ISFERM,
KAFER ,KXAFER ,KYAFER, ISAFER)

WRITE (21,930) KPLUSTOT,ALAMBDA,ALPERP,EPSILON,
.5*REMSQH1L+REMSQHSL
VRITE (22,930) KPLUSTOT,ALAMBDA,ALPERP,EPSILON,
.5+REMSQH1T+REMSQHST
WRITE (23,930) KPLUSTOT,ALAMBDA,ALPERP,EPSILON,
REMSQH2P
WRITE (24,930) KPLUSTOT,ALAMBDA,ALPERP,EPSILON,
.5*REMSQH1L+.6+REMSQH1T+REMSQHSL+REMSQHST+REMSQH2P
IF (ICHARGE .EQ. O) THEN
WRITE (25,930) KPLUSTOT,ALAMBDA,ALPERP,EPSILON,
REMSQHO+.5+REMSQH1L+ . 6*REMSQH1T-4.0DO
VRITE (26,930) KPLUSTOT,ALAMBDA,ALPERP,EPSILON,
REMSQHO+REMSQH1L+REMSQH1T+REMSQH2P +REMSQHSL+REMSQHST-4.0DO
ELSEIF (ICHARGE .EQ. -1) THEN
WRITE (25,930) KPLUSTOT,ALAMBDA,ALPERP,EPSILON,
REMSQHO+.5*REMSQH1L+.5«REMSQH1T-1.0D0
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WRITE (26,930) KPLUSTOT,ALAMBDA,ALPERP,EPSILON,
$ REMSQHO+REMSQH1L+REMSQH1 T+REMSQH2P+REMSQHSL+REMSQHST-1.0DO

ENDIF
930

100 CONTINUE

STOP
END

FORMAT (3X,I4,2X,3F11.4,F15.10)

‘SUBROUTINE STATESNR(NSIZE,KPLUSTOT,IBC,ICHARGE,

ALAMBDA , ALPERP ,EPSILON,

RPHOMASS , RFERMASS , IFERMUP , IUVFERM, IONEPHOT,
NSTATES ,NSTATEOP, TOOMANY,

NPHOT, NFERM, NAFER,

KPHOT ,KXPHOT,KYPHOT, ISPHOT,
KFERM,KXFERM, KYFERM, ISFERN,

KAFER ,KXAFER ,KYAFER, ISAFER)

THIS SUBROUTINE GENERATES THE FOCK STATES CONSISTENT WITH
KPLUSTOT, ALAMBDA, ALPERP.

FOR Q=-1 ONLY KEEP STATES WITH 1 FERMION AND 0,1 PHOTONS.
FOR Q=0 ONLY KEEP STATES WITH 1 FERMION PAIR AND 0,1 PHOTONS.

OUTPUT VARIABLES:

NSTATES

NUMBER OF FOCK STATES.

NSTATEOP NUMBER OF FOCK STATES WITH NO PHOTONS.

TOOMANY

NPHOT,
NFERM,
NAFER

KPHOT,
KXPHOT,
KYPHOT,
ISPHOT

KFERM,
KXFERM,
KYFERM,
ISFERM

KAFER,
KXAFER,
KYAFER,
ISAFER

LOGICAL VARIABLE. TOOMANY=TRUE IF NSTATES .GT. NSIZE.
TOOMANY=FALSE IF NSTATES .LE. NSIZE.

# PHOTONS, FERMIONS, ANTI-FERMIONS IN FOCK STATES.
ARRAYS OF DIMENSION NSIZE.

KPLUS, KX, KY, SPIN OF PHOTON IN FOCK STATES.
ARRAYS OF DIMENSION NSIZE.

KPLUS, KX, KY, SPIN OF FERMION IN THE FOCK STATES.
ARRAYS OF DIMENSION NSIZE.

KPLUS, KX, KY, SPIN OF ANTI-FERMION IN FOCK STATES.
ARRAYS OF DIMENSION NSIZE.

INPUT VARIABLES:
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NSIZE ARRAY DIMENSION OF NPHOT, NFERM,... AS DEFINED IN
CALLING ROUTINE. IT SHOULD BE GREATER THAN OR EQUAL
TO NSTATES. -
KPLUSTOT TOTAL KPLUS OF INCOMING, OUTGOING STATES.
ICHARGE TOTAL CHARGE.
IBC ONLY HAVE EVEN FERMION KPLUS IF IBC=2,
ODD FERMION KPLUS IF IBC=1i. . _
ALAMBDA  VALUE OF CUT-OFF MASS.
ALPERP SIZE OF KPERP GRID.
EPSILON  MINIMUM PHOTON INVMASS*#*2.
RPHOMASS PHOTON MASS TO BE USED IN COVARIANT CUT-OFF.
RFERMASS FERMION MASS TO BE USED IN COVARIANT CUT-OFF.
IFERMUP  FERMIONS, ANTI-FERMIONS ALL HAVE SPIN UP.
IUVFERM UV CUT-OFF ONLY APPLIED TO FERMIONS, ANTI-FERMIONS.
IONEPHOT PUT IN STATES WITH ONE PHOTON.
USAGE NOTES:

1) FOCK STATES 1 TO NSTATEOP HAVE NO PHOTONS,
STATES NSTATEOP+1 TOD NSTATES HAVE ONE PHOTON.

2) THIS ROUTINE ASSUMES THAT THE TOTAL KPERP OF THE INCOMING
AND OUTGOING FOCK STATES IS ZERO. THIS IS NECESSARY IN THE
CALCULATION OF INVARIANT MASSES.

3) FOCK STATES ARE GENERATED WITH KPERP=0.

4) FERMION CHARGE IS ASSUMED TO BE -1.

5) MASSES ARE IN UNITS OF ELECMASS.

LENGTHS ARE IN UNITS OF 1/ELECMASS.

6) REAL VARIABLES ARE DEFINED TO BE REAL*8 (DOUBLE PRECISION).

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

IMPLICIT INTEGER (I-N)

DIMENSION

NPHOT (NSIZE) ,NFERM(NSIZE) ,NAFER(NSIZE),
KPHOT(NSIZE) ,KFERM(NSIZE) ,KAFER(NSIZE),
KXPHOT(NSIZE) ,KXFERM(NSIZE) ,KXAFER (NSIZE),
KYPHOT(NSIZE) ,KYFERM(NSIZE) ,KYAFER(NSIZE),
ISPHOT (NSIZE) , ISFERM(NSIZE) , ISAFER(NSIZE)

LOGICAL TOOMANY

PI = 3.141592653589793D0
SMALL = 1.0D-13 -



c INITIALIZE VARIOUS ARRAYS TO ZERO.

DO 10 I = 1 ,NSIZE
NPHOT(I) = O
NFERM(I) = O
NAFER(I) = O
KPHOT(I) = 0
KXPHOT(I) = O
KYPHOT(I) = O
ISPHOT(I) = O
KFERM(I) = 0

- KXFERM(I) = 0
KYFERM(I) = O
ISFERM(I) = O
KAFER(I) = O
KXAFER(I) = O
KYAFER(I) = 0
ISAFER(I) = 0

10  CONTINUE

TOOMANY = _FALSE.

c _________________________________________________________

c GENERATE STATES WITH 1 FERMION PAIR, O PHOTONS (ICHARGE=0).
c RECALL THAT KPLUSTOT MUST BE EVEN FOR ICHARGE = O.

c _________________________________________________________

IF (ICHARGE .EQ. 0) THEN
ISTATE = 0

Chxxkkxk+xxx*xDIAGNOSTICS

c WRITE (16,920) ALAMBDA*#2

€920 FORMAT (* */° 1 PAIR STATES LAMBDA*+2 =’ F8.3/
Y $ ° KPLUSF KPLUSA KXF KYF KXA KYA INVMASS'/

I B )
© ok ok ok ok ok ok ok ke e ke ok ok
C FIGURE OUT WHAT VALUES OF FERMION KPLUS TO RUN OVER.
IF (IBC .EQ. 1) THEN
IFIRSTKF = 1

ILASTKF = KPLUSTOT - 1
ELSEIF (IBC .EQ. 2) THEN

IFIRSTKF = 2
ILASTKF = KPLUSTOT - 2
ENDIF

DO 20 KPLUSF=IFIRSTKF,ILASTKF,2
KPLUSA = KPLUSTOT-KPLUSF
XF = DFLOAT(KPLUSF)/DFLOAT (KPLUSTOT)
XA = DFLOAT(KPLUSA) /DFLOAT (KPLUSTOT)

- ONLY CONTINUE IF SUM(MASS#**2/X) .LE. LAMBDA#*2.
AINVMASS = RFERMASS*#2/XF + RFERMASS#**2/XA

Ch**xxxxxx+++DIAGNOSTICS
c WVRITE (16,921) KPLUSF,KPLUSA,AINVMASS
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€921 FORMAT (3X,I4,3X,I4,21X,F8.3)

CHdkkkkkkkkkk
IF (AINVMASS .GT. ALAMBDA+*2+SMALL) GOTO 20

c FIGURE OUT WHAT LARGEST ALLOWED FERMION KX, KY IS.
ARGUMENT = ALAMBDA#*2+XF#*XA - RFERMASS**2
IF (ARGUMENT .LT. SMALL) THEN
KPFMAX = 0
ELSE
KPFMAX = INT(ALPERP/PI*DSQRT(ARGUMENT) + SMALL)
- . ENDIF

-

DO 22 KXF=-KPFMAX,KPFMAX
DO 22 KYF=-KPFMAX,KPFMAX

KXA = -KXF
KYA = -KYF
AKPFSQ = (PI/ALPERP)=**2+(DFLOAT(KXF#%2) + DFLOAT(KYF*%2))
C KEEP STATE IF INVMASS**2 .LE. LAMBDA*#*2.
AINVMASS = (AKPFSQ + RFERMASS**2)/XF
$ + (AKPFSQ + RFERMASS*%2)/XA
Cxxkkkxxx*xx%x*DIAGNOSTICS
c WRITE (16,922) KXF,KYF,KXA,KYA,AINVMASS
C922 FORMAT (15X,I4,1X,I4,1X,I14,1X,14,1X,F8.3)
Chkkkkkkkkkkk

IF (AINVMASS .GT. ALAMBDA+**2+SMALL) GOTO 22

IF (IFERMUP .EQ. O) IFIRSTS=-1
IF (IFERMUP .EQ. 1) IFIRSTS=+1
DO 24 ISPINF=IFIRSTS,1,2
DO 24 ISPINA=IFIRSTS,1,2
ISTATE = ISTATE + 1
IF (ISTATE .GT. NSIZE) THEN
TOOMANY = .TRUE.
RETURN
ENDIF
NPHOT(ISTATE) = O
NFERM(ISTATE) = 1
NAFER(ISTATE) = 1
KFERM(ISTATE) = KPLUSF
KXFERM(ISTATE) = KXF
KYFERM(ISTATE) = KYF
ISFERM(ISTATE) = ISPINF
KAFER(ISTATE) = KPLUSA
KXAFER (ISTATE) = KXA
KYAFER (ISTATE) = KYA
ISAFER(ISTATE) = ISPINA

—24 CONTINUE
22 CONTINUE
20 CONTINUE

NSTATEOP = ISTATE
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c GENERATE STATES WITH 1 FERMION PAIR, 1 PHOTON (ICHARGE=0).
c RECALL THAT KPLUSTOT MUST BE EVEN FOR ICHARGE = 0.
c ---------------------------------------------------------

IF ((IONEPHOT .EQ. 1) .AND. (IUVFERM .EQ. O)) THEN

Cxkkkkxxkk+xxDITAGNOSTICS

C WRITE (16,930) ALAMBDA*%2

€930 FORMAT (' */' 1 PAIR,1 PHOTON STATES LAMBDA**2 =' F8.3/

C $ * KPLUSP KPLUSF KPLUSA KXP KYP KXF KYF KXA KYK 'INVMASS'/

T T e — ')
T T YT I T
c FIGURE OUT WHAT VALUES OF PHOTON KPLUS TO RUN OVER.
IFIRSTKP = 2

IF (IBC .EQ. 1) THEN
ILASTKP = KPLUSTOT - 2
ELSEIF (IBC .EQ. 2) THEN
ILASTKP = KPLUSTOT - 4

ENDIF

DO 30 KPLUSP=IFIRSTKP,ILASTKP,2
XP = DFLOAT(KPLUSP)/DFLOAT (KPLUSTOT)

c FIGURE OUT WHAT VALUES OF FERMION KPLUS TO RUN OVER.
IF (IBC .EQ. 1) THEN
IFIRSTKF = 1
ILASTKF = KPLUSTOT - KPLUSP - 1
ELSEIF (IBC .EQ. 2) THEN

IFIRSTKF = 2
ILASTKF = KPLUSTOT - KPLUSP - 2
ENDIF

DO 31 KPLUSF=IFIRSTKF,ILASTKF,2
KPLUSA = KPLUSTOT-KPLUSP-KPLUSF
XF = DFLOAT(KPLUSF)/DFLOAT (KPLUSTOT)
XA = DFLOAT(KPLUSA) /DFLOAT (KPLUSTOT)

Y ONLY CONTINUE IF SUM(MASS*#2/X) .LE. LAMBDA*#2.
AINVMASS = RPHOMASS**2/XP + RFERMASS#*2/XF + RFERMASS**2/XA

Cxixx* x> +xxxDIAGNOSTICS

c WRITE (16,931) KPLUSP,KPLUSF,KPLUSA,AINVMASS
€931 FORMAT (3X,I4,3X,I4,3X,I4,31X,F8.3)
Cokoskok ok ok ok sk ok ok

IF (AINVMASS .GT. ALAMBDA**2+SMALL) GOTO 31

c FIGURE OUT WHAT LARGEST ALLOWED PHOTON KX, KY IS.
— ARGUMENT = XP#*(ALAMBDA##*2 - RFERMASS#*#*2/XF
$ - RFERMASS**2/XA)
$ - RPHOMASS#*#*2
IF (ARGUMENT .LT. SMALL) THEN
KPPMAX = 0
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ELSE
KPPMAX = INT(ALPERP/PI+DSQRT(ARGUMENT) + SMALL)
ENDIF ~

DO 32 KXP=-KPPMAX,KPPMAX
DO 32 KYP=-KPPMAX,KPPMAX
AKPPSQ = (PI/ALPERP)#*#*2*(DFLOAT (KXP*%2)
$ + DFLOAT(KYP#*2))

c REMOVE PHOTONS WITH INVMASS#*2 .LT. EPSILON.
IF ((AKPPSQ + RPHOMASS*#2)/XP .LT. EPSILON-SMALL) GOTO 32

0‘ FIGURE OUT WHAT LARGEST ALLOWED FERMION KX, KY IS.

ARGUMENT = XF (ALAMBDA*+2 - (AKPPSQ+RPHOMASS#**2)/XP
$ - RFERMASS**2/XA)
$ - RFERMASS*#2
IF (ARGUMENT .LT. SMALL) THEN
KPFMAX = 0
ELSE
KPFMAX = INT(ALPERP/PI*DSQRT(ARGUMENT) + SMALL)
ENDIF

DO 33 KXF=-KPFMAX,KPFMAX
DO 33 KYF=-KPFMAX,KPFMAX
KXA = -KXP-KXF
KYA = -KYP-KYF
AKPFSQ = (PI/ALPERP)**2# (DFLOAT (KXF*#*2)

$ ‘ + DFLOAT(KYF*%2))
AKPASQ = (PI/ALPERP)*#2# (DFLOAT (KXA*+2)

$ + DFLOAT(KYA*%2))

c KEEP STATE IF INVMASS#*#2 .LE. LAMBDA**2.

AINVMASS = (AKPPSQ + RPHOMASS*x2)/XP

$ + (AKPFSQ + RFERMASS**2)/XF

$ ’ + (AKPASQ + RFERMASS**2)/XA
Crxxexkxxx£%xxDIAGNOSTICS
C WRITE (16,932) KXP,KYP,KXF,KYF,KXA,KYA,AINVMASS
€932 FORMAT (22X.I4.1X.I4,1X,I4,1X,I4.1X.I4,1X.I4,1X,F8.3)
c************

IF (AINVMASS .GT. ALAMBDA#+2+SMALL) GOTO 33

" IF (IFERMUP .EQ. 0) IFIRSTS=-1
IF (IFERMUP .EQ. 1) IFIRSTS=+1
DO 34 ISPINP=-1,1,2
DO 34 ISPINF=IFIRSTS,%,2
DO 34 ISPINA=IFIRSTS,1,2

ISTATE = ISTATE + 1
IF (ISTATE .GT. NSIZE) THEN
TOOMANY = .TRUE.

-— RETURN
ENDIF
NPHOT(ISTATE) = 1 -
NFERM(ISTATE) = 1
NAFER(ISTATE) = 1
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KPHOT(ISTATE) = KPLUSP
KXPHOT (ISTATE) = KXP
KYPHOT (ISTATE) = KYP
ISPHOT(ISTATE) = ISPINP
KFERM(ISTATE) = KPLUSF
KXFERM(ISTATE) = KXF
KYFERM(ISTATE) = KYF
ISFERM(ISTATE) = ISPINF
KAFER (ISTATE) = KPLUSA
KXAFER (ISTATE) = KXA
KYAFER (ISTATE) = KYA

‘ - ISAFER(ISTATE) = ISPINA

34 CONTINUE

33 CONTINUE

32 CONTINUE

31 CONTINUE

30 CONTINUE
ENDIF

IF ((IONEPHOT .EQ. 1) .AND. (IUVFERM .EQ. 1)) THEN

Cxx*xxkxx*xxxxDIAGNOSTICS

c WRITE (16,940) ALAMBDA#**2
€940 FORMAT (' '/’ 1 PAIR,1 PHOTON STATES LAMBDA*x2 =' F§.3/
c $ * KPLUSF KPLUSA KXF KYF KXA KYA INVMASS’/
C  § e ")
Cokokkkkkkkkkkk
C FIGURE OUT WHAT VALUES OF FERMION KPLUS TO RUN OVER.

IF (IBC .EQ. 1) THEN

IFIRSTK = 1

ILASTK = KPLUSTOT - 1
ELSEIF (IBC .EQ. 2) THEN

IFIRSTK = 2
ILASTK = KPLUSTOT - 2
ENDIF

DO 40 KPLUSF=IFIRSTK,ILASTK,2

DO 40 KPLUSA=IFIRSTK,KPLUSTOT-KPLUSF-2,2
KPLUSP = KPLUSTOT-KPLUSF-KPLUSA
XF = DFLOAT(KPLUSF)/DFLOAT (KPLUSTOT)
XA = DFLOAT(KPLUSA)/DFLOAT (KPLUSTOT)
XP = DFLOAT(KPLUSP)/DFLOAT(KPLUSTOT)

c ONLY CONTINUE IF SUM(MASS#*2/X) .LE. LAMBDA**2,
AINVMASS = RFERMASS#*+2/XF + RFERMASS**2/XA

Creskkxx+%xxxDIAGNOSTICS

c WRITE (16,941) KPLUSF,KPLUSA,AINVMASS
C941 FORMAT (3X,I4,3X,14,21X,F8.3)
e 2T T T T I

IF (AINVMASS .GT. ALAMBDA#*2+SMALL) GOTO 40

c FIGURE OUT WHAT LARGEST ALLOWED FERMION KX, KY IS.

136



ARGUMENT = XF#*(ALAMBDA**2 - RFERMASS+*%2*(1.0/XF+1.0/XA))
IF (ARGUMENT .LT. SMALL) THEN
KPFMAX = 0
ELSE

EN

c FI
AR
IF

E
EN

DO
DO
DO
DO

$

s ok e ok ok ok ook ok ok ok ok

c
€942
ook ke ok e ok e ok ok o ok

KPFMAX = INT(ALPERP/PI+DSQRT(ARGUMENT) + SMALL)
DIF

GURE OUT WHAT LARGEST ALLOWED AFERMION KX, KY IS.

GUMENT = XAx(ALAMBDA**2 - RFERMASS#*#*2#(1.0/XF+1.0/XA))
(ARGUMENT .LT. SMALL) THEN

KPAMAX = O ‘ C - - -

LSE

KPAMAX = INT(ALPERP/PI+DSQRT (ARGUMENT) + SMALL)
DIF

42 KXF=-KPFMAX,KPFMAX

42 KYF=-KPFMAX,KPFMAX

42 KXA=-KPAMAX,KPAMAX

42 KYA=-KPAMAX,KPAMAX

KXP = -KXF-KXA

KYP = -KYF-KYA
AKPFSQ = (PI/ALPERP)=**2%(DFLOAT(KXF**2) + DFLOAT(KYF*#2))
AKPASQ = (PI/ALPERP)=*#2*(DFLOAT (KXA*%*2) + DFLOAT(KYA**2))
AKPPSQ = (PI/ALPERP)#**2+*(DFLOAT(KXP**2) + DFLOAT(KYP*%2))

REMOVE PHOTONS WITH INVMASS**2 .LT. EPSILON.
IF ((AKPPSQ + RPHOMASS**2)/XP .LT. EPSILON-SMALL) GOTO 42

KEEP STATE IF INVMASS*#*2 .LE. LAMBDA*#*2.
AINVMASS = (AKPFSQ + RFERMASS*#2)/XF
+ (AKPASQ + RFERMASS#*%2)/XA

DIAGNDSTICS
WRITE (16,942) KXF,KYF,KXA,KYA,AINVMASS
FORMAT (15X,I4,1X,I4,1X,14,1X,I4,1X,F8.3)

IF (AINVMASS .GT. ALAMBDA##2+SMALL) GOTO 42

IF (IFERMUP .EQ. 0) IFIRSTS=-1
IF (IFERMUP .EQ. 1) IFIRSTS=+1
DO 44 ISPINF=IFIRSTS,1,2
DO 44 ISPINA=IFIRSTS,1,2
DO 44 ISPINP=-1,1,2
ISTATE = ISTATE + 1
IF (ISTATE .GT. NSIZE) THEN
TOOMANY = .TRUE.
RETURN
ENDIF
NPHOT (ISTATE)
NFERM(ISTATE)
NAFER(ISTATE) = 1
KFERM(ISTATE) = KPLUSF-
KXFERM(ISTATE) = KXF
KYFERM(ISTATE) = KYF

1
1
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ISFERM(ISTATE) = ISPINF
KAFER(ISTATE) = KPLUSA
KXAFER(ISTATE) = KXA
KYAFER (ISTATE) = KYA
ISAFER (ISTATE) = ISPINA
KPHOT(ISTATE) = KPLUSP
KXPHOT (ISTATE) = KXP
KYPHOT (ISTATE) = KYP
ISPHOT (ISTATE) = ISPINP

44 CONTINUE
42 CONTINUE -7 -
. 40 _ CONTINUE
ENDIF

NSTATES = ISTATE

c END OF GENERATING STATES FOR ICHARGE = O.

ENDIF
c _________________________________________________________
c GENERATE STATES WITH 1 FERMION, O PHOTONS (ICHARGE=-1).
c _________________________________________________________
IF (ICHARGE .EQ. -1) THEN
IF (IFERMUP .EQ. O) THEN
ISTATE = 2
NPHOT(1) = O
NFERM(1) = 1
NAFER(1) = 0
KFERM(1) = KPLUSTOT
KXFERM(1) = 0
KYFERM(1) = 0
ISFERM(1) = -1
NPHOT(2) = 0O
NFERM(2) = 1
NAFER(2) = O
KFERM(2) = KPLUSTOT
KXFERM(2) = O
KYFERM(2) = 0
ISFERM(2) = +1
ENDIF
IF (IFERMUP .EQ. 1) THEN
ISTATE = 1
NPHOT(1) = O
NFERM(1) = 1
NAFER(1) = 0
KFERM(1) = KPLUSTOT
KXFERM(1) = 0
KYFERM(1) = 0
ISFERM(1) = 1
ENDIF
NSTATEOP = ISTATE
c _________________________________________________________
c GENERATE STATES WITH 1 FERMION, 1 PHOTON (ICHARGE=-1).
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IF ((IONEPHOT .EQ. 1) .AND. (IUVFERM .EQ. O)) THEN

Cx*xxxx****x*DIAGNOSTICS

c WRITE (16,950) ALAMBDA#*#*2
€950 FORMAT (* °/° 1 FERMION,1 PHOTON STATES LAMBDA**2 =',F8.3/
c $ ' KPLUSP KPLUSF KXP KYP KXF KYF INVMASS'/
C § 1 o )
c********##**
c FIGURE OUT WHAT VALUES OF PHOTON KPLUS TO RUN OVER.

- IFIRSTKP = 2

IF (IBC .EQ. 1) THEN
ILASTKP = KPLUSTOT - 1
ELSEIF (IBC .EQ. 2) THEN
ILASTKP = KPLUSTOT - 2

ENDIF

DO 60 KPLUSP=IFIRSTKP,ILASTKP,2
KPLUSF = KPLUSTOT-KPLUSP
XP = DFLOAT(KPLUSP)/DFLOAT(KPLUSTOT)
XF = DFLOAT(KPLUSF)/DFLOAT (KPLUSTOT)

c ONLY CONTINUE IF SUM(MASS*#2/X) .LE. LAMBDA#**2.
AINVMASS = RPHOMASS**2/XP + RFERMASS*#*2/XF

Cxxks*xkxxxx*xDIAGNOSTICS

c WRITE (16,951) KPLUSP,KPLUSF,AINVMASS
C951 FORMAT (3X,I4,3X,I4,21X,F8.3)
CHaxkkkkhhsss

IF (AINVMASS .GT. ALAMBDA**2+SMALL) GOTO 50

c FIGURE OUT WHAT LARGEST ALLOWED PHOTON KX, KY IS.
ARGUMENT = XP*XF*(ALAMBDA**2 - RPHOMASS**2/XP
$ - RFERMASS**2/XF)
IF (ARGUMENT .LT. SMALL) THEN
KPPMAX = 0
ELSE
KPPMAX = INT(ALPERP/PI*DSQRT(ARGUMENT) + SMALL)
ENDIF

DO 52 KXP=-KPPMAX,KPPMAX
DO 52 KYP=-KPPMAX,KPPMAX
KXF = -KXP
KYF = -KYP
AKPPSQ = (PI/ALPERP)#*#+2+(DFLOAT(KXP#+2) + DFLOAT (KYP*%2))

c REMOVE PHOTONS WITH INVMASS#*2 .LT. EPSILON.
IF ((AKPPSQ + RPHOMASS##2)/XP .LT. EPSILON-SMALL) GOTD 52

Q

KEEP STATE IF INVMASS*#%2 .LE. LAMBDA#*2,
AINVMASS = (AKPPSQ + RPHOMASS#**2)/XP
$ + (AKPPSQ + RFERMASS#**2)/XF
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Cx+xx+xxx*xx*x*DIAGNOSTICS

c WRITE (16,952) KXP,KYP,KXF,KYF,AINVMASS
€952 FORMAT (16X,I4,1X,14,1X,14,1X,I4,1X,F8.3)
CHakkkkkkkkdk

IF (AINVMASS .GT. ALAMBDA+#2+SMALL) GOTO 52

IF (IFERMUP .EQ. O) IFIRSTS=-1
IF (IFERMUP .EQ. 1) IFIRSTS=+1
DO 54 ISPINP=-1,1,2
DO 54 ISPINF=IFIRSTS,1,2 -7
- . ISTATE = ISTATE + 1
IF (ISTATE .GT. NSIZE) THEN
TOOMANY = .TRUE.

RETURN
ENDIF
NPHOT(ISTATE) = 1
NFERM(ISTATE) = 1
NAFER(ISTATE) = 0
KPHOT (ISTATE) = KPLUSP

KXPHOT (ISTATE) = KXP
KYPHOT(ISTATE) = KYP
ISPHOT(ISTATE) = ISPINP
KFERM(ISTATE) = KPLUSF
KXFERM(ISTATE) = KXF
KYFERM(ISTATE) = KYF
ISFERM(ISTATE) = ISPINF

54 CONTINUE

52 CONTINUE

50 CONTINUE
ENDIF

IF ((IONEPHOT .EQ. 1) .AND. (IUVFERM .EQ. 1)) THEN

CHxxxxxxx++*xDIAGNOSTICS

c WRITE (16,960) ALAMBDA*#2

€960 FORMAT (’ */° 1 FERMION,1 PHOTON STATES LAMBDA*#*2 =’ F8.3/

c $ ' KPLUSP KPLUSF KXP KYP KXF KYF INVMASS'/ '

K I et D)

c************

c FIGURE OUT WHAT VALUES OF PHOTON KPLUS TO RUN OVER.
IFIRSTKP = 2

IF (IBC .EQ. 1) THEN
ILASTKP = KPLUSTOT - 1
ELSEIF (IBC .EQ. 2) THEN
ILASTKP = KPLUSTOT - 2

ENDIF

DO 60 KPLUSP=IFIRSTKP,ILASTKP,2

—_ KPLUSF = KPLUSTOT-KPLUSP

XP = DFLOAT(KPLUSP)/DFLOAT (KPLUSTOT)
XF = DFLOAT(KPLUSF) /DFLOAT (KPLUSTOT)

c ONLY CONTINUE IF SUM(MASS*%2/X) .LE. LAMBDA#*%2.
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AINVMASS = RFERMASS#**2/XF

Cx*x*x*xxx*x*xxx*DIAGNOSTICS

c VRITE (16,561) KPLUSP,KPLUSF,AINVMASS
€961 FORMAT (3X,I4,3X,I4,21X,F8.3)
Cok ok ko ok ok ke ok ok ok

IF (AINVMASS .GT. ALAMBDA#*#2+SMALL) GOTO 60

c FIGURE OUT WHAT LARGEST ALLOWED FERMION KX, KY IS.
ARGUMENT = XF+ALAMBDA**2 - RFERMASS*#+2 ~ ~ -
- . IF (ARGUMENT .LT. SMALL) THEN
KPFNAX = 0
ELSE
KPFMAX = INT(ALPERP/PI*DSQRT(ARGUMENT) + SMALL)
ENDIF

D0 62 KXF=-KPFMAX,KPFMAX
DO 62 KYF=-KPFMAX,KPFMAX
KXP = -KXF
KYP = -KYF
AKPPSQ = (PI/ALPERP)#%2+(DFLOAT(KXP*%2) + DFLOAT(KYP*%2))

c REMOVE PHOTONS WITH INVMASS#**2 .LT. EPSILON.
IF ((AKPPSQ + RPHOMASS*#2)/XP .LT. EPSILON-SMALL) GOTO 62

c KEEP STATE IF INVMASS**2 .LE. LAMBDA*x2.
AINVMASS = (AKPPSQ + RFERMASS#**2)/XF

Cx**x*xx*xxxxx*xDIAGNOSTICS

c WRITE (16,952) KXP,KYP,KXF,KYF,AINVMASS
C952 FORMAT (16X,I4,1X,I4,1X,14,1X,I4,1X,F8.3)
CHrkkkkdkkrek

IF (AINVMASS .GT. ALAMBDA**2+SMALL) GOTO 62

IF (IFERMUP .EQ. O) IFIRSTS=-1
IF (IFERMUP .EQ. 1) IFIRSTS=+1
DO 64 ISPINP=-1,1,2
DO 64 ISPINF=IFIRSTS,1,2
ISTATE = ISTATE + &
IF (ISTATE .GT. NSIZE) THEN
"TOOMANY = _TRUE.
RETURN
ENDIF
NPHOT (ISTATE)
NFERM(ISTATE)
NAFER(ISTATE) = 0
KPHOT (ISTATE) = KPLUSP
KXPHOT (ISTATE) = KXP
- KYPHOT (ISTATE) = KYP
ISPHOT(ISTATE) = ISPINP
KFERM(ISTATE) = KPLUSF-
KXFERM(ISTATE) = KXF
KYFERM(ISTATE) = KYF

1
1
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64
62
60

ISFERM(ISTATE) = ISPINF

CONTINUE
CONTINUE
CONTINUE

ENDIF

NSTATES = ISTATE
END OF GENERATING STATES FOR ICHARGE = -1.
ENDIF . _
RETURN
END
SUBROUTINE VARWF (REALWF,AIMWF ,NSIZE,NSIZEO,NSTATES,NSTATEOP,
$ ALPHAG,KPLUSTOT, ICHARGE , ALPERP,
$ PHOTMASS , FERMMASS , IFERMUP, NOAFERI,
$ PARA1,PARA2,PARA3,PARA4 ,PARAS,
$ NPHOT, NFERM, NAFER,
$ KPHOT,KXPHOT ,KYPHOT, ISPHOT,
$ KFERM, KXFERM, KYFERM, ISFERM,
$ KAFER ,KXAFER ,KYAFER, ISAFER,
$ REALHIL ,REALH1T,AIMH1T, TEMPWF)

THIS ROUTINE RETURNS THE VARIATIONAL WAVE FUNCTION
FOR THE INPUTTED FOCK STATES.

OUTPUT VARIABLES:

REALWF REAL PART OF NORMALIZED FOCK STATE WAVE FUNCTIONS.

AINWF IMAGINARY PART OF NORMALIZED FOCK STATE WAVE FUNCTIONS.

INPUT VARIABLES:

NSIZE ARRAY DIMENSION OF NPHOT, NFERM,... AS DEFINED IN
CALLING ROUTINE. 1IT SHOULD BE GREATER THAN OR EQUAL

TO NSTATES.

NSIZEO ARRAY DIMENSION OF TEMPWF AS DEFINED IN CALLING ROUTINE
IT SHOULD BE GREATER THAN OR EQUAL TO NSTATEOP.

NSTATES NUMBER OF FOCK STATES.

NSTATEOP NUMBER OF FOCK STATES WITH NO PHOTONS.
ALPHAG VALUE OF COUPLING CONSTANT (=G#*#*2/4PI).
KPLUSTOT TOTAL KPLUS OF INCOMING, OUTGOING STATES.
ICHARGE TOTAL CHARGE.

ALPERP SIZE OF KPERP GRID.
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PHOTMASS PHOTON MASS IN LAGRANGIAN.

FERMMASS FERMION MASS IN LAGRANGIAN.

IFERMUP  FERMIONS, ANTI-FERMIONS ALL HAVE SPIN UP.
NOAFERI  NO INTERACTIONS WITH ANTI-FERMION.

PARA1,

PARA2,  VARIATIONAL PARAMETERS (PARA4, PARAS NOT USED).
PARA3, : - - - -
PARA4,

PARAS

NPHOT,  # PHOTONS, FERMIONS, ANTI-FERMIONS IN FOCK STATES.
NFERM,  ARRAYS OF DIMENSION NSIZE.

NAFER

KPHOT,  KPLUS, KX, KY, SPIN OF PHOTON IN FOCK STATES.
KXPHOT, ARRAYS OF DIMENSION NSIZE.

KYPHOT,

ISPHOT

KFERM,  KPLUS, KX, KY, SPIN OF FERMION IN THE FOCK STATES.
KXFERM, ARRAYS OF DIMENSION NSIZE.

KYFERM,

ISFERN

KAFER,  KPLUS, KX, KY, SPIN OF ANTI-FERMION IN FOCK STATES.
KXAFER, ARRAYS OF DIMENSION NSIZE.

KYAFER,

ISAFER

TENPWF  WORKING ARRAY OF DIMENSION NSIZEO.

REALHIL,

REALH1T, WORKING ARRAYS OF DIMENSION NSIZE.

AIMHIT :

USAGE NOTES:

1) FERMION CHARGE IS ASSUMED TO BE -1.

2) MASSES ARE IN UNITS OF ELECMASS.
LENGTHS ARE IN UNITS OF 1/ELECMASS.

3) REAL VARIABLES ARE DEFINED TO BE REAL*8 (DOUBLE PRECISION).

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
IMPLICIT INTEGER (I-N)

DIMENSION REALWF(NSIZE),AIMWF(NSIZE),

”» N »n

NPHOT (NSIZE) ,NFERM(NSIZE) ,NAFER(NSIZE),

KPHOT(NSIZE) ,KXPHOT (NSIZE) ,KYPHOT(NSIZE) , ISPHOT (NSIZE),
KFERM(NSIZE) ,KXFERM (NSIZE) ,KYFERM(NSIZE) , ISFERM (NSIZE),
KAFER (NSIZE) ,KXAFER (NSIZE) ,KYAFER(NSIZE) , ISAFER(NSIZE)

143



G~ mm oo m e cemm e
DIMENSION REALHiL(NSIZE) ,REALHiT(NSIZE) ,AIMHiT(NSIZE),
$ TEMPWF(NSIZEO)
PI = 3.141592653589793D0
ALPERP2 = ALPERP**2
PHOTMAS2 = PHOTMASS*#*2
FERMMAS2 = FERMMASS#*#*2
PERPFACT = PI#*2/ALPERP2 = - - -
AMSQARED = FERMMAS2#*(2.0D0 - .25*ALPHAG*#*2)*%2
c _________________________________________________________
C INITIALIZE TO ZERO.
c _________________________________________________________
DO 50 ISTATE = 1,NSTATES
REALWF (ISTATE) = 0.0D0O
AIMWF (ISTATE) = 0.0DO
50 CONTINUE
c _________________________________________________________
Cc PMINUS_IN = P_MINUS OF WHOLE SYSTEM.
c _________________________________________________________
IF (ICHARGE .EQ. O) THEN
AKMINUSI = AMSQARED/DFLOAT(KPLUSTOT)
ENDIF .
IF (ICHARGE .EQ. -1) THEN
AKMINUSI = FERMMAS2/DFLOAT (KPLUSTOT)
ENDIF
c _________________________________________________________
c WORK OUT WAVE FUNC FOR STATES WITH O PHOTONS.
c _________________________________________________________

IF (ICHARGE .EQ. O) THEN
DO 100 ISTATE = 1,NSTATEOP
REALVWF (ISTATE) = FFBARWF (KPLUSTOT,ALPHAG,
$ PERPFACT,FERMMAS2, AMSQARED , PARA1, IFERMUP,
$ KFERM(ISTATE) ,KXFERM(ISTATE) ,KYFERM(ISTATE),
$ ISFERM(ISTATE) , ISAFER(ISTATE))
AIMVF (ISTATE) = 0.0DO
TEMPWF (ISTATE) = REALWF (ISTATE)
100  CONTINUE
ENDIF
IF (ICHARGE .EQ. -1) THEN
DO 200 ISTATE = 1,NSTATEOP
REALWF (ISTATE) = FERMWF (KPLUSTOT,KFERM(ISTATE),
$ KXFERM(ISTATE) ,KYFERM (ISTATE) , ISFERM (ISTATE))
AIMWF (ISTATE) = 0.0DO
TEMPWF (ISTATE) = REALWF (ISTATE)
—200 CONTINUE
ENDIF

c WORK OUT WAVE FUNC FOR STATES WITH 1 PHOTON.
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DO THIS BY LOOPING OVER STATES WITH O PHOTONS
AND FINDING NON-ZERO MATRIX ELEMENTS.

DO 110 INSTATE = 1,NSTATEOP
IF (REALWF (INSTATE) .EQ. 0.0D0) GOTO 110

INITIALIZE TO ZERO.

DO 120 IOUTSTAT = NSTATEOP+1,NSTATES
REALH1L (IOUTSTAT) = 0.0DO
REALH1T(IOUTSTAT) = 0.0DO
AIMH1T(IOUTSTAT) = 0.0DO

120 CONTINUE

DO 140 IOUTSTAT = NSTATEOP+1,NSTATES

CHECK IF SPECTATORS MATCH UP.

NOTE THAT KAFER, KXAFER, KYAFER, ISAFER ARE ALL O
FOR ICHARGE = -1.

IF (KAFER(INSTATE) .NE. KAFER(IOUTSTAT)) GOTO 140
IF (KXAFER(INSTATE) .NE. KXAFER(IOUTSTAT)) GOTO 140
IF (KYAFER(INSTATE) .NE. KYAFER(IOUTSTAT)) GOTO 140
IF (ISAFER(INSTATE) .NE. ISAFER(IOUTSTAT)) GOTO 140

HAVE INTERACTION. DETERMINE MATRIX ELEMENT.

DIAGRAM 1#
IF ((ISPHOT(IOUTSTAT) .EQ. +1) .AND.
(ISFERM(IOUTSTAT) .EQ. -1) .AND.
(ISFERM(INSTATE) .EQ. +1)) THEN
REALHI1L(IOUTSTAT) = REALH1L(IOUTSTAT)
+ 1.0DO/DSQRT (DFLOAT (KPHOT (IOUTSTAT)))
#( 1.0DO/DFLOAT (KFERM(IOUTSTAT))
-1.0DO/DFLOAT (KFERM (INSTATE)))

“w N » » o

ENDIF

IF ((ISPHOT(IOUTSTAT) .EQ. -1) .AND.
(ISFERM(IOUTSTAT) .EQ. +1) .AND.
(ISFERM(INSTATE) .EQ. -1)) THEN

REALH1L (IOUTSTAT) = REALH1L(IOUTSTAT)
+ 1.0D0/DSQRT (DFLOAT (KPHOT (IOUTSTAT)))

*( 1.0DO/DFLOAT (KFERM(IOQUTSTAT))

-1.0DO/DFLOAT (KFERM (INSTATE)))

“» NN ”» &

ENDIF

DIAGRAM 4=
IF ((ISPHOT(IOUTSTAT) .EQ. +1) .AND.
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(ISFERM(IOUTSTAT) .EQ. +1) .AND.
(ISFERM(INSTATE) .EQ. +1)) THEN
REALHIT(IOQUTSTAT) = REALH1T(IOUTSTAT)
+ 1.0D0/DSQRT(DFLOAT(KPHOT (IOUTSTAT)))
# (-DFLOAT (KXPHOT (IOUTSTAT) ) /DFLOAT (KPHOT (IOUTSTAT) )
+DFLOAT (KXFERM (IOUTSTAT) ) /DFLOAT (KFERM (IOUTSTAT)))
AIMH1T (IOUTSTAT) = AIMH1T(IOUTSTAT)
+ 1.0DO/DSQRT (DFLOAT (KPHOT (IOUTSTAT)))
*( DFLOAT(KYPHOT (IOUTSTAT))/DFLOAT (KPHOT (IOUTSTAT) )
-DFLOAT (KYFERM(IOUTSTAT) ) /DFLOAT (KFERM(IOUTSTAT)))

”» N N LK X 4 “» %

ENDIF
IF ((ISPHOT(IOUTSTAT) .EQ. -1) .AND.
(ISFERM(IOUTSTAT) .EQ. -1) .AND.
(ISFERM(INSTATE) .EQ. -1)) THEN
REALH1T(IOUTSTAT) = REALH1T(IOUTSTAT)
+ 1.0DO/DSQRT (DFLOAT (KPHOT (IOUTSTAT)))
#( DFLOAT(KXPHOT(IOUTSTAT))/DFLOAT (KPHOT (IOUTSTAT))
-DFLOAT (KXFERM (IOUTSTAT) ) /DFLOAT (KFERM (IOUTSTAT)))
AIMH1T (IOUTSTAT) = AIMH1T(IOUTSTAT)
+ 1.0D0/DSQRT (DFLOAT (KPHOT (IOUTSTAT)))
*( DFLOAT (KYPHOT (IOUTSTAT) ) /DFLOAT (KPHOT (IOUTSTAT))
-DFLOAT (KYFERM (IOUTSTAT) ) /DFLOAT (KFERM (IOUTSTAT)))

“”» o “» N »n ”» o

ENDIF

c DIAGRAM 5*
IF ((ISPHOT(IOUTSTAT) .EQ. -1) .AND.
$ (ISFERM(IOUTSTAT) .EQ. +1) .AND.
$ (ISFERM(INSTATE) .EQ. +1)) THEN
REALH1T(IOUTSTAT) = REALH1T(IOUTSTAT)
$ + 1.0D0O/DSQRT (DFLOAT (KPHOT (IOUTSTAT)))
$ *( DFLOAT (KXPHOT (IOUTSTAT) ) /DFLOAT (KPHOT (IOUTSTAT) )
$ -DFLOAT (KXFERM (INSTATE) ) /DFLOAT (KFERM (INSTATE) ))
AIMH1T (IOUTSTAT) = AIMH1T(IOUTSTAT)
$ + 1.0DO/DSQRT (DFLOAT (KPHOT (IOUTSTAT)))
$ *( DFLOAT(KYPHOT(IOUTSTAT) ) /DFLOAT (KPHOT (IOUTSTAT))
$ -DFLOAT (KYFERM (INSTATE) ) /DFLOAT (KFERM (INSTATE) ))
ENDIF

IF ((ISPHOT(IOUTSTAT) .EQ. +1) .AND.
(ISFERM(IOUTSTAT) .EQ. -1) .AND.
(ISFERM(INSTATE) .EQ. -1)) THEN
REALH1T(IOUTSTAT) = REALH1T(IOUTSTAT)
+ 1.0DO/DSQRT (DFLOAT (KPHOT (IOUTSTAT)))
*(~DFLOAT (KXPHOT (IOUTSTAT) ) /DFLOAT (KPHOT (IOUTSTAT))
+DFLOAT (KXFERM (INSTATE) ) /DFLOAT (KFERM (INSTATE)))
AIMHAT(IOUTSTAT) = AIMHIT(IOUTSTAT)
+ 1.0D0O/DSQRT(DFLOAT (KPHOT (IOQUTSTAT)))
*( DFLOAT(KYPHOT (IOUTSTAT) ) /DFLOAT (KPHOT (IOUTSTAT))
-DFLOAT (KYFERM (INSTATE) ) /DFLOAT (KFERM (INSTATE)))

» o
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h ENDIF

c END OF DIAGRAMS 1%,4% 5%, .
140 CONTINUE
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CALCULATE DIAGRAMS 2#,6+%,7+. ONLY HAVE THESE IF CHARGE = O.
IF (ICHARGE .EQ. -1) GOTO 165
IF (NOAFERI .EQ. 1) GOTO 165
DO 160 IOUTSTAT = NSTATEOP+1,NSTATES

CHECK IF SPECTATORS MATCH UP.

IF (KFERM(INSTATE) .NE. KFERM(IOUTSTAT)) GOTO 160

IF (KXFERM(INSTATE) .NE. KXFERM(IOUTSTAT)) GOTO 160

IF (KYFERM(INSTATE) .NE. KYFERM(IOUTSTAT)) GOTO 160~ '
JIF (ISFERM(INSTATE) .NE. ISFERM(IOUTSTAT)) GOTO 160

HAVE INTERACTION. DETERMINE MATRIX ELEMENT.

DIAGRAM 2+
IF ((ISPHOT(IOUTSTAT) .EQ. +1) .AND.
(ISAFER(IOUTSTAT) .EQ. -1) .AND.
(ISAFER(INSTATE) .EQ. +1)) THEN
REALH1L (IOUTSTAT) = REALH1L (IOUTSTAT)
+ 1.0DO/DSQRT (DFLOAT (KPHOT (IOUTSTAT)))
*(-1.0DO/DFLOAT (KAFER (IOUTSTAT))
+1.0DO/DFLOAT (KAFER (INSTATE)))

“» o
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ENDIF

IF ((ISPHOT(IOUTSTAT) .EQ. -1) .AND.
(ISAFER(IOUTSTAT) .EQ. +1) .AND.
(ISAFER(INSTATE) .EQ. -1)) THEN

REALH1L(IOUTSTAT) = REALH1L (IOUTSTAT)
+ 1.0DO/DSQRT(DFLOAT (KPHOT (IOUTSTAT)))

*(-1.0DO/DFLOAT (KAFER (IOUTSTAT))

+1.0DO/DFLOAT (KAFER (INSTATE)))
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ENDIF

DIAGRAM 6%
IF ((ISPHOT(IOUTSTAT) .EQ. +1) .AND.
(ISAFER(IOUTSTAT) .EQ. -1) .AND.
(ISAFER(INSTATE) .EQ. -1)) THEN
REALH1T(IOUTSTAT) = REALH1T(IOUTSTAT)
+ 1.0DO/DSQRT (DFLOAT (KPHOT (IOUTSTAT)))
*( DFLOAT(KXPHOT (IOUTSTAT) ) /DFLOAT (KPHOT (IOUTSTAT))
~DFLOAT (KXAFER (INSTATE) ) /DFLOAT (KAFER (INSTATE)))
AIMH1T(IOUTSTAT) = AIMHIT(IOUTSTAT)
+ 1.0D0/DSQRT (DFLOAT (KPHOT (IOUTSTAT)))
*(-DFLOAT (KYPHOT (IOUTSTAT) ) /DFLOAT (KPHOT (IOUTSTAT) )
+DFLOAT (KYAFER (INSTATE) ) /DFLOAT (KAFER (INSTATE)))
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ENDIF

IF ((ISPHOT(IOUTSTAT) .EQ. -1) .AND.
(ISAFER(IOUTSTAT) .EQ. +1) .AND.
(ISAFER(INSTATE) .EQ. +1)) THEN
REALH1T(IOUTSTAT) = REALH1T(IOUTSTAT)
+ 1.0DO/DSQRT (DFLOAT (KPHOT (IOUTSTAT)))
* (-DFLOAT (KXPHOT (IQUTSTAT) ) /DFLOAT (KPHOT (IOUTSTAT))
+DFLOAT (KXAFER (INSTATE) ) /DFLOAT (KAFER (INSTATE)))

”» Ve ”» o
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AIMHAT (IOUTSTAT) = AIMHAT(IOUTSTAT)
+ 1.0DO/DSQRT(DFLOAT (KPHOT (IOUTSTAT)))
*(-DFLOAT (KYPHOT (IOUTSTAT) ) /DFLOAT (KPHOT (IOUTSTAT))
+DFLOAT (KYAFER (INSTATE) ) /DFLOAT (KAFER (INSTATE)))
ENDIF

DIAGRAM 7*
IF ((ISPHOT(IOUTSTAT) .EQ. -1) .AND.
(ISAFER(IOUTSTAT) .EQ. -1) .AND.
(ISAFER(INSTATE) .EQ. -1)) THEN
REALH1T(IOUTSTAT) = REALHiT(IOUTSTAT) - - -
+ 1.0DO/DSQRT(DFLOAT (KPHOT(IOUTSTAT)))
* (-DFLOAT (KXPHOT (IOUTSTAT) ) /DFLOAT (KPHOT (IOUTSTAT) )
+DFLOAT (KXAFER (IOUTSTAT) ) /DFLOAT (KAFER (IOUTSTAT)))
AIMHAT (IOUTSTAT) = AIMHiT(IOUTSTAT)
+ 1.0DO/DSQRT (DFLOAT (KPHOT (IOUTSTAT)))
* (-DFLOAT (KYPHOT (IOUTSTAT) ) /DFLOAT (KPHOT (IOUTSTAT))
+DFLOAT (KYAFER (IOUTSTAT) ) /DFLOAT (KAFER (IOUTSTAT) ) )

» o
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ENDIF

IF ((ISPHOT(IOUTSTAT) .EQ. +1) .AND.
(ISAFER(IOUTSTAT) .EQ. +1) .AND.
(ISAFER(INSTATE) .EQ. +1)) THEN
REALH1T (IOUTSTAT) = REALH1T(IOUTSTAT)
+ 1.0DO/DSQRT(DFLOAT (KPHOT (IOUTSTAT)))
*( DFLOAT(KXPHOT(IOUTSTAT))/DFLOAT(KPHOT (IOUTSTAT))
-DFLOAT (KXAFER (IOUTSTAT) ) /DFLOAT (KAFER (IOUTSTAT) ) )
AIMH1T (IOUTSTAT) = AIMH1T(IOUTSTAT)
$ + 1.0DO/DSQRT (DFLOAT (KPHOT (IOUTSTAT)))
$ * (-DFLOAT (KYPHOT (IOUTSTAT) ) /DFLOAT (KPHOT (IOUTSTAT))
$ +DFLOAT (KYAFER (IOUTSTAT) ) /DFLOAT (KAFER (IOUTSTAT)))

“”» &
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ENDIF

END OF DIAGRAMS 2%,6%,7*.
160 CONTINUE
165 CONTINUE

IF (ICHARGE .EQ. 0) THEN
DO 180 IOUTSTAT = NSTATEOP+1,NSTATES
IF ((REALHIL(IOUTSTAT) .NE. 0.0DO) .OR.
$ (REALH1T(IOUTSTAT) .NE. 0.0DO) .OR.
$ (AIMHIT(IOUTSTAT) .NE. 0.0DO)) THEN

REALH1L (IOUTSTAT) = REALH1L (IOUTSTAT)*FERMMASS/ALPERP
REALH1T(IOUTSTAT) = REALHAT(IOUTSTAT)+PI/ALPERP2
AIMH1T(IOUTSTAT) = AIMH1T(IOUTSTAT)+*PI/ALPERP2

REALEL = DSQRT (ALPHAG)* (REALH1L (IOUTSTAT) +REALH1T (IOUTSTAT))
AIMEL = DSQRT(ALPHAG)*AIMH1T(IOUTSTAT)

AKMINUSO
$ =(PERPFACT*DFLOAT (KXPHOT (IOUTSTAT) **2 + KYPHOT(IOUTSTAT) **2)
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+PHOTMAS2) /DFLOAT (KPHOT (IOUTSTAT) )
+ (PERPFACT*DFLOAT (KXFERM (IOUTSTAT) ##2 + KYFERM(IOUTSTAT) *%2)
+FERMMAS2) /DFLOAT (KFERM (IOUTSTAT) ) .
+(PERPFACT*DFLOAT (KXAFER (IOUTSTAT) **2 + KYAFER(IOUTSTAT) **2)
+FERMMAS2) /DFLOAT (KAFER (IOUTSTAT))

”» NN v

D = PARA3*AKMINUSI - AKMINUSO

Crxxxxx+x+xxxDIAGNOSTICS

c WRITE (16,9100) IOUTSTAT,INSTATE,REALEL,
c $ - AIMEL , TEMPWF (INSTATE) ,AKMINUSI, AKMINUSO,D
€9100 FORMAT (' IOUTSTATE INSTATE REALEL AIMEL °’,
¢ * FFBARWF AKMINUSI AKININUSO D'/218,6F9.4)
Crkkkrkrkrks®
REALWF (IOUTSTAT) = REALWF (IOUTSTAT)
$ + PARA2*REALEL*TEMPWF (INSTATE) /D
AIMWF (IOUTSTAT) = AIMWF (IOUTSTAT)
$ + PARA2*AIMEL*TEMPWF (INSTATE) /D
ENDIF
180 CONTINUE
ENDIF

IF (ICHARGE .EQ. -1) THEN
DO 185 IOUTSTAT = NSTATEOP+1,NSTATES
IF ((REALH1L(IOUTSTAT) .NE. 0.0DO) .OR.
$ (REALH1T(IOUTSTAT) .NE. 0.0DO) .OR.
$ (AIMH1T(IOUTSTAT) .NE. 0.0D0)) THEN

REALH1L (IOUTSTAT) = REALH1L (IOUTSTAT)*FERMMASS/ALPERP
REALH1T(IOUTSTAT) = REALH1T(IOUTSTAT)*PI/ALPERP2
AIMHAT(IOUTSTAT) = AIMH1T(IOUTSTAT)+PI/ALPERP2

REALEL = DSQRT(ALPHAG)* (REALH1L (IOUTSTAT) +REALH1T (IOUTSTAT))
AIMEL = DSQRT(ALPHAG)*AIMH1T(IOUTSTAT)

AKMINUSO
$ =(PERPFACT*DFLOAT (KXPHOT (IOUTSTAT) #*2 + KYPHOT (IOUTSTAT) *%2)
$ +PHOTMAS2) /DFLOAT (KPHOT (IOUTSTAT))
$ +(PERPFACT*DFLOAT (KXFERM(IOUTSTAT) #+2 + KYFERM(IOUTSTAT) **2)
$ +FERMMAS2) /DFLOAT (KFERM (IOUTSTAT))

D = PARA3*AKMINUSI - AKMINUSO

Cx**x++x+*x+xxDIAGNOSTICS

c WRITE (16,9100) IOUTSTAT,INSTATE,REALEL,
c $ AIMEL, TEMPWF (INSTATE) , AKMINUSI,AKMINUSO,D
€9100 FORMAT (' IOUTSTATE INSTATE REALEL  AIMEL °*,
c $ * FFBARWF AKMINUSI AKIMINUSO D'/2I8,6F9.4)
c************
REALWF (TIOUTSTAT) = REALWF (IOUTSTAT)
$ + PARA2+REALEL*+TEMPWF (INSTATE) /D
AIMWF (IOUTSTAT) = AIMWF(IOUTSTAT)
$ + PARA2+AIMEL*TEMPWF (INSTATE) /D
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ENDIF
185 CONTINUE
ENDIF

110 CONTINUE

WFNORM = 0.0DO
DO 300 ISTATE = 1,NSTATES - - = -
, _WFNORM = WFNORM + REALWF (ISTATE)**2 + AIMWF (ISTATE)#*%2
300 CONTINUE
WFNORM = DSQRT (WFNORM)
DO 301 ISTATE = 1,NSTATES
REALWF (ISTATE) = REALWF (ISTATE)/WFNORM
AIMWF (ISTATE) = AIMWF (ISTATE)/WFNORM
301 CONTINUE

RETURN
END

FUNCTION FFBARVF (KPLUSTOT,ALPHAG,PERPFACT,FERMMAS2, AMSQARED,

$ PARA1, IFERMUP ,KFERM,KXFERM, KYFERM, ISFERM, ISAFER)
c _________________________________________________________
c THIS ROUTINE RETURNS THE VARIATIONAL WAVE FUNCTION
c FOR THE INPUTTED FFBAR STATE.
c
c MASSES ARE IN UNITS OF ELECMASS.
c LENGTHS ARE IN UNITS OF 1/ELECMASS.
c _________________________________________________________

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
IMPLICIT INTEGER (I-N)

AKPERPSQ = PERPFACT#* (DFLOAT (KXFERM) *+2+DFLOAT (KYFERM) **2)
X = DFLOAT(KFERM) /DFLOAT(KPLUSTOT)

IF (IFERMUP .EQ. O) THEN
IF ((ISFERM .EQ. +1) .AND. (ISAFER .EQ. -1)) THEN
FFBARWF = +1.0D0/
$ (PARA1*AMSQARED - (AKPERPSQ+FERMMAS2)/{(X#(1.0D0-X)))*%2
ELSEIF ((ISFERM .EQ. -1) .AND. (ISAFER .EQ. +1)) THEN
FFBARWF = -1.0D0/

$ (PARA1*AMSQARED - (AKPERPSQ+FERMMAS2)/(X#(1.0D0O-X)))#**2
ELSE
FFBARWF = 0.0DO
ENDIF
ENDIF

IF (IFERMUP .EQ. 1) THEN
— FFBARWF = +1.0D0/
$ (PARA1*AMSQARED - (AKPERPSQ+FERMMAS2)/(X*(1.0D0-X)))**2
ENDIF B

RETURN
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END

FUNCTION FERMWF(KPLUSTOT,KFERM,KXFERM.KYFERM,ISFERM{

c _________________________________________________________
c THIS ROUTINE RETURNS THE VARIATIONAL WAVE FUNCTION

c FOR THE INPUTTED FERMION STATE.

c

c MASSES ARE IN UNITS OF ELECMASS.

c LENGTHS ARE IN UNITS OF 1/ELECMASS.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
IMPLICIT INTEGER (I-N)

FERMWF = 0.0DO

IF ((KFERM .EQ. KPLUSTOT) .AND.

$ (KXFERM .EQ. O) .AND.

$ (KYFERM .EQ. O) .AND.

$ (ISFERM .EQ. 1)) THEN
FERMWF = 1.0D0O

ENDIF

RETURN
END

SUBROUTINE HONR(REMSQHO,NSIZE,NSTATES,REALWF,AIMWF,
$ ALPERP , PHOTMASS , FERMMASS,

$ NPHOT, NFERM, NAFER,

$ KPHOT ,KXPHOT, KYPHOT,
$ KFERM, KXFERM, KYFERM,

$ KAFER,KXAFER, KYAFER)

THIS ROUTINE RETURNS THE VALUE OF THE HAMILTONIAN
BETWEEN THE INPUTTED VARIATIONAL STATES.

OUTPUT VARIABLES:
REMSQHO  CONTRIBUTION TO MATRIX ELEMENT FROM HO.

INPUT VARIABLES:

NSIZE ARRAY DIMENSION OF NPHOT, NFERM,... AS DEFINED IN
CALLING ROUTINE. IT SHOULD BE GREATER THAN OR EQUAL
TO NSTATES.

NSTATES NUMBER OF FOCK STATES.

REALWF REAL PART OF FOCK STATE WAVE FUNCTIONS.

AINWF IMAGINARY PART OF FOCK STATE WAVE FUNCTIONS.

ALPERP SIZE OF KPERP GRID.

PHOTMASS PHOTON MASS IN LAGRANGIAN.
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FERMMASS FERMION MASS IN LAGRANGIAN.

NPHOT, # PHOTONS, FERMIONS, ANTI-FERMIONS IN FOCK STATES.
NFERM, ARRAYS OF DIMENSION NSIZE.

NAFER

KPHOT, KPLUS, KX, KY OF PHOTON IN FOCK STATES.

KXPHOT, ARRAYS OF DIMENSION NSIZE.

KYPHOT .
KFERM, KPLUS, KX, KY OF FERMION IN THE FOCK STATES.
KXFERM, ARRAYS OF DIMENSION NSIZE.

KYFERM

KAFER, KPLUS, KX, KY OF ANTI-FERMION IN FOCK STATES.
KXAFER, ARRAYS OF DIMENSION NSIZE.

KYAFER

USAGE NOTES:

1) MASSES ARE IN UNITS OF ELECMASS.
LENGTHS ARE IN UNITS OF 1/ELECMASS.

2) REAL VARIABLES ARE DEFINED TO BE REAL*8 (DOUBLE PRECISION) .

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

IMPLICIT INTEGER (I-N)

DIMENSION REALWF (NSIZE) ,AIMWF(NSIZE),
NPHOT(NSIZE) ,NFERM(NSIZE) ,NAFER(NSIZE),
KPHOT(NSIZE) ,KXPHOT(NSIZE) ,KYPHOT(NSIZE),
KFERM (NSIZE) ,KXFERM (NSIZE) ,KYFERM(NSIZE),
KAFER (NSIZE) ,KXAFER (NSIZE) ,KYAFER(NSIZE)

PI = 3.141592653589793D0
PHOTMAS2 = PHOTMASS=*#2
FERMMAS2 = FERMMASS#*#2
PERPFACT = PI**2/ALPERP*%2

DO 10 ISTATE = 1,NSTATES

INITIALIZE TO ZERO.
REALHO = 0.0DO



IF (NPHOT(ISTATE) .EQ. 1) THEN

AKPERPSQ = PERPFACT*DFLOAT (KXPHOT (ISTATE) +*2+KYPHOT (ISTATE) **2)

REALHO = REALHO
$ + (PHOTMAS2 + AKPERPSQ)/DFLOAT(KPHOT(ISTATE))
ENDIF

AKPERPSQ = PERPFACT+DFLOAT (KXFERN(ISTATE) **2+KYFERM(ISTATE) *%2)

REALHO = REALHO
$ + (FERMMAS2 + AKPERPSQ)/DFLOAT(KFERM(ISTATE))

IF (NAFER(ISTATE) .EQ. 1) THEN - -

AKPERPSQ = PERPFACT*DFLOAT (KXAFER(ISTATE) **2+KYAFER (ISTATE) *%2)

REALHO = REALHO
$ + (FERMMAS2 + AKPERPSQ)/DFLOAT (KAFER(ISTATE))
ENDIF

Cx**xxxxxx+xxxDTAGNOSTICS

C WRITE (16,910) ISTATE,REALHO

€910 FORMAT (' ISTATE REALHO =’,I7,Fi1.4)
Chkkkkkkokkkkk

REMSQHO = REMSQHO
$  +REALHO* (REALWF (ISTATE)*#*2 + AIMWF (ISTATE)*#2)

c FINISHED WITH THIS FOCK STATE. GO TO NEXT FOCK STATE.
10 CONTINUE

RETURN
END

SUBROUTINE H1iNR(REMSQHIL,REMSQH1T,

$ NSIZE,NSTATES,NSTATEOP,REALWF ,AIMWF,

$ ALPHAG, ICHARGE , ALPERP , FERMMASS , NOAFERI,
$ NPHOT, NFERM, NAFER,

$ KPHOT,KXPHOT,KYPHOT, ISPHOT,

$ KFERM,KXFERM,KYFERM, ISFERM,

$ KAFER ,KXAFER ,KYAFER, ISAFER,

$ REALHiL,REALHiT,AIMHLT)

o gy P

THIS ROUTINE RETURNS THE VALUE OF THE HAMILTONIAN

BETWEEN THE INPUTTED VARIATIONAL STATES.

OUTPUT VARIABLES:

REMSQH1L CONTRIBUTION TO MATRIX ELEMENT FROM LONG. VERTEX.

REMSQHIT CONTRIBUTION TO MATRIX ELEMENT FROM TRANS. VERTEX.

INPUT VARIABLES:

NSIZE ARRAY DIMENSION OF NPHOT, NFERM,... AS DEFINED IN
CALLING ROUTINE. IT SHOULD BE GREATER THAN OR EQUAL
TO NSTATES.

OOQO‘}OOOOOOGQQO
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NSTATES  NUMBER OF FOCK STATES.

NSTATEOP NUMBER OF FOCK STATES WITH NO PHOTONS.

REALWF  REAL PART OF FOCK STATE WAVE FUNCTIONS.

AINWF  IMAGINARY PART OF FOCK STATE WAVE FUNCTIONS.
ALPHAG  VALUE OF COUPLING CONSTANT (=G##2/4PI).

ICHARGE TOTAL CHARGE. - =
ALPERP  SIZE OF KPERP GRID.

FERMMASS FERMION MASS IN LAGRANGIAN.

NOAFERI ~ NO INTERACTIONS WITH ANTI-FERMION.

NPHOT, # PHOTONS, FERMIONS, ANTI-FERMIONS IN FOCK STATES.
NFERM, ARRAYS OF DIMENSION NSIZE.
NAFER

KPHOT, KPLUS, KX, KY, SPIN OF PHOTON IN FOCK STATES.
KXPHOT, ARRAYS OF DIMENSION NSIZE.

KYPHOT,

ISPHOT

KFERM, KPLUS, KX, KY, SPIN OF FERMION IN THE FOCK STATES.
KXFERM, ARRAYS OF DIMENSION NSIZE.

KYFERM,

ISFERM

KAFER, KPLUS, KX, KY, SPIN OF ANTI-FERMION IN FOCK STATES.
KXAFER, ARRAYS OF DIMENSION NSIZE.

KYAFER,

ISAFER

REALHIL,
REALHIT, WORKING ARRAYS OF DIMENSION NSIZE.
AIMHIT

USAGE NOTES:

1) FERMION CHARGE IS ASSUMED TO BE -1.

2) MASSES ARE IN UNITS OF ELECMASS.
LENGTHS ARE IN UNITS OF 1/ELECMASS.

3) REAL VARIABLES ARE DEFINED TO BE REAL#*8 (DOUBLE PRECISION).

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

IMPLICIT INTEGER (I-N)

DIMENSION REALWF (NSIZE) ,AIMWF (NSIZE),

$ NPHOT(NSIZE),NFERM(NSIZE),NAFER(NSIZE),

$ KPHOT(NSIZE) ,KXPHOT(NSIZE) ,KYPHOT(NSIZE), ISPHOT (NSIZE),
$ KFERM(NSIZE) ,KXFERM(NSIZE) ,KYFERM(NSIZE) ,ISFERM(NSIZE),
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$ KAFER(NSIZE) ,KXAFER(NSIZE) ,KYAFER(NSIZE) , ISAFER(NSIZE)

DIMENSION
$ REALH1L(NSIZE) ,REALH1T(NSIZE) , AIMH1T (NSIZE)

PI = 3.141592653589793D0
ALPERP2 = ALPERP*#2

REMSQH1L = 0.0DO
REMSQHIT = 0.0DO

DO 20 IOUTSTAT = 1,NSTATEOP
IF ((REALVWF (IOUTSTAT) .EQ. 0.0DO) .AND.
$ ( AIMWF(IOUTSTAT) .EQ. 0.0DO)) GOTO 20

LOOP OVER INCOMING FOCK STATES.
ASSUME HAMILTONIAN IS HERMITIAN, SO ONLY NEED TO CONSIDER
INSTATE .GT. IOUTSTAT.
INITIALIZE TO ZERO.
DO 30 INSTATE = NSTATEOP+1,NSTATES
REALH1L (INSTATE) = 0.0DO
REALH1T(INSTATE) = 0.0DO
AIMHIT(INSTATE) = 0.0DO
30 CONTINUE

DO 100 INSTATE = NSTATEOP+1,NSTATES
IF ((REALWF (INSTATE) .EQ. 0.0DO) .AND.
$ ( AIMWF(INSTATE) .EQ. 0.0DO)) GOTO 100

CHECK IF SPECTATORS MATCH UP.

NOTE THAT KAFER, KXAFER, KYAFER, ISAFER ARE ALL O
FOR ICHARGE = -1.

IF (KAFER(INSTATE) .NE. KAFER(IOUTSTAT)) GOTO 100
IF (KXAFER(INSTATE) .NE. KXAFER(IOUTSTAT)) GOTO 100
IF (KYAFER(INSTATE) .NE. KYAFER(IOUTSTAT)) GOTO 100
IF (ISAFER(INSTATE) .NE. ISAFER(IOUTSTAT)) GOTO 100

HAVE INTERACTION. DETERMINE MATRIX ELEMENT.

DIAGRAM 1
IF ((ISPHOT(INSTATE) .EQ. +1) .AND.
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(ISFERM(INSTATE) .EQ. -1) .AND.
(ISFERM(IOUTSTAT) .EQ. +1)) THEN
REALH1L(INSTATE) = REALH1iL (INSTATE)
+ 1.0DO/DSQRT (DFLOAT (KPHOT (INSTATE)))
*( 1.0DO/DFLOAT (KFERM(INSTATE))
-1.0DO/DFLOAT (KFERM(IOUTSTAT)))
ENDIF

IF ((ISPHOT(INSTATE) .EQ. -1) .AND.
(ISFERM(INSTATE) .EQ. +1) .AND.
(ISFERM(IOUTSTAT) .EQ. -1)) THEN

REALH1L (INSTATE) = REALHIAL(INSTATE)
+ 1.0DO/DSQRT(DFLOAT (KPHOT (INSTATE)))
*( 1.0DO/DFLOAT (KFERM (INSTATE))
-1.0DO/DFLOAT (KFERM (IOUTSTAT)))
ENDIF

DIAGRAM 4
IF ((ISPHOT(INSTATE) .EQ. +1) .AND.
(ISFERM(INSTATE) .EQ. +1) .AND.
(ISFERM(IOUTSTAT) .EQ. +1)) THEN
REALH1T(INSTATE) = REALH1T(INSTATE)
+ 1.0DO/DSQRT (DFLOAT (KPHOT (INSTATE)))
* (-DFLOAT (KXPHOT (INSTATE) ) /DFLOAT (KPHOT (INSTATE))
+DFLOAT (KXFERM (INSTATE) ) /DFLOAT (KFERM (INSTATE) ) )
AINRAT(INSTATE) = AIMH1T(INSTATE)
+ 1.0DO/DSQRT (DFLOAT (KPHOT (INSTATE)))
*(-DFLOAT (KYPHOT (INSTATE) ) /DFLOAT (KPHOT (INSTATE))
+DFLOAT (KYFERM (INSTATE) ) /DFLOAT (KFERM (INSTATE) ) )
ENDIF

IF ((ISPHOT(INSTATE) .EQ. -1) .AND.
(ISFERM(INSTATE) .EQ. -1) .AND.
(ISFERM(IOUTSTAT) .EQ. -1)) THEN
REALH1T (INSTATE) = REALHiT(INSTATE)
+ 1.0DO/DSQRT (DFLOAT (KPHOT (INSTATE)))
*( DFLOAT(KXPHOT(INSTATE))/DFLOAT (KPHOT(INSTATE))
-DFLOAT (KXFERM (INSTATE) ) /DFLOAT (KFERM (INSTATE)))
AIMH1T(INSTATE) = AIMHIT(INSTATE)
+ 1.0DO/DSQRT(DFLOAT (KPHOT (INSTATE)))
* (-DFLOAT (KYPHOT (INSTATE) ) /DFLOAT (KPHOT (INSTATE) )
+DFLOAT (KYFERM (INSTATE) ) /DFLOAT (KFERM (INSTATE)))
ENDIF

DIAGRAM 5
IF ((ISPHOT(INSTATE) .EQ. -1) .AND.
(ISFERM(INSTATE) .EQ. +1) .AND.
(ISFERM(IOUTSTAT) .EQ. +1)) THEN
REALH1T(INSTATE) = REALH1T(INSTATE)
+ 1.0DO/DSQRT (DFLOAT (KPHOT (INSTATE)))
*( DFLOAT(KXPHOT (INSTATE) ) /DFLOAT (KPHOT (INSTATE))
~DFLOAT (KXFERM (IOUTSTAT) ) /DFLOAT (KFERM (TOUTSTAT) ) )
AIMHAT (INSTATE) = AIMH1T(INSTATE)
+ 1.0DO/DSQRT(DFLOAT (KPHOT (INSTATE)))
* (~-DFLOAT (KYPHOT (INSTATE) ) /DFLOAT (KPHOT (INSTATE))
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+DFLOAT (KYFERM (IOUTSTAT) ) /DFLOAT (KFERM (IOUTSTAT)))
ENDIF

IF ((ISPHOT(INSTATE) .EQ. +1) .AND.
(ISFERM(INSTATE) .EQ. -1) .AND.
(ISFERM(IOUTSTAT) .EQ. -1)) THEN
REALHAT(INSTATE) = REALH1T (INSTATE)
+ 1.0DO/DSQRT(DFLOAT (KPHOT (INSTATE)))
* (~-DFLOAT (KXPHOT (INSTATE) ) /DFLOAT (KPHOT (INSTATE))
+DFLOAT (KXFERM (IOUTSTAT) ) /DFLOAT (KFERM (IOUTSTAT)))
AIMHAT (INSTATE) = AIMH1T(INSTATE)
+ 1.0DO/DSQRT (DFLOAT (KPHOT (INSTATE)))
*(~DFLOAT (KYPHOT (INSTATE) ) /DFLOAT (KPHOT (INSTATE))
+DFLOAT (KYFERM (TOUTSTAT) ) /DFLOAT (KFERM (IOUTSTAT) ))
ENDIF

END OF DIAGRAMS 1,4,5.
CONTINUE

IF (ICHARGE .EQ. -1) GOTD 205
IF (NOAFERI .EQ. 1) GOTO 206
DO 200 INSTATE = NSTATEOP+1,NSTATES
IF ((REALWF (INSTATE) .EQ. 0.0DO) .AND.
( AIMWF (INSTATE) .EQ. 0.0DO)) GOTO 200

CHECK IF SPECTATORS MATCH UP.

IF (KFERM(INSTATE) .NE. KFERM(IOUTSTAT)) GOTO 200
IF (KXFERM(INSTATE) .NE. KXFERM(IOUTSTAT)) GOTO 200
IF (KYFERM(INSTATE) .NE. KYFERM(IOUTSTAT)) GOTO 200
IF (ISFERM(INSTATE) .NE. ISFERM(IOUTSTAT)) GOTO 200

HAVE INTERACTION. DETERMINE MATRIX ELEMENT.

DIAGRAM 2
IF ((ISPHOT(INSTATE) .EQ. +1) .AND.
(ISAFER(INSTATE) .EQ. -1) .AND.
(ISAFER(IOUTSTAT) .EQ. +1)) THEN
REALHAIL (INSTATE) = REALH1L (INSTATE)
+ 1.0DO/DSQRT(DFLOAT (KPHOT (INSTATE)))
*(~1.0DO/DFLOAT (KAFER (INSTATE))
+1.0DO/DFLOAT (KAFER (IOUTSTAT)))
ENDIF

IF ((ISPHOT(INSTATE) .EQ. -1) .AND.
(ISAFER(INSTATE) .EQ. +1) .AND.
(ISAFER(IOUTSTAT) .EQ. -1)) THEN

REALHIL(INSTATE) = REALH1L (INSTATE)
+ 1.0DO/DSQRT (DFLOAT (KPHOT (INSTATE)))
*(-1.0DO/DFLOAT (KAFER (INSTATE))
+1.0DO/DFLOAT (KAFER (IOUTSTAT) ))
ENDIF
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DIAGRAM 6
IF ((ISPHOT(INSTATE) .EQ. +1) .AND.
(ISAFER(INSTATE) .EQ. -1) .AND.
(ISAFER(IOUTSTAT) .EQ. -1)) THEN
REALHAT(INSTATE) = REALH1T(INSTATE)
+ 1.0DO/DSQRT(DFLOAT (KPHOT(INSTATE)))
*( DFLOAT(KXPHOT (INSTATE))/DFLOAT (KPHOT (INSTATE))
-DFLOAT (KXAFER (IOUTSTAT) ) /DFLOAT (KAFER (IOUTSTAT) ))
AIMHIT(INSTATE) = AIMHiT(INSTATE)
+ 1.0DO/DSQRT (DFLOAT (KPHOT (INSTATE)))
*( DFLOAT(KYPHOT (INSTATE) ) /DFLOAT (KPHOT (INSTATE))
-DFLOAT (KYAFER (IOUTSTAT) ) /DFLOAT (KAFER (IOUTSTAT)))
ENDIF

IF ((ISPHOT(INSTATE) .EQ. -1) .AND.
(ISAFER(INSTATE) .EQ. +1) .AND.
(ISAFER(IOUTSTAT) .EQ. +1)) THEN
REALHAT(INSTATE) = REALH1T(INSTATE)
+ 1.0DO/DSQRT(DFLOAT (KPHOT (INSTATE)))
* (-DFLOAT (KXPHOT (INSTATE) ) /DFLOAT (KPHOT (INSTATE))
+DFLOAT (KXAFER (IOUTSTAT) ) /DFLOAT (KAFER (IOUTSTAT)) )
AIMHIT(INSTATE) = AIMH1T(INSTATE)
+ 1.0DO/DSQRT(DFLOAT (KPHOT (INSTATE)))
*( DFLOAT (KYPHOT (INSTATE) ) /DFLOAT (KPHOT (INSTATE))
-DFLOAT (KYAFER (IOUTSTAT) ) /DFLOAT (KAFER (TOUTSTAT) ))
ENDIF

DIAGRAM 7
IF ((ISPHOT(INSTATE) .EQ. -1) .AND.
(ISAFER(INSTATE) .EQ. -1) .AND.
(ISAFER (IOUTSTAT) .EQ. -1)) THEN
REALH1T(INSTATE) = REALH1T(INSTATE)
+ 1.0DO/DSQRT(DFLOAT (KPHOT (INSTATE)))
* (-DFLOAT (KXPHOT (INSTATE) ) /DFLOAT (KPHOT (INSTATE))
+DFLOAT (KXAFER (INSTATE) ) /DFLOAT (KAFER (INSTATE)))
AINMHIT(INSTATE) = AIMH1T(INSTATE)
+ 1.0D0/DSQRT (DFLOAT (KPHOT (INSTATE)))
*( DFLOAT(KYPHOT (INSTATE))/DFLOAT (KPHOT (INSTATE))
-DFLOAT (KYAFER (INSTATE)) /DFLOAT (KAFER (INSTATE)))
ENDIF

IF ((ISPHOT(INSTATE) .EQ. +1) .AND.
(ISAFER(INSTATE) .EQ. +1) .AND.
(ISAFER(IOUTSTAT) .EQ. +1)) THEN
REALH1T(INSTATE) = REALH1T(INSTATE)
+ 1.0DO/DSQRT (DFLOAT (KPHOT (INSTATE)))
*( DFLOAT(KXPHOT (INSTATE) ) /DFLOAT (KPHOT (INSTATE))
-DFLOAT (KXAFER (INSTATE) ) /DFLOAT (KAFER (INSTATE) ) )
AIMHIT(INSTATE) = AIMH1T(INSTATE)
+ 1.0DO/DSQRT (DFLOAT (KPHOT (INSTATE)))
*( DFLOAT(KYPHOT (INSTATE) ) /DFLOAT (KPHOT (INSTATE))
-DFLOAT (KYAFER (INSTATE) ) /DFLOAT (KAFER (INSTATE)))
ENDIF

END OF DIAGRAMS 2,6,7.
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200 CONTINUE
205 CONTINUE

c _________________________________________________________

c SUM CONTRIBUTIONS TO Hi.

c _________________________________________________________
DO 300 INSTATE = NSTATEOP+1,NSTATES

c COMMENT OUT THIS LINE FOR CRAY.

IF ((REALHiL(INSTATE) .EQ. 0.0DO) .AND.
(REALH1T(INSTATE) .EQ. 0.0DO) .AND.
(AIMHIT(INSTATE) .EQ. 0.0DO)) GOTO 300

@ »

REALHAL (INSTATE) = REALH1L (INSTATE)*FERMMASS/ALPERP
REALHIT(INSTATE) = REALH1T(INSTATE)*PI/ALPERP2
AIMHLT(INSTATE) = AIMH1T(INSTATE)*PI/ALPERP2

CH#*stx+4++++DIAGNOSTICS

c WRITE (16,920) INSTATE,IOUTSTAT,

c s REALHAL (INSTATE) ,REALH1T (INSTATE) ,AIMH1T (INSTATE)
€920 FORMAT (' INSTATE IOUTSTAT REALH1L REALHAT AIMHAT ='/
c s 2I7,3F11.4)

Ok ok ok ok ke ok ok ok ok ok ok

REMSQHiL = REMSQH1L
+ 2.0*REALH1L (INSTATE) *DSQRT (ALPHAG)
*( REALWF (IOUTSTAT) *REALWF (INSTATE)
+AIMWF (IOUTSTAT) *AIMWF (INSTATE))
REMSQH1T = REMSQHIT
+ 2.0*REALH1T (INSTATE) *DSQRT (ALPHAG)
*( REALWF (IOUTSTAT) *REALWF (INSTATE)
+AIMWF (IOUTSTAT) *AIMWF (INSTATE) )
+ 2.0%AIMH1T (INSTATE) *DSQRT (ALPHAG)
* (~REALWF (IOUTSTAT) *AIMWF (INSTATE)
+AIMWF (IOUTSTAT) *REALWF (INSTATE))

L B K

”w e

300 CONTINUE
20 CONTINUE

RETURN
END

SUBROUTINE H2NR(REMSQH2P,REMSQH2F,
NSIZE,NSTATES,NSTATEOP,REALWF, AIMWF,
ALPHAG ,KPLUSTOT, ICHARGE , ALAMBDA , ALPERP , EPSTLON,
RPHOMASS , RFERMASS , TUVFERM, NOAFERT, TH2PHOT, IH2FERN,
NPHOT, NFERM, NAFER,
KPHOT ,KXPHOT ,KYPHOT, ISPHOT,
KFERM, KXFERM, KYFERM, ISFERM,
KAFER ,KXAFER ,KYAFER, ISAFER,
REALH2P,REALH2F)

LA X X N X _X N J

c THIS ROUTINE RETURNS THE VALUE OF THE HAMILTONIAN
c BETWEEN THE INPUTTED VARIATIONAL STATES.
Y
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OUTPUT VARIABLES:

REMSQH2P

REMSQH2F

CONTRIBUTION TO MATRIX ELEMENT FROM INST. PHOTON.

CONTRIBUTION TO MATRIX ELEMENT FROM INST. FERMION.

INPUT VARIABLES:

NSIZE

NSTATES
NSTATEOP
REALWF
AIMWF
ALPHAG
KPLUSTOT
ICHARGE
ALAMBDA
ALPERP
EPSILON
RPHOMASS
RFERMASS
NOAFERI
IUVFERM
IH2PHOT
IH2FERM
NPHOT,
NFERM,
NAFER
KPHOT,
KXPHOT,
KYPHOT,

ISPHOT

KFERM,

ARRAY DIMENSION OF NPHOT, NFERM,... AS DEFINED IN
CALLING ROUTINE. IT SHOULD BE GREATER THAN OR EQUAL
TO NSTATES.

NUMBER OF FOCK STATES.

NUMBER OF FOCK STATES WITH NO PHOTONS.

REAL PART OF FOCK STATE WAVE FUNCTIONS.

IMAGINARY PART OF FOCK STATE WAVE FUNCTIONS.

VALUE OF COUPLING CONSTANT (=G*%2/4PI).

TOTAL KPLUS OF INCOMING, OUTGOING STATES.

TOTAL CHARGE.

VALUE OF CUT-OFF MASS.

SIZE OF KPERP GRID.

MINIMUM PHOTON INVMASS#**2.

PHOTON MASS TO BE USED IN COVARIANT CUT-OFF.
FERMION MASS TO BE USED IN COVARIANT CUT-OFF.

NO INTERACTIONS WITH ANTI-FERMION.

UV CUT-OFF ONLY APPLIED TO FERMIONS, ANTI-FERMIONS.
TURN ON INSTANTANEOUS PHOTON INTERACTION.

TURN ON INSTANTANEOUS FERMION INTERACTION.

# PHOTONS, FERMIONS, ANTI-FERMIONS IN FOCK STATES.

ARRAYS OF DIMENSION NSIZE.

KPLUS, KX, KY, SPIN OF PHOTON IN FOCK STATES.
ARRAYS OF DIMENSION NSIZE.

KPLUS, KX, KY, SPIN OF FERMION IN THE FOCK STATES.
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KXFERM, ARRAYS OF DIMENSION NSIZE.
KYFERM,
ISFERM

KAFER, KPLUS, KX, KY, SPIN OF ANTI-FERMION IN FOCK STATES.
KXAFER, ARRAYS OF DIMENSION NSIZE.

KYAFER,

ISAFER

REALH2P, WORKING ARRAYS OF DIMENSION NSIZE.
REALH2F

USAGE NOTES:

1) THIS ROUTINE ASSUMES THAT THE TOTAL KPERP OF THE INCOMING
AND OUTGOING FOCK STATES IS ZERO. THIS IS NECESSARY IN THE
CALCULATION OF INVARIANT MASSES.

2) FERMION CHARGE IS ASSUMED TO BE -1.

3) MASSES ARE IN UNITS OF ELECMASS.

LENGTHS ARE IN UNITS OF 1/ELECMASS.

4) REAL VARIABLES ARE DEFINED TO BE REAL+8 (DOUBLE PRECISION).

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

IMPLICIT INTEGER (I-N)

DIMENSION REALWF(NSIZE),AIMWF(NSIZE),

$ NPHOT(NSIZE) ,NFERM(NSIZE),NAFER(NSIZE),

$ KPHOT(NSIZE) ,KXPHOT(NSIZE) ,KYPHOT(NSIZE),ISPHOT(NSIZE),
$ KFERM(NSIZE) ,KXFERM(NSIZE) ,KYFERM(NSIZE), ISFERM(NSIZE),
$ KAFER(NSIZE) ,KXAFER(NSIZE) ,KYAFER(NSIZE), ISAFER(NSIZE)

DIMENSION REALH2P (NSIZE) ,REALH2F (NSIZE)

SMALL = 1.0D-13
PI = 3.141592653589793D0
ALPERP2 = ALPERP#*2

BETARPHO = (RPHOMASS*ALPERP/PI)#**2

BETARFER = (RFERMASS*ALPERP/PI)**2

ALPHA1 = (ALAMBDA*ALPERP/PI)*#*2/DFLOAT(KPLUSTOT) + SMALL
ALPHA2 = (ALPERP/PI)=*#*2#*(EPSILON/DFLOAT(KPLUSTOT)) - SMALL

REMSQH2P = 0.0DO
REMSQH2F = 0.0DO

CALCULATE DIAGRAM 13. ONLY HAVE DIAGRAM 13 IF ICHARGE=0.
LOOP OVER OUTGOING FOCK STATES WITH O PHOTONS.
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$

IF ((ICHARGE .EQ. 0) .AND. (IH2PHOT .EQ. 1)
.AND. (NOAFERI .EQ. 0)) THEN
DO 20 IOUTSTAT = 1,NSTATEOP
IF ((REALWF(IOUTSTAT) .EQ. 0.0DO) .AND.
( AIMWF (IOUTSTAT) .EQ. 0.0DO)) GOTO 20

LOOP OVER INCOMING FOCK STATES WITH O PHOTONS.
ASSUME HAMILTONIAN IS HERMITIAN, S0 ONLY NEED TO CONSIDER

IOUTSTAT .GE. INSTATE.

Q

(21

DO 30 INSTATE = 1,IOUTSTAT
IF ((REALWF (INSTATE) .EQ. 0.0DO) .AND.
$ ( AIMWF(INSTATE) .EQ. 0.0DO)) GOTO 30

INITIALIZE TO ZERO.
REALH2P (INSTATE) = 0.0DO

CHECK IF HAVE CORRECT SPINS.
IF (ISFERM(INSTATE) .NE. ISFERM(IOUTSTAT)) GOTO 300
IF (ISAFER(INSTATE) .NE. ISAFER(IOUTSTAT)) GOTO 300

NO MATRIX ELEMENT IF KFERM(INSTATE) = KFERM(IOUTSTAT).
IF (KFERM(INSTATE) .EQ. KFERM(IOUTSTAT)) GOTO 300

NO MATRIX ELEMENT IF INVMASS*#2 OF INSTANTANEOUS PHOTON
.LT. EPSILON.
IF (
( (DFLOAT( (KXFERM(INSTATE) - KXFERM{IOUTSTAT))**2
+(KYFERM(INSTATE) - KYPERM(IOUTSTAT))**2)
+BETARPHO) /DFLOAT (IABS (KFERM (INSTATE) - KFERM(IOUTSTAT)))
) .LT. ALPHA2)
GOTO 300

“» 9N

IF (KFERM(INSTATE) .GT. KFERM(IOUTSTAT)) THEN

CHECK IF INVMASS**2 OF INTERMEDIATE STATE IS
.LE. LAMBDA*#2,
IF (IUVFERM .EQ. 0) THEN
IF (
( (DFLOAT( (KXFERM(INSTATE) - KXFERM(IOUTSTAT))*#2
+(KYFERM(INSTATE) - KYFERM(IOUTSTAT))#*#2)
+BETARPHO) /DFLOAT (KFERM(INSTATE) - KFERM(IOUTSTAT))
+(DFLOAT (KXFERM (TIOUTSTAT) #*2 + KYFERM(IOUTSTAT)**2)
+BETARFER) /DFLOAT (KFERM (IOUTSTAT))
+(DFLOAT (KXAFER (INSTATE) #*2 + KYAFER (INSTATE) **2)
+BETARFER) /DFLOAT (KAFER (INSTATE))
) .GT. ALPHA1) GOTO 300
ENDIF
IF (IUVFERM .EQ. 1) THEN
IF (
( (DFLOAT(KXFERM(IOUTSTAT)#**2 + KYFERM(IOUTSTAT)**2)
+BETARFER) /DFLOAT (KFERM (TOUTSTAT) )
+(DFLOAT (KXAFER (INSTATE) #*2 + KYAFER(INSTATE)**2)
+BETARFER) /DFLOAT (KAFER (INSTATE))

MOV OVLOHOLHL

" NN
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) .GT. ALPHA1) GOTO 300
ENDIF

HAVE INTERACTION. DETERMINE MATRIX ELEMENT.
REALH2P (INSTATE) = REALH2P (INSTATE)
- 1.0/DFLOAT((KFERM(INSTATE) - KFERM(IOUTSTAT))**2)
ENDIF

IF (KFERM(INSTATE) .LT. KFERM(IOUTSTAT)) THEN

CHECK IF INVMASS*+2 OF INTERMEDIATE STATE IS
.LE. LAMBDA*#2,
IF (IUVFERM .EQ. 0) THEN
IF (
( (DFLOAT( (KXFERM(IOUTSTAT) - KXFERM(INSTATE))**2
+(KYFERM(IOUTSTAT) - KYFERM(INSTATE))*%2)
+BETARPHO) /DFLOAT (KFERM (IOUTSTAT) - KFERM(INSTATE))
+(DFLOAT (KXFERM (INSTATE) #*#2 + KYFERM(INSTATE) *+2)
+BETARFER) /DFLOAT (KFERM (INSTATE))
+(DFLOAT (KXAFER (IOUTSTAT) #+2 + KYAFER(IOUTSTAT) *%2)
+BETARFER) /DFLOAT (KAFER (IOUTSTAT))
) .GT. ALPHA1) GOTO 300
ENDIF
IF (IUVFERM .EQ. 1) THEN
IF (
( (DFLOAT (KXFERM(INSTATE) %*2 + KYFERM(INSTATE) **2)
+BETARFER) /DFLOAT (KFERM (INSTATE))
+(DFLOAT (KXAFER (IOUTSTAT) **2 + KYAFER (IOUTSTAT) **2)
+BETARFER) /DFLOAT (KAFER (IOUTSTAT) )
) .GT. ALPHA1) GOTO 300
ENDIF

HAVE INTERACTION. DETERMINE MATRIX ELEMENT.
REALH2P (INSTATE) = REALH2P (INSTATE)
- 1.0/DFLOAT ((KFERM(IOUTSTAT) ~ KFERM(INSTATE))=*#2)
ENDIF

END OF DIAGRAM 13.
CONTINUE

IF (REALH2P(INSTATE) .NE. 0.0DO) THEN
REALH2P (INSTATE) = 2.0*REALH2P (INSTATE)/ALPERP2

Ckxxxxxx%x%+*xxDIAGNOSTICS

c VRITE (16,920) INSTATE,ICUTSTAT,REALH2P (INSTATE)
€920 FORMAT (' INSTATE IOUTSTAT REALH2P =', 217,2F11.4)
CHeskeseiitss

”»

FACT = 2.0D0
IF (INSTATE .EQ. IOUTSTAT) FACT = 1.0DO
REMSQH2P = REMSQH2P + FACT+REALH2P (INSTATE)
*ALPHAG* ( REALWF (IOUTSTAT) *REALWF (INSTATE)
+AIMWF (IOUTSTAT) *AIMWF (INSTATE))
ENDIF
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30
20

FINISHED WITH THIS FOCK STATE.
CONTINUE
CONTINUE

ENDIF

CALCULATE DIAGRAMS 16, 18.
LOOP OVER OUTGOING FOCK STATES WITH i1 PHOTON.
IF (IH2FERM .EQ. 1) THEN
DO 40 IOUTSTAT = NSTATEOP+1,NSTATES
IF ((REALWF(IOUTSTAT) .EQ. 0.0DO) .AND.

( AIMWF(IOUTSTAT) .EQ. 0.0DO)) GOTO 40

LOOP OVER INCOMING FOCK STATES WITH 1 PHOTON.
ASSUME HAMILTONIAN IS HERMITIAN, SO0 ONLY NEED TO CONSIDER
IOUTSTAT .GE. INSTATE.

DO 50 INSTATE = NSTATEOP+1,IOUTSTAT

IF ((REALWF(INSTATE) .EQ. 0.0DO) .AND.
( AIMWF (INSTATE) .EQ. 0.0DO)) GOTO 60

INITIALIZE TO ZERO.

REALH2F (INSTATE) = 0.0DO

MAKE SURE THAT SPECTATOR MATCHES UP.

IF (ICHARGE .EQ. O) THEN
IF ((KAFER(IOUTSTAT) .NE. KAFER(INSTATE)) .AND.

GO TO NEXT FOCK STATE.

(KFERM(IOUTSTAT) .NE. KFERM(INSTATE))) GOTO 50

FERMION IS THE SPECTATOR.
IF ((KFERM(IOUTSTAT) .EQ. KFERM(INSTATE)) .AND.
(KAFER (IOUTSTAT) .NE. KAFER(INSTATE))) THEN
IF (KXFERM(IOUTSTAT) .NE. KXFERM(INSTATE)) GOTO
IF (KYFERM(IOUTSTAT) .NE. KYFERM(INSTATE)) GOTO
IF (ISFERM(IOUTSTAT) .NE. ISFERM(INSTATE)) GOTO
ENDIF

AFERMION IS THE SPECTATOR.
IF ((KAFER(IOUTSTAT) .EQ. KAFER(INSTATE)) .AND.
(KFERM(IOUTSTAT) .NE. KFERM(INSTATE))) THEN
IF (KXAFER(IOUTSTAT) .NE. KXAFER(INSTATE)) GOTO
IF (KYAFER(IOUTSTAT) .NE. KYAFER(INSTATE)) GOTO
IF (ISAFER(IOUTSTAT) .NE. ISAFER(INSTATE)) GOTO
ENDIF

DON'T KNOW WHICH IS SPECTATOR.
IF ((KAFER(IOUTSTAT) .EQ. KAFER(INSTATE)) .AND.
(KFERM(IOUTSTAT) .EQ. KFERM(INSTATE))) THEN

50
50
50

50
50
50

IF ((KXAFER(IOUTSTAT) .NE. KXAFER(INSTATE)) .AND.

(KXFERM (IOUTSTAT) .NE. KXFERM(INSTATE))) GOTO 50
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IF ((KYAFER(IOUTSTAT) .NE. KYAFER(INSTATE)) .AND.
(KYFERM(IOUTSTAT) .NE. KYFERM(INSTATE))) GOTO 50
IF ((ISAFER(IOUTSTAT) .NE. ISAFER(INSTATE)) .AND.
(ISFERM(IOUTSTAT) .NE. ISFERM(INSTATE))) GOTO 50
ENDIF
ENDIF

CHECK IF HAVE CORRECT SPINS.

IF (ISPHOT(INSTATE) .NE. ISPHOT(IOUTSTAT)) GOTO 400
IF (ISFERM(INSTATE) .NE. ISFERM(IOUTSTAT)) GOTO 400
IF (ISPHOT(INSTATE) .EQ. ISFERM(IOUTSTAT)) GOTO 400

CHECK IF SPECTATORS MATCH UP.

IF (ICHARGE .EQ. O) THEN
IF (KAFER(INSTATE) .NE. KAFER(IOUTSTAT)) GOTO 400
IF (KXAFER(INSTATE) .NE. KXAFER(IOUTSTAT)) GOTO 400
IF (KYAFER(INSTATE) .NE. KYAFER(IOUTSTAT)) GOTO 400
IF (ISAFER(INSTATE) .NE. ISAFER(IOUTSTAT)) GOTD 400

ENDIF

HAVE INTERACTION. DETERMINE MATRIX ELEMENT.
REALH2F (INSTATE) = REALH2F (INSTATE)
+ 1.0/(DSQRT (DFLOAT (KPHOT (INSTATE) *KPHOT (IOUTSTAT)))
*«DFLOAT (KPHOT (INSTATE) + KFERM(INSTATE)))

END OF DIAGRAN 16.
CONTINUE

CALCULATE DIAGRAM 18. ONLY HAVE DIAGRAM 18 IF ICHARGE=O0.

IF (ICHARGE .EQ. -1) GOTO 500
IF (NOAFERI .EQ. 1) GOTO 500

CHECK IF HAVE CORRECT SPINS.

IF (ISPHOT(INSTATE) .NE. ISPHOT(IOUTSTAT)) GOTG 500
IF (ISAFER(INSTATE) .NE. ISAFER(IOUTSTAT)) GOTO 500
IF (ISPHOT(INSTATE) .EQ. ISAFER(IOUTSTAT)) GOTO 500

CHECK IF SPECTATORS MATCH UP.

IF (KFERM(INSTATE) .NE. KFERM(IOUTSTAT)) GOTO 500
IF (KXFERM(INSTATE) .NE. KXFERM(IOUTSTAT)) GOTO 500
IF (KYFERM(INSTATE) .NE. KYFERM(IOUTSTAT)) GOTC 500
IF (ISFERM(INSTATE) .NE. ISFERM(IOUTSTAT)) GOTC 500

HAVE INTERACTION. DETERMINE MATRIX ELEMENT.
REALH2F (INSTATE) = REALH2F (INSTATE)
+ 1.0/(DSQRT(DFLOAT (KPHOT (INSTATE) *KPHOT (IOUTSTAT) ))
*DFLOAT (KPHOT (INSTATE) + KAFER(INSTATE)))

END OF DIAGRAM 18.
CONTINUE
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IF (REALH2F (INSTATE) .NE. 0.0DO) THEN
REALH2F (INSTATE) = REALH2F (INSTATE)/ALPERP2

CH**xxxxx+xxxDIAGNOSTICS

c WRITE (16,940) INSTATE,IOUTSTAT,REALH2F (INSTATE)
€940 FORMAT (° INSTATE IOUTSTAT REALH2F =',2I7,2F11.4)
Chkkkkkkkkkkk

FACT = 2.0D0

IF (INSTATE .EQ. IOUTSTAT) FACT = 1.0DO
REMSQH2F = REMSQH2F + FACT+REALH2F (INSTATE)

$ *ALPHAG* ( REALWF (IOUTSTAT) *REALWF (INSTATE)
$ +AIMWF (IOUTSTAT) *AIMWF (INSTATE) )
ENDIF
c FINISHED WITH THIS FOCK STATE. GO TO NEXT FOCK STATE.
50 CONTINUE
40 CONTINUE
ENDIF
RETURN
END

SUBROUTINE HSELFNR(REMSQHSL,REMSQHST,REMSQHS2,REMSQHS3,
NSIZE,NSTATEOP ,REALWF ,AIMWF,
ALPHAG,KPLUSTOT, IBC, ICHARGE,
ALAMBDA , ALPERP ,EPSILON,

PHOTMASS , FERMMASS , RPHOMASS , RFERMASS , NOAFERI,
IFERMUP, IUVFERM, NPHOT, NFERM, NAFER,
KPHOT,KXPHOT,KYPHOT,

KFERM,KXFERM, KYFERM,

KAFER ,KXAFER ,KYAFER)

@»PeNesNn

THIS ROUTINE RETURNS THE VALUE OF THE HAMILTONIAN
BETWEEN THE INPUTTED VARIATIONAL STATES.

OUTPUT VARIABLES:

REMSQHSL CONTRIB TO MATRIX ELEMENT FROM LONG. PART OF SEFERM1.
REMSQHST CONTRIB TO MATRIX ELEMENT FROM TRANS. PART OF SEFERM1.
REMSQHS2 CONTRIBUTION TO MATRIX ELEMENT FROM SEFERM2.

REMSQHS3 CONTRIBUTION TO MATRIX ELEMENT FROM SEFERM3.

INPUT VARIABLES:

NSIZE ARRAY DIMENSION OF NPHOT, NFERM,... AS DEFINED IN

CALLING ROUTINE.

NSTATEOP NUMBER OF FOCK STATES WITH NO PHOTONS.

a0
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REALWF REAL PART OF FOCK STATE WAVE FUNCTIONS.
AINWF IMAGINARY PART OF FOCK STATE WAVE FUNCTIONS.
ALPHAG VALUE OF COUPLING CONSTANT (=G**2/4PI).
KPLUSTOT TOTAL KPLUS OF INCOMING, OUTGOING STATES.
IBC ONLY HAVE EVEN FERMION KPLUS IF IBC=2,

ODD FERMION KPLUS IF IBC=1.
ICHARGE TOTAL CHARGE.
ALAMBDA  VALUE OF CUT-OFF MASS.
ALPERP SIZE OF KPERP GRID.
EPSILON  MINIMUM PHOTON INVMASS##2.
PHOTMASS PHOTON MASS IN LAGRANGIAN.
FERMMASS FERMION MASS IN LAGRANGIAN.
RPHOMASS PHOTON MASS TO BE USED IN COVARIANT CUT-OFF.
RFERMASS FERMION MASS TO BE USED IN COVARIANT CUT-OFF.
NOAFERI  NO INTERACTIONS WITH ANTI-FERMION.
IFERMUP  FERMIONS, ANTI-FERMIONS ALL HAVE SPIN UP.
IUVFERM UV CUT-OFF ONLY APPLIED TO FERMIONS, ANTI-FERMIONS.
NPHOT, # PHOTONS, FERMIONS, ANTI-FERMIONS IN FOCK STATES.
NFERM, ARRAYS OF DIMENSION NSIZE.
NAFER
KPHOT, KPLUS, KX, KY OF PHOTON IN FOCK STATES.
KXPHOT, ARRAYS OF DIMENSION NSIZE.
KYPHOT
KFERN, KPLUS, KX, KY OF FERMION IN THE FOCK STATES.
KXFERM, ARRAYS OF DIMENSION NSIZE.
KYFERM
KAFER, KPLUS, KX, KY OF ANTI-FERMION IN FOCK STATES.
KXAFER, ARRAYS OF DIMENSION NSIZE.
KYAFER
USAGE NOTES:

1) THIS ROUTINE ASSUMES THAT THE TOTAL KPERP OF THE INCOMING
AND OUTGOING FOCK STATES IS ZERO. THIS IS NECESSARY IN THE
CALCULATION OF INVARIANT MASSES.

2) FERMION CHARGE IS ASSUMED 70 BE -1.
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3) MASSES ARE IN UNITS OF ELECMASS.
LENGTHS ARE IN UNITS OF 1/ELECMASS.
4) REAL VARIABLES ARE DEFINED TO BE REAL+8 (DOUBLE PRECISION).

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
IMPLICIT INTEGER (I-N)

DIMENSION REALWF(NSIZE),AIMWF (NSIZE),
NPHOT(NSIZE) ,NFERM(NSIZE) , NAFER(NSIZE),
KPHOT(NSIZE) ,KXPHOT(NSIZE) ,KYPHOT(NSIZE),
KFERM(NSIZE) ,KXFERM(NSIZE) ,KYFERM(NSIZE) ,
KAFER(NSIZE) ,KXAFER(NSIZE) ,KYAFER (NSIZE)

“w Vv

SMALL = 1.0D-13
PI = 3.141592653589793D0

ALPHA = (ALAMBDA*ALPERP/PI)*+2/DFLOAT(KPLUSTOT)
ALPHA2 = (ALPERP/PI)#**2#+(EPSILON/DFLOAT(KPLUSTOT))
BETAPHOT = (PHOTMASS*ALPERP/PI)*#2

BETAFERM = (FERMMASS*ALPERP/PI)##2

BETARPHO = (RPHOMASS*ALPERP/PI) **2

BETARFER = (RFERMASS*ALPERP/PI)*#2

REMSQHSL = 0.0DO
REMSQHST = 0.0DO
REMSQHS2 = 0.0DO
REMSQHS3 = 0.0DO

ONLY HAVE SELF-ENERGY CONTRIBUTION IF NO PHOTONS IN FOCK STATE.
LOOP OVER DIAGONAL MATRIX ELEMENTS WITH NO PHOTONS.
DO 10 ISTATE = 1,NSTATEOP
IF ((REALWF(ISTATE) .NE. 0.0DO) .OR.
$ ( AIMWF(ISTATE) .NE. 0.0DO)) THEN

INITIALIZE TO ZERO.
REHSF1L = 0.0DO
REHSF1T = 0.0DO
REHSF2 = 0.0D0
REHSF3 = 0.0DO

INPLUS = KFERM(ISTATE)
INX = KXFERM(ISTATE)
INY = KYFERM(ISTATE)
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CALCULATE CUT-OFF.

ALPHA1 = ALPHA

IF (ICHARGE .EQ. O) THEN

AKPERPSQ = DFLOAT (KXAFER(ISTATE)*+2 + KYAFER(ISTATE)**2)
SPECINVM = (AKPERPSQ + BETARFER)/DFLOAT(KAFER(ISTATE))
ALPHA1 = ALPHA1 - SPECINVM

ENDIF

IF (ABS(ALPHA1) .LE. SMALL) ALPHA1 = 0.0DO

SUBROUTINE SEFERM RETURNS VALUES OF SELF-ENERGIES.
CALL SEFERM(SEFERM1IL,SEFERM1T,SEFERM2, SEFERM3, IFERMUP,
ALPHAG, ALPERP, IBC, INPLUS, INX, INY, IUVFERM,
ALPHA1 ,ALPHA2 ,BETAPHOT ,BETAFERM, BETARPHO , BETARFER)
REHSF1IL = REHSF1L + SEFERMiL
REHSFAT = REHSF1T + SEFERMIT
REHSF2 = REHSF2 + SEFERM2
REHSF3 = REHSF3 + SEFERM3

FIND CONTRIBUTION TO HSELF FROM ANTI-FERMION.

“» &N

ONLY HAVE THIS CONTRIBUTION IF ICHARGE=0.

IF ((ICHARGE .EQ. O) .AND. (NODAFERI .EQ. 0)) THEN
INPLUS = KAFER(ISTATE)
INX = KXAFER(ISTATE)
INY = KYAFER(ISTATE)

CALCULATE CUT-OFF.

AKPERPSQ = DFLOAT (KXFERM(ISTATE)*+2 + KYFERM(ISTATE) **2)
SPECINVM = (AKPERPSQ + BETARFER)/DFLOAT(KFERM(ISTATE))
ALPHA1 = ALPHA - SPECINVM

IF (ABS(ALPHA1) .LE. SMALL) ALPHA1 = 0.0DO

SUBROUTINE SEFERM RETURNS VALUES OF SELF-ENERGIES.
CALL SEFERM(SEFERMIL,SEFERM1T,SEFERM2, SEFERM3, IFERMUP,
ALPHAG, ALPERP, IBC, INPLUS, INX, INY, IUVFERM,
ALPHA1,ALPHA2 ,BETAPHOT ,BETAFERM, BETARPHO ,BETARFER)
REHSFIL = REHSF1L + SEFERMiL
REHSFAT = REHSF1IT + SEFERM1T
REHSF2 = REHSF2 + SEFERM2
REHSF3 = REHSF3 + SEFERM3
ENDIF

Cx*xx*xx*xxxxx%x*xDIAGNOSTICS

c WRITE (16,910) ISTATE,REHSFIL,REHSF1T,REHSF2,REHSF3
co10 FORMAT (’ ISTATE REHSFiL REHSF1T REHSF2 REHSF3 ='/
c $ 17,4F11.4)
CHExktEERILES
REMSQHSL = REMSQHSL
$  +ALPHAG+REHSF1L#*(REALWF (ISTATE)**2 + AIMWF (ISTATE)=*%2)
REMSQHST = REMSQHST
$  +ALPHAG*REHSF1T#* (REALWF (ISTATE)**2 + AIMWF(ISTATE)=**2)
REMSQHS2 = REMSQHS2
$  +ALPHAG+REHSF2+ (REALWF (ISTATE)**2 + AIMWF (ISTATE)*+2)
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REMSQHS3 = REMSQHS3
$  +ALPHAG*REHSF3* (REALWF (ISTATE) **2 + AIMWF (ISTATE)=*#2)

c FINISHED WITH THIS FOCK STATE. GO TO NEXT FOCK STATE.
ENDIF
10 CONTINUE
RETURN
END

SUBROUTINE SEFERM(SEFERMI1L,SEFERM1T,SEFERM2, SEFERM3, IFERMUP,

$ ALPHAG, ALPERP, IBC, INPLUS, INX, INY, IUVFERM,
$ ALPHA1,ALPHA2,BETAPHOT , BETAFERM, BETARPHO , BETARFER)
c _________________________________________________________
c THIS SUBROUTINE RETURNS THE VALUE FOR THE FERMION SELF-ENERGY
c FOR INCOMING (KPLUS,KX,KY) = (INPLUS,INX,INY).
c _________________________________________________________
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
INPLICIT INTEGER (I-N)
PI = 3.141592653589793D0
SMALL = 1.0D-13
c _________________________________________________________
c INITIALIZE TO ZERO.
c _________________________________________________________
SEFERM1L = 0.0DO
SEFERMIT = 0.0DO
SEFERM2 = 0.0DO
SEFERM3 = 0.0DO
ANUM2 = 0.0DO
DENOM2 = 0.0DO
c _________________________________________________________
c WORK OUT SELF-ENERGIES.
c _________________________________________________________

ANPLUS = DFLOAT(INPLUS)

Cxkxxxxxxx%xxxDIAGNOSTICS

c WRITE (16,920) INPLUS,INX,INY,ALPHA1

€920 FORMAT (' °/* NPLUS NX NY ALPHA1 =',314,F8.3/
C $ ' QPLUS QX QY INVMASS'/

C  § 7 mmmmmmmmemmmmeeeeeee- )

(0 ok sk ok ok ok ook o ok ok ok ok

IF (IBC .EQ. 1) IQPLUSMX = INPLUS - 1
IF (IBC .EQ. 2) IQPLUSMX = INPLUS - 2
DO 20 IQPLUS = 2,IQPLUSMX,2

AQPLUS = DFLOAT(IQPLUS)

c CONTINUE ONLY IF AINVMASS .LE. ALPHA1.
AINVMASS = BETARFER/(ANPLUS-AQPLUS)

Ctst+s++++++DIAGNOSTICS
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C
co21

WRITE (16,921) IQPLUS,AINVMASS
FORMAT (3X,I3,10X,F8.3)

Chekkkkkkhkkk

”» N »

$
$

IF (AINVMASS .GT. (ALPHA1+SMALL)) GOTO 20

FIGURE OUT WHAT LARGEST ALLOWED PHOTON KX, KY IS.
ARGUMENT = ALPHA1* (ANPLUS-AQPLUS) - BETARFER
IF (ARGUMENT .LT. SMALL) THEN

IQPERPMX = 0O
ELSE
IQPERPMX = INT(DSQRT(ARGUMENT) + SMALL)

ENDIF

IQXMIN = INX
IQYMIN = INY
IQXMAX = INX
IQYMAX = INY

IQPERPMX
IQPERPMX
IQPERPMX
IQPERPMX

+ +

DO 30 IQX = IQXMIN,IQXMAX
DO 30 IQY = IQYMIN,IQYMAX

REMOVE THIS POINT IF PHOTON INVMASS++*2 .LT. EPSILON.
IF ((DFLOAT(IQX#*+2+IQY**2) + BETARPHO)/AQPLUS .LT.
ALPHA2-SMALL) GOTO 30

KEEP THIS TERM IN SUM FOR SE IF INVMASS**2 .LE. LAMBDA**.
IF (IUVFERM .EQ. 0)
AINVMASS = (DFLOAT(IQX*+2 + IQY+*x2) + BETARPHO)/AQPLUS
+ (DFLOAT((INX-IQX)*#2 + (INY-IQY)=**2) + BETARFER)
/ (ANPLUS-AQPLUS)
IF (IUVFERM .EQ. 1)
AINVMASS = (DFLOAT((INX-IQX)*#*2 + (INY-IQY)#*#*2) + BETARFER)
/ (ANPLUS-AQPLUS)

Cx*xxxxxxxxxxDIAGNOSTICS

c
922

WRITE (16,922) IQX,IQY,AINVMASS
FORMAT (8X,I3,1X,I3,1X,F8.3)

Cokeokskok ke ok ok ok ok ok

“» @ »

IF (AINVMASS .GT. (ALPHA1+SMALL)) GOTO 30

ADD CONTRIBUTIONS TO SEFERM1L,SEFERM1T,SEFERM2,SEFERM3.
PERPSQAR = (DFLOAT(IQX) - (AQPLUS/ANPLUS)*DFLOAT(INX))*#2
+ (DFLOAT(IQY) - (AQPLUS/ANPLUS)*DFLOAT(INY))=*#2
DENOM = ANPLUS#+2+PERPSQAR + AQPLUS**2+BETAFERM
+ ANPLUS#* (ANPLUS-AQPLUS) *BETAPHOT
ANUMT = (ANPLUS=**2+PERPSQAR)/
(2.0DO*ANPLUS* (ANPLUS-AQPLUS))
+ (ANPLUS**2+xPERPSQAR) / (AQPLUS*#2)
SEFERM1T = SEFERM1T + ANUMT/DENOM
IF (IFERMUP .EQ. 0) THEN
ANUML = (AQPLUS**2+BETAFERN)/
(2.0DO*ANPLUS* (ANPLUS-AQPLUS))
SEFERMIL = SEFERMiL + ANUML/DENOM
ANUM2 = ANUM2 + AQPLUS/DENOM
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DENOM2 = DENOM2 + (ANPLUS - AQPLUS)/DENOM
SEFERM3 = SEFERM3 + AQPLUS/DENOM
ENDIF

30 CONTINUE
20 CONTINUE

SEFERMAT = (2.0/ALPERP#*#2)+SEFERM1T
IF (IFERMUP .EQ. O) THEN
SEFERMIL = (2.0/ALPERP*#%2)*SEFERMiL
ANUM2 = (ALPHAG/PI##4)+*ANUM2#%%2
DENOM2 = 1 + (ALPHAG/PI#**2)*DENON2
SEFERM2 = - (BETAFERM*PI+*#*2)/(ANPLUS*ALPERP#**2) * (ANUM2/DENOM2)
SEFERM3 = - (ALPHAG*BETAFERM*SEFERN3##2)/
$ (ANPLUS*ALPERP#*2+PI*#2)
ENDIF

Ckkxkkkkkkkxx*xDITAGNOSTICS

C WRITE (16,923) SEFERMiL,SEFERM1T,SEFERM2, SEFERM3
C923 FORMAT

C $ (° SEFERMIL SEFERMIT SEFERM2 SEFERM3 =',4F8.4)

(C 2% ok ok ok ok ok ke ok ok ok o ok

RETURN
END

SUBROUTINE PRINTOUT(WAVEFCN,TIME1,TIME2,TIME3, TIME4,TIMES, TIMEG,
KPLUSTOT, ICHARGE, IBC,NSTATES, NSTATEOP,NSIZE,
KPLUSMAX, ALPHAG , ALAMBDA , ALPERP ,EPSILON,
PARA1,PARA2,PARA3,PARA4 ,PARAS,

PHOTMASS , RPHOMASS , FERMMASS , RFERMASS,
REMSQHO, REMSQH1L ,REMSQH1T,REMSQH2P , REMSQH2F ,
REMSQHSL ,REMSQHST ,REMSQHS2, REMSQHS3,

REALVWF , AINWF ,NPHOT , NFERM, NAFER,

KPHOT ,KXPHOT,KYPHOT, ISPHOT,
KFERM,KXFERM, KYFERM, ISFERM,

KAFER,KXAFER ,KYAFER, ISAFER)

POOLOHLOLLEOHLOLL

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
IMPLICIT INTEGER (I-N)

DIMENSION WAVEFCN (KPLUSMAX)

DIMENSION REALWF (NSIZE),AIMWF(NSIZE),

$ NPHOT(NSIZE),NFERM(NSIZE) ,NAFER(NSIZE),

$ KPHOT(NSIZE) ,KXPHOT(NSIZE) ,KYPHOT(NSIZE) , ISPHOT (NSIZE),
$ KFERM(NSIZE) ,KXFERM(NSIZE) ,KYFERM(NSIZE),ISFERM(NSIZE),
$ KAFER(NSIZE) ,KXAFER(NSIZE) ,KYAFER(NSIZE) ,ISAFER(NSIZE)
LOGICAL ODDKPLUS

PI = 3.141592653589793D0
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Cxxx+xx++++x*DIAGNOSTICS: RESULTS FROM QEDVAR
RPERP = ALAMBDA*ALPERP/PI

XALPERP =

ALPERP*ALPHAG

WRITE (15,910)
$ KPLUSTOT, ICHARGE,IBC,
$ ALPHAG,ALAMBDA,ALPERP,XALPERP,RPERP ,EPSILON,
$ PHOTMASS,RPHOMASS,FERMMASS,RFERMASS,
$ PARA1,PARA2,PARA3,PARA4,PARAS,NSTATEOP,NSTATES
WRITE (15,911)
$ TIME1,TIME2,TIME3,TIME4,TIMES,TIMESG,
$ TIME1+TIME2+TIME3+TIME4+TIMES+TIME6
WRITE (15,912)
$ REMSQHO,REMSQH1L,REMSQH1T,REMSQH2P,REMSQH2F,
$ REMSQHSL,REMSQHST,REMSQHS2,REMSQHS3,
$ .5+REMSQH1L+REMSQHSL, .5+REMSQH1T+REMSQHST,REMSQH2P,
$ .5+REMSQH1L+.5*REMSQH1T+REMSQHSL+REMSQHST+REMSQH2P
IF (ICHARGE .EQ. O) THEN
WRITE (15,913) REMSQHO+.5+REMSQH1L+.5*REMSQH1T-4.0DO
ELSEIF (ICHARGE .EQ. -1) THEN
WRITE (165,914) REMSQHO+.5+REMSQHiL+.5*REMSQH1T-1.0DO

ENDIF

WRITE (16,915)
$ REMSQHO+REMSQHiL+REMSQH1T+REMSQH2P+REMSQHSL+REMSQHST,
$ REMSQHO+REMSQH1L+REMSQH1T+REMSQH2P+REMSQH2F

+REMSQHSL+REMSQHST+REMSQHS2,

$ REMSQHO+REMSQH1L+REMSQH1T+REMSQH2P+REMSQH2F

»

910 FORMAT ('

911

L& X KN 4 GDODPAVLALLLOLOLLSH

912 FORMAT (’

L B K X _J

+REMSQHSL+REMSQHST+REMSQHS3

INPUT (MASSES ARE IN UNITS OF ELECMASS):'/

KPLUSTOT ICHARGE
ALPHAG =’ Fi1
ALAMBDA =’ Fi1
ALPERP =’ F11.

EPSILON =’,F11.
PHOTMASS =’ ,Fi1
RPHOMASS =’ ,Fi1
FERMMASS =’ ,Fi1
RFERMASS =’ ,F11
VAR PARAMETERS =
# OF FOCK STATES
# OF FOCK STATES
CPU TIME TO FIND
CPU TIME TO WORK
CPU TIME TO FIND
CPU TIME TO FIND
CPU TIME TO FIND
CPU TIME TO FIND

TOTAL CPU TIME USED ="' ,F8.

CONTRIBUTION TO
L

IBC =’,3I4/

.4/
.4/

4,’*1/ELECMASS =’ ,F8.4,
*«BOHR (RPERP =',F8.4,°')'/
4/

.4/
.4/
.4/
.4/
" ,6F8.4/° */
VITH NO PHOTONS =',I9/
=, 19/" *)
FOCK STATES  =',F8.2,’ SEC'/

2
OUT VAR WF =’ F8.2,' SEC'/
HO MATRIX EL =’,F8.2,' SEC’'/
H1 MATRIX EL =*,F8.2,' SEC'/
H2 MATRIX EL =',F8.2,' SEC'/
HSELF MATRIX EL =’ ,F8.2,' SEC'/
2,' SEC'/’
M*x2 FROM HO =’ ,F15.10/

ONG VERTEX = HiIL =", F15.10/

TRANS VERTEX = HiT =',F15.10/

INSPHOT =" ,F15.10/
INSFERM =’ ,F16.10/

173

")



$ *  LONG PART OF 1 LOOP SE = SEF1L =’,F15.10/
$ * TRANS PART OF 1 LOOP SE = SEF1iT =',F15.10/
$ : N CHAINED INST SE = SEF2 =',F15.10/
$ : 2 CHAINED INST SE = SEF3 =’,F15.10/' '/
$ ’ LONG PHOT = .SH1L+SEF1iL =’ ,F15.10/
$ : TRANS PHOT = .S5HiT+SEF1T =’ ,F15.10/
$ : INST PHOT = INSPHOT =’,F15.10/
$ : PE = L+T+I PHOT =',F15.10)

913 FORMAT (° KE = HO+.5H1-4 =’ ,F15.10)

914 FORMAT (’ KE = HO+.5H1-1 =',F16.10)

915 FORMAT (° SUM+4 = HO+H1+INSPHOT+SEF1 =’ ,Fi5.10/°* '/
$ : SUM+4+INSFERM+SEF2 =',F1i5.10/
$ : SUM+4+INSFERM+SEF3 =’ ,F16.10)

c********tt#*

c ________________________________________________________

c DETERMINE FRACTION OF EIGENSTATE THAT CONSISTS OF

c VARIOUS DIFFERENT FOCK STATES.

c ________________________________________________________

c ________________________________________________________

c PRINTOUT FOR ICHARGE = 0. THE 2 FOCK STATES ANALYZED

c ARE 1 PAIR AND 0,1 PHOTONS.

c ________________________________________________________

IF (ICHARGE .EQ. O) THEN

c INTIALIZE AFOCK1,AFOCK2
AFOCK1 = 0.0DO
AFOCK2 = 0.0D0O

DO 20 ISTATE = 1,NSTATES
IF ((NPHOT(ISTATE) .EQ. O) .AND.

$ (NFERM(ISTATE) .EQ. 1)) THEN
AFOCK1 = AFOCK1 + REALWF (ISTATE)**2 + AIMWF (ISTATE)=*#2
ENDIF

IF ((NPHOT(ISTATE) .EQ. 1) .AND.

$ (NFERM(ISTATE) .EQ. 1)) THEN
AFOCK2 = AFOCK2 + REALWF(ISTATE)*#*2 + AIMWF (ISTATE)=**2
ENDIF
20 CONTINUE

CH***+++++*xxxDIAGNOSTICS: RESULTS FROM QEDVAR
WRITE (15,920) 100.+AFOCK1,100.+AFOCK2
920 FORMAT (* '/* */® '/' FOCK STATE DECOMPOSITION:’,

$ F6.2,’% 1 PAIR,0 PHOT',F6.2,'% 1 PAIR,1 PHOT')
Crkkkkkekkkkk

ENDIF
c ________________________________________________________
c PRINTOUT FOR ICHARGE = -1. THE 2 FOCK STATES ANALYZED
c ARE 1 FERMION AND 0,1 PHOTONS.
c ________________________________________________________

IF (ICHARGE .EQ. -1) THEN
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c INTIALIZE AFOCK1,AFOCK2
AFOCK1 = 0.0DO
AFOCK2 = 0.0DO

DO 30 ISTATE = 1,NSTATES
IF ((NPHOT(ISTATE) .EQ. O) .AND.

$ (NFERM(ISTATE) .EQ. 1)) THEN
AFOCK1 = AFOCK1 + REALWF (ISTATE)**2 + AIMWF (ISTATE)=*#*2
ENDIF
IF ((NPHOT(ISTATE) .EQ. 1) .AND.
$ (NFERM(ISTATE) .EQ. 1)) THEN
AFOCK2 = AFOCK2 + REALWF (ISTATE)**2 + AIMWF (ISTATE)**2
ENDIF

30 CONTINUE

Crx+**+xxxx+x+DIAGNOSTICS: RESULTS FROM QEDVAR
WRITE (15,930) 100.*AFOCK1,100.*AFOCK2
930 FORMAT (* */* */® */® FOCK STATE DECOMPOSITION:’,

$ F6.2,°% 1 FERM,0 PHOT’ ,F6.2,'% 1 FERM,1 PHOT')
CHaxkkexxtkEx

ENDIF
c ________________________________________________________
c DETERMINE STRUCTURE FUNCTIONS (PROBABILITY OF

c FINDING FERMION WITH PLUS MOMENTUM FRACTION X).

c FIGURE OUT WHAT VALUES OF FERMION KPLUS TO RUN OVER
KBIG = O
DO 40 ISTATE = 1,NSTATES
K = KFERM(ISTATE)
IF (K .GT. KBIG) KBIG = K
40 CONTINUE
KSMALL = KPLUSTOT
DO 41 ISTATE = 1,NSTATES
K = KFERM(ISTATE)
IF (K .LT. KSMALL) KSMALL = K
41  CONTINUE

c INITIALIZE STRUCTURE FUNCTION (WAVEFCN) TO ZERO
DO 42 KPLUS = KSMALL,KBIG,2
WAVEFCN (KPLUS) = 0.0DO
42 CONTINUE

c LOOP OVER FOCK STATE COMPONENTS
DO 43 ISTATE = 1,NSTATES
WAVEFCN (KFERM (ISTATE))
$ = WAVEFCN(KFERM(ISTATE))
$ + REALWF(ISTATE)*#*2 + AIMWF (ISTATE)=*#2
43  CONTINUE

Crx**x+xx+xxxDIAGNOSTICS: RESULTS FROM QEDVAR

c NOTE: IMAGEN PRINTS UP TO 80 CHARACTERS ACROSS.
c NEED TO DECLARE LRECL 84 IN FILEDEF TO DO SO.
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WRITE (15,940)
$ (INT(.5+10000.0*(DFLOAT(KPLUS) /DFLOAT (KPLUSTOT))),
$ KPLUS=KSMALL,KBIG,2)
940 FORMAT (* */* /' */
$' STRUCTURE FUNCTION:*/*® */
$’ NOTES: 1) VALUES SHOULD BE MULTIPLIED BY 1/10000 (*#*=10000)"'/
$ '/ X=",14(1X,14))
WRITE (15,941)
941 FORMAT (
‘v __________________________________________________________

WRITE (15,942)
$ (INT(.5+10000.0+WAVEFCN (KPLUS)) ,KPLUS=KSMALL,KBIG,2)
942 FORMAT (8X,14(1X,I4))

CHrkkaxxeeh®s

c ________________________________________________________

c PLOT WAVE FUNCTION.

c ________________________________________________________

c FIGURE OUT WHAT VALUES FOR FERMION KX TO RUN OVER
KXBIG = O

DO 50 ISTATE = 1,NSTATES

KX = KXFERM(ISTATE)

IF (KX .GT. KXBIG) KXBIG = KX
§0 CONTINUE

Cx*+*+xxx*x+++DTAGNOSTICS: RESULTS FROM QEDVAR
c NOTE: IMAGEN PRINTS UP TO 80 CHARACTERS ACROSS.
c NEED TO DECLARE LRECL 84 IN FILEDEF TO DO SO.
WRITE (15,950)
950 FORMAT (* */*' */
$' WAVE FUNCTION SQUARED AT KY=0:'/* °/
$' NOTES: 1) VALUES SHOULD BE MULTIPLIED BY 1/10000 (**%=10000)'/

$ 2) KX IS IN UNITS OF ELECTRON MASS'/® ')
Chkkkkkkkkkkk

c LOOP OVER VALUES OF KX
DO 63 KX = KXBIG,-KXBIG,-1

c INITIALIZE WAVE FUNCTION TO ZERO
DO 54 KPLUS = KSMALL,KBIG,2
WAVEFCN (KPLUS) = 0.0DO
54 CONTINUE

c LOOP OVER FOCK STATE COMPONENTS
DO 56 ISTATE = 1 ,NSTATES
IF ((KXFERM(ISTATE) .EQ. KX) .AND.

$ (KYFERM(ISTATE) .EQ. O) ) THEN
WAVEFCN (KFERM (ISTATE))
$ = WAVEFCN (KFERM(ISTATE))
$ + REALWF (ISTATE)*#2 + AIMWF (ISTATE)**2
ENDIF
56 CONTINUE

Craxxxxxx*x%xxxDIAGNOSTICS: RESULTS FROM QEDVAR
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WRITE (15,952) INT(10000.0+DFLOAT(KX)+*PI/ALPERP),
$ (INT(.5+10000.0*WAVEFCN (KPLUS) ) ,KPLUS=KSMALL,KBIG, 2)
952 FORMAT (1X,16,° [’,14(1X,I4))
C************

63  CONTINUE

Cxk4xk+++++2%DIAGNOSTICS: RESULTS FROM QEDVAR
WRITE (15,956)
$ (INT(.5+10000.0*(DFLOAT(KPLUS)/DFLOAT(KPLUSTOT))),
$ KPLUS=KSMALL,KBIG,2)
956 FORMAT (
$’ J o o o

$ KX Xx’,14(1X,I4))
c*t**********

RETURN
END
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COULOMBI

c _________________________________________________________
c THIS ROUTINE HANDLES INPUT, VARIABLE PARMETERS FOR COULOMB.
c IT GENERATES INPUT FILES FOR THE ROUTINE COULOMB.
c INPUT PARAMETERS ARE READ FROM THE FILE COULOMB DATA.
c MASSES ARE IN UNITS OF ELECMASS.
c LENGTHS ARE IN UNITS OF 1/ELECMASS.
c
c IBC = 1 MEANS KEEP ONLY ODD FERMION KPLUS
c = 2 MEANS KEEP ONLY EVEN FERMION KPLUS
c
c FERMIONS ASSUMED TO HAVE CHARGE -1.
c
c CODES HAVE BEEN VECTORIZED ON AN IBM 3090 FORTRAN COMPILER.
c _________________________________________________________
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
IMPLICIT INTEGER (I-N)
c _________________________________________________________
c OPEN FILES.
c _________________________________________________________
OPEN (UNIT=13,FILE='qed.data’,STATUS='UNKNOWN')
OPEN (UNIT=20,FILE='file20.file’,STATUS='UNKNOWN')
PI = 3.141592653589793D0
c _________________________________________________________
c READ INPUT DATA.
c NOTE: COVARIANT CUT-OFF SCHEME PRESENTLY ASSUMES KXTOT,KYTOT = O.
c CAN GET OTHER VALUES FOR KXTOT,KYTOT BY BOOSTING
c (SEE NOTES ON BOUND STATES).
c NASSES ARE IN UNITS OF ELECMASS.
c LENGTHS ARE IN UNITS OF 1/ELECMASS.
c _________________________________________________________

READ (13,*) KPLUSBEG
READ (13,#*) KPLUSEND
READ (13,#%) KXTOT
READ (13,#) KYTOT
READ (13,*) ICHARGE
READ (13,*) IBC

READ (13,*) ALPHAG
READ (13,#*) ALAMBBEG
READ (13,%) ALAMBEND
READ (13,s) ALPERBEG
READ (13,#*) ALPEREND
READ (13,s) EPSILBEG
READ (13,*) EPSILEND
READ (13,*) PARA1
READ (13,#%) PARA2
READ (13,*) PARA3
READ (13,#%) PARA4
READ (13,%) PARAS
READ (13,+) PHOTMASS
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READ (13,+) RPHOMASS
READ (13,*) FERMMASS
READ (13,*) RFERMASS
READ (13,#) IUVFERM
READ (13,*) IPRIWF

READ (13,%) IPRIOUT

IF (ICHARGE .NE. 0) THEN
WRITE (6,919)
919 FORMAT (* MSG FROM COULOMBI: ICHARGE MUST BE 0.°')
STOP
ENDIF

IF (KPLUSBEG .LE. 0) THEN
WRITE (6,920)
920 FORMAT (® MSG FROM COULOMBI: KPLUSBEG MUST BE .GT. 0')
STOP
ENDIF

IF (KPLUSEND .LE. 0) THEN
WRITE (6,921)
921 FORMAT (* MSG FROM COULOMBI: KPLUSEND MUST BE .GT. 0')
STOP
ENDIF

IF ((IBC .NE. 1) .AND.
$ (IBC .NE. 2)) THEN
WRITE (6,922)
922 FORMAT (* MSG FROM COULOMBI: IBC MUST BE 1 OR 2°)
STOP
ENDIF

IF ((IBC .EQ. 2) .AND. (MOD(KPLUSBEG,2) .EQ. 1)) THEN
WRITE (6,924)
924 FORMAT(® MSGC FROM COULOMBI: KPLUSBEG MUST BE EVEN IF IBC
STOP
ENDIF

IF ((IBC .EQ. 2) .AND. (MOD(XPLUSEND,2) .EQ. 1)) THEN
VYRITE (6,925)
925 FORMAT(® MSG FROM COULOMBI: KPLUSEND MUST BE EVEN IF IBC
STOP
ENDIF

IF ((ICHARGE .EQ. 0) .AND. (MOD(KPLUSBEG,2) .EQ. 1)) THEN
WRITE (6,926)
926 FORMAT (° MSG FROM COULOMBI:’,
$ * KPLUSBEG MUST BE EVEN IF ICHARGE = 0’)
STOP
ENDIF

IF ((ICHARGE .EQ. 0) .AND. (MOD(KPLUSEND,2) .EQ. 1)) THEN
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WRITE (6,927)
927 FORMAT (° MSG FROM COULOMBI:',
$ * KPLUSEND MUST BE EVEN IF ICHARGE = 0°)
STOP
ENDIF

IF ((KXTOT .NE. 0) .OR.
$ (KYTOT .NE. 0)) THEN
WRITE (6,930)

930 FORMAT (* MSG FROM COULOMBI: KXTOT AND KYTOT MUST BE'/

$ * EQUAL TO ZERO. OTHER VALUES CAN BE OBTAINED'/
$ * BY LORENTZ BOOSTING.®)

STOP

ENDIF

IF (EPSILON .LT. 0.0DO) THEN
WRITE (6,931)
931 FORMAT (’ MSG FROM COULOMBI: EPSIOON MUST BE .GE. 0.0D0')
STOP
ENDIF

IF ((IUVFERM .NE. 0) .AND. (IUVFERM .NE. 1)) THEN
WRITE (6,932)
932 FORMAT (* MSG FROM COULOMBI: IUVFERM MUST BE O OR 1°)
STOP
ENDIF

WRITE (20,954) KPLUSBEG,KPLUSEND,KXTOT,KYTOT, ICHARGE, IBC
WRITE (20,955) ALPHAG
WRITE (20,955) ALAMBBEG,ALAMBEND
WRITE (20,955) ALPERBEG,ALPEREND
WRITE (20,955) EPSILBEG,EPSILEND
WRITE (20,955) PARA1
WRITE (20,955) PARA2
WRITE (20,956) PARA3
WRITE (20,955) PARA4
WRITE (20,955) PARAS
WRITE (20,955) PHOTMASS
WRITE (20,955) RPHOMASS
WRITE (20,955) FERMMASS
WRITE (20,955) RFERMASS
WRITE (20,954) IUVFERM,IPRIWF,IPRIOUT
954 FORMAT (618)
955 FORMAT (2D30.22)

STOP
END
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c _________________________________________________________
c THIS ROUTINE EVALUATES THE HAMILTONIAN MATRIX BETWEEN
c VARTATIONAL STATES.
c
C P_MINUS IS DEFINED TO BE L/PI+HAMILTONIAN.
c
c MASSES ARE IN UNITS OF ELECMASS.
c LENGTHS ARE IN UNITS OF 1/ELECMASS.
c
c FERMIONS ASSUMED TO HAVE CHARGE -1.
c _________________________________________________________
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
IMPLICIT INTEGER (I-N)
DIMENSION REALWF(222222),
$ KFERM(222222) ,KXFERM(222222) ,KYFERM (222222)
c _________________________________________________________
c FOLLOWING ARRAY NEEDED IN SUBROUTINE PRINTC.
c _________________________________________________________
DIMENSION WAVEFCN(4444)
LOGICAL TOOMANY
c _________________________________________________________
c OPEN FILES
c _________________________________________________________
OPEN (UNIT=14,FILE='statesc.output’,STATUS='UNKNOWN')
OPEN (UNIT=15,FILE='coulomb.output’,STATUS="UNKNOWN')
OPEN (UNIT=16,FILE='coulomb.diagnose’,STATUS="UNKNOWN')
OPEN (UNIT=20,FILE='file20.file’,STATUS="UNKNOWN')
OPEN (UNIT=24,FILE='ke.file',STATUS='UNKNOWN’)
OPEN (UNIT=25,FILE='pe.file’,STATUS='UNKNOWN')
OPEN (UNIT=26,FILE='energy.file’,STATUS='UNKNOWN®)
c _________________________________________________________
c DIM(REALWF ,KFERM,...) = NSIZE. NSIZE SHOULD BE CHOSEN
c .GE. THE NUMBER OF FOCK STATES (NSTATES).
¢ DIM(WAVEFCN) = KPLUSMAX. KPLUSMAX SHOULD BE CHOSEN
c .GE. KPLUSTOT.
c _________________________________________________________

NSIZE = 222222

KPLUSMAX = 4444

IF (KPLUSEND .GT. KPLUSMAX) THEN
VRITE (15,900) KPLUSMAX

900 FORMAT(® KPLUSTOT .GT. KPLUSMAX =',I5/

$ * RE-COMPILE QEDVAR WITH LARGER VALUE OF KPLUSMAX.’)
STOP

ENDIF

PI = 3.141592653589793D0
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READ (20,904) KPLUSBEG,KPLUSEND,KXTOT,KYTOT,ICHARGE, IBC
READ (20,905) ALPHAG
READ (20,905) ALAMBBEG,ALAMBEND
READ (20,905) ALPERBEG,ALPEREND
READ (20,905) EPSILBEG,EPSILEND
READ (20,905) PARA1
READ (20,905) PARA2
READ (20,905) PARA3
READ (20,905) PARA4
READ (20,905) PARAS
READ (20,905) PHOTMASS
READ (20,905) RPHOMASS
READ (20,905) FERMMASS
READ (20,905) RFERMASS
READ (20,904) IUVFERM,IPRIWF,IPRIOUT
904 FORMAT (6I8)
905 FORMAT (2D30.22)

WRITE (24,914) ALPHAG
914 FORMAT (' ALPHAG =’,F9.4/
$ °® KPLUSTOT ALAMBDA ALPERP EPSILON KE
s D e e o e e e e o e o e e
WRITE (25,915) ALPHAG
915 FORMAT (* ALPHAG =',F9.4/
$ ' KPLUSTOT ALAMBDA ALPERP EPSILON PE
s Y e e e e - = = = =~ ————
WRITE (26,916) ALPHAG
916 FORMAT (° ALPHAG =',F9.4/
$ ' KPLUSTOT ALAMBDA ALPERP EPSILON ENERGY
$

DO 100 KPLUSTOT = KPLUSBEG,KPLUSEND,8
DO 100 ALAMBDA = ALAMBBEG,ALAMBEND, .05
DO 100 ALPERP = ALPERBEG,ALPEREND, 4.0
DO 100 EPSILON = EPSILBEG,EPSILEND, .01

CALL VTTIME(IVIRTIME,ITOTTIME)
START = DFLOAT(ITOTTIME)/100.0DO

CALL SUBROUTINE STATESC TO GENERATE STATES CONSISTENT
WITH K, ALPERP, ALAMBDA.
CALL STATESC(NSIZE,KPLUSTOT,IBC,
ALAMBDA , ALPERP,
RFERMASS,
NSTATES, TOOMANY,
KFERM, KXFERM, KYFERM)
IF (TOOMANY) THEN

”» N
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WRITE (15,918) NSIZE
918 FORMAT (' NUMBER OF STATES GENERATED BY SUBROUTINE’,

$ * STATESC .GT. NSIZE =’,I5/
$ * RE-COMPILE COULOMB WITH LARGER VALUE OF NSIZE®)
STOP
ENDIF
CALL VTTIME(IVIRTIME,ITOTTIME)
TIME1 = DFLOAT(ITOTTIME)/100.0DO-START
c _________________________________________________________
c CALL SUBROUTINE WF TO WORK OUT VARIATIONAL WAVE-FUNCTION.
c _________________________________________________________
CALL WF(REALWF,NSIZE,NSTATES,
$ ALPHAG,KPLUSTOT, ALPERP,
$ FERMMASS,
$ PARA1,PARA2,PARA3,PARA4,PARAS,
$ KFERM, KXFERM, KYFERM)

Crxxxk*+xx%*x%x*DIAGNOSTICS: PRINT OUT RESULTS FROM WF
RPERP = ALAMBDA*ALPERP/PI
XALPERP = ALPERP#ALPHAG

WRITE (14,920) KPLUSTOT,ICHARGE,IBC,

$ ALPHAG, ALAMBDA , ALPERP , XALPERP , RPERP ,EPSILON , PHOTMASS , RPHOMASS,,

$ FERMMASS , RFERMASS, NSTATES
920 FORMAT (* INPUT (MASSES ARE IN UNITS OF ELECMASS):’'/

$ * KPLUSTOT ICHARGE IBC =*,3I4/

$ * ALPHAG =',F11.4/

$ * ALAMBDA =’ F11.4/

$ * ALPERP =',F11.4,'*1/ELECMASS =',F8.4,

$ *«BOHR (RPERP =',F8.4,')'/

$ * EPSILON =',F11.4/

$ * PHOTMASS =',F11.4/

$ * RPHOMASS =',F11.4/

$ ' FERMMASS =’ ,F11.4/

$ ' RFERMASS =',F11.4/' '/

$ * # OF FOCK STATES =’ 19)

IF (IPRIWF .EQ. 1) THEN
WRITE (14,921)

921 FORMAT (* '/

$ ' STATE | FERMION | REALWF '/

$ | K+ KX KXY | '/

$§ e ")

DO 20 ISTATE=1,NSTATES
WRITE (14,925) ISTATE,

$ KFERM(ISTATE) ,KXFERM (ISTATE) ,KYFERM (ISTATE) ,REALWF (ISTATE)
925 FORMAT (I6,3X,I3,1X,I3,1X,I3,4X,FT.4)
20 CONTINUE

ENDIF

C************

CALL VTTIME(IVIRTIME,ITOTTIME)
TIME2 = DFLOAT(ITOTTIME)/100.0DO-START-TIME1
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CALL SUBROUTINES KE, PE
TO FIND HAMILTONIAN MATRIX ELEMENT.
CALL KE(REMSQHO,NSIZE,NSTATES,REALVF,
KPLUSTOT, ALPERP , FERMMASS,
KFERM, KXFERM, KYFERM)

“» &N

CALL VTTIME(IVIRTIME,ITOTTIME)
TIME3 = DFLOAT(ITOTTIME)/100.0DO-START-TIME1-TIME2

CALL PE(REMSQH2, IUVFERM,
NSIZE,NSTATES,REALVWF,
ALPHAG ,KPLUSTOT, ALAMBDA , ALPERP ,EPSILON,
PHOTMASS ,FERMMASS , RPHOMASS , RFERMASS,
KFERM, KXFERM, KYFERM)

“» e

CALL VTTIME(IVIRTIME,ITOTTIME)
TIME4 = DFLOAT(ITOTTIME)/100.0DO-START-TIME1-TIME2-TIME3-TIME4

REMSQHO = DFLOAT(KPLUSTOT) *REMSQHO
REMSQH2 = DFLOAT(KPLUSTOT)*REMSQH2

IF (IPRIOUT .EQ. 1)
CALL PRINTC(WAVEFCN,TIME1,TIME2,TIME3, TIME4,

KPLUSTOT, ICHARGE, IBC,NSTATES,NSIZE,
KPLUSMAX, ALPHAG , ALAMBDA , ALPERP ,EPSILON,
PARA1 ,PARA2,PARA3 ,PARA4 ,PARAL,
PHOTMASS ,RPHOMASS , FERMMASS , RFERMASS,
REMSQHO , REMSQH2,
REALVWF,
KFERM, KXFERM, KYFERM)

L R B KR

WRITE (24,930) KPLUSTOT,ALAMBDA,ALPERP,EPSILON,REMSQHO-4.0DO
WRITE (25,930) KPLUSTOT,ALAMBDA,ALPERP,EPSILON,REMSQH2
WRITE (26,930) KPLUSTOT,ALAMBDA,ALPERP,EPSILON,
$ REMSQHO+REMSQH2-4.0DO
930 FORMAT (3X,I4,2X,3F11.4,F15.10)

100 CONTINUE

sTOP
END

SUBROUTINE STATESC(NSIZE,KPLUSTOT, IBC,
$ ALAMBDA , ALPERP,

$ RFERMASS,

$ NSTATES, TOOMANY,

$ KFERM, KXFERM, KYFERNM)
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THIS SUBROUTINE GENERATES THE FOCK STATES CONSISTENT WITH
KPLUSTOT, ALAMBDA, ALPERP.

FOR Q=-1 ONLY KEEP STATES WITH 1 FERMION AND O PHOTONS.
FOR Q=0 ONLY KEEP STATES WITH 1 FERMION PAIR AND O PHOTONS.

OUTPUT VARIABLES:
NSTATES NUMBER OF FOCK STATES.

TOOMANY  LOGICAL VARIABLE. TOOMANY=TRUE IF NSTATES .GT. NSIZE.
TOOMANY=FALSE IF NSTATES .LE. NSIZE.

KFERM, KPLUS, KX, KY OF FERMION IN THE FOCK STATES.
KXFERM, ARRAYS OF DIMENSION NSIZE.
KYFERM,

INPUT VARIABLES:

NSIZE ARRAY DIMENSION OF NPHOT, NFERM,... AS DEFINED IN
CALLING ROUTINE. IT SHOULD BE GREATER THAN OR EQUAL
TO NSTATES.

KPLUSTOT TOTAL KPLUS OF INCOMING, OUTGOING STATES.

IBC ONLY HAVE EVEN FERMION KPLUS IF IBC=2,
ODD FERMION KPLUS IF IBC=1.

ALAMBDA  VALUE OF CUT-OFF MASS.
ALPERP SIZE OF KPERP GRID.

RFERMASS FERMION MASS TO BE USED IN COVARIANT CUT-OFF.

USAGE NOTES:

1) THIS ROUTINE ASSUMES THAT THE TOTAL KPERP OF THE INCOMING
AND OUTGOING FOCK STATES IS ZERD. THIS IS NECESSARY IN THE
CALCULATION OF INVARIANT MASSES.

2) FOCK STATES ARE GENERATED WITH KPERP=0.

3) FERMION CHARGE IS ASSUMED TO BE -1.

4) MASSES ARE IN UNITS OF ELECMASS.

LENGTHS ARE IN UNITS OF 1/ELECMASS.

5) REAL VARIABLES ARE DEFINED TO BE REAL*8 (DOUBLE PRECISION).

IMPLICIT DOUBLE PRECISION (A-H,0-2)

IMPLICIT INTEGER (I-N)

DIMENSION

$ KFERM(NSIZE) ,KXFERM(NSIZE) ,KYFERM(NSIZE)

LOGICAL TOOMANY

PI = 3.141592663589793D0C
SMALL = 1.0D-13



c INITIALIZE VARIOUS ARRAYS TO ZERO.

DO 10 I = 1,NSIZE
KFERM(I) = O
KXFERM(I) = O
KYFERM(I) = ©

10  CONTINUE

TOOMANY = .FALSE.

c _________________________________________________________

c GENERATE STATES WITH 1 FERMION PAIR, O PHOTONS (ICHARGE=0).
c RECALL THAT KPLUSTOT MUST BE EVEN FOR ICHARGE = 0.

c _________________________________________________________

ISTATE = O

Cxkxxxxxx*x*%xDIAGNOSTICS

C WRITE (16,920) ALAMBDA+*2

€920 FORMAT (* °'/' 1 PAIR STATES LAMBDA**2 =’ F8.3/
c $' KPLUSF KPLUSA KXF KYF KXA KYA INVMASS’/

I R ')

Chkkkkkbkkkkk

c FIGURE OUT WHAT VALUES OF FERMION KPLUS TO RUN OVER.
IF (IBC .EQ. 1) THEN
IFIRSTKF = 1
ILASTKF = KPLUSTOT - 1
ELSEIF (IBC .EQ. 2) THEN

IFIRSTKF = 2
ILASTKF = KPLUSTOT - 2
ENDIF

DO 20 KPLUSF=IFIRSTKF,ILASTKF,2
KPLUSA = KPLUSTOT-KPLUSF
XF = DFLOAT(KPLUSF)/DFLOAT (KPLUSTOT)
XA = DFLOAT(KPLUSA)/DFLODAT (KPLUSTOT)

c ONLY CONTINUE IF SUM(MASS*#*2/X) .LE. LAMBDA#*#2.
AINVMASS = RFERMASS#+2/XF + RFERMASS**2/XA

Cx***xxxx+xxx*xDTAGNOSTICS

c WRITE (16,921) KPLUSF,KPLUSA,KAINVMASS
C921 FORMAT (3X,I4,3X,14,21X,F8.3)
Chexkerehtirs

IF (AINVMASS .GT. ALAMBDA**2+SMALL) GOTO 20

c FIGURE OUT WHAT LARGEST ALLOWED FERMION KX, KY IS.
ARGUMENT = ALAMBDA##*2#XF*XA - RFERMASS#*2
IF (ARGUMENT .LT. SMALL) THEN
KPFMAX = 0
ELSE
KPFMAX = INT(ALPERP/PI*DSQRT(ARGUMENT) + SMALL)
ENDIF
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DO 22 KXF=-KPFMAX,KPFMAX
DO 22 KYF=-KPFMAX,KPFMAX
KXA = -KXF
KYA = -KYF
AKPFSQ = (PI/ALPERP)=*#2+(DFLOAT(KXF#*+2) + DFLOAT(KYF+**2))

C KEEP STATE IF INVMASS#**2 .LE. LAMBDA#*#*2.
AINVMASS = (AKPFSQ + RFERMASS#*%2)/XF
$ + (AKPFSQ + RFERMASS##2)/XA
C*x*xxxx*xxx*x*DITAGNOSTICS
C WRITE (16,922) KXF,KYF,KXA,KYA,AINVMASS
€922 FORMAT (15X,I4,1X,I4,1X,14,1X,14,1X,F8.3)
CHkkkkkkEXEEX

IF (AINVMASS .GT. ALAMBDA#*2+8MALL) GOTO 22

ISTATE = ISTATE + 1
IF (ISTATE .GT. NSIZE) THEN
TOOMANY = .TRUE.
RETURN
ENDIF
KFERM(ISTATE) = KPLUSF
KXFERM(ISTATE) = KXF
KYFERM(ISTATE) = KYF
22 CONTINUE
20 CONTINUE

NSTATES = ISTATE
RETURN
END

SUBROUTINE WF(REALWF,NSIZE,NSTATES,
$ ALPHAG,KPLUSTOT, ALPERP,
$ FERMMASS,
$ PARA1,PARA2,PARA3,PARA4,PARAS,
$ KFERM, KXFERM, KYFERM)

[ ettt L

c THIS ROUTINE RETURNS THE VARIATIONAL WAVE FUNCTION

c FOR THE INPUTTED FOCK STATES.

c

c

c OUTPUT VARIABLES:

c REALWF REAL PART OF NORMALIZED FOCK STATE WAVE FUNCTIONS.
c

c

c INPUT VARIABLES:

c NSIZE ARRAY DIMENSION OF NPHOT, NFERM,... AS DEFINED IN
c CALLING ROUTINE. IT SHOULD BE GREATER THAN OR EQUAL
c TO NSTATES.

c

c NSTATES NUMBER OF FOCK STATES.

c

c ALPHAG VALUE OF COUPLING CONSTANT (=G*%2/4PI).
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KPLUSTOT TOTAL KPLUS OF INCOMING, OUTGOING STATES.
ALPERP SIZE OF KPERP GRID.
FERMMASS FERMION MASS IN LAGRANGIAN.

PARA1,
PARA2, VARIATIONAL PARAMETERS (PARA4, PARAS NOT USED).
PARA3,
PARA4,
PARAB

KFERM, KPLUS, KX, KY OF FERMION IN THE FOCK STATES.
KXFERM, ARRAYS OF DIMENSION NSIZE.
KYFERM,

USAGE NOTES:
1) FERMION CHARGE IS ASSUMED TO BE -1.
2) MASSES ARE IN UNITS OF ELECMASS.
LENGTHS ARE IN UNITS OF 1/ELECMASS.
3) REAL VARIABLES ARE DEFINED TO BE REAL#8 (DOUBLE PRECISION).

IMPLICIT DOUBLE PRECISION (A-H,0-2)
IMPLICIT INTEGER (I-N)

DIMENSION REALWF (NSIZE),
$ KFERM(NSIZE) ,KXFERM(NSIZE) ,KYFERM(NSIZE)

PI = 3.14156926563589793D0

PERPFACT = PI#*#2/ALPERP#*#*2

AMSQARED = FERMMASS#*#2#(2.0D0 - .25+ALPHAG#*#2)*#2
AMSQARED = FERMMASS#**2

$ *(2.0D0 + .5DO*(DSQRT(1.0D0O ~ ALPHAG**2) - 1.0D0))*#2

DO 50 ISTATE = 1,NSTATES
REALWF (ISTATE) = 0.0DO
CONTINUE

DO 100 ISTATE = 1,NSTATES
AKPERPSQ = PERPFACT*( DFLOAT(KXFERM(ISTATE))*#2
$ +DFLOAT (KYFERM (ISTATE) ) #*2)
X = DFLOAT{KFERM(ISTATE))/DFLOAT (KPLUSTOT)

REALVWF (ISTATE) = +1.0D0/

$ (( PARA1*AMSQARED
$ - (AKPERPSQ+PARA2+FERMMASS*#*2) / (X*(1.0D0O-X) ) ) **2) *+PARA3
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100 CONTINUE

WFNORM = 0.0DO

DO 300 ISTATE = 1,NSTATES

WFNORM = WFNORM + REALWF (ISTATE)*#*2
300 CONTINUE

WFNORM = DSQRT (WFNORM)

DO 301 ISTATE = 1 ,NSTATES

REALWF (ISTATE) = REALWF (ISTATE)/WFNORM

301 CONTINUE

RETURN
END

SUBROUTINE KE(REMSQHO,NSIZE,NSTATES,REALVWF,
KPLUSTOT, ALPERP , FERMMASS,
KFERM, KXFERM, KYFERM)
THIS ROUTINE RETURNS THE VALUE OF THE HAMILTONIAN
BETWEEN THE INPUTTED VARIATIONAL STATES.

» o

OUTPUT VARIABLES:
REMSQHO  CONTRIBUTION TO MATRIX ELEMENT FROM HO.

INPUT VARIABLES:

NSIZE ARRAY DIMENSION OF NPHOT, NFERM,... AS DEFINED IN
CALLING ROUTINE. IT SHOULD BE GREATER THAN OR EQUAL
TO NSTATES.

NSTATES NUMBER OF FOCK STATES.

REALWF REAL PART OF FOCK STATE WAVE FUNCTIONS.
ALPERP SIZE OF KPERP GRID.

FERMMASS FERMION MASS IN LAGRANGIAN.

KFERM, KPLUS, KX, KY OF FERMION IN THE FOCK STATES.
KXFERM,  ARRAYS OF DIMENSION NSIZE.
KYFERM

USAGE NOTES:
1) NASSES ARE IN UNITS OF ELECMASS.
LENGTHS ARE IN UNITS OF 1/ELECMASS.
2) REAL VARIABLES ARE DEFINED TO BE REAL*8 (DOUBLE PRECISION).
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
IMPLICIT INTEGER (I-N)
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DIMENSION REALWF(NSIZE),
$ KFERM(NSIZE) ,KXFERM(NSIZE) ,KYFERM(NSIZE)

PI = 3.141592653589793D0
PERPFACT = PI+*2/ALPERP**2

c _________________________________________________________
c INITIALIZE TO ZERO.
c _________________________________________________________
REMSQHO = 0.0DO
c _________________________________________________________
c LOOP OVER DIAGONAL MATRIX ELEMENTS.
c _________________________________________________________
DO 10 ISTATE = 1,NSTATES
IF (REAL¥F(ISTATE) .NE. 0.0DO) THEN
c INITIALIZE TO ZERO.

REALHO = 0.0DO

AKPERPSQ = PERPFACT*DFLOAT (KXFERM(ISTATE) **2+KYFERM (ISTATE) *+2)
KAFER = KPLUSTOT - KFERM(ISTATE)
REALHO = REALHO + (FERMMASS**2 + AKPERPSQ)

$ *(1.0DO/DFLOAT (KFERM(ISTATE)) + 1.0DO/DFLOAT(KAFER))

Cx*+*x*x*x*x*x%**xx*DIAGNOSTICS
C WRITE (16,910) ISTATE,REALHO
€910 FORMAT (° ISTATE REALHO =',I7,F11.4)

Chkkkkkkkkkkk

REMSQHO = REMSQHO
$  +REALHO*REALVF (ISTATE) **2

c FINISHED WITH THIS FOCK STATE. GO TO NEXT FOCK STATE.
ENDIF
10 CONTINUE

RETURN
END

SUBROUTINE PE(REMSQH2, IUVFERM,

$ NSIZE,NSTATES,REALVF,

$ ALPHAG,KPLUSTOT, ALAMBDA , ALPERP ,EPSILON,
$ PHOTMASS ,FERMMASS , RPHOMASS , RFERMASS,

$ KFERM,KXFERM, KYFERM)

c _________________________________________________________

c THIS ROUTINE RETURNS THE VALUE OF THE HAMILTONIAN

c BETWEEN THE INPUTTED VARIATIONAL STATES.

c

c

c OUTPUT VARIABLES:

c RENSQH2  CONTRIBUTION TO MATRIX ELEMENT FROM INST. PHOTON.
c
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INPUT VARIABLES:
IUVFERM UV CUT-OFF APPLIED TO FERMIONS, ANTI-FERMIONS ONLY.

NSIZE ARRAY DIMENSION OF NPHOT, NFERM,... AS DEFINED IN
CALLING ROUTINE. IT SHOULD BE GREATER THAN OR EQUAL
TO NSTATES.

NSTATES NUMBER OF FOCK STATES.

REALVWF REAL PART OF FOCK STATE WAVE FUNCTIONS.

ALPHAG VALUE OF COUPLING CONSTANT (=G**2/4PI).

KPLUSTOT TOTAL KPLUS OF INCOMING, OUTGOING STATES.

ALAMBDA  VALUE OF CUT-OFF MASS.

ALPERP SIZE OF KPERP GRID.

EPSILON  MINIMUM PHOTON INVMASS#*#2.

PHOTMASS PHOTON MASS IN LAGRANGIAN.

FERMMASS FERMION MASS IN LAGRANGIAN.

RPHOMASS PHOTON MASS TO BE USED IN COVARIANT CUT-OFF.

RFERMASS FERNION MASS TO BE USED IN COVARIANT CUT-OFF.

KFERMN, KPLUS, KX, KY OF FERMION IN THE FOCK STATES.

KXFERM, ARRAYS OF DIMENSION NSIZE.
KYFERM

USAGE NOTES:

1) THIS ROUTINE ASSUMES THAT THE TOTAL KPERP OF THE INCOMING
AND OUTGOING FOCK STATES IS ZERO. THIS IS NECESSARY IN THE
CALCULATION OF INVARIANT MASSES.

2) FERMION CHARGE IS ASSUMED TO BE -1.

3) MASSES ARE IN UNITS OF ELECMASS.

LENGTHS ARE IN UNITS OF 1/ELECMASS.
4) REAL VARIABLES ARE DEFINED TO BE REAL*8 (DOUBLE PRECISION).

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
IMPLICIT INTEGER (I-N)

DIMENSION REALVWF (NSIZE),
$ KFERM(NSIZE) ,KXFERM(NSIZE) ,KYFERM(NSIZE)

SMALL = 1.0D-13

PI = 3.141592653589793D0
PERPFACT = (PI/ALPERP)=**2
PPLUS = 2.0DO*FERMMASS
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DO 20 IOUTSTAT = 1,NSTATES
IF (REALVWF (IOUTSTAT) .EQ. 0.0D0) GOTO 20

LOOP OVER INCOMING FOCK STATES WITH O PHOTONS.
ASSUME HAMILTONIAN IS HERMITIAN, 80 ONLY NEED TO CONSIDER
IOUTSTAT .GE. INSTATE.
DO 30 INSTATE = 1,IOUTSTAT
IF (REALWF(INSTATE) .EQ. 0.0D0O) GOTO 30

INITIALIZE TO ZERO.
REALH2 = 0.0DO

KFERMI = KFERM(INSTATE)

KXFERMI = KXFERM{INSTATE)

KYFERMI = KYFERM(INSTATE)

KAFERI = KPLUSTOT - KFERM(INSTATE)
KXAFERI = -KXFERM(INSTATE)

KYAFERI = -KYFERM(INSTATE)

KFERMO = KFERM(IOUTSTAT)

KXFERMO = KXFERM(IOQUTSTAT)

KYFERMO = KYFERM(IOUTSTAT)

KAFERO = XPLUSTOT - KFERM(IOUTSTAT)
KXAFERO = -KXFERM(IOUTSTAT)
KYAFERO = -KYFERM(IOUTSTAT)

AKPERPSQ = PERPFACT*DFLOAT (KXFERMI**2 + KYFERMI**2)
ALPERPSQ = PERPFACT*DFLOAT (KXFERMO**2 + KYFERMO*#*2)
X = DFLOAT(KFERMI)/DFLOAT (KPLUSTOT)
Y = DFLOAT (KFERMO) /DFLOAT (KPLUSTOT)

IQX = KXFERMI - KXFERMO

IQY = KYFERMI - KYFERMO
QPERPSQ = PERPFACT*DFLOAT (IQX*+2 + IQY#%2)

NO MATRIX ELEMENT IF KFERMI = KFERMO.
IF (KFERMI .EQ. KFERMO) GOTO 30

IF (X .GT. Y) THEN

CHECK IF INVMASS*#*2 OF INTERMEDIATE STATE IS
.LE. LAMBDA#*x2.
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IF (IUVFERN .EQ. 0) THEN
IF (( (ALPERPSQ + RFERMASS*#2)/Y
+(AKPERPSQ + RFERMASS**2)/(1-X)
+(QPERPSQ + RPHOMASS#*#2)/(X-Y))
.GT. ALAMBDA#**2 + SMALL) GOTO 30
ENDIF
IF (IUVFERM .EQ. 1) THEN
IF (( (ALPERPSQ + RFERMASS#*#*2)/Y
+(AKPERPSQ + RFERMASS**2)/(1-X))
.GT. ALAMBDA**2 + SMALL) GOTO 30
ENDIF

QPLUS = (X-Y)*PPLUS

QMINUS = (AKPERPSQ + FERMMASS#*x2)/(X*PPLUS)
- (ALPERPSQ + FERMMASS#**2)/(Y+PPLUS)

QFEYNSQ = QPLUS*QMINUS - QPERPSQ

Q3 = .5*(QPLUS - QMINUS)

CHOOSE ONE OF FOLLOWING CUT-OFFS:

1) NO MATRIX ELEMENT IF INVMASS#*2 OF INSTANTANEOUS PHOTON
.LT. EPSILON.
IF ((QPERPSQ+RPHOMASS**2)/(X-Y) .LT. EPSILON-SMALL) GOTO 30

2) NO MATRIX ELEMENT IF Q_FR#+2 .LT. EPSILON
IF (ABS(QFEYNSQ) .LT. EPSILON-SMALL) GOTO 30

3) NO MATRIX ELEMENT IF Q_VEC##2 .LT. EPSILON
IF ((QPERPSQ + Q3#%+2) .LT. EPSILON-SMALL) GOTO 30

CHODSE ONE OF FOLLOWING QSQ:
QsqQ = -QFEYNSQ
QSQ = QPERPSQ + Q3**2

REALH2 = REALH2 - 1.0D0/(QSQ + PHOTMASS*%2)
ENDIF
IF (X .LT. Y) THEN

CHECK IF INVMASS+*2 OF INTERMEDIATE STATE IS
.LE. LAMBDA*#*2.
IF (IUVFERM .EQ. O) THEN
IF (( (AKPERPSQ + RFERMASS*#*2)/X
+(ALPERPSQ + RFERMASS#**2)/(1-Y)
+(QPERPSQ + RPHOMASS**2)/(Y-X))
.GT. ALAMBDA**2 + SMALL) GOTO 30
ENDIF
IF (IUVFERM .EQ. 1) THEN
IF (( (AKPERPSQ + RFERMASS#*#2)/X
+(ALPERPSQ + RFERMASS**2)/(1-Y))
.GT. ALAMBDA**2 + SMALL) GOTO 30
ENDIF

QPLUS = (Y-X)+*PPLUS
QMINUS = (AKPERPSQ + FERMMASS#*%2)/((1.0-X)+PPLUS)
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$ - (ALPERPSQ + FERMMASS*#2)/((1.0-Y)*PPLUS)
QFEYNSQ = QPLUS*QMINUS - QPERPSQ
Q3 = .5+(QPLUS - QMINUS)

c CHOOSE ONE OF FOLLOWING CUT-OFFS:
c 1) NO MATRIX ELEMENT IF INVMASS#*+2 OF INSTANTANEOUS PHOTON
c .LT. EPSILON.

IF ((QPERPSQ+RPHOMASS#*+2)/(Y-X) .LT. EPSILON-SMALL) GOTO 30

c 2) NO MATRIX ELEMENT IF Q_FR+*2 .LT. EPSILON
c IF (ABS(QFEYNSQ) .LT. EPSILON-SMALL) GOTO 30
c 3) NO MATRIX ELEMENT IF Q_VEC#**+2 .LT. EPSILON
c IF ((QPERPSQ + Q3++#2) .LT. EPSILON-SMALL) GOTC 30
c CHOOSE ONE OF FOLLOWING QSQ:
QSQ = -QFEYNSQ
c QSQ = QPERPSQ + Q3#*2

REALH2 = REALH2 - 1.0D0/(QSQ + PHOTMASS**2)

ENDIF

IF (REALH2 .NE. 0.0DO) THEN
REALH2 = (2.0DO+*FERMMASS/DFLOAT(KPLUSTOT))**2+REALH2
REALH2 = 2.0+REALH2/ALPERP*#*2

Cxx*x*xxxx*x+xxxDIACNOSTICS

C WRITE (16,920) INSTATE, IOUTSTAT,QFEYNSQ,REALH2
€920 FORMAT (* INSTATE IOUTSTAT QFEYNSQ REALH2 =’,216,2F12.7)
Chrkkrkkkkhks

FACT = 2.0D0

IF (INSTATE .EQ. IOUTSTAT) FACT = 1.0DO
REMSQH2 = REMSQH2
$ +FACT+REALH2+ALPHAG*REALWF (IOUTSTAT) *REALWF (INSTATE)
ENDIF

c FINISHED WITH THIS FOCK STATE. GO TO NEXT FOCK STATE.
30 CONTINUE
20 CONTINUE

RETURN
END

SUBROUTINE PRINTC(WAVEFCN,TIME1,TIMEZ2, TIME3, TIME4,

$ KPLUSTOT, ICHARGE, IBC,NSTATES,NSIZE,

$ KPLUSMAX, ALPHAG , ALAMBDA , ALPERP , EPSILON,
$ PARA1,PARA2,PARA3,PARA4,PARAS,

$ PHOTMASS , RPHOMASS , FERMMASS , RFERMASS,

$ REMSQHO, RENSQHZ,

$ REALVWF,

$ KFERM, KXFERM, KYFERM)



c THIS SUBROUTINE PRINTS OUT RESULTS OF PROGRAM COULOMB.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
IMPLICIT INTEGER (I-N)

DIMENSION WAVEFCN(KPLUSMAX)

DIMENSION REALVF (NSIZE),
$ KFERM(NSIZE) ,KXFERM(NSIZE) ,KYFERM (NSIZE)

LOGICAL ODDKPLUS
PI = 3.141592653589793D0

CrakxkxxxxxxxDIAGNOSTICS: RESULTS FROM QEDVAR
RPERP = ALAMBDA*ALPERP/PI
XALPERP = ALPERP*ALPHAG

WRITE (15,910) KPLUSTOT, ICHARCE, IBC,
ALPHAG, ALAMBDA , ALPERP , XALPERP , RPERP ,EPSILON,
PHOTMASS , RPHOMASS , FERMMASS , RFERMASS,
PARA1,PARA2,PARA3,PARA4 ,PARAS,NSTATES,
TIME1,TIME2, TIME3, TIME4,
TIME1+TIME2+TIME3+TIME4,
REMSQHO-4.0DO,REMSQH2 , REMSQHO+REMSQH2-4 . 0DO

910 FORMAT (* INPUT (MASSES ARE IN UNITS OF ELECMASS):*/

POV H

$ * KPLUSTOT ICHARGE IBC =',3I4/
$ * ALPEAG =' F11.4/
$ * ALAMBDA =',Fi1.4/
$ * ALPERP =',F11.4,°'+1/ELECMASS =’ ,F8.4,
$ *«BOHR (RPERP =',F8.4,')’/
$ * EPSILON =',F11.4/
$ * PHOTMASS =',F11.4/
$ * RPHOMASS =',F11.4/
$ * FERMMASS =',F11.4/
$ * RFERMASS =',F11.4/
$ * VAR PARAMETERS =',5F8.4/' '/
$ * # OF FOCK STATES = 19/' '/
$ * CPU TIME TO FIND FOCK STATES =’,F8.2,° SEC'/
$ * CPU TIME TO WORK OUT WF =" F8.2,' SEC'/
$ * CPU TIME TO FIND KE = F8.2,' SEC'/
$ * CPU TIME TO FIND PE =' F8.2,' SEC'/
$ * TOTAL CPU TIME USED =" F8.2," SEC*/' '/
$ ' KE =',F15.10/
$ ’ PE =',F15.10/
$ ’ ENERGY =’ ,F15.10)
Cxkkekkkkkkks
c ________________________________________________________
c PLOT WAVE FUNCTION.
c ________________________________________________________
c FIGURE OUT WHAT VALUES OF FERMION KPLUS TO RUN OVER
KBIG = O

DO 40 ISTATE = 1,NSTATES
K = KFERM(ISTATE)
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IF (K .GT. KBIG) KBIG = K
40 CONTINUE
KSMALL = KPLUSTOT
DO 41 ISTATE = 1 ,NSTATES
K = KFERM(ISTATE)
IF (K .LT. KSMALL) KSMALL = K
41  CONTINUE

c FIGURE OUT WHAT VALUES FOR FERMION KX TO RUN OVER
KXBIG = O
DO 50 ISTATE = 1,NSTATES
KX = KXFERM(ISTATE)
IF (KX .GT. KXBIG) KXBIG = KX
50 CONTINUE

Cxxxxxxx+xxDIAGNOSTICS: RESULTS FROM QEDVAR
c NOTE: IMAGEN PRINTS UP TO 80 CHARACTERS ACROSS.
c NEED TO DECLARE LRECL 84 IN FILEDEF TO DO S§0.
WRITE (15,950)
950 FORMAT (* */* */
$° WAVE FUNCTION SQUARED AT KY=0:°'/®' */
$' NOTES: 1) VALUES SHOULD BE MULTIPLIED BY 1/10000 (**%=10000)'/
$’ 2) KX IS IN UNITS OF ELECTRON MASS®/®' °’)

CHkkkkrkkkrkk

c LOOP OVER VALUES OF KX
DO 53 KX = KXBIG, -KXBIG,-1

c INITIALIZE WAVE FUNCTION TO ZERO
DO 54 KPLUS = KSMALL,KBIG,2
WAVEFCN (KPLUS) = 0.0DO
54 CONTINUE

c LOOP OVER FOCK STATE COMPONENTS
DO 56 ISTATE = 1,NSTATES
IF ((KXFERM(ISTATE) .EQ. KX) .AND.

$ (KYFERM(ISTATE) .EQ. O) ) THEN
WAVEFCN (KFERM (ISTATE))
$ = WAVEFCN (KFERM (ISTATE))
$ + REALWF (ISTATE) **2
ENDIF

56 CONTINUE

Cr*x+xxx+++x+xDIAGNOSTICS: RESULTS FROM QEDVAR
WRITE (15,952) INT(10000.0*DFLOAT(KX)*PI/ALPERP),
$ (INT(.5+10000.0*WAVEFCN (KPLUS) ) ,KPLUS=KSMALL,KBIG,2)
952 FORMAT (1X,15,* |',14(1X,I4))
c************

53 CONTINUE
Craxxkxxx%xxx*DIAGNOSTICS: RESULTS FROM QEDVAR
WRITE (15,956)

$ (INT(.5+10000.0*(DFLOAT(KPLUS)/DFLOAT(KPLUSTOT))),
$ KPLUS=KSMALL,KBIG,2)
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956 FORMAT (

$ KX Xx",14(1X,I4))

Chkkkkkkkkrkk

RETURN
END
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TABLE CAPTIONS

1: A comparison of light-cone and equal-time quantization.

2: Definitions in light-cone quantization.
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TABLE 1

Vacuum

Complicated

Instant Form Front Form
o = Pi +m?
Hamiltonian AH =. \/I P24m?2 4V i -_ =,T +V
- Conserved quantities E, P P-, Pt P,
Momenta P,<>0 Pt >0
Bound state equation Hy = Ev PtP~y = M%)

Trivial
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TABLE 2

7 = light-cone time = zt = z0 4 23
Variables z~ = light-cone position = z% — 23
N T = (.1:1,.7:2)
Covariant notation AF = (A"’, A A _L)
(0 2 0 0 )
Metri (") 2 0 0
etric =
g 0 0 -1 0
| 0 0 0 -1
Dot product oy = zhguy’ = %(w+y“+x_y+) -Z5 -y
Mass shell condition Ptp- = ]:"_f_-{-M2
_ _0 _ _0 _ 0
O = ozt 9- = oz~ "’ % = oz
Derivative
ot = 20_ 0~ = 204, 0 = -0
g=(781), k= (k)

Underscore notation

202




FIGURE CAPTIONS

1) The left diagram schematically describes the traditional equal-time form of

dynamics, the right Dirac’s generalized form.
2) These three diagrams compare the instant form, point form, and front form.

3) The pion is expanded in a Fock basis |n). P+, P are the pion’s plus and
perpendicular momenta. k;*' , k 1 are the 2th constituent’s plus and perpen-

dicular momenta.
4) Vfiip light-cone diagrams.
5) Vaofiip light-cone diagrams.
6) Vinstphot light-cone diagrams.
7) Vinstferm light-cone diagrams.
8) Decomposition of positronium into Fock states.

9) Light-cone perturbation theory graphs contributing to Mgller scattering. kit

is assumed to be larger than k.
10) Comparison of ground state energy with (Y) and without (N) infrared cut-off.
11) Intermediate states that may need Fermi statistics.
12) More intermediate states that may need Fermi statistics.
13) Light by light scattering contribution.
14) Contribution to the Lamb shift.
15) One-loop LCPTh radiative corrections to fermion line.
16) One-loop fermion self-energy.

17) Fermion self-energy in time-ordered perturbation theory. The right graph is
typically referred to as the Z-graph.
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18) Fermion structure function from diagonalization. o = .3, K = 17,
Ly =105, A =23m,.
19) Fermion structure function from diagonalization. o = .6, K = 15,

Ly =8;-, A=27m,.

20) Mass squared spectrum from diagonalizing a = .6, K = 18, L, = 1451:,
A = 2.3m,. The left column of states are majority (e*e™) and the right

column of states are majority (ete™ 7).
21) Ground state mass as a function of K for a = .6, L = 1451:’ A =23m,.
22) Ground state mass as a function of L| for a = .6, K = 14, A = 2.3m..

23) Physical electron’s wavefunctionfora = .6, K =25, L] = 127nl;’ A = 3.5m..
Values shown are the absolute value of the amplitude squared, and should

be divided by 10,000.

24) M2 KE,PE versus K for o = 6, L, = 20”%, A = 2.4m, with infrared
cut-off. Points labelled E, K, P correspond to M2, KE, PE, respectively.

25) M?, KE, PE versus K for a = .6, [| = 20;1:, A = 2.4m, without infrared
cut-off. Points labelled E, K, P correspond to M?, KE, PE, respectively.

26) M? (E), kinetic energy (K), potential energy (P), spin-flip (F), no spin-flip
(N), instantaneous photon (I) interaction contributions to M? as a function
of L) for a = .6, K =26, A = 2.5m,.

27) M? (E), kinetic energy (K), potential energy (P), spin-flip (F), no spin-flip
(N), instantaneous photon (I) interaction contributions to M? as a function
of Kfora=.6,L; = 20"%6, A = 2.5m,.

28) M? (E), kinetic energy (K), potential energy (P), spin-flip (F), no spin-flip
(N), instantaneous photon (I) interaction contributions to M? as a function

of A for a = .6, K = 26, L_L=20mie.

29) Positronium wavefunction for @« = 6, K = 42, L| = 32;1:, A = 2.5m,.
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30

31

33

w

)
)
32)
)
4)
35)

36)

46)
47)

48)

Values shown are the absolute value of the amplitude squared, and should
be divided by 10,000. i
Light-cone data (V) compared with Coulomb data (C).
M? as a function of er using Coulomb data.
L

M? as a function of 71-( using Coulomb data. . . -

‘Some fermion mass counterterms needed to include the (e*e~vv) Fock state.

Photon mass counterterms needed to include the (ete~ete™) Fock state.

Representative instantaneous fermion interaction. The incoming particles

are on the left, the outgoing on the right.

Representative instantaneous photon interaction. The incoming particles are

on the left, the outgoing on the right.

Three graphs that occur in LCPTh for tree-level Mgller scattering.
One-loop fermion self-mass.

One-loop fermion self-mass diagrams joined by instantaneous fermion.

N one-loop fermion self-mass pieces chained by NV —1 instantaneous fermions.
Sum of N chained one-loop fermion self-mass diagrams.

One-loop photon self-mass.

One-loop fermion self-energy.

Two one-loop fermion self-energy contributions in TOPTh.

Usual timé—ordering and Z-graph contributions to one-loop vacuum polariza-

tion in TOPTh.
One-loop vacuum polarization graph.
Three-point vertex in DLCQ, LCPTh.

Four-point instantaneous photon interaction in DLCQ, LCPTh.
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