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Zusammenfassung

In dieser Arbeit untersuchen wir mikroskospische Aspekte von Schwarzen Lochern
mit Calabi-Yau-Geometrie in Typ-IIA-Stringtheorie. Wir berechnen den Absorptionsquer-
schnitt der masselosen Raumzeitskalare durch das D2-Branen-Weltvolumen, welches um
eine S einer AdS, x S? x CYs-Geometrie eines vier-dimensionalen Schwarzen Lochs
mit Calabi-Yau-Geometry gewickelt ist. Die D2-Brane kann auch eine gewohnliche DO-
Probebranen-Ladung besitzen. Wir beschrinken uns jedoch auf D2-Branen mit kleiner
DO0-Ladung, sodass Storungstheorie anwendbar ist. Der Kandidat fiir die duale Theo-
rie gemil der vorgeschlagenen AdS,/QM-Korrespondenz ist die Quantenmechanik einer
Menge von DO-Probebranen in der AdS,-Geometrie. Fiir kleine aber von Null verschiedene
DO-Probeladungen finden wir den quantenmechanischen Absorptionsquerschnitt, der von
einem asymptotischen anti-de Sitter-Beobachter gesehen wird. Wir wiederholen die Rech-
nungen fiir verschwindende DO-Probeladungen und diskutieren unser Ergebnis im Ver-
gleich mit dem klassischen Absorptionsquerschnitt. In einem weiteren Projekt ermitteln
wir fiir ein gegebenes vier-dimensionales Schwarzes Loch mit Calabi-Yau-Geometrie und
gewohnlichen D6-D4-D2-D0 Ladungen die Menge der supersymmetrischen Branen der
korrespondierenden elf-dimensionalen Geometrie in der Nihe des Horizonts, die in glob-
alen Koordinaten statisch oder stationir sind. Die Menge dieser BPS-Zusténde, die Branen
miteinschlieBt, die teilweise oder ganz den Horizont einhiillen, sollten fiir das Verstindnis
der Zustandssumme von Schwarzen Lochern mit D6-Ladungen von Bedeutung sein.






Abstract

In this thesis we study microscopic aspects of Calabi-Yau black holes in string theory.
We compute the absorption cross-section of the space-time massless scalars by the world-
volume of D2-branes, wrapped on the S? of an AdS, x §? x CY; geometry of a four-
dimensional D4-D0 Calabi-Yau black hole. The D2-brane can also have a generic DO
probe-brane charge. However, we restrict ourselves to D2-branes with small DO-charge
so that the perturbation theory is applicable. According to the proposed AdS,/QOM cor-
respondence the candidate for the dual theory is the quantum mechanics of a set of probe
DO-branes in the AdS; geometry. For small but non-zero probe DO-charge we find the quan-
tum mechanical absorption cross-section seen by an asymptotic anti-de Sitter observer. We
repeat the calculations for vanishing probe DO-charge as well and discuss our result by
comparing with the classical absorption cross-section. In other project, for a given four-
dimensional Calabi-Yau black hole with generic D6-D4-D2-DO0 charges we identify a set of
supersymmetric branes, which are static or stationary in the global coordinates, of the cor-
responding eleven-dimensional near horizon geometry. The set of these BPS states, which
include the branes partially or fully wrap the horizon, should play a role in understanding
the partition function of black holes with D6-charge.
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CHAPTER 1

Introduction

One of the most fascinating objects that general relativity predicts are the black holes. In
nature, black holes are formed from the collapse of gravitating matter. The simplest model
for black hole formation involves a collapsing thin spherical shell of a massless matter. A
shell of photons with very small extension and total mass M provides an example.

Black holes are, roughly speaking, solutions of the equation of motion of Einstein’s theory
of General Relativity that exhibit a region of the space-time which one can not escape.
More precisely, a black hole is an asymptotically flat space-time containing a region which
is not in the backward lightcone of the future time-like infinity. Classically, the black holes
are completely black. Objects inside their event horizon are eternally trapped and nothing
can emerge from inside the event horizon to the outside. Even light rays are confined by
the gravitational force. In the early seventies, number of laws that govern the physics of
black holes were established.In particular, it was found that there is a very close analogy
between these laws and the four laws of thermodynamics [1]. The black hole laws become
that of the thermodynamics if one replaces the surface gravity x of the black hole by the
temperature 7 of a body in thermal equilibrium, the area of the black hole A by the entropy
S, the mass of the black hole M by the energy of the system E etc.

Considering thermodynamical behavior for the black holes, it is natural to wonder whether
this formal similarity is more than just an analogy. Classically the identification between
the black hole mechanics and the laws of thermodynamics does not seem to have physical
content, because a classical black hole is just black and, therefore, the mass can only in-
crease as matter falls through the horizon, it cannot radiate and therefore one should assign
temperature zero to it so that the interpretation of the surface gravity as temperature fails to
be correct. However, when the quantum effects are taken into account one can analyze the
black holes in the context of the quantum field theory in the curved space-time, where the
matter is described by the quantum field theory while the gravity treated as a classical back-
ground field, so-called the semi-classical approximation, of a full theory of the quantum
gravity. In this framework it was discovered [1] that the black holes can emit (Hawking)
radiation and consequently, can loses mass via Hawking radiation which allows to assign
the so-called Hawking temperature. This gives the Bekenstein-Hawking entropy as

A

Smacro - Z (11)

On the other hand, the entropy is also a measure for the number of internal microstates
of the system. To compute the entropy on the microscopic side one needs to identify the
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internal microstates and count the degeneracy N of microstates which give rise to a same
macrostate. The microscopic entropy is, accordingly, given by

Smicro = IOgN (12)

This raise the question about the nature of the microstates of a black hole. One would like
to understand whether there exists a fundamental, microscopic level describing the black
holes.

String theory, as the leading candidate for the quantum theory of gravity, should be able to
tell us about the microscopic configuration or, in other word, about the quantum statistical
mechanics of the black holes. The detailed study of matching the thermodynamic entropy
with state counting in string theory is, however, only possible for the supersymmetric black
holes [2, 3]. These are the black holes that are asymptotically flat, charged and extremal,
also called the BPS black holes. The key point is that as long as the supersymmetry is
preserved certain quantities can be calculated at zero coupling and the result remains valid
for all values of the string coupling, g;,. The BPS property, especially, ensures that the
number of micro-states will be conserved under varying the coupling. Therefore, in case of
the supersymmetric black holes, it is meaningful to count the microstates in non-interacting
regime, where the coupling is zero, and compare it to the macroscopic entropy of black
hole, where the interactions are turned on.

Four Dimensional Physics

Since, string theory lives in a ten-dimensional space-time, or 11 dimensions from M-theory
point of view, if we want to describe the four-dimensional black holes we should consider
a space-time where the extra dimensions have been compactified. With this assumption,
the original ten-dimensional space-time would be split in two sub-spaces as

M* x X

where M* is a four-dimensional space-time corresponding to the world we know, and X
is some compact six-dimensional manifold which is too small for us to observe directly.
We can visualize this geometry by thinking that at every point in M* there is corresponding
space X. Although, the compactified space can not be seen by the observers living in M, but
properties of the internal space X, lead to physical consequences in the four-dimensional
space-time.

In principle, there are large number of possible six-dimensional compact manifolds one
could choose from, but, the requirement that the four-dimensional theory resemble the
observed world would limit our choice of X some what. Indeed, demanding that the su-
persymmetry be preserved when we compactify our ten-dimensional theory to four di-
mensions, lead us to the requirement that our compact space be a Calabi-Yau manifold.
The Calabi-Yau manifolds are complex and are even-dimensional spaces which the six-
dimensional one is called Calabi-Yau three-fold, briefly CY3. This leads us to the so-called
Calabi-Yau black holes in string theory.



The four-dimensional black holes in string theory are typically engineered in terms of the
branes wrapped around the appropriate cycles of the internal space [4].

Suppose we have compactified the space-time, on a manifold, down to four dimensions,
then the branes wrapped around the directions in the compact dimensions will look like
point-like objects, or so to say (charged) particles, in the four-dimensional space-time,
which are considered at a point in the space which is the center of black hole. These
configurations have huge number of the internal excitations which all lead to a same four-
dimensional black holes are count for the microscopic description.

One of the special features of the supersymmetric black holes in four dimensions is that
they have a residual supersymmetry and interpolate between two maximally supersymmet-
ric vacua, namely the Minkowski space-time at infinity and the AdS; x S5 at the horizon.
This lead us to the AdS, x §? x CY3 geometry at the near horizon of the Calabi-Yau black
hole. In more modern language, string theory in AdS background is conjectured to be dual
to a conformal quantum mechanics [5], known as AdS/CFT correspondence. The AdS/CFT
relates a theory with gravity to theory without gravity [6]. In other word, the macroscopic
gravitational dynamics are holographically encoded in the microscopic gauge theoretical
degrees of freedom living at the conformal boundary of the near-horizon region.

This duality provide us a promising approach for reproducing the macroscopic entropy by
state counting, where for AdS, is then AdS,/CFT;. In particular, it was shown [7] that
using AdS, /CFT; proposal for a class of black holes in IIA on the CY3 carrying DO and
D4-branes yield the result agrees with the Bekenstein-Hawking entropy formula, where the
CFT takes the form of a quantum mechanics of a set of probe DO-branes moving in the
AdS, near-horizon geometry.

Apart from reproducing the entropy of the black hole one expects that the dual quantum
mechanics should also provide a microscopic description of the absorption- and Hawking
emission of the space-time fields by a black hole. This motivated us to compute the low
energy absorption cross-section of the space-time scalars on an static D2-brane, wrapped
on the S? of an AdS, x S? x CY; geometry [8]. In principle these D2-branes can also have
a generic DO probe-brane charge. However, for large probe DO-brane charge the coupling
of the space-time fields to the world-volume quantum mechanics becomes large so that the
linearized perturbation theory is no longer applicable and back-reaction on the geometry
has to be taken into account.

Furthermore, though, the D4-D0 Calabi-Yau black hole and its dual quantum mechanics
have produced the results in agreement with the Bekenstein-Hawking entropy but since the
D6-charge is taken to be zero, it is not the most general black holes we can construct in ITA.
In general, we would like to get a precise microscopic description of the four dimensional
black hole with all possible charges of IIA theory, namely non-vanishing D6-D4-D2-D0
charges. Computing the entropy of such a CY3 black hole with generic charges and their
relation to the conformal field theories are yet to be understood.

One can prepare the ground for extending the D4-D0 black hole to the black holes with
D6-charge by describing the supersymmetric probe branes in the background of D6-charge.
The classification of possible supersymmetric branes can play a role for understanding the
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degeneracies of states, where will give some insight about the underlaying microscopic
theory. This is the work done in our other project [9], where for a given black hole with
generic D6-D4-D2-DO0-charges in four dimensions, the set of supersymmetric branes, static
or stationary in global coordinates, of the corresponding eleven-dimensional near horizon
geometry are identified.

This thesis is structured as follows: In chapter 2, first we review the black holes in gen-
eral relativity, namely the Schwarzschild and the Reissner-Nordstrom black holes. We look
deeper in case of the RN black hole and discuss its near horizon geometry. Then we address
the thermodynamic laws of black holes, and specially the entropy. Since, we are interested
in the absorption of black holes, we provide the recipe of how to find the absorption cross-
section for black holes and then we employ it to find the absorption cross-section for the
Schwarzschild and Reissner-Nordstrom black holes. In case of RN we treat the absorp-
tion for the extremal and the near-extremal case separately. In last section we review the
universality of low energy absorption cross-section, namely the absorption cross-section
independency of the falling wave’s frequency. In chapter 3, we provide some background
of how to make a back hole in string theory. Specially we are interested in the Calabi-
Yau black holes in IIA string theory with various wrapped-branes around the cycles of the
Calabi-Yau. To do this we give the bosonic field content of IIA and then we talk about the
D4-DO0 black hole. As a simple example, we first illustrate the structure of the configuration
of limited number of D4-branes and DO-branes in the context of toroidal compactifications,
where the six-dimensional compact space is six-torus, 7. We see that the near horizon of
such a class of black holes has an AdS, x S? geometry. To have a better understanding of
the possible brane interactions first we review the dynamics of the D-branes and their cou-
pling to the various background fields. Specially we consider a D2-brane which is wrapped
around the horizon and couples to the background gauge field arising from the D4 and DO
branes in the internal space. These branes can also have a DO-brane charge on them, we
show that the value of DO-charge determines the radial position of the D2-brane. Also we
observe that the horizon-wrapped branes are static in global coordinates while they pup
out and in of the horizon in the Poincaré coordinates. After making a Calabi-Yau black
hole, we then address the entropy of black hole in string theory. The goal is to use string
theory to reproduce the macroscopic entropy law by counting the states of the underlay-
ing microscopic theory. We address why we are interested in the supersymmetric black
holes in string theory and then we give an example of how we count the degeneracy of a
black hole in the D-brane description. We consider three D4 branes where each of them
are wrapped the four-cycles of six-torus plus some additional DO-branes and by counting
the degeneracies we lead to precise agreement between the macroscopic and microscopic
black hole entropy.

As the main part of the chapter we compute absorption of the space-time scalars by the
world-volume of D2-branes, wrapped on the S? of a global AdS, x S? geometry. The D2-
branes can also have a generic DO probe-brane charge. However, we will restrict ourselves
to the D2-branes with small DO-charge so that the perturbation theory is applicable. First
we identify the vibration modes of the brane then we compute the cross-section for the
absorption of dilatons on the two-brane. Starting with the s-wave absorption of the D2-



brane without any DO-charge, then we follow to find the absorption cross-section of higher
partial waves and also we compute the absorption on D2-brane in case of non-vanishing
DO-charges. For small but non-zero probe DO-charge we find that the quantum mechan-
ical absorption cross-section seen by an asymptotic anti-de Sitter observer, static in the
Poincaré time vanishes linearly in @ for the small frequencies. We find the result which is
in disagreement with the classical s-wave absorption cross-section by the black hole, which
vanishes quadratically in @ forthe small frequencies [10]. We will try to clarify this point
in the text.

Finally, in the last chapter we dealing with the problem of supersymmetric branes in the
Calabi-Yau background. In this chapter we are interested in the possible supersymmetric
M2 and M5-branes in M-theory which by the Calabi-Yau compactification give raise to
five-dimensions. To provide a base for our discussion, we start with describing the condi-
tions which yield the BPS branes. In order to be self-contained and to fix the conventions
we first review the relevant static half BPS solutions of four-dimensional IIA supergrav-
ity. Then, we will describe the eleven-dimensional near horizon geometry of a 4D black
hole with generic D6-D4-D2-D0 charge. We obtain the near horizon killing spinor in the
global coordinates and analyze the xk-symmetry for stationary probe branes in the global
time. In particular we find BPS two-branes wrapped on a two-cycle in the Calabi-Yau.
Furthermore, we consider five-branes which can potentially wrap the horizon partially or
completely. We determine the trajectories of the five-brane which preserve supersymme-
try for the case of either wrap a holomorphic four-cycle in the Calabi-Yau and an S in
space-time (hence partially wrapping the horizon), or fully wrap the horizon S° /7 o and a
holomorphic two-cycle in the Calabi-Yau. At the end we provide some useful material at
the appendices.






CHAPTER 2

Black Holes in General Relativity

Gravity, as a classical theory, is described by the Einstein classical theory of gravity. The
basic idea of the Einstein gravity is that the geometry of space-time is dynamical and is
determined by the matter distribution. Conversely the motion of matter is determined by
the space-time geometry. Einstein gravity without any sources, is based on the Einstein-
Hilbert action

1
=— [d*/—gR 2.1
Sen 16ch/ & @D

where G is the Newton gravitational constant. The classical equations of motion following
from this action are the source-free (7,v) Einstein equations

1

which comes from varying the action with respect to the metric. Here Ry, and R are the
Ricci tensor and the Ricci scalar, respectively. In case of presence of the matter coupled to
the gravity, the energy-momentum tensor is non-zero and so the Einstein equations would
be

1

Some of the most interesting solutions to the equation of motion describe black holes.
These solutions contains singularities at which certain curvature diverge.

The generalizations of the Einstein-Hilbert action are provided by considering the elec-
tromagnetic fields, spinors or tensor fields, such as those that appear in the supergravity
theories. In case of the matter coupling to the electromagnetic field, which is relevant for
us, one gets the, so called, Einstein-Maxwell action

1 1
5= [ atsy/Tel(fgrge = 3™ ) @4

2.0.1 Schwarzschild black hole

The first exact solution to the Einstein’s equations of motion is the Schwarzschild solution,
which describes a black hole. The Schwarzschild solution is the unique, spherically sym-
metric and, by the Birkhoff’s theorem, static solution of the vacuum Einstein equation in
the four space-time dimensions.
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Solution to the vacuum, with a vanishing energy momentum tensor (7, = 0), Einstein’s
equation is
Ryy =0 2.5)

that describes the geometry outside of the mass distribution which is precisely the Ricci-
flat space-time. In the standard Schwarzschild coordinates (¢,r,0,¢) the Schwarzschild
solution is

—1
ds* = guydidx’ = — (1= ) ar+ (1-2) " ar 4 Pdo} (2.6)
r r
where
ru =2GaM 2.7

is known as the Schwarzschild radius and G4 is the Newton’s constant.
dQ3 = d6* +sin” 0d¢> (2.8)

is the metric of unit two-sphere. The surface » = ry is called the event horizon. Let us note
that ry is very small, for example one finds ry = 2.9km for the sun and rg = 9mm for the
earth. Thus for atomic matter the Schwarzschild radius is inside the matter distribution and
therefore does not threat as a black hole. The Schwarzschild metric is only a function of
the mass and it reduces to the Minkowski metric as the mass goes to zero. Furthermore the
metric is asymptotically flat

guv(r) — Muv (2.9

To see if M really has interpretation of a mass, we should consider the weak coupling
limit that is the asymptotic behavior of the metric. In general, in this limit the Newtonian
potential ® in the stationary coordinates can be read off from the ## component of the metric

g~ —(1—-2®) (2.10)

So by taking r — oo limit of the g;; component of the Schwarzschild black hole we have

2MG
gur(r = o) o 1= =2 @2.11)
which correctly produce the Newtonian potential
2MG.
=" (2.12)

r

2.0.2 Reissner-Nordstrom black hole

Generalization of the Schwarzschild black hole is the electrically charged one, which is
known as the Reissner-Nordstrém black hole.



An spherically symmetric solution of the coupled equations of the Einstein and of the
Maxwell is the that of Reissner-Nordstrom. The Reissner-Nordstrém solution is the most
general static black hole of the Einstein-Maxwell theory

I I
S:/d4xV ~lel <167tG4R_4 “VFW> @13

combined with the equation of motion and the Bianchi identity for the gauge field

VPR = 0 (2.14)
e"VPO),Fry = 0 (2.15)

The Einstein’s equations in the presence of an electric/magnetic field are

1 1
RIJV_EgIJVRZSnG“' <FIJPFPV_4gﬂvaGFpG> (216)

where F);, denotes the components of Maxwell tensor. Taking the trace we get R = 0. This
is always the case if the energy momentum tensor is traceless.
The unique spherically symmetric solution of (2.16) is the Reissner-Nordstrom solution

ds* = —Adt* + A72dr* +r*dQ3

Fp=—=, Fpy = psin® (2.17)
.
2MG 241G
Ae1_ 4+(61 +§) 4
r I

q and p are the electric and magnetic charges of the black hole. This can be checked by
recalling the definition of electric and magnetic charge in terms of the Maxwell tensor

1 1
= — F =—0oF 2.1
1 47r7 * P 4%3 (2.18)

1

where

is the two-form field strength , *F is the dual field strength and integration surface sur-
rounds the sources. It is worthwhile to note that the solution is static and asymptotically
flat.

The Reissner-Nordstrom black hole is characterized by three parameters, namely, the mass
M, the electric ¢ and the magnetic charge p, where the charges can be conveniently com-
bined into Q = g+ ip.

The Reissner-Nordstrom metric has two horizons at

r=ry=MGy+/(MG4)*— Q?G,4 (2.20)
This encourage us to rewrite the metric in more convenient form as

ds® = —A A dP+A7'AT AP +Rd93, (2.21)

Ap=1-—=
.
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It should be clear that there is a singularity at r = 0. We have assumed that M > Q, since
otherwise there is no horizon and the solution has a naked singularity and thus is not phys-
ically acceptable. This is known as the cosmic censorship hypothesis, which says that the
gravitational collapse does not lead to a naked singularity. There is a very important special
case arising when we saturate the lower bound on the mass, M, by making it equal to the
charge, O, which is call the extremal case. Then we see that the both horizons coincide at
r = Q. The extremal metric takes the form of

ds? = — (1 _ r7H>2dt2 n (1 _ r7H>_2dr2 202 (2.22)
where ry = MGy. Let us change the radial coordinate to
Y=r—ry (2.23)
then the metric can be written as
ds2, = —H(y) 2dP+ H)X(dy* +y2dQ3),  H(y)=1+ ’7’1 (2.24)

which, now, the horizon is located at y = 0. We see that in these coordinates there is a
manifest SO(3) symmetry. These are known as the isotropic coordinates.

2.0.2.1 Near horizon behavior

Another property of the extremal case, is when we are close to the horizon. Near the
horizon, where y ~ 0, the extremal metric (2.24) can be approximated by

2 -2

ds2y 225 - (y) dr* + <y> dy* + r}yd Q3 (2.25)
TH TH

We see that the spatial part of the solution has degenerated into the product of an infinitely

long tube or ‘throat’of topology R x S? with fixed radius set by the value of horizon radius,

or equivalently by the charge. The whole geometry, called the ‘Bertotti-Robinson’universe.

Defining yet another coordinate as

= (2.26)

we find that the geometry approaches a direct product of a two sphere, parametrized by
(0,¢) and a two-dimensional anti-de Sitter space parametrized by (r,7):
2

.
= H(-dr+d?)+rpdQ; (2.27)

z N——

~—

AdS, xS

ds?

ext

The anti-de Sitter space-time is the most symmetric vacuum solution to the two-dimensional
Einstein equations with a negative cosmological constant.

Both the sphere and the anti-de Sitter spaces have a same curvature radius, and because
the AdS space has negative curvature, the curvature of full the metric is zero and so it is
flat. Since the Reissner-Nordstrom space-time is also asymptotically flat, we see that it
interpolates between two maximally symmetric space-time.
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2.1 Black hole thermodynamics and quantum aspects

One of the remarkable results of the black hole physics is that one can derive a set of
laws, called the laws of black hole mechanics, which have a same structure as the laws of
thermodynamics [11]. The black hole laws are derived using the geometrical properties of
event horizon and has not linked to the thermodynamics from the beginning. The laws are
statements about the solution of the field equations, and in the original proofs the Einstein
equations are used.

The zeroth black hole mechanics law states that the so-called surface gravity K is constant
over the event horizon of an stationary black hole.

K = const. (2.28)

The surface gravity of an stationary black hole is the acceleration of an static observer at
the horizon, as measured by an observer at infinity).

The first law is an energy conservation. It is simply an identity , relating the change in mass,
M of an stationary black hole to the changes of the angular momentum, J, the horizon area,
A, and the electric charge, Q,

SM = %&x FQuST + D80 (2.29)

where Qp is the angular velocity at the horizon and @y is the electrostatic potential at the
horizon,®y = Q/ry.

The second law says that the area of the horizon, A is non-decreasing function of time
6A>0 (2.30)
The zeroth law of the black hole mechanics resembles the zeroth law of thermodynamics
T=0 (2.31)

which says that the temperature is constant in a thermodynamic equilibrium, and also the
first law of black hole has the same form as the first law of the thermodynamics

8E =T8S+ pdV + ndN (2.32)

The comparison of the first two laws suggests us to identify the surface gravity with the
temperature and consequently the area of horizon with the entropy

K~T, A~S (2.33)

such that the temperature of black hole is its surface gravity and the entropy of black hole
is equal to the size of the horizon. The analogy of the horizon area and the entropy is
confirmed by comparing the second law of black hole mechanics with the one from the
thermodynamics.
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Classically the identification between the black hole mechanics and the laws of thermody-
namics does not seem to have a physical content, because a classical black hole is just black
and therefore, the mass can only increase as the matter falls through the horizon, it cannot
radiate and therefore one should assign temperature zero to it, so that the interpretation of
the surface gravity as a temperature has no physical content, since the surface gravity is
non-zero.

However, when the quantum effects are taken into account one can analyze the black holes
in the context of quantum field theory in a curved space-time, where matter is described
by the quantum field theory while gravity treated as a classical background field !. In this
framework it was discovered [1] that the black holes can emit (Hawking) radiation. Hawk-
ing argued that because the gravitational fields at the horizon are strong for a quantum
mechanical pair production in the vicinity of the horizon, one particle of the virtual pair
falls into the black hole and the other one is emitted as a radiation. Consequently, a black
hole can loses mass via the Hawking radiation 2. This allows us to assign the so-called

Hawking temperature
hx

2
to a black hole, which is indeed proportional to the surface gravity. For example one can
compute the Hawking temperature for the sun, which is 7 ~ 6 x 1078K. Now we can look
at the first law. Since the Hawking temperature fixes the factor between temperature and
surface gravity, the entropy-area identification becomes precise

Ty (2.34)

A

4hGa (2.35)

Sp =
This relation is known as the area law and Spp is called the Bekenstein-Hawking entropy.
We reinserted the Newton’s constant to show that the black hole entropy is dimensionless.

The area law is universally valid result for any black hole in any dimension

Ag

=< 2.36
4G4 (2.36)

SBH
where A, is the, (d — 2)-dimensional, area of the horizon and Gy is the Newton’s constant
in a d-dimensional space-time. Let us comment on the second law in the quantum realm.
From one side, the Hawking radiation decreases the mass of the black hole and the horizon
will shrink. This violates the second law of the the black hole mechanics, which states that
the area of the horizon is non-deceasing. On the other side, the classical second law of
thermodynamics violates because the entropy of black hole could be reduced by a matter
moving adiabatically, into the black hole. This contradiction, leads us to consider the, so-
called, generalized entropy, which includes the entropy of black hole plus the other stuff
such as the Hawking radiation and then, the second law of thermodynamics states that the
total entropy is non-decreasing. One example of the unusual thermodynamic behavior of

LOf course, the quantum field theory in a curved space-time is only an approximation, so-called the semi-
classical approximation, of a full theory of quantum gravity.
2Since, the radiation is thermal, the back-reaction can be neglected.
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the uncharged black hole is the dependence of temperature of the black hole to its mass.
In case of the Schwarzschild black hole one finds 7 = 1/(87M), which means that the
specific heat is negative and so the black hole heats up by loosing mass, till it fully decays
into the radiation. This unusual behavior of the uncharged black holes leads to the informa-
tion problem of quantum gravity. For the charged black holes, radiation can not destroys
the black hole, since it radiates till the extremality is reached. The Hawking temperature
vanishes in the extremal limit and therefore the extremal black holes are stable.

Having established the thermodynamical laws for the black holes and knowing about the
macroscopic parameters, one would like to understand the underlying microscopic theory,
such as, where does the entropy of the black hole come from and what are the microscopic
degrees of freedom make up the black hole?

In the other word, whether there exists a fundamental, microscopic level of black hole’s
description, where one can identify the microstates and counts how many of them lead to
a same macrostate. At the microscopic level one can define the microscopic or statistical
entropy by counting the degeneracy of microstates which give rise to a same macrostate.
The macrostates of a black hole are characterized by its mass M, charge Q and angular
momentum J. Letting d(M,Q,J) be the number of the microstates of a black hole with
macroscopic parameters, M, Q, J, the microscopic black hole entropy is defined by

Spmicro = log d(M,N,J) (2.37)

If the interpretation of the Bekenstein-Hawking entropy, Spy, as macroscopic entropy is
correct, then it must be equal to the microscopic entropy, namely

SBH = Smicro (238)

We deal with the microscopical entropy in next chapter when we study the black holes in
string theory.

2.2 Classical absorption on black holes

Let us look at the computation on the gravity side. Consider an spherical black hole with the
horizon area A. Suppose that we have a minimally coupled massless scalar in the theory:

O0®=0 (2.39)

0= \/%aa (\/?ggaﬁaﬁ)
We wish to find the cross-section for absorption of such scalars into the black hole. To do
this, we must solve the wave equation (2.39), with some boundary conditions. We have a
plane wave incident from infinity. We put the boundary condition at the horizon which says
that the quanta are falling in but not coming out. Some part of the incident plane wave will
be reflected from the metric around the black hole and give rise to an outgoing waveform
at infinity. The rest goes to the horizon and represents the part that is absorbed. From this
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absorbed part we deduce the absorption cross-section Gp;.
In general, this is a hard calculation to do, but it becomes simple in the limit where the
wavelength of the incident particle becomes much larger than the size of the black hole.
We call this limit the low-energy absorption cross-section

! 2.40
To calculate the absorption cross-section we need to find the so-called greybody factor %
defined as
fir
Jfin
where f;, and f;, are, respectively, the flux passing the horizon and the incoming flux from
infinity. The greybody factor is an important quantity to understand the absorption and
the emission phenomena of a black hole. It is this factor which makes a black hole to be
different from a black body. The physical origin of this factor is the effective potential
barrier generated by a black hole space-time. For example, the potential for the s-wave
massless scalar generated by a Schwarzschild space-time is

F = (2.41)

Vorp(r.) =2 (1 - LH) (2.42)
r r
when the wave equation is expressed in terms of the “tortoise* coordinate r, = r+rg In(r/ry —
1). This potential generally backscatters a part of the outgoing radiation quantum me-
chanically, which results a frequency-dependent greybody factor. To find the absorption
cross-section we need to project a plane wave into an s-wave. In four dimension, this gives

v/
Ouns = —5 F (2.43)
(O]

2.3 Computing the low energy absorption cross-section

The computational procedure most people adopted is the matching procedure. In match-
ing procedure we divide the space-time outside the horizon,r > ry, into two overlapping
regions defined by

1
Near Horizon Region : r —rg < P (2.44)
Far Region : M < r—ry (2.45)

where in case of the RN black hole ry is the outer horizon. In each region the wave equation
(2.39) can be approximated by using the above near horizon and far region properties and
then we can solve it exactly.

Each of the, near horizon and far region, solutions would have undetermined coefficients.
The complete solution obtained by fixing the constants and we find them by imposing the
boundary conditions and by matching the solutions.
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To match the near and far solutions we take the large r limit of the near horizon solution
and match it to the small r limit of the far solution, namely

(I)nh(r — 00) =4 q)far(r — O) (246)

where ®,, and @y, are, respectively, the near horizon and the far solutions of the wave
equation. By matching the solutions we obtain a complete solutions of the wave equation.
Now we can calculate the greybody factor, .%. As already mentioned, the greybody factor
is the ratio of the flux passing across the horizon, f;, to the incoming flux from infinity, f;,

F = ]fc” 2.47)
124
and the conserved flux is defined as
— 4m T px *
=2 /Islg” (R'(r)aR() ~ RIR') (2.48)

where r is for the radial coordinate and R(r) is the radial part of the wave equation ®.

We should notice that for computing the incoming flux from infinity, we must insert the
incoming part of the ®y,, in the flux equation. In case of the flux ingoing to the horizon
we have the boundary condition that the is no reflected wave and so we use the complete
form of &, to determine the f;,. Finally, we insert the computed greybody factor in (2.47)
to find the absorption cross-section.

In what follows we use the technique described here to calculate the absorption cross-
section for massless scalars in case of the Schwarzschild and the Reissner-Nordstrom black
holes.

2.4 Absorption on 4D Schwarzschild black holes

As a first example we consider a four-dimensional Schwarzschild black hole and compute
the absorption cross-section of a massless scalar.

Absorption spectra of a Schwarzschild black hole firstly calculated in [12]. We look at
the low energy absorption, where only the mode with lowest angular momentum will con-
tribute to the cross-section which for the scalars this is the s-wave.

The Schwarzschild black hole metric is

ds> = —h(r)di* +h(r)~'dr? + PdQ3 h(ry:=1-"2 (2.49)
r
where ry, the Schwarzschild radius, is related to the black hole mass M as
rg =2M (2.50)

Now we follow the steps described in the previous section to calculate the absorption cross-
section for the Schwarzschild black hole. First we should solve the wave equation (2.39)
for the near horizon and asymptotic regimes.



16 Chapter 2. Black Holes in General Relativity

2.4.1 Wave equation and the solution

The general form of the wave equation is

¢'9)| @)+, [ Viglg" o] (1) 251)

O®(r,1) =0 = J, [ g

We adopt the separation of variation as
®(r,1) = ¢ 'Ry (r) (2.52)

With this, the wave equation would be
Ph(r) " @*R(r) + 0, [Ph(r)d,] R(r) =0 (2.53)

Next, we should solve the above wave equation in near horizon and far regions.

Far region

In the region far from the black hole, r — oo, the black hole and its effects disappear. We
have

and so the metric becomes a flat metric
ds* = —dt* +dr* +r*dQ3 (2.55)

thus the wave equation is simply
r207R o (1) + 210, R oy (1) + (r®)*R(r) = 0 (2.56)

where we have added the index "far* to R(r) to remember that we are looking at the solution
of wave equation in the far region. Above differential equation has a complete solution in
the form of Bessel functions

Rpar(r) = /ler [aj% (@r) — BJ_y (ar) (2.57)

o and fB are constants and J is Bessel function.

Near horizon

To solve the wave equation in the region close to the horizon, r — ry, we define a new
radial coordinate as

1
y:=—In(h(r)) (2.58)
TH
which simplifies the wave equation to
O Run(y) + ri* @Ry (y) =0 (2.59)
Solution to the above equation is
Run(y) = Ae "0’y (2.60)

A is a constant which will be related to the constants in (2.57) when we match the solutions.
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2.4.2 Matching the far and near solutions

Now we must match the far and near solutions or more precisely we should match the near
horizon solution when r — oo to the far region solution when r — 0.

First, we look at the far region solution eq. (2.57) and take the r — O limit, which is easily
carried out by using the series expansion of the Bessel functions 3

1 or\: 1 or\-: 1
Rpar(r — 0) ~ — [(x (—) 4B (—) ] 2.61)
A ARty
For r — oo limit of the near horizon solution we notice that
r—oeo=hr)—=1=y—0 (2.62)

so (2.60) can be approximated by

Ru(y — 0) ~ A[l —iowry)] (2.63)
or equally
2
Roun(r — 00) = A [1—ier1n (1—1’1)} ~A(l +io™) (2.64)
r r
Now by comparing (2.61) and (2.64) we straightforwardly lead to
1
20\ 2
a = <“’> A (2.65)
T
1
3\ 2
B o= i (”‘2" ) A (2.66)

Also, since we are looking at the low energy limit where @ < 1, we find that f < o, which
will use it later.

2.4.3 Computing absorption cross-section

To compute the absorption cross-section we need to know the incoming flux from infinity
and the flux transmitted to the horizon. First, we compute the incoming flux from infinity,
fin-

In the far region, for r — oo we can approximate the solution (2.57) by using the asymptotic
form of the Bessel functions

R ar(r — 00) ~ % [sin @7 + cos o] (2.67)

we need to compute the incoming flux, thus we should extract the incoming part of the
wave equation. The above Bessel function can be rewritten as

1 . .
R ar(r — 00) ~ %5 [(ict+ B)e " (—ict + B)ei®’] (2.68)

3see appendix D there you can find more about Bessel functions and some useful formula.
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this is of the form of
Ryar(r — ©0) = Gin + Prey (2.69)

where ¢;, and ¢, are, respectively, the incident and the reflected waves at infinity

T 1 . —ior
(Pin = Tmi(la + B)e o (270)
T 1 . ior

Now we have the incident part of the wave equation at infinity and we can compute the
incoming flux from infinity by inserting ¢;, in the definition of conserved flux (2.48)

2
Jin(r —o0) = 2 [0i7,0r Oin — 0in 0, 0;) (2.72)

i

= 2(|la*+|B[?) (2.73)

where we have used the asymptotic form of the metric in far region (2.4.1). Also, since we
are looking at the low energy limit where @ < 1, according to (2.57) we find that f < «
and so we can neglect the second term. Finally, the incoming flux from infinity is

fin(r — o) = 2|af? (2.74)
The flux passing the horizon, f,,; can be computed in a similar way.
Faps = AT OrgA* (2.75)

So by taking (2.70) the absorption cross-section found to be

fir
fin

The absorption cross-section of the low energy massless scalars equals the area of the
horizon.

T

E = 4751"12_1 =Ay (276)

Ouabs =

2.5 Absorption on 4D Reissner-Nordstrom black holes

Our next and more realistic example is the Reissner-Nordstrom black hole in a four-dimensional
space-time. Again, we look at the absorption of a minimally coupled massless scalar. We
consider the extremal and the near-extremal Reissner-Nordstrom separately and calculate

the absorption cross-section for each of them.

2.5.1 Extremal

The metric of an extremal Reissner-Nordstrom black hole is

2 -2
ds? = — (1 _ LH) di® + (1 - LH) dr? + dQ> 2.77)

r r
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which for later convenience we define a new radial coordinate as
F=r—ryg

and dropping the tilde, then the metric transforms to

-2 2
ds* = — (1 + FTH) dr* + (1 + %H) (dr* +r*dQ,?)

Now the horizon is located at zero ry = 0.
which dQ% is the metric of an unit two-dimensional sphere.

Near horizon geometry

In the near horizon regime we can approximate the metric (2.79) as

-2 2
ds?, = — (LH) i+ (’LH) dr? + rd Q>
r r

(2.78)

(2.79)

(2.80)

which ds%h stands for the near horizon metric. Again we change the radial coordinate as

'H
— =y
r

then the metric simplifies as

1 g’
dsnh2 (y) = —)zdl‘2 + ;I—zdyz + 7‘1-]2dQ.22

Wave equation and the solution

By inserting (2.79) in the wave equation, the radial part would be
oy [r28rR(r)} —I(I+1R(r)—rFPa’*R(r)=0
where we have assumed separability condition
® = YR(r)Y(Q)
Y;(Q) is spherical harmonics following

V2 (Q) = —1(1+1)Y(Q)

2.81)

(2.82)

(2.83)

(2.84)

(2.85)

Now we look at the asymptotic and the near horizon form of the wave equation and also

we find the solution for these regions.
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Near horizon

To compute the wave equation for the near horizon we use the metric (2.82), the result of
radial part would be

O® = 9, + (ry®)*R(r) + y121(1 +1)Ru(y) =0 (2.86)

R, (r) denotes the near horizon version of R(r). Above equation is a Bessel differential
equation and it has a complete solution as

Run(y) =y [AJH% (ra@y)+BY, 1 (rHa)y)] (2.87)

or equally

Run(y) = /¥ [AJH% (rm@y) +BJ_;_1 (ery)} (2.88)

Far region
In the region far from the black hole, r > 1, the black hole, and its effects, disappear and
one leave with a flat metric
dsy,, = —dt* +dr* +r*dQ3 (2.89)
using the flat metric, the wave equation would be
O®(rt) = 0, [0,@(r,t)] — 0, [P, ®(r,1)] =0 (2.90)

or
IZR(r) +2rd,R(r) + (r®)*R(r) =0 (2.91)

where we have assumed the separation of variables similar to the near-horizon case. Solu-
tion to the above differential is, again, a linear combination of Bessel functions

1
Ryarlr) = - |0,y (@) +BI_,_y (or)] (2.92)
we can simplify the solution by applying r — oo to the solution. Then the solution behaves
like
1 2 ) In Ir
Ryar(r) =~ N 7o {(x sin (a)r— 2) + B cos <a)r+ 2)] (2.93)

Matching the far and near solutions

As explained before, we need to match the small  far region solution (2.92) to the large r
(y — 0) near horizon solution (2.88). Using the series expansion of Bessel functions

Ja(*) - e mT(m+a+1) <§> 254)
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the asymptotic solution at small r (2.92) can be replaced by

1 or\l+: 1 or\ -z 1
Rpar(r — 0) = — [oc () e tB(S) e (2.95)
VrN2/ o T(is) 2 L (-l1+3)
In the same way, the large r near horizon solution can be approximated by
41 —1-1
1 a)rH2> 2] <a)rH2> 2 1
Ruyp(r > o0)~ — |A +B
ulr = =) ﬁ[ < r ) T ; r(+ )

(2.96)

where we have resubstituted r from (2.81). Matching (2.95) at small r to (2.96) at large r,
we get

o or\!+3 B er2> —1-3
r(+-3\2 = 2.97
F(l—{—g)(Z) 1"(_14_%)( r (2.97)
B qor -y A ((orHZ>l+é
F(—l+%) ( 2 ) B F(l+%) , (2.98)

In the low energy approximation (@ < 1) one finds f < «.

Computing absorption cross-section

To compute the absorption cross-section we need to know the incoming flux from infinity
and the flux transmitted to the horizon. First, we compute the incoming flux from infinity,
fin» by using the general form of the conserved flux associated to the wave equation (2.48).
The Bessel function corresponding to the far region (2.93) can be writtien as

1

Rpar(r =) = -1 % [(—ia+ e (@) 1 (ja+ BB 299)

which can be decomposed into two terms as
Ryar(r = ) = in + Orey (2.100)

where ¢;, and ¢, are the incident and reflected waves, respectively. So, the incoming flux
from infinity can be derived as
2
fin = Trz (0:.0rOin — 9in0r ;)
= 2lal*+2(B
~ 2lal? (2.101)

which in the last step we have used that & > . The flux passing across the horizon, fys,
can be computed by using the near horizon metric (2.80). For r — 0, the Bessel function
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(2.88) can be approximated by

1 1 1
Ru(r—0) = py— [Asin <2(r,2{a)—ln)> + Bcos <2(r,21(o+ljr))}
2
1 —i Y iz i @h lx
= (—iA+B)e ( ’ 2>+(iA+B)e< ’ 2>] (2.102)
Tory

First and second term in last line, are the transmitted and the reflected waves respectively.
Demanding no reflection at the horizon, cause the restriction A = —iB. Now we can calcu-
late the transmitted flux by using

()
¢ = (2B)e (2.103)
The result is then
Jans = 4|A? (2.104)
So the greybody factor, .7, is
2
o _ | fans| _ 2B _|T(=1+5) (er>41+2 (2.105)
A Sl e T T(+3) 2 '

We can convert the partial wave cross-section to the plane wave cross-section by multiplyi-
ing the above result by 7/®?. For s-wave, [ = 0 we find

ol = An (2.106)

a

Absorption cross-section in the low energy limit is proportional to the area of the horizon.

2.5.2 Near-extremal

After dealing with the simple case of an extremal black hole, now we consider a general RN
black hole with no restriction on the charge. We follow a same procedure as the previous
section. As already mentioned, the complete RN metric is

ds* = —Adt* + A~ 'dr* + r2dQ? (2.107)
with
A= (1—5) (1—5) (2.108)
r r
and
re=M+\/M2—Q2 (2.109)

Wave equation and the solution

By using the general form of wave equation we get
(0,40, +rA™' 97| @ =0 (2.110)

We need to find the solution for above wave equation at the near horizon and far region,
which will be done in the next two sections.
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Near horizon
For the near horizon region we have
1
r—r+ << — (2.111)
(0]

the wave equation can be written as

I(I+1)
r2

A_A
r—zarﬁarR—i— w*rt — AR =0 (2.112)

To solve the near horizon wave equation we define a new variable as

=" 0<z<l 2.113)

r—r_
where z = 0 would be the horizon. The wave equation (2.110) becomes

0 = (ry—r)zd(ry —r)z0.R+* tR—I(1+1)(r—r+)(r—r_)R  (2.114)
= (ry —r_ ) 2R+ (ry —r_)220.R+ 0* AR —1(I+ 1)(r—r+)(r—r-)R

and by dividing by z(ry —r_)(r—r_) we have

0 — r+—r,ZaZ2R_r+—r,azR+ o’ _l(l+1) r—ry o
r—r_ r—r_ 2(r+—r_)(r—r-) z  rL—r_
’rd 1-z [(1+1)
= z(1—2)0’R+(1—2)0.R + R— R 2.115
Z(1=2) R+ (1-2)9; +(r+_r_)2< - ) 2 (2.115)

Above near horizon wave equation transforms into an standard hypergeometric form by
defining
2

R =AZ“F(1—z)/*1F, Fi= (2.116)
ro —r—

where A is a normalization constant which will be determined later.
By applying above definition, F obeys

2(1—2)02F + [l +ioF— (1+2(1+ 1) +ioF)z] 0.F — [(1+1)* —iwF(l+1)] F =0

(2.117)
This is of the form of hypergeometric differential equation
2(1—2)02F +[c—(a+b+1)7]0.F —abzF =0
with
= I+1+iorF
[+1 (2.118)

c = l1+ioF
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(2.118) has following complete solution
F = A12F (a,b;c;2) +Axzy “Fi(a+1—c,b+1—c;2—c;2) (2.119)
By imposing only the ingoing flux at the horizon, z = 0, we find A, = 0 and therefore R is
R, =AZ"(1 =) VF(I+1+i0F, 1+ 1;1 +i0Fz) (2.120)

Finally by substitution 7 from (2.116) we find the solution of wave equation for near horizon
regime as

2
=3

ia)(y = ) 141 r2 r2
R,=Az \""" (1—z)+F(1+1+iw< + >r,l+1;1+ia)< + >;z) (2.121)

ry —r— ry —r—

where A subjects to be determined.

Far region

For far region, r — oo, wave equation (2.110) takes simple form

1 1
—2a,rza,+@+w2 R;=0 (2.122)
r r
or
(107 +2rd, + 0*r* —1(I+1)| Ry =0 (2.123)

which is the equation for a massless scalar field with frequency @ and angular momentum
[ in a flat space. (2.122) is of the form of Helmholtz equation in spherical coordinates

PO 4 2x0 f + [ —n(n+1]f =0 (2.124)
which its solution is a linear combination of Bessel functions

T

- [JH% () —J_ (x)} (2.125)

—n— 3

f=

so the solution of far region wave equation (2.122) is

T
R =[50 |y (0r) +BI__y (@r)] (2.126)

which for r — o simplifies to

Rp(r — o) = % [—oc sin <(Dr— é) + B cos (a)r+ é)] (2.127)



2.5. Absorption on 4D Reissner-Nordstrom black holes 25

Matching the far and near solutions

For the small r far region, we use the series expansion of Bessel function for the small
arguments

LU e eyt B ony
Rf(r—”))_\[r r(l+§)<2> +r(—l+;)(2> ] (2129

According to (2.113), the near horizon large r means z — 1 or z—1 — 0. We use the

transformation law for z — z — 1 which is

['(c)'(c—a—>b)

['(c—a)'(c—b)

(1 . Z)cfafb F(C)F(a +b— C)
[(a)l(b)

F(a,b;c;2) F(a,b,a+b—c+1,1—2) (2.129)

F(c—a,c—b;c—a—b+1;1—7)

By using the series expansion of hypergeometric function, ¥, and keep only the first term,
we have

r

—I-1
Ry(r— o) = A( > (1 + oF) x (2.130)

Fo —r—

L-2i-1) 2 r(20+1)
(DI (ioF—1) ro—r_ r'(l+ 1D +1+ioF)
where, for r — oo, we have used that
1—7 =
z ~ 1. (2.131)

Matching (2.128) at small r to (2.130) at large r we find B < o and

A=o(ry — r_)l

T(1+ DI+ 1 +iwF) (9)’*7 ~ No (2.132)

L(I+ 3020+ D1 +iwF) \ 2
where 7 is defined in (2.116).

Computing absorption cross-section

Same as the extremal case, to find the cross-section, first we should compute the incoming
flux from infinity and the flux passing the horizon.

[—asin (wr—?) + B cos (wr+gt>] (2.133)

[(—ia+B)e*"(“’“'7") +(ioc+/3)e"(‘°’+’7")} (2.134)
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In last line, terms in the bracket are the incident wave, Ry ;,, and the reflective wave, Ry .,
namely:

21 e

Rfin = %;(—iajtﬁ)e*’(“”*%) (2.135)
2 1. i(or+2)

Rives = | =o—(ia+B)eilors (2.136)

Since we are interested in computing the incoming flux from infinity, we take only the R;,
part:

fo = R} OR—RyudR} ) 2.137)
l R k)
2 2 R PPN . 1 io\ _r
- e ()
. e—ia)r * . % 1 10 ior
(B+ia) ; (B —za)< r2+r>e ]
= 2laf+IBP) (2.138)

and finally by considering f < a, the incoming flux from infinity is approximately
in ~ 2|02 (2.139)
To calculate the flux passing the horizon, we take the near horizon form of metric (2.107)
21 L
Jabs = TA\A\Z [ (z*“‘”(l — z)”lF) (2.140)
1 .
X (iw?z(l — )T F+(1+1)(1-2)'F+(1 —z)l“&ZF) 7o
_ (Ziwf(l —Z)1+1F>
1 .
X (—iwf(l — ) F+(+1)(1-2)'F+(1 —z)l+18zF> z—’“”]

<

for the near horizon r — r; we have

z — 0 (2.141)
F — 1
and we substitute back r, we obtain
fabs = AT |A]* = 0|A]PAy (2.142)

Ap is the area of horizon. So the greybody factor is

’fabs’ 1 2
F =l _ Ayl (2.143)
] — 22N
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where, we have defined N in (2.132). Consequently

ol =T INPay (2.144)
(O]
and as we expect for the s-wave, the absorption cross-section is independent of the fre-
quency
6l = An (2.145)

a

2.6 Universality of low energy absorption cross-section

In last two sections, we studied the absorption cross-section of a Schwarzschild and a
Reissner-Nordstrom black holes. we saw that in the low energy limit, where the wave
length of the incident wave is much larger than the size of the horizon, absorption cross-
section of a massless space-time scalars on the four-dimensional Schwarzschild and Reissner-
Nordstrom black holes, both, are equal to the area of the black hole horizon

Oubs = AH (2.140)

and thus is independent of the frequency of falling wave. Indeed in [10] it was shown
that for the all spherically symmetric black holes the low energy cross-section for massless
minimally coupled scalar fields is equal to the area of the horizon in any dimensions. This
is follow from o gld1)/2,42

d H
Ol ps = Md=1)/2] =Ay (2.147)
in a d-dimensional space-time, which now Ay is the area of the horizon hypersurface.
The fact that the low energy absorption cross-section for an s-wave massless scalar equals
to the horizon area is generally proved for the higher dimensional asymptotically flat and
spherically symmetric black holes. For completeness, we review the calculation of the
absorption cross-section for an spherically symmetric black hole [10].
In d-dimensional space-time, the spherically symmetric black hole metric takes the form
of

ds* = —f(r)dr* + g(n|dr* + P} ] (2.148)

in Einstein frame. The functions f(r) and g(r) are chosen to ensure that the metric is
asymptotically flat
f(r),g(r) =21 (2.149)

If the metric is not already in this form, always with a coordinate transformation we can do
it. We let the horizon to be at » = ry, then the area of the horizon is

d-2
Ay = (rH\/g(rH)> Qs =R520, 5 (2.150)

where Q,;_, is the volume of the unit (d — 2)-sphere

- 2 /4

Qa-2 r[Ld-1)]

(2.151)
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and Ry defined via
R}zq(dﬁ) = 2g(ry )42 (2.152)

For a minimally coupled massless scalars the wave equation is

1
O¥=——09, (vV/—gg""dy)¥=0 (2.153)
\/jg u ( V)
At low energies only the mode with lowest angular momentum will contribute to the cross-
section, which for the scalars is the s-wave. Thus ¥ = W, (r)e **, and so

0 (¢"0) ¥o — : =720 ( f(r)gd—lr“g(r)l> Po=0  (2.154)

f(r)g(r)*=

Since we are working in the low energy approximation, frequency of the wave ® is much
smaller than any energy scale set by the black hole. Now, by defining

dp =/ F(r)g(r)d=3r120, (2.155)
the wave equation takes the form of
92+ (P(P)g(r(p)) 2 0?) | Walp) =0 (2.156)

Near the horizon, where r =~ ry, we can write the wave equation as
[ag + szi}H)} pnear(p) — (2.157)

Solution to the wave equation at the near horizon, which must be purely ingoing, is

(d-2)

Yut(p) = ae "R P (2.158)

For later use, when we match the far and the near solutions, we need to know the large r
behavior of the near horizon solution. By studying (2.155), we can see that when r > 1,
f(r) and g(r) can be approximated by 1, and so p < 1. So the near horizon wave function
for large r, can be be written as

3—d
PO () L~ [1 — iR ] (2.159)

H 3_4

Next, we should determine the far region solution of the wave equation. For large r, the
wave equation (2.154) simplifies as

(7720, (¥1720,) + &P whin(r) =0 (2.160)
To eliminate the linear derivative we change variables as
W (r) = 2@y (1) (2.161)

and define
Z=or (2.162)
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which gives the wave equation

(d—2)(d—4)

2
[az +1- 12

] Xo(r) =0 (2.163)
Solution to this differential equation is Bessel function, so W determines to be

o) = ;2063-d) [AJ%( a-3) (@) +BI_1(4_5() (2.164)

In order to find the small r behavior of far solution, we use the series expansion of the
Bessel function to get

P (wr) A 2:00 B 220 (2.165)
r <1 + .
CE @] TG -d) (e
Matching the near horizon and far region wave function yields
la-3r |1
A = 22 r E(d_l) o (2.166)
1
2:6-4r [1(5-d)] (0Ry)* 2
B = i LG -] (@Ra)T (2.167)
3—-d
Now, we can compute the absorption probability, .%,
AL eimid=3)p
F - 1-|Are 2 (2.168)
A+te mald=3)p
2-@-3)r[l(5-d
= 4 (5-d)] sin[7(d —3) /2] (wRy)* 2 (2.169)

d—3 T'[5d-1)]

In last step, to convert the spherical wave absorption probability into absorption cross-
section we must extract the ingoing spherical wave from the plane wave. This can be done
by normalizing the absorption probability as

— N2 2 (2m)?
Oubs = ‘N| 97 ’N‘ = m (2170)
in d-dimensional space-time. So, the absorption cross-section is
d—1pd—2
27" Ry
Oubs = — 1 5 —AH (2.171)
r[h@-1)]

which, last equality is deduced by considering the area of horizon (2.150). This result for
the low energy cross-section for massless minimally coupled scalars is completely univer-
sal for the spherically symmetric black holes.

It is worthwhile to note that for the massive scalars there is also a universality in low energy
absorption cross-section. In case of the massive scalars the equality in (2.147) is replaced
by a proportionality, where the proportionality constant is a velocity parameter. This uni-
versal property was also re-examined for the extended objects [13, 14].






CHAPTER 3

Black Holes in String Theory

3.1 Introduction

We have seen that the semi-classical considerations of Einstein gravity yield that the black
holes have thermodynamical behavior and obey the laws of thermodynamics. The Beken-
stein entropy only deals with the macroscopical parameters of black holes but does not tell
us about the underlying microscopic description of black holes, that, what are the degrees
of freedom and how can we count them. A theory of quantum gravity should be able to
tell us about the microscopic configuration or,in other word, about the quantum statistical
mechanics of black holes. String theory, as the leading candidate for quantum theory of
gravity, ought to address these issues. This motivates us to review the progress in under-
standing black holes in the context of string theory and study some quantum mechanical
aspects of black holes.

Black holes arise in string theory are the solutions of the corresponding low-energy su-
pergravity theory. They can be neutral or charged with various charges that string theory
permits. String theory lives in 10 dimensional space-time (or 11 dimensions from M-theory
view), so, if we want to describe the four-dimensional black holes we should consider the
space-times where the extra dimensions have been compactified. The compact space is
taken to be small such that it can not be observed and thus we would only see the four-
dimensional space-time. With this assumption, the original ten-dimensional space-time
would be split in two spaces

M*x X

where M* is a four-dimensional space-time corresponding to the world we know, and X
is some compact six-dimensional manifold. Although, the compactified space can not be
seen by the observers living in M, but the properties of internal space X, lead to physical
consequences in the four-dimensional space-time, or in other word, the particle content of
the resulting four-dimensional theory is intimately related to the topological properties of
the compactified manifold. Also, conversely, the computations in four-dimensions should
give us information about the geometry of the internal space. As an example we will see
that the massless four-dimensional fields are associated with the harmonic forms on X.

In string theory, black holes are typically engineered in terms of the branes wrapped around
the appropriate cycles of the internal space[4]. Suppose we have compactified the space-
time, on a manifold, down to four dimensions. The branes wrapped around the directions
in the compact dimensions will look like point-like objects, or so to say (charged) particles,
in the four-dimensional space-time, where coincide at a point in space which is the center
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of black hole. Indeed, this leads us how to have charged black holes in string theory: the
charges arise in black holes of string theory are sourced by the different charges carried by
the extended objects of the theory.

So the idea of making black holes in string theory is to construct an intersecting of branes
wrapped the various cycles of compactified Calabi-Yau three-fold, which upon the dimen-
sional reduction yields a black hole in four dimensions. If the brane intersection be super-
symmetric then the black hole will be extremal supersymmetric.

We should remark that, though, the string theory, in ten-dimensional space-time, has su-
persymmetry but since we compactify the extra dimensions there is no guarantee that, in
general, the supersymmetry be preserved in four-dimension. The geometry of compact
space determines that how many of supersymmetries survive in the four-dimension.

3.2 Calabi-Yau black holes in ITA

3.2.1 IIA string theory field content

We start with the ten-dimensional bosonic field content of type IIA string theory. Since we
are interested in low energy, only the massless fields are relevant. The bosonic massless
sector of IIA consist of following fields

Guy: Buy, @ cly, ¢ 3.1)

where the indices M and N run over the whole ten-dimensional space-time coordinates,
M,N =0,1,..,9. Gy is the graviton, Byy is an antisymmetric two-form tensor and & is
the dilaton which make up the NS-NS sector. The string coupling constant, g, of IIA is
identified with the value at infinity of the dilaton field as

gs = expl ®(r — o)) = exp(Pp) (3.2)

CP) are the R-R sector p-form antisymmetric gauge fields, yielding two and four-form
field strength
F® =acW® F® =ac® (3.3)

The NS-NS sector fields couple to strings. The R-R sector fields, however, do not couple to
strings but rather to D p-branes which are the extended objects in the theory. More precisely
CP*1) gauge fields can electrically couple to the world-volume of the Dp-branes

~Hp+1

i, / CPT) dxt AL A dxtr ] (3.4)
w

where W is the world-volume of the brane and u,, is the charge of p-brane. Such Dp-branes
are called the electrically charged branes as can be seen by evaluating the electric charge



3.2. Calabi-Yau black holes in IIA 33

by using the Gauss’s law. In D dimensions, a p-brane has a RP~P*! transverse space. So
to measure the electric charge of the p-brane we should integrate over an sphere SP~7~2

= / “Fpir (3.5)

Furthermore, in ten dimensions we have duality as
+dCPH) = qa¢l=r) (3.6)
which is followed from the duality of field strength in 10 dimension
FP+2) — g B8-p) (3.7)

means that to each electrically charged Dp-brane there is also a dual magnetically charged
D(6 — p)-brane. It turns out that C 1) couples to a DO-brane electrically and to a D6-brane
magnetically. Respectively, D2-brane and D4-brane become electrically and magnetically
charged under C©3).

Consequently, in IIA string theory the stable Dp-branes, which carry conserved charges,

are: !

DO, D2 electrically charged 3.8)
D4, D6 magnetically charged

As already mentioned, to have a black hole in four dimensions, we should wrap branes
around the non-trivial cycles of the CY3 at a particular position in M*, where reflect as
point-like objects in the context of four-dimensional effective field theory.

Compactifying on a Calabi-Yau manifold breaks 3 /4 of the original 32 component super-
symmetries of type IIA, and the remaining 8 supersymmetries give N = 2 supergravity in
four dimensions.

To have preserved supersymmetry in 4d we should wrap the branes around supersymmet-
ric cycles. Now the question is that how the wrapped branes represent themselves in the
effective action?

First step is to know that the massless four-dimensional fields are associated with the har-
monic forms on Calabi-Yau space. The number of linearly independent harmonic p-forms
for a given p is given by the so-called Betti numbers, b, which are fixed by the topology
of CY3. This is precisely relevant for the wrapped branes which curl up the submanifolds
(various dimensional non-trivial cycles) of CY3. According to the Poincaré duality there
exists a dual relationship between harmonic p-forms and (dx — p)-cycles, where dy is the
dimension of X. This is the way we obtain charged particles in string theory compacti-
fied on a Calabi-Yau manifold, namely, by wrapping the D-branes on the various cycles
of Calabi-Yau. In string theory D-branes source the 10d R-R fields, which from the 4d
point of view look like point particle charges that source the different gauge fields which

I'Since all the stable branes are even dimensional, it is natural to consider p = 8, as well. Stability of
D8-brane is due to existence of C(?) gauge fields which occur in special circumstances.
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come from the dimensional reduction of the 10d fields. The number of units of 4d charge
is determined by times we warp the D-branes around the particular cycle, called winding
number.

In type ITIA one can produce any electric and magnetic charges by wrapping D6, D4, D2 and
DO branes on the various cycles in Calabi-Yau. As mentioned the, number of independent
cycles is determined by Betti number. If A € 1,...,b» 2 labels the 4 (and also the dual
2)-cycles, then the most general set of charges we can get is

P’ aa (3.9)
which stands for D6, D4 (magnetic) and D2, DO (electric) charges respectively. This means
that by compactifying IIA on the Calabi-Yau manifold with specific Betti number, b,, we
have at most total of 2b, 42 different electric and magnetic charges in the non-compact
space. If we have a large number of the wrapped-branes in Calabi-Yau sitting at the same
point of 4d space, we should consider the back-reaction of the metric (and other super-
gravity fields). It turns out that for large charges one can obtain black holes in the four-
dimensional space-time [15, 16] (or five-dimensional black hole in M-theory).

The black holes made by compactifying the branes on Calabi-Yau are not necessarily large
black hole, but can be appear as an small black holes too. It turns out that the CY com-
pactification of a single brane, yields a four-dimensional black hole with vanishing event
horizon. Indeed to describe a four-dimensional black holes with a finite event horizon,
and hence a finite entropy we have to consider more complicated D-branes configuration.
The four-dimensional large black holes are obtained by combining four different charges,
which, happens when they have different dimensions, or if they wrap on the different inde-
pendent cycles. In following we will give explicit examples of such black holes in string
theory.

3.2.2 D4-D0 Black hole

One of the interesting case of Calabi-Yau black holes constructs by considering charges as

@t #0,  qa=0 (3.10)

this configuration corresponds to wrapping the ¢* D4-branes on non-contractible four-
cycles Z in the internal manifold and some additional g° DO-charges. * This pattern then
describes the extremal black holes of N = 2 supergravity for compactification on Calabi-
Yau [2, 3]. The four-cycle has to be holomorphic in order that the configuration be BPS
state [18]. The validity of the macroscopic (and the state counting) black hole solutions
require to impose two conditions: First, we work in the large volume limit which, geomet-
rically, means to take the size of the manifold and of all its four-cycles (and two-cycles if

Zfor CY; we have by = hi1
3We can generalize it to the black holes which include g4 charges. This generalization can be achieved by
adding D2-branes to the configuration which are wrapped on two-cycles in CY [17].
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q* # 0) are large and therefore the curvature is small. This can be achieved by taking the
qo to be much larger than the charges p*:

lgo| > p* (3.11)

Second, to make sure that the space-time loops are suppressed we need to have small
curvature at the horizon so that the higher curvature terms can be neglected. This can be
done by taking all the black hole’s charges to be large

lq0l, 1P| >0 (3.12)
which indeed is the limit where the supergravity analysis is valid. So we have to impose

0| > |p*| >0 (3.13)

As a simple example, we first illustrate the structure of the configuration of three D4-branes
with charges p',p?,p* and gy DO-branes in IIA in the context of toroidal compactification,
where the six-dimensional compact space is a six-torus, 7°. This has a generalization to the
general Calabi-Yau manifold. The geometry is such that the D4-branes are wrapped around
the three different four-cycles of the internal six-torus, such that they intersect transversely
on two-cycles and triple-intersect over a zero-cycle yielding to non-zero triple intersection
number. The corresponding ten-dimensional string frame metric is [19]

1
ds}, = —mdt2+\/Hoh(dr2+r2dQ%) (3.14)

a7 (dy] +dy3) + P (dy3 +dy;) + P02 (dys +dyg)

where y; denote the coordinates along the torus and by definition

H = 1+%  h—H'wH, (3.15)
r

H = 1+ﬁ, A=123
r

Hy and H? are harmonic functions. With convention, charges have length, L, dimension.
By toroidal compactification, we get a four-charge extremal black hole in four-dimensions
with charges go,p? and metric

ds3 = — dt* +\/Hoh [dr* + r*d Q3] (3.16)

[} 4+ Ho
=4/ — 3.17
e’ =1/ A (3.17)

This background also contains the R-R fields produced by the branes as

1
v Hoh

and the dilaton is

Al = <1—I;dt) (3.18)
0
.
AB = 55in0d04d9 (p'[y'dy* —y*dy'] - p* [P dy* — y'dy®| = p*[ydy° —y°dy?))

(3.19)
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where we have assumed that the D4-branes are wrapped on the directions y'y?y3y*, yly?y>y6

41,5.1,0

and y’y*y°y® of the six-torus.

To determine the mass of black hole we should study the large distance behavior of g
component of the metric same as what we did in case of Schwarzschild black hole following
from (2.11) and (2.12). For large r we can approximate g;; as

lgo+p'+p*+p°

gu(Prose~ 14 - (3.20)

now the mass can be read off

i

40 _ P
" AG,

M = My +M; + M, + M5, My =

= 3.21
4Gy’ (3.21)

where, since we are dealing with an extremal black hole, gives us, also, the total charge of
the black hole Q.

3.2.2.1 Near horizon geometry of D4-D0 black hole

As we see, the near horizon limit of this metric depends on whether all the charges are
non-vanishing or not. If one of the charges vanishes, this has an null singularity at r = 0
which means the black hole has zero horizon area. For non-vanishing case, qo, p”* # 0, the
near horizon geometry in non-compact space reduces to AdS, x S2. This can be seen by
looking at the metric in the limit where

r < qo,p" (3.22)

then metric appears to be

2 1,523
ds} = ———ed?+ YL g2 4\ faop p2p3 [P + 7403 (3.23)
vV qop' p*p? r

or equally
I"2 RZ
m&;iﬂﬁ+ﬁmhwﬂmh4%%] (3.24)
where we have defined
R=/qop'p*p? (3.25)

The radius of the of AdS, and S? depends only on the value of charges. Value of dilaton in
the near horizon also is fixed by the background charges

o _ 490
== 3.26
e =7 (3.26)
In four-dimensional point of view A(!) give us an space-time gauge field on AdS, and
A®) with two component tangent to the S? responsible for two-form field strength on the
horizon.
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The above pattern of compactification with four charges can be generalized to a compacti-
fication on Calabi-Yau three-fold and also cover all possible DO-D4 charges of the theory,
S0 to say, qo, pA for A =1,..,by. Indeed, in [2, 3] it has shown that the compactification
of type II string theory on a Calabi-Yau manifold contains the extremal black hole arising
from wrapping branes around the cycles of CY3, whose near-horizon region is, similarly,
an AdS, x $? x CY;.

Metric in (3.24) is the metric in Poincaré coordinate at the near horizon. In string theory
we are interested in the global geometry. Using the coordinate transformations

R 1
r  coshycost+sinhy
_ Rcoshysint (3.27)
coshycost

we move from Poincaré, (r,¢,) to global, ()}, T). With this, indeed we embedding the near
horizon geometry into the global AdS;. This can be seen in Figure (3.1), where in the left,
the white band is the near horizon geometry in poincaré which can be embedded in the
global AdS, geometry, as in the right figure.

the metric in global coordinates is then
ds* = R* (—cosh? ydt* +dy?*) +R* (d6* +sin> 0d¢*) (3.28)
The radius R of the near horizon AdS, x §? is given by
R= \ﬁ(D)%, D = Dapcp” pPp°© (3.29)

which depends on the charges of background. Capc are the triple intersection numbers on
the CY3. Requiring that the black hole has a non-vanishing horizon area in the leading
supergravity approximation restrict us to have non-zero triple intersection number, D # 0.
There is also four-form field strength

F® = @p AFey = R2sin0d6 Ad¢ NF) (3.30)

and two form field strength

1
dct) = = @ads, = Reoshx dt Ady (3.31)
where Fc%; is the two-form field strength in CY3, g and Wygs, are, respectively, volume

form on S* and AdS, defined as

05 = R*sin0d0do, Wuas, = R? cosh ydtdy (3.32)

3.2.3 Branes in AdS; x S? x CY; background geometry

In previous section we constructed an extremal four-dimensional black hole arising from
compactifying IIA string theory on a CY manifold and wrapping branes around the cycles
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of CY3 whose near-horizon region is an AdS, x S? x CY3 geometry. In addition, the back-
ground, in general contains dCP*! form fields, where in case of a D4-DO black hole give
raise two and four-form field strength. The four-form has two component in non-compact
space, tangent to the horizon and other two in the Calabi-Yau.

This geometry admits supersymmetric probe D2-branes wrapped on the black hole hori-
zon, S2, with arbitrary DO-charges bound to them [20]. These are the branes which preserve
some space-time supersymmetries*. Such a horizon-wrapped branes which wrap the trivial
cycles do not give any asymptotic charges due to their dimensionality in the full black hole
geometry, rather they carry charges of the lower dimension. Consider a two-brane which
is wrapped on the S2. The wrapped bane behaves like a point particle in Calabi-Yau and
anti-de Sitter space and in general can move along them. Furthermore the brane can couple
to the gauge fields on its world-volume as well as to the space-time fields. To have a better
understanding of possible brane interactions first we review the dynamics of D-branes and
their coupling to the various background fields and then, explicitly, we deal with our case
of interest.

3.2.3.1 D-brane dynamics

Dynamics of the gauge field living on the brane and fluctuation of the brane itself is gov-
erned by Dirac-Born-Infeld action which is usually referred to as the DBI action.

If we introduce coordinates £¢, a = 0, ..., p to be the world-volume coordinates on the
brane, bosonic part of the DBI action is

N —, / dP1E \/det(Gap + 270 Fip) (3.33)

G,p 1s the induced metric on the brane, known as the pull-back of the space-time metric

onto the world-volume
oXH dxVv

ab = Tg,}?nuv (3.34)

where X* are space-time coordinates, with u,v =0,...,D — 1. u,, is the Dp-brane tension

1

— 3.35
@r)riet! -3

Hp =

which is analogue of the mass, M),
M, = u,R’'Q, (3.36)

and Fyy, is the field strength corresponding to the gauge field, A, (&), on the brane. A,(&) is
sourced by the massless open strings attached to the brane.
Above action describes the low energy dynamics of a Dp-brane in a flat space. The motion

4We study the supersymmetric branes in next chapter.
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of the D-brane can be affected if it moves in a non-flat background created by the close
string modes Gy, By and ®. Presence of a background can be imposed to the action as

Spsr = —1, / dPTEe™®\/det(Gyp + 21/ Fyp + Bap) (3.37)

where now, in (3.34) to compute the induced metric we should use background metric,
Gy, instead of the flat metric 1y,. Furthermore, apart from the gauge fields living on
the brane, coupling of the brane to the space-time gauge fields should also be considered.
These kind of gauge fields, which are again sourced by the massless open strings, describe
the motion of the D-brane in the transverse dimensions, we call them C;, 1 = p+1,...,10.
5

The space-time gauge fields do not contribute to the DBI action, but rather they appear as
an extra term, the Chern-Simons term (CS term in brief), in the action as

i, / P[CtP )] (3.38)

where, [i,, denotes the Dp-brane charge and P|C (p+1)] stands for the pullback of the ten-
dimensional gauge field to the world-volume. However, in the presence of a world-volume
gauge fields (or background B field), the brane also couples to lower rank R-R gauge fields
in the form of ¢

1, / cP=U AF®? (3.39)

which performs a (p + 1)-form as it should. The complete Chern-Simons term is then
Ses = fi, / PICPY) oo/ FO A CP—Y)] (3.40)

The Chern-Simons term, in particular, encodes the fact that the Dp-brane can carry charges
of lower dimensional D-branes by having the world-volume field strength turned on. So
the bosonic part of full D-brane dynamics governs the sum of DBI action and CS term as

Sp, = Spsr+Scs (3.41)
— 1y / dPTE\/det(Gup + 21 Q' Fp) + [ / PICPH) 1210/ FP A CP=1)]

Sp,
We stress that F(?) is the field strength of gauge field, denoted by A, (€), living on the brane
and C(?—1) is the space-time gauge field. There is also an extremal limit where the tension
of brane, U,, equals its charge, fi,. So for an extremal Dp-brane the action is

Sp, = —Hp / dPTE\/det(Gap + 2 Fyp) + / P[CP*Y) 210/ FP ACP] (3.42)

5The massless open strings have a vector index (4,,Cy). If the indices lie in the directions parallel to the
brane they describe gauge fields living on the brane and if the indices are perpendicular to the brane, they are
related to oscillations of the brane in the perpendicular directions. For p > 1, the massless open strings also
describe fluctuations in the world-brane gauge field on Dp-brane.

%Since F is two-form, In ITA, only odd-rank RR fields contribute for even p.
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Now, we can write the action describes the dynamics of D2-brane we have considered in
this section: a probe D2-brane in the AdS, x §? x CY3 background (3.28)together with the
R-R one-form gauge field
R2
F® =dc) = = coshydt Ady (3.43)
q0

in the global AdS, coordinates. Fixing static gauge as
E'=X" a=0,1,2 (3.44)

where the world-volume time is chosen to be the target space time and the world-volume
angles are chosen to be the angles on S2, then we get the following action for the D2-brane

Sp, = —/.12/d<§3Rsin9\/(coshzx—j(z)R4 (3.45)

The Chern-Simons term vanishes because there is no R-R three-form, C(3), in the back-
ground and also we do not have any gauge field on the two-brane. In principle the D2-brane
can also have DO-brane charge on it. This can be done by, adiabatically, moving DO-branes
from infinity to the surface of the two-brane. The resulting D2-D0 bound state can be eas-
ily described: the DO-brane dissolves in the D2-brane, leaving a flux, where the DO-charge
appears as U(1) gauge field potential, A,

A
2o’

f

2ro!

cosfdp = F=dA=

dOAd¢ (3.46)

on the D2-brane. The resulting action, in presence of the above gauge field on the brane, is
then

2
Sp, = —uz/d§3Rsin9\/(coshzx—)'cz)(R4+f2)—i—uzz/d§3sinh){
0

RZ
= —47r,u2R/dr\/(cosh2x—)'(2)(R4—|—f2)+47Cu2fq/drsinhx (3.47)
0

where now we have contribution from the Chern-Simons term. Since we are working in
the approximation (3.13) the internal excitation levels are suppressed and can be neglected.
In this case the global Hamiltonian of the D2-brane is

12 R
H = coshy [(M% M2 20 ¢ Pf] + My [1 —sinhy] (3.48)
490

where M and M, are defined as
My =4, f, M, =4muR? (3.49)
The D2-brane Hamiltonian has an static solution at ¥ = ¥, given by

M,
sinh o = M‘) (3.50)
2
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oo <—J

Figure 3.1: (a) Penrose diagram for an extremal black hole. The white band is the near
horizon AdS, geometry in Poincaré coordinates and dashed line shows the brane position
which oscillates around the horizon. (b) Brane in global AdS, dashed line represent the
brane position.

which is the minimum of brane potential. In the Poincaré coordinates this brane is not
static, rather it oscillates in and out of the horizon as can be seen in Carter-Penrose dia-
gram in figure (3.1). As we see, in global coordinates the radial position of the brane is
determined by the value of DO-charge, f. This means that for large f, the D-brane can
potentially go away from the near horizon region. Indeed the brane remains close to the
horizon as long as

My < M, (3.51)

but otherwise goes out of this region.

3.3 Black holes entropy from string theory

After making black hole in string theory, now we should address entropy of the black hole
in string theory. The goal is to use string theory to reproduce the macroscopic entropy
law by counting the states of underlaying microscopic theory. While the original string-
black hole correspondence, to understand the entropy of black holes, invoked only the
fundamental string states [21], it generalized to the D-brane description of black holes
which yield a precise derivation of a black hole entropy.

In string theory, one can test the expected relation between the macroscopic and micro-
scopic entropy by counting the ten-dimensional states which give raise to a same four-
dimensional black hole, This comparison generally involves the variation of parameters, as
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for the string coupling we have

Macroscopic regime: Ry > I, = |Q|gs > 1 (3.52)
Microscopic regime: |Q|gs < 1 (3.53)

We see that for comparing the two regimes we have to go from the weak to strong coupling
and it is not priori clear that whether the number of states are preserved under this interpo-
lation. In the other word, in string theory computation of the entropy in microscopic level
can be preformed in the limit when we neglect the effects of interactions, g; < 1. Since a
black hole can only exist once the interactions are turned on. This means that exact com-
putation of the entropy of a black hole in string theory requires that counting of the states
in weak coupling remains valid for all values of the coupling.

As an example we compare the entropy of a Schwarzschild black hole with an extremal
black hole (c=h=1)

(3.54)

oA _ 4nM*G  Schwarzchild
==

n(q* +p?) Extremal

The entropy of black hole is not independent of Newton constant, G, but interestingly, in
case of the extremal black hole it is. The same applies to a supersymmetric black hole in
general N = 2 supergravity in four dimensions.

To see what is the consequence of this property, we remind the relation between Newton
constant and the string coupling constant which is given by G ~ g2I2,
denote the string coupling and the string length, respectively. So, since the entropy of a
supersymmetric black holes is independent of g;, it is meaningful to compare the macro-
scopic entropy with the microscopic description.

This remarkable property is present in supersymmetric black holes. In other word, as long
as supersymmetry is preserved, the results obtained in non-interacting regime are valid for
any couplings. However, we note that when we compactify space-time, the supersymmetry
preserved if we curl up dimensions into cycles. To make black hole we wrap extended ob-
jects around cycles where can cause breaking of supersymmetry too, so we consider special
configurations of wrapped objects which some supersymmetry survives.

Moreover, there is a mechanism that ensures that the macroscopic entropy of a supersym-
metric black hole is entirely specified in terms of the charges g7, p’

where g, and [

Smacro = Omacro (QI,PI) (355)

This is the attractor mechanism which first discovered for supersymmetric black holes
[2, 22, 23] and later shown that it holds for extremal black hole even if not supersym-
metric [24].

In the microscopic level, in D-brane picture, the large degeneracy which gives the sta-
tistical interpretation to the thermodynamic entropy comes from all the possible internal
excitations of the wrapped branes which lead to a same four dimensional black hole in the
macroscopic level. It has been shown [4, 25] that the entropy calculated using the D-brane
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description agrees precisely with the classical Bekenstein-Hawking entropy. For a D4-D0
Calabi-Yau black hole the problem of microscopically computing the entropy has also been
solved [26]. Specially, recently it was shown [7] that one can derive the entropy by doing
calculations in the proposed dual conformal field theory, CFT,. The CFT; takes the form
of quantum mechanics of a set of probe DO-branes moving in the AdS; near-horizon ge-
ometry. The non-abelian N-DO0 configurations corresponding to D2 branes wrap the black
hole horizon and carry N units of world-volume magnetic flux. The D2-DO0 brane is in the
background magnetic flux on the CY3 and therefore acquires large degeneracy correspond-
ing to the lowest Landau levels. Number of degeneracies found to be exactly reproduce the
leading order area-entropy formula for a D4-DO0 black hole.

In following we see how one can count the microscopic degeneracy of a black hole in string
theory and we will see it precisely matches with the Bekenstein-Hawking entropy.

3.3.1 Example: D4-DO0 black hole on 7°

To have a better view of the underlaying microscopic description and to see that if it agrees
with the macroscopic entropy we study the D4-DO0 black hole which we considered earlier,
namely, the configuration of three D4-branes with charges p!,p?,p® and go DO-branes in
ITA compactified on 7°. Macroscopic entropy can be calculated easily by looking at the
area of horizon. The horizon of the black hole is located in r = 0 and the area of the horizon
can be computed as

0111213
A =4z lim (ﬁ/”j”) N (3.56)

In order to write down the Bekenstein-Hawking entropy it is instructive to restore dimen-
sions. Specially, since the spectrum of charges are discrete one can introduce fundamental
charge units ¢, ¢’ and express go, p', p%, p> (which have length dimension) to be integers
as

i

q0, P = €040, Cipi (357)

With this description now we have p! D4-branes wrapped on the y;,y2,y3,y4, p*> D4-branes
wrapped on the y{,y2,ys, Vs, p> D4-branes wrapped on the y3,y4,ys,ys and go DO-branes.
One straightforward way is first to write down the entropy in terms of the masses via (3.21)

A
Smacro = 3 = 167G/ MoMi MMy (3.58)
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Now we can use (3.35) and (3.36) as

1
o - a0 (3.59)
gslx
1
M = W(27tR1)(27rR2)(27rR3)(271:R4)p]
1
M2 = W@x&)(27rR2)(27TR5)(271R6)p2
o
M = W(27rR3)(27rR4)(27rR5)(27rR6)p3

where Ry, ..., Rg are the radii of the T° cycles. Furthermore we need to know the expresion
for four-dimensional Newton constants, G4

Gio

Gy = ,
4 VT6

G = 870g213 (3.60)

s7s

the resulting macroscopic entropy is

Spr = 2m\/qop' p>p? (3.61)

All dimensionful constants and all continuous parameters cancel precisely and the entropy
is a pure number which is given by the number of charges. Indeed, this indicates that an
interpretation in terms of the microscopic D-brane states is possible.

The goal is to use the D-brane configuration to produce the entropy (3.61) by counting
the states, which originally performed in [27]. We should find, so to say, how this black
hole can be constructed in many possible ways. We count the states when there are no
interactions and the supersymmetry guarantees that the zero coupling counting holds for
nonzero coupling, where we have a black hole.

As we already mentioned, the microscopic entropy is the logarithm of states degeneracy,
which leads to the same macroscopic quantities. In our case

Smicro = IOgN(QO,Pl ,P27P3) (3.62)

where N(qo, p', p?, p?) is the number of microstates of a black hole with macroscopic pa-
rameters qo, p', p, p°. Lets start with an special case where we have only three D4-branes,
p! = p?> = p3 = 1. The three D4-branes intersect only at one point in 7. Now we bind
qo DO-brane to the mutual intersection point by letting, massless, strings run between the
zero-branes and each of the four-branes. To count the zero modes of the DO-brane in the
intersection point, we note that two four-branes brake 3/4 of the original 32 supersym-
metries, The third four-brane also breaks half of the remaining supersymmetry and hence
we are left with four bosonic modes. Furthermore, the unbroken supersymmetry implies
an equal number of fermionic degrees of freedom. The degeneracy of states, d(n), with
charge n is given by the coefficient of ¢" of generating function

oo 1 N 4
Ydmq' =]] <11qu> (3.63)

k=1 q
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So, the degeneracy of states with three four-branes and go DO-charge, where gg > 1, is

d(qo) = exp (2m\/q0) (3.64)

Returning to our example where p!, p?, p? are greater than unity, we have three set of four-
branes which each of them consists of many parallel four-branes. Separating four-branes
gives p!p?p? distinct points for the intersecting three four-branes. Binding ¢o DO-brane to
each intersection points gives four bosonic and four fermionic modes, and hence total of
4p' p?p3 bosonic/fermionic modes. The generating function of degeneracy is then

1,23

> 71 kN 4P p°p
Ydng"=T] (14_”] ) (3.65)

X
k=1 q

for large qo is leads to degeneracy d(qo) = exp27+/qop' p?p? and the entropy is then
Smicro = 2T \% QOP1P2P3 (3.66)

This coincides exactly with the Bekenstein-Hawking entropy (3.61) extracted from the
metric. Our example can be generalized to Calabi-Yau black holes with arbitrary charges
g0, p”. This has been done in [26]. Without going to details we give the result

5 =21/ |0l (Cancp?pPp€ +caap?) (3.67)

¢y is the second Chern class and Cypc is the intersection number, which is fixed by the
topology of internal manifold. This holds both for the macroscopic and the microscopic
description. Finally, returning to our example, since the torus 7 is flat, the second Chern
class vanishes and the intersection form is Cagc = €apc and A, B,C = 1,2,3 and hence we
get same formula as before.

Apart from computing the statistical entropy of black holes, the D-brane method of black
holes can be also applied to derive the Hawking radiation and to compute the greybody
factor. In what follows we mainly focus on the black hole absorption cross section in
D-brane picture.

3.4 Absorption of black holes in string theory

We have made black holes in string theory and found that the microscopic physics of branes
reproduces the Bekenstein entropy for near-extremal holes. A natural step beyond the
comparison of entropies is to interpret absorption cross sections for massless particles in
terms of the D-brane world-volume theories. In oder word, we can ask about the dynamics
of black holes: Can we compute the probability of the string state to absorb or emit quanta,
and then compare this to the probability for the black hole to absorb infalling quanta or
emit Hawking radiation?
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In D-brane picture, absorption and Hawking radiation can be understood in terms of closed
strings. The absorption of massless scalars into black holes can be described in the effec-
tive string language as a massless closed string state hitting a set of intersecting D-branes
and turning into a pair of open strings that run in opposite directions along the 1 + 1-
dimensional intersection manifold. Emission happens for near-extremal black holes, where
we have, for example, sea of left movers and a right mover. Joining right mover with a left
mover form a massless closed string which leave the brane as Hawking radiation.

In order to calculate the absorption cross section in D-brane formalism one needs the low
energy world-volume action for D-branes coupled to the massless bulk fields. These cou-
plings may be deduces from the D-brane Born-Infeld action described earlier in this chap-
ter.

3.5 Absorption on horizon-wrapped branes

Here we will be interested in the absorption cross section on such D2-branes as seen by
an asymptotic observer. For this we need the coupling of the D2-branes to the space-time
fields. This can be inferred from the Born-Infeld action

S = —uz/d3<§e’q’\/—]G+27ra’F]—HJz/[P[CB]]+27ta’F/\P[Cm]], (3.68)

X3

where G, is the induced string frame world-volume metric for a given 10-dimensional
string metric and C['! is the RR 1-form in ITA theory with

R2
dclVl = = coshydt Ndy . (3.69)
q0
in global AdS, coordinates. Fyy, is the field strength of the world-volume U (1) gauge po-
tential, A with background value

f

2ro’

cos(0)d¢ . (3.70)
Finally the background value of the dilaton is given by

@ 40 371
e R (3.71)

3.5.1 Vibration modes

In what follows we will work in the static gauge and we will neglect internal excitations
levels in X which are suppressed in the approximation (3.13). In this case there is exactly
one transverse scalar field parameterizing the radial position of the brane in AdS, as well a
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gauge field A,.There are two kind of fluctuations to be considered, one from radial position,
0, and other one is the fluctuations of gauge field living on the brane

X — Xo+éedy (3.72)
Fopb — Fyp+efw (3.73)

We take the DO-charge on the two-brane, go o [ F to be fixed. In this case the quantum
mechanical (s-wave) excitation 8 decouples from all other excitations and can thus be
treated separately. Upon substitution of the AdS, x S? metric

ds* = R*|—cosh? xd©* + dy*] + R*dQ3 (3.74)

in the Born-Infeld action and expanding up to second order in derivatives we find the action
for the transverse scalar y

Spa = —/ [ 2)+Va(x)|dr, (3.75)
with
\/M% —|—Mg M
Vi) =Sy cosh(x) . Va(x) = sinh(x). (3.76)
and
2 = MyRe™® = 16m1,D (3.77)

V1 x is sourced by DBI part of the action and V() originates from the Chern-Simons term
in (3.68). Upon expanding the potential V to second order in 0 we obtain a harmonic
oscillator with frequency 1 (in units of 1/R) which can be quantized in standard way as

ox(t)= \% (¢a+e"a"), (3.78)

where a and a' are, respectively, the annihilation- and creation operators for the harmonic
oscillator.

Next we consider quadratic fluctuations with non-vanishing angular momentum. By ex-
panding the action (3.68) to second order in the fluctuation in the position d) and the
gauge field, f,, = d,Ap — dpA4, We obtain

1 2 .1 )
s@ = gz/d*élﬁsmez(&x) (3.79)
1 N
+7/ PERsin (870,629;8x +(0:6%)?)  i.j=0.¢
_7/d3€Rgsne ( /) abfa
VRS2

+g2/d3<§R35in (27roc]22 < : f12f12—f01f01

9f02f02>
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Here S refers to the action corresponding to second order fluctuations. We can simplify
the above action by introducing a modified metric as

-1 0 0

gw=R[0 1 0 (3.80)
0 0 sin*(9)

action is then
1 1 1
2 - - 3 =t 2 Loab .
S = [ 6V |5 607 - Seasadey B8
1 (27[06/)2 ~ac ~bd 1 (27[06/)2 ab
71R4+f2g 8 fabf6d+5f\/TTfZF fardx|

Thus the dynamics of the quadratic fluctuations on a two-brane in AdS, x S* wrapped
on S? is identical to that of a brane fluctuating in R!' x §? with a non-trivial potential
V(6x,fu)- The coupling between f,, and  persists in the absence of a DO probe brane
charge as a consequence of the Chern-Simons term in (3.68). The equations of motion for
the fluctuations obtained from (3.81) are then found to be

(2) B 4 2

0T _ (ma¥, [ pre - YRS paesy ) o, (3.82)
SA, f
55 1 (2rd/)?

Fabfab :Oa

_ 2 _ S \em )
sopn ~ 1)5"+2f /Rt

where the indices are now lifted with g and V2 is with respect to g. To continue, using
(3.82), we express f,p in terms of a new scalar field, y, through

R 1 VR f?
ae — aeg ae
f rd) \/§8 Ay + T F*8y. (3.83)

Note that since we have defined v, via equation of motion this change of variables is valid
on-shell only. In terms of these new fields the equations of motion then take the form

. R4 2

sz/—iijfafax _ o, (3.84)
2

Viey + = 0.

Ve

In order to diagonalize this system we expand Y and J in spherical harmonics as

85x(7,0,0) = 8xime Y1,,(0,0) (3.85)
SY(7,0,0) = Yime 7Y,,(0,9)

Then the equation of motion leads to

VRS (—1(141)+9?) —iQ S _ (3.56)
iQ B_(—it+1)+0) | \wim ) '

N
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Now we can derive the eigenfrequencies by finding the zero’s of the determinant. They are
given by
Q=] and Q=I[+1 (3.87)

with their corresponding eigenmodes

1 1
0 = — o™l (3.88)
V2 (iiVR;jf2> tm
respectively, where (onrle are canonically normalized free fields with dispersion relation
Q =1 for (plom and Q =[/+1 for (pllm. We can thus quantize §x and y in terms of free fields
a;, and by, as

5le(f) _§ aﬂ ilt 1 % ilTox 1
(szm(f) =5 \ﬁe Yim —i\/[? +\ﬁe Yim i@ (3.89)

+ bim ei(l+l)rY 1 + b}-m efi(l+1)ry* 1
\/m Im l\/w \/m Im i /R4 f2 .

R? R?

where we adopt the convention [ Y},,Y),, = 470y 8ymy. The integer valuedness of the
spectrum is to be expected since in global coordinates time T ~ T 4 27 is compactified.

3.5.2 Absorption

The dilaton and the volume moduli of the CY (the latter is a fixed scalar) couple to the
radial position ) of the two-branes in AdS, as well as to the world-volume gauge potential
through the DBI-term in (3.68). The RR 1-form field couples to the world-volume gauge
potential and the radial position through the CS-term in (3.68). We will focus on the dila-
ton absorption at present. To begin with we consider the quantum mechanical (s-wave)
absorption of a dilaton ¢, which then couples to the transverse position as

sy (Lo
o2 = [ (-30) (342l ) ax. 3.90)

The potential V, is induced by the CS-term in (3.68) and thus does not couple to the dilaton.
To continue we need to distinguish between small- and large DO probe-brane charge since
0¢ does not couple to V,. For My << M, we have V| ()p) =~ 1| so that the back-reaction
of the probe brane on the dilaton @ can be neglected. For M, << Mj on the other hand
Vi(xo) o< {Ti >> 1 so that in the linearized approximation back reaction of the probe brane
destabilizes the supergravity background’. We will thus not consider this possibility. On
the other hand, for small DO probe brane charge gy, the probe brane trajectory is within the
near horizon region of the Poincaré patch of AdS;. In this case it is interesting to compute
the absorption cross section as observed by an asymptotic observer and compare it to the
classical black hole absorption cross section.

70f course, in the full non-linear theory a (constant) deformation of the dilaton is a marginal deformation
since the position of the probe brane is a smooth function of the string coupling.
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3.5.3 Spherical excitations without D0-charge

We will be interested in the absorption cross section seen by an observer static in AdS, with
respect to Poincaré time®. We first consider the case of a probe brane without DO-charge,
My = 0. In the near horizon AdS; the classical solutions for an s-wave dilaton perturbation
with frequency @ with respect to the Poincaré time are given by

8o () = FOUFE) (3.91)

3.5.3.1 Quantum mechanical mode

As a warm-up we first treat the absorption cross section in the harmonic oscillator ap-
proximation (3.90), ie. assuming vanishing angular momentum of the excitations on the
probe-brane. In this case, by Taylor expansion the Lagrangian, the coupling of the dilaton
perturbation to the transverse excitation of the two-brane is given by

_ 1 5.2 2) .
S,,,,—2g2/6¢.( Sy +6x)., (3.92)

where " : : " denotes normal ordering and """ indicates derivative w.r.t. global time 7. To
leading order in g we get for an ingoing dilaton upon inserting (3.78)
3771:
V2 R?

(2/Sim|0) = =~ (=) ey (3.93)

S

Note that for My = 0, first order perturbation in )y vanishes and hence there is no transition
from the ground state to the first excited state |1). In order to evaluate the integral we
change to Kruskal coordinates which for )y = 0 are given by

R® int—1 T—%
R = 1—— =R Rian(-—2), (3.94)
r CcoST 2
R? int+ 1 —1+3
wR = t—l——:R%:Rtan( 2y,
r COST
Then
co+i€ 1 | . 2
208im|0) = —v2 iorv ( 2"V 3.95
(215 10) V2 / 1+2° <1+iv Y (3.95)
—oo+i€

= 2V27nRo(Rw —1)e R,

where the contour C closes in the upper half plane for @ > 0 and passes above the pole
at the origin in accordance with the i€ prescription for absorption. The boundary term in
(3.95) ensures the correct fall-off at v = +oo required in order to recast this amplitude as a

8This time coincides with the time of an asymptotic observer in Minkowski space-time.
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contour integral. Excitation to higher level is also possible and the corresponding amplitude
can be calculated by expanding V; to higher order in ). The corresponding amplitude is
sub-leading in g.

To determine the cross section for an s-wave dilaton into an s-wave excitation on the brane
for an asymptotic observer in AdS, x S? geometry we should compute the ingoing flux of
the field ¢, given in (3.91). By recalling the definition of conserved flux

F = 4ns. VRS (9010~ 09,9) (3.96)
and AdS, x S? metric
2 o, R o
ds” = —ﬁdt —i—r—za’r +R°dQ5 (3.97)
the ingoing flux is then
Fads, = 4T (3.98)

The AdS; cross section for this process is thus given by

o 2
Opds, = |7(3; . (3.99)

= Ro(Ro—1)%e 2R

Here T = 27R is the time interval in global coordinates. Of course, this is only part of the
complete absorption cross section for an s-wave dilaton, since we ignored higher angular
momentum excitation so far. Never the less this partial cross section allows us to discuss
some qualitative features. First we note that in spite of the discreteness of the spectrum
of the D2-brane Hamiltonian, the D2-brane can absorb arbitrarily small frequencies with
respect to Poincaré time. This is in agreement with the classical picture of black hole ab-
sorption. On the other hand, the low frequency behavior of (3.99) differs from the classical
s-wave absorption cross section, which is proportional to the square of transmission coeffi-
cient T that has a universal form for small frequencies ° [10], |T|?> ~ (Rw)?. We will come
back to this point in the conclusions. We should emphasize that the details of the absorp-
tion process described here are qualitatively different from the world-volume absorption in
flat space. In flat space, the low energy behavior is dominated by goldstone bosons and
possible other massless fields whereas here no massless degrees of freedom are present.
The fact that the cross section vanishes linearly for @ — 0 is due precisely to the absence
of massless degrees of freedom.

3.5.3.2 Higher partial waves

After computing the absorption cross section for simple case of vanishing angular exci-
tations, now we include such possibility to have total cross section. Recalling that the

9We have shown this universality in previous chapter.
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Chern-Simons term does not couple to §¢ we get the following interaction including all
angular momenta on S%:

3n
2

Sint = 2471_// [ ( aba 5%81,5%

R2
+26;¢afq/}dr. (3.100)

N

which can be obtained easily by using (3.83) and inserting, y in action of second order
perturbations (3.81). Now we use (3.89) to have in interaction in terms of free fields, we

f2 3°9,8y0,6 1//>

then end up with

37:
R2 1 .
Sin = Z ) / A (=1)m 7a}maj e T (3.101)
HOm s
1 Pl i) L i e g
+ l(l—l—l)alm l—me + (l—|—1) Im l—me T.

Here we have ignored terms that contain the annihilation operators a;,, and by, since we
take the initial state to be the ground state so that they do not contribute to the absorption
amplitude. Note that if we include the / = 0 mode for the last term then we indeed recover
the quantum mechanical mode discussed before. The transition amplitudes for fixed [ > 0
and m in leading order, in g, are then found to be 10

(=" [ ot 21
@, lma,l —m|Si|0) = cn—; /el“’U*T)eﬂ tdt (3.102)
-3
cot i€ LN\ 2
(=)™ / 1 ore (11—
— 2 LORY d
T 112° 1+iv Y
—oo+i€
(_1)l+m+l
= 27cy ; M2,7%(2Rw),

with ¢,, = 1/2 for m # 0, ¢,, = \/2/4 for m = 0 and (a,l m;a,] —m| denotes the final state
consisting of two excitations of type a with angular momentum / and L3 = £m respectively.
Furthermore

1

1 1
(1022 (1 — )"+ 2=24  (3.103)
22uB(;+u+)L,§+u—7L)_/l (1+1) (1=1)

1
2

My (2) =

10A¢ the end of the section we give the details of how to compute the integral
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is the Whittaker function [28] and B(x,y) is the beta function. Similarly

3
2

1" . 2, .
(it —misiul0) = ey [ oot iz

(_l)lj»m

M

S My (2Rw), (3.104)

= 27cy,

for two b-type excitations in the final state and

3n
2

—1)" ) 2, .
(b,Im;a,l —m|S;|0) = Cm())/elw(t—Rr)e—l(Zl-Fl)TdT

1+1
-2
1 .(_1)l+m+l
= EHZWM21+I7% (2R(J)), (3105)

for one a-type and one b-type excitation in the final state. In order to obtain the total cross
section for absorption of an s-wave dilaton on a two-brane without DO-charge we have
to sum the partial cross section over [ and m. Note that taking into account the quantum
mechanical mode the sum over [ starts from 1 for (3.102) and (3.105) and from O for
(3.104). Furthermore m =0, - - - ,I for (3.102) and (3.104) due to symmetry under m — —m,
and m = —I[,---,[ for (3.105). Putting all this together and dividing by the incoming flux,
Z 1., we end up with

1 &1 = 2041
= — 2R®)|* + M 2R®)[*.
OAds, 4Rw1:21 l| ( )"+ 32Ra) ; 1(1+1) | 21+1,%( )|

(3.106)

While we are not aware of any closed expression for the above sum we can never the less
extract the low frequency behavior with the help of an integral approximation of the sums
in (3.106). First we give the result and then describe how we get to it.

Ouas, =~ —5Ro(log(Rw)+ const), o —0. (3.107)

The total absorption cross section is thus non-analytic at @ = 0. The absorption cross sec-
tion for space-time scalars with non-vanishing angular momentum can be obtained along
the same lines. We indicate the modifications later in this chapter.

In order to isolate the low frequency behavior of the cross section (3.106) we use a conver-
gent expansion of the Whittaker function M; ,(z) in a series of Bessel functions given by
Buchholz [29]. It reads

= ) Y ) oy Pun(2VA2)
M) u(2) = T2 +1)27z zn;opn (2) TR (3.108)

where pE,Z” ) (z) are the Buchholz polynomials.

Assume that f(I) is a function such that f(/) ~ 1/I for [ >> 1 and let now L >> 1 be an
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integer. Then we have for z — 0

1 & 1 & 1 &1

7 LSOy @F = 2 XSOy @F + 2 ) 7 1Moy () = (3.109)
_ e L () (1) J1n(2V2I2) 1 4m(2V212)
— C(L)Z+4Z l:ZLZl%pn (Z)pm (Z) (2\/27Z)2+n+m )

where C(L) is a z-independent constant that depends logarithmically on L. To continue we

note that pE,l) (z) is bounded by z" with pél) (z) = 1. Furthermore for z — 0 we can replace

the sum over / by an integral so that

i Y F(DIMy ) (D) = Cot-42Y / ?sz"((g))ﬁ;‘jn’f(ﬁ) . (3.110)

=1 i 8zL

This integral is well defined and finite apart from a logarithmic divergence for x — 0. The
L-dependence between the first and second line cancels and we are left with

iif(l)M%;(zﬂ2 ~ 4z(log(z) +const +..). (3.111)
=1

3.5.4 Spherical excitations with DO-charge

Let us now consider a D2-brane which is charged under the DO-branes are bounded to it,
with 0 < My << M,. In this case the interaction term at leading order in g is linear and we
have absorption to the first excited state,|1). In particular, for the absorption of an s-wave
dilaton perturbation

w
2

My

Sint M2g2

—
[=7]
<

(t)cosh(yp)dxdr, (3.112)

Sl

so that leading order absorption amplitude becomes

3n
2
Mocosh . .
1]Sim0) = (’C(’S(%‘))/el‘*’<’i>e”dr. (3.113)
V2gM,

e}

This integral can again be brought in closed form with a suitable transformation of vari-

ables,
My cosh(xp) e 1 \?
0 i®WRv
1[Sin|0) = V2———F7— ol —— ) d 3.114
< | lnt| > \f \ﬁgMQ / e <1+1V) v, ( )
—ootie
leading to
My cosh
(1]Sim|0) = iW2ﬁane—Rw (3.115)
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where we have assumed f /R2 << 1 (which is concluded from 0 < My < M;). Proceeding
as above we then obtain the AdS cross section
f 2 —2mR )

Opds, — ——Rwe

s (3.116)

3.5.5 Dilaton with arbitrary angular momentum

So far we have only considered the absorption of s-wave dilaton, but this can be generalized
to find the absorption cross-section of a dilaton with an arbitrary angular momentum on a
probe brane with or with-out DO-charge, f. We compute the absorption of such a dilation
for non-vanishing DO-charge case and also give a overall view of how to compute the
absorption for uncharged D2-brane.

3.5.5.1 With DO-charge

Concretely we take the dilaton perturbation of the four space-time dilaton with arbitrary
angular momentum

. 2

59(£,0,0) = Yin(6,0)e ™) . (3.117)
For f # 0 the dilaton couples to the probe brane oscillation through the first order interac-
tion

3

2 N2
Sit = R2g];4n / / V889 [cosh(xo)SJH—( 72[;‘2) sinh(xO)F“bfab] dt
,%SZ
_|_
_ 2R2 //\ﬁaq)te(p ! v f8x+8t// (3.118)
—Ig

The leading order, non-vanishing components of the transition amplitude for absorption of
a dilaton with angular momentum /,m into an a-type excitation is thus given by

(aslmlSizl0) = VR4 R4\// 0=") (2 4 )e dr
ff;j\? 1.1 (2Rw), (3.119)

where we have ignored terms of order f? and higher when going from the first to the
second line. Indeed we have argued above that for charged probe branes the absorption
cannot be treated perturbatively unless f << R*. Similarly we get for absorption into an
b-type excitation

_f(l —l) A+1

b;Im|S; ;|0 M
< m| mt|> ng\/ﬁ

141, 1(2Rw)+0(f ). (3.120)
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Note that a naive application of (3.120) for [ = 0 leads to a v/2 discrepancy with the earlier
result (3.113). This apparent contradiction is resolved by recalling that for / = 0 there is no
a-mode so that there is an extra v/2 in the normalization of (3.89). Note also that for [ = 1
the amplitude for absorption in to a b-type excitation vanishes.

The total cross section for the absorption of ¢, is the again obtained by adding the squares
of the a- and b-type amplitudes (without summing over m). This gives

fFo[e+n? o, (=1
SeRoR? |1 My QRO+ Gy M,

1) M1y RO

Oads, +1,%

(3.121)

which vanishes linearly for small .

3.5.5.2 Without DO-charge

To find the absorption cross-section for a dilaton with arbitrary angular momentum for
vanishing DO-charge, f = 0, we consider the dilaton perturbation of the form

. 2
80(,0,0) = Yiu(6,0)e T . (3.122)

taking (3.100), since now we have set of three spherical harmonic functions, the orthogo-
nality condition we have used to write down (3.101) does not apply here, hence we have to
keep summation over [y, my,l>,m; and for example aleaLm replaces by a;lmlalzmz and so
on.

The integral over sphere can be expressed by 3j symbol as

(_1)11+12L+M\/(211 +1)2L+1)2L+1)
4r

o L L L\N(L L L
0O 0 0/)\m m —M
which, in turn can be calculated as a finite sum by using the Racah formula [30]

(h 2 _%)Z(_l)zl—zzw\/m (3.123)

mp mp

* * _
/ymlllymzlzyLM -
S2

x/(Iy —m) (I +my) (L — m) (I +my) (L — M) (L+M)! x ngt)

where A(/;/,L) is a triangle coefficient

(h+bL—-D)(L+L—-1)(L+1;—1])!
(1+hL+hL+L)!

A(liLL) = (3.124)

and

f@&) =t (L—bL+m+)(L—1I1 —my+t)!{ (1 +l—L—0)!(ly —my — 1) (la +mp —1)!
(3.125)
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note that sum goes over all integer values of ¢ for which the arguments of factorials are
non-negative.

3.5.6 Detailed calculation of absorption amplitude’s integral

For completeness we include the detailed calculation of the integrals appeared in (3.102)
and (3.113). The integrals are in the form of

3n
2
. 20
/ dre'®= ") iNT (3.126)
=
where N is an arbitrary integer. We define variable x through
R? hyosint — 1
ximpo g SOSMXoSIMTZ D (3.127)
r cosh o cos T+ sinh g
Then we have
%1 2
/ A1) —iNT %dxeia)Rxe—iNr(x)dT (3.128)
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2
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where ”(N)“ denotes the number of derivatives and A is a constant
. N
i
A= (tanh)o — . 3.129
e o
This sum which appears in the result of integral is of the form
N
N 1
—20)NTIk 3.130
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we can write the sum in terms of Hypergeometric function, ie.
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where M(a,b,;z) is Confluent Hypergeometric function which is related to Whittaker func-
tion, My ,(z), by [28]

Mj, 4 (z) = Htiei 2y <u—l+;,2u+l;z> (3.132)

Therefore (3.126) has a solution as

3n
2 N
. . 1
/ e ) (icoshlo —tanh)(o) My 1 (20). (3.133)
-2

3.6 Discussion

In this chapter we reviewed the Calabi-Yau black holes arise in IIA string theory and par-
ticularly we concerned with the special case of D4-DO0 black hole. Afterward, by looking
at the entropy, we explained why we are interested in the supersymmetric black holes and
how they provide us the capability of identifying and counting the microstates of black hole
and examining its equality to the macroscopic entropy.

As the main point, we have obtained analytic expressions for the low energy absorption
cross-section of space-time scalars on the horizon wrapped D2-branes, static in global co-
ordinates of the near horizon AdS, geometry. The fact that these amplitudes can be com-
puted exactly may come as a surprise since the probe two-brane describes a complicated
trajectory in the asymptotic Poincaré coordinates.

An interesting feature is that although the Hamiltonian of the D2-brane has a discrete spec-
trum with spacing given by the inverse of the radius of the horizon the D2-brane can absorb
arbitrarily small frequencies with respect to an asymptotic observer. We should mention
that we only considered the bosonic sector of the world-volume theory. However, it is
not hard to see that fermions give a vanishing contribution at the lowest (quadratic) level.
Also we have not considered fixed scalars in this paper although their inclusion should be
straight forward. As mentioned before, the details of the absorption process described here
are qualitatively different from the world-volume absorption on D-branes in flat space. In
flat space, the low energy behavior is dominated by goldstone bosons and possible other
massless fields whereas here no massless degrees of freedom are present. The fact that
the cross section vanishes linearly for @ — 0 is due precisely to the absence of massless
degrees of freedom.

In view of a possible interpretation for a dual interpretation of 4-dimensional CY-black
holes in terms of the quantum mechanics of probe D2-branes wrapped on the S? of their
near horizon geometry an encouraging result would have been to find agreement for the low
energy absorption cross section on both sides. Our concrete calculation shows however that
this is not the case since the microscopic absorption cross section on the two-brane does
not have the correct behavior at small frequencies compared to the classical absorption
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cross section of massless scalars which vanishes quadratically in @. However, the compar-
ison between these two calculations is more subtle. First we note that our absorption cross
section was computed for wrapped D2-branes with small DO-charge whereas the dominant
contribution to the entropy comes from wrapped branes with large DO-charge. It would
be desirable to know the result in that case although the calculation appears to be more
involved since, as we showed, linearized perturbation theory breaks down in this situation.
A possible application of the present calculation is to interpret a single wrapped D2-brane
with small DO-charge as a small non-extremal perturbation of the extremal black hole. This
is sensible since for small DO-charge the two-brane is confined to the near horizon AdS,
geometry of the asymptotically flat global geometry. In this case we should compare the
classical absorption cross section for the near extremal black hole with the the product of
the transmission coefficient from asymptotically flat space to the near horizon AdS; region
and the AdS; absorption cross section computed in this paper. The microscopic cross sec-
tion obtained in this way vanishes like (R®)>. So we still have disagreement. One possible
explanation for the disagreement could be that there are microscopic configurations, other
than the wrapped D2-branes considered here, correspond to a non-extremal black hole
which reproduce the correct low energy behavior. One such generalization is to consider
multi-branes wrapping horizon, however this does not change qualitative small frequency
behavior. Another possibility is to consider the scattering of massless space-time scalers on
individual probe D0O-branes. However in that case the brane absorption amplitude vanishes
due to energy-momentum conservation.






CHAPTER 4

Supersymmetric Branes in
Calabi-Yau Black hole

4.1 Introduction

In previous chapter, we saw that the extremal black holes in string theory play an important
role to understand the precise microscopic description of four dimensional black holes ob-
tained by the compactification of type IIA string theory on Calabi-Yau three-fold X. There,
we restricted ourselves to the case where only the D4-D0 charges were non-zero on the
background geometry. In general, we would like to get a precise microscopic description
of a four dimensional black hole with all possible charges of IIA theory, namely D6-D4-
D2-D0 charges, all non-vanishing.

This is actually an outstanding problem in studying the extremal black holes in string theory
and their relation to the conformal field theories to get a precise microscopic description of
four-dimensional black holes with D6-D4-D2-D0-charges obtained by the compactification
of type IIA string theory on a Calabi-Yau three-fold X. The charges are due to the D-branes
completely wrapped on the non-trivial cycles of X. For generic charges one expects that
this black hole geometry to be dual to some conformal quantum mechanics on the boundary
of the near horizon AdS, geometry.

For vanishing D6-charge the geometric entropy of such black holes can be given a micro-
scopic understanding upon lifting this solution to M-theory. From the M-theory perspective
this class of black holes are obtained by wrapping M5-branes with fluxes and momentum
along the M-theory circle and on a four-cycle in X. The corresponding near-horizon ge-
ometry is dual to some 1+ 1-dimensional conformal field theory which lives on the dimen-
sionally reduced five-brane world-volume [26]. This observation allowed the authors of
[26] to derive the asymptotic degeneracy of states using standard methods of conformal
field theory. Upon compactification to IIA theory the near horizon geometry obtained is
AdS; x §2. For this model a candidate for a dual quantum mechanics for the D4-DO0 black
hole has been proposed [7] in terms of the degrees of freedom of probe DO-branes in this
background (see also [31, 32] for related discussions).

When the D6-brane charge is non-zero, the 4D black hole in IIA compactified on the
Calabi-Yau may be lifted to a 5D black hole in M-theory on CY3 X TNy, where TN de-
notes the four-dimensional Euclidean Taub-NUT space with charges p®. While for large
distances compared to the size of the asymptotic Taub-NUT circle these black hole geome-
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tries asymptotes to R? x S!, and therefore are effectively four-dimensional, the M-theory
circle near the horizon is proportional to the size of the horizon so that the M-theory per-
spective is more appropriate. Essentially, the near horizon geometry is a five-dimensional
spinning black hole sitting at the center of the Taub-NUT geometry, where the black hole
is assumed to sit. This 4D-5D connection has been exploited in [33] to relate a certain
partition function of a class of four-dimensional black holes to that of five-dimensional
black holes. The near horizon-geometry in five dimensions is essentially AdS, x $3 /7 -
Consequently for non-vanishing D6-charge the problem is not directly related to a 1+1-
dimensional CFT .

On the other hand it appears that the supersymmetric probe branes in the near horizon
geometry play a role in understanding the dual quantum mechanics and the black hole
partition function. They can be thought of as the “constituents” of the black hole in ques-
tion. The asymptotic degeneracy of the electric constituents in the background flux geom-
etry supported by the magnetic charges accounts for the black hole entropy in some cases
[7, 32]. For instance it has been shown in [7] that the ground state degeneracy of DO-branes
in a D4-brane flux background reproduces the correct asymptotic degeneracy for D4-D0
charge black holes. Here the relevant Hamiltonian is the one of conformal quantum me-
chanics on the moduli space of DO-branes in the flux background. An important subtlety is
though that the appropriate Hamiltonian appears to be that which generates translation in
“global” time rather than Poincaré time which coincides with asymptotic time”. The dom-
inant contribution to the entropy comes from DO-branes bound to two-branes wrapping the
horizon of the black hole.

On another front it has been shown [37] that the elliptic genus of the (0,4)-CFT [26] dual to
black holes with D4-D2-D0-charge has a dilute gas expansion dominated by multi-particle
chiral primaries which are just the stationary M2 (and anti-M2) branes in global AdSs-
coordinates, wrapped on holomorphic curves in the Calabi-Yau and sitting at the center
of AdS;. This provides a derivation of the OSV-conjecture relating the mixed partition
function of the black hole to the square of the topological string partition function [38].

In what follows we prepare the ground for extending the above-mentioned results [7, 37]
to black holes with D6-charge by describing the supersymmetric probe branes in D6-
charge backgrounds [9]. Of course, in this case we do not have a known “parent” 1+ 1-
dimensional CFT to compare the probe-brane degeneracies with. Nevertheless one can
hope that understanding the degeneracies of these states will give some insight about
the underlying microscopic theory. In Section 2 we will describe the eleven-dimensional
near horizon geometry of a 4D black hole with generic D6-D4-D2-D0 charge. While the
full space-time geometry of a generic black hole with D6-charge is a solution of five-
dimensional .#" = 2 supergravity with n, — 1 vector-multiplets, the attractor mechanism

UIn fact it has been argued in [34] that black holes with D6-charge are related through a chain of string
dualities to BPS states without D6-charge. A similar relation was also conjectured in [35] based on an embed-
ding of space-time in the total space of the U (1)-gauge bundle over near horizon geometry of the black hole.
It would be interesting to see how these two approaches are related.

2The Poincare-Hamiltoinian has a continuos spectrum with no ground state as a consequence of the incom-
pleteness of classical dynamics in Poincaré coordinates [36].
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ensures that its near-horizon geometry is equivalently described in terms of .#" = 2 super-
gravity with just one vector multiplet - the graviphoton, i.e. minimal supergravity in five
dimensions. A classification of the solutions of minimal supergravity in five dimensions
can be found in [39]. This property simplifies the task of finding the relevant Killing spinors
for these black holes. In Section 3 we obtain the near horizon killing spinor in global co-
ordinates and analyze the xK-symmetry for an stationary probe branes in global time along
the lines of [20, 40]. In particular we find BPS two-branes wrapped on a holomorphic
two-cycle in the Calabi-Yau. These correspond to the zero-branes found in [40] and have
the right properties to be the relevant degrees of freedom for deriving the OSV-relation
for black holes with D6-charge. In addition we find BPS five-branes which wrap either
a holomorphic four-cycle in the Calabi-Yau and an S' in space-time or wrap the horizon
S/ w0 completely and a holomorphic two-cycle in the Calabi-Yau. These may play a role
analogous to the horizon wrapped two-branes for D4-D0-black holes [7]. We plan to report
on these issues in subsequent work.

4.2 Supersymmetric properties of the branes

The world-volume action of D-branes have two symmetries. First, there is K-symmetry
which is a local symmetry and, second, global space-time supersymmetry which parametrized
by Killing spinors €.

In general, a brane configuration trajectory will preserve the space-time supersymmetry if
the action on the world-volume fermions can be compensated by the x transformation. In
order for the D-brane to be supersymmetric we only need to check that the xK-symmetry
condition

I'e=¢ 4.1

is satisfied. € is the pull-back of Killing spinor on to the brane world-volume, correspond-
ing to the unbroken supersymmetry and I is called the x projection operator. The expres-
sion for Kk projection matrix, I', depends on the embedding map from the world-volume of
brane into the space-time. For any Dp-brane, I is given by

p—2

Ao oo +55
F[J,]V|unvrlyﬁlol‘anonr‘lgll)z F(O) (4.2)

vdeth Z 1
Jdet(G 1+ 7) & 2!
1

Lo = —————=e"MTy 4, (4.3)

(p+ 1)1V deth

r =

where the hatted indices are the world-volume coordinates and / is the determinant of the
pull-back of the space-time metric to the world-volume, h,;, and .7 = .7 + . Killing
spinors are the solution of Killing spinor equations, which are the equations of vanishing
supersymmetry transformations for the gravitino. The Killing spinor equation in eleven
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dimensions is given by

1
0 = |:VM + ﬁ (FMN1N2N3N4 o 86/‘];1 1—~N2N3N4) GN|N2N3N4:| €1
1
Vu = du+ ZwMABFAB and G=dcP, (4.4)

where the capital indices run from zero to ten and wy,p4 is the spin connection. Since we are
interested in black holes in lower dimensions, we would like to write the ten dimensional
spinor, €11, as the tensor product of internal and non-compact spinors. In case of M-theory,
this is to write the spinor as

£11=€EQM 4.5)

where, respectively, € and 1 are the four dimensional and the internal (Calabi-Yau) spinors.
The Killing equation on the Calabi-Yau is solved by the covariant constant spinors 1. We
have chosen the following conventions: the y-matrices on the X w.r.t. an orthonormal frame
we denote by p' with

{p',pl} =28V (4.6)

The spinors 1+ obey the relations

PN+ = £N+,
pin+ = 0) pin-= 07 (47)

where i and i are indices w.r.t. complex coordinates on X. The y-matrices of five-dimensional
space w.r.t. an orthonormal frame we denote by y“, such that the eleven-dimensional
y-matrices T, M = 0,...,11, decompose the IV into a tensor product of five and six-
dimensional y-matrices,as

I = Y®pa), a=0,..,4 4.8)
I = yyopi=1wp, i=5..,11

where in the second line we have used that ¥5) = iy?123* = 1. Decomposition of spinors
leads to the separation of Killing spinor equations and to treat their corresponding solutions
independently. The five-dimensional space-time supersymmetry arises from the solutions
of Killing spinor equation are then

1 i
I+ TRP — ——— (FypD8 — 4Fy TN =0 4.9
i+ Ourp 4\B(AB M unIT) | € 4.9)

€ is a five-dimensional spinor. This leads to the five-dimensional equations and determines
the Killing spinor €. So the recipe for recognizing if a D-brane preserves some supersym-
metry, is to find the Killing spinor and also determine the expression for I' and see if the
Kk-symmetry condition (4.1) holds.
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4.3 Supersymmetric branes in M-theory attractor geometries

4.3.1 Near horizon geometry of D6-D4-D2-D0 black holes

In order to be self-contained and to fix the conventions we first review the relevant static
half BPS solutions of four-dimensional .4 = 2 supergravity with n, vector multiplets [2].
The general stationary BPS configurations were derived in [41, 42, 43]. We then describe
the lift of these solutions to five dimensions [33] and determine the near horizon geometry
for a given set of four-dimensional charges.

We consider static single-centered BPS solutions in four dimensions. These solutions are
characterized by their asymptotic magnetic and electric charges (p’,q;), I =0,...,n, and
their asymptotic moduli. As such they are completely determined in terms of 2n, + 2 real
harmonic functions on R3

1

He)=n+2, mr)=n+2, (4.10)
r r
subjected to the condition
plhy—qih! =0. (4.11)
The corresponding metric is given by
T S(r)
dsty) = — ——~dt* + —2dx*. 4.12
5 S(r) + T ( )
The function S can be expressed as
S=2m\/HQ3 — (HOL)?, (4.13)
with
Hy H*H, CupcH*HBHC
L = — )
2 2HO 6(H")?
1
0 = Cancyy". (4.14)

Here A,B,C € {1,...,n,} and y* are implicitly determined by the equation

CapcHBHC

Cascy”y" = 2Ha + 7o

(4.15)

The gauge potentials are determined again by the harmonic functions (4.10) and S(r) (4.13)

1 dS
I _ 1 I _ 1
Ay = ga—HIdH-M , deo/’ = x3dH" . (4.16)
To complete the four-dimensional description of generic D6-D4-D2-D0 attractor black
holes we give the complex scalar fields

A i 08
At e 4.17)
H0_|_it95. :

T 9Hy
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As mentioned above for generic values of these charges the string coupling becomes large
in the near horizon regime. To allow for a unified description for generic charges we now
give the lift of these solutions to five dimensions. For a nice discussion of this lift see for
example [44].

The five dimensional metric is given by

dss) = 2237%(dy+AY)  +27 Py dsy, (4.18)

1
= —(2¥RQ) i+ 2Ly + )+ (223Q) (o Ay O+ HOGP),

with
1 AQ,Bg,C 7 S
v =|-=C 1373t =— 4.19
(6 4pc31° 3173 > 2THOO (4.19)
The four and five dimensional gauge potentials are related by
A A 0 A
YA HY L
= ——dt+ (= — =) (dy +&°) - F* 4.20
o+ (=g v+ 2
where we introduced the five dimensional scalars
a_ Y
Y2 = W 4.21)
They obey the relation
1
—CapcYYBYC =1. (4.22)

6

Let us now take the near horizon limit, r < {p’,q;}, of the five-dimensional solution. For
this we define
1

o = —,
r

dQ3 = d6%+sin®0de> + (dy/p° +cos0de)?,

Rigs = lim (22/3H°Q), 4.23)
r—0
) (HO)I/ZL
J = }1_1;% <Q3/2 and
) = limy?4.
r—0

Then, rescaling ¢ appropriately (denoted again by ¢) we obtain [45]

> ) dr 0 > de? |,
dsis) = Raas | —| 5 +/(dw/p’ +cos0dg) | +—-+dQ3 |, (424
yA92/3 pA
AL 0T A L P Gy, 4.25
s) 3 oY (+:29)

A = \fRAds <(Z+J(dl[//p0+cosed¢)>. (4.26)
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The near horizon geometry depends on three parameters: the D6 charge p°, the AdS,
radius Ragqs which is determined by the value of Q at the horizon and the five-dimensional
angular momentum J. These are also the quantities that appear in the Bekenstein-Hawking
entropy. In other words, as pointed out in [33] (see also [46]) the Taub-NUT fibration,
which interpolates between the four-dimensional and the five-dimensional geometry gives
a simple geometric representation of the entropy formula for the 4D-entropy of D6-D4-
D2-DO0 black holes based on special geometry [47]. For J — 1 a closed light-like curve
develops. This singular limit has recently been analyzed in [35].

4.3.2 Global coordinates and half BPS-branes, five-dimensional analysis

Next we introduce global coordinates. For this we start with the expressions (4.24) and
(4.26) for the metric and gauge field respectively and change coordinates as (sinB :=J)

L cosBcoshy sint
~ coshycosT+sinhy’
1
e 4.27
AdS coshycosT+sinhy’ -
N T
ll/pomc — 1//—|-2tanBtanh_l (e_% tan(i)).

The metric and field strength of the graviphoton then take the form

dslsy = Rigs(—cosh’ xd7?+dy” + (sinBsinh xdt — cos Bos)* +dQ3) ,
V3 o
F = TRAdS (cosBcosh ydy Adt —sinBsin6d6 Adg) , (4.28)

where dQ3 is the line element of the unit two-sphere and

o3 = dy/p’+cos@dg.

It is straightforward to lift this near horizon geometry to eleven dimensions. The lifted
geometry is a direct product of the five-dimensional space and a Calabi-Yau three-fold X
with Kihler form Y'ws where wy € H?*(X,7Z) is a basis. The three-form C Bl in eleven
dimensions is proportional to the wedge product of the gauge field (4.26) with the Kéhler
form. Now to derive the Killing spinors from equations (4.9) we need first to have the
fiinf-beine and the spin connections. With a convenient choice of the fiinf-beine

e- = coshydr, el =dy,
e = do, ¢> =sin@dg, (4.29)

d
& = COSB(I(I)/+c050d¢>—sinBsinh)(d'c,
p
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The spin connections are then given by

1 2 1 3
w3y = —=cosBe, 4 = —cosBe
2 2
0} = 1sinBe0 = 1sinBe1
14 = ) ) W4 = )
cos 0O 1
o = - e+ 5cosBe4 (4.30)
simhy o 1. 4
= — — —sinB
W1 coshxe 2sm e
W2 = Wp=03=03=0

Now, to solve the Killing equation we substitute (4.30) and (4.28) in the Killing spinor
equation 4.4. The five-dimensional part of the Killing equation becomes

O - a]//g,
1 1 [
0 = <8¢+200sBsin9y24—20089)/23+;sinBsin9}/2>8,
| .
0 — <89—2cosBy34—;sinB};’>8, 4.31)

1 1 ]
(QT + 3 sinBcosh y !4 — 3 sinh ! — %coshx cosB}/l> €,

1 .

0 = <‘9x —3 sinBy™ + ;COSB’)/O> €.
These equations are solved by (see also [40])
3 = S(B7%7T767¢)807
S(B,x,7,0,0) = e 2BV itV oaTr 0207" 03077 (4.32)

and & is an arbitrary, constant four-component spinor.

We find the BPS configurations of M-branes that are wrapped on compact portions of
our background and, possibly, also (in case of M5-brane) have components tangent to the
horizon, and are point-like in the AdS space. In the following we classify the stationary
supersymmetric probe branes in this background.

This implies in particular that they are static in AdS,, i.e. } = 0 but allows for M2-branes
orbiting around the three-dimensional horizon as well as M5-branes partially or fully wrap-
ping the horizon.

4.3.3 Half BPS M2-branes in global coordinates

We begin with the set of stationary, supersymmetric M2-branes wrapping a holomorphic
two-cycle in X. The x-symmetry condition is [18]

Fe@n = €90 (4.33)
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with

o —
(p+1D)Wdeth %

1 dx*

= —— il 4.34
\/]T.O dT e,ﬁ’a ®1 9 ( )
where we have assumed that the M2-brane has positive orientation. The hatted indices
are the world-volume coordinates and £ is the pull-back of the space-time metric to the
world-volume. The second line is expressed in static gauge X = 1. Having the form of
Killing spinor form (4.32) and plug it in the k-symmetry condition (4.33) the BPS condition
is then

STIISepon = gan (4.35)

We need to know the component of S~'T'S which are of the form Silel‘;}/aS for different

values of b. The explicit prefactors are’

S~'e% 1, S = cosBcoshy cos Ty + isin Bcos 07°* +icos Bcosh x sin 7y'°
—isinBsin @ (cos 7 — sin ¢y"?)

S~1 e v, 8 = cosBcosh xy; 4 sinBsin tsin 6 (cos )3 — sin¢ys) — sinBsin Tcos 0y
+cosBsinh y sin Ty — isin Bcos Tcos 67/14 —icosBsinh ) cos ’L’}/lo

+isinBcos Tsin 0(cos ¢y — sin py'?)

S~1e% v, § = cosBcosh y cos t(cos ¢ +sin@ys) — isin Bsin 07>
+icosBsinh y (cos ¢Y°% + sin 9 1*3) + isin Bcos 6 (cos ¢ y** + sin g y*)
—icos Bcosh x sint(cos ¢y'% +singy'?)
(4.36)
S71e% 9, § = cosBcosh jy cos Ty — icos Bcosh i sin T)/M + icosBsinh)m/04
+isinBsin B (cos ¢y — sin ¢ y*?)

cosB

S ey, S = {cosh y cos Tcos 8y, — cosh y cos TsinO(cospys —sindy,)

—icosh y sinTcos 8% 4 icosh x sin Tsin 6 (cos ¢ 7' —sin ¢ y'?)
+isinh y cos 07°* — isinh y sin 8 (cos ¢ *° — sinp7y"?)}

Let us first consider the case where the two-brane sits at fixed 0 and B but rotates in the
¢ direction. For ¢ # 41 the BPS condition can never be satisfied. For ¢ = 1 we have
\/|hoo| = |cos(B) sinh()) + sin(B) cos(6)| and

dx*

L) = ?eﬁya = —coshy?’ +sin8y° —sinBsinh y¥* + cos Bcos 0y (4.37)

3In Appendix B we provide the a list of y-matrix identities which are useful for computing the prefactors
of xK-symmetry condition
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and

Sill“(o)S = cosBcosh y cosT(—y° 4 y*) + i(cos Bsinh ) + sin Bcos 6)y**
+icosBcosh y sint(y'% — y'*) — isin Bsin 8 (cos ¢y — sin ¢ 7°%)
+isinBsin 6 (cos ¢y —sinpy*?). (4.38)

Requiring the k-symmetry condition be independent of T implies

ey = —g. (4.39)
Furthermore if the latter condition is fulfilled we have

Vhoo

which is just the BPS condition (4.33). These solutions correspond to the zero branes found
in [40]. Note that this brane is BPS for ¢ = 1 while sitting at the north pole 8 = 0 on the
base S2. This does not mean that this brane is static. Indeed, as the velocity along the fiber
is given by yr/p®+ cos 0, this configuration is geometrically equivalent to that with ¢ =0
and ¥ = p® which is a trajectory along the fiber of the S° /7 po-bundle, i.e. a “great circle”
on S?/7 - If we assume instead that ¢ = const, 0 = const, then Y = p° necessarily and
the BPS condition reads

l'eepn = < e>®n:£®n (4.40)

[—cos(0)y** 4 sin(0)(cos(9)y™" —sin(¢)y?)]ey = &. (4.41)

So the M2-brane can move along the fiber with constant velocity p® and sits at any point
of the base space S?. The condition (4.41) reduces to (4.39) for 6 = 0.

For =0, ¢ = ¢ (¢ = ¢o -+ 7) constant and necessarily = 1 (§ = —1) the BPS condition
becomes

(cos(9)y*® +sin(9)y*") e = &. (4.42)

Geometrically, this is the case where the M2-brane moves along a meridian of the base >
with constant velocity one and does not move along the fiber of the S3 /7 po-bundle over 52,

To summarize, an M2-brane on C; is BPS if and only if it rotates with unit angular ve-
locity on the covering space S°. For y = 0 they describe uncharged null-geodesics on S°,
while for x > 0 the M2-branes are charged and follow a time-like trajectory *. The ro-
tation is required to stabilize them at fixed . This interpretation is compatible with the
four-dimensional analysis in [20] where it was observed that existence of static half-BPS
branes requires that the symplectic product of the charge vector of the probe brane with the
background charges does not vanish. Let us consider rotation along the fiber first. Then,
since the above results for the wrapped M2-branes are independent of B we can consider
vanishing B. In this case the non-vanishing of the symplectic product in four dimensions

4See [40] for a detailed analysis of the corresponding Born-Infeld action.
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requires that the two-brane rotates along the fiber. Invoking rotational invariance on S> we
then conclude that rotation along any geodesic circle of the S® will lead to a half BPS-state.

Note also that a M2-brane sitting for example at & = 0 and rotating in the fiber with y =
p° preserves the same supersymmetry as an anti-M2-brane (i.e. negative orientation) at
6 = m and y = p°. Thus these branes are mutually BPS. This property makes them natural
candidates to extend the observation of [37] to black holes with D6-charge.

4.3.4 Half BPS five-branes

We now consider static M5-branes which partially, or fully wrap the horizon of the five-
dimensional black hole. The remaining dimensions of the five-brane are wrapped on a
holomorphic cycle in X.

4341 MS5onCyxY

For the M5-brane just to wrap the horizon partially, we wrap four dimensions of the brane
on the four-cycle of X and the the rest dimension wrap each cycles of S°. We will assume
that the four-cycle C4 € X is chosen such that the pull back of the RR-field dC Bl to the
world-volume of the five-brane vanishes. Then, since the coupling of the bulk to the world-
volume three form F@¢ inyolves £*(dCP), we can consistently set F abé — (. In addition
we will assume that the five-brane is wrapped holomorphically on C4. Then the CY-part of
I"is just —1 [20], so that

1 PN
r = —Sadeememm.
(p+1)!W/deth abedef

1 e®gxroxY S b

- _2\/> 80“86b vYab®ﬂ (3:43)

The generic situation can be understood by distinguishing three different S'-wrappings:

i)Y =(7,0): here

Vh = y/cosh?(x) — sin?(B) sinh?(y) . (4.44)
We then conclude that the brane is BPS (I'e = ¢€) for y = 0 provided

ef%myoze%mgo = —g. (4.45)

There is no condition on B and y. This brane wraps a geodesic circle in the horizon S* /7 0
and is uncharged w.r.t. background fluxes.

ii)Y = (7,¢): For B=0 and y = 0 the brane is BPS for all values of 6 provided
We look at the case where y = 0.
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We have

1 e™ox+ox”
T = — % 10 ¢4 el Yab (4.46)

1
(e~ i) =~ (ehh — e

1
2vh h

1
- -7 (€0e3 703 + €ge3 3 + €nes Vo)

1
= - ﬁ (cosh x sin 893 — sin Bsinh  sin 8943 + cos Bcosh  cos 0 Yy4)

= —(sinByy3 +cosBcosOyn4)

where in last line we imposed the restriction ¥ = 0. We need

S'yuS = —cosBcosBy™ +cosBsinO(cos g1 — sin py*?) (4.47)

—isinB(cos Ty — isinTy°!)

S!S = —cosB(cospy*® —sin¢y*?) — sin 0% (4.48)
So
S*IF(O)S = (sin® @ 4 cos? Bcos® 0)y™ +icos Bsin Bcos O (cos 7y — isinTy°!)
—(1—cos?B)sin 6 cos 6 (cos 7 — sin ¢7"?) (4.49)

The BPS condition (for y = 0) holds in two cases: First, for B = 0 the brane is BPS for all
values of . In this case the brane wraps a geodesic in S /7 o and is uncharged. Second,

if B # 0 the brane is BPS only for 6 = 7. Both cases provided

Yo4€0 = —&p.- (4.50)

iii) Y = (7, y): here the brane is BPS for y = 0 and B = 0 provided
e 1010y 01012 0 g — g (4.51)
There is no solution for B # 0.

To summarize, a M5 on C4 X Y is BPS provided it wraps a maximal geodesic circle in
the squashed horizon, S° /7. - From the ten-dimensional perspective these results may be
interpreted as follows: An M5-brane wrapped along the S> base becomes an NS5-brane in
ten-dimensions which is clearly uncharged and therefore static at y = 0. If the M5-branes
is wrapped along the S3-fiber instead, this will become a D4-brane with charge vector
aligned with that of the background. This brane cannot be static in global time unless the
background flux vanishes, i.e. B =0.

Note that the absence of static branes wrapped along the fiber for B # 0 does not exclude
stationary branes. Indeed for rotation in the ¢ direction, ¢ = +1, we have

—1
I' = — [cosh  cos BYps £ sin 6 cos Bys4) (4.52)

Vh
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with

Vdet h= \/COSZB(SinhZX +c0s20). (4.53)

We need to have explicit form of S~!y34S and S~!94S, they are as follows

S7'%4S = cosB(cos@yss —sin@ ) —isin Bcosh x cos Tcos 8 (cos gy — singp)
—isinBcosh ) cos Tsin 0y — sinBcosh  sin Tcos 0(cos @ y13 —sin@yi2)
+sinBsinh } cos 0(cos @3 — sin @ Y2) — sinBcosh x sin Tsin 04
+ sin Bsinh y sin 07 (4.54)

S7'%4S = —cosBcoshy cos 8™ 4 cosBcosh y sin @ (cos ¢ y*° — sin p™?)
—icosBsinh ) cos Tsin 0 (cos @73 — sin @7, + cos Bsinh  sin T cos oy
— cos Bsinh y sin 7sin 0(cos 97> — sin ¢y'?) — isin B(cos Ty — isin 79°1)

+icosBsinh y cos Tcos 87 (4.55)
So x-symmetry condition derives as

[(—icoschoshx sinh y cos Tsin 0 Ficos BsinBcosh x cos Tsin 6 cos 0)(cos @3 — sin @)

+(—cos? Bcosh x sinh j sin Tsin @ T cos Bsin Bcosh y sin Tcos 0'sin ) (cos ;3 — sin )

—1—(0052 Bcosh y sinh x cos 6 T cos Bsin Bcosh ¥ sin? 0)sin Ty
—I—(icos2 Bcosh y sinh x cos @ i cos Bsin Bcosh x sin’ 0)costyy

+cosBsinBcosh x (sinTy; + icos T}/O)] & = 0¢g (4.56)

for T-dependent terms, and

—1
[(— cos® Bcosh? y cos O + cos Bsin Bsinh y sin” ) y**
\/coszB(sinh2 X +cos?0)
+(cos® Bcosh? y sin 6 = cos Bsin Bsinh y cos 6 sin 0) (cos ¢ ¥** — sin ¢7*?)
T cos? Bsin 0(cos ¢y — sin(])}pz)]eo =g 4.57)

for 7-independent terms.
The BPS condition is then given by

e = Feo,
sinhy = FtanBcosH. (4.58)

It is clear that since y = 0, for 6 = 7/2 the determinant vanishes and hence the brane can
not stay at the geodesic. These solutions correspond to rotating BPS configurations found
in [40].
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4342 M50nCy xS/ 7,0

The induced metric /4 is in this case

—cosh?() +sin?(B)sinh?(x) 0 —sin(B)sinh(y)cos(B)cos(0) —W

P
0 1 0 0
—sin(B)sinh(x)cos(B)cos(8) 0  sin?(8) 4 cos?(0)cos?(B) Cosw)pﬂ
__sin(B)sinh(y)cos(B) 0 cos(8)cos?(B) cos?(B)
’ P ()’
and
V/|h| = |cosh(x) cos(B)sin(8)/p°|. (4.59)

We will again assume that the brane is wrapped holomorphically on C; so that the CY -part
of 'is I ® ip(7).

For B = 0 we then have

r = . —¢%e
4Wh dcidobdctdod

= %234 ®p(7)

1 gibedgxugxvoxrax?® ‘ _
ve5e5 Tapca (1 ®1ip(7)) (4.60)

so that the brane is BPS for y = 0 and (i34 ® p(7)) (€0 ®N) = € @1,

Next we consider the possibility of non-vanishing world-volume three-form flux F abe o
responding to M2-branes wrapping C, and bound to the M5-brane. For this we write

F=—felnednet —f (e NP Ne?). 4.61)

Here f is proportional to the number of two-branes. Note that ¢, a = 2, 3,4 are the viel-
beine on the unit three-sphere, not the three-sphere with radius Rags on which the world-
volume is wrapped and which determines the induced metric relevant for the *¢ operation.
Thus

1
*6(62/\63/\e4) = 3—e0/\65/\66, (4.62)
AdS
where ¢ is as in (4.30) and ¢ and €® are the zwei-beine on C, with unit volume. Since

Rags >> 1 we can neglect the last term in (4.61).

With this in mind we will now analyze the k-symmetry condition. We find the representa-
tion of [48] most convenient. Adapting the corresponding projector I" to our situation we
get

1 1 abedef 1 abe.,,

r = it — e FCy
[1—1p (6!\/deth£ abede 3.3 7abc>
4

1 1
= — <i7’0234 ®p+ 2f7234> . (4.63)
1— 12
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To study the BPS condition I'e¢ = € we need to know that

Sil }’0234S = cosh X Y0234 + isinh y (COS TY34 —ISINTY] 234)

s~ Y3S = COSh){(COS T34 — ISIN T’}’1234) — isinh X Y234

then we can compute

1 1
s7Irs = —— [—(cos TYa34 — isinTY1234)(sinh ®p(7) — Efcoshx)
J1-1p2
1
+i(coshy @ p7 — 5 sinh ) Too3]é0 = € (4.64)

The BPS condition then implies that

1

(sinhy @ p7 — Sfcoshy)eg = 0 (4.65)

] 1
;(COShl ®p" — ~fsinhyx)youaes = & (4.66)

/11— lfz 2

1
Satisfying first line of above condition, we get

|f| = 2tanh(y) (4.67)

For 1f = *tanhy we conclude that p'7) must act on & as p'")ey = £¢& and the BPS
condition is

{i}’oz34€o =& and  ppN =1 for f>0 (4.68)

Y3a€0=—& and ppn=-n for f<O.

Upon double dimensional reduction along the fiber of 3 /7 o to ten dimensions we get a
D4-brane with

Fy=Fy (4.69)
which in turn is SUSY according to [20].

Let us now analyze the case with non-vanishing four-brane flux B % 0. We make the Ansatz

F :geo/\ez/\e3. 4.70)
The the xk-symmetry projector

1 1
I'=s = <i}’0234 ®pP7) — 2&’7023) : (4.71)

V14358
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calculating § _1)/02345 and S‘1y234S for this case, we get

s! 102348 = cos Bcosh X Y234 + icos Bsinh ) (cos Tyap3 — isin T791423)
—isinBcos Tsin 0(cos ¢ Yp4 + Sin @ Y34 ) + sin Bsin Tcos 0Yp312

+ sinBsin Tsin 6(cos @ Y241 + sin P Yp341) — isinBcos Tcos O3 (4.72)

s! 10238 = cosBcos Tcos 023 + cos Bcos Tsin 0(cos @ Y4 + sin 9 p34)
+icos BsinTcos 0312 +icos Bsin Tsin 6(cos ¢ Y41 + Sin @ Y341 )

—isinBcosh ) Y234 + sin Bsinh ) (cos Tyap3 — isin Ty1423) 4.73)

By imposing the k-symmetry condition we have
[isinTsinO(sinBep7) — %gcosB) (cos @ Y0241 + Sin P Y341)
+cosTsinO(sinBp7) — %gcosB) (cOS Y024 + sin @ Yo34)
—(cosBsinhy @ p") + %g sinBsinh X ) (cos Tya23 — isinTYj423)
—isinTcos O (sinB® pm — %gcosB)}/(mz
+cos Tcos B(cosB® pl7) — %gcosB)yOzg] & = 0 (474
(cosBcoshy ® p(7) + %g sinBcosh ¥ )Yooza€0 = &  (4.75)

l
V14358

(4.74) and (4.75) implies the BPS condition for y = 0 and

{%23480 =&, ppN=1 3g=rtan(B) or (4.76)

Y0234 = —&0,P(7yN = —N %g = —tan(B)

For g # 0 these configurations describe M5-branes with delocalized M2-branes ending on
them.

If both, f and g are non-vanishing then the 7-dependent/independent terms of BPS condi-
tion reads off the be

[isinTsinO(sinB® o7 — %gcosB) (cos @ Yo241 + Sin O Yo341)
+cosTsinO(sinBxp7) — %gcosB) (cos @Yoo + sin @ Yo34)
—(sinhy cosB® p!”) + %g sinBsinh y — %fcoshx) (cos TYyap3 — isSinTY1423)
—isinTcos O (sinB® p(7) — %gcosB)}/omz

+cosTcosO(sinB® p(7) — %g cosB)yOB] g=0 @77

1 1
(cosBcoshy @ p7) + 8 sinBcoshy — Efsinhx)}/0234eo =g (4.73)

ot
\/ 1+ 48
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The k-symmetry projector takes the form

1
I'= (l}’0234 Q@ p(7) (f}’234 g}’om)) . 4.79)

(g7

and the BPS-condition reads

(4.80)

Y234€0 = €0 PN =1, 3g="tan(B), 3f = mcniB ) or
Y2340 = —&, PHN=-1, %g = —tan(B), 2f m:;lg) :

Thus, an static M5-brane wrapped on the horizon and a two-cycle in X with M2-branes on
(> bound to it is BPS for certain values of ¥.

4.4 Discussion

I this chapter we constructed supersymmetric probe branes, stationary in global coordinates
of the eleven-dimensional near-horizon geometry, of a generic four-dimensional, single-
centered attractor black hole. The motivation for this study came from the success of
[7, 37] in approximating the black hole partition function by a dilute gas of non-interacting
probe branes in the near horizon geometry of attractor black holes without D6-charge. Our
results should provide the necessary ingredients for extending this approach to include
D6-charge as well. In particular, we expect the M2-branes found here to be relevant for un-
derstanding the OSV partition function in the presence of D6-charge. Similarly the horizon
wrapping M5-branes should contribute, as collective excitations, to the partition function
of the conformal quantum-mechanical system dual to the AdS; near horizon geometry.






CHAPTER 5

Discussion and Conclusion

In this thesis we studied the microscopic behavior of Calabi-Yau black holes in ITA string
theory. First in chapter 2, we reviewed the classical black holes and their thermody-
namical properties. We calculated the absorption cross-section of massless scalars on
Schwarzschild and Reissner-Nordstrom black holes and also reviewed the universality of
low energy absorption cross-section. In chapter 3, by employing AdS/CFT correspon-
dence, we obtained an analytic expressions for the low energy absorption cross-section of
a massless space-time scalars on the horizon-wrapped D2-branes, static in global coordi-
nates of the near horizon AdS, geometry of Calabi-Yau black hole. The fact that these
amplitudes can be computed exactly may come as a surprise since the probe two-brane
describes a complicated trajectory in the asymptotic Poincaré coordinates. For small but
non-zero probe DO-charge we found that the quantum mechanical absorption cross section
seen by an asymptotic anti-deSitter observer, static in Poincaré time vanishes linearly in @
for small frequencies. For vanishing probe DO-charge the absorption cross section has non-
analytic (wlog(®)) behavior. This is in disagreement with the classical s-wave absorption
cross section by the black hole which vanishes quadratically in @ for small frequencies.
However, the comparison with the classical result is more subtle since for the classical ab-
sorption cross section on near extremal black holes the potentials outside the near horizon
AdS; geometry is the only relevant one. This is because there is no reflection in AdS,.

An interesting feature is that although the Hamiltonian of the D2-brane has a discrete spec-
trum with spacing given by the inverse of the radius of the horizon the D2-brane can absorb
arbitrarily small frequencies with respect to an asymptotic observer. We should mention
that we only considered the bosonic sector of the world-volume theory. However, it is
not hard to see that fermions give a vanishing contribution at the lowest (quadratic) level.
Also we have not considered fixed scalars in this paper although their inclusion should be
straight forward. As mentioned before, the details of the absorption process described here
are qualitatively different from the world-volume absorption on D-branes in flat space. In
flat space, the low energy behavior is dominated by goldstone bosons and possible other
massless fields whereas here no massless degrees of freedom are present. The fact that
the cross section vanishes linearly for @ — 0 is due precisely to the absence of massless
degrees of freedom.

In view of a possible interpretation for a dual interpretation of four-dimensional CY black
holes in terms of the quantum mechanics of probe D2-branes wrapped on the S? of their
near horizon geometry an encouraging result would have been to find agreement for the
low energy absorption cross section on both sides. Our concrete calculation shows how-
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ever that this is not the case since the microscopic absorption cross section on the two-brane
does not have the correct behavior at small frequencies compared to the classical absorp-
tion cross section of massless scalars which vanishes quadratically in @. However, the
comparison between these two calculations is more subtle. First we note that our absorp-
tion cross section was computed for wrapped D2-branes with small DO-charge whereas the
dominant contribution to the entropy comes from wrapped branes with large DO-charge.
A possible application of the present calculation is to interpret a single wrapped D2-brane
with small DO-charge as a small non-extremal perturbation of the extremal black hole. This
is sensible since for small DO-charge the two-brane is confined to the near horizon AdS,
geometry of the asymptotically flat global geometry. In this case we should compare the
classical absorption cross section for the near extremal black hole with the the product of
the transmission coefficient from asymptotically flat space to the near horizon AdS; region
and the AdS; absorption cross section computed in this paper. The microscopic cross sec-
tion obtained in this way vanishes like (R®)>. So we still have disagreement. One possible
explanation for the disagreement could be that there are microscopic configurations, other
than the wrapped D2-branes considered here, correspond to a non-extremal black hole
which reproduce the correct low energy behavior. One such generalization is to consider
multi-branes wrapping horizon, however this does not change qualitative small frequency
behavior. Another possibility is to consider the scattering of massless space-time scalers on
individual probe D0O-branes. However in that case the brane absorption amplitude vanishes
due to energy-momentum conservation.

It would be desirable to know the result in that case although the calculation appears to
be more involved since, as we showed, linearized perturbation theory breaks down in this
situation.

In chapter 4, we constructed supersymmetric probe branes, stationary in global coordi-
nates of the eleven-dimensional near-horizon geometry of a four-dimensional black hole
with generic D6-D4-D2-D0-charges. The motivation for this study came from the success
[7, 37] in approximating the black hole partition function by a dilute gas of non-interacting
probe branes in the near horizon geometry of attractor black holes without D6-charge. In
particular we found BPS two-branes wrapped on a holomorphic two-cycle in the Calabi-
Yau. Also, we determine the trajectories of the five-brane which preserve supersymmetry
for the case of wrapping a holomorphic four-cycle in the Calabi-Yau and an S' in space-
time (hence partially wrapping the horizon) and for the case of fully wrapped the horizon
S3)7. o and a holomorphic two-cycle in the Calabi-Yau. Our results should provide the
necessary ingredients for extending this approach to include D6-charge as well. In particu-
lar, we expect the M2-branes found here to be relevant for understanding the OSV partition
function in the presence of D6-charge. Similarly the horizon wrapping M5-branes should
contribute, as collective excitations, to the partition function of the conformal quantum-
mechanical system dual to the AdS, near horizon geometry.
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Calabi-Yau spaces

Here we give a brief overview of essential concepts leading to the definition of the Calabi-
Yau manifold, we follow mostly [49, 50, 51]. Calabi-Yau space is a manifold X with
Riemannian metric g which satisfies following three conditions:

e X is complex manifold.
This means that Calabi-Yau looks locally like C" for some n, in the sense that it can
be covered by patches admitting local complex coordinates

250y Zn (A.1)

and the transition functions between patches are holomorphic. Consequently, the real
dimension of X is 2n, and hence Calabi-Yau spaces are even-dimensional manifolds,
known as Calabi-Yau n-folds. Furthermore, the metric g should be Hermitian with
respect to the complex structure. This means

8ij=8;=0 (A.2)

so the only non-vanishing components of metric are g;.

e X is Kihler.
This means that there is a real function K locally on X such that

gi;=0id;K (A3)

where together with a Hermitian metric g one can define its associated kéhler form
k= g;;dz; NdZ; (A.4)

The Kihler condition is then dk = 0.

e X admits a global holomorphic n-forms In each local coordinate patch of X one can
write many such forms

Q= f(z1,....zn)dzyi A ... Adzy (A.5)

where f is an arbitrary holomorphic function. For compact Calabi-Yau manifold
there is at most on nowhere vanishing one such form, up to an overall scalar rescal-
ing. Topologically this is equivalent to vanishing first Chern class.



82 Appendix A. Calabi-Yau spaces

So, briefly, a Calabi-Yau n-fold is a Kédhler manifold having n complex dimensions and
vanishing first Chern class.

Calabi- Yau manifold, defined above, has an important property: Metric on the Calabi-Yau
manifold is Ricci-flat

R;i=0 (A.6)

Compact Calabi-Yau manifold for n = 1 is torus 72, for n = 2 just T* and K3, but for
n = 3it is not even known whether the number of compact Calabi-Yau spaces is finite. T
is an example

A Calabi-Yau n-fold is characterized by the values of its Hodge numbers 4”9, which count
the number of harmonic (p, g)-forms on the manifold. These numbers do not characterize
Calabi-Yau manifold completely but specify a class of manifolds which have same Hodge
numbers. Hodge numbers satisfy following relations

hp.,O — hn—p,O
Wi = paP (A7)
pPd —  pranp

First relation follows from the fact that the manifolds with de Rham cohomology H” (X)
and H" P(X) are isomorphic, second relation comes from complex conjugation and last
one is given by Poincaré duality. Furthermore, for any complex manifold 2''!'=1. In addi-
tion we have 10 = 0! = 0.

There is also Betti number b, determines the dimension of H”(X), which counts the num-
ber of lineally independent harmonic p-forms on the manifold

k
b=y h"*P(—1)Pb, (A.8)
p=0

Therefore, in case of Calabi-Yau three-fold one requires only to specify i''! and #*!. Fi-
nally, the Euler characteristic of our manifold is just the alternating sum of Betti numbers:

2n
x(X)=1Y, (A.9)

p=0

where for n = 3 gives y = 2(h1’1 _ hz,l)'
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Useful identities for y-matrices

Here, we provide some identities for y-matrices which are useful for calculating xK-symmetry
projection operator in chapter 4. & is some integer.

eIVt TR =y (B.1)

5T b TRV — b (B.2)

eI e BT =y (B.3)

eHiST v eFiST = y¢ b,c#a (B.4)

TV ybe eFiTY = ybc b,c#a (B.5)
¢y o1 = yoosha—iy’sinhat a=0 (B.6)

= y%cosa+iy’sinha a#0

5T yae*"%yba = y%osa—iy’sina aorb=0 (B.7)
= y%osho+iy’sinha a,b#0

eIV yb TV = ybeosha+iy®sinho a=0 (B.8)

= vylcosa+iy®sina a#0
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y9cosho 4 y”sinha aorb=0 (B.9)

yicosa— 7y sina a,b#0

y9cosa+y*sina a,b#0 (B.10)
y¢cosa—yLsino a,b#0
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Anti-de Sitter space geometry

The D-dimensional Anti-de Sitter space, AdSp is usually defined as a surface embedded in a
(D+1)-dimensional flat space R?>”~! with, signature (—, —, +, +, ...), two time coordinates
Xo and Xp plus D-1 space coordinates X; :

D-1
ds* = —dXg —dX3+ Y. dX?, (C.1)
i=1
together with the constraint

D-1
X —-Xp+ Y X7 =R (C.2)
i=1
where R is some constant.
A solution of constraint equation is
Xo = Rcoshpcos(t/R)

Xp = Rcoshpsin(t/R) (C.3)
X, = RQisinhp

where €;’s are chosen such that ZiD: ’12 Q,;, = 1. In order to determine the metric on the
hyperboloid we should substitute above solution into the space-time metric (C.1), and we
find the global AdSp metric

ds* = —cosh® pdt® + R*dp?* + R*sinh? pdQ3, , (C.4)
where, with

0< T (C.5)

(AVARRVAN
S N

T
p
our solution covers the entire hyperboloid, and this is why (7, p) coordinates are called the
global on AdS. The time 7 is usually taken not as a circle, which gives closed time-like

curves, but on the real line such that it is analytic everywhere, —co < 7 < oo, giving the
universal cover of the hyperboloid.
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Another solution to the hyperboloid equation (C.8) is

1
Xy = ZXP”%ﬁ+ﬁ—ﬂD (C.6)
1
Xp-1 = E(I—FZ(RZ—X'Z—HZ))
Xp = rt
Xi = rXx;

These coordinates cover only half of the hyperboloid. The resulting metric, on the hyper-
boloid, after substitution into space-time metric (C.1) is called the Poincaré form of the

metric
2

R2
ds* = I% (—dt2 +dxi4 ... —I—dx%)_l) + ﬁdr2 (C.7

(t, r) are the ‘local ’coordinates.

It should also be noted that, in global coordinates, there is no horizon. The horizon is a
feature of the description in terms of the coordinates of the Poincaré patch but not of the
global space-time.

AdSp has a very natural geometric representation. We can visualize it using a two-dimensional
surface on which each point represents a sphere. We write the constraint equation (C.8) as

D—1
Xs+Xp=R+Y X7 (C.8)
i=1

and plot the space using axes for Xy, Xp and p = \/ﬁ . A point on the surface, generated
by above constraint, is determined by Xy and Xp, while then the value of p is fixed. To see
the whole AdS space we must include at each point on the surface a sphere SP~2, defined
by the points X that satisfy XX= p? = Xg —i—Xg — R?. For AdS, this is just a hyperboloid
with no sphere.
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Bessel function

The Bessel functions are more frequently defined as solutions to the differential equation
(28]
dy  dy
2 2 2\,
There are two classes of solution, called the Bessel function of the first kind J,(x) and
Bessel function of the second kind Yy (x). When « is an integer, the general solution is of
the form

y(x) = C1Jg(x) + CaYu(x) D.2)

For Bessel functions of order equal to an integer plus one-half,oc = n+ 1/2, the two class
are related as

V() = ()", () (D.3)
Y, 1(x) = (—1)"*11n+%(x) (D.4)
where
_ (Cayreehy /24 (sinx
JH%(x) = (—=1)"x \/;(xdx)"( x> (D.5)
_ b 24T rcosx

The special cases of order +1/2 are therefore defined as

[ 2

J_1/2(x) 08 % (D.7)
/2

J]/z(x) = Esinx (D8)

So the complete solution for (D.1) is then

y(x) = A‘]n+
y(x) = AJ,.

(x) —|—BYH+% (x) (D.9)
() +B(=1)""1_,_1(x) (D.10)

1
2
1
2
I' is gamma function.

Bessel function has following series expansion

- hod (_1)m X\ 2mta
Jal¥) = =mT(m+o+1) <§> @©.11)
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So the complete solution y(x) has following small argument approximation

~A— (N gy xy @
W= () B e (5) 0 v @)

where we have kept only first term of expansion. Finally, the Bessel function Jy(x) has
large x form as

[2 ar T«

Jo(x) =~ n—zcos<x—7—1), x> o —1/4| (D.13)
2

Yo(x) ~ —xsin(x—%—§> (D.14)

which leads to following approximate solution of the differential equation for & =n+1/2

y()c)ffz\/ﬂ?Z [—Asin (x—%) + Bcos <x+ %)} (D.15)
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