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Abstract: f (R, T)-gravity is a generalization of Einstein’s field equations (EFEs) and f (R)-gravity. In
this research article, we demonstrate the virtues of the f (R, T)-gravity model with Einstein solitons
(ES) and gradient Einstein solitons (GES). We acquire the equation of state of f (R, T)-gravity,
provided the matter of f (R, T)-gravity is perfect fluid. In this series, we give a clue to determine
pressure and density in radiation and phantom barrier era, respectively. It is proved that if a f (R, T)-
gravity filled with perfect fluid admits an Einstein soliton (g, ρ, λ) and the Einstein soliton vector
field ρ of (g, ρ, λ) is Killing, then the scalar curvature is constant and the Ricci tensor is proportional
to the metric tensor. We also establish the Liouville’s equation in the f (R, T)-gravity model. Next,
we prove that if a f (R, T)-gravity filled with perfect fluid admits a gradient Einstein soliton, then
the potential function of gradient Einstein soliton satisfies Poisson equation. We also establish some
physical properties of the f (R, T)-gravity model together with gradient Einstein soliton.

Keywords: Einstein solitons; gradient Einstein solitons; perfect fluid spacetime; f (R, T )-gravity;
lorentzian manifolds

1. Introduction

The general theory of relativity (GR) says that the gravitation is a geometric property
as symmetric curvature of spacetime. The physical matter symmetry is specially relating to
the spacetime geometry. More specifically, the space time symmetries are used in the study
of exact solutions of Einstein’s field equations of general relativity. An important symmetry
is a soliton that connects to geometrical flow of spacetime geometry. In fact, the Einstein
flow is used to understand the idea of kinematics.

Hamilton suggested to use the evolution equation, known as Ricci flow, in order to
establish Thurston’s geometrization hypothesis in a three-dimensional manifold. In 1982,
he [1] proposed the idea of the Ricci soliton (RS) on a Riemannian manifold M and noted
that it moves under the Ricci flow ( ∂g

∂t + 2Ric(g) = 0) simply via diffeomorphism of the
initial metric, where g,Ric and t indicate the Riemannian metric, Ricci tensor and time,
respectively. An RS (g,V , λ) on M takes the form

Ric + λg = −1
2
LV g, (1)

where LV denotes the Lie derivative operator along V (termed as the soliton vector field)
on M and λ ∈ R (set of real numbers). An RS will be shrinking, steady or expanding if

1. λ < 0,
2. λ = 0 and
3. λ > 0, respectively.
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Shrinking RS yields an ancient self-similar solution to the Ricci flow with fixed annihi-
lated time [2]. In addition, if V in (g,V , λ) is expressed as V = Dψ, where ψ : M→ R and
D represents the gradient operator of g, then g is referred as a gradient RS (in short, GRS),
and Expression (1) leads to

Ric + Hess(ψ) = −λg. (2)

Here, Hess symbolizes the Hessian operator. If ψ = constant, then GRS is nothing more
than an Einstein manifold. In a similar manner, the RS provides self-similar solutions to
Ricci flows. Moreover, substantial attention has been given in recent days to the categoriza-
tion of solutions that are self-similar to geometric flows. Catino and Mazzieri [2] defined
the idea of Einstein soliton (ES) in 2016, which creates some solutions that are self-similar
to Einstein flow:

∂

∂t
g + 2

(
Ric− R

2
g
)
= 0, (3)

whereR denotes the scalar curvature of the manifold. Consider the equation

LV g + 2Ric + (2λ−R)g = 0. (4)

If the data (g,V , λ − R2 ) satisfy (4), then it is termed as ES [3] on M. Here, V is the
soliton vector (known as Einstein soliton vector field). Recall that in a manifold M with
R = constant, the ES simplifies to an RS. Gradient vector field plays a crucial role to
study the Morse–Smale theory. The gradient Einstein soliton (GES) on a semi-Riemannian
manifold M is an ES with V = Dψ. As a result, Equation (4) may be reduced to the
following form

Hess(ψ) +Ric +
(

λ− R
2

)
g = 0. (5)

The smooth function ψ is referred as the potential function of the GES in this context.
Einstein solitons are generalization of Einstein metrics. A trivial GES is a GES with a
constant potential function ψ. Einstein solitons are important in Einstein flow because
they relate to solutions that are self-similar and frequently appear as singularity theories.
In physics, quasi-Einstein is a smooth metric space (M, g, eψ, dvol) with Ric ψ = λg. On
the other hand, the universe is all space and time and their contents, including stars,
galaxies, planets and other forms of matter and energy. The GR is the most effective
theoretical method for studying the large-scale structure of the universe. It is observed that
GR, without taking into account the dark energy, cannot describe the acceleration of the
early and late Universe. GR does not explain precisely gravity and it is quite reasonable
to modify in order to obtain theories that admit inflation and imitate the Dark Energy
(DE). The conventional method to analyzing known cosmic dynamic is provided by
Einstein’s modification of gravitational field equations [4,5]. Einstein’s field equations
give the greatest approximation to the observable data, with the addition of a hypothetical
element of the universe, described as Dark Matter [6].

In addition, the universe contains a strange component known as DE, which is thought
to be the primary cause of the universe acceleration, extension and regulates the matter-
energy ratio. This circumstance led various mathematicians and physicists to construct
more advanced gravity theories, which emerged as a result of the Einstein–Hilbert action
and the use of modified gravity theories such as f (R)-gravity [7], Gauss–Bonnet f (G)-
gravity [8] and f (T ) theory [9], etc. These theories differ from Einstein’s conventional
gravity theory and might also give a good approximation to quantum gravity [10].

GR may be extended to the f (R) gravity by Einstein–Hilbert Lagrangian density to
a function f (R), where R is the Ricci scalar. Higher order curvature solves the issue of
huge neutron stars in the equations of motion of f (R) gravity, for examples, see [11–13].
However, the f (R) gravity has certain limits in terms of stability with the solar system
and also fails to support the involvement of different cosmic models, such as stable stellar
configuration (for more information, see [14,15]), raising concerns about its applicability.
Harko et al. [16] presented a more extended gravity model by considering that the La-
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grangian is an arbitrary function of T andR, and named as f (R, T )-gravity theory. Here,
T denotes the trace of energy–momentum tensor T. This idea was effectively employed to
describe the universe late-time rapid expansion.

A spacetime can be characterized as a four-dimensional time orientated Lorentzian
manifold M which is a type of semi-Riemannian manifold with the Lorentzian metric g.
The basic vectors characterization in the Lorentzian manifold were the starting point to
study the properties of Lorentzian manifold geometry. As a reason, Lorentzian manifold
M is the finest choice for studying cosmological models. The material substance of the
cosmos is known to behave like a perfect fluid spacetime (PFST) in standard cosmological
models. In PFST, we write the expression of T as:

T(E ,F ) = pg(E ,F ) + (p + σ)η(E)η(F ), (6)

where E ,F ∈ X(M), p and σ indicate isotropic pressure and the energy density, respec-
tively, of the perfect fluid ([17,18]). Here, X(M) contains all smooth vector fields of M and
η is the 1-form associated with the unit timelike velocity vector field ρ of PFST by the
relation η(E) = g(E , ρ). In modern cosmology, the acceleration of universe expansion is
assumed as a dark energy source.

Scalar fields are thought to play a vital character in the physics and cosmology of
f (R, T )-gravity theory. However, adopting scalar fields as a source to build more generic
gravitational models may lead to a clearer perspective of the general features of the gravi-
tational field. Singh and Singh recreated the flat scalar and exponential models of f (R, T )-
gravity in scalar field cosmology in [19]. Chaubey [20] investigated f (R, T )-gravity and
demonstrated some findings. In [21,22], Capozziello et al. examined the characteristics of
cosmological perfect fluid in f (R) gravity. Many researchers also analyzed perfect fluid
spacetime with different solitons. For further information, read [23–29].

The above studies inspire us enough to study the physical and geometrical property
of f (R, T )-gravity with perfect fluid admitting ES and GES. We use Θ� to denote f (R, T )-
gravity model with perfect fluid. As a conclusion, it is essential to investigate the geometry
and classification of GES.

2. Perfect Fluid Spacetime in f (R,T )-Gravity Theory

The physical property of matter plays a major role in studying Θ�, and therefore we
can obtain many hypothetical models for different choices ofR and T [16]. For instance,
we choose

R
2

=
1
2

f (R, T )− f (T ), (7)

where f (T ) represents a function of T only. Remark that the gravitational interaction
between space matter and curvature are modified by the term 2 f (T ) appeared in the
gravitational action. We assume the modified Einstein–Hilbert action term as:

HE =
1

16π

∫
[ f (R, T ) + Lm]

√
(−g) d4x, (8)

where Lm is the matter Lagrangian of the scalar field. The stress energy tensor of the matter
is given by

Trs =
−2δ(

√−gLm)√−g δgrs . (9)

Let us consider that Lm depends only on grs and not on its derivatives. The variation of
action with respect to the grs infers

fR(R, T )Ricrs −
1
2

f (R, T )grs + (grs∇c∇c −∇r∇s) fR(R, T ) (10)

= 8πTrs − fT (R, T )Trs − fT (R, T )hrs,
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where fR = ∂ f (R,T )
∂R and fT = ∂ f (R,T )

∂T . As per usual notation, ∇r and � ≡ ∇t∇t stand for
covariant derivative and d’Alembert operator, respectively. Moreover, we have

hrs = −2Trs + grsLm − 2glk ∂2Lm

∂grs∂glk . (11)

Equations (8) and (9) with f (R, T ) = f (R) provide the field equations of f (R)-gravity.
Let the matter be a perfect fluid with p, σ and velocity vector ηα. We have privilege in

selection of Lm. Therefore, we fix Lm = p. Equation (6) can be rewritten as

Trs = pgrs + (p + σ)ηrηs, (12)

where
ηr∇sηr = 0, ηr · ηr = −1. (13)

We have from (11) and (12)
hrs = pgrs − 2Trs. (14)

After adopting (7) and (10) we obtain

Ricrs =
R
2

grs − 2 f
′
(T )Trs − 2 f

′
(T )hrs + f (T )grs + 8πTrs. (15)

In view of (12)–(14), Equation (15) becomes

Ricrs =

{
f (T ) + R

2
+ 8pπ

}
grs +

{
(p + σ)(2 f

′
(T ) + 8π)

}
ηrηs, (16)

reduces to
(σ + p) f

′
(T )− 2 f (T )− 4π(3p− σ)− R

2
= 0. (17)

Thus, for PFST in f (R, T )-gravity, the Ricci tensor assumes the form

Ricrs = agrs + bηrηs, (18)

where
a =

1
2
R+ f (T ) + 8pπ and b = 2(σ + p)(4π + f

′
(T )). (19)

Throughout the manuscript, we suppose that a and b are not simultaneously zero. The sim-
ilar processor has been followed in [20] to find the expression of Ricci tensor, but for more
clarity we also gave the proof here. Thus, we have the following conclusion:

Theorem 1. The Ricci tensor of Θ� is

Ricrs =

{
1
2
R+ f (T ) + 8pπ

}
grs +

{
(σ + p)(8π + 2 f

′
(T ))

}
ηrηs.

Corollary 1. The scalar curvature tensor of Θ� is given by

R
2

= (σ + p) f
′
(T )− 2 f (T )− 4π(3p− σ). (20)

Now, Equation (16) can be written in index free notation as

bη ⊗ η = Ric− ag, (21)

equivalently
QE = aE + bη(E)ρ, ∀ E ∈ X(M). (22)
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Now, in the light of Equation (20), we have

p + σ =
R
2 + 2 f (T ) + 4π(3p− σ)

f ′(T )
, (23)

provided f
′
(T ) 6= 0. In [30], author proved that the equation of state (EOS) for dark

energy is given by p = −σ + f (a), where f (a) is a smooth function of the scale factor “a”
and t being the cosmic time. He also showed that the equation ω = p

σ = −1 gives phantom
barrier, whereas ω > −1 and ω < −1 reflect a transition from non-phantom to phantom.
This turns up the following:

Proposition 1. If the matter of f (R, T )-gravity is perfect fluid, then EOS is given by (23).

Next, we suppose that the source is of radiation type, then EOS is ω = 1
3 . This fact

together with Equation (23) gives

p =
1
8

(
R+ 4 f (T )

f ′(T )

)
and σ =

3
8

(
R+ 4 f (T )

f ′(T )

)
, (24)

where f
′
(T) 6= 0.

Corollary 2. Let the source of f (R, T )-gravity be a radiation type. Then the pressure and density
are governed by (24).

In case of phantom barrier, σ = −p = R+4 f (T )
32π . Thus, we conclude

Corollary 3. If the source of matter in f (R, T )-gravity is phantom barrier type, then the pressure
and energy density are evaluated as σ = −p = R+4 f (T )

32π .

3. Einstein Solitons on Perfect Fluid Spacetime in f (R,T )-Gravity

Consider Equation (4) and V = ρ, we find

Ric(E ,F ) = −1
2
(Lρg)(E ,F )−

(
λ− R

2

)
g(E ,F ). (25)

Using explicit form of Lie derivative in (25) gives

Ric(E ,F ) = −
(

λ− R
2

)
g(E ,F )− 1

2
[g(∇Eρ,F ) + g(E ,∇Fρ)]. (26)

Contracting (26), we obtain
R = 4λ + divρ. (27)

In view of (13), (21) and (27), we turn up

4a− b = 4λ + divρ. (28)

Putting E = F = ρ in (21) and (25), respectively, we obtain Ric(ρ, ρ) = −a + b and
Ric(ρ, ρ) = λ− R2 , since (Lρg)(ρ, ρ) = 0. These relations together with R = 4a− b and
(13) give

2a + b = 2λ. (29)

The last two equations give

a = λ +
divρ

6
. (30)
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In consequence of Equations (19), (27) and (30), we find

λ = 24π

(
p +
R+ f (T )

24π

)
. (31)

Thus, we can state:

Theorem 2. Let Θ� admit an ES (g, λ, ρ). Then (g, λ, ρ) is expanding for p > −R+ f (T )
24π ,

shrinking for p < −R+ f (T )
24π and steady for p = −R+ f (T )

24π .

We suppose that ρ is Killing (Lρg = 0), which implies that divρ = 0 and hence λ = a
and b = 0, where Equations (28)–(30) are used. Now, from Equation (25), we haveR = 4λ.
The fact is that the scalar curvature is constant and the Ricci tensor is proportional to the
metric tensor. Thus, we conclude our finding as:

Theorem 3. Let Θ� admit an ES (g, ρ, λ). If the ES vector field ρ is Killing, then the scalar
curvature is constant and the Ricci tensor is proportional to the metric tensor.

Let Θ� admit a non-steady type ES (g, ρ, λ). Particularly, we suppose that
f (T ) = 0 and then f (R, T ) = R + 2 f (T ) = R, that is, the f (R, T )-gravity reduces
to EFEs. Equations (27) and (31) give p = − 3R+divρ

96π and λ = 1
4 (R− divρ) 6= 0. Again,

Equation (19) andR = 4a− b together reflect that σ = R−divρ
32π . Thus, we have

p
σ
=

1
3
− 4

3
R

R− divρ
. (32)

Now, we write

Corollary 4. If a PFST satisfying the EFEs admits a non-steady type ES, then EOS is given by
(32). Moreover, the pressure and energy density of PFST are p = − 3R+divρ

96π and σ = −R−divρ
32π .

Additionally, if we fixR = 0 in Equation (32), then we have ω = p
σ = 1

3 , which shows
the radiation era. We state:

Corollary 5. Let the PFST satisfying the EFEs admit a non-steady type ES and R = 0. Then
EOS (ω = p

σ = 1
3 ) represents the radiation era.

Next, we have the following remark.

Remark 1. For Ψ ∈ C∞(M) and the vector field ρ, a straight forward calculation gives

div(Ψρ) = ρ(dΨ) + Ψdivρ. (33)

The function Ψ ∈ C∞(M) is a last multiplier of vector field ρ with respect to g if div(Ψρ) = 0.
The corresponding equation

ρ(d lnΨ) = −div(ρ) (34)

is called the Liouville’s equation of the vector field ρ with respect to g (for more details, see [31]).

Now, infer the above remark and Equation (28), we state:

Theorem 4. Let Θ� admit an ES and the velocity vector field ρ of the ES is of gradient type, then
the Liouville equation of f (R, T )-gravity satisfying by Ψ and ρ is,

ρ(d lnΨ) = f (T ) + 3(λ + 8pπ). (35)
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Again, using the fact that, if f (T ) = 0 then f (R, T )-gravity recover f (R)-gravity.
Thus, we have the following corollary.

Corollary 6. Let Θ� admit an ES and the velocity vector field ρ of the ES is of gradient type, then
the Liouville equation of f (R)-gravity satisfying by Ψ and ρ is,

ρ(d lnΨ) = 2[8pπ − λ]. (36)

4. Gradient Einstein Solitons in f (R,T )-Gravity

In this segment, we focus on a specific condition when the soliton vector field V of ES
(g,V , λ) is of gradient type, V = Dψ, in a f (R, T )-gravity filled with perfect fluid.

Let V = Dψ, where ψ is a smooth function and D stands for gradient operator of g.
Then, we have from Equation (5)

∇Dψ = −(λ− R
2
)I −Q, (37)

where I and Q denote the identity transformation and Ricci operator. The contraction of
Equation (37) gives ∆ψ = Υ, where ∆ represents the Laplace operator and Υ = R− λ.
Thus, in light of (17), we can conclude the following results as:

Theorem 5. Let Θ� admit a GES, then the potential function ψ of GES satisfies the Poisson’s
equation

∆ψ = 2[(p + σ) f ′(T )− 2 f (T )− 4π(3p− σ)]− λ. (38)

SupposeR = λ. Then ∆ψ = 0, represents the Laplace equation. Hence, we state:

Corollary 7. Assume that Θ� admits a GES. If the soliton constant λ of the GES coincides with
the scalar curvature of Θ�, then the potential function of GES satisfies the Laplace equation.

Remark that the EOS: p = −σ, p = σ, p = σ
3 and p = 0 represent, respectively,

the dark matter era, stiff matter era, radiation era and dust matter era [32,33]. Now, we
conclude our results as:

Corollary 8. If Θ� admits a GES, then we have

f (R, T)-gravity represents EOS Poisson’s equation

Dark matter era p = −σ ∆ψ = −[λ + 4{ f (T ) + 8πp}]
Stiff matter era p = σ ∆ψ = 4[p{ f ′(T )− 4π} − f (T )]− λ

Radiation era p = σ
3 ∆ψ = 4[2p f ′(T )− f (T )]− λ

Dust matter era p = 0 ∆ψ = 2[σ f ′(T )− 2 f (T ) + 4πσ]− λ

Fix f (T ) = 0, then f (R, T ) = R, that is, the f (R, T )-gravity reduces to the EFEs in
general relativity. Thus, from Theorem 5, we state:

Proposition 2. Let the PFST obeying the EFEs admit a GES (g, gradψ, λ). Then ψ satisfies the
Poisson equation ∆ψ = 8π(σ− 3p)− λ.

We also state the following corollary with the help of Proposition 2 as:
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Corollary 9. Let the PFST M obey the EFEs. If M admits a GES with the potential function ψ.
Then, we have

PFST represents EOS Poisson’s equation

Dark matter era p = −σ ∆ψ = 32πσ− λ

Stiff matter era p = σ ∆ψ = −(λ + 16πσ)

Radiation era p = σ
3 ∆ψ = −λ

Dust matter era p = 0 ∆ψ = 8πσ− λ

From (4) and (22), we can write

∇EDψ + QE +
(

λ− R
2

)
E = 0 (39)

for all E ∈ X(M). From (39), we infer

∇F∇EDψ = −(∇FQ)(E)−Q(∇FE)−
(

λ− R
2

)
∇FE +

F (R)
2
E . (40)

Using Equations (39) and (40) in the curvature identity

R(E ,F )Dψ = ∇E∇FDψ−∇F∇EDψ−∇[E ,F ]Dψ, (41)

we lead to

R(E ,F )Dψ = (∇FQ)E − (∇EQ)F +
1
2
{E(R)F −F (R)E}, (42)

where R denotes the curvature tensor with respect to the Levi-Civita connection. In view
of (22), we lead to

(∇EQ)(F ) = E(a)F + E(b)η(F )ρ + b(∇Eη)(F )ρ + bη(F )∇Eρ. (43)

Using (43) in (42), we obtain

R(E ,F )Dψ = F (a)E − E(a)F + [F (b)η(E)− E(b)η(F )]ρ
+b{(∇Fη)(E)− (∇Eη)(F )}ρ + b[η(E)∇Fρ− η(F )∇Eρ]

+
1
2
{E(R)F −F (R)E}. (44)

Taking a set of orthonormal frame field and contracting (44) over E , we lead

Ric(F ,Dψ) =
1
2
F (b)− 3F (a)− ρ(b)η(F )− b[(∇ρη)(F ) + η(F )divρ], (45)

since g(ρ, ρ) = −1 and g(∇Eρ, ρ) = 0. Again, from (18) we have

Ric(F ,Dψ) = aF (ψ) + bη(F )ρ(ψ). (46)

Setting F = ρ in (45) and (46), respectively, we obtain

Ric(ρ,Dψ) =
3
2

ρ(b)− 3ρ(a) + bdivρ

and
Ric(ρ,Dψ) = (a− b)ρ(Ψ).
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The last two equations infer that

2(a− b)ρ(ψ) = 3ρ(b)− 6ρ(a) + 2bdivρ. (47)

Let ρ be Killing, that is, Lρg = 0 and the scalars a and b remain invariant under ρ, that is,
ρ(b) = ρ(a) = 0. Then, we obtain divρ = 0. Thus, from Equation (47), we infer that either
a = b or ρ(ψ) = 0. Next, we split our study as:

Case I. We consider that a = b and ρ(ψ) 6= 0. Then, from (19), we conclude that

p
σ
= − f (T ) + σ(4π + f ′(T ))

(12π + f ′(T ))σ . (48)

This gives the EOS for Θ�.
Case II. Let ρ(ψ) = 0 and a 6= b. The covariant derivative of g(ρ,Dψ) = 0 along E

gives

g(∇Eρ,Dψ) = −[(λ− R
2
+ (a− b)]η(E), (49)

where (21) and (39) are used. Since ρ is Killing in Θ�, that is, g(∇Eρ,F ) + g(E ,∇Fρ) = 0.
Putting F = ρ in this equation, we obtain g(E ,∇ρρ) = 0 because g(∇Eρ, ρ) = 0. Thus, we
conclude that ∇ρρ = 0. Changing U with ρ in Equation (49) and using the last equation,
we infer that

λ = b− a +
R
2

(50)

⇐⇒ λ = 2(p + σ) f
′
(T ) + 8πp− f (T ). (51)

This reflects the following conclusions:

Theorem 6. Let Θ� admit a GES. If the velocity vector field ρ of the perfect fluid is Killing and
the scalars a and b are invariant along ρ, then the GES is expanding, steady or shrinking if

1. 2(p + σ) f
′
(T ) + 8πp > f (T ),

2. 2(p + σ) f
′
(T ) + 8πp < f (T ),

3. 2(p + σ) f
′
(T ) + 8πp = f (T ), respectively.

From Theorem 6, we can further state:

Corollary 10. Let the metric of Θ� be a GES. If ρ is Killing and the scalars a and b are invariant
along ρ, then

Θ� represents EOS
Gradient Einstein soliton is expanding,
steady and shrinking accordingly

Dark matter era p = −σ σ T f (T )
8π

Stiff matter era p = σ σ T f (T )
4( f ′(T )+2π)

, f ′(T ) + 2π 6= 0

Radiation era p = σ
3 p T f (T )

8(3π+ f ′(T )) , 3π + f ′(T ) 6= 0

Dust matter era p = 0 σ T f (T )
2( f ′(T )+4π)

, f ′(T ) + 4π 6= 0

If we fix f (T ) = 0, then f (R, T ) = R and hence f (R, T )-gravity reduces to the EFEs.
Thus, we state:

Corollary 11. Let the PFST obeying EFEs admit a GES. If ρ is Killing and the scalars a and b are
invariant along ρ, then the GES is expanding, steady or shrinking if σ T 0.



Mathematics 2022, 10, 82 10 of 13

Next, Equations (45) and (46) together with the hypothesis take the form

Ric(F ,Dψ) = aF (ψ) (52)

and
Ric(F ,Dψ) = −3F (a) +

1
2
F (b)− ρ(b)η(F ). (53)

In view of (50)–(53) andR = 4a− b, we conclude

aF (ψ) + 2F (a) = 0⇐⇒ aDψ + 2Da = 0. (54)

Considering a set of orthonormal frame and contracting Equation (42) along vector field U
and using the fact that trace

{
F −→ 1

2 (∇FQ)E
}
= 1

2∇ER, we lead

Ric(F ,Dψ) = −F (R) = aF (ψ), (55)

where (52) has been used. Again, from (22) and (50), we infer that

F (R) = 2F (a) = F (b). (56)

In consequence of Equations (50) andR = 4a− b, we conclude that the associated scalars
a, b and scalar curvatureR are constant. Now, using these facts in (54), we have

aF (ψ) = 0, (57)

which implies that either a = 0 or F (ψ) = 0 ⇐⇒ ψ = constant. If a = 0 and ψ is a
non-zero smooth function on Θ�, then from (44), we have

Ric = −Rη ⊗ η, (58)

whereR = −b 6= 0. From (58), we observe that Θ� is Ricci simple [34]. Next, we consider
that a 6= 0 and Dψ = 0 ⇐⇒ ψ = constant. Thus, the GES on Θ� is trivial. Now, we
conclude our results as:

Theorem 7. Let Θ� admit a GES. If ρ is Killing and the associated scalars a, b are invariant
along ρ. Then either
(i) the EOS of Θ� is governed by (48) and the soliton is expanding, shrinking or steady accordingly
asR is positive, negative or zero, respectively, or
(ii) Θ� is Ricci simple or the GES is trivial.

Let a 6= b on Θ�. If the metric of Θ� is a GES, ρ is Killing and a, b are invariant along
ρ, then from Theorem 7 we notice:

Corollary 12. Let Θ� admit a GES. If ρ is Killing and a, b are invariant along ρ, then the scalar
curvature of M is constant.

Corollary 13. Let a f (R, T )(= R)-gravity model with perfect fluid admit a GES. If ρ is Killing
and a, b are invariant along ρ, then either
(i) the EOS is p

σ = 1
3 , represents the radiation era, or

(ii) Ric = −Rη ⊗ η or the GES is trivial.

As a consequence of Theorem 7 and Equation (48), we have following observation.
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Theorem 8. Let Θ� admit a non-trivial GES. Suppose ρ is Killing and a, b are invariant along ρ,
then evolution of the universe is given in the following table through EOS of Θ� as:

EOS ( p
σ = ω) Restrictions on f

′
(T) and f (T) Evolution of the universe

ω = 1 f (T ) = −2σ(8π + f ′(T )) Ultra relativistic era

ω > −1 f (T ) < 8πσ Quintessence era

ω < −1 f (T ) > 8πσ Phantom era

ω = 0 f (T ) = −σ(8π + f ′(T )) Dust era

A smooth function h : M −→ R is said to be harmonic if ∆h = 0, where ∆ is the
Laplacian operator on M [35], we turn up the following conclusions:

Theorem 9. Let Θ� admit a GES (g, Dψ, λ) with harmonic function ψ on M, then (g, Dψ, λ) is
expanding, steady and shrinking accordingly as

1. (p + σ) f ′(T ) > 2 f (T ) + 4π(3p− σ),
2. (p + σ) f ′(T ) < 2 f (T ) + 4π(3p− σ), and
3. (p + σ) f ′(T ) = 2 f (T ) + 4π(3p− σ).

Proof. From Equation (38), we can easily obtain the desired result.

Let us choose f (R, T ) = R in Θ�, then we obtain EFEs. In this case, Equation (38)
reduces to λ = −8π(3p− σ). Thus, we state:

Corollary 14. Let the PFST obeying the EFEs without cosmological constant admit a GES with
the harmonic potential function ψ. Then, the GES is shrinking, expanding or steady if p

σ > 1
3 ,

p
σ < 1

3 , or p
σ = 1

3 , respectively.

A smooth function ψ on a semi-Riemannian manifold M is said to be harmonic,
subharmonic and superharmonic if ∆ψ = 0, ∆ψ ≥ 0 and ∆ψ ≤ 0, respectively. These
definitions together with Equation (38) state the following:

Theorem 10. Let Θ� admit a GES with the potential function ψ. Then ψ is harmonic, subharmonic
and superharmonic if 2[(p+ σ) f ′(T )− 2 f (T )− 4π(3p− σ)] = λ, 2[(p+ σ) f ′(T )− 2 f (T )−
4π(3p− σ)] ≥ λ and 2[(p + σ) f ′(T )− 2 f (T )− 4π(3p− σ)] ≤ λ, respectively.

In view of Theorem 10, we state:

Corollary 15. If a PFST satisfying EFEs admits a GES, then the potential function of GES is
harmonic, subharmonic and superharmonic if 8π(σ− 3p) = λ, 8π(σ− 3p) ≥ λ and 8π(σ−
3p) ≤ λ, respectively.
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