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ABSTRACT In some quantum secret sharing schemes, it is known that some shares can be distributed
to participants before a secret is given to the dealer. However, it is unclear whether some shares can be
distributed before a secret is given in the ramp quantum secret sharing schemes with the highest coding
rate. This article proposes procedures to distribute some shares before a secret is given in those schemes.
The new procedures enhance the applicability of the secret sharing schemes to wider scenarios as some
participants can be unavailable when the dealer obtains the quantum secret. Then, it is proved that our new
encoding procedures retain the correspondences between quantum secrets and quantum shares in the original
schemes, which ensures that the highest coding rates of the original schemes are also retained.

INDEX TERMS Advance sharing, quantum secret sharing, ramp secret sharing.

I. INTRODUCTION

The study of quantum information processing has gained
much attention recently. One reason is the increase in the size
of quantum computers [1]. The storage and communication
of quantum information are still difficult experimentally, but
they will probably become easier and less expensive in the
future. Classical secret sharing, in which secrets and shares
are both classical information, is nowadays used in practice,
for example, in distributed storage systems. In a distributed
storage system [2], data are stored in multiple storages, which
increases the risk of data leakage. Secret sharing schemes
decrease that risk with multiple storages. It is likely that
quantum secret sharing schemes play similar roles in the
future quantum information era.

This article considers sharing a quantum secret by quan-
tum shares. It is assumed that there are no interactions among
the dealer and the participants, except for the distribution of
quantum shares from the dealer to the participants. Such a
problem formulation was initiated by Cleve et al. [3] and
Gottesman [4] and is the most natural quantum counterpart
of the classical secret sharing considered by Shamir [5] and
Blakley [6].

The coding rate is an important parameter in secret sharing
schemes. It is defined as the ratio of the secret size to the
average share size [3], [4], [7]. Higher coding rates are desir-
able. Another important property of secret sharing schemes

is the access structure, which consists of three families of
qualified sets, forbidden sets, and intermediate sets [7]. A
set S of shares is called qualified (respectively, forbidden)
if S allows the reconstruction of the secret (respectively,
has no information about the secret). A set S of shares is
called intermediate if it is neither qualified nor forbidden. If
a secret sharing scheme has no intermediate set, it is called
perfect. The coding rate cannot be greater than 1 if it is
perfect [4]. Ogawa et al. [7] proposed ramp quantum secret
sharing schemes, which enable coding rates greater than 1,
at the cost of allowing intermediate sets. This article con-
siders a g-dimensional quantum system H, and calls it a
qudit, where ¢ is a prime power. A (k, L, n) ramp quantum
secret sharing scheme encodes L-qudit quantum secret into
n shares, each of which is 1 qudit in H,. The parameter k
decides the access structure mentioned earlier, as follows. In
a (k, L, n) scheme, a set S is qualified if |S| > k, forbidden
if |S| < k — L, and intermediate otherwise (i.e., k — L+ 1 <
|S| <k —1). Among (k, L, n) schemes, Ogawa et al.’s one
has the highest possible coding rate L, and first, Ogawa et al.’s
ramp quantum secret sharing is considered in Section II. The
scheme by Cleve et al. [3] is a special case of Ogawa et al.’s
scheme corresponding to the case L = 1.

As mentioned before, an intermediate set has nonzero in-
formation about the secret in a ramp scheme. In the classi-
cal secret sharing scheme, when the secret §'= (sq, ..., sz),
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Iwamoto and Yamamoto [8] showed an explicit example of
ramp schemes, in which a component s; in the secret can be
reconstructed from an intermediate set S. In order to pre-
vent such information leakage, Yamamoto [9] defined the
strong security for the (k, L, n) classical ramp secret sharing
scheme, in which any set S of shares has no information about
part (s; : i € T) of the secret if |S| + |T| < k. In the context
of ramp quantum secret sharing, Zhang and Matsumoto [10]
showed an explicit example from Ogawa et al.’s [7] scheme
in which an intermediate set leaks part of the quantum secret
similarly to the classical case in this paragraph. They also
introduced a strong security definition into ramp quantum se-
cret sharing and explicitly constructed a (k, L, n) strongly se-
cure ramp quantum secret sharing scheme whose coding rate
L is as high as Ogawa et al.’s scheme [7]. On the other hand,
the Zhang—Matsumoto scheme has a more stringent condi-
tion on the number n of participants, thatis, n < g — L, while
Ogawa et al.’s scheme has a milder conditionn < g — 1. The
condition n < g — 1 also exists in Shamir’s scheme [5], [6],
but in the classical case, ¢ can be made almost arbitrarily
large. On the other hand, because the quantum system H,
cannot be chosen freely, the symbol size g cannot be adjusted
in the quantum case as easily as the classical case. Therefore,
both Ogawa et al.’s scheme and Zhang—Matsumoto scheme
are practically useful depending on applications.

It is sometimes convenient to distribute shares before a
secret is given to the dealer. One example of such situations
was discussed in [11], which considered sharing a classical
secret by quantum shares. Such distribution of shares before
a given secret is named ‘“advance sharing” [11]. Advance
sharing is a trivial problem when both secret and shares are
classical. For example, encoding 1-bit secret s into two shares
(x, s + x) provides a (1,2) perfect secret sharing scheme, and
the first share x is clearly advance shareable, where x is a
random bit. Advance sharing enhances the applicability of
secret sharing schemes to wider scenarios.

On the other hand, when secrets are quantum, it is non-
trivial to realize advance sharing. This article focuses on the
case of quantum secrets. The first quantum advance sharing
was realized in [12], which enabled advance sharing for some
specific schemes. On the other hand, any quantum error-
correcting code and its erasure decoding algorithm can be
used as a quantum secret sharing scheme [3], [4], and Shibata
and Matsumoto [13] clarified how to realize advance sharing
with a quantum secret sharing scheme constructed from a
p-adic quantum stabilizer code, where p is a prime num-
ber. Based on [13], Masumori and Matsumoto [14] showed
how to realize advance sharing with a limited special case
of Ogawa et al’s scheme [7], where the dimension g of
H, was restricted to a prime number. Because the general
method [13] for advance sharing cannot handle stabilizer
codes over H, with nonprime ¢, the previous proposal [14]
of advance sharing for Ogawa et al.’s scheme [7] cannot be
immediately extended to the general case of Ogawa et al.’s
scheme [7].
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When advance sharing for the strongly secure scheme [10]
is considered, another limitation of [13] appears. The strong
security property in [10] is realized by a careful correspon-
dence between quantum secrets and quantum shares. On the
other hand, the general method [13] for advance sharing
destroys the correspondence between quantum secrets and
quantum shares when it is applied to a ramp quantum secret
sharing scheme. The general method [13] seems almost im-
possible to be applied for realizing advance sharing with the
strongly secure scheme [10].

This article proposes new encoding procedures of quan-
tum secrets into quantum shares for realizing advance shar-
ing with Ogawa et al.’s scheme [7] and Zhang—Matsumoto
scheme [10]. The new procedures enhance the applicability
of the scheme proposed in [7] and [10] to wider scenarios
in which some participants are unavailable when the dealer
obtains quantum secrets to be shared. Both procedures retain
the correspondence between quantum secrets and quantum
shares in the original schemes. Therefore, all properties in
the original schemes, such as coding rates, access structures,
strong security, etc., remain the same as the originals. In
particular, the highest coding rates are retained from the
original schemes [7], [10]. The proposed new encoding pro-
cedures add extra useful functionalities to the original ramp
quantum schemes [7], [10]. The differences among the orig-
inal schemes [7], [10] and the proposals are summarized in
Table I.

The rest of this article is organized as follows. In Sec-
tion II, necessary contents from [7] are reviewed, a new
encoding procedure is given for [7], and it is proven that
the correspondence between secrets and shares is retained
from [7]. Section III has a similar structure to Section II.
In Section III, [10] is reviewed, a new encoding procedure
for [10] is proposed, and it is proved that the same correspon-
dence between secrets and shares is retained. In Sections II
and I11, illustrating examples of the original and the proposed
encoding are included. Finally, Section IV concludes this
article and gives future research agenda.

Il. ADVANCE SHARING WITH THE QUANTUM RAMP

SECRET SHARING SCHEME IN [7]

A. SHORT REVIEW OF QUANTUM SECRET SHARING

In this section, the quantum secret sharing considered in this

article and its security model of secret sharing schemes are

briefly described. In short, it is exactly the same as in [3] and

[7]. When both secret and shares are classical information,

this model is equivalent to the Shamir—Blakley scheme [15].
It is always assumed that there are n participants and each

participant receives one share from the dealer. The entire

set of shares/participants is denoted by {1, ..., n}. There-
fore, any subset A C {1, ..., n} corresponds to some set of
shares/participants.

Let g be a prime power, F, be the finite field with g ele-
ments, and {|i) : i € F;} be an orthonormal basis of H,. For
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TABLE I. Comparisons of the Original and the Proposed Encoding Procedures

Ogawa et al. [7]  Zhang-Matsumoto [10]  Section II  Section III

Dimension of a quantum share q q q q
Number of symbols in quantum secrets L L L L

Maximum number of participants qg—1 q— L qg—1 q— L
Coding rate L L L L
Minimum number of participants to reconstruct secrets k k k k

Maximum number of participants with no information about secrets k—L k—L k—L k—L

Strong security No Yes No Yes
Maximum number of shares distributed in advance 0 0 k—L k—L

§=(s1,...,8) € Fg, one has

1) =Is1) ® --- ® |sr) G’H,;@L.

The dealer encodes the quantum secret |s) (or a linear com-
bination of |s}) into some pure state |¢) € 7—[;@”. The dealer
distributes each qudit in |¢) to each participant. Observe that
no measurement, classical communications, or teleportation
of quantum states are involved here, in contrast to [16]. Also,
observe that the purpose and the procedure are different from
those in quantum secure direct communication (QSDC) [17].
There seems no explicit relationship between the QSDC and
the quantum secret sharing considered here.

A set AC{l,...,n} is said to be qualified if |5} can
be reconstructed from Tr[|p)(¢|], said to be forbidden if
Trz[lg)(¢[] is independent of |5}, and said to be intermediate
if A is neither qualified nor forbidden [7], where Tr; denotes
the partial trace over A = {1, ...,n}\ A. As mentioned in
Section I, a quantum secret sharing scheme is said to be a
ramp scheme if there is no intermediate set.

In Sections II-E and III-D, it will be shown that our pro-
posed encoding procedures retain the correspondences be-
tween quantum secrets and quantum shares from [7] and
[10]. This means that qualified sets and forbidden sets remain
the same as in [7] and [10].

More importantly, since the correspondences between se-
crets and shares are the same as in [7] and [10], new encoding
procedures are as much secure as the original ones under any
security models and assumptions, and any new security argu-
ment is unnecessary unless a security property not considered
in [7] and [10] is required.

Although cheating participants can be considered among
legitimate ones and adversaries outside of legitimate partici-
pants [18], [19], these scenarios are not considered. Approx-
imate quantum secret sharing [20] is not considered either,
as it is not included in the original encoding procedures [7],
[10]. However, since those other scenarios are also important,
advance sharing in them should also be investigated in future.

The standard metrics for evaluating secret sharing schemes
are coding rates and access structures [7], and sometimes the
strong security [9], [10]. The proposed encoding procedures
retain those evaluation metrics from the original schemes [7],
[10], and they enable advance sharing that enhances the
applicability of secret sharing schemes to wider scenarios.
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B. OGAWA ET AL’S SCHEME

Let n be the number of shares/participants, and it is assumed
thatn < g — 1.Letay, ..., o, be distinct nonzero! elements
in F,. The construction of a (k, L, n) ramp quantum scheme

will be reviewed. For ¢’ = (cy, ..., ) € FX, the polynomial
fz(x) is defined as

Je(x) =c1 +02x+-~-+ckxk_l. (1)

A quantum secret |5} € HP" is encoded to

1
D7 o) @ Ifele2) ® -+ @ |felen))  (2)
VTt ot

where D(s) is the set of vectors ¢ € F]c; whose leftmost L
components are the same as those in s. The quantum state
in (2) consists of n qudits. The ith qudit in (2) is distributed
to the ith participant.

C. EXAMPLE OF THE ORIGINAL ENCODING

Letg=4,n=3,k=2,L=1,and o; = o' € F4, where o
is a primitive element of F4. The standard encoding proce-
dure in (2) encodes a quantum secret |s) for 5'= (s) € Fi
into 7= Y eepes) Lf@) @ Ifele) ® | felez)) = = (ls. s,
SSHlsto, s+e s+ +|s+a s+1, s+a)+ s+
1, s+a, s+a?)). As every qudit seems to depend on the

quantum secret |5}, from the encoding procedure in [7], it
seems unclear how one share is advance shareable.

D. PROPOSED ADVANCE SHARING PROCEDURE FOR [7]
This section proposes an advance sharing procedure, which
retains the correspondence between a quantum secret and
quantum shares given in (2), where the (k, L, n) quantum
ramp scheme was considered.

An elementary lemma in linear algebra and polynomials
is introduced as follows.

Lemma 1: Let P, be the set of univariate polynomials
f(x) over F, with deg(f) < m. Consider the evaluation map
ev(f) = (f(ay), ..., f(ay)), where oy, ..., o, are pairwise
distinct as before, while a1, . .., a, may contain 0 € Fy. The
map ev is a linear map from P, to FZ. If m < n, then ev is
injective, and if m > n, then ev is surjective.

Proof- Suppose that m < n. If ev(f) = 0, then f(a;) =
-+ = f(ay) = 0. Since deg(f) < m < n, this means that
f(x) is the zero polynomial. It is seen that ker(ev) = {0}
when m < n, which means that ev is an injective linear map.

lOgawa et al. [7] allowed zero, but it was a mistake.
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By the previous discussion, ev is injective on P,. Since
dim P,, = n, the image ev(P,) of P, under the map ev is FZ.
This means that ev is surjective on P, if m > n. [ |

The distribution of k — L shares is considered before
|5} is given to the dealer. By reassigning indices, we may
assume that the dealer wants to advance share the first to the
(k — L)th shares. Let

V) =

1
NS Y heln 3)
FEFZ’L

where | =|r)Q® - Q|r—r) for Fr=(0r,...,r—L) €
F’;’L. Note that |W) consists of 2(k — L) qudits, as |r)
consists of (k — L) qudits.

Suppose that the quantum secret is |5} = |s1) ® - ®
lsz) € ’H?L with §'= (s1,...,s7) € Fé. For 7 e F’;_L and
5, let g7 «(x) be a univariate polynomial such that gz {(x) €
{fe(x): e D($)} and g (x)(aj) = rifori=1,..., k—L.

Proposition 2: For given 7 and s, the polynomial g :(x)
exists uniquely.

Proof: Let fz(x) for ¢ € D(s), as defined in (1) and (2).
Recall that the coefficients ¢y, ..., ¢, are known as ¢; =

s1,...,c = s; by the condition ¢ € D(5). The coefficients
CL+1,---,Ck In f#(x) will be regarded as k — L unknowns
in a system of linear equations. For i =1, ...,k — L, the

condition gy s(x)(;) = r; can be written as

k—L—1
cLy1 tepp1d+ o+ ey 4)
_ri—sl—szai—'u—sLaiL*l 5

q;

The polynomial f(x)=cr+1+- -+ kL=l e Py
corresponds to a solution of the system of linear equations if
ev(f) = ((r — s — saay — -~ — spak™ N jak, (1 — 51 —
§200) — - — SLOlé_l)/Olst cois (M — S1— 20— -+ —
sLa,f__Ll )/oc,ffL), where the map ev is from Py_; to F’;_L.
By Lemma 1, it can be seen that the solution of the system
of linear equations considered here exists uniquely, which
ensures the unique existence of gy :(x) for given ¥and 5. W

Remark 3: The coefficients of gy «x) can be more
explicitly described in terms of 7 and 5, as follows. As in the
proof of Proposition 2, let f(x) = cpy1 + - - - + cpx L1,

L1

(b1, ....be—r) = ((r1 — s1 — oy — -+ — spay ) /ak, (ry
L1

— 51 —soap — - —spay D jak L (rep — 51— soou

— = sLa,f__Ll)/oz,%_L) are also used. As shown in the
proof of Proposition 2, f(o;) =b; for i=1,...,k—L.
To determine f(x), we can use the Lagrange interpolation
formula [15, Ch. 13]. Fori=1,...,k— L, let
1—[ X — (Xj

J— a] )

o
I<j<k—L,j#i '

€ix) =

Then, f(x) = cp1 + - - + cpx* L1 is given as
k—L
f@) =) biti(x)
i=1
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k—L L—1

Vi — 81 — 8§20 — - — SO
= 7 ()

o
i=1 i

and one has
grsX) =81 +sx+ -+ sLxL_1 + CLHxL

TR

L
= fo(x) + Z sixi_l.

i=1
Now, a new encoding procedure enabling advance sharing
is described. By Proposition 2, one can define a unitary map
Uene from 7—[;8’]‘ to 'H? (n=ktL) sending a quantum state |7)|s}
to |gr(ok—141)) ® - - - ® |gr (). Note that k =n — k +

L by [7, Lemma 2].

The proposed procedure for advance sharing is as follows.

1) The dealer distributes k — L qudits in the left half of
3.

2) After the quantum secret |s) is given, the dealer applies
Uenc to the remaining half of (3) and |s). Then, the
quantum state of all the n shares becomes

1
DR @ lgrdeu-rr) ® - ® |gr ).

/ 4k—L
q FeF’,;_L

(6)

Remark 4: When k — L — 1 or a fewer shares are advance
shared, the dealer can simply keep some shares in the ad-
vance sharing phase in our proposal. On the other hand, it is
impossible to advance share k — L + 1 or more shares. When
a set J of shares is not forbidden, the shares in J depend on
quantum secrets [7, Th. 2]. Thus, in order for a set J of shares
to be advance shareable, J must be a forbidden set. In Ogawa
etal’s (k, L, n) scheme, any k — L + 1 or more shares cannot
form a forbidden set and cannot be advance shareable. Our
proposal makes advance shareable sets as large as possible.

E. PROOF OF CORRECTNESS

It is clear from Section II-D that the proposed procedure can
distribute k£ — L or a fewer shares before a secret is given to
the dealer. On the other hand, at this point, it is unknown
whether or not the proposed encoding procedure produces
the same quantum states of shares as the original proce-
dure [7]. In order to show their sameness, in this section, it
will be proved that the proposed procedure gives the same
quantum state of n shares as the original scheme by Ogawa
et al. [7] for a given quantum secret |s). In (2), the set of
indices appearing in the quantum state is

Vi ={(fea1), ..., fean)) : € € D(s)}. (7
In (6), the set of indices appearing in the quantum state is
Vo ={(n, .. - grs(on))
FeFTH. ®)

< Fk—L» g?,f(ak*lrl*l)v e
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Theorem 5: For a fixed quantum secret |5} for §'e FL, the
proposed procedure gives the same quantum state of shares
as the original scheme by Ogawa et al. [7].

Proof: Equation (2) can be written as

1
— D e ®uw ©)
T 7 ey
and (6) can be written as
1
— ) ) ® - ® ). (10)

7 y,vn)eVs

To prove the theorem, it must be proven that (9) and (10) are
equal. In order to prove the equality between (9) and (10), it
is enough to show that the sets (7) and (8) are the same. To
show the equality between two sets (7) and (8), in (11), it will
be shown that there is a one-to-one correspondence between
elements in the two sets (7) and (8).

For fixed §'e FIC; and 7€ F’;_L, by Proposition 2, there
exists a unique polynomial fzwith ¢ € D(s). This correspon-
dence gives a bijection sending r € F’;_L to fzwith ¢’ € D(s).
By the definition of gz one has

(riy .oy rk—Ls 8r i@ 41)s - -, grs(an)) € V2
= (grsla1), ..., grslon))
= (felor), ..., felan)) € Vi (1D
which shows the theorem, where ¢’is chosen according to 7.

F. EXAMPLE OF THE PROPOSED ENCODING

Definitions from Section II-C are reused. Let ¢ =4, n =
3,k=2,L=1, and o; = o' € F4, where « is a primitive
element of F4. Note that since ¢ is not a prime number,
this case cannot be handled in the previous research [14].
In our proposal, the dealer prepares 2-qudit entangled state
% ZreF4 |r)|r) and send 1 qudit in it. Then, the dealer is given

a quantum secret |5} for s’= (s) € F}t. Then, one has
r

-5
X+ s.
aq

8rs(x) =

The unitary map Uepc sends |r)|s) to |2—‘15a2 + s)|2{—_]sa3 +s).
Now, it is clear that the leftmost share can be distributed
before the secret |s) is given, in contrast to Section II-C.

I1Il. ADVANCE SHARING WITH A QUANTUM RAMP
SECRET SHARING SCHEME IN [10]

A. ZHANG AND MATSUMOTO’S SCHEME

As mentioned before, Zhang and Matsumoto [10] also pro-
posed a (k, L, n) ramp quantum secret sharing scheme. Their
proposal has strong security in contrast to [7], and the max-
imum possible number of participants was smaller, that is,
n <g—L. As in Section II, «y, ..., «, are pairwise dis-
tinct elements in F,;. Extra elements B, ..., B are chosen
such thatall oy, ..., ®, and By, ..., Bz are pairwise distinct.
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In [10], any of oy, . .
= FIC;, one has

.,apand By, ..., By canbe O € F,. For

Dzm(S) = (CeFy: fB) =sifori=1,....L} (12)

where fz(x) is as defined in (1). For a given quantum secret
|5}, in [10], the quantum state of n shares is obtained as

— ) fd0) @ |f02)) @ -+~ ® | felew)) (13)

q ceDzm(5)

B. EXAMPLE OF THE ORIGINAL ENCODING
Letq=7,n=4,k=3,L=2,(x1,...,04) = (6,2,4,5),
and (81, B2) = (1, 3). This example is the same as [10, Ex-
ample 2]. For §= (s1, 52), Dzm($) contains (cy, ..., c3) if
and only if

c1+cy+c3 =5
c1+ 3¢+ 2c3 = 55.

The solution of the aforementioned system of linear
equations for (cp,...,c3) is Dzm(s) = {(5s; + 352 +
3c3, 351 4+ 455 4+ 3¢3, ¢3) @ c3 € F7}, which is the same [10,
eq. (3)]. For a given quantum state |§) = |s;) ® |s), the
quantum state of four shares is (the normalizing constant
1/3/T s omitted) Y0 _(®%  lafes +oi(3sy + 45y +
3c3) + (5s1 + 352 + 3¢3)) = (251 + 652) ® |4s1 +4s2) ®
[3s1 + 5s2) ® 651 + 2s2) + - - -, which is equivalent to [10,
eq. (5)]. Since the quantum state of every qudit seems to
depend on 51 and s,, from the encoding procedure in [10], it
seems unclear how one share is advance shareable.

C. PROPOSED ADVANCE SHARING PROCEDURE FOR [10]
The distribution k — L shares is considered before |s) is given
to the dealer. By reassigning indices, we may assume that the
dealer wants to advance share the first to the (k — L)th shares.
Consider |W) as defined in (3).

Suppose  that the quantum secret is |5} =
|s1)®~-~®|sL)e'H?L with §=(s1,...,81) €
FL. For FeFi ™t and 5§ let hpg(x) be a univari-
ate polynomial such that hzqx)e {f(x) : C¢
DZM(S_)} and h,?);(x)(ai) =T for i= 1, ey k—L.

Proposition 6: For given 7 and s, the polynomial 4 o(x)
exists uniquely.

Proof: Consider Py as defined in Lemma 1 and a polyno-
mial f(x) € P. The condition f(x) € {fz(x) : ¢ € Dzm($)}
means that f(B;) =s; for i=1,..., L. Together with the
conditions f(«;) =r; for i=1,...,k— L, the required
hz(x) is a polynomial f(x) € Py such that ev'(f) = (s1,

ceeySLy T1y e Tk—r), Where eV'(f) = (f(B1), ..., f(BL),
f(ay), ..., f(ak—r)). By Lemma 1, it can be seen that such
a polynomial f(x) exists uniquely, which is hj +{(x). |

Remark 7: Similarly to Remark 3, a more explicit
description of Az (x) will be given, which is deter-
mined by the equality condition (hyz{(B1), ..., hzs{BL),
hrjs-(()[]), ey hﬁg(ak_L)) = (Sl, ey SLy Ty ey rk_L). The
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determination of & ¢(x) is known as the Lagrange interpola-
tion [15, Ch. 13], which can be computed as follows. In order
to use the Lagrange interpolation formula, define B ; = o;
forj=1,...,k—L,and

li(x) =

[l 5%
1=k ji P P

Now, h; (x) can be obtained as

L k—L
his(x) =Y sili(x) + Y riliyL(x).
i=1 i=1

Let us describe a new encoding procedure enabling ad-
vance sharing. By Proposition 6, a unitary map Uzm enc
from ’H?k to 'H? (n=k+L) sending a quantum state |7)|s} to
|hi (t—r41)) ® -+ ® |hy {a,)) can be defined. Note that
k=n—k+ Lby[7, Lemma 2].

The proposed procedure for advance sharing is as follows.

1) The dealer distributes k — L qudits in the left half of
3).

2) After the quantum secret |5} is given, the dealer applies
UzM enc to the remaining half of (3) and |5}). Then, the
quantum state of all the n shares becomes

1
N Y N ®lhdonra)) ® - ® hion)).
q F‘eFfI’L

(14)

Remark 8: When k— L — 1 or a fewer shares are ad-
vance shared, the dealer can simply keep some shares in
the advance sharing phase in our proposal as in Remark 4.
On the other hand, as in Remark 4, it is impossible to ad-
vance share k — L + 1 or more shares, because in Zhang and
Matsumoto’s (k, L, n) scheme [10], any k — L + 1 or more
shares cannot form a forbidden set. Therefore, similarly to
Remark 4, our proposal makes advance shareable sets as
large as possible.

D. PROOF OF CORRECTNESS

By the same reason explained at the beginning of Sec-
tion II-E, in this section, it will be proven that the proposed
procedure gives the same quantum state of shares as the
original [10] for a given quantum secret |s). In (13), the set
of indices appearing in the quantum state is

{(felar), ..., felan)) = € € Dzm(9)}. 15)

In (14), the set of indices appearing in the quantum state is

(TS AHCTIVARD N SR CA REE St
(16)
Theorem 9: For a fixed quantum secret |s) for §"€ Fé, the
proposed procedure gives the same quantum state of shares
as the original [10].
Proof: In order to prove the theorem, it is enough to show
that the sets (15) and (16) are the same. For fixed s’ € Fé and

re F';_L, by Proposition 6, there exists a unique polynomial
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=(x) with ¢ € Dzp(s). This correspondence gives a bijection
between 7 € F’;’L to f=(x) with & € D(5). By the definition of
hy s one has

(ris oo rk—Ls he fl@p—p41), - - bz f(an))
= (hpgay), ..., hipgay))
= (feor), ..., felom))

which shows the theorem, where ¢’is chosen according to 7.
|

E. EXAMPLE OF THE PROPOSED ENCODING

Definitions from Section III-B are reused. Let g = 7, n = 4,
k=3,L=2,(x,...,4) =(6,2,4,5),and (B1, B2) = (I,
3). In our proposal, the dealer prepares 2-qudit entangled
state \Lﬁ Zr€F7 |r)|r) and send 1 qudit in it. Then, the dealer

is given a quantum secret |s) for §'= (s1, 57) € F% Then, one
has

Rpsy 5o (X) = (r — 281 + sz))c2 +(4s1 —4r)x+ Br—s1 — 572)

because s, 5, (x) satisfies hyg g, (01) = by, 5, (6) =1,
hr,sl,sz(ﬂl) = hr,sl,sz(l) = sy, and hr,sl,sz(,BZ) = hr,sl,sz(?’)
= 5. The unitary map Uzm enc sends |r)]s1)[s2) to |hyg, s,
(@) 1Ay s, 50 (@3)) | Py, 55 (@3)). Now, it is clear that the
leftmost share can be distributed before the secret |s) is
given, in contrast to Section III-B.

IV. CONCLUDING REMARKS

This article proposed new encoding procedures for Ogawa
et al.’s [7] and Zhang and Matsumoto [10] ramp quantum
secret sharing schemes and allowed the dealer to distribute
shares in those schemes before secrets are given. This en-
hances the applicability of the secret sharing schemes by
Ogawa et al. [7] and by Zhang and Matsumoto [10] to wider
scenarios in which some participants are unavailable when
the dealer obtains a secret. It was also proved that the new
proposed encoding procedures retain desirable properties,
such as coding rates, access structures, and strong security
from the original schemes. It was also proved that the ad-
vance shareable sets are made as large as possible in the
proposed encoding procedures.

Similarly to [13], there could exist a general method to
construct an advance sharing procedure for any stabilizer-
based quantum secret sharing, while retaining the correspon-
dence between secrets and shares. Its investigation could be
a future research agenda.

As mentioned in Section II-A, it seems also important
to study advance sharing with other scenarios of quantum
secret sharing, for example, [18], [19], [20]. It is also another
research agenda.
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