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Abstract. The Asymptotically Safe Gravity (ASG) framework suggests a ”running”
Newtonian coupling constant, which depends on two free parameters ω̃ and γ. The new black
hole metrics inferred from such a ”running” gravitational constant naturally match with a
Schwarzschild metric at large radial coordinate. By further imposing the matching with the
Donoghue quantum corrections to the Schwarzschild field, we find a negative value of the ω̃
parameter, and this leads to a not yet explored black hole metric, which surprisingly turns out
to describe the so-called Planck stars.

1. Introduction

Many models in quantum gravity (see e.g. [1, 2, 3, 4, 5] and references therein) share the prop-
erty that the fundamental parameters entering the action (Newton’s constant, electromagnetic
coupling, cosmological constant etc), are considered scale dependent quantities. Actually, scale
dependence at the level of the effective action is a generic feature of ordinary quantum field the-
ory. In gravity theories then the scale dependence is expected to modify the horizon, the ther-
modynamics, the quasinormal modes spectra of classical black hole backgrounds [6, 7, 8, 9, 10].
Among the mentioned approaches based on scale-dependent gravity, which go beyond classical
GR, we can find also a particular method usually known as ”improved” asymptotically safe
(AS) gravity [11, 12, 13]. For renormalization group (RG)-improved black hole metrics, cos-
mologies, and inflationary models from asymptotic safety, the reader can usefully consult e.g.
Refs. [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. In the ASG scenario usually the beta
function for the gravitational coupling is integrated in order to compute the Newton’s constant
G as a function of some energy or momentum scale k. The ”running” Newton’s constant G(k)
so constructed is then inserted into the classical black hole solution and an ”improved” lapse
function is obtained, which is considered to automatically include, in this way, the quantum
gravity effects. Clearly, in this approach it is essential to establish a link between the energy
scale k and the radial coordinate r, so that we can write G(k(r)) ≡ G(r). Only after this step
is done, the improved black hole metric can be considered complete and useful. Those extended
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solutions, inspired by the asymptotic safety program, are expected to modify the classical black
hole solutions by incorporating quantum features. However, different modified black hole met-
rics, in particular metrics also not affected by the central singularity, can be found, e.g, in
Refs. [27, 28, 29], although those examples are not directly connected with the ASG program.

On the other hand, by reformulating General Relativity as an effective quantum field theory of
gravity at low energies, John Donoghue and other authors [30, 31, 32, 33, 34, 35, 36, 37, 38] have,
along the years, established a solid prediction of the quantum corrections to the Schwarzschild
field, and therefore to the Newtonian potential, at least at the first order in h̄. By comparing
the effective Newtonian potential predicted by the ASG approach with the one computed in
the framework of GR as an effective QFT, we arrive to establish, for the first time, a negative
value for the parameter ω̃, unlike previous early predictions (see Refs. [11, 22]). This in turn
leads directly, without further assumptions, to a specific metric which is able to describe the
principal features of the so called Planck stars. It is remakable that, while Planck stars were
introduced in Ref. [39] on the grounds of plausible quite general physical considerations, here
on the contrary they appear as an almost unavoidable consequence of a metric obtained from
the Asymptotically Safe Gravity approach.

We work in units where c = kB = 1, and `P is the Planck length defined as Gh̄ = `2P . Then
of course the Planck mass mP satisfies 2GmP = `P and h̄ = 2mP `P .

2. Black hole metrics from Running Newtonian coupling

So, according to the literature on the topic [11, 40, 41], the basic idea of the AS gravity approach,
in order to obtain the renormalization-improved, classical Newtonian or general relativistic
solutions is to replace everywhere the numerical Newton constant G with the ’running constant’
G(r), whose explicit form is given in Ref. [11] as

G(r) =
Gr3

r3 + ω̃Gh̄ (r + γGM)
, (1)

where, in accordance with our conventions, c = kB = 1 and we retained h̄. Here ω̃ and γ are
dimensionless numerical parameters, whose concrete value will be discussed later.

The line element for the spherically symmetric, Lorentzian metric preserves the usual form,
that is

ds2 = F (r)dt2 − F (r)−1dr2 − r2 dΩ2, (2)

where r is the radial coordinate, and dΩ2 = dθ2 + sin2θ dφ2 is the line element of the unit
two-sphere. But now, according to the above prescriptions, the lapse function F (r) of our ASG
improved Schwarzschild geometry reads

F (r) = 1− 2MG(r)

r
= 1− 2GMr2

r3 + ω̃Gh̄(r + γGM)
, (3)

with G(r) given by (1) and M the mass of the black hole. Of course, we suppose ω̃ 6= 0,
otherwise we would go back to the standard Schwarzschild metric. Two very important limiting
cases should be considered.
The first corresponds to the low energy scales (r →∞, or k → 0), which implies

F (r →∞) ' 1− 2GM

r
, (4)

so the standard Schwarzschild metric at large distances is recovered, and this behavior is
independent from the values of ω̃ and γ.
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The second limit corresponds to the high energy scales (r → 0, or k → ∞). Here we have to
distinguish two subcases.
If γ 6= 0, then

F (r → 0) ' 1− 2r2

ω̃γGh̄
, (5)

and thus the lapse function corresponds to a deSitter (ω̃γ > 0) or an Anti-deSitter (ω̃γ < 0)
core of our metric, depending on the sign of ω̃γ.
If γ = 0, then

F (r) = 1− 2GMr

r2 + ω̃Gh̄
, (6)

and therefore

F (r → 0) ' 1− 2Mr

ω̃h̄
, (7)

so in this case we have a conic singularity at the origin. Clearly, the presence of h̄ signals the
quantum character of the correction that the ASG approach gives to the core of the standard
Schwarzschild metric. In both cases the central Schwarzschild singularity has disappeared.

3. Values of the parameters ω̃ and γ

As we said in Sec.II, the ASG-improved Newtonian potential can be obtained from the standard
Newton formula

V (r) = −GMm

r
(8)

by simply replacing the experimentally observed Newton constant G with the running coupling
G(r) given in Eq.(1). Thus we get

V ASG(r) = −G(r)Mm

r
= − GM mr2

r3 + ω̃ G h̄ (r + γGM)
, (9)

which can be expanded for large r as

V ASG(r) = −GMm

r

[
1− ω̃Gh̄

r2
− γω̃G2h̄M

r3
+O

(
G2h̄2

r4

)]
. (10)

Clearly, the corrections to the standard Newtonian potential predicted by the ASG approach
are all of quantum nature. This is suggested by the presence of h̄ in each term of correction. In
fact, there are no correction terms of classical origin, coming from some kind of post-Newtonian
approximation.

On the other hand, corrections of quantum origin to the classical Newtonian potential have
been elaborated by several researchers [30, 31, 32, 33, 34, 35, 36, 37, 38] in the last three decades
or so. In particular, it was pointed out by Donoghue [31, 34] that the standard perturbative
quantization of Einstein gravity leads to a well defined, finite prediction for the leading large
distance quantum correction to Newtonian potential. The numerical coefficients of the quantum
expansion have undergone a certain evolution over the years [32, 33], but the result today
accepted by the community [34, 35] reads

V QGR(r) = −GMm

r

[
1 +

41

10π

Gh̄

r2
+ . . .

]
. (11)

This is an expansion at first order in h̄, where the first correction term represents a genuine
quantum correction proportional to h̄.
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The comparison of the two expansions (10) and (11) allows us to fix the parameter ω̃, which
results to be

ω̃ = − 41

10π
. (12)

The ASG parameter γ cannot be fixed by these considerations. To this aim, we refer the reader to
the arguments originally developed in Ref.[11], and then taken up also by other authors (e.g.[22]).
Those classical general relativistic arguments have to do with the correct identification of the
infrared cutoff, and they fix γ = 9/2. Different kind of considerations, based on the generalized
uncertainty principle (see Ref. [40]; see also Refs. [42]), lead to the value γ = 0. In this paper
we will assume always γ ≥ 0, and in some specific cases we shall comment on the special value
γ = 0. However, most of the results will be qualitatively the same for all γ ≥ 0.

We should here emphasize that the sign of the first order correction term in h̄ in the expansion
(11) is crucial for the physics of ASG-improved black hole. For example, Duff, in his first
calculation [30] of 1974 obtained an expansion of the same kind of (11), with a positive coefficient
of the h̄ term, and therefore a negative ω̃. In order to fix the ω̃ parameter, many authors of ASG
papers, even quite recently, (e.g.[11, 22, 23]), rely instead on the early calculations performed
by Donoghue and others [31, 32] in the period 1994-1995, where the h̄ coefficient obtained was
negative. As a direct consequence, they get a positive value of ω̃. This of course has the
nice consequence of a black hole metric without singularity, where in particular the central
singularity is wiped out, in favour of a De Sitter or an Anti de Sitter core, as can be easily
inferred from Eqs.(3)(5), and is also widely discussed in the above References. However, during
the years, the analytical techniques used in GR as an effective QFT have been refined, and the
results now accepted by the community are those expressed, initially, in Refs.[34, 35], and then
confirmed in Refs.[36], as well as in the very recent Ref.[37]. All these results coherently point
to a positive h̄ coefficient in the expansion (11), and hence a negative value of ω̃. This fact
has deep consequences on the structure of the black hole metric (3), as we will see in the next
Sections 1.

4. Study of the new ASG-improved Schwarzschild metric

The key information obtained in the previous Section is that ω̃ is negative. This, as we will
see, represents a major change in respect to others modified (but regular) Schwarzschild metrics
present in literature [7, 10, 11, 28, 29]. Instead, some contact with our results can be found in
Ref. [44], although there the authors don’t deal with ASG models. So, according to the previous

1 Before proceeding further, we should mention the ongoing lively debate among the communities working on
the Effective Quantum Field Theory (EQFT) approach, and those on the ASG approach. The focus is about ”if”
and ”to what extent” the results obtained on ASG-improved metrics by the ASG community can be compared
with the results on the quantum corrected metrics obtained by the EQFT community (see e.g. Refs. [38, 43]).
Here, we cannot of course enter in details. However, within the Asymptotic Safety literature the parameter
ω̃ is usually considered positive. In fact, considering (see e.g. Refs. [11, 40]) the running Newton’s coupling
G(k) = G/(1 + ω̃Gk2/h̄), where k is the energy or momentum scale, we see that dG/dk < 0 only if ω̃ > 0. With
an ω̃ < 0, G(k) diverges for k ∼ kPlanck, and this behavior of G(k) looks, in principle, outside the spirit of ASG.
On the other hand, while the calculations of the EQFT community point nowadays firmly towards a positive
coefficient of h̄, there are still doubts about the comparability of those results with the ASG RG-improved metrics,
and therefore on the possibility to infer from that comparison a negative value for ω̃. In particular, it would seem
that the two different frameworks effectively consider, and implement, different classes of Feynman diagrams in
order to get their final metrics expressions. And we know that, for example, including or not including certain
subclasses of diagrams could change the sign of the ω̃ parameter. Thus, many people get the overall feeling that
for the time being the available calculations are not yet able to definitely clarify the situation. This however looks
to us as an even stronger motivation to explore the physical consequences of a (still well possible) negative ω̃
parameter.
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section, we consider here the case

ω̃ < 0 ⇒ ω̃ = −|ω̃| ; γ > 0 . (13)

The lapse function (3) can therefore be written as

F (r) = 1− 2GMr2

r3 − |ω̃|Gh̄(r + γGM)
. (14)

While for ω̃ > 0 the lapse (3) is regular everywhere when r > 0 (see e.g. Ref. [11]), here, with
ω̃ < 0, the scenario is very different. First, we notice that the behavior of F (r) at r → ∞
remains that described by Eq.(4), namely a standard Schwarzschild metric for large r. At r → 0
we have an Anti-DeSitter core, namely F (r) ' 1 + 2r2/(|ω̃|γGh̄). But now the denominator
D(r) appearing in (14) can develop zeros. Luckly, a simple analysis is sufficient to clarify the
situation (for details, see Ref. [41]).

In fact, it is possible to draw a general graph (Fig.1) of the lapse function F (r) in the region
r > 0, valid for any γ > 0 and of course M > 0. As we see, there is always one single positive
zero r = rh of F (r), which is the horizon of the ASG-improved black hole metric (14). There
is also an essential singularity at r = r0 > 0. The most relevant difference with the standard
Schwarzschild metric is the fact that the essential (ineliminable) singularity is at r0 > 0, instead
of being at r0 = 0. It is also clear that it is always r0 < rh, for any M > 0. So the singularity is
always protected by the event horizon. The singularity is never naked, in full accordance with
the Cosmic Censorship Conjecture.

The asymptotic behavior of the horizon rh and of the singularity r0 in the physical relevant
limits of large M and small M can be summarized as follows (again, see Ref. [41] for details).

4.1. Horizon rh
The behavior of the horizon for large M , M →∞, is

rh ' 2GM +
(2 + γ)|ω̃|h̄

4M
, (15)

Figure 1. Lapse function F (r): physical region for r > 0, singularity at r = r0, horizon at
r = rh, where F (rh) = 0.
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so the usual Schwarzschild expression for the horizon is recovered in the large M limit.
We can also investigate the behavior of the horizon in the small M limit.
We find

rh '
√
|ω̃|Gh̄ +

(
1 +

γ

2

)
GM . (16)

Essentially, rh ≥ `P , which sounds reasonable, since any length below Planck length is physically
meaningless, namely unobservable.

4.2. Singularity r0
As we have seen, the singularity of the metric (14) is located at the only positive root r = r0 of
the equation

r3 − |ω̃|Gh̄r − γ|ω̃|G2h̄M = 0 . (17)

The behavior of the radial coordinate r = r0 of the singularity for small M is

r0 '
√
|ω̃|Gh̄ +

γ

2
GM , (18)

so again r0 ≥ `P .
Instead, for M → ∞ the situation is much more interesting. The large M limit of the

singularity equation (17) yields for the behavior of the root r0

r0 ' (γ|ω̃|G2h̄M)1/3 +
|ω̃|Gh̄

3(γ|ω̃|G2h̄M)1/3
. (19)

An important physical consideration can now be stated. As already suggested by the initial
analysis, the singularity results to be always protected by the horizon. Namely, by comparing
Eqs.(15), (19) for large M , or instead by comparing Eqs.(16), (18) in the small M limit, we
always have

r0 < rh , (20)

so there are no naked singularities.
For sake of clarity, in Fig.2 the reader can find the plots of the mass function M(rh) for the
horizon (red dashed line)

GM(rh) =
r3 − |ω̃|`2P r

2r2 + |ω̃|`2Pγ

∣∣∣∣∣
r=rh

, (21)

the mass function M(r0) for the singularity (blue dot-dashed line)

GM(r0) =
r3 − |ω̃|`2P r
|ω̃|`2Pγ

∣∣∣∣∣
r=r0

, (22)

and the standard Schwarzschild horizon GM = rSCH/2 (green solid line). Any horizontal line
(black dashed) representing an arbitrary M > 0 intersects first the blue line and then the red
line, namely r0(M) < rh(M) for any M > 0. Notice that both the horizon and the singularity
mass functions have a simple zero at r = rc =

√
|ω̃| `P with r2c = |ω̃| `2P .
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5. A metric for the Planck stars

It is of the greatest interest to examine the core of the black hole metric we obtained. For masses
M larger than the Planck mass mp, M � mp, the central hard singularity is located at r = r0,

and it has, in fact, a finite positive size r0 ' (γ|ω̃|G2h̄M)1/3 > 0, contrary to what happens
in the standard Schwarzschild black hole, where the singularity is point-like. Observe that this
finite size is completely of quantum origin: in fact, r0 → 0 if we take the classical limit h̄→ 0.

But most importantly, if we presume that the whole collapsing mass M is concentrated into
the central hard sphere of radius r0, then we can compute the (non covariant) volume of this
sphere, and hence the density of this matter (as seen by an observer at infinity), which will
result to be finite, and precisely

r0 = (γ|ω̃|`2PGM)1/3 = (γ|ω̃|/2)
1
3 `P

(
M

mp

) 1
3

⇒ % =
M

Vcore
=

3

2π

mp

γ|ω̃|`3P
' %Planck

2γ|ω̃|
,

(23)
where we used the definitions Gh̄ = `2P , 2Gmp = `P , and

%Planck =
mp

`3P
. (24)

So the central hard kernel of our black hole results to have a finite size, and a density of the order
of the Planck density. These are exactly the characteristics of the so called Planck stars, first
proposed in Ref. [39], on the ground of general qualitative considerations. Many of the general
properties described in [39] (see also Ref. [45]) can now be repeated for our black hole. The finite
positive size of the central core, being of pure quantum origin, is presumably due to the action
of the Heisenberg uncertainty principle, which prevents matter to be arbitrarily concentrated
into a geometrical point of size zero. The central kernel can presumably keep trace of all the
information swallowed by the black hole: we see here a possible way out of the information
paradox. Of course, all the above considerations make sense only for γ > 0 strictly.

The original proposal [39] contains a certain amount of qualitative considerations, including
an educated guess on the form of the metric able to describe a Planck star. Such metric was

Figure 2. Horizon mass function M(rh) (red dashed line), singularity mass function M(r0)
(blue dot-dashed line), and Schwarzschild mass function (green solid line). The horizontal
black dashed line represents an arbitrary M > 0, and always intersects blue and red lines at
r0(M) < rh(M), namely there are no naked singularities.
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initially chosen to be the Hayward metric [28]

F (r) = 1− 2GMr2

r3 + 2GML2
(25)

where L is a parameter with dimensions of a length. No particularly compelling argument, from
the physical point of view, was exhibited for that choice, with the exception, perhaps, that the
Hayward metric is a well known example of singularity-free metric. For large M the metric (25)
develops two horizons, one inner

r− ' L +
L2

4GM
, (26)

and one outer

r+ ' 2GM − L2

2GM
. (27)

However, no specific indication is contained in the metric (25) about the size of the hard kernel
of a Planck star. And certainly not of a hard kernel with a size increasing with M , as instead
Eq.(23) suggests (to be compared with (26)). Even worse, the Hayward metric per se is unable
to mimic the well established quantum correction to the Newtonian potential [34] that occurs
at low energies. This is due to the lack of a term 1/r3 in the expansion of the metric (25). The
authors of Ref. [46] found a smart way to cure this shortcoming, but at the price of introducing
a further metric function H(r), determined through a bunch of additional constraints, so that
their ”modified Hayward” metric now reads

ds2 = − H(r)F (r)dt2 +
1

F (r)
dr2 + r2dΩ2 , with H(r) = 1− βGMα

αr3 + βGM
, (28)

where β is a parameter that in Ref.[46] plays the rôle of our |ω̃|. The above metric 2 finally
contains the 1/r3 term necessary to mimic the Donoghue modified Newtonian potential [34] for
large r.
Although smart and working, the above solution is undeniably contorted and intricate. On the
contrary, within the formalism of the Renormalization Group, the mathematical structure of the
metric is dictated by the general properties of the AS Gravity, and its lapse function (14) results
clearly simpler than the above product H(r)F (r). The ASG metric already contains the right
terms to match, at large distances, the quantum corrected Newtonian potential. Moreover, and
this is quite astonishing, by simply imposing that match, the final form of the metric is uniquely
fixed, and it automatically displays the size of the central hard kernel of the Planck star.

6. Conclusions

In this paper we have derived an exact value of the parameter ω̃ characterizing the spherically
symmetric metric suggested by the Asymptotically Safe Gravity approach. The result has been
obtained by comparing the corrected Newtonian potential computed through ASG, with the
analog correction suggested by the Donoghue approach to GR as a low energy effective QFT.
The decisive novelty in respect to the previously computed values of ω̃ is that we get a negative
value of ω̃, and this because we used the more recent results [34, 35, 36] of Donoghue, Khriplovich,
and collaborators.

2 A further requirement imposed by the authors on the function H(r) is that H(r) should allow for a time delay
between a clock sitting at the center of the collapsed object (r = 0), and a clock at infinity (put a clock at r = 0
is in principle conceivable, just because the Hayward metric is regular at r = 0). To get this, authors demand
that H(r = 0) = 1 − α. They justify this further request by saying that ”is a physically unmotivated restriction”
to leave H(0) = 1. In any case, we do not have this kind of problem with the ASG metric (14), since the center
r = 0 cannot be reached, being protected by the singularity at r = r0 > 0.
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The fact ω̃ < 0 completely changes the geometry of the ASG ”improved” black hole metric.
Previously unexplored aspects of this metric have been studied, the most relevant one being the
presence of a finite-size singularity at the core of the black hole. Surprisingly, the size of this
”black kernel” results to be exactly what needed to describe the so called Planck stars. These
objects were introduced years ago on the basis of semi-qualitative arguments [39], while in our
context they appear as a natural mathematical consequence of the ASG metric with a negative
ω̃ parameter (see also e.g. [47]).

It is worth mentioning that the phenomenology of these objects could be quite rich,
and presents both astrophysical and cosmological signatures, in particular in the realm of
(primordial) black hole evaporation [48]. As a Planck star evaporates, with a hard kernel of
finite positive size, then the final explosion may occur at ”macroscopic” scale, namely at a much
bigger scale than the Planck scale. So, Planck star explosions could be naturally associated with
some of the measured short gamma-ray bursts (SGRBs) [49]. In Ref. [50] authors estimated
that several short gamma-ray bursts per day, around 10 MeV, with isotropic distribution, can
be expected coming from a region of a few hundred light years around us. On the other hand, also
fast radio bursts, strong signals with millisecond duration, which are probably of extragalactic
origin, have been shown in Ref. [51] to have wavelengths not far from the expected size of the
exploding hole.

On the theoretical side, further investigations, aimed to better understand Penrose
diagrams, energy conditions, singularity theorems, quasi-normal modes, as well as a statistical
interpretation of entropy and information paradox, related to this kind of metrics are currently
being carried out.
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