
Eur. Phys. J. C         (2021) 81:1105 
https://doi.org/10.1140/epjc/s10052-021-09898-9

Regular Article - Theoretical Physics

Heavy + light pseudoscalar meson semileptonic transitions

Zhen-Ni Xu1,2,a , Zhu-Fang Cui1,2,b , Craig D. Roberts1,2,c , Chang Xu1,2,d

1 School of Physics, Nanjing University, Nanjing 210093, Jiangsu, China
2 Institute for Nonperturbative Physics, Nanjing University, Nanjing 210093, Jiangsu, China

Received: 31 March 2021 / Accepted: 29 November 2021
© The Author(s) 2021

Abstract A symmetry-preserving regularisation of a vec-
tor × vector contact interaction (SCI) is used to deliver a
unified treatment of semileptonic transitions involving π , K ,
D(s), B(s,c) initial states. The framework is characterised by
algebraic simplicity, few parameters, and the ability to simul-
taneously treat systems from Nambu–Goldstone modes to
heavy+heavy mesons. Although the SCI form factors are typ-
ically somewhat stiff, the results are comparable with exper-
iment and rigorous theory results. Hence, predictions for the
five unmeasured Bs,c branching fractions should be a rea-
sonable guide. The analysis provides insights into the effects
of Higgs boson couplings via current-quark masses on the
transition form factors; and results on B(s) → D(s) transi-
tions yield a prediction for the Isgur–Wise function in fair
agreement with contemporary data.

1 Introduction

Pseudoscalar mesons are fascinating for many reasons. In
the light-quark sector, the pion is remarkably light owing to
dynamical chiral symmetry breaking [1]; itself, a corollary
of emergent hadron mass (EHM) [2,3]. Compared with the
pion’s light u, d quarks, the s quark in the K couples more
strongly to the Higgs boson. Thus, the kaon is heavier. How-
ever, if these Higgs couplings are switched off, then the π

and K are practically identical: they are Nature’s most fun-
damental Nambu–Goldstone bosons. Consequently, compar-
isons between pion and kaon properties provide information
on empirical expressions of EHM and insights into the con-
structive interference between Nature’s two most basic mass
generating mechanisms [4–9].
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These observations are highlighted by studies of the lep-
tonic and semileptonic decays of the π and K , which measure
the scale of EHM, the strength of Higgs boson couplings
into quantum chromodynamics (QCD), and the size of the
entries in the Cabbibo–Kobayashi–Maskawa (CKM) matrix
that generate the associated flavour-changing weak interac-
tions. In these cases, the CKM matrix elements are |Vud | and
|Vus |. The former has been measured via the π+ → π0e+νe
transition [10], leading to [11, Sec. 12]:

|Vud | = 0.9739(29). (1)

The merits of this process lie in the facts that such semilep-
tonic transitions proceed solely through the vector compo-
nent of the weak interaction and there are no in-medium
effects to consider, as there would be with measurements of
nuclear transitions.

Semileptonic K decays are similarly used to extract |Vus |.
In this case, the zero-recoil value of the dominant transition
form factor is not unity, so the measurements constrain a
product [11, Sec. 12]:

|Vus | f Kπ+ (0) = 0.2165(4). (2)

f+(0) can be calculated using continuum and lattice meth-
ods. An average of lattice results [12–15] yields: f Kπ+ (0) =
0.9692(29); hence, |Vus | = 0.2234(7).

In connection with Eq. (2), an average of continuum pre-
dictions [16–18] yields

f Kπ+ (0) = 0.972(8). (3)

These Dyson–Schwinger equation (DSE) studies [19–22]
employed the symmetry-preserving leading-order (rainbow-
ladder, RL) truncation of the continuum bound-state prob-
lem [23,24]; and no tuning effort was made. In combining
them here, we exploited the fact that infrared observables
are largely insensitive to the momentum dependence of the
bound-state kernels owing to the emergence of a gluon mass-
scale m0 = 0.43(1) GeV [7,25–28].
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In the tower of flavoured pseudoscalar mesons, the next
states are the D and Ds . The interplays between EHM and
Higgs-boson (HB) mass generating effects in these systems
are quite different from those in the lighter pseudoscalar
mesons. Naturally, D and Ds would be indistinguishable
from the π and K if all Higgs couplings were removed;
but with the empirical values, the Higgs mechanism alone
produces approximately 70% of their masses and construc-
tive EHM + HB interference generates the remaining 30%,
i.e. a 70:30 balance. The analogous results for the K and π

are 20:80 and 5:95. Plainly, EHM is subdominant but still
significant in D and Ds mesons.

These mass budgets were computed using information
from Ref. [7, Figs. 1.1, 2.5], including predictions for the
active masses of the c and b quarks at ζ2 = 2 GeV, viz.
1.27 GeV and 4.18 GeV, respectively. Averages of lattice
results produce the following values for these quantities [29]:
1.280(13), 4.198(12).

Precise data are available for D and Ds semileptonic
decays [30–35]. They provide access to |Vcd | and |Vcs |;
albeit, once again, multiplied by soft form factors: f Ds K+ (0),
f Dπ+ (0) and f DK+ (0). Lattice-QCD (lQCD) results are avail-
able for the last two [36–38] and continuum results for all
three [18]:

f Ds K+ (0) f Dπ+ (0) f DK+ (0)

continuum [18] 0.673(40) 0.618(31) 0.756(36)

lattice [37] 0.612(35) 0.765(31)

lattice [36,38] 0.666(29) 0.7380(44)

. (4)

A fourth form factor is not typically considered because
the accuracy of isospin symmetry means D+ → K̄ 0 and
D0 → K− are practically equivalent.

Including the b quark, one has three more pseudoscalar
systems: Bc, Bs , B. In these cases, the HB vs. EHM +
HB mass budgets are 87:13 for the Bc and 80:20 for Bs ,
B. Plainly, the Higgs mechanism is dominant, but the role
of EHM is persistently non-negligible. There are also many
more possible semileptonic transitions: Bc → B links with
|Vcd |; Bc → Bs with |Vcs |; B → π and Bs → K with |Vub|;
and B → D, Bs → Ds , Bc → ηc with |Vcb|. The last two
open windows onto the third column of the CKM matrix.
However, robust theoretical predictions for all the associated
semileptonic transition form factors are difficult to obtain
[39], owing chiefly to the vast separation between the masses
of the participating valence-quarks and -antiquarks, and the
diversity of competing scales in the processes.

The approach employed in Ref. [18] can be adapted to
predicting the leptonic and semileptonic decays of mesons
containing a b quark. In preparing for such a unifying study
using realistic quark + antiquark interactions, it is helpful
to have a benchmark. One is provided by calculations made
with a symmetry-preserving formulation of a vector × vec-

tor contact interaction (SCI) [40,41]. Such an approach pre-
serves the character of more sophisticated treatments of the
continuum bound-state problem whilst nevertheless enabling
an algebraic simplicity; and widespread use has shown that,
when interpreted carefully, SCI predictions provide a mean-
ingful quantitative guide, see e.g. Refs. [42–54]. Thus, with
SCI results in hand, one has the means to check the validity
of algorithms employed in studies that rely (heavily) upon
high performance computing.

This discussion is arranged as follows. Section 2 explains
our implementation of the SCI, including constraint of
the ultraviolet cutoff and determination of values for the
interaction-dependent current-quark masses. Section 3 deta-
ils the SCI treatment of semileptonic transitions that proceed
via the weak vector vertex, using D → π− as the exemplar.
Section 4 discusses SCI results for the three D(s) → π, K
transitions that are distinguishable in the isospin-symmetry
limit, including comparisons with other studies and experi-
ment, where available. Section 5 proceeds with a similar dis-
cussion of the seven independent B(c,s) semileptonic tran-
sitions, which present many challenges to experiment and
theory [39]. Section 6 considers the question of environmen-
tal sensitivity, i.e. the evolution of semileptonic transition
form factors as the Higgs mechanism of current-quark mass
generation becomes a more important component of the final-
state meson’s mass. Section 7 reports SCI predictions for the
Isgur–Wise function [55], as inferred from the B(s) → D(s)

transitions. Section 8 presents a summary and perspective.

2 Contact interaction

When studying the continuum meson bound-state problem,
the primary element is the quark + antiquark scattering ker-
nel. In RL truncation, it can be written (k = p1 − p′

1 =
p′

2 − p2, k2Tμν(k) = k2δμν − kμkν):

K α1α
′
1,α2α′

2
= Gμν(k)[iγμ]α1α

′
1
[iγν]α2α

′
2
, (5a)

Gμν(k) = G̃(k2)Tμν(k). (5b)

The defining quantity is G̃. Twenty years of study have
revealed much about its pointwise behaviour. A key finding
is that, owing to the emergence of a gluon mass-scale in QCD
[7,25–28], G̃ is nonzero and finite at infrared momenta; so,
one may write

G̃(k2)
k2�0= 4παIR

m2
G

. (6)

QCD has [28]: mG ≈ 0.5 GeV, αIR ≈ π . We follow Ref.
[52], retaining this value ofmG , and since the SCI cannot sup-
port relative momentum between bound-state constituents,
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simplifying the tensor structure in Eqs. (5a, 5b) such that, in
operation:

K CI
α1α

′
1,α2α′

2
= 4παIR

m2
G

[iγμ]α1α
′
1
[iγμ]α2α

′
2
. (7)

We implement a rudimentary form of confinement in the
SCI by introducing an infrared regularisation scale,Λir , when
defining bound-state equations [56]. This device excises
momenta less than Λir , so eliminating quark + antiquark
production thresholds [57]. The usual choice is Λir = 0.24
GeV [41].

At the other extreme, the integrals appearing in SCI bound-
state equations require ultraviolet regularisation. This breaks
the link between infrared and ultraviolet scales that is a fea-
ture of QCD. The ultraviolet mass-scales, Λuv, become phys-
ical parameters that may be interpreted as upper bounds on
the momentum domains whereupon distributions within the
associated systems are effectively momentum-independent.
For instance, the π -meson is larger in size than the B-meson;
hence, one should expect 1/Λπ

uv > 1/ΛB
uv. As subsequently

explained, this observation leads us to a completion of the
SCI through introduction of a scale-dependent coupling [49–
52].

The SCI gap equation for a quark of flavour f is

S−1
f (p) = iγ · p + m f

+ 16π

3

αIR

m2
G

∫
d4q

(2π)4 γμS f (q)γμ, (8)

where m f is the quark’s current-mass. Using a Poincaré-
invariant regularisation, the solution is

S f (p)
−1 = iγ · p + M f , (9)

with the dynamically generated dressed-quark mass, M f ,
obtained by solving

M f = m f + M f
4αIR

3πm2
G

Ciu
0 (M2

f ), (10)

where

Ciu
0 (σ ) =

∫ ∞

0
ds s

∫ τ 2
ir

τ 2
uv

dτ e−τ(s+σ)

= σ
[
Γ (−1, σ τ 2

uv) − Γ (−1, σ τ 2
ir)

]
, (11)

Here, the “iu” superscript highlights that the function
involves both the infrared and ultraviolet cutoffs and Γ (α, y)
is the incomplete gamma-function. In general, functions of
the following form arise in solving SCI bound-state equations
(τ 2

uv = 1/Λ2
uv, τ 2

ir = 1/Λ2
ir):

Ciu
n (σ ) = Γ (n − 1, σ τ 2

uv) − Γ (n − 1, σ τ 2
ir), (12)

Ciu
n (σ ) = σCiu

n (σ ), n ∈ Z
≥.

Pseudoscalar (J P = 0−) mesons emerge as quark +anti-
quark bound-states. They are described by a Bethe–Salpeter
amplitude, whose SCI form is [17]:

Γ0−(Q) = γ5

[
i E0−(Q) + 1

2M fg
γ · QF0−(Q)

]
, (13)

M fg = M f Mg/[M f + Mg], Q is the bound-state’s total
momentum, Q2 = −m2

0− , m0− is the meson’s mass.
The amplitude and m2

0− are obtained by solving the fol-
lowing Bethe–Salpeter equation: (t+ = t + Q):

Γ0−(Q) = −16π

3

αIR

m2
G

×
∫

d4t

(2π)4 γμS f (t+)Γ0−(Q)Sg(t)γμ. (14)

Our symmetry-preserving approach implements a dimen-
sional-regularisation-like identity [17]:

0 =
∫ 1

0
dα

[Ciu
0 (ω f g(α, Q2)) + Ciu

1 (ω f g(α, Q2))
]
, (15)

where (α̂ = 1 − α)

ω f g(α, Q2) = M2
f α̂ + αM2

g + αα̂Q2. (16)

Using Eq. (15), one arrives at the following Bethe–
Salpeter equation:

[
E0−(Q)

F0−(Q)

]
= 4αIR

3πm2
G

[
K0−

EE K0−
EF

K0−
FE K0−

FF

] [
E0−(Q)

F0−(Q)

]
, (17)

with

K0−
EE =

∫ 1

0
dα

{
Ciu

0 (ω f g(α, Q2))

+
[
M f Mg − αα̂Q2 − ω f g(α, Q2)

]

×Ciu
1 (ω f g(α, Q2))

}
, (18a)

K0−
EF = Q2

2M fg

∫ 1

0
dα

[
α̂M f + αMg

]

×Ciu
1 (ω f g(α, Q2)), (18b)

K0−
FE = 2M2

f g

Q2 K0−
EF , (18c)

K0−
FF = −1

2

∫ 1

0
dα

[
M f Mg + α̂M2

f + αM2
g

]

×Ciu
1 (ω f g(α, Q2)). (18d)
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Table 1 Couplings, αIR/π , ultraviolet cutoffs, Λuv, and current-quark
masses, m, that deliver a good description of flavoured pseudoscalar
meson properties, along with the dressed-quark masses, M , and pseu-
doscalar meson masses, m0− , and leptonic decay constants, f0− , they
produce; all obtained with mG = 0.5 GeV, Λir = 0.24 GeV. Empir-
ically, at a sensible level of precision [11]: mπ = 0.14, fπ = 0.092;
mK = 0.50, fK = 0.11; mD = 1.87, fD = 0.15; mB = 5.30,
fB = 0.14. (Dimensioned quantities in GeV.)

Quark αIR/π Λuv m M m0− f0−

π l = u/d 0.36 0.91 0.0068 0.37 0.14 0.10

K s̄ 0.33 0.94 0.16 0.53 0.50 0.11

D c 0.12 1.36 1.39 1.57 1.87 0.15

B b̄ 0.052 1.92 4.81 4.81 5.30 0.14

The value of Q2 = −m2
0− for which Eq. (17) is satisfied

supplies the bound-state mass and the associated solution
vector is the meson’s Bethe–Salpeter amplitude. In the calcu-
lation of observables, the canonically normalised amplitude
must be used, viz. the amplitude obtained after rescaling such
that

1 = d

dQ2 Π0−(Z , Q)

∣∣∣∣
Z=Q

, (19)

where, with the trace over spinor indices:

Π0−(Z , Q) = 6trD

∫
d4t

(2π)4

× Γ0−(−Z)S f (t+) Γ0−(Z) Sg(t). (20)

In terms of the canonically normalised Bethe–Salpeter
amplitude, the pseudoscalar meson’s leptonic decay constant
is

f0− = Nc

4π2

1

M fg

[
E0−K0−

FE + F0−K0−
FF

]
Q2=−m2

0−
. (21)

With our normalisation, the empirical value of the pion’s
leptonic decay constant is fπ = 0.092 GeV [11].

The properties of π - and ρ-mesons were analysed in Ref.
[41], with the optimal description provided by the parameters
and associated current-quark mass in the middle columns
of Table 1, row 1. The last three columns report calculated
results for the dressed u-quark mass, pion mass and pion
decay constant.

Keeping the light-quark values, we determined the s-
quark current mass,ms , and K -meson ultraviolet cutoff, ΛK

uv,
through a least-squares fit to measured values of mK , fK
whilst imposing the relation:

αIR(ΛK
uv)[ΛK

uv]2 ln
ΛK

uv

Λir
= αIR(Λπ

uv)[Λπ
uv]2 ln

Λπ
uv

Λir
. (22)

This procedure eliminates one parameter by implementing
the physical constraint that any increase in the momentum-

space extent of a hadron wave function is matched by a reduc-
tion in the effective coupling between the constituents. Crit-
ical over-binding is thus avoided. The results are listed in
Table 1, row 2. The procedure is repeated for the c-quark/D-
meson and b̄-quark/B-meson, with results in Table 1, rows 3,
4.

Regarding the current-quark masses in Table 1, the fit-
ted value of ms/ml = 24 lies within the range of exist-
ing estimates in QCD [11], despite the individual current-
masses being too large by a factor of � 2 because the SCI is
deficient in connection with ultraviolet quantities. The result
Ms/Ml = 1.4 is a fair match with the value determined in
efficacious RL studies with momentum-dependent interac-
tions [58]: Ms/Ml = 1.25(9). Similarly, the results for mc,
mb are individually somewhat higher than QCD estimates,
but the values for Mc,b are commensurate with typical values
of the heavy-quark pole masses [11]. This is the character of
the SCI: it is not a precision tool; but when employed judi-
ciously, it is qualitatively and semiquantitatively reliable.

The evolution of the ultraviolet cutoff with pseudoscalar
meson mass reported in Table 1 is described by the following
interpolation (s = m2

0−):

Λuv(s) = 0.306 ln[19.2 + (s/m2
π − 1)/2.70]. (23)

For a given meson, H , the associated coupling can then be
obtained using Eq. (22), with [ΛK

uv]2 → m2
H = s. One can

subsequently compute properties of any meson for which a
mass estimate is available by solving the associated Bethe–
Salpeter equation with the prescribed cutoff and coupling,
using the dressed-quark propagators already determined.
Proceeding as described here, one obtains the meson masses
and decay constants listed in Table 2.

As highlighted in Fig. 1a, SCI results for the masses are
in good agreement with experiment: the mean absolute rel-
ative difference ard = 2.8%. Particularities associated with
ensuring the vector Ward–Green–Takahashi identity entail
that the description is better for pseudoscalars than it is for
vector mesons [40].

Regarding the leptonic decay constants, Fig. 1b, the SCI
supplies a poorer description because these observables
describe quark + antiquark annihilation at a single spacetime
point. Hence, they are sensitive to ultraviolet physics, which
is a challenge for the SCI. Equations (22), (23) are useful in
repairing the deficiency. They ensure that in comparison with
known empirical values or available lQCD results, the pic-
ture is fair: trends are typically reproduced; and comparing
columns 6 and 7 in Table 2, ard = 11%. The discrepancies
between SCI and lQCD results for fBc , fB∗

c
appear anoma-

lously large. Eliminating them, then ard = 7.4%. However,
the lQCD results are consistent with modern continuum pre-
dictions developed using realistic interactions [63].
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Table 2 Computed masses (column 1), Bethe–Salpeter amplitudes
(columns 3 and 4), and decay constants (column 5) for a representa-
tive selection of mesons. Measured masses (column 2) from Ref. [11];
entry marked by “∗” in this column from Ref. [59]. Leptonic decay
constants (column 6): measured values, where known, from Ref. [11];
and others, marked with “∗”, drawn from lQCD studies [11,29,60–62].
(Dimensioned quantities in GeV. Underlined entries from Table 1.)

J P Meson mCI me/l E F f CI f e/l

0− π(ud̄) 0.14 0.14 3.59 0.47 0.10 0.092

K (us̄) 0.50 0.50 3.70 0.55 0.11 0.11

D(uc̄) 1.87 1.87 3.25 0.39 0.15 0.15(1)

Ds(sc̄) 1.96 1.97 3.45 0.54 0.16 0.18

ηc(cc̄) 2.90 2.98 3.74 0.90 0.20 0.24(1)

B(ub̄) 5.30 5.30 2.98 0.18 0.14 0.13∗

Bs(sb̄) 5.38 5.37 3.26 0.27 0.16 0.16∗

Bc(cb̄) 6.16 6.28 4.25 0.79 0.21 0.30∗

1− K ∗(us̄) 1.10 0.89 1.31 0.15 0.16

D∗(uc̄) 2.09 2.01 1.25 0.15 0.16(1)∗

D∗
s (sc̄) 2.18 2.11 1.30 0.15 0.19(1)∗

B∗(ub̄) 5.36 5.33 1.26 0.13 0.13∗

B∗
s (sb̄) 5.45 5.42 1.34 0.14 0.15∗

B∗
c (cb̄) 6.24 6.33∗ 1.97 0.20 0.30(1)∗

A

B

Fig. 1 Upper panel—a Comparison between SCI predictions for
selected meson masses and available experiment [11] and mB∗

c
from

Ref. [59]. Lower panel—b Analogous comparison for meson lep-
tonic decay constants: experiment [11], where known, and lQCD other-
wise [11,29,60–62] In both panels, contact-interaction predictions are
depicted as blue circles, comparison empirical values by green bars;
and lQCD results by red crosses. (Pictorial representation of results in
Table 2)

It should be noted that our ultraviolet improvement
scheme differs from that in Ref. [52]. Therein, pseudoscalar

mesons with mass-degenerate valence degrees-of-freedom
were used to develop a running scale like that in Eq. (23).
Owing to our subsequent focus on semileptonic decays of
flavoured pseudoscalar mesons, we instead used the under-
lined masses in Table 2.

3 Semileptonic transitions: foundations

3.1 Matrix elements

Our SCI analysis of pseudoscalar meson semileptonic decays
follows the treatment of K�3 transitions in Ref. [17]. We will
sketch the procedure using the D0 → π− transition. All
others can be developed by analogy. Therefore, consider the
following matrix element:1

dM
D0

μ (P, Q) = 〈π−(p)|d̄iγμc|D0(k)〉
= [Pμ f

Dd
u+ (t) + Qμ f

Dd
u− (t)], (24)

where P = k + p, Q = p − k, with k2 = −m2
D and p2 =

−m2
π ; and the squared-momentum-transfer is t = −Q2.

The masses of the hadrons involved limit the physical
domain of support for the form factors:

P · Q = −(m2
D − m2

π ) =: −ΔDπ , (25a)

P2 = −2(m2
D + m2

π ) − Q2 =: −2ΣDπ − Q2; (25b)

and t Dπ
m = (mD − mπ )2 =: m2

Dy
Dπ
m is the largest value of

the squared-momentum-transfer in the decay process.
In the flavour-symmetry limit, f D+ (t) is equivalent to the

elastic form factor of a charged pion-like meson built from a
valence-quark and -antiquark with degenerate current masses
and f D− (t) ≡ 0 [64]. In all transitions, therefore, f−(t) is
sensitive to the strength of HB-induced flavour-symmetry
breaking, as are various sensibly constructed ratios of f+
transition form factors, e.g. D+ → K 0 vs. D0 → π− reflects
s-quark:u-quark differences. These properties are correlated
with the scalar form factor

f D0 (t) = f D+ (t) + t

m2
D − m2

π

f D− (t), (26)

and its analogues, which all measure the divergence of the
transition current, Q · M(P, Q).

The additional merit of focusing on f+,0(t) is that each is
characterised by a different resonance structure on t � tm :
f+(t) links with the vector meson D∗; and f0(t) with the
related scalar resonance. On the other hand, f−(t) overlaps

1 Euclidean metric conventions: {γμ, γν} = 2δμν ; γ †
μ = γμ; γ5 =

γ4γ1γ2γ3, tr[γ5γμγνγργσ ] = −4εμνρσ ; σμν = (i/2)[γμ, γν ]; a · b =∑4
i=1 ai bi ; and Qμ timelike ⇒ Q2 < 0.
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with both channels. (These observations are exemplified in
Refs. [16–18] and below.)

Using our SCI, the matrix element in Eq. (24) takes the
following explicit form:

dM
D0

μ (P, Q) = Nctr
∫

d4t

(2π)4 ΓD(p)Sc(t + p)

× iΓ cd
μ (Q)Sd(t + k)Γπ(−k)Su(t), (27)

where the trace is over spinor indices and Nc = 3. The
scalar functions characterising the transition are obtained
from Eq. (27) using straightforward projections:

f
Dd
u+ (t) = t Pμ − (m2

D − m2
π )Qμ

t P2 + (m2
D − m2

π )2 dM
D0

μ (P, Q), (28a)

f
Dd
u

0 (t) = − Qμ

m2
D − m2

π

dM
D0

μ (P, Q), (28b)

with f
Dd
u− (t) reconstructed via Eq. (26).

Three types of matrix-valued functions appear in Eq. (27).
Simplest are the dressed-quark propagators, which have the
form in Eq. (9) and involve the appropriate dressed-quark
mass drawn from Table 1. Next are the Bethe–Salpeter ampli-
tudes for the participating mesons, whose structure is given
in Eq. (13) and which are also completed by the numerical
results in Table 1. The new element is the dressed vector
component of, in this instance, the c → d weak transition
vertex, Γ cd

μ . Other transitions involve an analogous vector
vertex.

3.2 Weak vector vertex

The vector component of the c → d weak transition vertex
satisfies a Ward–Green–Takahashi identity:

QμiΓ
cd
μ (Q) = S−1

c (t + Q)

−S−1
d (t) − (mc − md)Γ

cd
I (Q), (29)

where Γ cd
I is an analogous Dirac-scalar vertex. Recall that

the axial-vector piece of the quark weak vertex does not con-
tribute to a 0− → 0− transition. As with alln-point functions,
care must be taken when formulating the SCI solution pro-
cedure for this vertex; so, it is worth providing some details.

The two vertices in Eq. (29) satisfy inhomogeneous
Bethe–Salpeter equations, viz. in RL truncation:

Γ cd
μ (Q) = γμ − 16

3

παIR

m2
G

×
∫

d4t

(2π)4γαSc(t + Q)Γ cd
μ (Q)Sd(t)γα, (30a)

Γ cd
I (Q) = ID − 16

3

παIR

m2
G

×
∫

d4t

(2π)4 γαSc(t + Q)Γ cd
I (Q)Sd(t)γα. (30b)

So long as the regularisation scheme is symmetry preserving,
then the solutions are

Γ cd
μ (Q) = γ T

μ Pcd
T (Q2)

+ γ L
μ Pcd

1L (Q2) − i Qμ IDPcd
2L (Q2), (31a)

Γ cd
I (Q) = ID Ecd

I (Q2), (31b)

where ID is the identity matrix in spinor space, Qμγ T
μ = 0,

γ T
μ + γ L

μ = γμ.
Following Ref. [17], one finds:

Ecd
I (Q2) = 1

1 + Kcd
E (Q2)

, (32a)

where

Kcd
E (Q2) = − 4αIR

3πm2
G

∫ 1

0
dα

[
Ciu(wdc̄) − Ciu

1 (wdc̄)

− (MdMc + αα̂Q2) Ciu
1 (wdc̄)

]
, (32b)

wdc̄ = ωdc̄(α, Q2), Eq. (16), and the other functions are
defined via Eq. (12). It is apparent under further inspection
that Ecd

I (Q2) exhibits a pole at the mass of the lightest 0+
c̄d state, i.e. the D∗

0-meson. Furthermore,

(mc − md)E
cd
I (Q2 = 0) = Mc − Md . (33)

It is worth remarking that owing to uncertainties in the
spectrum of heavy + light 0+ mesons, the coupling and ultra-
violet cutoff in Eq. (32b) are fixed using Eqs. (22), (23) eval-
uated at the mass of the ground-state pseudoscalar meson
in the given channel; here, mD . As noted above, ultraviolet
cutoffs play a dynamical role in the formulation of a contact
interaction; so, this choice is merely part of the definition of
the symmetry-preserving regularisation scheme. Given that
it is a scalar channel, the value of the ultraviolet cutoff feeds
back through Eq. (33) into small variations of the current-
quark masses so that the dressed-quark masses remain fixed.

Turning to Eq. (30a), one readily finds [17]

Pcd
1L (Q2) ≡ 1; (34)

and

Pcd
T (Q2) = 1

1 + Kcd
V (Q2)

, (35)

Kcd
V (Q2) = − 2αIR

3πm2
G

∫ 1

0
dα

[
MdMc − M2

d α̂

− M2
c α − 2αα̂Q2]Ciu

1 (wdc̄). (36)
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The transverse part of this quark weak vector vertex has a
pole at the mass of the D∗-meson.

Considering Eq. (31a), only Pcd
2L (Q2) remains undeter-

mined. Adapting the analysis in Ref. [17], one obtains

Q2Pcd
2L (Q2) = (md − mc)E

cd
I (Q2) − Md + Mc. (37)

Using Eq. (33), it is clear that limQ2→0 Q
2Pcd

2L (Q2) = 0;
consequently, Γ cd

μ (Q) is regular at Q2 = 0.
Our attempt to achieve a symmetry-preserving calculation

of the quark weak vector vertex has almost succeeded. One
issue remains; namely, consistency between Eqs. (9), (29),
(33) requires

Pcd
T (Q2 = 0) = 1. (38)

Considering the ten transitions considered herein, our scheme
fails by 2.4 (1.5)%. We subsequently correct for this by mod-
ifying the denominator in Eq. (35):

Kcd
V (Q2) → K̂ cd

V (Q2) := Kcd
V (Q2) − Kcd

V (0), (39)

with analogous corrections in the other vertices. This is akin
to implementing momentum-subtraction regularisations of
the vector-boson vacuum polarisations.

3.3 Charge conservation

In working from Eq. (27) to explicit expressions for f
Dd
u+ (t),

f
Dd
u

0 (t), one follows the methods in Ref. [41]. They rely
chiefly on the assumption of Poincaré-invariance, including
translational invariance in regularisation of the integrals. For-
mally, the latter is always true. However, the presence of the
γ5γ · Q term in Eq. (13) means it is broken in practice once
Eq. (11) is used. This violation is manifest in the elastic elec-
tromagnetic form factors of the pseudoscalar mesons that
participate in the transitions, as we now explain.

Elastic form factors obtained using the SCI can be
expressed as a sum of six terms. The first separation stems
from the photon coupling either to the quark (γ q) or the anti-
quark (γ q̄). It is the same for all quark + antiquark interac-
tions. When using the SCI, there are three subcomponents in
each of these two terms. Namely, the Bethe–Salpeter ampli-
tude in Eq. (13) leads to E2

0− , E0−F0− , F2
0− contributions.

The F2
0− term vanishes at Q2 = 0 and the E2

0− is insensitive
to the regularisation. However, following the regularisation
steps described hitherto

〈E0−F0−〉|γ q
Q2=0

�= 〈 E0−F0−〉|γ q̄
Q2=0

, (40)

i.e. these two contributions are not equal and that violates
charge conservation. Typically, the relative error is � 1%,
but it should vanish.

The mismatch owes to the quadratic divergences that arise
through integrals such as

∫
d4t

(2π)4

1

[t2 + ω]2 {(P · t)2, (Q · t)2, (P · t)(Q · t)}

=
∫

d4t

(2π)4

t2

[t2 + ω]2

1

4
{P2, Q2, P · Q} , (41)

which also affect the value of f H1H2+ (0). It can be remedied
through a simple expedient: change

1

4
→ 1

4
(1 + θ) (42)

and tune θ to restore equality of the two sides in Eq. (40).
We have computed θ from the elastic form factor of every
one of the initial states in the transitions considered herein:
D(s), B(s,c), with the results θ = 0.28, 0.40, 0.01, 0.18,
0.17. (Evidently, the mismatch is eliminated by choosing θ ≈
0.21.) These values are used to complete the regularisation
of the transition form factors specified by Eq. (27) and its
analogues.

Before delivering new SCI predictions, it is worth remark-
ing that we have confirmed all results in Ref. [17], including
those connected with K�3 and πe3 transitions.

4 Weak D(s) semileptonic transitions

In the isospin-symmetry limit, there are three distinct such
processes: D0 → π−, D+

s → K 0, D+ → K̄ 0. The first
two measure c → d and the last, c → s; and all provide
information on the environmental sensitivity of these tran-
sitions. These transitions were calculated using a realistic
quark + antiquark interaction in Ref. [18]; so, comparison
here serves to establish the utility of the SCI as a quantitative
guide in such applications.

Results for the maximum-recoil value of the transition
form factors are listed in Table 3A. Taken over all quantities
listed in the first three rows, the F0− �= 0 SCI results provide
a better match with Ref. [18].

The SCI D → π transition form factors are depicted
in Fig. 2 and compared with analogous form factors drawn
from Ref. [18]. On balance, best agreement is obtained using
the SCI results produced with the complete Bethe–Salpeter
amplitudes. It is worth recalling that the D → π semileptonic
transition form factors calculated in Ref. [18] are in good
agreement with available experimental data [32].

A general characteristic of SCI form factors is evident
in Fig. 2; namely, they are typically stiffer than predictions
obtained with realistic momentum-dependent interactions
[17]. This is more of an issue with their spacelike behaviour.
It is ameliorated herein because our focus is the timelike
region and, as demonstrated in Sect. 3.2, the SCI preserves
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A

B

Fig. 2 D → π semileptonic transition form factors, defined by

Eqs. (27), (28). SCI results: f
Dd
u+ , solid blue curve; f

Dd
u

0 , long-dashed

purple curve; and f
Dd
u− , dot-dashed orange curve. Upper panel—a

obtained with complete SCI Bethe–Salpeter amplitude in Eq. (13); and
lower panel—b, with F0− ≡ 0 in Eq. (13) and subsequent repetition of
all fitting procedures. Comparison curves in both panels are drawn from
Ref. [18]: f+, thin solid green curve; f0, long-dashed red curve; and
f−, dot-dashed brown curve. In this and following images, the shaded
band around each of the comparison curves indicates the 1σ confidence
level for these predictions

the feature that each weak transition vertex possesses a pole
at the related meson mass.

The D+
s → K 0 transition form factors are drawn in Fig. 3.

Again, best agreement between the SCI predictions and the
results in Ref. [18] is obtained when the complete SCI Bethe–
Salpeter amplitude is used. (We quantified this using a L1

measure applied to the independent transition form factors
f0,+.) Only one experimental datum is available in this case
[33]:

f
D+
s →K 0

+ (0) = 0.720 ± 0.084 (stat) ± 0.013 (syst). (43)

It is plotted in Fig. 3 and agrees with the SCI result obtained
using the complete Bethe–Salpeter amplitude, Fig. 3a.

The D → K transition form factors are drawn in Fig. 4.
Best agreement with the predictions from Ref. [18] is
obtained using the complete SCI Bethe–Salpeter amplitude,
i.e. with the F0− �= 0 values listed in Table 2. The D → K
semileptonic transition form factors in Ref. [18] agree well
with available experimental data [32].

A

B

Fig. 3 D+
s → K 0 transition form factors, defined by analogy with

Eqs. (27), (28). SCI results: f
Dd
s+ , solid blue curve; f

Dd
s

0 , long-dashed

purple curve; and f
Dd
s− , dot-dashed orange curve. Upper panel—a

obtained with complete SCI Bethe–Salpeter amplitude in Eq. (13); and
lower panel—b, with F0− ≡ 0 and subsequent repetition of all fitting
procedures. Comparison curves in both panels are drawn from Ref.
[18]: f+, thin solid green curve; f0, long-dashed red curve; and f−,
dot-dashed brown curve. Experimental datum, cyan square [33]

With computed transition form factors in hand, one can
calculate partial widths for the associated decays. Remaining
with D → π as our exemplar, the relevant expression is [78]:

ΓD0π− = |Vcd |2 G
2
Fm

2
D

24π3

×
∫ yDπ

m

0
dy [ f Dd

u+ (y m2
D)]2k3

Dπ (y) , (44a)

k2
Dπ (t) = (m2

D(1 − y) + m2
π )2/[4m2

D] − m2
π , (44b)

with GF = 1.166 × 10−5 GeV−2. Using the SCI results

for f
Dd
u+ (t), the associated branching fractions are listed in

Table 3B: the F0− �= 0 result for this integrated quantity
agrees well with other theory [18] and experiment [32].

Analogous SCI results for D+
s → K 0e+νe, D0 →

K−e+νe branching fractions are also listed in Table 3B.
Again, those obtained with the complete Bethe–Salpeter
amplitude compare favourably with other theory [18] and
experiment [32,33].
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A

B

Fig. 4 D → K transition form factors, defined by analogy with

Eqs. (27), (28). SCI results: f
Ds
d+ , solid blue curve; f

Ds
d

0 , long-dashed

purple curve; and f
Ds
d− , dot-dashed orange curve. Upper panel—a

obtained with complete SCI Bethe–Salpeter amplitude in Eq. (13); and
lower panel—b, with F0− ≡ 0 and subsequent repetition of all fitting
procedures. Comparison curves in both panels are drawn from Ref.
[18]: f+, thin solid green curve; f0, long-dashed red curve; and f−,
dot-dashed brown curve

5 Weak B(c,s) semileptonic transitions

Here in the isospin-symmetry limit, there are seven distinct
processes, which we choose to be: (i) B̄0 → π+, Bs → K ;
(ii) B0 → D−, B0

s → D−
s , B−

c → ηc; (iii) B+
c → B0; and

(iv) B+
c → B0

s . The first two measure b → u (i); the next
three, b → c (ii); the sixth, c → d (iii); and the last, c → s
(iv); plus, naturally, their environmental sensitivity. In these
cases, no continuum study with the character of Ref. [18] is
available; but lQCD methods have been used by many groups,
e.g. Refs. [65–72,79–81], and numerous model studies exist,
e.g. Refs. [74–77,82–91].

Results for the maximum-recoil value of all seven of these
transition form factors are listed in Table 3A. The SCI and
lQCD results are broadly in agreement, except for B → π

and Bs → K (rows 4 and 5). These last two transitions
are special because of the enormous disparity in mass-scales
between the initial and final states. Surveying a raft of avail-
able model analyses [74,76,82–89], one finds

f B→π+ (0) = 0.25(3), f Bs→K
+ (0) = 0.32(4), (45)

values consistent with contemporary lQCD estimates. We
therefore judge that the SCI results in Table 3A are too
large in these two cases. Some failings had to be expected
when attempting to develop an internally consistent SCI
for use in treating systems with widely separated mass-
scales.

Given these last observations, it is worth studying the
B → π transition form factors in more detail. Therefore,
consider Fig. 5, which depicts SCI predictions for their t-
dependence and comparisons with data reconstructed from
the average values in Ref. [92, Tab. 81] and an average of
lQCD results [29, Sec. 8.3.1]: despite the SCI’s overesti-
mate of the maximum recoil value of f+, there is qualitative
agreement over the entire physical t-domain. Using the SCI
result in Fig. 5a, one obtains the branching fraction listed in
Table 3B, row 4: consistent with the overestimate of f+(0),
the fraction is more than twice as large as the empirical value
in Ref. [73]. This indicates that the branching fraction inte-
gral is dominated by the transition form factor’s behaviour
on 0 < t � 2

3 tm .
Bs → K transition form factors are displayed in Fig. 6.

The comparison with lQCD results is qualitatively similar to
that in Fig. 5. Using the SCI result in Fig. 6a, one obtains the
branching fraction listed in Table 3B, row 5. Here, consistent
with the overestimate of f+(0), the fraction is roughly twice
as large as the model estimates in Refs. [76,86].

Regarding B → D semileptonic transitions, the mis-
match between the masses of the initial and final states is
much diminished as compared with the preceding two cases.
Consequently, the SCI results drawn in Fig. 7 match fairly
well with existing data [97] and recent parametrisations [98].
(N.B. Here and hereafter we draw | f−(t)| so as to optimise
use of the plotting area.) The SCI prediction for the branch-
ing fraction is listed in Table 3B, row 6, and aligns with
experiment [11, p. 1531].

We depict the SCI Bs → Ds transition form factors
in Fig. 8: they agree semiquantitatively with results from a
recent lQCD study [68]. The SCI prediction for the branching
fraction in Table 3B, row 7, is commensurate with estimates
made using constituent quark models [75,76].

Bc → ηc transition form factors are plotted in Fig. 9. In
this instance, the only comparisons available are provided
by exploratory lQCD calculations obtained with a highly
improved staggered quark (HISQ) action [69]: there are qual-
itative similarities between the results. The SCI predictions
for the branching fraction are listed in Table 3B, row 8.
The values agree with an estimate made using a hybrid
scheme for combining perturbative- and lattice-QCD results
[77].

SCI predictions for the Bc → B form factors are drawn
in Fig. 10, wherein they are compared with lQCD results
obtained using 2 + 1 + 1 flavours of dynamical sea quarks
in the HISQ formalism [70]. As highlighted by Fig. 12, the
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Table 3 Upper panel—A. Maximum recoil (t = 0) value of semilep-
tonic transition form factors compared with (where available) inferences
from experiment [32,33] and lQCD [29,36–38,65–72]. In each case, we
list results for f H1→H2+ (0) obtained with (column 1) the complete SCI
Bethe–Salpeter amplitude, Eq. (13), and (column 2) with F0− → 0 and
all procedures repeated. Comparison between these columns provides
an indication of the sensitivity in SCI predictions to formulation details.
Our analogous predictions for f H1→H2− (t = 0) are listed in columns 6
and 7. Lower panel—B. SCI computed branching fractions (columns 1,

2), obtained using empirical masses, compared with, where available:
continuum results from Ref. [18] (column 3); experimental results (col-
umn 4) [11,32,33,73]; lQCD (column 5) [70]; and illustrative model
analyses (column 6) [74–77]. (All numerical entries should be multi-
plied by 10−3.) Ref. [11] lists |Vcd | = 0.221(4), |Vcs | = 0.987(11)

|Vub| = 0.00382(24), |Vcb| = 0.0410(14); and the following life-
times (in seconds): τD0 = 4.10 × 10−13, τD±

s
= 5.04 × 10−13,

τB0 = 1.519 × 10−12, τB0
s

= 1.515 × 10−12, τB±
c

= 5.10 × 10−13

A. f+(0) HereF0− �=0 HereF0− ≡0 Ref. [18] Expt. lQCD Here| f−(0)|
F0− �=0 here| f−(0)|

F0− ≡0 Ref. [18]| f−(0)|

1 D → π 0.76 0.65 0.618(31) 0.637(09) 0.639(23) 0.35 0.54 0.362(28)

2 Ds → K 0.75 0.65 0.673(40) 0.720(85) 0.35 0.55 0.553(65)

3 D → K 0.81 0.72 0.756(36) 0.737(04) 0.752(16) 0.33 0.50 0.277(45)

4 B → π 0.57 0.48 0.169(51) 0.38 0.48

5 Bs → K 0.53 0.43 0.266(16) 0.36 0.45

6 B → D 0.75 0.72 0.749(40) 0.40 0.45

7 Bs → Ds 0.74 0.71 0.662(17) 0.39 0.45

8 Bc → ηc 0.73 0.61 ≈ 0.6 0.40 0.43

9 Bc → B 0.68 0.67 0.55(2) 0.49 0.71

10 Bc → Bs 0.75 0.75 0.62(1) 0.55 0.79

B. HereF0− �=0 HereF0− ≡0 Ref. [18] Expt. lQCD Model

1 BD0→π−e+νe
2.96 2.57 2.73(22) 2.95(05)

2 BD+
s →K 0e+νe

2.83 2.40 3.31(33) 3.25(38)

3 BD0→K−e+νe
37.0 31.8 38.3(2.8) 35.05(36)

4 BB̄0→π+�− ν̄�
0.41 0.34 0.149(11)

5 BB0
s →K+�− ν̄�

0.36 0.29 0.164(17)

6 BB0→D−�+ν�
25.5 24.0 23.1(1.0)

7 BB0
s →D−

s �+ν�
25.0 23.5 24(5)

8 BB−
c →ηc�− ν̄�

8.99 6.65 8.2(1.9)

9 BB−
c →B0�− ν̄�

1.21 1.20 0.85(6) 1.4(1.0)

10 BB+
c →B0

s �+ν�
17.9 18.1 13.5(7) 16(11)

SCI and lQCD results for f0,+ are qualitatively and semi-
quantitatively similar, with the SCI curves being approxi-
mately 21% larger than those from the lQCD analysis, as
measured using a L1 measure. The SCI prediction for the
Bc → B branching fraction is given in Table 3B, row 9. It
fits comfortably within the wide range of model estimates
listed in Ref. [74], viz. 1.4(1.0) × 10−3. The lQCD result
for the Bc → B branching fraction, listed in Table 3B,
row 9, is approximately 30% smaller than the SCI predic-
tion.

The final weak transition considered herein is Bc →
Bs , for which SCI predictions of the associated form fac-
tors are drawn in Fig. 11 and compared with lQCD results
[70]. As with Bc → B, the SCI and lQCD results for
f0,+ are qualitatively and semiquantitatively similar: using
a L1 measure, the SCI curves are approximately 18%
larger than those from the lQCD analysis. This is evident

in Fig. 12. The SCI prediction for the associated branch-
ing fraction is given in Table 3B, row 10. Once again,
it fits within the broad range of model estimates listed
in Ref. [74], viz. 16(11) × 10−3. The lQCD result for
the Bc → Bs branching fraction, listed in Table 3B,
row 10, is approximately 25% smaller than the SCI predic-
tion.

6 Environment sensitivity

Regarding Nature’s two mass generating mechanisms, it is
interesting to consider the evolution of the form factors with
increasing mass of the transition’s spectator valence-quark,
i.e. as the current-quark mass produced by the Higgs boson
becomes a more important part of the final-state meson’s
mass as compared with the EHM component. Four classes
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A

B

Fig. 5 B → π semileptonic transition form factors, defined by anal-

ogy with Eqs. (27), (28). SCI results: f
B̄u
d+ , solid blue curve; f

B̄u
d

0 , long-

dashed purple curve; and f
B̄u
d− , dot-dashed orange curve. Upper panel—

a obtained with complete SCI Bethe–Salpeter amplitude in Eq. (13); and
lower panel—b, with F0− ≡ 0 and subsequent refitting. Both panels.
Data (gold stars): reconstructed from the average [92, Tab. 81] of data
reported in Refs. [93–96]. Dotted green and red bands: averages of
results in Refs. [66,79,80] described elsewhere [29, Sec. 8.3.1]

can be formed from the semileptonic decays considered
herein.

(I) D → π , Ds → K , Bc → B: transition is c → d;
spectator valence-quarks are, respectively, u, s, b.

(II) D → K , Bc → Bs : transition c → s, spectator
valence-quarks are u, b.

(III) B → π , Bs → K : transition b → u, spectator
valence-quarks are d, s.

(IV) B → D, Bs → Ds , Bc → ηc: transition b → c,
spectator valence-quarks are u, s, c.

One may characterise this evolution by the values of
[1 − f+(0)] and | f−(0)| for the associated transitions:
[1− f+(0)] = 0 = | f−(0)| in systems constituted from mass-
degenerate valence degrees-of-freedom. The results can be
read from Table 3A:

A

B

Fig. 6 Bs → K transition form factors, defined by analogy with

Eqs. (27), (28). SCI results: f
Bu
s+ , solid blue curve; f

Bu
s

0 , long-dashed

purple curve; and f
Bu
s− , dot-dashed orange curve. Upper panel—a

obtained with complete SCI Bethe–Salpeter amplitude in Eq. (13); and
lower panel—b, with F0− ≡ 0 and subsequent repetition of all fitting
procedures. In both panels, the dotted green and red bands are averages
of results in Refs. [65,66] described elsewhere [29, Sec. 8.3.2]

u/d s c b
(I) 1 − f+(0) 0.24 0.25 0.32

| f−(0)| 0.35 0.35 0.49
(II) 1 − f+(0) 0.19 0.25

| f−(0)| 0.33 0.55
(III) 1 − f+(0) 0.43 0.47

| f−(0)| 0.38 0.36
(IV) 1 − f+(0) 0.25 0.26 0.27

| f−(0)| 0.40 0.39 0.40

(46)

For comparison, analogous values forπ�3 and K�3 transitions
are, respectively, (1.0, 0.0) and (0.98, 0.087) [17].

The pattern of SCI results is clear: as the current-mass
of the spectator valence degree-of-freedom increases, so do
deviations from the flavour-symmetry limits. The analysis in
Ref. [18], which used similar methods and a realistic quark +
antiquark interaction, is too restricted in scope for a general
comparison to be possible. Nevertheless, the two Class (I)
results are loosely compatible.

Lattice-QCD results are available for all listed f+ form
factors. Reviewing those simulations, the pattern of most
lQCD results is qualitatively similar to the SCI predictions.
However, this is not true for Class (III), viz. the B → π
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A

B

Fig. 7 B → D transition form factors, defined by analogy with

Eqs. (27), (28). SCI results: f
Bc̄
u+ , solid blue curve; f

Bc̄
u

0 , long-dashed

purple curve; and − f
Bc̄
u− , dot-dashed orange curve. Upper panel—a

obtained with complete SCI Bethe–Salpeter amplitude in Eq. (13); and
lower panel—b, with F0− ≡ 0 and subsequent repetition of all fitting
procedures. In both panels, the data (gold stars, f+) are from the BaBar
Collaboration [97]; and the comparison bands (thin dashed red, f0; and
thin green, f+) are drawn from Ref. [98], being parametrisations built
from recent experimental data and lQCD results

and Bs → K transitions, which therefore demands further
scrutiny.

7 Isgur–Wise function

In considering semileptonic transitions connecting systems
distinguished by a large disparity between the current-
masses of their valence degrees-of-freedom, e.g. heavy +
light mesons, valuable simplifications can be exploited. For
instance, when mQ2 � mQ1 � mq , HQ2q → H ′

Q1q
transitions between heavy + light pseudoscalar mesons are
described by a single, universal function [55]:

f H→H ′
± (t) = mH ′ ± mH

2
√
mH ′mH

ξ(w(t)) , (47a)

w(t) = m2
H ′ + m2

H − t

2mH ′mH
. (47b)

Reviewing the transitions considered herein, two meet the
requirements described above, viz. B → D, Bs → Ds ; and

A

B

Fig. 8 Bs → Ds transition form factors, defined by analogy with

Eqs. (27), (28). SCI results: f
Bc̄
s+ , solid blue curve; f

Bc̄
s

0 , long-dashed

purple curve; and − f
Bc̄
s− , dot-dashed orange curve. Upper panel—a

obtained with complete SCI Bethe–Salpeter amplitude in Eq. (13); and
lower panel—b, with F0− ≡ 0 and subsequent refitting. In both panels,
the comparison bands (thin dashed red, f0; and thin green, f+) are
drawn from Ref. [68], being lQCD results obtained with inclusion of
2 + 1 + 1 flavours of sea quark

in Fig. 13 we depict the function determined from those tran-
sition form factors using Eq. (47). Evidently, the SCI pro-
duces results that conform with the notions of heavy-quark
symmetry: the B → D and Bs → Ds results for ξ(w) dif-
fer by < 1% according to a L1 measure. Moreover, the SCI
prediction for the Isgur–Wise function, although somewhat
stiff, is in fair agreement with experimental data [99].

8 Summary and perspective

We employed a symmetry-preserving regularisation of a vec-
tor × vector contact interaction (SCI) to develop a unified
treatment of the twelve independent semileptonic transitions
involving π , K , D(s), B(sc) initial states and the masses and
leptonic decays of the fifteen mesons that are either involved
in the transitions or characterise the weak transition ver-
tex. The merits of this approach are its algebraic simplicity;
paucity of parameters; and simultaneous applicability to such
a wide variety of systems and processes, sometimes involv-
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A

B

Fig. 9 Bc → ηc transition form factors, defined by analogy with

Eqs. (27), (28). SCI results: f
Bc̄
c+ , solid blue curve; f

Bc̄
c

0 , long-dashed

purple curve; and − f
Bc̄
c− , dot-dashed orange curve. Upper panel—a

obtained with complete SCI Bethe–Salpeter amplitude in Eq. (13); and
lower panel—b, with F0− ≡ 0 and subsequent refitting. In both panels,
the comparison points (brown circles, f0; and grey squares, f+) are
drawn from Ref. [69], being exploratory lQCD results

ing large disparities in mass-scales between initial and final
states.

Regarding meson masses, which are long-wavelength
properties of the systems, the agreement between SCI predic-
tions and experiment is good (Table 1, Fig. 1), with compar-
ison yielding a mean absolute relative difference ard = 3%.
Concerning the leptonic decay constants, ard = 11%: being
dominated by ultraviolet momenta, the decay constants are
a greater challenge for the SCI.

Turning to the t-dependence of transition form factors,
the SCI predictions are often somewhat too stiff because
the contact-interaction produces momentum-independent
meson Bethe–Salpeter amplitudes. Notwithstanding this,
wherever experiment or sound theory results are available for
comparison, the qualitative behaviour of the SCI results com-
pares well, delivering semiquantitative agreement (Sects. 4,
5). This is significant because all transitions are treated with
the same three SCI-defining parameters. The poorest compar-
ison is found with B → π and Bs → K . These transitions,
which have huge disparity between mass-scales of the initial
and final states, present difficulties for all available methods.
Neglecting the B → π transition, comparisons between SCI
predictions and experimentally measured branching frac-

A

B

Fig. 10 Bc → B transition form factors, defined by analogy with

Eqs. (27), (28). SCI results: f
Bd
b+ , solid blue curve; f

Bd
b

0 , long-dashed

purple curve; and − f
Bd
b− , dot-dashed orange curve. Upper panel—a

obtained with complete SCI Bethe–Salpeter amplitude in Eq. (13); and
lower panel—b, with F0− ≡ 0 and subsequent refitting. In both panels,
the comparison bands (thin dashed red, f0; and thin green, f+) are
lQCD results from Ref. [70]

tions yield ard = 7% (Table 3B). Consequently, the SCI pre-
dictions for the five unmeasured branching fractions should
be a sound guide.

An additional novel feature of our analysis is the informa-
tion obtained about the effects that the Higgs mechanism of
current-quark mass generation has on the form factors. The
suggestion is that as the current-mass of the non-transitioning
valence degree-of-freedom increases, so do deviations from
the flavour-symmetry limits (Sect. 6).

Considering B(s) → D(s) transitions, we arrived at a pre-
diction for the Isgur–Wise function (Sect. 7). In comparison
with recent B → D data from the Belle Collaboration, the
SCI result produces χ2/datum= 1.9.

Looking forward, it would be natural to use the SCI to
unify the pseudoscalar-to-pseudoscalar transitions studied
herein with pseudoscalar-to-vector semileptonic transitions.
No parameters would need to be introduced or varied; and
the results would provide additional benchmarks for anal-
yses based on realistic momentum-dependent interactions.
Moreover, our analysis has highlighted a need for the use of
symmetry-preserving formulations of realistic interactions
in the study of all semileptonic transitions with B(s,c) initial
states. There is a dearth of such theory in this area; so with this
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A

B

Fig. 11 Bc → Bs transition form factors, defined by analogy with

Eqs. (27), (28). SCI results: f
Bs
b+ , solid blue curve; f

Bs
b

0 , long-dashed

purple curve; and − f
Bs
b− , dot-dashed orange curve. Upper panel—a

obtained with complete SCI Bethe–Salpeter amplitude in Eq. (13); and
lower panel—b, with F0− ≡ 0 and subsequent refitting. In both panels,
the comparison bands (thin dashed red, f0; and thin green, f+) are
lQCD results from Ref. [70]

Fig. 12 SCI predictions for f Bc→B
+ , solid blue curve, and f Bc→Bs+ ,

dot-dashed gold curve, compared with lQCD results for the same func-
tions: f Bc→B

+ lQCD, thin green curve within like coloured band, and f Bc→Bs+ lQCD ,
thin cyan curve within like coloured band. In addition, calculated from
the SCI results, f Bc→B

+ /1.21, dashed blue curve, and f Bc→Bs+ /1.18,
dot-dashed gold curve. The comparison reveals that, in practical terms
on the physical domains, the SCI and lQCD predictions differ only in
their overall normalisations, i.e. effectively, their respective values for
f+(0)

in mind, the approach in Ref. [18] is currently being adapted
to unify (π, K , D, B) → π and (Ds, Bs) → K transitions.

Fig. 13 SCI predictions for the Isgur–Wise function, Eq. (47), as
obtained from the B → D transition, solid blue curve, and the Bs → Ds
transition, dashed green curve. Data, gold stars, from Belle Collabora-
tion measurement of B → D [99]. Quark model results obtained from
the B → D transition [91]: thin grey dot-dashed (linear potential) and
dotted (harmonic oscillator) curves
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