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INTRODUC

A - L'idBal philosephique des physiciens a zoujiurs g7 celui da rédure
lo variété des corps matériel: A des configurations d'u- petit nombre
d'objets fondamentaux ~ atomea pour Tes Grees, particules élémcntaires

pour les physiciens de n.s joure.

Lea 92 &léments de Mendelejef® .urear exrliqués 3 parc
dc trois particules, L'électron, le proton et le neutron ; celles-ci ainsi
que las photons, responsables de transferts d'énergie et d'limpulsion entre

les atomes, étaient les objets primordiaux des physiciens de 1'année 1934,

La découverte pasiérieure des pions,postulds par Yukawa en
1935 pour expliquer les interactions nucléaires, du muon et des neuLrinos,
des xaons et surtout des hypérons et des résonances semblait montrer que la
réalité sous-jacente des objets foncamentaux est peuc—étre trop riche pour
€tre réduite 2 un petit nombre d'entités.

Aujourd'hui nous savons que les particules &lémentaires
se classifient en bosons (particules 2 spin entier et qui ob&issent 3 la
statistique de Bose~Einstein) et fermions {particules 3 spin demi-entier
et qui obéissent au principe de Pauli).

Len bosons sont indiqués dans la table I.

TABLE I

BOSONS
intervient
dans les Spin Charge Existence
interactions
Graviton (m=0) gravitationnelles 2 [ pas de détect.exp
Mésans leprigues
W,z faibles 1 pas de dftect.exn.

Photon (m=0). . ‘

MEsons hadronigucs} fortes 0,0,2 | + -0

plons, kaons,&ta,p,

K*, etc {voir table Particle Data Group)
X

i
i




Les fermions sont indiqués dens la table IT.
TABL™ 1T

FERMIONS

subissent des interactions Spin

Leptons faibles et 1/2

€lectromagnétigues .

W, )
Fermious hadroniques faibles c L U2,32, e

s $lectromagnétiques
hypérons,

éons
nucléons, et fortes

résonances etc.

On essaie aujourd'hui de décrire les fermions et les_bnuonu e
hadroniques comme des svatdmes ccmposés da 3 cbjzts fondmntlux ou 3 triplets
es _g rk Lag 12pl:nns ' nnt pds

(ou 3 quadruplets) d’objets fondaméntaux

encore #té incorporés d'une mani&re satxsfauante dnns de :elu nodiles ec

1'existence eu muon et de son neutn.no n est pas \:ompnsﬂ !héar

gt
dehors du monde des quarks il ¥ autait ‘non seuleu: 3 les 1eptona‘ mais gussi

l2s photons (souvenons-nous de la testativa de DE nroghg de les cnnud!mr
cote un systér neutrimo-antineutrigo}, les msoos leptiques, s”ils e_xntent:
.+ — . - . P e

¥, ¥, Z, les gravitons, s'ils existent. Il.n'est pas impossible ‘que ‘dTmitres

leptons, farouches, & grande masse pewr~3tre, @yanc Echappé jusqu’iei a7

1'observation soient découverts et qu'alors yre certaine loi de' sym&tiie 7

permette de les comprendre ainsi que le muon.et son .neutring,;

Peut-Acre me doit-on pas chercher la simplicité dans des
objers fordamentaux qui, s'ils exercent des interactions fortes em:rev eux,
donnent naissance & dee atructures qui penvent-de manidre- Egnivalente tre ~ .

ensidérées & leur tour comme :les obJets fondu-nuux. Ainsi le pxon de
par-un’

Yukawa &ceit upe particule ’-“ i € anse ou

se transfoman: en un autre nu:lzun

primordiaux :

On devra pec+~&cre chercher \me simplicitd plus sxcfonde am 1z -:hnxhu:mn

dzs -interactions Eom smentales indiquéés dans la table III
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Sourre

Constante
Caractériscique

“ nolaire charge

moment multi~

ou morent
magnétique

=Lz
% Zuve © 137

Gravitation toutes les tenseur énergie- 2
p.u'l':l.cu\es : la impulsien % 0.2x10
matidre et grav. ?

) 1'Enargie

i1 ) . " 2c? -5

gnx lea cptons et courantd ¢ op > 1.01%10
hadrons faibles o3

Electromagngtiques’| Particules courant &lectro-

B R . | -douges d'un magnétique 2 2

Fortes

R A Pk
matidre : ¢ i

hadrom que
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_E__
R <

;’ uyru:hése dc’ r.hEpn
d'unitE dy.




TABLE v

NEWTON La force exerc#e sur une pierre par la Terre
(16800 ent identique i -la-force entre-la-Terve-et-la ~ -~ =~~~
Lune : universslité de la force graviu:ionnell.e. . -
MAXWELL Le chawp Eleunque et 1: chnq) map:éthue ‘sont
. i
(1855) partiesdu charp elect:ougnéttqw, {coupl§ aux

courants et densités de” chnrg

Les ondes de lumidre. sont-des: ondeu ilcctrvm;n!—» i

tiques de certaines fréquences.:L'optique est un I

chapitre de 1'Ele:ctrndynnnique.1 .

EINSTEIN, LORENTZ,

POINCARE
(1905)
EINSTEIN champ ¢ r
(1915) métrique d'un espace de Riemann 2 quutre s
dimensions. Theone relanvxstg de la gravi-
Lacion. ‘ .
DE BROGLIE la dualué onde—corpuscula e:t vIa
(1924) 'seulamnt -pour 1a lmiu, nus au v 1 -
route fom 4 o
SCHRODINGER, Naissance dé la ﬂé:ahiqué quantique. Toud 1és" "
HEISENBERG systenel atomques doxvem: gtraydécn:l r. les
(1925)
PAULY

(1925, 1940)

HEISENBERG, PAULI
(1929)  DIRAC o o : .

FERMI (1934) Théozie des interactions faibles. L




TaBLE T (suite)

Le wod2ie des champs de jauge unififs — unifidacion

HOOFT, des interactions faibles et électtumlgn!t_ique’é‘et‘

(1967, 1971) sa renarmalisation.

't HOOFT, FAD'EC, Nuantifrcation des chaupa de jaug et végularisation

dimensionnelle.
LEE, BOLLINI,
GIAMBIAGY et al.

(1967, 122, 1974) i

C - La notion de proragation des inoteractions physiques nar un champ,

hé:itage de Maxwell et Lorentz, s'est Edifige cn cthéorie relativiste da

champ avec et aprds Einstein. La construetion de la thforie relativiste

de la gravitation - peut-tre le plus bel achivement de 1a physigue rhéorique
a élevé au maximum le pouvoir de deéérip:ian et d'unificatioa du concept de

chazp, le chaup gravitationnsl Erent identifi@ avec le tenseur. de®
d'un espace-teaps Riems-nien. T

S

efrrique

A chaque particule, les phy riens ont ensuite nppns 2 associer

un champ. Le trés grand nombre dea parn:ules E&lénentaire: d

de la théorie det champs. Les efforts d'Eimstein paur décnuv'nr une bEoTie

unitaire du char_vp de gravitation et du champ electrumagné:xq e pntaxu ient

des iuterac-.ions ele::ruugnéuques et dul mtera:non: [Z31 = cunne

1'eont prornsé Weinberg, Salam et Ward - coastituent wme vxc;oire pour:la:

philasornie de la théorie des champs. I1s peuvent ouvrir la voie diume:,
compré'iension globale et plus approfondiz . la nature-des

électromagnétiques de chemps-complexes, scalaire, vectoriei et-spinorie:

Or y contrera que le champ dlectromagnétique paut &tre Tegardé comce un




champ de joupe —~ un champ intreduit dans la (N8arie pour que celle-ci soit

‘nuavinnts p

capéce, Ce ~vluz .pe conduit A ia consicuction précisc der interacrions
&lectromagnBriquss,
Le deuxi@me rhapitre ex ... les chanps de Yang-Mills ~t la

théoric des champe invariante po. rapport 2u groupe des transformation. do
jouge mom-abEliennes, On y montxe &galement la construccion, grice 3 ce
principe d'ir rarlance, daa courants 4'isospin conacrvéa qui sout, associds

aux champs de jauge.

Les tha, c.ros suivants, par conrce, fertn. un résumé Listocique
du développement de.}a théorie des interactions faibles. construite
initialement pcur déerire leA processus de désintdgracion bfta et par
analogic avec l'&lectrodynamique. On y.'erta la découverte extraite, pae
2 pas, de l'expérience,de principea et régles - et de violation de principes
conoe ceux de. 1'iovariance par ragmort @ la réflexion spatiale et par
rapport # la cnpjligaijj._n de charge ~ jusqu'ad la formulation du lagrang.en
effestif courant - courant et d 1l'ftudc de la structure des courants

faibles.. .

" Le 'Eliiv.e de Heiaberg et ‘de Salam - Ward fut dé wontrer qu-il
esl possible-de ‘construi ;€ ceife théorie A parrir de *'ihtroduction de cnamps

de jauge et dd 1 ‘rotivndé'rupture spontsnée dé 1a symftrie. Ce sers le but
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CHAPFPITRE 1 1

LE CFAMP ELECTROMAGNETIQUE )
COMME, TN CHAMP DE_JAUGE :

Le but de ce chapitre est de montrer que le postulat d’iavariance

de jauge locale (ou de deuxiime espice) des thbories dé’ champs” déerik

fonctions complexes (opérateurs nor ‘hermitiques)} conduit ‘# '1'introductich
&'un champ vectariel sans masse - un chiwp de jauge ~ qui ©st le chagp U7
électromagnétique. Ce principe permet donc la construction de la Eorme * :
exacte du lagrangien d'interaction minimale entre le champ €lsctromagnérigue
et le champ complexe considéré. les termes de Pauli, importants pour la = ~i-'%

discussion de particules sans charpe mais doudes d'un momént mapgn€tique,

dicoulent de ce prinvipe et du fait qu'on peut additionner au 'llgrmhiﬁn
une divergence de 1a forme £3”(f,3'¥). Nous ne lea discuterons pas dabs
ce chapitre. Ca sont des termes phénoménologigues. et lg description_de -
moments anormaux doit résulter de la prise en considération d'autres - B ;

interactions.

L - THEORIE DU CRAMP SCALATRE INVARIANTE DE JAUGE : ELECTRODYNAMIQUE SCALATRE

i lagrangien d'un champ scalaire complexe libre de masse m est

donné par :

STy o2t
(1,1) 1, a‘aauw a2

Ce lagramgien est invariant par ravpori & une tcansformation de jauge de
rremidre espéce :
(1,2) e e e
3 ~ia 4+
S+ e 0 eln)

ol & est une constante. . .-

Par contre pour une transformarion de jauge locale {a est remplacEe par une

fonction ponctuelle, eA(x), e erant une constaate) ou tra.-~formation de jauge'
de deuxilme espéce, le lagrangien LO n'est pas invariant. En.effet la
transformacion -

@ gv(x)*ei;‘"(‘) ¥ ()
-ief(x) Fw

s e
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‘; wst le lagrangien cocplet, imvariant de jauge, pour un champ scalaire cnwlue;
ii dérrit le systime consituté par ce charp et le chawp uecumménqm
tqui est le champ de jauge) en interaction m:ueue.
En efter, 1'expression explicite de L est donnée par :

*LwL 4L +1L N
© Y T wr . -

o [L, =20 n’d'e

- lpw i

Ly TP - I :

) + 4 2 u + .
L - +

o = de A {ud 0" auw} ¥t oo

Lgy €5t Ie lagrangien d'interaction &lectromagnétique d'un cnamp

On obtierct les équarions du mouvement (I,1€)

(1,16) ¥ 0+ fo . ie 1% 0 + aui:,“o)} - e? ' )0 - 0

& partir ces équations de Euler-Lagraoge :

3¢ L _a °
G

et

aan 3, MY e ¥ ) '
avec M = ze {@'Vp-0a"e} - 2eZ¥¢T0

(cui es le courant électromaguérique du champ ¢) 2 partir des &quations : =~
-0 AR . ;

* sty - g S :

On pourra 3 présent mettre ce courant sous la forme auivante :

1,19 #00 = ie {o' D0 - Mo tol
P”  &cant cdennée par ia forrule (1,10).
L'expression (1,18) montre que le courant ju(x) est un invariant de;jauge.’
Les équations pour ¢ s'écriroat par conséquent 2 - A

(1,19) D“Duw v a0

clest~a-dire :

@ v ie ) @, +ieh) 0+ nlg = 0

I1 vient donc en comclusion : v e

rimrep

3, LI o

(1,200 0 = de ¢'DMo-o (FQ*

b

D“num s 52 =0
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Consid€rons maintenant 1'opfrataur : - . ..

- o -i 0
1,25 L= i 0 o
[a] [+] ]

qui est 1la représentation de la troisidme composante du woment angulaire

dans un espace & 3 dimensions.

Nous rappelons

o
2 3
1,26 L5 [0 1 0 et LR .
o o . f

d'ol on tire

. 2
feACOly _ g _ (-1) 2.2
(.21 e 1-denmn, + G fene)?,? e
1 0 /0 -i ] t 1 0 0
SieM{ oo o - ¢ 1.0+
0 \o o o o 0 o
o] -i 0
)
- ;L? (eh)? i [UN ] + .. -
o 4] b N i

4]
- (o 0 0 +costet) 1,7 - i sinelit, -
\ 1 . )

cos{ef) - sin(ed) ~ @
= sin(eh) cos(el) o]
o a 1

C'est pourquoi on pourra fcrire la transforma:
{1,28) : ) .

e(n) - SlehOI3 41y

(1,28) "
L P YY) L

et le lagrangien invarient de jauge :

Lo iyt 1.2 ,+
Bt s 00T o0 - 3t 6%

1
(1,29) L =- zF u




]
1

vk 1o dM-d

i
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et

5 1lste uvto.le?
(3,35 5 LAEEE LN

L'expression du courant est :

+ 1136 B jefeT e - 0L, ol

i - équations du wouvement sont

FU\' M

a -

1,30
' u. 2 .
b) (DB D\L‘ +m) =0

£1,37) a) domne :

0w, * wlo, - eA®d o, - edV(Ap,) - ezAuAuwl -0
W {1 A el .
z'““au“’l + ed (A“wl) A A, =0

(.38 op, + o,
2 =
o9y *Wp,=0

1i1 - THEORIE D'UN CHAMP VECTORIEL DE PROCA INVARIANTE DT JAUGE
Soit i

(1,39 fnw = %Y - aMY

satisfaisant 2 1'équation de Proea : A

By 2.0
{1,40) B"z’ o ]

Le lagrangien et donné par 1'expression (I,%1) suivante

‘ Slguwe 2
Ly L =g A o a4y, Lo

Considérons la rransformation (I,42) :
N P R
M - M - M
on définit
(e RN A WS A - e
oun’ a3 +sen”
et par conséquent :

[ E A PO s WA I L T\ ¥ PSSR

(I,44) F" - fo"" + e (A" -
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On obtient par conséquent :
1,69y 3 PV - M0
avec

R N N N AR R (et S LN o'}

®n conclusion, on a domc

3, MY = M

(1,50)
P - e e, ~ 0,0} ,

! ‘exoression (1,50 est explicitement invariante de jauge
L'¢quation de Proca est & présent :

sy o, eV 22! = o

IV - THEORIE D'UN CHAMP DE PROCA ISOVECTEUR INVARIANTE DE JAUGE

Considérons 2 préscnt un triplet de champs de Proca réels ;
8, 00
s {ofwb = [ o) ] = e
H
EAES)

Teus comstruisons le champ vectoriel complexe @u(x) avee hs deux ptemihu
composantes du champ ¢ : "
o) =

(1,53)
Ty =

ﬁ]" ‘1]"

G =i @}m)

( Yy + i ¢Z“(x)>
\

et nous voulons que :

oo - ofeR0Y gy
(1,50 My - _mA(x) Mt

03 > ¢, 60

Alors, ccme pour un chavp scalair. isovecteur
) ~ieA(x) L3 Y
0% + (e ab & (®)

e AT S I L YoM

(1,553
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R we _ @V, gl V.

/’u% eA G, rme 0

v w 2,7V a

(2,61 ;3\, G e a, G ewey m 0
UV 2, W .

~3v% A N

au

(1,66)

En conciusion

W g ot
BVF J .

avee jP(x) = = %{??}"}Qa - ¢vau‘3?uv')‘}' }

En effet nous savoms grice 3 1'expression (I,50) que 1le coursnt j"(x) est :

o = e [ e, -0t @V - 22 {@N‘ G Oy ridg) s
- @, - i) G v %“f’)}»
ANy

{1,65)

Mais d'autre ps-t de l'expression (I,65) on tive
o e A - gu\r }_ ‘
Fim =g {:/ 2 L4%), ou.“'B %
i R wv,, Coiosy GEWN_
S E G o, s G e, - by D G4,
_ W, _ G
=T {% %y 14 ¢v1} e

Bous constatons par consquent guz 1' 2 obtient la méme .expression pouxt

le courant j¥(x) que celle qu'cn obtient gréce aux formes (I1,50). ou (I,65)

V ~ THEORIE DE DIRAC INVARIANTE DE JAUGE

.

Le ‘lryrangien invaviant de jauge est donng par 1'expression :
Sl Tl -
@6 == PR Tl - m)y

avee DM = M 4 o AY
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CHAPITRE I

LE_CHAYP SE JAUGE
bg
YANG-MILLS

Dans ce chapitre on esquissera le princ:pe d'invarismce de jeuge de
YANG-MILLS~le facteur o. phase comtient non seulement Jes fonctione de point de
1'espace wais aussi des opérateurs qui en général ne commutent pea. On introduit

ainsi un champ vectoriel isovecteur de masse nulle et obrient 1s forme

précisc de 1’interaction entre ce champ et les courants'd'isospin. N

1 - THEORIE D'UN CHAMP SPIRORIEL ISOS}.NEUR INVARIANTE DE JAUGE DE YANG-WILLS

Considérons un spineur de 1'eapace ce SU(2)

¥
(1L,1) - (T
¥ (wz)

¢ peut &tre par example le doublet proton-peutronm :

v (¢
\o
ou le doudvlet &lectron—neutrino
v
v \.
Hous exigeous yue 4;‘ et \‘,-2 aient pEme masse.

Alors le lagrangien libre
- . I

Ly e R LA

pourra §'écrire :
e Y (i M -

(11,3} L=V Y, -m Y

et est invari:int par la transformation :
-

1
Vi) + e T i)

(L,4) -
3T

V) + () e **F




H ~2q -

Nous obtenons alors pour l'expression (1T,i1) . . e

- - oy + - .
a1 v = (1 +ig,7’..%)a“w+i5]5-%(1 *isx.-;-)w 452(3’“1\"%)( %)# B '

Nous négligerons le dernicr terme du second ordre, dsns-1'expression.

1,13} et nous voudricns obtenir ce faisant une Squation du type :

G- (el g

Rezarquons d'autre part que

Wk £l nal]

T T, T T T,
41 : b 2 u .2 a b
A L S AR LT & I 3]

- Ou obtient par cor<fquent pour (II,13)
. -

. 2 2 Ty Ty, -

e w'(x)-l\rugx Gt -e .,V:uﬂb i) . )
11 est clair gue !'. trans{owmation (I1,12) wuﬂu ue peut Zrre emacte JM .
£rt un i1sovecteur et donc devra se transformer, par rotation dans 1'eapace-de o

1'isospin, comme tei. T

Po.one @

(IL,i7)

- - P00 - st o

et nous obtenons 3 préseat pour (IL,13), en uégligeant les termes du securd ordre : -

I T N PR

Gi N R b 2. %K, oA A B
Grosy G - (Ingx.7 G- ._E/Ab[—z—.‘.—z-]p- RS UAL T '
Remarguons que si nous posams @ : CoTt e N I ' .

(11,19) .

"
ab Ta o
avec £ = -5, . e
le terme comprenant le commutateur dans (IL,!8) deviendra b
T N T
: il o e e W TRy i 2 N a,
(11,20) ' e v mig'E, 'k-)'y_? 20

.
L':xpression (II,20) annulera exactemenc le dernier terme de W ¥ (x)

dans (13,18;. _es -vefficients [kab scat les constantes de structure de 1'algebre

ées 1, et daas le cas particulier de SU(2) mous avens :

T
abe Tc . o

LN
1 2, 2 =i
(11,21) [ 51 = ie

da sorte que en identifiant (II,19) et (1I,21)

ab
{11,22) fc = EB

be
¥ous avons

(17,23) Lo B ,@; - L
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Nous avous :

* (A
GG G
R Bl SH Wy
“u S 337 B {Ab"c M auAb 8¢ }

art, -5

11 - THEORIE D'LN CHAMP SCALAIRE ISOVECTEUR INVARIANIE DE JAUCE DE YANG-MILLS

Considérons 1'isovecteur de chump seslaire ¢(x) envisagé en (1,22)

0, (x)

$(x) =l 0,(x)

0 (=)

pour lequel le lagrangiea libre s'écrit .

R -1 I, o 4 I S e
(11,29) L,=3 (3"3*3‘]3 w 0) )

ou ac waniére équivalente puisque ¢ wst réel par constr-ction

(11,29 bis) L - %(3‘?‘3‘_}-523-3)

Au lieu de la crassformation de jauge &lectromagnétique, irfind

bis dezt mous rappelons la fomme . . .
6(x) +<1 -'ie‘A(x)Lé) Sty T T T
considérons la suivante : : o

(11,30 G400 *(sab + iﬂ‘h)abk(’)%(’)

Dans 1'espace 3 3 dirensions, il vient :

(11,31) M) = a4y L k=123

et dome pour {I1,30) : S

ar,32) l )+ 8'(x) = $x) - gK(.)Ai(xq

Nous constatony que -
ur,33) ) » M0 ~ 2@ haf - ghhdE
Incroduisons un champ de jauge et définissons'la dérivée coveriante i
Yy o {a¥ (LS oo 1

(11,34) G, (a LI +'1g(11)ah‘%) ()

4
i
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et d¢'aprés les r2gles de commtation on aura par consEquent dans (IL,42) ot:
gréce 3 (I1,43) : - "

lg“'n’nc xg(]"m)kn a, k‘c *ig("n)n_b ]};(Lm)nk M b~ ©

(11,42) s'écrit alors

P o501, ) i) 5,
s s o 180D, M TR ) T
- (&g » 18 0 ml(a"s nga.k)byq{“h B

ce qui donne ec conmclusion

ey P (s, ctsay ) h)_@%b R

ce qu'on voulait en (1I,38).

Avec _@1’3 - 3“'3'- &@Az

on en déduit clairement le lagrsngun mv-nunt de )nug

(13,43 1 e Ef:\, ;@13 _@3 -2

avec I
I GO PR R mdﬂ (3"

Qou encare

(11,26) g""-a‘?“—a““-g‘%"@{"

comme vu précédemment.

Les équations Ju mouvement’gont ¥

d'ol on tire

L) 3G - 19 eku. )u% gk Wy v

Posons

(1T.49a) i =~ ig 1(@“%')‘(-"5)1&

ou de mariére Equivalente o =

(11,490 T = -gl (.@“3) A §?W 'J?@ B

w0, + e, ¥ GDe, -




- R0 -

(el L= § ca(Epm T () (T o (0)

O35 YY YT wwve0, 1,2, 4

la d&couverte d'aurres particules et d’autres réactions faibles a
conduit vers 1949 a la conclusion auve ces iviactions pouvaient &tre décrites '
par un lagrangien similaire gu 1« -angien (I11,8) et que lcs conatantes de

souplage G, pour la désintégraticn § du neutron - .

(I11,9) nEpte+ v,

L., pour ia désintégration du muon : L

(1:1,10) Ty, +THT, L g s : .
e e

o 6 pour l2 cavture du suon par les noyaux : ; ) et

(171,11} ‘u'»p+n+uu o ® i}

étaient toures, en gremidre anpv~vimation, égalcs e i o [

(111,121 ‘ -

L2 table anmexc, duc 2 Lee et Wu, donne une liste des factions fnhles

Zr 1956 oc a découvert que les réactions faibles vmlaxen‘ 1a panté e

conjugaison de charge. Lo . A‘

effectif ae 1a forme suivante{pour des transferts d'mpulsm

(111,13 L& gt (x33 (0}
',2.{ 00}

ol J”(x* est un courant qui chamge la charge,'dotnde par :

(111,14 Moo = Mo + v

Le couraat £”(x) est le courant 1epnnique H

(11, 15) ) = l(l(x)v (1~v W, (X)*\,‘l (x)v’ 1:v5wu {x)
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TABLE I

SEMILEPTORIQUES AVEC CHANGEMENT D'ETRANGETE AS = 1

Lepee v
Ls e

- FETRE ]
Py v,

T T an+e + 3V
¢ 3
eneuT e T

4

— .
“n+e +u
e

.
R ey

H e + v
e
co -, =
- e e 4V
¢ e
+
N
+ o +
K -7 +e +v
a
+
~a% eyt ey
+ - +
-~ +T o+
+ - +
ST oen 4L
+
K, -T +& +v
20 e

K, R A T]
s0 7V Y
e+
Yoy

e e ey (0.8320.09).107
Arpal T4y -3
s gy = (0102006 .10
A7omae %) L iy.340.29 0207

(] Tsnen)

7090 | (o eep.15).207°

(f Tanti)

(interdites par 1a (J mte’+ve) <107t

R
régie 40 = 8S) (Dot e (pe®

Qv evy) 0

— <
(T omen®ye (Trapan®y

122001078

<0.3x 108
< 35 x 1070 . R
<0.6x 1073
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aiy v oo e v e - a e,
s b w et - atm,

‘Lx) est associé aux rSactions dans lesquelles jes hadrona nme changent
pas d'étrangeté tandis que hI (x) est agsocié A celles ol les hadrons chnngnnl

d'étrangeté

2 est 1'angle de Caol.bo. 9 ~ 0,22,

II - PROPRIETES DU LAGRANGIEN FAIBLE POUR QI_J‘:'.IIX“E SPINFTURS ) o . ':

Considérons les cinqg covar:ants de Pirae, hermitiques quand les .

deux chacps wl et wz colncident :

A SR TR ] Cs
0V o« py wz LB, 507 () B g
19y o ™ - me™ 400 r""’ v2<x)u‘”¢1(x) Lt T S
- 41(x>¢’y b0 A - vz(m“v %, (%) .
DF i eree) BT s fmre M
et prenons ie lagrangien suivant pour }'interaction entre quatre lepions
PR 40, B0, B0 B v

110,20 L= I8 00, ] [y, 50 X, ahe . o
H

= 5T, 0y (9] 10,00 (Coe” 73w 001 +

+ 0,0 0y, (cvm'vvs)w,_(x.n .

» 4 B, 0,1 150 @t i ] ¢,

+

03,0070, 00) [ty 17 (60" P, 601 +

.

€0, (019,001 3, iy (€,+" ¥, (07 +hoc.

REFLEXION SPATIALE

A) L'opErateur de réflexion spatiale doane lieu i:

(111,21) P!l < 0y (x')uz(x 33 W3(x ) (c -c' Y W (x )] *

+ 15 G, 0 Ry GO, &'y Sawxd1 *

’1‘ oy

RN Y Y X e w,,(x Yy <

* T M0 T i —C'Ay n,‘(x )
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= o PR
LA R IAN LT
Vg oW = Sy
7 (007 ¥ ) 9,0, (CreC ¥ )0 +
S

+

IWzvvvsz] [;AYDYS(C"-C'A'V 4

-

STV N R et vSym 1
[N M [wﬁtuS(cA CURIPLUN I

+

0,iv°, iy e et ) 3}: = hee.
Mais 1'hermitigue conjugué de la premildre partie du lagrangien L es donnge par 3
] 3,060 - E Vw1 + ’
- Y] [Egu(c‘,‘ <ty Yj)'.‘sl + -

[T *
+ 3 Ta ] N’éuuu(c IS

Y
PRI
T S 1T LTI N
MR FICAR NS SOV I

- TTivy, 3 O, iy

) ¥ 5 .
p Y Ul
C'est 3 dire que
. N -1 EE T
(27 CL €T *) € e L (xge € 75-¢€ .
N P
ot €= € gL,

Pour avoir ipvariance de L Rous C ou devrait avoir si on pose € = 1 |

(1:1,28) c,ac , ' =-c"
a a a a
- Ren ement du temps :

Quant ‘opéracion de renversement . tempS on sait quid si le transformé

de 1'¢lement de matrice

(11%,29) <«w|E M {e>

est ot

(117,280}

et si 3

(I11,30a)  F(D) =, 0x IT, (x,)

alors

(L3 F = B By
s 5 s = LYy

315 . _:YS

e

e
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Or on a :
HITLD) B = <Th{T8, (010, ()T [Tav<ral T (0) (Cgrfr )0 (o)1 Te>

Cozme il résulte de la définition de 1'opEration T =
Ty, >
> = <ty
Par conséguent, si le lograngien est invariant sous l'action de P :

TF, ()0, (1B = T (o)y(a) ete

alors
W, = <Th[B, 0l (o) [Ta><Ta Ty (o) (Cgrely )y, (0) [Te> »
(117,33) - — bt 5
= efStp nin Y eg e dutpdeey st v uipad
et on conclut de (1T1,32) que :
* . . * 3
;h=CS Ca-ca 6l € =1 )
&insi |'invariance par rapport 3 l'inversion du temps inpl_i/qu_e T
(€ =1 R @
(111,30) c=c', ¢ =c "
A 2™ % .

©} Invariance Cr

Le théoréme CPT Stablit que si une théorie locale de champs est EEREE
invacrizcte par rappart au groupe propre et orthochrone de.Poincaré alors
elle sera surocatiquesent invarisnte par rapport au produir d'opérations. CPT,

wéme 53 ia théorie w'est pas invariante par rapport A c, avy o 2 T, au 1°CR ete.

On _adwet que la rhéorie phénomfnologique des inter :Eiona £aibles

Rappelons les définirons des transformés d'opérateurs et de

vecteurs d'état dans un espace de Hiltert. -

Soit 13> un vectevr d’'&rat associf 2 um syst2me pnysique dans un certain

vétérentiel S el soit 2(x) un opérateur dane ce méme référemtiel, le physicien

qui prend un autre référentiel S' attribuera au systime physique en question : -

soit le oéze vecteur ¢'état la- et des opérateurs. transfornés D'(x)

551t un nouveaw vectewr d'stat |@>er das opérateurs inchangfs Rx). L!l

deux alterpatives - la transformation de Heisenberg et la trnnnfar-atlon

de Schrédinger - doivent 2tre équlvalznteu. ‘ctest-d-dire, Te k
- transitior entre deux &tats provoquds par un gpérateut doivent &Gtre ire

wémes dans les deux cas @ .

ainssy oler]a]? « [<b Iﬂla'>|2
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chargée p dans un champ €lectromagnétique la valeur absolue de sa charge, de
son momeat magnétique et en général de ses facteurs de forme &lectromagnitiques

est_égale & celle des grandeurs correspordantes de son antiparticule dans le

méae champ.

Fosons

{omme TP est un opéraieur uuitaire et T -%. ol %esl: unitrire on peut

crare
&
Por comséquent :

w2 < N S vl - @

.
puisque  @In'la> = @' |Rjat = )W mxeet < o i lme*>

Lc cransform de <blil|a>
esc donc

Hian <l « w@iftle = ) im0

Mais 1'op

vil

ation C, et donc CP, travsforme un opératéur en sou conjugud “° -

. . . +
hermizique dans 1'espace de Filbert (eremples : scalaire @(x) + @ (x),

spineur U(x) » CU(x) of le transpost ‘se véfére @ 1'espace spinoriel).

0n peut sinsi gcrire ¢
iy vl - ZW0Y

ot

o =l - (GG -

©: M est un opérateur unitaire er M ese 1’opérateur transposé

‘vsozce de Hilbert.

\iasi . i B
B R L Y R R )
] .
1 H 4 .
dria T <tefae HN e - afjafhec e
= @ pfor s . ) Tt et
Qe i 'opérateur {2 est compasé Ju produit d’autres opfrateurs la rigle est
. . IS ) " . s
(111.56) <bigRyfa> + < IRG )R,k }l?'> .
Faisens |b> = |a> et uppelons M'|a™> = |a>
A
Alors :

(11500 <al@0y]a> + <alnn 3> . R




T
- [
Cozment distinguer k¥ de K° 7 Si K° > 10 4 1 alors K+ a +7% .
a, o 0., 0.,
T+ T +n +FWo
Admetcens ['invariance CF. finissons "
. o 2 o 150 '
a) |x1>-ﬁtlx>tcrlx >) »
V111,58) 3
B k% = L ([x%cri®>)
7z ”

Coume Lt

(111.59) CP|E® = n(E@> ol n'n=}

Si 1'en choisit 0 = 1 om a doac :

a) [K,% o 2 (K%« [B)
.. /7
1111,60)
ST g S
< ¥z
3 v
d’ol

& %« L (I‘H% - 18,
(111,61 1 e e s e i
b) R = -1—,_ (%> ~ 1" "
%)

Nous voyons que si 5 est 1'opérateur d'&trangetd

110,62y S[K% = K%, §[E% - RO

randis que ]ch> et |K2°> ne sont pas des vecteurc propreé de'S; Pay

.63) (E[K1°> - [Ll"> , CP[KZ") =>-{'x2°>' ' ’ S

mais [K”> et {E°> ne sont pas des vecteurs !propres’ de"CP. 7

Cozpe les kaons sont produits em véertu de‘réactions l'ht?i‘étion
Esrte, yui conserve §, un kaon neutre prodgit est soit un'K® soit un 2. Adnsi
quand un & est ccée i1 y a cxation dtun mélavae de K°eE/K,% dans'la .
proportion de cinquante pour cent de chacun d’entre eux a'grel_é‘unA ce:taing,;,“_.

relation de phase.

.0 e inpd,
Ca K~ va se désincégrer.

ot +, - R Y e

51 CP se conserve, un Etat M + T est pair par rapport & CP'; en effet la
foncticn 2*onde 2oit Etre paire par rapport 3 un échange des deux particules:
fstatristique de Bose) ce gui se réalise par &change des coordonnées.et ensuite

ues charges.Mais cette opéracion est exactewent CP. Par conséquent :

(111,64 cPlx'n> = o> B
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Aipsi on a trouvd :

R R S -
GILTO KT et ew © = (0.87:0.02).10 Peec

t = (0.5620.05).10  sec

o
+ 1%n%n®

(111.71) + —
g ey 4T ¢
e
ERT
By
On peut aussi voir un effet de production d'un K qui est
associé 3 m hypéron : :
(111 . 7 s p= A%+ K°

et qui par consdguent ne peut, par interaction forte, dommer lieu qu'i des

antihypérons :
(111,73) k% + p + Eo +

tSéauooing si 1'on produit des Ko,«{-_ﬂ'n veut dire 3v'il'y aura -
% et K'z°.,0r~l'eil.“°'se sintlgr]a

production d’un mélange 50'% - 50 I:de€ Kl
vite (1 ~ 10 Pgec), le x2° vit plus longtemps.
Doac @ ume distance grande on ne verra que des Kza..H.aiu les qu sont un

mélange de K et R,. §i on lui impose tme interaction forte le ')Ed pourra bien:,
siir créer des hypérons :

(311,78) B 45+ 824 n" . . . . .

Done le faisceau initial K° ne peut pasé produire des Ao‘ ie faigceau final

{en artendsnt .ongtemps) pourra créer des ho; puisqu' il Gontiendra dem -'K°' &
des K_. . . .
° I S s,

Comment change avec le texps un faisccau de kaone produit

P o _ .
injtialement avec des K . uniquement ? .

Soit : Tk

(IIL75) [8Co)> - K% = 2 §IR% + %8, .
ﬁékl Ix, f__ ,

Au temps t nous avons : B EEE S S

T 1 o, Bt | o A;iEv'z("'
(111,76} [w(E)> = = K, >e 1+ 11 >e 204
’ Z “ LI I e

par

. . ST e Y
Maintenant pour des particules avec probabilirés de désintégration 3

Al, AZ el maases Ty, @, a .
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PR .a); ‘El =y - 1)\1/2
(2rL I .
bY B, wm, - id,/2
doae .t ’~ T
(111,78 lw(m - 7_ “K >t-u1:1te-llKIZ‘leo)u-imzte'lzt/Zi
. 2
A, # A, mous "-vons va oy ’ By, provient Je ce que les interactions faiblea

2
solent distinctes pour "10 et K,° et donc les &nergies propres scat différeates.

PR o N
La prohabilité pour qu'on trouve un K en observant ce faisceau

a 1'instaat t est done :

+ 1 -imzt —Azzlziz

RS

- 2 exp (.‘Alt Aot

-} coalmymy)e l

emimt TAgtr2p2,

% )‘e"_ht *'iji: -2 exp M) cos(m, 1111-‘

per ‘rapport 2 Xl et 7i1 y aura une' c’un‘:‘illai’ion rap’idﬂ

clair que |<C|p(e)5]2
R QLI MR
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Mais pour ume différence m —m, grande par rapport l‘. :ol(m‘ »nz)z sureit
des escillations pour t petit, le terme en cos serait petit par rapport eux
sutres et on trouverzit K et K° prés da t = O,

le fai: gu'on ne voit pas des © prés du point de production dea &° indique

. que o -m, he peut pas frre crds grand. Expfrimentslement on a trouvé que

1.81y ‘r\~nzl = omw Ay %
.
avec
aec? |1 '
i n Tl
2 6.582 -22 10 -1

x 10 ""MeV sec. 10" sec ~ =

f Considérons 1'équation :
(111,83) <bQ'fa> = <blalat>® ..
admetrons le méme état [a>= |b >, Alors

(111.84) <al|a> = <a’infa™>® Lo T e

ou i <alla> = <a'l’la>

Dans le cas ol

(111,85) <all'{e> = <a'[Hla'> R
Si 1'hamiltonien est invariant
H' = B - ’ e
on aura

(111,86) <ajH|a> = <a'|Hfa’>

P o ‘ - i
Considérons le cas du kaan K° et son ageiparticule K.

(111,87) <k°TH[R?> = <KC[H]ESS

et donc les masses de K et T(°,sm;: ézales. o L

Bl

~



R O . . 1

Avec cette te, nous pi ma lui dire

de prendre du €% et de o8Finir 1a direction du champ ~cgnBtigue de telle

fagon que les &lectrons sortiront préféreblement en sens opposé (cela ne

vaut plug $i notre correspondant prend de 1'anci-robalt).

La violation de la parité wemtre que le lagrangien n'est
plus invarian: par tapport i la r&fléxion spztiale. les physiciens ont
donc pris caome iagrangien pour la désintdgration du poutron ne expression

de la forme

(3,007 2, 00) (7, 000,(€5¢" 30,0 +

e LeL
7

B e

=1
+ hermitique conjugué
la partiec hermitique conjuguée décrivant 1+ réaction

.
snee sy
» e

LML
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Les transferts d'impulsion sont de 1'ardre de quelques MeV.

Far conséouvent :

- - -2
e ' ) ¢'est-a-di = ~1
P SR« ) ¢'est~a-dire 10
V.6l [ v I .
oo b ~
ot approxipation
el
v, T FRRE.r % AL N
©s1 pn pénéral bonne.
£a plus, les nucléons ont up Eouvement non relaav:stc dans les no)aux.
On pevt donc preadre 1a limite non-relativiste pour les- amphtudes ) -

NPT IN > 0o sura ainsi ¢

a .
ar s g ,’ ey, [BO0R e N Ja3x<~ BRI TR _ ~
v et iR tr,n@ing + (dgﬁﬂrlp*(;)n(;)hli>z<x> . -
l{d’x<Nf|F(x)Ykn(§)ini> = o :
‘ {1Iv,8)
4z de3x<wf!F<§)n3nG)|Ni> - jﬁm Je* (x)anml.z >z b
- i~
. . .
4 x<N -] .
| pui sque Yoyl 1330 O,l JJ x| pea)y’y Pal®) LR -,
-
aT e jd’»m\ [Faand@is ~ (ahm h(x)— agxy |8, 2 2
./" %3
3 ot s .
.( x N P(X)/{ n(x)lNi> ]
1) 1 i3 ‘ =
suisque T = Lo cHikgK ~ s .=
N 2 -

e bz .{q3x<NfIF(;)ﬂjn(;){Ni> +0

: D'aprés le théoréme de Wigner-Eckart, &rant domaé un opérateur. -
tensoriel irréductible T(” d’ordre A, Y Etant une de ses composantas,

1'élément de macrice -.Jﬂ]“lnl'r I'M'> dans une Teprésentation J W, est

égale au produit du coefficient de Clebsch-Gardan <J'm'u|.m> par une mpn:ude

indépendante de N, M' e¢ y. , -

1
Y2341

. 3 .
e, e Mg <]t v e auryime-

AR PR T 1 1
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Ampl. tude de Feroi : 4J=0, pas de changement de parité
4mplitude de Gamow—Teller : AJ = 0,21, (0 ¥+ 8) pas dc changement-de parité

s . s -
La transicion JiHD + J=0 est interdite puisque si O -est un opérateur
vectoriel on a : }

(1v,15) IJf—Ji[ ERIER RN

Pour isoler une transition de Fermi pure il faut regarder une transition

JI.BD - Jk_uD (pas de chongenent de parité), par exemple :

avas oM ge et v, ©+0)

(sculement interaction § et V)  (Fermi pure)

Pour étudier une zrplitude de Gamow-Telier il faut regutder m\e zranntmn

8J = 1 (pas de changement de parité) telle que :

6 L - ae
(Iv,17) He -+ Li te+ v (Ji -0 JE ="1)
(seulenent T et A interaction) - (Gamow-Teller pure)

Il y a navurellement des transitions qui sont un mélange Fermi-Gsmow-Teller,

par exemple : A

(Iv,18)
b 3 3

Dans 1'approximation permise on a pesé :

-+ > - N
G ¥, , . e
or ) ‘» .
(1v,19) X Y eenyi®e, (eaatds, 0 7 T - A
2<p 2 2 . . . o

par conséquent dans cette apgmnmatwn les lep:ons sont mis evec moment

sngulaire arbitsl zéro, . . A
Donc dans une transition Fermi (pour les interactions S et, V)
dans une rransition fermi vV

les deux leptons srrom: Eois dans un \_:sz sanule :anrhs que dans une

transition Gamow-Telies (mteracnon Aet T

a1 = 0,21 ST ' Lo :

ies deux leptens sergut émis dan

o Stat triplet.



Emax—Eg) dg
3 vZan dn\:

" (2m)

ue S« - 27§ 8(E,E T -EM 1s}? donnera.un facteur

Quand on considére £
g dans dA{p,08). Lo facteur V° s'élimine

(2m)° ce qui explique te facteur

avec le facteur de normalisaticn des fonctions d'onde de 1'&lectron et du

neutrino @ ¥ = ——u(p e ~ipex ( . P
N
p2e -£)? >
V20 dhp.0) = DX T gpgafip 284 ¢ B2FY)
: : z E E -
(2%) e Y ~

P
ob F est 1 |Npulslon de 1'électron, p— celle de 1' antxneu:rlnc, 6 l'avgle -°
2142

entre p et p . E est 1'énergie de 1' Elel:ttun, e ™ (p +m s de masse m

Eax €5t 1'Gnergie maximale de 1'&lectron qui est Egale 2 E(Nf)—E(Ni).
ta différcnce entre les énergies des moysus final et initial. -

Les quantités A, B, C dépendent des constautes d’interaction

€r des ampiitudes de Fermi et de Gamow-Teller :

a) A= ({cs{2+[c'slz+|cvlz+|c' 1% Jas|? 4
2 2,00 12 2 )22
+ degftelern e, % e, 1) |fo>]
b) B = Re (Gely + C'C'yT) J<ro]? ¢ R
£l = [
(rv,21) Re €y +etet, S 1L

e 2L 2 2 2
ey €= eyl ler 17 - fegit = ferg]®) jers|

2 2 2 > 12 .
+ 4y 120t l® = ge, 2 - e, 1B I<o>l :
e ‘ .
Si 1'on intégre sur toutes les dxrec:mns d‘émssmn de 1'anci- . K
neutrine ie terme en C disparalt et on obtient . e

(v, dh(p) = _If_ﬁfgesfsl_ aptass 22 ) ;
(zm4 e e o
Remarquons que s

dh(p}
dp

Py =

- 52 e 32
= pU(E ,"E,) ccnst-.
et que donc F{p} tend vers p = O paraboliquement puisque

PR )P = ot (el - atRhET

‘max e max Lo
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avee E
© .
la courbe s'appelle le Kurie plot.

On a trouvd 172

]
Certe dépendance linfaire est d'accord avec le terme :n A
uniquemcnt. le terme en B doit &tre nul.
En fait : B =~ 0.02 * 0.09 (Fermi)
=-0.007 = 0.010
On doit aveir :
. Cor Mo '
et ety =0, .
b, 250 -

.
3R CL, + Ol A} o

Cetze condition indique donc que si on pose
e ot i Vgt eif)
< 2 B, C'g =o' grif'y

o © oy, Cy s aly + QB s

on ayia o
gt apt B =
.21 BBy ta B BTy = ©

2 458 42t _of VAl = :
"T‘ANTBA EIPLIA A R i

Une autre observation : si m, £ 0 alars . i

donc : 2
-
(Enax Ee) Py By ' °
2 2 Y
-m —
v -
Par conséquent on aurait pour “A(p) : . -

(1v,28) ECREC A CINC RS )"P S oo
ou : , .
dLE) _ Laat 22 LT

v,29) e IR L L ¥ 2

@)
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wree Ppo= 0 en sbrient py

Maincenant 5i 1'on observe une désintégration qui ne fait intervenir qu'une

transition de Fermi, donc telle que un noyau avec Ji- 0 se transforme en

un noyau avec Jf = 0 alors on gura pour le Lerme entrc¢ parenthdse de la
formule (IV,31) vi-dessus :

.2 2 2
sler io-teght-ler gl

Y casé

Four la réaccion :

(iv,33}

o G rrauvé

£IV,34) < = 0.97 0.14

. wiSue aue 1'interaction.douinante est V.

[RNEY

On peut poser Cg = €' = 9. 7

Ensuite si on &tudie upe transition Gamow-Teller pure on aura -
2

z 2 2
1 el el e eyl v
17 e | Llc |2
PR ENTREAT

8e® o+ 38 +e+ T,

J=0 =} N

c
T 0.35%0.003

ce qui wmontre que 1'interacrion dominante est .l.

dn peut donc ,oser C'[ =C =0

ies zéres indications résultent d'autres réacriony telles qué

WLty . (Ferni +/Gamow-Teller) " ¢

{1v,36) Ne o

Observans quede laforme du coefficient % dans le cas d"une tranni;ion Fexmi,

si on fajt Cy = €'y = 0 on aura uniguement interadtion S et le Tapport:

A
sortira avee € >i' .

et bar cons&quent le pius grand nombre de paires électron= antinevtrioo -
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- * 2 . LN ]
2Re [C L5 ~GC'y Herl®+leg e g 0, 3}<o°)

v
W39 P oaos S
{IV,39) F 3

2 2 2 2
legiPle g 2elayl leryl Pl Patle ] Soie gl ey e

+
je sigae * correspondant 3 e~ dans cet ordre iespectivement .

U'expérience indique s
R . =
a) chp =+ v/c pour émission de ¢
(iv,40) R
5) £ = - 1.001 £ 0.008

Ces vésultats exigeraient : les interactions

Sec T:avee C'g = Cg, C'p = Cy

pa: comsécuent dans }'interaction 5 et T pour les Teptons on aurait
- s
u(pe‘cs(l4Y )v(q;) et
;erli(lfV.)V(qc)

donc on asrait un Y et un vy ccmme-oniverrd -dans’ 1& chapitre V.

¢, =-C

: [
o Vet s avee C'y C C'y A

et danc Yo, v,
un Ves Y

Cette expérience coniiroa done 1a pature du néurrimo R deux composantes mais
ne fixe pas son hélicité.

V - LA DISTRIBUTION ANGULAIRE D'ELECTRONS EMIS PAR DES NOYAUX POLARISES

comme dans 1'expérience : e e I

(Iv,aty § o
A J=4

est ume pure rransition Gamow-Teller. La distribution angulaire est de la

forme :
. e .
(1v,42)  W(B) = 1 + acos8, cosé = EeaS :
pld
et RSN e
. *
~2Refc.c'."-c.c' "}
avin e e 158"s CaC's

12 3 2 2
JegiTelet el ey e ler
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0Od doit doné aveir

©F Useie ferimten €
(IV,44)

s = €', = 0 | donc vp, ¥, (vair chapitre V)

ou C'y ™= Cyy

Les deux expériences ci-mentionnbes — mesure de la polarisation longitudinale
des &lectrone 4miae par des nuyauy nnn—pqlériués et mesure de la distribution
angulaire Vies &lectzons &mis patr des noyaux polarisée - indiquent donc

que ['interaccion faible esc composfe soit des couplages § et T : it des
inunctlonl n ct V.

Dnu un cas u mutru\o eet polatisé 3 droite daws 1'autre il est polarisd

4 gauche.

Bien que 1%6tude de la corrélation angulaire Blectron-antineutrind nous

amdne & 1s-cenclusion que les interpctions dominantes sont V et A i) serait
!vidm'-:m: ienottant de wesurer 1'hélicité du nmeutrino,

Cela a E:t f.ut dlns une mgétueuae expéuencc de Goldhaher, Grodzins et

Sunyar.

Dans 1 réaction :

10,45y
5 l(

11 ¥ o capture K ‘d'un élec:mn pac le moyau de Eulsz. le moyau de sm' et le

\J sont E-u an dlncuona oppolée: (en nEgugennt 1'igp wn xmtule de
172 (spin

152, , : . 152+
de Eu -_o, moment nngul.ire de 1 Electruq ¥~1/2) 1 étu hnul Sm + vy

sura :,wu\r moment Anguliire Je=1/2 et donc.das -detik- Enr.u £ivale pnaslblea

Cela veut dire ‘gue.

Enuuiuv le noyau SmlSZ
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(1v,46) sat?? . sl .y o
!
Lz cinématique est ici la suivante :
R ) H
P
5F (] .
On a Py ‘ )
s led
(1v,47) . v
E =E +E
Y
o3 £ 3t w2
R I ] y
Par .onséguent : ! -
+ 2 2 ot )
(60 £ = E-EE N - EL P w e L GRgY o -
A 2 2f -

On a eacore : . .

wun P et e~ w'ecose .
Alnsi . o
* 2
£ e 2Bgost By
u F o )
(17,50) . , = : e
= gy« OMp cos® _ (aM) . . “ ;
H o g

152

Oa fait incider le rayon Y sul une cible de 5m au repos ; il y sura

absorpiion résonante pour les y Emis de Sw' dans la méme'directiéh dé '

DowvemeDt du movay Su. Dans ce cas @ = O et alors P2 w il ¥ :zz-z'p‘g'- - .
zowenest dv novay 5B N .
N ~(p ~Ey) e -

. . .
pERE U, S et

clest-a-dir- d'aprés (IV,48) p* = p + B M

Ces Y ont la direction de mouvement de sa et le nfm spin puisque le:spin
de St est 0. Denc 1'hélicité de y seva Egale 3 celle:du sa et donc 3 celle

duv . - i Tio .
e
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CHAPITRE V.

THEORIE ‘DU NEUTRIKO'A DEUX COMPOSANTES . .

L'&quation de Dirac pour une particule libre eac

& G’ meeo =0

) GO = B L.

W, .
- '-—iV,E-iE‘

ou

Maintenant oa eait que

; = BZ ’ o= iyzya = iBozsa;‘ - ’1’7;3 .
¥ = 5ol - IR,
donc : Yo, = -y"‘vylv?ra e T .
Par conséquent 3. it
- .
3

o= ; o
- 1]

et }'RAquation de Dirac (V,1) ci-dessus s'Ecrit
B r

v, (FEDepun = Eoim ) .

d'oll 1'on déduit :

.3 {55 - el mer'sm o
(@-Drseuto - s e

5i 1'on introduit les définitions (V,4) suivantes

B Y o)

@0 Cp sl o
DIEACEE SOt N » ;

on obtient les équarions coupifes

) EHu e - Bulgtd = - B0

v,5)
) @B ln)+ iy (). = B ()
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On voiz doac que :

v(p) = v déf:m.l: un nn:meutrmu a héhcxte gnsu:we‘

eut

. s : L
’ -— u(p) ~ uL(p) est un’ no a hél.cite negntxvn

o T B P

Comme en génénl i

AT RN

i 1'on choisit la représentation des " qui donme pour 75 i

e 63 I .

A

‘ppel.le unu ent’ le chsmp UJL(x) a dgux composanter qui
.satisfait a 1'&qu

tmn (V 17a) un champ de Weyl. Le champ ‘JJR - ezan__ décrit

Hune particule drn).te et une nt1purn..ule gauche.

: ﬂn:unllemen: n}on cunsldére l'équa:mn pouz lilL(x).

y elle n'eu: pas invariante pnr rappnn. 2 la réflexion spauale puxsque

(U P)WL(X) -

i

,,
o



02 pourrait poser

v,19) Ypl®) = Py (x")

et donc la théorie pour 8tre invariante par rapport au groupe

contient 1'inversion spatiale a besoin de \bR(x)‘ Une thEor‘e avee wulquement

¢L
On peut aussi Ecrire :

-3 -

i deux cooposantes, w'est pas invariante par réflexion spatiale.*

(v,20) Py (x') = 00" ()

On voit dans ce cas que 1'opération d'inversion sput‘ale traasforme une

particule en une antiparticule.

Ainsi il y a deux alternatives : ou bien on peut construire

e Lotentz qui

unc théorie avec neutrinmos A deux corposantes et d'autres leptons de masse $ O :

et admeetre que 1'opération d'iaversion spatiale est. 1'habituelle :

Bz + v (x") = Yy ix) pour les derniers mais 1a transformation ci-dessus

pour les neutricos. Dans ce cas le mozbre leptonique ne se conserve pas

mais la théorie est ipvariante par réflexion spatiale ou bien on admet

que comne pour les meutriunos & deux comcsantes l'mvezncn spa:uie des

autres champs igplique 1'&change parricules .-nnnpartlcules, alcxs le

nombre leptonique se comserve et la théorie est invariarte sous CP et yis

sous l'opération P copventionpelle. .

On apergoit que la théorie 3 deux composantes du meutrino
est Equivalente & la thiorie de Majorspa ol le champ M{x) 25t tel que

w,21) MG) = £ M () = & CH)

Oz pent choisir une représentatioa telle que

v,22) ez =( 1(x)

wuz (x))

On voit que 1'on peut faire la correspon.ance [ Hl(x).

En plus on a @
1 13
' - <p.
@20 M0 = Zme |5F
ot v =cC%
s

On voit que :

3 fatpsdu(p,s)e
5

@24 wm =1 ameo

1" +(P577 eo)e’? ]

- oy {21 [a(,.s--nuh(p)e

ol (st (5 3ePF)

AN
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CHAP.TRE VI

LES CONSTANTES €, ET C

Expérimentalement, on sait encors que la polcvisation des
v .

Eois est

L'€lasenc de matrice pour les désintégrations - 8 de noyaux ect, comme c= a vu
L) we 7‘% {oyer (G a-r'ivieg) - cA<3>.G(pcﬁfu-vs)v(q;))}
i le; deux lepconiques c‘i-d-.:ssus peuvent s'gcrire @
(Bopy urvieg)= B kv eg)-
wnn o Hepanitastive)-
PR PO %([u*(pe)‘uws P yvg)
~7 Lo

Par conséquent on pevt prendre comme Eonction d'onde de 1'électron (I-Ys)u(pE)A

La‘valeur moyenne-de la polarisatibn de 1'€lectron est done

S e
b DiEear®y -T—;"’-(l-v . By
8

<%:Bs P -
Bl e e asv a-ue.e
5
e :
oL sar | @y Sy )Ry} e
P e - -2
27Tr 3 (ﬁ+m)yn(l-ys)! . E N
Il Fuut 3 présent déteminer €y et €. Ga trov 2

A partir de la probabilité totale de (dcintégration de pius :urs royau:

En négligeaat toujours les correctiorns dues J i interietion électrom:g:

de 1'&lectron et du noyas on ciduve
Paax

e lal 1o 2icp| B lc 12 2t [ o2
om0 1= de i Benl o 17 s,

Daus 3e casg de transitions Ferrmi pures

v1,5) <G> =0  (Ferni pur
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er or contrera que
¥1,6) i<x>’.2 -2
On tv.uve alors ; pour une te’ zansition
Z * + N
1,7 ot e - i
e ) :
(v1,8) le,l = (1.4037..C026) .10 “Sorg.cx® =
- 107
» mn 2 -
L P

Dans 1lc cas de 1z gratica du neutron libre DS . -

V1,9 )21, <)% -3

On peut déteroiner

2 2 '
{¥1,10) feyl +3{cA( : -
On trouve : ’ :
(vi,11) t .
La chase de est déterminée ea cosurant la distribution anguleire des

c
&lectrons émif dans la désintégration de weutrans libres polarisés relative

8 la direetior du spin du mestron.

L% B _
(v1,12) an: 1. ¥

T ks B
o, ) ) S - o
ol Sn est la direction de pylarisation du neuwtren

et .- R

2 fceptmete N . o~
V1,13) as - .
7 7
c,|“+3]C
ley)+3ic,i ’ o -
ou encore c o
2 {122 (G2}
(V1,1%bis) a=- ¥ W
Cas2
1+3[——x - -
%y )
si
c, € . “
- A A g
1,10 PN . .
’ C, CV
on a
‘%ﬁl-z*ib—m 2o5¢
1,15 a=-2 2 CV s
A
“”E{,‘




bR e v . '

-T4-

d = 3.002 ¢ 0.014

Ca Ca id
L bt e 1 o
et de Ty 'Cv] e " on tire d z

1312
v

d'oi i ¢ =1t 1.6°

C .
Ainsi if 'y a pas d'@vidence po r violation de T en B-decay et qA <0

= O = T -
Cg=Clg=Cr=Cip=0

Cly =Gy s €y Gy

CA .
{V1,20) — =~ 1.23 £ 0.02-,
&

Maii il peut toujours y avoir une trés faible violation de T.

Nous arrivoms i la conclusion que i'asplitude pour la réaction
(v1,21) n+ptes GE
est donc la forme :

4.
VI,2D 5= —~(2m) 15"(1711—_171,-5-17;);«.

V129 = 71—‘ e cptie e ) (5 on a-rveg) o=

)

avec : B e
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précédeoment est correct puisqu'il se rEfEre a.dea amplitudes, des Elfments

de macvice entre hadrans dans des Etsta asymptoriques initial er fival.

Voyons alors la relation entre le lagrangien (VIL;2) et l'nélitude
M (VI, 23). ' '
Pour 1o dEsintégration — § du nentron 1'amplitude S de la rfaction

en ordre plus bas est, en admettant le 1ngi—mgien (V1X,2) (et [ pO RN

'3 L \ X
V11,5 Sy = " ijd x % <pgpevglh:(x)2;(x)pn> -

<[ 1 PR, o miPx iP §iE
o le ‘f—f <pppgp;]el ’h"’(n)e e ’gx(n)e ’._xIPn>

puisque 1’invariance de la théorie pat ripport au groupe des :ranuhnons
permet d'écrire pour tour opérateur §1(x) :

2x) = eiPxn(")e-iPx
(VL,$) s P
[T = - G2
al

Par coaséquent :

LfL4 i -] - — " o
- —Lfd % %l[l’p Pu“"ef’vkpp{hz(o){p? @7l o =

3]

8)

vIL,7) . o
e - 4 gMop o

(2n)1 & (Pp Pnope+p;) H(B)

od :

Z e o le o (s »
el R LA LA (Berm, trrpviey)

Maioterant consid€rons 1'Elément de matrice :
A
<1>P] hi (o) [B >

Cocme :
R = v - e

prenons la pactie vectorielle du courant‘hﬁ H

< [V P>

Comze i1 s'agit d'un vecteur, on peut avec un prnr.un Einal hbre er mm

neqtron initial libre construire cing vc:r.eu-s H
n E(Ppn w(B) ; s s

T o, B . . (F-] .
B ue oy (P, e = {Pp Pn)y H
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{(#1)u(p) =0

IID A5y Eem - 0
alnsi ¢
aatey | @eie Gt mp bty =
= autp*y § (M )2 - o™ uted
a'ob
= eV e hule) -
R = St v ulp)- Pi;-%ﬁ;(p')u(p)

o b

M
it e | L

| e rulm) = SN ue)- %; Tep* 30 utp)

D'autre part de la relatiom @

@ L0y . WY
46 - #'4 = a (ppt) -~ i077a (p 4pt )
et ce :

0 = W F * B PP APmulp) =
= 560" {a,0p"-p* 10" a (p 40" ) utmd

i1 viear :

. N
(V”'”’b*n Tp Vo et = 5 E(p')u(pJJ

On peut donc choisir les trois vecteurs indépendants
1) 5@ )y uten) g R
—
(V11,16) 2a) u(Pp)xU q“u(l’n)
- M
3
3a) u(PP)u(An)q

avee :

b
Mo ¥
q Pp Pn

Y¥ous pouvons ainsi Berire :

A . 1 X . n:
g@p]va )P > = w(e ) 38"( Y (adyy +gvu,)(q7),u “qn.
V17,17) .. 2

BV

@hHd ey =
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) . L2
oll les eoefficicents de chaque terre sont des fonctions de 1'invariant g (le
tronsfert d'impulsion carré) — les factcurs de forme.

" on paut voir que ai la théorie est invariante par rapport 3 1'inversion du

texps ces facteurs de forme doivent Etre des fomctions réelles.

Mous feruns la démonscracion pour le premier facteur de forme,

361)(421, mais elle s'Gtend sux aatres fonctions. Soit alors :
alvtie = o @55,

et la cantribution de ecct &lément A 1’amplitude de la rdaction ¥ + P + ¢ + UE

est alors
A AT U, 2,0~ A -~ 5
< =
I selsy" > = 20 6D 5 0w,)
Pour 14 réaction P+ ¥ + ¢* + Vo la contributicn cozresponddnte sera :
At
" = <N}V )P)<“e)l/\)c) =
*
= <vlv7‘|N>'<e|z;]ue> -
L% 2= A (=
s\(, e )(UNYAHP) (v\;(,‘(l-vslue)
) L
Maintenant on peut &crire (si on se rappelle que <¢1|w2> a <1¢1l1W2>) =
w|v™e> « ¢V = cpfrds e
Par conséquent !

w, = <te[rv'r e efre,*1 v > =

- <TPT.¢%TV;\1 17y >

Llinvariance par rapport 3 1'inversion du temps iwplique donmc :

+
- <zp| v} [T <Telg, lw; a )

= 5% Gl (B arvl)

(v11,18) = ésl)(qz) (3.,'1°Y_Ay°up) Tt um, ) .

a3, 2 Ao foy S
g @) ("N up) (\vYA(I ¥ ?ue)ﬁ
. .
R g,g” @,
Par conscquent si ln théorse est “invariante par 1nvers1nn du tewps oo
doit avoir, pour un facteur de phase = 1 Ct Tt
Qe oy (2= &) Ble _ (D
R, B, 3 H By 8y =8,

N 3

I3
oy

On a danc, paur une théorie invariante : us T
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?‘Ppl"ulm"”n’ -5 2, D tadvor, @ @hot,
i1, 20) . gv(j) (aha*§ u(e )

)

les facteurs Je forme g (qz) sont des functions réelles de qz’

Considérons maintenant la partie axiale de ht H
< ir
PP‘Ao(u) LR

'n preton final ot un neutron initial libres permettent la coustruction de

cinq vecteurs axiaux A savoir :

b T P,

R w5

2) u(PP)U a,Y u(P“)
w3 e oo ue) :
= 5 l
4w IYu(E e
9 e vue )

A

De ces cing vecteurs axiaux trois seulement sont indépendants. En effet,

2 1'équacion :
BpY (B ) v u () ulp )y ABa)ulp) = 0

= SO E A -

= T(p'y {ptep¥- 1

Von & sos
4'0%, par un vecteur a arbictrsire :

vir, 22 L%ﬁ S v’ute) = 35 50 ey ute

De mém-
B (- dy u(p) A5 (p" ) kY (Fmdu(p) = 0=

R U S L T T R )

par conséquent :

— M_ -
(v11,23) I;Z"’ ety y3q ute) = g u(P_')Ysu(Pv)-u(p")YuYslf(P)v )

On peut donc Ecrire :

= 1 M5, (2)
Ger |2 p> = 52 18, vy +sA§qE,§A“' >

(VII,24)
+ zAm(qz)q)YSE ulP )
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A préseont, &tant donné un pion 4'impulsion pA il est imposeible de constcuire

avec cette seule grandeur un vecteur axial.

On aura donc :

2 <0lvM @) |7 = 0,
(VIIL, ) Py — A, A
b) <0la"(o) 17 (p)> = L£ (p")0".

E“ est en rislitd une constante ot s'appelie la constante d'interaction po.r

1o desiatégration du pion : £ 28 (+%) = £ (ud)

On aura donc :

vuLe ok, -i—%ﬁ o (pi)YA(l—'ys)v(pVi)] 5
De la foncrien delta en 5“2 i1 résulre que :

(VIIL,9) Py TPyt Ry

et coume les leptons Finais asymprotiques sont libres :

Ulpg) (Bymmyy = O
(VI11,10) o TR -
ﬂ"z\'(p"z) =0

- an obtient e

2

Gy . -
G e REVIN B -.‘_/viliu my Glpy) u-y’mpv-l)

La probabilick de désintégration sera @
) 200 12 2 B
LG @y ¢ -4 :
m TAm 2
n ﬂ]"

A partir du résultat expérimental B

N 1
(VIIT,12) A a=
2 Ta2

= (2.55£0,02) .10 %sec

(VIIX,13) Tr2

ot si I'on identifie (g ver G, on datermine If“,l :

(VIII, 14) £l ~0.97m &m -

Le rapport entre les probabilités pour les désintégraticns en P er en électron

est d' aprds cecte théorie :.




_ g4 -
2
z
2 g1~k
Areeev ) gm 7
(VI11,15) R=———°—-(~5) ——“ﬁl) % 2x10™
A(ﬂ*u‘uu) nu L mu /
2
L

et a @#té trouvée par Ruderman et Finkelstein.

Expérimentalement on trouve :

R ™ (1.247£0.028)x10™"

e

La valeur de R ci-dessus doit subir des corrections &lectromagnétiques telles

que celles citées dans les diagrcms :

asd

L4
et que nous ne développerona pas. Oa ohtienc R ® 0,365 R & 3. 23x10
La théarie est en ercellent accord avec l'universali¢é (e - u) qui

affirme que la théorie est invariante par rapport aux échauges

e u
v v,
o< >V
moe>
AR
On peut comprendre intuitivemeat, 4'aprd@s la théerie V-A, pour
quelle raison R & une valeur aussi faible. Si la masse de 1'Zlectron &tait
nul.¢, ce serait une particule gauthe tandis gque le Ge esat une particule
droite Donc on devrait avoir :

(VITI.i6) m ~e +V 5 1a linite my = O

e
droice(hélicité + 1)

gaurhe(hélicicé = 1)

Mais en verru des conservations de 1'impulsion et du moment angulaire on

avrait pour un pion au repos

j—

[

3
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CHAPITRE ix

COURANTS ET CHARGES GENERALISES

J - LES COURANTS FAIBLES

Nous avons développé les argumeats higtoriques qui omt abouti
i 14 théoric des interactions Faibles basée sur 1'hypothise d'un lagrangien

effrctif proportionmel au produit scalaire d'un courant avec son adjoint

(15,13 L= g s v nc}

le courant - ie couran: faible - &tant la somme de deux termes :
(1%, 2) P = e+ W
le courant leptonique :

(1%, 3) Hx) e L5 - SR =
= 11T, o - F, oYy ool
f=e £ £ .

et le courant hadronique h”(z), qui ne pouvant pas &tre Eerit en rerme
d'opérateur de champs qui représenteraient des hadrons, est aussi une

différence de deux terzes l'un vectoriel et l'autre axial :
(1x,4) W« ngta) - Wi

L'expérience 2 conduit i postuler gque le courant hsdronigue se cowpose
de deux parties, un courant qui conserve 1'étrangeté des hadrons, h?o)(x).

2£S=Q et ua courant qui produit um ch d'é des h N

Wijy (=), L5=1. Bt 1'on a (comme on verra su Chap.XITI, Equaticn ({I1L,52))

a) W = h“;(or(x) cost + nsm(x) sing,
(1x,5)
14

u
b) h,(x) - hA(

D)(x) °°’9= + hz(l)(x) sinec

Tl s'agit maintenant d'&cuc.er 1es propriétés du courant Jx(x). Coum. 1'on
connaft 1a forme explicite du courant leptonique lu(x), te probléme central

de 1a théorie, est de découvrir les proprigtés du courcnt hadronigue, en
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ge bosant sur les propriftés du courant leproniqus qui peovenr 8zre généraii
au courant hadronique {c'est-A-dive, le¢s propriécés du courant leptonigue qu:
ne sont pas modifiéea par les interactions fortes) (1'algdbre des couranrs)
et aur certsing mediles tel que les moddles dea quarks.

Ce sern le but des chapitres suivants de rappeler et d'érudier les
propriécés théoriques et phénoménologiques des courants et du lagrangien.
Maia suparavant nous allouns établir la notion de caurant et de chacge

dong le formalisme lograngicen ot 1o théoréme de hoether.

11 ~ COURANTS ET CHARGES. THEOREME DE NOETHER

Etant donné un ensemble de champs gw(x)( s le lagrangien est une
certaine foaction de cet ensemble et de celui de ses dérivées premidres
:auw(x)f
axe et {Jow}, {Pemt)

et le principe d'action &tablit les &guations du champ Apa(x) B

. ) |
{I1X, 1) au T(_Hu‘ag(x ] _—aps(x) o

Si 1'on définit les moments canoniques conjugués wa(x) au moyen de 1'équation :

31
(1X,8) T (x) = T
a ai 3.0, (xS)

La thdorie quantique se base sur les opératenrs wa(x) et wz(x) qui satisfonr

3 l'algdure (+ désignent commutateur ou anticommutateur) :

€3 N *

3] 1 " | R o -
Lo, 0y (2T, =0 5 {7 (), mtx)Y_ - =0
-, (I1%,9) '

N 3 s 3
e, (x5, wb(x')]t_:. = lsahs( ) (xexty
La defmumr de coursnes ec de Lharges. xntrudul:e par Gell-Mann et Lévy

se base_ sur 1a :ransfomanon du lagrangicn induite psr une trawsformation

de 3auge sur les champs w@(x) .,

soie: a%(x) un encemble de fanctions de jouge <omnées ; considérans la

:rauformatmn de JHIJgE i PR

(x,10) e 0+ ¢ (x) -q, 50 i (x)P“ [{w})
ol F ({w}) dépend’ du chmp w et du certaines cunstﬂntes de structure de la
tranuorm:wn.

5i 1ton appel . ‘ Fo e '

¥

Waiiy - e el eomes (0 St (ar (fel)

-




[
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le changement correspondgnt de L est 3

oL M

GL--—Gw + 2 aMep =
W, a Bla“wn> a !
(1X,12) g i
. _aL a Yy, 3L u I} I
R (R el (KL (1)) N ;
a a(awﬂ) : ' I
ou encore

(1X,12bis} L =+ ilB” —3_{;-—) a0 o e ik
EIC] wa) 3¢}

u(l\u(x) 15:)

puisque .
BL w8
i
a CICH:]
Ainsi, en fonction de Aa(x> et 3”l\u(x) on obtient :

s L Ll Q. 5 9L o
=A(x)1+1——— F(x)i—l(a—-—)FE, .
“ o, ORI A ’ ,

LB & ‘ : RS
+ ak (x)(ﬂ———?l-‘ ) B
« a@Pe) ° . .

(1%,13) - .

= Ao 3 !+ W_ # (o l)f

£ (o)

. oL
L W) {
« (M

Si 1'on géfinit le courant par

Q. "
(1%,14) i = a(B"w T g fle })

ou aura : -

6L = A <x>a“: ()~ a"A (x) e

(IX,15)

H K.
= -3 {Au(x)J”(x)}

On voit que
B i

M%) = -i (a“
n : a(a”wu
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Japrés la formule H
W .- 3 h
NI e R A
La
anoobhtiear el N
X, 2a ) iwy = iefoTewdte’ - el No . :

Y
Quelie signification donner dans ce cas ay terme en 3 A 7 Dans le cas de A

cons.ante, la fermule & appiique~ pour jx(x) n'ast pas (XX 23) mais plutde .
. R L a (o
[SEALY) LX) =~l—ar—- L (' })
3(a \.’Jﬂ)

qui dans notre cas doit s'écrive :

i aL .9 >
(1X,26Y ;(x)=~.oa—(D-F-)F-xa—mF
ua v
et donne
. + +
0% i = e o' Mooite't
puisque, vour & -onstante on a F = eg =)

1t est facile de montrer, dans le cas oll 1a théorie est invaviante de jange,
cozment construice le courant. .

Prenons pur exemple :

(1%, 28 L= g@“'w‘)*(ﬁ@‘w')—mzw”w'

A At

PN LY.LES RN : B

Nous avens vu que : - . . Y

L' =L AR

Maintenant posons :

(1%,29) My =0

c'est~a-dire qu'on fait un choix spécial de jauge :

(I%,29i5) i = A

Daas tces conditicis L' e¢i-dessus devient
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et si L est ipvariant de jauge il ne peut pas dépendre de Ao :

3L

M
w0 TR -

111 ~ L'ALGEBRE Dt LYE DES CHARGES
Les transformations usuelles sont :
(1X,35) 0, (0 + @) (x) = @ Wity (IFY (fof)
90 les F sont des combinaisons linéaires des ¢ :
(1%, 36) 2 {fol)s ™, e 0
o8 (i) seat s constantes : @f= ©,(x) + ig(f")_ A, (0

bDans re cas l'expression du ceurant devient

" Y P L
(1%,37) B0 = - Eorao)) w2 (fsl)
axamis) B0 e - ;ﬁi—:"my (£ q 0,00

La char,e Qa(n) est

! T P PRI T at a 3.
(1x,38) Q) = !Ja(x)d x i fW £y a0 tmd 7

Mais
aL .
°(°owb(x)j b
donc ¢

ax,3n | o () = -i (63, [ oe,ad’x
N ba (0

Cosme on connait les commutateurs des © et W on obtient :

(1%,40) (Q,(0, g0l = - &N, G

Q_ (¢} sont les pénérateurs du groupe de jmuge de lére e’p{cg., Car si on:posa

(1%,51) Y. % o8 € = Mconstanee - -

on a !
(1%,62) oL = LR 2,00 dsaGa’

Botons que . . I



http://sc.it
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(Q,(,8,(001 = - (€20 (2,50 ” P Ox oamgia) 1, Gy a0 T

. Hais
4 Jpupe = T 00 (0,000, W ('Y 0, (17 *

I G, T ) 0 k)T 0, (x) =

50
3er8

- 15 o) 1, O, 0 - 1 83 eeyn L (00,
09,0 Q0] = L (€8 (£, [ 13400 Gatdog L) ~

- "ed'"c";")wd(;'") 2d3x -

O PR3 [3’2‘;" 0, (keya’s -

-t (B I 7 (G0 agtke e ]

> 3
RIS I (AN SR AN ST J 7 () o, (Rredx

pour une ion de Hei .,.' On a done pour €u infinitésimal :

e e (e ) ) (igsy .
men A

. @ n @, (x) - iEux[z, CACON

S - 9,00 ¥ 1 Ebtih)a; 9,(x)

on ohr.xenc :

-xc,x[%.w(xn-xun 8 (x)

ac el

-l-dx:c

B --‘(r,x.ab,)' L?, 9,000 5= ( )‘,c ® (x)]

: lIX‘45)

l-On voit que el (er seulu:ent si) les nnnntan:e

satisfont 1 une relation de
“oda forme 1 :
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CHAPITRE X

LE LAGRANGIEN LEPTONIQUE ET L'ALGEBRE DS CHARGES LEP1 ‘RIQUES
Le lagrangien complet pour les leptons est :

X1 a) L-'l.u OL( +1

Y) w)
avee

B 1, = 3§ty ueeti e, e} +

Lo 1ovSyy 45 128 L 5
3, 3 =TIV AT 3, 5 (=v)y, {+ h.c.

<) L(Y) (_,) (x) A (x)

4) L(") fl

(")(x) "A(u)(x)

“oft

@D Ao - e

o8 'le couun: El;c:raugnénq ¢ et
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et
Bty " et A

-
™ ° g e a0 R

o
i by A X
ty = e xle sEpre RPLY uL‘uRv 0%

B O !
Ty = 2T ey

PROPRLETES DU LAGRANGIEN LEPTONIQUE :

1) le iagrangien est invariant par transformstion de chiralité

{ Vo (%) > -ste x)

(X,6) ). -
l.u<x) You, )

puisqu'il ne coutient que les opérateurs ve,_(x) et‘vu'_(x)__vnur lesquels 3

'VS\) ="\JL
5.7
-5
A A
et don. : v ‘—75\: =\,
. A LTV
- -5 -
vty

On craduic cela en disanr que le lagrengien me contient pas Vy et

donc les neutrincsont deux composantes. - .

Ils n'ont aucune int.:action avec le champ ele:tromaggeugue puxsque cee . . o

neutrinos sont équivalents 3 ceux de Hajorans.

En effet, pour un cham de Majorana M(x) on-a identiquement : -

Y H(x) = 0 T

(X,8) UV iyie 0

H(
: A

En effec de Lo .
%:x)(gﬂ “H G0 = SHi(x) ‘ L A . : .

* & H(x)
B! - ) = - 51'(,);'}

= & H{x)
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on tire (avec C-lvpc o S0H Tl L LEHYy

%4: YO g-l - -1 e e -

R "R

Mais puiaque M(x)c =% Mona

%Tﬂuﬁ:g-l bl %(x)(g’_lﬂy %gﬂ -
-0V, e s HGoY

et donc ; By'M: = 0.

Par contre on a

@9 N R L T

comme on le veut pour la partie cinématijue.

2) 8i 1'on fait D, 2m = 0, le lsgrapgien est invariant par rapport au gro

unitaire Teptonique 21 x 2 B
EL)_’%(EL) (vel.\\ "eL)
9 X ) B ) R o
(x,10)

) %)

ol % ec ,/ sont deux matrices unitaires arbitraires.

u..

) Umvusah:e u_< e sauf Eour les termes' de mssse. Clest v.me eonsquence

de 1'1nvnrmm:e 2) pcur o
l(x.u)’» ) % ?4 ( ) .

’0) Cen:ervaunn des nmnbru legtmxguts

Avec les terwes de masse, L est xnvar\uut par le groupe &pdcial :

(X,12)

Cela vent dire que 1'on fait’ le-‘:ﬁnlfog_n':igns de jauge du type.:

R
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X, 13

. eif2
" ® Py

i,
2y

v
¥z

Les courants conservés sont ici

l 2 A A
( (x) ~ eLv eLoeRT e '"eLY ‘oL

(5,16) N _ - Y
By €0 = By “L’“R“‘R"’uy." VL

et les charges correspondantes sont les nombres leptoniques

X - f FANC TR

(%,15) o 3
‘Nu = Ji(u)(x)d x

La copservation ds ces deux nombres BEparément interdit la réaction

{X,16) H>e +y

qui serait possible par une interaction magnétique de Pauli
- U s :
1 e{x}o” u(x) Fuu(x) si cn avait K, = Nj.

Formalisme de 1'isospin

Si on veut introduire v: isospineur pour décrire I'&lectron et
le neuctrino il y a une difficulré pour les termes de masse. A la limite :

m, =@ =0

on pourra définir un isospineur pour chaque lepton : B r PRSI B

9 L, -("21.“‘)) = }a-h ("e".’)
&

ey (® (€57 00
e =(uL"‘)) - 1 (\’um); e T e
u, (x) u (x) . . SRR

et va isoscalzire :

2,17}

(X,18)

2 R ~ 3 Ardretn) = ey
L
2

b R () =

AP = ug )
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Alars on peut &erire
Limem 0) = 3 {L,(0iv%1, 00 1v%,1, (o}
1= 2 0 = .3
¢ g R oo EROR N aunum}

(X,19) + h.C.
Al-T)
2

tefl, ooy 2 A, 0oL ()Y Lyfayon
te h‘te(x)y Rc(x)oiu(x)y R, } 4y (0)

- ] — h3 +
+ = {T oy TL O Y T L o}
AL T, L 4T (oY, 7 L ()
o0 10

ol r, - i, (o 1) . a-nsin (c o)

On y voit la symétric e P p

Les courants moat f

P.i‘v)(x) =1 (x)y"l——ll. (x) + (x)vl l_yi L0+

(X,20)

+ B, 00vR 001, (07, ),

T

ks

.

@ | g 60 = 2T vt b e +Lu(x)ﬂ

L- fnme de ces cauruncs montre que 'L (n T 0} n’est’pas invariant par

upporc A ‘une rocanon dans 1'espace de l'uospm H

R ARG S :

5 ;
T . o
7 I.(x) :

(x,225 .
I.(x)' hd ve -

puuque 1eﬁ courant! dannen: ~un rule vrwilsgxﬁ aux axes (Béme ‘pour- I(Y)’

ler et 23me paut E(H)) uolpm.

e masse on-peut. le faire en introduisenc

ST e
a .




et éeriTe

- () o
Te Ite(x)(?) Re(')‘ie(l) oy Lc(X)}‘ " 1Lu(x)(l) R“(‘) *

B HORCEY L, 00}

(X,23)
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R RN EL“R'GR"L‘

Ce terme n'est évidemment pas invariant sous la rotstion (X,22)

Par conséquent le lagrangien complet pour les leptons s'Ecrira

(X.24) a) L= l.D * L(Y) * L(H)

1
RS |

1T, eirta L, GosT i‘(uau!.“(x)+i.(z)iyaa"‘ke(x) .,

3 Py
+ E 01y aunu(x)} + h.C.

1, = _
- 51 meLeﬂRemuLuﬂR“} + h.C.

A
c) l‘(y) = el(Y)(x) AA(X)

A+ .
D Ly = % En 9 B ®

L0 = _;_ (1*5) (ve(x)) . (

e{x)

Lu(x) -

R = 3 (17)e(x),
) R ’

R0 =} astn,

a-(). -

coviant &lectromagnétique

(

"el."‘))
e {x)

)
e/

-2 + T ooyt 1A
il 27

- . - — :
Ly = Le(x)‘()‘ JTTI LG + Re(x)yhke(:c) :*'

X
Al Ru,




]

~-102 -
et le courant est @
P =) Ia 7. A 1D D 1
E.(a)(x‘lnLeY G Lt LY Ll.l o ; L
i
i

(%,34)
s PR
o 230 = 2(‘(1)*"‘(2))

Considérons le couract leptonique faible
A AL A :
0« 20ehy +isly) = 2{ Ty T.LE4L"‘/\T°LU}’ e

(%,35) .

1 .
T, =3 (141y)

et définissons 1a charge leptomique faible : N . i

3_,0 N - S ) . ’
Qe {8) = [d gy (%) = 2 Jfa,x l_l.g‘{v's";_.’bl.u‘{r LR B
(%,36)

- [dzx i<t awryes vy -yt

Son adjoint est : - i
+ 3 ot 3 [T P 1 aF vOpiy } o
Q<o) =[x gy = 2 [ {Tatra T}
x,37) e -
- Idax {e+(1~15)ue+u+(1~15)vu }

Le commutateur [F,Q°] introduit.une. nouvelle grandeur-

Q3 = Iﬁx[u;u-vs)ue—e*u#r Yers P amryy,
(%,38) !

-utatn) = 4 'Idang(xs
puisque :

[ou(6), Q)] = 2 Q)
Si on pose N X

Gy(® = 2R,

+ o L et

®39) (Quue) == 2%,
W, " e
Q(H)3 =4 "3 N i

il vient :

KK) =2k : o

x40, {{H ] = K BRI

IS ERY -




- -

a.b=i, 2,3

cus défimissent biem j'algébre SU(2) x SB(2)

les sharges faibles Q:,l), Q(,L)'. Q:,;')se transforoent comme ZK*.
2%, J-K} respectivement. Pour voir les propriétés asqlogucs de la charge

#lecsrique, dffinissons les monl.res leptoniques
K 4" i £ = e,u
¢ - o
¢ x Wy by .

. (S P

s charge Q) s'éerit :

[ ( 3. IR o
vy ,“‘g"’i Y =7 ¥

clest-a~yire

[EPET

Come on le sait, 1'expérience suggire que les nombres leptoniques Nl se

conservent. Par conséquent ies Nl doivent coumuter avec les opfrareurs qui

g7t des variables physiques. Sinmon, on diduirait ce 1’hypothése (R &rant

un observable) :
Ix,,8] ¢ 0

<t} IN,.0110> # o
ol & est un €tat propre de 1'opérateut NP. avec valeur propre ny

(ng - nl,)<v.|n|¢'> #0

Par conséquent, si A, # ng..on auraic <2|0|2'> § 0 et 1'on pourrait preduire
ute transitiop dc 1'érat I 2 1'8tat R' ce qui est impossible si 1'on admet
la régle de super—sélection pour les nombres le ‘toniques. On déduit de 1a
propr.écé de N. que nes opErateurs sont des wultiples de 1'identicé, que

£ . B
13 charge ch)) coc=ute de 12 wanifre suivante avec Ko K, KJ :

(£

fagy-

v
K= IRy, K =
=Xy L, R

- [x,, K,) -

=K,
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eI SRR

(2)
[Qny » Kyl =0
On en conciut que QE:; st de la forme :

(L)

Uy “Fo ¥

3
ol lo eat un opérateur qui commta avec K1. KZ' K3

K. k1=0 , a=1,273

~

t Ko' KI’ fz. KS ongendrent 1'algdbue B(1) x SU(2)
En offec de 1'axprossion (IX,95) de Qiy) on peuc deduire
(&) -1 ; i
Uy "Ly * &y =3 Ehl

d'old

L'algébre des charges leptoniques ser :ra de moddle pour 1'étude de 1'rlgebre
des charges et courants hedror.iques.




CHAPITRE XI : ! o

Lo S INIRGRATION DU MUOR ET LA CONSERVATICN DES NOMBRES LEPTmIgUES

Le lagrangien purement lepronique décrira des réactions faibles

ol n'intervienne~: que des leptons, par exemple, la désintégration Qu mon,

La mesure de 1'h&licité du muon provenant de la dévineégr. «ou du

pion :

1,1 ISR R R
( TNy, o .

wontre que v, a la wfme hélicité que Vo !

(X1.2) s(vu) = s(ve) -1

Nous pouvons donc adpettre gue }cs deux mcutrinos u: la désintégra-
tion du muon :

(X1,3) v =~ vyt ey

sont décrits par la théorie 3 deux composantes. On &crira domc 2

5 G
51 by o 2 o (= 5 "~ (1>
GLO Lwee - ] S (50w ) (e, 0}

Le thioréme de Fierz dit que, &tanr donné quatre spineurs arbitraires

by U, ¥ ion
Yps Yyr Ygs Uy, on 3 la relation =

5 5
1 o) - - = —
(21,5) azl R ) @0y azl b, (2.4, (5,0 b))

ol
s 1 4 6 -t -1 finy, .
<, 1 -2 0 -2 + D,
(X1,6) v 1 v
CT =3 1 o -2 o -1 BT
c, -1 -2 o -2 -1 D,
o -1+ -6 -4 1 by

A .
Rappelons que CZS =13 nv L ﬂ.: = oW, DA = TAYS, ﬂ? - 175.

Nous pouvons donc &crire

e co
oL e LR Gadnardn)@p B L
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Ainsi 1a théorie 3 deux compoSantes pourv, et v 152113“& les aouglqel
SetPer Veta
Co:ne 1'0élicité de 1'électran est - — sa fonction d'onde doit &tre

(1-r%7e ot dome € (1), Par conséquent
IX1,12) sle) = -F =CgnG =0

et op obtient donc !

)
(XI,13) fLGrve) ='£}_§u (Vuvl(l‘vs)u)(ETA(I-xs)ve)

Historiquement on a sdmis une Supcrpositicn des cing formes covariantes: de

la forme : »
L ff= _ 5.
b = & {(5,0mtx) (s tegre 93w, i)
+ (3, o) (Foov et rtiv ) +
(x1,14) + 3 (5,00™u0) (Fea,yleset v, ) +

+

- A 3 (=
(B, vYue) Emnrteue v w) +
> Birue) Foir ey, )}
Avec ce lagrangien on ohtient la matrice § pour la désinzég&ntion du puon :

. 4 o . % 3
GL1S) 5 = am’ 8" (B py kR B

x

-] (o esergn@,) ¢
(e vhuce,) (66 v, G v )

e 3 (Ee M e} (G0, 0ty SviE,,)
« Be, v ) (Bo vy e ,"15)':(;*)) .
+ [E(RVJ)ivsu(Pu;) (E(Pe)iys(c§+c'P75)v(?“e))3

ol les spipcurs sonc normalis&s de telle sorte que :

(X1,17) up) = %L) . %(p) %(’7) - 2Ep

Pour Jbtenir la probebilité de tnnutmn plt u:m:! de temps nnus o

devons : a) obtenir |S!2 b) diviser par VI ou (21) gt ). C)Jlll'.lpll,el‘
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vegl et ecter, von e
b= VA v oA '

T T T
N .
al = Gglly + G~ C g Clp m g Gy
- - L] »
N N - U -

~3a'-6b* K
(¥1,20) € - 3a'-6b '+ 14

a+4b+6c

(XI,25) 8

L’équation (XI,19) est la probabilité de désintiigration d'un

. : > N
muon pelarisé pour émettre un &lectrop avec impulsion comjrise entre P, .

P+ dp . Elle dépend de ging paramitres A, p, 0, E, &, Le pnu-hu o ant

<

Ezrdne*ro de Michel qui détermine esscnnellemnt la

rae du spactre

ectr s. N est tras difficile 2 mesurer ; il faut pnndm H

nax @™ vertu du facteur B « 1. £ détermine 1'asynétrie de la . ‘
réaction et 4, la forme de 1la d:gendmce en Ee du terme ea cos 9. -
On voit que dams 17hypothése de 1a théorie & deux composantes pour L

ivv deux neutrinos et si 1'hélicit& éu v, est égale 3 ceiic fu v, on aura :

=C' = =c', = =C'_ e
C, c CT c T CP 4 P G
(X1,28) ec
= - = - ¢ - -
C, c ' c c A et C C,

v v . R

Cn obcient alocs :

{X1,27) [ £ =1

i
u
o

L'ex:otence de deux neutrinos différents Vu e:v + qui sont décrite par la

théorie 3 deux cnmpusantes, a été démontre par l'erpﬁnence.

On prend le faisceau de peutrinos pruvnnnnt de la dénnt!gtutmn i

du pion posicif

(X1,28) o v, *u . ) .

et cn lui fait bombarder des woyaux atomiques. Si ce neutrino &rait’ identique
a v, an devrait avoir production d'électrons ava-x. le seuxl de !.l Ptuductmn

des ruons :

(X1,29) - vu + Nz — N, 4+

z+1
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Et le fait que 1'on n'observe pas les réactions
+ +
B ey
et o o~ s
K e te de
rontre que le nombre leptonique de u et Yy d'une pare, et le nombre

lvptonique_de e at v, 2'autre part se cangervent sépacéwent.

On , sutrai: avoir une lo. de conservation de nombre leptonique

différente. Au liey d'imposer
1) L, couservé, Lu conservé daus toutes les réactions

on pourrait imposer

. o_Lu, conservé, signal de (-I.)!'e conservé dane toutes les rfactions.

Les réactions :

- .
v otpepre +ut ey
L tP P ute v,
0*&_0_

’ ~ e v
o P P H e

sont interdites par le principe 1) mais sonr permises par le prinmeipe 2).
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~ 1 - > s
o T, =y (11”,12), “i(x’°3"3)' Vf(x,az.'ra) sont les fonctions

+
d'onde des noyaux initial et fimal 3 1()‘) agit sur les variables d'isospia

du nucldon A du noyas.

L'approximation d'impuive nous donne alors :

(XII,7) 6, <I> = Gy <vf|r‘|vi>
ol T, est 1’opérateur d'isospin tetal T, = — (I *iT ).

Pour :a réaction

.
e oM W et ey x)

et N & font partie d'im multiplet T = 1 et donc em rappelant que &
(X11, ) <r.-rz-1{-:_|'r.rz> - /(1+rz)(r-rzdl

T =1 et que 'L‘Z = 0 ponur NM et Tz = 1 pour 0“ on a

<1 = 2

Ainsi on obtient la valeur de Gv 3 partir de

(X11,10) G, % 1.408 x 10"‘9“;.:-;1‘

) ©°F important st & ¢énduit en
1949 5 1'énorvcé du principe de 1'universalité des interactiond ‘faibles.

Le fait que G, est presque gal & & = €

En fait cette presque Ggalité entre G‘(,B) et g- G, est rprmm:e, )" .
puisque, en plus de 1'inmiiraction faible entre nucléons et- Elcctron—ueucnﬂo, 4 !

d'wne part, et 1'interacrion faible entre muons et electron-nzutnno. d'gutre

part, les nuzléons ont des interactions fortes. En absence de ces dernilres

on por:rait en ‘ffer &crire un lagtangxen de la forme 3

1y - *— {(P a4 (u Y ey )u)} [evl(l-r »,)

qui postulerait une &galité exacte non seulement entre les eona:nntu

®) o o

d'interscticn G maig ausgi enire Gy et Gy

Ea réalité .m a (voir VII,27)

Lo =% {(V..,Yx(l-rs)u)} (;_YLX(I-YS)\!;) S : : i

toom 2 (o g-:ﬁu)} (va<1iv’>§e].

(XI1,12)




=116 - . s B “

o P est 1'opérateur d'impulsien.
Par conséquent :
- s0 Q
< > = 2 . R
! XIT,17) ph(‘{)(n) Ip LA B I

b'w r: part si 1'on divise jt\,)(x) par e  on a pour les Eacteﬁrs de f,qle_:e»"

él=~_;omagnétique
; <p' h( y(@)]> = u(e") iy p(q )+ m“ q"l’ Piq* )f u(p)

donc :

.o + ]
(X11,18) <P|J(Y)(o)]p> = e u (Ru(p)E, (o}

aver o"(@Yutp) = 2%, F Plo} » 1.

On a ainsi :

e =e =
P o

ia charge de la particule en interaction forte est &gale 3 la chnrge e ln

particule sans- interaction forte : - : ' <

Par conséquent si les charges "nues" Ie | et |e?] du’proton et de l'électrnn

sont &gales en valeur absoluz alors on sura :au]ours [e | = |e | grice 2 1a

conservation du courant.

Corme les interactions fortes sont i sariantes sous le groupe de:
rotatinns SU{2) dans l'espace d'isospin, il y @ trois gEnéra:curs T §
satisfont aux comnutateurs du type {IX, 49). ol

ab _ . . -
Cy = e e o

(R11,19) [I:L’Tb] =ie, Lo . . .

Considérona alers le ccsant d'isospin qui copserve 1'6trangeté.

- : :
1'hypercharge 1), V) (x). B T

. On aira : SN h o0

Q11,200 T;fvfzu,a(x) o2 T

4

< —— .
et Ta ne dépend pas du temps si V(u)uix) est conservé.

Définissors le courant :

| LN T R 1} “3
KIL21) Vel =V +ivV, .

La charge &lectrique

(X11,22} qg=T
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$'autre pat:

<N1~‘(p.) :'[l\"z)_(x)d:‘x | o“<pl> =

-3ty < WYy | v( ! o py>
{hi

s em? Epepty e 2% =% pt®
“aLs

TP VJ.\‘(E)_ me’s | oM pr = at | | oy
{Xi.,32

<t e T LT 1, e /2 2n)? 2% R
par censéquent :
£,(0) = 1

Ainsi & la limite de symétrie exacte de isospin on cunnait 1'Elément de

matrice de la réaction

et le fait que £,(0)= 1 indigue que cette amplitude est la mime que s'il n'y

avait pas des ;oteractions fortes.

On a donc :

(X11,33) <=

un résultat qui ne dépend pas des d&tails de physique nuclaire.

Ainsi G = G’u) : les interactions fortes me changeat pas 1"Egelité des
{ s

constantes edmises dans le lagrangien, Les forces Electromaygnétiques-détruisont

la syeéirie ’igospin et danc ces vésultats sont valsblea en approximscion,”

D'autre part, le courant axial ne se conserve pas et donc la cnnutnnte
d'interaction correspondante change par repormalisation.

On trouve :

(R11,34) AW ¥ oz g

En réalité d'aprés Cabiobo on a : . S

e - .

Tty
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11 doit y avoir des corrections dues aux interactions &lectromagné-

tiques du type mais la table montre que

20 ¥

ces correctizns sont petites, de 1'ordre de 232

2} Magnétisme faible
Ecrivons d'apriés (X1I,35)

M e B g
‘(o)(x) v )

g (O)‘(x

De la relation de coumutation :

(X11,38)

W3 L1 = Vi 0
11 vient :
104 1
G s 1307 Vgy@lpiry == 3> =
. =4 Aps 7. = =+ > =
(x11,39) =Gy @ity 7 3 Iv?u)+(°’]p’ LS

L .
= Gy ity -% I[vé(c), Tllp: Ty =32 !

; P N
Comme 1'hypercharge commte avee T, {voir XII,23) on aurs, si iy désigne -

le couraul d'hypercharge

. . 1 s LA e e <Ll
(XI1,60) 6y i1y = 5 1L V055000 + 5 3(0) o T,]lp,f3", 32
et d’aprés 1'&quation (XI1,22) il viear

(X1I,641) G, <p'

1ps X o =-l
v =7 3yt tllpry = - 5>

oil j(:)(o) est le corrant électromgnétiqﬁe.
On abtient danc -
Gev e lvg
<p (B) [y (0)IntP)> =

“q, < 9(?')([5(:)(0),T+]ln(l>)> -

(L = 6, fep@li @]piEr - ate[5 ), @ niEs]:

puisque




et par conséquent :

1
gD = 6F YD

{2y

(X11,47) 2 v o2
By (q)-Gva (g9

Nous vavons que :

Sy A A
i =gty

X

ia)" .
2 9 {utey
inn

@ iihi e = 50 e Vahvter eh . b2 uem

- A 5
e lideip = e {3 Syt L fad
(KI1,45)

tandis que :

2 i .
N - .
oen | G vl orlee = e { 8§ e heaP @ ;:“ 4§ 7,8

On voit que jg(x). la partie isavectorielle de jéy)(:). et eo)‘lx) sout
partic d'un triplec (voir (311,47)).

On a encore :

a)

gcy(n) =1

(X11,50) v

P@ L,
Gv P o

Certe derniere celation est connue comme le terme de ‘hgﬁrisu faible

(Gell~Mann) .
Ainsi : i
i Zpry J(ELED) L L ¥ 2, )k
< hm(o)h»-u(z)!( $0+ 7 "D B
PR T R U
(x11,51) (g | g Vit )i e ey
’ —o v, 2, T1HT A‘vz'td-v'iri:
a(‘v-fq Iﬁg),(o)}v TR AT —%‘—11 “E, (4 )—1-2—2 .

5

an o Sl
v ?‘;—,,R"N uip) .
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-\ <ﬁ°|[T_.j(:)(0)]|r .

¢

LG ey ) =t ; o5 2 O =
g <5 IJ(y)(o)h > (puisque <r I;(Y)(o)lw 0

e )hmml (p)> - G’y ' %

Foig ) est le facteur de forme ¢lectromagnétique du pion chargé. F'lr(") -]

si {a) ne connent pas e . Comme dans la téactiuvn ci-dessus qz est trids

x\)
petit on y fera F“(q 4 =9,

Le résultac théorigue est

+ o, +
AnT+n e +vp) o

(XI1.55) R s 3 1,05 x 1070
ME wu)

th

£: cé s ri - 2 -8
1 le tésyltst exp@rimental Rexp (1.0320.07)xi0

4) Désintégration beta de Z" I
it Ave'ﬂze .
(X11,56) Z_ I Wiaesd
e
Le courant vectoriel coptribue avec un &lément de matrice, d'apris
(X11,464) er (XI1,47)

.
v - v, 2 A, id v, 2
%A|v(0)<o,|r> = 6gu, e fr Vb «: 4 By (1)

(X11,57) 3, A
< ayteh £ fugmeo

Dan: Je cas de la Lransxt.on o+ p, a ).a limite de la symétrie SU(Z),

la conservation de v( N entraine gv (q ) = 0, Iei, pourcant,.m, 1‘ -’: a

limite de SU(75 =c domc 2 R
_ N - v 2 ), 2.

(XI1,58) gq.[qhv(o’}(o)lb - Gay (2" (mygmyd F,VCa) + gv(q)ﬂxguz-m

5i la fonetion r,v(j)(qz) n'est pas singuliére pour qz + 0 alats

(XII1,59) 1;m q g( )(q =0

paT canséguent :

(XI1,60) g(f\|ql\v:°)|r> =0 entratne ¥, '(0) = 0

la comtribution vectorielle permige est donc nulle
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CHAPITRE XIII

LE MODELE DES QUARKS ET L'ANGLE DE CARIBBO

1 - LE GROUFE SU(3) ET LE MODELE DES QUARKS

En vertu de 1'existence de processus de désintiégration avec

changement d'&trangeté tels que :

(xun,yy CTRTe R
o~ .+
K +71 +e +Vv
e
il faut admettre 1l'existence d’un courant fait{e hadronique avec changement
d'étrangeté. L'expérience a confirmé que sa structure est nln.lnre{l celle

A -
de h(l}(x), & savoir @

. > . ")
111,32) h“)(x) V’:U(x) A“)(x)

Ce courant a aussi une forme V-A.

On est alors amenE 3 se poser la

courants conservés ne peuvent donc pas chnnger 1" un;eté..

un groupe de symétrie pluo large ‘que SU{(2)

1'éventuelle conservation de V?l) {x}.

unimodulaires er unitaires dans un e-pa:a cuq:lexa a ttnu d1unnnn ]

Une telle transformation s'éecrit en gﬁnérnl H

(X111,3) Y- eitara i S e L T e
ol A : el B
(UG [FLE) = i E : : o

les F sant hait opérateurs hzmtxqun et sana tnce ~ les s!nérnt:un .

des :rnnsforma:mnﬂ 1nExn1tenmlel du groupe SU(J).
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les autres f et d étant nuls .

Le .odéle des quarks introduit un vecteur 3 truib compogantes,

tue composante étant un spineur de Dirac

P ) ;
(X173,6) q -(n
A R

le champ des quarks. £t le mod&le admec que les hadrons sont des tenseury

b

dans des - paces de certaines représentations de SU(3) comstruites I partir -

des deu représentations fondsmentales non—équivalentes 3 ec 3.0

si qk repré ent les igntes d’un vecteur dans

1'espace complexe i trois dimensions, ellee se transforment sous SU(3) o7

d'aprés 1'équation :

(tomme osur £o= 1,2,3) ) €St un2 m:rxce unxnodulure et unu:nu =t

1'ensecble de ces matrices constitpe une repr!nnunon -1a egrl ngation
tondawentale — du groupe SU(S) Une au:re

des composantes covariantes ainsi définie : -

ona: a*
q = 197

GHLO g (%}‘)'(qz)' - (W‘;:q[ j

(X11,9) ?/ =s%"“'

(caudis que, dans le cas du groupe Sb(Z). une tells (lll
existe, § = 1))

st Harserie sous la forme de 1'6quation (¥111,3) alors,

. ;
et R AT R
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c'est-3a-dire sera le nombre d'élémencts indEpendants d'un. tenseur symétr..ae:
3 m indices supérieurs et n indices infEricurs moins le nombre de condinnns

qui leur sont imposées pour que le tenseur soil sans trace 3 )
UL diptmn « SO (0T ni) wed) E : b
2 2 2 5

1 (a1 () (avme2)

Ainsi. 2
Reprécentation nom Dimension . .
(0,0} = identique singulet 1
1,0 = 3, z triplet 3
(0,1, =3 .
Représentation nom Dinension ’ s
a1 =8 octer ‘ 3 R : o
0) = Co
(2,0 6, f sextet -6
©,2) =6 ’ : " '
21 = . . AT
@1 =25 . s iy g
1,2} = 15 : >
(2,2, 27 27 ..
,0) = T :
(3,0) 10'} dseuplec e . )
0,3) = 10 - - . A R .
ecc . R

0On voit que 1'on reprécente (m,n) pnr le nombre dim(n,n) sim> @ et par’ |, ¥

=
dim(m,n) sino< .. . E LR e

1a deuxizme

Ainsi : . .
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B
ou : (XI11,16) 3@3 =63

Etant donné les noobres quantiques des quarks 3

.. .2 M | '
T 3 -21 ¥ 5 Ay 8 Q= Ty ¢
i
° 172 1/2 173 173 2/3 _ (
(X111,17)

n 1/2 -1/2 1/3 1/3 ~1/3

i o ] -2/3 1/3 ~1/2 .
—

on voit que 1a ~ua 1 a les oimes nombres quantiques que les

ansiguarks :

(A11L,18) = r-ip)  ~ o

v

wt

1 N
— ini=An) ~
%3
St
Ainsi 3 représente aussi bien les &tats antisymétriques de deux quarks que e
te triplet antiquark. s .

Par conséquent on peut &crire pour un systéme quark-antiquark : -

(XI11,19) [3@3' = o@g - R® m =1 G)il
o

La conf:guration ga les nombres quauntiques du vide, Y @ 0, T = 0 (sauf B= 1) ;
o

touBT s " ERERE
on peut dorc i'ovolier er représenter les tableaux : T -

simplement par la configuration (XTIT,12a) .

Considérons maintenant le syrtéme 3 trois quarks

(XI11,20) IIPIFo@oPe

La valeur maximale de 1"hypercharge est ¥ = 1 pour trois quarks

¢ la configuration mérrigue aura T = 7 » un quartet dane. - " EEE A

Pour Y = 0 ou aurs deux quarks (p,p} ou {(pn) ou {(nn) ’g: un A-ga partie
ay= ‘trique correspondra 2 T = 1, un triplet, Pour Y « -1 on aura 1 quark :
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%! naus changeons (pa-aplp + L (pn-op )X
vz

L [P
— (pn=np)n » — (pn-np)}
7

an aura une canfiguration avec ¥ = 0 et T = 0.
. 1 1 _
$i nous changeons 71 (Plnz pan)P: b = (pk 2"y l)p3
on aara des configurations avec T = O eu T ~ I. La dernidre parcie T = 0

est d&32 contenue dans la premiére.

On a donc dans 1'octer : deux &tats Y= 1, T~ 1/2
trois tats Y = 0, T =1
un Erat Y= 0, T~0
deux Etats Y = -1, T~ 1/2

Cette composition montre qu'elle est adaptée pour a'ideptifier avec 1'loctet

des baryons stables

TABLE DE L'OCTEI BARYONIQUE

T Y Composition des quarks
P 1/2 1 ppo - ’ ;
N 12 1 pun' o )
E‘ 1 o ppA
e | Y ! 0 pod
T 1 o ani K
A 0 ] poX )
= 12 -1 ‘ P
B /2 -1 mA
Y= 1, T=1/2 deux pucléons
¥=0 -T= 0 lambda ..",
Y= 0, T= 1 us':mis'qi;mf‘;
Y=-l, T=1/2 © les esi.

hyssi d'aprés la formule (XIII, 19) on voit que 1 octet ' den mrsons
constitués par le eta, ies trois pions, les deux doublets de luou: p«u:

]
s'identifier 2 )a configuration 8 provenant du produit 3(®3 tvgir par’

i
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m 0 0
P
(XI11,25) Moo= ) o, )
o 0 o)

produit, comme on le sait, le courant {baryonique) :
B, ~ 300 Y ) -
qui se conserve. La charge correspondante {(le nombre baryomique)

B - JBO(x)dax - NN

se conserve. On a :

~igB

q(x) + e €

ieB
qx)e* ™ = &' qex)
cui domne lieu & @
8,9, 0] v ~ g @
La symEtrie de Lo sous le groupe SU(3) exige 1'€galité des nnag's
mp - ﬂn = ﬂA

En effet sous la transformation : o

(X111,26) g(x) = e“a‘i‘ﬂ qtx ¥ (m: SLICO) ' o5

e terme en la masse de L se transforme ainsi :

FOOUD = T, Ei(l-ieéku)i.u (Teic A ), qn =

a2 u)kn

-1
[4 = =
HIL2D) =g RN l“ sz“a>un n 2‘A )'j M "kl

q ¥, g +ig q (m.‘mk)—(lu)‘ku.
et damc L, n'est invariant que si == my, ik = p,myA,
Daas ce cas il y avra huit courants conservés : _

Mo a et Ly ] -
l Vo3 = a3 3 gt -

(X111,28) et : y - : T
3, V(xr =0 sio =

les générateurs de SU(3) sont les P, tels que : o s s

E-x(ai‘& ax) 2155175 - e‘:l-ilfq(x) ) " L _

- . R - ; "\r’



Los courants axia. soat :

(xX111,35) I A =TV 1y q(x)l

et les gpEnérateurs F-s sont @

s 3,0 5
(XIII,36) F_ - [d x A(x) = F_ (:)J

Les courants axiaux ne ke conserveraieat que =i lea masses de tous

les quarks Etaient nulles :

(x111,37) l aMe) =i T 07 g ) G )Lk“h(‘)l

Les générareurs :'A ne forment pas une algdbre fermfe. L'enremble des

16 générareurs ¥, }_‘a forme une algdbre fermée-puisque :

[P (), Fle)] mif, F (6],

abe’

SO mig, FO)

(XT11,38) [F, abee

12,560, 5,000] =i £ ¥ o)

C’est wne algébre SU(3) x 5U(3), ce qu'on voit en dEfinissant . s
charges chirales gauche et droite :
L 1 5
P -3 [Fl(t) F, [O) AN

(XI1I,39)
NG StRCRE A CIIN

Oa a alers @

el el - ig, Pl

abcpc
R CR . R L

(XIIL,40) [rﬂ (e}, iy (1 = i fab:Fc (r) ,
rrm, ) =0

Les courants chirales associfs 2 FLS et B> sont :

R
_ 5
iMoo = Gt B 3 qm

(XI11,41) _ s s
i = Feo B4 a0 : ‘

Les courants \':(x) et A:(x_) se rransforment sous SU(3) comme un
opérateur temseur qui appartient § 1a roprésestation 8 : .

(F (0, W] = i £, Vi
(XTII,42) u M
(F (0, ()] =i A (x) 3
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e qui résplie co. :¢gler de cormutation de g{x}.

i 111 -

!GLF "F_CAB IBBN EY L'GNIVERSALITE DES INTERACTIONS FAIBLES

Avec ltcs huit pénérateurs I"i on neut dé. r un ensemble de huit

autres opérat-ucs équivalents.

T eP 4 iF .

(XI11,43) VieE i,

T=2p
/55

DPans la représc- ion to.tacentale on a :

o1
T+-( o
o

=}
=

0 0 o 100
), T = (1 o). T,_‘-% (0—1 o)

0 0 0

o

et ces

8 ont las 1 suivants s

+ oo " : i

T -2my, . ;
+

.{{3.?’] ot

Wl

[v;,v*] -
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AT RS E)
Wyl «au,, vy T, ¢ 5 Y)
Tug,u') = syt

(XITLa3) LT 0, [NTl-0,

i

<

[Ta.\f:] -t

[v.v°] ¢

+
i e
i
v

E

(1,.0%1 =

W

v,0°1 -

3
+
o

160 4 TR AP C A TR AN

WLl ey, T e v

W) T, WYY AT 4
On voit que 3

— + =

ara-rtte « W a-re
(XLIT,48)  _ s —w._ s
Q(1~y")T q = oy (1-y))p
er donc ce sont les courants faibles des quarks qui correspondenmt aux
transitions faibles neutran + proten et proton + neutron Tespectivement

(voir équatiom XII,11).
D'aucre part,

A a-ve = pan :
(KIIL,65)  _ i

A a- e = Wa-ye

On peut donc considérer ces coursats comme les respousables des transitious

larbda -+ proton et proton + lambda respectivement.

couraunts faibl

Nous allons donc admettre que 1

sont_des membres d'un octet de SU(3). Et puisqu'il 0'y a que deux gEnfratedrs ' - N S
de SH(3) qui correspoudent, 1'un 3 up changemeat de chnr;e hadronique AQ/- 1 k L
er g' hypercharge {ou d'étrangetd) AY = O, 1'autre ¥ 4Q = 1, AY = 1 2 savoir; - E :

.
e v' respectivement, novs poserons, avec Cabibbo @

e Voo = e v vt s e M . R }

oii V:(x), a=1,2, ,.. 8, 2st un octet de courants aous SU(3) tal que lu

générateurs de ce groupe soient : P ¢ s

(XI1L,47) F, - [v:(x)d3x ) P

Quelles sont les conditions aptes 3 déterminer 1c-’ copescantes to’ et C,. 7
Or 3i, en général, le courant V'(x) est une conbinnlon 1ininre de V“(x)

(un vecteur de 1'espace & 8 dimensions) y B
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on porralt toujours faire une transformation SU{3) ct le vecteur V"(x)
ch.ngeraic e position dans le plan 4Q = 1 <ans que }‘cn puisse dérermiuct
sa direction. Le fait que le lagrangien (X117,24) a un terme de masse
signifie que la symétvie SU(3) est rompue. En eEfer, ce rervw privilagic

les axes 3 et 8 de 1'nspace de 1'octet puisque :

w0 O
E(x)nq<x)=5(x)(o 2, o) 9=
(X111,56) ¢ o w

< ofaeo1atm) + a(aoryae) + Y(amrgacx)

Tar conséquent l'hamiltnnien 5 . gu¥ rompt 1a symétrie SU(3) contient una

term: de la © -+ : qMq qui privi’égie les axes 3 et B (ce terme cotmute

tourefois avec T, et Y). Dans 1'approximation ov 1'cn néglige leés interactions

3
¢ .. ctromagnétiques oo pose o, =W et alors c'est 1'axe B qui rompt la symérrie

SU(3), clest-awdire, sl m 2 m.

“' Ilieurs, les divergruces (XIII,31) et (X1:,.37) s'dcrivent :

auv::,n igm g ) g,

L
7
(XT2,572) _
A =i T e D v

ou ;
B8 0 = (BE ¢+ vEal) A Ay alx)
KIEL378) 3 A% = Had (YA gt +

#{26,5,q00 . am + 4y, T YAe@] -

+iv (28,5300 ¥ a0 + dg G0 YA 00}
puisque :
M e al + B),J + yle
Pour les courants d'int&réc physique d'apras (X111,54) on a. :
(XI11,58) ENGRR A I B O I S
ul 2 P U

et done le coursnt vectoriel SAns changement d'é:iange:é se: conserve quand

LA i.e., quand 1a symEtrie SU(2) est exacte (en négligeant lea effets

électromagnétiques),

¢ e e N e 2t i

A




et par conséquent . (

. 2 2
.- ” AReurwey) | osin 8 FK
arIneyy A . B0 _}:2 Ef‘....__
(1
B

A(mru vu) cos“9 £
De la valeur expérimentale de ce rapport il vient

fl( ~
(XIIT,65) i tg § = 0,27
LT
A la limite de symérrie SU(3) exacte

g iy {SU(3) exacte)

on obrient [

(X111,66) sin ¥ 0,2655 + 0.00G6

en premier ordre dans le terme de rupture de SU{3}.

i
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. . L SipnX | s, o2y B ~ippx
0lA, LT - <0|A(°)(D)[W> e if (eD)p

o 2 ~ipmx
e 4..'\9)“‘”’” f"n“e

Far consiquent si

(¥)_€cait conservé on eurait

soit fﬁ,-ﬁ

et donr Ics désintéprations (VIIT,1,2) du pion sereient interdites ;

soitm =G N
(H

lv pitn devrait 3voir une masse mulle. B

(0n veit que cette limite est woins forte que celle iwpose par le modile

Ges quarks puisque d'aprés celui-ci

Mo Uy oor oS
3 CA#EA) = iRy n)(mpm“)

ia consarvaticn de ce caurant exigerait mp o - 0. L'expérience semble

indiguer ia rosservation partielle de courant axial (PCAC) due & la petite

evr de 13 masse du pion psr rappert 3 la passe des baryons. Pourquoi cet

intérét 3 la conservation de A”\x) ? Pour expliquer 1a faible renormalisation
du G, (Bquation VIT,29). .

Considérons la désintégration beta du neutron et 1'expression .
i¥11,24) de 'T&lement de marrice du courant axial. Camme la partie du courant

axial avec LY = G est, d’aprés (SIV,1), A(,) () cosd on posera 3

f\"u\ RO <P'\A Ly (oY e s .

clest-i-dire :

(x1v,3 <p* |A(u)(n)|l’/ = <p'|a¥ +)(a)|1’> cord - T 2

<P"A)(\”(n)!?> =

(xev.2) R e e P B G R P )

avec {voir VII,2x} :

() N IR
() 2 E BT
fae = s;_cxa)_
v

On a alors {¥oirVil,6)
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S Ofihe 2 i SepryeS.
S Al ey? - i ah) = {728, iicer 137 0]
ol 1‘on considire que la mas:e du pion est nulle.

£i 1'on compare avec 1'expression de cet &l&ment de matrice en fonction des

facteurs de forme on voit que ce diagramme ne contribue qu'd la fonction

A3 2
£706%)
2
- 3), 2, . /ZRapfs(e?) B
(X1V,12) £y @0y - qz

2
g BN ¥ 2
o3 g, est la constoate de couplage TN renormaliste S 2N ¥ 14, £ (q)

est le facteur de forme du pion dans la tramsition pien -+ vide.

Ainsi si cette contribution domine la valeur du facteur de forme

jesqu'd g + 0, on aurz :

o2 g3 2 L
lim q° £,771%) /2 gy £ () .
et par conséguent -
r
1) 72
£ £
©) = I Bty (®)
Comme
£ o) < & ) .=
A Sy .
on obtient la relation de Goldberger-Treimap
(51v,13) £ (@) = /T mg A
. Eanfy e,
La coms + ._ 6e réfgre i des pions chargés, E [ L=
Cette relation serait exacte si la masse du pion &tait nulle. . 5
On peut la considérer comme approximativement valable puisque o < e Pour
déduire de cette &quation une autre relative & des quantités mesurables
physiquement i ©-ut savoir comment ces quantités passent, comme fonctions. Sy
de ©_, de la ~>‘eur zéro i la valeur de la masse du pion ; on admet, faute . EEE

de meilleure conpa:ssance, la variation lente. Une application directe

de la relacion de Goldberger-Treiman aux valeurs exjcriventales
’ 2
(XIV,14 €4 ¥ - BN
b 1,22 » in 14,5

donme £,00) ¥ 0.61 m

tandis que

£4(0) 0 T 0,68 m T
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alors, cone
(x1v,21) <0{3,a (03 |m> = £ m 2
antes 2 L
on obtient

(x1v,22) ce=m’t

Appelovs i le courant qui est 1a source du champ @, c'est-d-dire,

posons par définition :

(XTV.21) 3200 = (mmﬂz)wa(x)
Seit
(XIV,24) otx) = - (@ +iv,)

72

9n aura alors pour la désintégration du neutron, par exemple :

2_2
<P‘]3”AE(D)|P> =C <P'|@o) P> = C @e 5 z)w“)Jﬁ
. 2.2
n

(XIv,25)
. ¢ i} P>
2_2
'y —d
Par définition :
- Vs a = 1y 17
(XIV,26) <P ]J“(o)lP;z=m2“ n/2g up(P iy u (2)
6 o2 2 e s 2 . :
i q" ¢ m” on définira g(q") par 1'&quation : L

319,271 <5 1P = /2 2ah) T @O u )

glq 2) est la constante de couplage pion-nucléon hots de couche de messe

z
(q ).

$i 1'on compare ces deux équations avec les équations (XIV,7) et (XIV,8)

on obtient :

2 i
(XIV,28)  D(q?) = Cﬁ;( z) - Qﬁn&z._séﬂ_)
5 “-q o ‘-
m

- . 2 2
&quation exacte pour q° # m .

"

Ecant donné la définition (XIV,7) il vient 3 partir-de B(42) i -

(XI0,29)  go)f, = /I m, A

L hypochese PCAC affirme que <P'[] £3)|P> varie len:emant conmn foncrion de

2 (P'—P) dans 1'intervalle 0<qz<m 2. 5i 1'on ;eumlacz Alars

(XIV,30)  glo) ¥ g(m *) T
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TV - CONSERVATION PARTIELLE DU COURANT AXiAL AVEC AY =1

Les considérations des paragraphes précédents velatifs au pion et
ay pdle du pion se transplantant au cas du kaon. Cela veut dire que les

conditions €tudides pour la conservation du courant axial avec AY = D et

basdes sur la petite valeur de @, sont généralisables au cas du courant ax:

avec Y = 1 et seront hasées sur la limite e = 0. Comme Ty~ 3m“, ces
considérations sent moias utiles sous le point de vue physique.

Au lieu de la désintgpraticn beta du meutron on considérera per
exeeple

T+n+e * v,

et le :curant axial y coatribue avec 1'élément de wmatrice ¢

(XIV 37) <P'(n)|AL;l)(o)|P(Z_)> <P'(n)|Al;l)*(n)|P(Z_)>sinB

ol -
“ - sl
Alpye = Ayt HAs E

Cormpe peosr 1'équatien (V1I,24) on pose maintensot : .

Gt @y, @1pa> = 5 1 | 6P @iy e qhioMg v5+
(¥iv,38) n

+ 0:3) (qz)q)‘y5 ; uE(P)
I-n . o

G:”(n} = GA

par conséquenc :

A - — ' o
@ |8, 0 [P = 5 (pY) hi” e+ C
(XI¥v, 35) (2,2 . . e -
’ + 7P ahaM  EP@het e

i), 2
02y o Dah . A
[ i
v ‘ N
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CHAPITRE XV

1A FORHME ALGERNIQUE DE TL'UNIVERSALITE

1 - REGLES DE SELECTION

On a vu au Chapitre XIII, paragraphe III que les courants faibles
sort mechres 4’un agter SU(3}.

Comme il n'existe pas des générateurs de SU(3) avec AY ~ 1, 1a

théorie conduit aux régles de sélection suivantes :

\! 'AS" < | | Les réactions semi-leptoniques avec |AS| > 1 tont interdites,

par exemple :

Les réactions semi-lepconiques avec 4Q = ~AS sont interdites.

Ea effer,, comme l2 charge hadronique est donnée par

{Xv,1) Q=T3'—2-—

os B est le nombre baryonique, AB = O, on aura

(xv,2) 80 = 41,4 1 s L

L'hypothdse AN = —AS conduit 3 :

3
=34

(XV.3)

et coume dans les réactions faibies AD = 1, on aurait dans ces conditiona
3

XV,4 tar.t = 2
¢ ) [ N 2
Le courant devrait donc avoir une partic avec isospin supérieur ou égale

& 3/2. Ces termes n'existent pas dans 1'octet SU(3).

coaséquent les réactions interdites (XV,5) suivantes sont iaterdites

Par
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D'autre part :

e P 1 - el weoLlly
v )23 J(l)'k st =z Ty, LT T 3
ot
E— 101

Ja™ ‘1-“|>'|‘7.5)

on ama )
1
\njjél)!x°> ~ N

ce qui établit le rapport ci-dessus.

8§ on se rappellc oue. en négligeant 1a violatjon trds faible de CP,

Jerize @
o o 070, o 1 0_T0. °
K = (K% = b R L 1% s L O -
> K o)

on a :
. LI S e T N <—l~ CN 2
iXv,13) < yJ(1)|k > = <f IJ(1)|k] . < [J(l)lkz :
Suisgue

— — o+
K 7 re vy,

est interdite par la régle 85 = 50.

Par conséquent :
+ c + o ¥ 2
AT > mteeTeu ) @ A (KT m e ) -
e e

(Xv, 10 e
= &% mreeti)
? e

. o .0 2
kl et hz ne sont pas des &tats propres de 1'Etranget€ c'est poury

: feinrd + ~
ils peuvent se désintégrer en T et en T .

11 ~ ELEME'.TS DE MATRICE DU COURANT ENTRE MEMBRES D'UN OCTET

Nous voulons maintenant déterminer 1a forme des Erats physiques

de la représentation 8. . - = -

N o < Ll
Comre les opérareurs T des particules de 1'octet satisfonr

au commutateur :

(x9,15) [F2,2%) = 1 £22C oC .

on a :

<P iFd 2% 2 <“b!P"[n:|o> - <ﬂb][Fa.w°]|q>

]

P52 s o

ifach - ifba:
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De la forpule générale :
(XV,20) T’ft.:3-1> LRGN GOV N
Onoa: N
{(Xv,21) 7,11,0> = /2]1,1>

Si 1'on identifie 1'état |y = 0. t =1, LN 0>nvcc'1u3> on obtient
(xV,22) Tt By =0, c e, by e 0
D'autre part, d'aprés (Xv,16)

- N 3, N § PN .
(xv,23) T+l1|3> H (Flul-‘z)[n > = if 3d'ﬂd>¢x(‘1.f236)!ﬂd> = - ifmp>=]uy>
par conségquent @ -

= 1 . . .
{RV,26) P'y =0, t=1, 5= 1>z 't’> - - :J—z‘ (hl) ¥ 1|“2>)|h+>' ‘E*>

Ca obrier  aimsi

T 4 e et
7,25) ‘ [y=o, tm1, £, e 1> % [t > =-o(|n> - ifr ] (12, £
M 3 7z 1 2 l *

(xv,26) P)=D, t~l, t3-0>5

Aussi

* > o= i =3 -
©v,27) Vmyg IFAHF5“"3> ,’f&qqh >

par conséquent si ¢

v,28) vlm> Sy et tar, €, = 12>

on aura :

B 1 1 1 S
x,29) |ly=1, ¢ 7 :34(§>=~——({-"4>>r

i L 1

=3 Iy 5 ing = 5 Ung» i)
-2 1

s ly=lie=n, ry ey

on obtient :

’ P A L T
(Xv,30) yrhobwg, o, z>* ‘/2-(1"6".;

Egalement @

.- =3 e ls o a Lnise g
(xv,31) [[y Lit=g,ny z/> o (}"6» x_‘i|'[7>)
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T 15 LA -
Xv,32) Ily‘ﬂ. R 5>’='—r;(1"4>*1

EE:] TR

P P + +
Avec lo définition des gémiérateurs T , i%’ » »». et avec la copstante de

structure du groupe 5U{3) on construit donc les &tats nhysiques de 1'nctet.

Les wmimes constantes £ ve dézerminent ler £léwente de matrice du

courant veccoriel entre membres dfun octer dans 1'approximation permise.

En effet posons !

o, JJn) IroBd =ik, B

oi} B sunt les compusantes de 1’actet des baryons et soit :
. ; s by

(X7,33b> <B£(P’)]V£(u)|Bi(P)> =4 u(p)y ul(pIC i + O(q)

ol 0¢{q) sont des termes qui s'annulent avec q = p*-p.

On a alors :

<Belp)IF I8, (03> = if ] <z‘f(pv>)a (p)> = =

(XV. % 3 3
XV, 34) =i O an %° &' -p) &g 5

e . 053 (ot
=if L 2 ol 2p°87(p*-p) 55.353

Errie SU(3) exacte

)]

Mais 3 la’ l’nxtc dz s

f S, >

f(p')l[v (x,om x!n ?)> =

@03 &%) L T wipd Cue ™

o 330, j
iCyp 2P (20)7. 870" P) &g
T On voit que

T

" Pour les courants axiaux

et, B 11 ya deux nombxnaxsons

fnrmen: comme un octer ¢ - &




i

(XV,37b)

(Xv,38)

Dans }'approximati-n permise 3

(Xv,39)

d'ed

(xv,40)

(X¥,41)

- 160 -~

b
dai A;(n)]Bi(P)> - lwﬁll) »)>.

On aura donc dans la limité SU(3) exacte :
R (09> =
<Bg(p')|A (o) |B;{p)> -
TIA

N N 2
= B D9 ()> + d g, <L e ()2

2 TR i P -
foik & B o = G WYY w g
> LITh e whS
e 55?<af(p').uk >, = Gy WYY wdy,
s -
ery (93182 () [B, (1> = (AL (8 + ;¢ Gp) Y.

>t 1'on appiique cette méthade & plusieurs réactions on obtient

n =~ p+e‘¥3€ Gy = cosﬂ(Gé*GD)
7 .
iy Sy 6, = *2 G cosd
e A 3 D
I = nte v, GA = (GD—GF) ssz
A~ pre +v G, = ~(,’3‘GF+ Spy 5ind
€ ! 3 vz
Ate v G, = (,ijF - by sing
¢ B 7

- s N : & = -
Pour 1z courant vectoriel on obtient Gv en faisant p = 0 et Gy g

dans ces

formules pour G, .

.
On obtient ainsi :

sin® = 0.228 * 0.006
G

= 0.611 * 0.014
p*CF

G,

111 - LE THEOREME DE ADEMOLLO ET GATIO

(¥v,43)

Son 8lément de martice est U‘

Considérons la rézction (KZ1) B
+
K w%eeey
e

ey oL ey Vhier-i ¥, K" (03> (a0, 0v9,)

2
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Aiesi 3 1a limite A + 0 : o
f (o) =1

Le thévréme d'Ademollo et Gatto affirme que f,{c) diffare Jde.l'unité. quand

N = 2
is courant est non-conservé, pa) des termcs du second ordre, X%, dand le

paravétre A du hamiltonien qui rompt la symétrie.
En effet, du commutateur
A = 3
(XV,49) v,wie= 2\3 = T: +z‘l
on tire : . ) o

.50 ok IV VIR B> = 20m7 25, 8 (pymp) : ,

On insérc un easemble complet d'&tats physigue: interoédiaires

,I. §<" (o) [VV (> <af VIR (pp)> -

- R"(pz) ]v'ln><n]v’)x‘(p1)> iz

3
sty [ S ) [ ) [T 2> - , :
(21)72p ) . . s
- F el VI ey fe ) S
. ﬂ'
= 2(211)3 26, 53(p2~p1)

02 définic la coustante par :

09,52) <} VK (03> = /2y, (m"(zsﬂzeg”z & ppp)

I1 en résulte que :
2, 0343, . + i~ U
26 (27 *87(p,-p D2E :T;‘ $ep, v IpToepr]y Ipy>

- <p, IV Ipt><p' 1¥"]py> 4 = 20m° 28,87 ppp))

(¥v,53)

comma <y |V*Ipy> ~ 0 1) (puisque de [, = § fdax 3% ] ' .
il résulte o

3

< .

o050 gy IF, fpy > + 1 <22L20IBLRT> (o3 3y
- 271

et <p,13,¥30p;> ~ OV i1 cst clair que

2 - g
(XV.55) fep=17+0 lAz} it
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CHAPITRE XWI

:LES DIFFECULTES DE LA THEORIE V-A DES INTERACTIONS T .

I - LES BOSQNS INTERMEDIAIRES DES INTERACTIONS FAIBLES

Aprds la suggestion initiale de Fermi, on avait cssayé de déer

\ les interactions faibles au moyen de composantes scaloize, vectorielle,

‘pseudoscﬁlpire,_nuiule et Lensorielle du lagrangien, d'aprés une superposition
du type donné par 1'dquatien (III,20), les combinaisons V-A et S-T+P Gtant
inverinntes par rapport au réarrangement de Fierz. Il o'y avait ainsi aucune
raison de tenir & 1'idée d» bosons intermédiaires qui seraient les responsabirs
'des interpétions faibles - 1'idée de postuler un grand nombre de champs

intermédiaires et de constantes d'interaction n'est pas matisfaisante.

la conception de Yukawa d'associer les pions aux interactioms

.
faibles aussi bien qu'aux interactions fortes n'avait pas abouti puisque
bien que les pions donnent lieu & une interaction faible pseudo-scalaire

induite ils ne peuvent pas décrire les interactions de Fermi (1'échange

de pions ne contribue pas aux facteurs de forme vecteur au gxial dominant

2.9 +0 dans la désintégrarion beta).

]

Dis le moment néanmoins oll Feynman et Gell-Mann et Marsiak et
3$udsrshnn montrérent que le courant faible &tai+ ru quadrivecteur, 1'analogie
avec l'éie:trodynnmiqun devine plus Efappan:e : on pensa que 1'interaction
1ocale de Fermi courant-coutant pouvait bien 8tre due & un &change d'un boson

vecterizl. lourd entre los courants.

Si 1'on considére par exemple la désintégration du muca v

Wty +e+
s " Ve

le graphe de Feyoman pour 1'i. i ract’on tocale couramt-courant . fig. XVi,l1)

L e
u / =
o~V
\L\ﬂ Ve
R

Figure (XVI,1) s e
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conduit & 1'ampiirude S de la r8actior, qui s'€crit en premire approximition,

.faprés les régles de Feynman ;

ig b f= a 5 = 5 :
s [a<(5,0v 1 ) (Fv, 0w, o) o

L'idée que 1'interaction est le résulr < 1'Echange d'un méson lourd W, du

masse n,. entre les courants, nous . onduit # remplacer ce graphe par le

dingracme de la figure XVi,2 . 1.
" !

e ‘

. RN j
i Figure (XV1,2) i ‘ . |/

-

5 -
= si1t aci oB, “tori )

- i 1'on désigne par AF {x-y} le propagateur de Feynman du champ vectoriel .

o . SN

-3 \n'd()l) associé aux mésons W, on aura pour l'amplitude correspondant 3 ce =

devnier diagramme 1'expzession -

I (Y ST T ~ B X
igd ”d xdy (vu(x)y v u00) {8p0e9) g TIY a v, ()
La constante g, est la consrante d'inreraction entre les courants ef l¢ champ.’

W

Un champ vectoriel Ha(x) dr € d'une masse my satisfait a 1'8quation :
/ . :

2 o
36%8 00 + o P =%
oil dﬁx)est le courant, source du champ et

o = % - %P0 e i

Cette &quation s'dcrit

(xv1,1) PP = oyt

2 - R
Pag = (O W) rup = 30 : T

est 1l'opérateur que nous appellerons opdratcur de Preca. A e

Dans le vide, p (x) = U, 1'équation : N :

feo =
Pagh () = 0

doit conduire 3 1'6quation de Klein Gordon en raison de'la reiation:relativiste =
entre 1'dnergie et 1'iupulsion. 11 doic done exister un cpérateur 1°F, 1'oparas., :

teur de Peierls, tel que . =

_ah

(31.7) g < 8 0+ xr{“,) . R
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par cette formule de S' si 1'on adoet gue le transfort d'ir .lsion
k= p‘,u- P B

est trés faible par rapport 3 la passe oy

2 )
k«\aﬂ . .

L'ideati. icatien de S et §' dans cette aporoximation conduit 3 la relatien_ : H

8 G,

F

2 T %

entre la constante By la passe oy et la constanta de Fermi.

II - INDICATIONS D'UNE POSSIBLE UNIFICATION D.iS INTERACTIONS FAIBLES ET -
ELECTROMAGRETIOUES ‘

.

Pour calculer la masse m, on doit comnaftre la constante

d'interaction 8y Puisque ie méson W est vectoriel, 1'auteur a sugpéré en 3
1958 que cette constante d'interaccivn g érait égale 2 la charge e, z

coastauze d'interaction d'un autre bosou vectoriel, le photon, avec la matidre :
By = e !

Dans ces conditions la masse 3, & e valeur de 1'ordre de 640 masses

protoaiques.

Dans le méme article, 1'nuteur suggérait 1'existence de.mfsons
vectoriels chargés W et de zésons vectoriels meutres W et_essayait o
sans succes d'éliminer les réactions non observées produites par-les ‘Courants.
reutres. B P

Par conséquent, 1'hypothise &y e mdzqualr pour la premere foxs
que les nésons W ot les phelons appartenaient 3 12 méme faml[e e: que les R
interactions &lectromagnétiques ot faibles a\(alent‘ la mEwe ongmg. Getce L im e oo
idée trouve sa rgalisation Gans le développement &légant et précis &laboré '
par Weinberg et par Salam et Ward. -

La théorie de Fernmi n'est pas rencrmalisable : les intégrales o B

Jivergentes des amplitudes dfcrdre supeneur au p(meez ne san: pas_abs. rbees -

dans la renormalisatipon de la masse et de- ta Lons:ante dvinteraction. La G g
théorie des mésons vectoriels qui ont wme passe n'est pas revormalisable

non plus : elle n'a pas d'invatiance de jauge et le propagatesr de Feynmen

posséde un term juadratique dans 1'impulsion des.mésons vir;‘ue‘is qui.

5 . : PR o
contribue 3 la divergence des amplirudes d'ordre supérieur au premier;; .

L'idée de Salam et Ha'él'efe hexnburg a &

bosons veetoriels par des *hams 3 masse nulle, ayan:

Sl
i
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et e lagrangien
T S W A
L= ejgy At g gt T ™) * Bito¥on

deviendra

v

X X
o'\

. . A
it Jé"zx MEERS

L=e ()

dés le moment ol les constantes d'interacticn sotisfont aux relations

{XVI,4) e==-g

Pour metzre sur un pied d‘&galit@ les interactions Electromagnétiques et les
interactions faibles sous la forme d'un lagrangien indépendent de la charpe,
on devrait donc avoir une relation entre la charge e et les constantes

d'inreraction By Ct Bgr du type indiqué ci-dessus.

Si i'on pose p = g dans 1'équation (XV),4) on obrient 1'égatité g, = e.
Pour n = 2 la relation

gy

2

e
a écté érablie par T.D. Lee. Le mod&le de Salam et Weinberg relie les champs
er ¥ 3un ctamp de Yang-Mills ﬂ:‘ et 2 un champ vectoriel B*. La relation

(3¥V1,4) v est remplacfe par une autre plus générale.

IV - VIOLATION DE L'UNITARITE

La thi#arie basée sur le lagrangi (I11,13) ne peut pas décrire les
réactions faibles au-dessus d'uge certaine:dnergie. Elle conduit 2 ume section

efficace pour la diffunsion
(XL, 5) v+ €& e

(XVI,6) et vy + & +y, +2

qui viole la borne d'unitarité.

Pour veir cela, considérons tout d'abord par simplicité une
collision &lastique entre deux particules sans spin. L' mplitude de diffusion
s'écrit, comme il est bien connu :
a
£®) = 2L <oltjo> ,

. .
<alrio> = = % (2841) Ty(s) Py (080 [, .




T, =2 2161 éinGE \
en"fonction de 1'impulsion (tri-dimensionnelle) initiale k et 1'énergic
totale 8 dans le systéme du centte de masse, Tl(s) et 61(3) étant 1'amplitude
d'onde partielln et la phose correspondante. La section efficace différenticlle

est alors ¢
do 2
Frri 1£69)]

2'autre part, l'unitarité de la matrice § conduit au théordme

optiquo :
- b .
Teor ™ 17 £CO)

qui. Etablit une relation sntre la section efficace totale et la partic imagi-

naire de 1'amplitude cn avant (8=0)..
Si, dans une eollision, une ondé particlle seulement contribue i

1'awmplitede, par exemple 1'onde S,on aura :

e

In £(0) ~ %'sinz 6:» <

er par conséquent : . -

sl 1'on peut négliger les masses des particules de telle fagen que

5 = a2

On a donc pour la section efficace &lastique, dans ce cas, la borne d'unitarité :

Maintenant, nous avong hesoxn de la sectisn efflcacc dea réactions

xvi, 5) {Xvi;6} ; elles sont.:

_ESEEE__ __E._,___x__
. - ot e

du(ugl )'Ht_xf (s-mi&z "

( XVI,7)
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efficace donnée par le formalisme de Jacodb et Wick :
d 2
(¥v1,9) L= lag,leap,)

ob A, [f]A Ay> est 1'amplitude de diffusion des particules iniviales 1 et 2,
avec héucx:cs )«1. A, dans les particules finales 3,4 avec hélicités xax‘. Cette

amplitude est une :erxe d'ondes partielles :

J
(Xv1,10) <A, [£[A)% >=_[ (23s1)<a 2 ITJIAIA2> 4y

oi k est 1'icpulsion dans le systdme du centre de masse et
3 LT . N N
d»‘,(ﬁ) = <jA']e Vi 55 - Az-ll, At '\4-A3 L

est la mattice des Tototions © autour de 1l'axe y {voir Mattin b Spearman,

Eicreeatazy particle theory Chspitre 4 et Appendice A).’
Si 1'on cozpare 1'&quation (XVI,?) pour grandes énergies :

- 2 2 : :

“(’3")=‘czs=‘%kz.s»mlz N

daQ L3 ST -2 -
1= 4%

avec (XVI,9) et (XVI,10) on voit que seule l'onde S (J=0) contribue 3 Ia
réaction (XVI,5) et gue 3

26 .2 _ s
AT A =T =2

Comme 1'unitarité de 1a matrice S icpose
191712l
on voit que cetre condition est violée quand

s=4kzz%' . .

Ce qui carrespond & une énergie totale dans le systame du centre de masse "
de 1'ordre de 650 GeV. - i3

D'ailleurs 3 la limite des hautes Energiea lc 1§pton £ dans 1a

Téaction (XVI,5) sera ume particule gauche (puisqu’on pcut négliger sa’ masge

& ces Energies). Comme v, ést une particule gauche il s'ansuit que dets le

systéme du centre de misse le moment angulaire total sur la direction du .,

mouvement est zéro

Vg . L . . T
J J

i

K

5
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Pour 1la réaction (XVI,6) & haures Energies, on aura par cont .

dans le centre de maase. !

- %, ¢
[T
vy [

Ev Je

¢ est-a-dxre comme lc ¥ est une particule droite et E une particule gauci
{on néglige mz) on voit que le moment angulmite total sur 1la direction de
1'impulsion est &gal 3 1. Pour cette réaction on a, d’aprés 1'énquation (XV
2 hautes énergies :

2

ELICIT A I (I'coue)
an 4.12 4

et on trouve que la condition d'unitarité estviolde pour 5 > 700 GeV (nergie
totale dans lé 8.c.m.)

1V - NOR-RENORMALISABILITE DE LA THEORIE V-A

La théorie-Ges perturbations basEe sur le lagrangien V-A

conduit’ i des termes d'ordre supdrieur fortement divergents. H

Par.exemple la diffusion
“e vy +e
\,IJ . v\l .

a.iieu dans cette théorie d’accord, avec le diagraume. :

P Py Pe Y
‘et ‘son amplitude sera proportionnelle 1 :

¢ (F0 ooy @) (e astie6p) «

e £ aty Banakgdkynkan oy - Anue"u"z
) ] 42”)4‘ i “(“uz"kzz)kzz T T
. i o . P
avec ky = by + 7, < Ky . s .

. - « A
Cette intégrale est d.vergente comme I kdk. Er cette dxvelﬁénc& ne peut pas
étre élxmxnée par une rescrmalisation,des maseces et constantes d'xn:arac:nbn -

n Duuque choque terme d'ordre supeneur a une divergence.de degré supep.eur .

2(n~1)

comme A 5i A est un para. -tre de coupure. I1 faudrait un ensemble R Vo



http://divergence-.de
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infini de constantes pour &liminer ces divergences. La thforie est donc

non-renrornalisable.
la théorie des bosons vectoriels avec masse L9 # 0 & aussi les.::-

mémes défauts de violation de l'unitarité et de non-remormalisabilité,

Ces difficultés sont &cartées dans le mod2le des champs de jauges

unifiés oroposé par Weinberg et Salam et Ward.




