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I N T R O D U C T I O N 

A - L' idÊ.-il phi losophiqui 
la variété des corps tnati 
d'objets fondamentaux - i 
pour les physiciens de n. 

el; ^ den configus 
mes pour les Greci particules élémentsir< 

Lea 92 éléments de Kendelejeff nirent °xr-i<l'jés à partir 
de trois particules, l'électron, 1<Î proton et le neutron ; celles-ci ainsi 
que l«s photons, responsables de transferts d'énergie et d'impulsion entre 
les atomes, étaient tes objets primordiaux des physiciens de l'anr.ée t9H. 

La découverte pos;ér 
1935 pour expliquer les interaction; 
des kûons et surtout des hypërons vt 
réalité sous-jaceite des objets iom'i 

eure des pions,postulés par Yukawa en 
nucléaires, du muon et des neuLrinos 

des résonances semblait montrer que la 
mentaux est peut-être trop riche pour 

être réduite â un petit nombre d'entités. 

Aujourd'hui nous savons que les particules élémentaires 
se classifient en bosons (particules à s;>in entier et qui obéissent â la 
statistique de Bose—Einstein) et fermions (particules à spin deoi-entier 
et qui obéissent au principe de Pauli). 

Les bosons sont indiqués dar-.s la table I-
T A B L E I 
B O S O N S 

intervient 
dans les 

interactions 
Spîn Charge Existence 

Graviton (ra«0) sravitationnelles 2 0 pas de detect.exp. Graviton (ra«0) 2 0 pas de detect.exp. 

Hé sons leptiques 
M+,H~,2 failles 1 + , - , 0 pas de dftoct .exi. 

Photon (m=0) 
y électromagnétiques 1 0 

Photon (m=0) 
y 1 0 

HÉEons hadronioues fortes 0,1,2 

P) '• 

+ ,-,Q 
pions, kaons,é ta,p 
K*. etc (voir tabl Particle Data Grbu 

0,1,2 

P) '• 

+ ,-,Q 



Les fermions sont indiqués dans là table I I . 

T A S L r. I I 

F E R__M__Ï 0 N S 

subissent des i n t e r a c t i o n s Spin 

Uptons f a ib l e s e t 
électromagnétiques 

1/2 

Fermions hadroniques 

nue Icons, hypérons. 

f a i b l e s 
électromaftné t iques 

e t f o r t e s 

. 1/2, 3 / 2 , , . . 4 . . ,; 

On es sa ie aujourd 'hui de d é c r i r e l e s fermions e t l e s .bosons . . . _, 

hadroniques comme des systèmes cemposés de 3 ob je t s fondamentaux ou 3 t r i p l e t s 

(ou 3 quadrupl&ts) d ' o b j e t s fondamentaux - l è s quarks1 Le» l e t t o n s n ' on t pas 

encore é t é incorporés d'une manière s a t i s f a i s a n t e dans de t'élit nod&les e t 

l ' e x i s t e n c e du muon e t de son neu t r ino n ' e s t pas comprise théoriquement. En 

dehors du monde des quarks i l y au ra i t non seulemei t l e s l ëp tôns , mais auss i 

les photons (souvenons-nous de l a t e n t a t i v e de De Broglie d« l e s cons idé re r 

cor=e un systèr Tieutrino-antineutrinoV, l e s mésons l e p t i q u e s , s ' i l s e x i s t e n t , 
K , t' . Z. les g rav i tons , s ' i l s e x i s t a n t . I l - n ' e s t pas; impossible" -que <I T aùtrës 

l ep tons , farouches, à grande masse p e u t - ê t r e , ayant echaypf j u s q u ' i c i ' â ' ; ' ' " 

l ' obse rva t ion soient découverts e t q u ' a l o r s une c e r t a i n e ' l o i dé" symétrie '* -''•' 

permette de les comprendre a i n s i que le.muon et son neu t r ino . ; 

Peut -^ t re ne doi t -on pas chercher l a s i m p l i c i t é dans des 

obje ts fondamentaux qu i , s ' i l s exercent des i n t e r a c t i o n s f o r t e s e n t r e eux, 

donnent naissance à des s t r u c t u r e s qui peavent-de.-aaniêre ' équivalente" S t r c - r 

considérées à l eur tour coax des o b j e t s fondamentaux. Ainsi l e pion de 

Yukawa é c a î t une p a r t i c u l e éléroentaire - eaise-ou-absoTbEe-pax*Tn» mrt lÉoir" -~ ; 

se transformant en un au t re nucléon : . - — -

) 

Le pi«n de Yang e t Fenni, qui l u i e s t ' c l a ï rèmèht ' équ iva len t , J i t a i t jd ' auxre i 

pa r t conçu emme un système composé d'une pa i re nucléon-ant inuclÊba j • ", i 

primordiaux : '.' ' • ; 

OR devra pei .v-être chercher une s i m p l i c i t é p lus profonde âan i l a c l a s s i f i c a t i o n 

des i n t e r a c t i o n s foin jraentâles indiquées dans l a t a b l e III^" 
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T A B L E III 

I N T E R A C I I 0 N 5 

Qui l e s subi t Source 
Constante 

Carac té r i s t ique 
Gravi ta t ion tou tes lea 

p a r t i c u l e s : la 
matiBre e t 
l ' é n e r g i e 

censeur éne rg i e -
iarpulsion G \ - = O.2xl0" ; ' 2 

g r a v e z 

tou tes lea 
p a r t i c u l e s : la 
matiBre e t 
l ' é n e r g i e 

censeur éne rg i e -
iarpulsion G \ - = O.2xl0" ; ' 2 

g r a v e z 

f a i b l e s Loptons e t 
hadrons 

courantd 
f a ib l e s 

Loptons e t 
hadrons 

courantd 
f a ib l e s 

Electromagnétiques P a r t i c u l e s 
douées d 'un 
moment m i l t i -

'' m l ' a i r e charge 
ou raoïïcnt 
magnétique 

courant e l e c t r o ­
ns gné t ique 

a = ÂiîFc = T37 " L° 

P a r t i c u l e s 
douées d 'un 
moment m i l t i -

'' m l ' a i r e charge 
ou raoïïcnt 
magnétique 

courant e l e c t r o ­
ns gné t ique 

a = ÂiîFc = T37 " L° 

For tes matière • ; > 
hadronique 

2 

4uRc ~ 1 5 

;: B - Cet expoaS eat.côneacrfi à une i n t roduc t i on a l 'É tude des i n t e r a c t i o n s 

; ; ; faïblei è t : d o i t s e r v i r de p repara t ion aux exposés p o s t é r i e u r s ayant pour ' 

f ;Dut\l* modèle des champs de jaugé u n i f i é s - t e n t a t i v e de de sc r i p t i on des 

* . in te rac t ions f a i b l e s par une tne'orie,'qu'antique de,.'champs de j auges , renormal ï -

: ;»«ble, contenant.en',mêrne^ temps, là t héo r i e des i n t e r a c t i o n s é lec t romagnét iques . 

i y '":!i C*t te ' t tmi ' f ic« t i6n ; d«» ' ' in te tac t îor i8 : f a i b l e s e t é lec t romagnét i r 

- quea - i n i t i f e par'.-VeinbergV1**' SaTani1-- sera' 'un evStwnenc important , s i l e -

;

! t h é o r i e ea t défini t ivemeii t confirmée par l 'e ipëir îer ice. 

; ' - ;i -, , L 'un i f i ca t ion , de^çoiiceptB que l ' on ; j u g e a i t Indépendants , l a 

i synthèse de thSori ïs apparemment saris, f.ucun . rapport mutuel , répond .3. l ' i d é a l . 

) d 'unitÉ'dv'a physiciens.,!". - • • • • ' , ;-'h-.r,-' • .,'.'-*„,•,-. 

,\ . h ' - : : , ~ . Voici une, esquisse des 'g rands moments dans l ' h i s t o i r e de la 

physique, quand ces u n i f i c a t i o n s ont étS conçues : ... - . - , , . . . - • ' ; 



NEWTON La f o r c e e x e r c é e s u r u n e p i e r r e p a r l a T e r r e 

U * 8 t O e s t i d e n t i q u e 1 - l a - f o r c e e n t r e - l a - T e r r e - e t - l a - -— —-• 

Lune : u n i v e r s a l i t é d e l a f o r c e g r a v i t a t i o n n e l l e . . 

MAXWELL Le champ É l e c t r i q u e e t l e champ m a g n é t i q u e s o n t . . . . . 

( 1 3 5 5 ) p a r c l e s d u cha icp é l e o t r o i u g n ë t i q v e , ; c o u p l é AUX 

c o û t a n t s e t d e n s i t é s d é ' c h a r g e . T. ; 

Les ondes de lumiére-aont-des-ondes électromagnë-» • -—•• 

tiques de certaines frequences.-L'optique est un " 

chapitre de l'électrodyuatniqûe. >'• ' > 

EINSTEHJ, L0REKT2, L'espace et le temps sont des BOUS-jsBpaçe*,̂ de .,. , , 

POINCÀRE l 'espace de Minkowski. Impulsion et~ Energie,' 

( 1 9 0 5 ) courant e t densité de charge eônt; des composantes 

d'un seul objet e t se transforment'les une dans 

Les autres sous l ' ac t ion du groupe ;de Lorentz. 

Matière e t énergie sont équivalentes. 

EINSTEIN Le champ de gravitat ion esc lé tenseur de -

( 1 9 1 5 ) métrique d'un espace de Riemann à quatre 

dimensions. Théorie r e l a t i v i s t e de la gravi­

ta t ion. 

DE BROCLIE La dual i té onde-corpuecule est vraie non . '. r j . 

( 1 9 2 4 ) seulement pour la lumière, nais aussi p o u r ' . ; > 

toute forme J*énergie ou de matière* . . . , 

SCHRODINCER, Naissance de la mécanique quantique. Tous l e s ' 1 ' •"* "•'-'-

HEISENBERG systèmes, atoniques doivent être, décri t» par les ' 

vecteurs d ' é t a t qui obéisBént â l ' équat ion ,de ." -,-•:-•»;;• ( 1 9 2 5 ) 

systèmes, atoniques doivent être, décri t» par les ' 

vecteurs d ' é t a t qui obéisBént â l ' équat ion ,de ." -,-•:-•»;;• 

Schrôdinger. • , •. •.-'••.-:•,*•••. :\ 'j-':'.';:. '-'•'••;; 

PAULI Le principe d'exclusion-et l 'expl icat ion de la 

( 1 9 2 5 , 1 9 4 0 ) structure électronique dès atomes. ' ' : ^ • 

Stat is t ique -*• npin. • •:-":•.• >• .-; ; .^;•-, ,?, -;•• j 

HEISENBERG, FAULT, Naissance de la théorie quantique des.champs. 

( 1 9 2 S ) D1RAC 

Naissance de la théorie quantique des.champs. 

FKRHI ( 1 9 3 4 ) Théorie des interactions fa ib les . ]• 



T A I L E IV ( su i t e ) 

KEIKB'-RG, trALAM. Le reodèie des champs de jauge un i f i é s - u n i f i c a t i o n 

' t HOOFT, dus interactions faibles et électromagnétiques et 
(1967, 1971) sa renormalisation. 

*[ HPOFT, FAD'EV, Quantification des champs de jaugn et régularisation 

dimensioni.elle. POPOV, VELTMAS, 

Quantification des champs de jaugn et régularisation 

dimensioni.elle. 
3.W. LEE, BOLLINI, 

CIAMSIAGI et a l . 
•. • - . •••r-J \ 

(1067, I-.-72, 197i) 1 
C - La notion de propagation des interactions physiques j^ar un chsnp, 
héritage de Maxwell et Lorentz, s'est édifiée en théorie relativiste de 
champ avec et «prës Einstein. 1^ construction de ia théorie relativiste 
de la gravitation - peu^j-être le plus bel activement de la physique théorique * 
a élevé au maximum le pouvoir de description et d'unification du concept de 
champ, le chaiip gravitationnel étant identifié avec le tenseur-de? la; citrique 
d'un espace-tençs Riesa-nien. 

A chaque particule, les physiciens ont ensuite appris à aisocier 
un champ. Le très grand nombre des particules éléiientairet-d^'noa^'purs^:-;;:. 
a découragé grand nombre de physiciens dans la croyance du pouvoir': unificateur 
de la théorie de« champs. Les efforts d'Einstein pour découvrir;• ufle_'• cfeSôrï*"1 

unitaire du champ de gravitation et du champ électromagnétique paraissaient 
â beaucoup d'entre eux, voués à l'échec Étant donné la diversité d'autres" 
champs à être pris P.P. consideration. ""' 

C'est dans le domaine des interactions fortes que la thOrie J 
des champs n'a pas pu réussir, jusqu'à présent, • :.;•;>'. 'V'-'v.!.'''-.••-'';!-li- ï 

Le? efforts actuels dans lepourMjite d'une théorie unitaire .. :.- -, 
des interac.ions électromagnétiques et des interactions faiblet ? conbe. £ 
l'ont pro'-.̂ sé Weinberg, Salam et Ward - constituent une victoire pour la...'; . !• 
philosornie de la théorie des champs. Ils peuvent ouvrir Ta voie_ a\"uiié Mr: V^ '• 
compréhension globale et plue approfondi^ . la nature.-des forcés ^'interaction 
et dej par*â-~ules élémentaires, les interactions fartes comprises.> .: v/JJU'-'; ; ; 

Dans ce qui suit, le precier chapitre sera un erposi de» interactions 
électronagnériques de chaeps complexes, scalaire, vectoriel et spinorieï." ""•" 
Or. y contrera que ie champ électromagnétique p«ut Être regard? censé un 
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champ de jau(,e - un champ in t rodu i t dans la t \ éo r i« pour q'je c e l l e - c i uoii 

"nvnr înnf r 

eappee. Ce \*L:.-z ne conduit à la cons t ruc t ion précise d e intpr-ic t ions 

é ,lectroœagnStIqv">, 

Le deuxième chapi t re c r ' lc3 chaaps de Ynng-Mills ^t 1 .i 

th6orie des champC invar ian t* pa. rapport au groupe des t ransformat ion. <i? 

jauge non-abel iennes . On y montre Également la cons t ruc t ion , grâce à ce 

pr inc ipe d 1 i r >arlance, d*aa courants d ' i s o s p i n connûrvda qui Bout, .UBUCI«H 

aux champs de jauge . 

Les cha, i r a s s u i v a n t s , par conr.rc. ferun,,. un résumC* l . i e t o r i v l f i 

du développement de )o t héo r i e des i n t e r a c t i o n s f a i b l e s , cons t ru i t e 

i n i t i a l emen t peur d é c r i r e lea processus de dés in tégre r ion bêr.a e t par 

analogie avec l 'é lectradynoraique. On y. " e r r a la découverte e x t r a i t e , pas 

à p a s , de l ' expé r i ence ,de p r inc ipes e t r èg le s - e t de v io l a t i on de pr inc ipes 

cotaae ceux de. 1.".invariance par rappor t â l a r é f l ex ion s p a t i a l e e t par 

rapport a 1 A conjugaison de charge - j u squ ' à la formulation du lagrang.^n 

e f f e c t i f courant -*. courant e t à l 'É tude de l a s t r u c t u r e des courants 

f a ib l e s . . , ,__*;' i,^'. _ 

Le « r i t e de Weinberg e t de Salam - Hard fut de montrer q u . I 

e a t pos s ib l e de ebhs t rû i . ' ë c e t t e thÊor ië : à : p a r c i r de ' " i n t r o d u c t i o n de enamps 

de jauge e t dé l a ' n b t i o n ' d e ^ n i p t u r e spontanée de' l a symétr ie . Ce se r ; l e but 

des èxpoaés p o s t é r i e u r s de MM. Cabbibo e t I l iopoulc-s. 



C H A P I T K E I , . , r 

LE CPAHP EtnCTRfMAGHETiqUE ' . 

COMME OS CHAMP DE JAUGE 

Le but de ce chap i t r e e s t de montrer que l e p o s t u l a t d ' i nva r i ance 

de jauge locale (ou de deuxième espèce) des theor i e s de : chaétpj décr i t» ; pa r des 

fonctions complexes (opéra teurs non henni t iques î conduit à iHntroductieri*" ' " ; 

c'un champ v e c t n r ; e ] sans masse - un champ de jauge - qui "est l e chawp 

électromagnétique. Ce p r inc ipe pernec donc l a cons t ruc t ion de l'a forme ' ' -

exacte du lagrangien d ' i n t e r a c t i o n minimale en t r e l e champ électromagnétique 

et le chanp complexe cons idéré . Les termes de P a u l i , importants- 'pour 1* - ' < ' - . ( - - > 

d iscussion de particulc-s sans charjjB mais douées d 'un aoneht naghStique,- - - 1 ' 

d lcoulcnt de ce prin-.ïpe e t du f a i t qu'on peut add i t ionner au lagracgien -;"~;~-

une divergence de la forme f9 W^"uv^ ^ * K o u s n e l e S d i s c u t * * 0 . n . 8 . P * a ^ * D E 

ce c h a p i t r e . CE sont des termes phénoménologiques e t l a d e s c r i p t i o n de • 

moments anormaux doi t r é s u l t e r de l a p r i s e en cons idé ra t ion d ' a u t r e s . 

I - THEORIE DU CIIAHP SCALAIRE INVARIANTE BE JA11GE : ELKCIROUYKAMIQUE SCALAIRE 

Î.Ê lagrangien d'un chanp s c a l a i r e conplexe . l ib re de tuisie • cat , 

donne par : _ . ., - • 

(1.1) L o = 3 y / 3 u>- m V f 

Ce lagrangien e s t inva r i an t pa r rappor t S une t ransformation de jauge de 

(1.2) j * f x ) - e i Q <P(X) 

I ç(x) -• e i a ¥>+(x) 

où a e s t une cons t an t e . , 

Par cont re pour une t r a n s f o m a r i o n de jauge loca le (a e s t remplacée pa r une 

fonction ponc tue l l e , eA(x), e é t an t une cons tante) ou t r a . - fo rma t ion de j a u g e ' \ 

de deuxième espèce, le lagrangien L n ' e s t pas i n v a r i a n t . En e f f e t la 

t ransformation :..: '. ,•'.'(^ 

(1.3) U ( x ) + e i e A ( x > V(x) -:\7^''-.' 
( v > ( t ) ^ e v (x) vv 



•sr le lagratigien eocple t , inx-ariant de jauge , pour un c h n p s c a l a i r e complexe ; 

i d é r r i t l e système cons i t u t ê par ce charg» ec l e champ élecLroaagnÉtique 

qui est l e champ de jauge) «n i n t e r a c t i o n n u t u e l i e . 

En e f f e t , l ' express ion e x p l i c i t e de L e s t donnée par ; 

. , . ^ L - L + L + L„. 

s - I F U V > 
• AU ]v3 ip +-V +3 V>\ + e C*UA )ip4«P 

L est le lagrangien d ' i n t e r a c t i o n Électromagnétique d'un coamp s c a l a i r e . 

On obt ien t l e s équations du mouvement ( I , i 6 ) 

(T,16) ZVZ,p * a2«) + ie \AV5 V * 8 ('"«Ml - e 2 (A"A >tp » 0 

; equat i . ; de Euler-Lagrange : 

(1.17) 3 y F , , U = j U 

avec j u = ie {<p+9)J«>-<p3 lV'f - 2e2A tV"(P 

((ui es": le courant électromagnétique du champ ip) S p a r t i r des equat ions : 

aU 3L 3L •= 0 
d 3 { 3 M A U ) " W " . - - • . -;• 

On pourra à présent mettre ce courant sous l a forme su ivante : •'."','" 

(1.18) j y(iO •= ie { » V « - (A>>M 

P" étant connue par ia forcule C - .10) . 

L'expression (1,18) montre que le courant j (x) e s t un i nva r i an t de . j auge . 

î-es équations pour p s ' é c r i r o n t par conséquent i - • ' • 

(1,19) DUD y * c

2 0 = 0 " • ' ; - ' , 

c ' e s t - à - d i r e : 

0 M + ie AU) (3 + i ( A ) « + n (i » 0 

I l v ien t donc en conclusion : ' •• . • ' ' . 

(1,20) j ^ d ) - i e «>Vi|>-<l> <D"CJ|* 

DUD V + ra *P " 0 



Considérons maintenant î'opératiur : 

(1,25) L, » 
: ) 

qui est la representation de la troicièae composante du »o«ent. angulaire 

dans un espace à 3 dimensions. 

Sous rappelons 

•32 - f » > " ) 
\ f> 0 0 / 

/ 0 - i 0 \ ) / 1 0 0 \ 
<eA) j i 0 0 ] - ~ CeÀ)2 f 0 I 0 1 + 

\ 0 0 0 / . -•' \ 0 0 0 / 

1 0 0 
0 1 0 
C O I 

V " °) 
\ 0 0 0 / 

/ 0 0 0 \ 
= ( 0 0 0 J 

Vo o 1 / 
os(eA) L_ - i sia(eA)L^ • 

cos(eA) - sin(eA) 
sin(eA) cos(eA) 

: ) 
C'est pourquoi on pourra écrire, la transform.'. de jauge aou» la.-_£ori 
(1,28) : " • 

1 *' x) „ t~> «A(»)L 3 « i l 
( I 28) 

r <*> - A " - 3PA(H) 

et le lagrangien invariant de jauge : 

(1,29) L - - I r " v 7 m + i (D3"0.* 1 2 .*. 
U 3 " 



(1,351 f * * * D ^^ÎV 

i riu courant e s t 

• f | (D 3

U «* l j • - ** L,. ( D 3 V 

équations du mouvement sont 

b) ( D 3 " D u l • m') 

! : , 3 7) a) donne : 

,38) av2

 + ro2M>2 + « A ^ ^ + e B ^ A ^ j ) - e V i ^ p ^ - I 

ILI - THEORIE D'UN CHAHP VECTORIEL DE PROCA INVARIANTE D~E JAUGE 

. UV _ V U 

satisfaisant à l'équation de Proca : 

Le lagrangien es t donné par l ' e x p r e s s i o n [ I , » l ) suivante 

Considérons la cransformation (1,42) 

(1,42) U"(») - e

i d V < " > •"(») 

A"<») -A"(x) - ftM 

(1,43) G " V - D V - D V 
o u D u - 3 V • i e AV 

et par conséquent : 

G 1 " - ( 3 V * i e ,?) «" - [3* • i e A")..»V -

(1,44) G»" - fj» * ie (AV - A V > 



On obtient par conséquent : 

11.49) 3, F u u - j"<»> 

^n conclusion, on a done 

; £>") + e 2 { ( A V * - » V * ) » V + (AV-AV •„*} 

(I,SO) 
i»C.>-l.{tf"V 

cxoressi.on (1,50; e s t expl ic i tement i nva r i an t e de jauge 

liquation de Prooa es t à présent : 

IV - THEORIE D'UN CHAMP DE PROCA ISOVECTEUK 1HVAKIAMTE DE JAUGE 

Considérons à présent un t r i p l e t de champs de Proca r é e l s ; 

(1,52) {*/<*) 1 - [ */(x) 1 = * (x) 

Nous const ru isons l e champ v e c t o r i e l complexe $ (x) avec l e s deux p remiè re ! 

composantes du champ Ç ; 

i^/M-i^C*)) 

j« u +« - l- ( V « - i *2

P(x)) 

IOUS voulons que ; 

Alors , C=SÏ_ pour un chanrp scalairv i sovec teur 

/."(x) » A"(X) - a" AC») 



,»„. i .v<^r*<0r>*-v- , »i , , >- 0 

D G u v • m \ - 0 

En conclusion 

a v r u v - j " 

avec j (x) = - T ^ W . - * » * ^ » } . 

En effet nous savons grâce à l ' e x p r e s s i o n (1,50) que l e courant j (x) e a t ; 

Mais d ' au t r e r - - t de l ' exp re s s ion (1,65) on t i r f 

•-• { s f i w s - g r \ } . . . . . . . . . , , . , * .„ , , , ,_ 
Nous constatons par conséquent: que 1* a ob t i en t la même expression poux * ; ; , . 

Le courant, j (x) que c e l l e qu'en ob t înn t grâce aux fa rue s (1,50) ou (1,65) 

V ~ THEORIE DE DIRAC HtVAKlAHTE DE JAUGE . . :. ,. ;-, " ' ; ' 

Le I r j r ang ien inva r i an t de jauge e s t donné par l ' e x p r e s s i o n : ' 

(1,66) L - ' i r ^ F ^ + ï i ! ^ - » ! * • " -

avec D u = 5 y 4 i c AP 



C H A P I T R E TI 

LE CHAHP JE JAOGE 

YANC-MILLS 

Dana ce rhnpi t re on esquisse ra le pr inc ipe d ' invariance, de jauge de 

YANG-HILLS-le facteur u. phase con t ien t non seulement des fonctions de point de 

l ' e space mais aussi des opéra teurs Qui en général ne coonutent p a s . On i n t r o d u i t 

a ins i un charan v e c t o r i e l i sovecteur de masse n u l l e e t oo> ob t i en t l a forme 

préc ise de l ' i n t e r a c t i o n en t re ce champ e t l e s c o u r a n t s ' d ' i s o s p i n . 

I - THEORIE D'UN CHAMP SFIKORIEL ISOSI JEUR DTOARLANTE DE JAUGE DE YAKC-WILLS 

Considérons un spîneur de 1'espace ce SU(2) 

( 1 1 , 0 

I(J peut ê t r e par example le doublet proton-neutron : 

ou le doublet é l ec t ron -neu t r ino : 

doublet p 

r ino : 

>-C) 
Nous exigeons m*e î  e t \j> a i e n t Bénie masse. 

Alors le lagrangien l i b r e 

(11,2) L - ? . ( i y \ - m* i •"I u 

pourra s é c r i r e : 

Ci l ,3) L

0 " ? &YU\ " n) # 

e t e s t inva r i an t par la t r ans fo rnâ t ion ; 

-« T 

*<x) + e ' 7 iKx) 

?(x) + ?(x) e" i a*7 



Kous obtenons a lo r s pour l ' express ion ( I I , i l ) 

( I I , " ^ 1 3 ) ^ - V w - ( i . i « ! t . | ) s u * * i j s /
s . | ( i * Î 8 Î . | ) * • • ^ ( ? n - . | ) ( î . | ) » _ 

Nous négl igerons le dern ier te rne du second o r d r e , d»n« l ' e x p » t i i o n 

•11,13) ez nous voudrions ob t en i r ce fa isane une equat ion du type ! 

j^-vcx) - ^i* i5Ît.f^r« 
Remarquons d aut re pari que 

On obt ien t par cor^Squent pour (11,13) 

I l est c l a i r que !.. t ransformation (11,12) pour r s /^ ne peut ê t r e e r a c t e \S& 

K:Z un isovecteur e t donc devra se t r a n s f o r n e r , par r o t a t i o n dans l ' e space de 

l ' i s o s p m , comme t e l . —..-.'. .:,• -•.;•.:.' 

Posons : . - . - . ; . . 

et nous obtenons à présent pour (11 ,13) , en négl igeant l e s termes du seccirl ordre i 

Remarquons que s i nous posons ; . " " ' • , :' 

(11,19) 

, ab , ba 
£ k - - f k 

le tense comprenant l e commutateur dans ( I I , IB ) deviendra 

(ILOT - V J / A V ' T ' - " ' ' . ' ' ' . ^ ^ ; :..:•, . 

1.'expression (11,20) annulera exactement 1& dern ie r terme ào-@$ "J '̂ÔO' 

dans ( I I , 16; . - t s roe f f i c lpn t s t sont l e s constantes de s t r u c t u r e de i ' a l g è b r e 

c^s T et dans le cas p a r t i c u l i e r de SU{2) noue avons : '•. 

ai.m I f . T l - i £ . b c ^ - ; • 

de s o r t e que en iden t i f i an t (11,19) e t (11,21) " *' 

(11.22) f a b = e . . '' ' " e : : 

c abc 

NOUE avons 

(11.23) L - 5 ( i r a J ^ - m)* * L 

^ 



Nous avons : 

; i - THEORIE D'US CHAMP SCALAIRE ISOVECTEUR IKVARIANTE DE JAUGE DE TAHC-MILLS 

Considérons l ' i sovec t eu r de champ s c a l a i r e $(x) envisagé en (1,22) 

• <*> - I K>2fa) j 

pour lequel îe lagrangien libre s'écrit 

:e puisque $ est réel ère équivalente puisque 4 «et réel par construction 

(11,29 bis) 

Au lieu de la crans format: ion de jauge électromngnÊtique, ÎT-finitÉsiwfile (11,24) 

« < x ) - ( l - ïe"A(x)L?j*(xî • •- .— -.••--•• ^ , 

considérons la suivante : 

(11,30) «„(«) - I 6 a b * i s C V ^ d j f ^ W 

nce : 

Dans l'espace à 3 dineoeiona, i l vient : 

(11,3.) V . b - ^ a k b .. * . * 1 . ! - 2 ^ . 

. donc pour (11,30) •-

(11,32) I $<x) - J ' ( i ) - $(x) - gîUÏA«{30 

Sous constatons que 

Introduisons un champ de jauge et définissons-la dérivée coveriante ! 

(11,34) @X-(f^ + *<K^)\™ 



et d ' après les r èg le s de coaaraitation on aura par conséquent d a m (11,42) *t 

grSce à Cil,43) : - . . - " ' ; '• '. v "'-. :. 

I I , "2) s ' é c r i t a l o r s 

e oui donne ec conclusion ; 

c qo"on vou la i t en (11 ,38) . 

n en déduit clairement le lagrangien invar iant de jauge : 

l i : , 4 5 ) 
1 - - t#w feâ^-l-2"-^ 

cornue vu précédemment. 

Les é q u a t i o n s du nouvenentT 1 s o n t r ' '" '"• 

d 'où on t i r e • .- ' - . . • ' _-

Posons 

( I I . 4 9 a ) J: • - i. ic^a<v^r • '^ws^id i-
ou de manière Équivalente ' - . ' 



L - I c a- w r"t> (x> (* r s <*>> 

2 ' ' 

La découverte d ' a w r e s ^ a r t i c u l é e et d ' au t r e s r éac t ions f a ib l e s a 

.induit vers 19i9 à la conclusion «\.f COB f a c t i o n s pouvaient Êt re déc r i t e» 

.IT un laprungicn s imi l a i r e au lu -insien (111,8) e t que l e s constantes de 

ou^lage G c pour la dés in tégra t ion 6 du neutron 

(111,9) n ~ p • e • V e 

pour la àû: ̂ in tégra t ion du inuoti 

( U ' . I O ) ïï * \ * ' * \ 
:sr ' .ure du Enion par 1 

cm,in i r . P * o * vv 

ent tou tes , e n p r „ i s „ , r r . „ f 

(111,121 G S G S G 
Va - -- --'.-

:.a table annexe, duc â L^e e t Wu, donne une l i s t e des .réactions f a i b l e s . 

Er. 1956 oc a découvert que les r éac t ions f a i b l e s v i o l a i e n t l a p a r i t é e t Ta 

conjugaison de charge. •'::. (

 _ 1 "• C ?. î î 

De nos jours tou tes ces réac t ions aont d é c r i t e s par un lagrangien. 

e f f e r t i f ae la fores suivante (pour des t rans fe r t s" d ' impulsion' i ï "3 2"faC-vV*: 

Ï Î Î I .13) L = -^- { J U (x ) J y (x ) f \_' ••'•••'•.>;.tit: 

où J (x' es t un courant qui change l a charge, donnée pa r :. ' - - . - ' " -

d i i . K ) j u ( x > - e M <x) + hM{x> ""-•• ' ]-

Le courant t (x) est le courant leptanique : 



T A B L E I I I 

SEMILF.PTOHIQUES AVEC CRAKGEHENT D'ETRAKGETE AS - 1 

« f f o t t t W , • (»-^O.Û5,.,0-' 

(P-W.J?,,) . , i . 3 t 0 . 2 ) . 1 ( , - 3 
<l *n+7t > 

<P-Ti+i: ) 

y (interdites par la (f -*n*e *v?) 

• v règi£ ÛQ .. as} 

(y-^.*/^,) _. l o -4 

I 



-34-

(iii,;•) h o" <rf - v^oo - A ^ C S ) , 

(111,16) hj" 0 0 - ^" ( x ) - A ^ C x ) , 

ti L(x) esc associé aux reactions dans lesquelles les hadrons ne changent 

pas d'?trangeté tandis que h T (x) est associe à celles ou les hadrons changent 

d'étrangeté 

? est l'angle de CaoL-bo. 6 - 0,22. 

II - PROPRIETES DU LAGRAKGIE» FAIBLE POUR QPiJIS SPI1.T.UHS 

Considérons les cinq covar :an ts de D i r a t , h c r a i t i q u e s çusnd lea 

deux chanps ^. et $> coïncident : 

a) s . Ï J I X W J W s* - • j tx)* ;x) 

») ï" •*,Y l '* 2 V"* - ? 2 ' x ) V \ ( l ) 
C m . 1 9 ) c) T u u . Ç l W o % 2 ( x ) i W . î j W ^ M y . f l ï 1 ; , ^ . . 

d) A" - t j t x j A ^ c » ) AU* -ï2(x)-r1,YS*;W 
e) P « i ï ^ x l A j ' . ! ) P* - i * 2 ( x ) Y 5 * , ( x ) 

et prenons le lagranfiien suivant poux l ' i n t e r a c t i o n en t re quat re leptons 

Vj<x). t , ( x ) , » 3 ( x ) , J 4 ( x ) : 

(111,20) L • l î C Ç j d J f l ^ j C x ) ] C Ï j M a ^ C i C ^ ^ M ] : -t h .C. 

- : [ * , ( x ) * 2 ( x ) ] [ ^ ( x ) CC s *C ' s r
5 }( . 4 (x ) J + , - , , : ; 

• L ï j C x ^ j t x ) : r* 3(x)Y l l(c v-.c' ïi'
5)i|. 4(s)] • 

» j L Ï ^ x V ^ d ) : C * 3 ( X ) O U U ( C T + C ' T Y 5 ) I ( , 4 ( X ) J <•. 

» [ « j i x j A ^ j C x ) ] C* 3 (x)Y 1 J Y
5 (C J 1 *C' A Y 5 ) t 4 (x) ] * -- ; 

• S j l x l i Y ^ l x ) ] [ V 3 ( x > i Y S ( C i ) * C ' p Y
5 ) « 4 ( x ) ] : * h . C . 

REFLEXION SPATIALE 

A) L 'opérateur de réf lexion s p a t i a l e donne l i e u i : 

( I I I . 2 1 ) PLP"1 - n s | C * 1 ( x , ) « ) j ( * ,

| ) l . W 3 < j t ( ) ( C j - C ^ Y ^ C X 1 ) ! + 

• LÏ l (« , )Y , 1 * 2 C«*,)J C ^ U ' O Y ^ C t ^ - C ' ^ ^ ' C x ' ) ] +•'• . . ,-.••:,•!• 

* i [ ï 1 ( x , ) 0 1 W t 2 ( i ' y j [ * 3 o - l l u ( C I - C ' T Y 5 ) « 4 ( x ' ) r + - " " • • "" -" 

» [ ï j C x ' j y V l I l j U ' n [ ^ ( x j Y ^ ' t C j - C ^ Y 5 ) ^ ^ ' ) ! ; » . ^ ;, ., 



• r»/' S 'V t * ,V s < V < : V S , V . 

Hais l ' h e m i t i q u e conjugué de la preniëre partie du lagrangien L es donnée par : 

:C* 2 V i [ ï , ( c 5 * - c ' s ' - r 5 ) t 3 3 * .. . .'. 

* ( ( ' j iY 5 * , ] C 5 4 i Y 5 ( C p * - C ' p * Y 5 ) * 3 ] : 

; i l l , 2 ~ ! CL (x.C ;C •) C - 1 - L (X;t-C *;-e*C* *) 
a a • . a a 

OÙ £ . £ , * e 2 e 3 % 

P^ur avoir invariance de L sous C on devrait avoir s i on pose € . • 1. 

t i : i , ? 8 ) c =• c* , c * - C * 
a a a a 

'" ' Kg" erseaent du tenps - , 

Quant 'opérat ion de renversement a Eeraps on s a i t quo s i l e transformé 

de 1 'cleiaent de matrice 

(TU,29.0 <¥ |P . T ' ) | é> •• 

< i : i .2Sb) <* 'F ' ( : ' : 

a lo r s 



-.111.32) >*; « <Tb|TiI 1 (o){ l 2 (o)T" 1 fTa><TdfTÏ 3 (o>(C s ^Y 5 )(» 4 <o)T" l fTc> 

Corme i l r é su l t e de la dé f in i t i on de l ' o p é r a t i o n T î 

?ar conséquent, si K- laprangien esc invar ian t sous l ' a c t i o n de P : 

• n ï ^ o ^ o l p " 1 - V j t o W ^ o ) e t c 

M̂  - •-•n, |â 1(o)V l 2Co)|Ta><Td|^ 3(o)(C s+C^Y 5)if 6Co)|Te' -

= t ( u < P a > » ' P b > ) | c s u ( p c ) U t p d ) * 4 u ( p c ) Y u ( P i ] ) j 

t>r :.n ccnclut ae C.11,32) que : 

C = C C' - C si E - 1 

Ainsi l'invariance par rapport à l'inversion du tenps inplique : 

i e = i - . • . • • 

P> Invariance Ci 

Le théorème CPT " t a b l i t que s i une théo r i e loca le de chaaps e s t 

invar iante par rapport au groupe propre e t orthochrone de Poiûcaré" a l o r s 

e l l e sera sutocatioueofcnt i nva r i an t e par rapport au produi t d ' opé ra t ions CPT, 

nême ci ia t héo r i e n ' e s t pas i n v a r i a n t e pa r rappor t â C, a P ou à T, au S'CP e t c . 

On admet que la théor ie phénoménologique des i n t e r a c t i o n s f a i b l e s 

obéit à ce théorème. 

Rappelons les dé f in i rons des transformés d 'opé ra t eu r s e t de 

vecteurs d ' é t a t dans un espace de H i l b e r t . _- ,_ 

Soie ia> un vecteur d ' é t a t associé â un système pnysique dans un c e r t a i n 

r ë t é r « n t i e l S e ; so i t fi(x) un opérateur dans ce mène r £ f ê r e n t i e l , l e physic ien 

qui prend un au t re r ë f é r e n t i e l S' a t t r i b u e r a au système physique en quest ion :. . 

so i t le aêsie vecteur d ' é t a t ?a- e t des opéra teurs . t ransformés fî '(x) » -, 

s o i t un nouveau vecteur d ' é t a t ]a*>et d=s opéra teurs inchangé* (Hat). Les 

deux a l t e r n a t i v e s - la t ransformation de Heisenberg e t l a t ransformation 

de Schrôdinger - doivent ê t r e équ iva len tes , c 'est-^Tfîire» l e s ' p r o b a b i l i t é s 

• t r a n s i t i o n e r t r e deux é t a t s provoqués par un opérateur doivent Etre l e s 

aérnes dans les d^ux cas : , - . . . . ,̂  . .,. _.; .-

( I I I .v>) | < b | ^ ' | a > | 2 - |<b' |£î |a*>l 



.-hargée p dans un chaisp électromagnétique la valeur absolue de sa charge, de 

son moment magnétique et en général de ses facteurs de forme électromagnétiques 

est égale â ce l l e des grandeurs correspondantes de «on antiparticule d m l e 

r^ëae çhar.p. 

J / 7 . cri 

:"unww "? ost ur. opéreLeur u n i t a i r e et T "^JrK, où 25: e s t u n i t a i r e on peut 

; i : : , i t ' :".' = J / I - I J T % raT1fiwK - <H-1IÎW)* 

puisque <b|n ' , 'a> - <b ' | f i |a'>* - <Kb|w+ BW|Ka>* - <b*(tf~1nH|a 

t 5 c dor.c 

I I I ,47J <b | Ti] a> " <b |Q' Ja> - <b | <W-1«W) * | a> - , : r 

Mais l ' u ^ r a t i o n C, e t donc CP, travsforae un opérateur 'en son conjugue " ' ' 

he:-3iLtique dans l ' espace de P i l b e r t (e reaples : sca la ire ip(it) •+tf> (jt), 

spmeur i!'(x) •* C OC*) où le transposé se r é fè re à l ' e space s p i n o r i e l ) . 

f W - C^-Vg')* - «"'A 

est un opérateur u n i t a i r e e t fi e s t l 'operateur transposé de fi dans 

l ï î f de "dilberr. 

••b n'a> - <b i

,M"1nHM|a> • <b | ( K B S ( « " : ) i ' ) H | a > . . - . . , , . 

- ' b l l A l » ' 1 ) 1 ) * * | . > - <b*|(r i B ! î (H" 1 ) H )* |a*> 

- <a*iK H n{« _ I ) H !b*> - <* '* | ( r fVnr i* |b*> . . , . , : . , . , , . -

i:v i 'opérareur iî es t corjposé du produit d'autres operateurs 1» regie c a t 

( I I I . 56 ) <b i n ! n 2 | 8 > - <«*|(B" 1)*!! 2il 1K*!b*> 

sens ]b> E | a > er appelons M*|a*> *= |â"> 

:ii.»o) «|n 1n î |a>*<;|n 2n 1 |l 



Co^aeni d i s t i n g u e r K de K ? S i K -* IT + T T a l o r s K * H + W 

•*- TT° + TT° -* 71° ''+ TT° ' l ' ' 

Adaeç»ans l ' i nva r i ance CF. Définissons 

. ) IK »> - i (|K°=-CI|K°>) 

b) |K °> - -i- (|K°>-CP|K°>) 

Coccne . , T 

( i n . 5 9 ) CP |K°> - TUK°> OÙ n*n - 1 

S: l'en cho i s i t 1 - I on a done : 

3 ) | K °> . _L ( j K ° > + |K°>> 

Î Ï I1 .60) ^ 

b) |K 7°> - -±- CJK°> - |K°>) 

d'où 

(111,61) -• , • -.. 

b) |K°> = J - ( |K.°> - |K °>) 

Nous voyons que s i S esc l ' o p é r a t e u r d ' é t r a n g e t e : S 

a : - , 6 2 1 S | K S = | K ° > , S | K ° > - - | K ° > . - , • • - . 

•=ndis que JK > ec |K~ > ne sont pas des vec teure propres de S. P«r con t r é ' ""-

a i : . 6 3 ) C P J K J ^ • l * ^ , C P [ R 2 ° > = -|K2°> ' 

mais |K ^ et JK > ne sont pas des v e c t e u r s ' p r o p r é s ' d e ' C P . •'•""-- • ..JA'.T. :,'.'<-."r-.-.'. : Vi-'1. 

Corme les kaons sont p rodu i t s en v e r t u de - réac t ions l ' i n t e r a c t i o n 

t i r t e , ^ui conserve S, un kaon neutre produi t e s t s o i t unK e o i t un K-. Ainsi 

quand un K es t créé i l y a c r é a t i o n d ' un melange de-K. e t ' K - f dans l a . 

proportion de cinquante pour cent de chacun d ' e n t r e eux avec une c e r t a i n e ; ; . 

r e l a t i o n de phase. 

Ce K va se d é s i n t é g r e r . •' ' , ." • "• . • . *_. ,-.,-., 

Si CP se conserve, un é t a t TT + v e s t pa i r par rappor t à CP ; en e f f e t l a 

fonet ien d'onde doi t ê t r e pai re par rappor t 3 un échange des deux pa r t i cu l e* ' 

' s t a t i s t i q u e de Bose) ce qui se r é a l i s e pa r échange des coordonnées e t e n s u i t e ; 

ues charges-Mais c e t t e opérat ion e s t exactement CP. Par cr^séqtfent : 

(111,64) CP|TTV~> - | i r V > ' " ' " : , . 



trouve ; 

x - (0-87*0.02).10 "aec 

K + T *•* +s t - (O.56±0.O5).lO sec 

On peut aussi voir un e f f e t de production d 'un K. qui est 

: hypéron : 

t qui par conséquent ne peu t , par i n t e r a c t i o n fo r ce , donner H PU qu'3 des 

intihyperonï : 

Kêact» ina s i l ' o n p rodu i t des K . c e l a veot d i r e ; V i l y aura ' 

production d 'un mélange 50 X - 50 Z d * K.° e t K_°. Ô r l ë ' l L 0 ' s e s in teg re 

v i t e (T - 10 s e c ) , l e K-° v i t p lus longtewp». 

Donc à une d is tance grande ou ne' ve r ra que d t i l , . H a i s les K ° sont un 

mélange de K e t K . Si on l u i impose une i n t e r a c t i o n for te Le K- pourra bien;, 

sûr créer des hypéron S : .''. ~'!. :•.•;. 

(TÏI.7A) K° + p * A° + H* ' . ' 

Donc le faisceau i n i t i a l K ne peut pas produire des A , l e faisceau f i n a l 

{en at tendant longtemps) pourra c r é e r des A , p u i s q u ' i l cont iendra dea JT* e t 

des ÏÏ . 

Connent change avec l e teicpa un faisceau de kaon» produi t 

i n i t i a l e o e n t A7ec des K .uniquement ! . ; . , ' {;;:....; 

( i r i . 7 5 ) | $«0> - | K ° > - — \\*,°>*'\*9°>i- ^ " : ' ' • * I 1 : ' ' • " • • 
•fï 

Au tenps t nous avons : . •> ,n-<- - ._• i -: •- •; '-.' •...•: ••':'. ? , • " * , » • • • : '•• 

(111,76) | « t ) > . - - i - 1 |K,0> e " i E l C + |K,°i ' r f E 2 t "tV • ""'"'."''"""7 '•'• 

Maintenant pour des p a r t i c u l e s avec p r o b a b i l i t é s de dÉi in tÉgïa t ion p a r f a c o n d e 

A , X^ e t masses rc,, m- a 



b) E2 - m2 - iA2/2 

(IT1.78} : ' H , ( 0 > . - L l i ^ ^ ^ l t . - h c ^ j o > n - i n 2 t c - X 2 t / 2 i 
/f _ 

X |* A_ nous ' ' • JO'IB vu ; m jl m , provient Jo ce que lea i n t e r a c t i o n s fa ib les 

soient d i s t i nc t e ; : pour K. et K- e t donc l e s énergies propres sent d i f f é r e n t e s . 

La p r o b a b i l i t é pour qu'on trouve un K en observant ce faisceau 

à l ' i n s t a n t t e s t donc : 

(in.rt) |<K 0!,O I 2 - | I c - " ! ' . - ^ 2 • i , ; » ! ' . ' 1 ! " 2 ! 2 -

La probabilité pour trouver K° aéra : ~' "" ~ * 

i<?l<Mt>>|2 - | i . " i " l t e - X l t / 2 - I e " i " 2 t «-»2 '« |2 . 

• '(ill. -I }.~''lt+'f*?-. 2.**? r * » ' - ^ ' ) c O y ^ r f 

Si [n ,^ iR, | , ê«c grar par "rapport â A, e t i l y aura-une o s c i l l a t i o n rapide 

r e p r i t 0 . ••'"••'- ' : - ' " ••.-,;:-• ' • • • . . , • • - . ! •• • - • 

Pour t « 0 / i l e a t c l a i r que [ <K° | iji(o) >~ | 2 ' • 1 " ^ v ~ 

. •:$:.•:_.;£:'''.:;; . r . , ,.."Clf^j*f??.H? ~ ° ., .- - . " • ' 

Pour--,;'; •• " ' , v "i" "̂  ffl2 " ° 

on aurait ' :'•'-:' 

v^ ( i-°> 

I 



Mais pour une d ifference KL -nu gr-înde par rapport à X , COB (a. - » , ) t ^urtit 

des v-scillaricins pour t p e t i t , le terme en cos serait p e t i t par rapport aux 

5!i:r , i et on trouver.- it K e t K près de t • 0. 

Le fa ; : qu'on ne voit pas des K près du point de production des K indique 

que m. - », n e P e u C P a s être très grand. Expérimentalement on a trouve nue 

"r-.-njl • ûa • A, 

6.562 
0.87 3 10 MeV s ec . 10 sec 

; 10 * HeV 

: , S 2 " l " ^ ° 7 i 10 MeV 

Considérons l ' équa t ion : 

a i l , 6 3 ) <b l f2 , !3> - <b'|îl |a*>* 

admettons le même état | a>" ] b > . Alors 

1:11.3ù) <a|f i ' |a> "<2'jf! |a '>* 

ou : <a|iV|a> - < a ' | f i + | a , : > 

Dans le cas où 

iî •= H , H* - H 

( I Ï : , 6 5 ) <a|H*|*> - <a ' [H | a '> 

5Î i 'hami l tonien es t invariant 

H' = H 

(III,86) <alHJa> = <a'|HJa'> 

Considérons le cas du kaon K et son antiparticule K . On aura 

(111,67) <K°JHJK D > = <K°JH|K°> 

et donc l e s nasses de K° et K°.sont égale*. 



Avec c e t t e découverte, nous pouvons maintenant lu i d i r e 

de prendre du Co e t de o ê f i n i r la d i r ec t i on du champ "^gnëtique de t e l l e 

façon que les é l e c t r o n s s o r t i r o n t préférablement en Bens opposé (ce la ne 

vaut plue si notre correspondant ;irend de 1 ' a n t i - c o b a l t ) . 

La v i o l a t i o n dc l a p a r i t é wontre que l e Inprnngicn n ' e s t 

plus invar iant par rapport: à l a re f lex ion s p a t i a l e . Les physic iens ont 

donc p r i s camrao Ingrangien pour la dés in t ég ra t ion du Qiîutron ne expression 

de la forme : 

1 I - 5 
'111.9: '-- ~ 1 <* Oc)r.a*n<x)) «^oon^+c'^Y*)^*)) • 

* hermitique conjugue 

la p a r t i e hermitique conjuguée décrivant I t r éac t ion 

I ; 0 2 - Y ; S j ' Y ' r 

uu 

iJï 5 



transferts d'impulsion sont de t'ordre de quelques HcV. 

Î V ^ I - R o : • c ' e ;t-à-dïrc è *0 

. I V . 7 ) c - i ( P e * V - ; = I 

i'Sl en pénéral bonne-

En p'.i-s, ips nucléons ont un cauveoent non r e l a t i v i s t e dans le3 noyaux 

On pt-u; donc prendre la l imite non-re la t iv i s te pour les-amplitudes 

•K f !p(x)^ a n(x):K.*. Û.> aura a ins i : 

h) V l jrf3x-<rKf •p<x>(23n<aî> J H t > - [ |d 3 x<N f j p
+(x>n{x) |N.>=<I> 

f j d ^ N |"p"<ît)Ykn(x)iN.> = 0 
1 ' t * (IV,8) 

c; A ' ld 3 x<rK f !F(î)î î 3 n(x)|Nj> * I L 3 x<R f |p + (x)On(î) l i l ^ = <?> 

| pui sgue y ^ W Â V T V ^ l J j 3 x < N f ' P ' ( X ) Y V " < * > l»j> " 0 
ÏA .<H f |MÏ)n ,n<*>IV * | d 3 « < N J f ( x ) 2 — n(x) |N.> = ^ 

( [d3X N ? ( x ) — - r.(x) |N.> S 0 
1 -' * vT 

*> -u = fd3x<N |p(x)n « ( î H ^ i * •* o 

( ù 'après l e théorème de Wigner-Eekart, étant donaë un opérateur,-

t ensor ie l irréductible T d'ordre X, V étant une de ses composantes, 

L'élément de matrice -TJMJT [ T ' J ' M ' > dans une représentation J ,J e s t 

égale au prodoit du coef f ic ient de CJebsch-Gordan <J'ÀH'p]jK> par une amplitude 

indépendante de M, H' e'. u. , 

"IV,9) <TjHiT. t X î!T-J'K'> —±— < T j | T ( X ) j t " ' > <J*AM'uiJH>-

Par conséqiit-nt, COC=»J pour ces coe f f i c i ents de Cleb^h-Cordan on doit avoir 

M'+u = ", . J ' - J | Ï ' . S J ' + J , l 'élément de netr ice canEÎd€rée es t nul sauf s i 



Agpl-tude de Ferai : AJ=Q, pas de changement de p a r i t é 

Amplitude de Gaootf-Teller : àJ - Q,±l , (O '-h- 0) pas de changement-de p a r i t é 

La t r a n s i t i o n J . ° 0 -+• J H 0 e s t i n t e r d i t e puisque s i cr e s t un opéra teur 

v e c t o r i e l on a : , . . 

(IV,151 U f - J . [ * 1 s J f + J . 

Pour i s o l e r une t r a n s i t i o n de Ferai pure i l fau t regarder une t r a n s i t i o n 

3.=Q •* i «0 (pas de changenent de p a r i t é ) , par exemple : 

( i v . l ô ) 0 U * S 1 4 + e + + -y (0 + 0) 

(seulement i n t e r a c t i o n S e t V) (Ferrai pure) 

Pour é tud ie r une enpl i tude de Gamov-Teller i l f au t regarder raie t r a n s i t i o n 

ÛJ «•' 1 (pas de changement de p a r i t é ) t e l l e que : 

(IV, 17) He 6 - L £

6 + ë" + \ ( J . - 0 •*• J£ - 1) 

(seulensnt T e t A i n t e r a c t i o n ) (Gamov-Teller pure) , 

I l y a naturel lement des t r a n s i t i o n s qui sont un mélange Fenni-Gamow-Teller, 1 

par exemple : , " . - - - " 

a) n •*• p + è" + \» 
(IV, 18) 3 , _ _ • " - . • ' - . _ • • . : . . 

b) H / - H e ^ + e + V e 

Dans l 'approximation permise on a ppse ; 

e-<Pe+ipv>-X - i 

Or -

(IV,19) e l k , X = l (2£+l) i ? 'P p (co3e)3. (kV) 

par conséquent dans c e t t e approximation l e s leptons sont ëmio avec moment 

angula i re o r b i t a l zéro . . . . . ' s 

Donc dans une t r a n s i t i o n Fe ra i (pour l e s i n t e r a c t i o n s S e t , V) 

j ^o . - . - - j f = o - , - - - • ' -\,y 

l e s deux leptons seront émis dans un é t a t s ingu le t t and i s que dans une . 

t r a n s i t i o n Garnow-Tellcr ( i n t e r a c t i o n A e t T) 

----- ÛJ = 0,±1 " 

l e s deux lep tons seront étais 5&r.s un é t a t t r i p l e t . ....I-;-..--=^---=F--"-^-- -:- -7- -----. 



dn _ P (E„, T -E„) dp „ 2 d n d [ . 

Quand on considère ue S *• - 2ïï i6<E,-E.-E -E—)M | s | donnera.un facteur 

[2Tt)~ ce qui explique ie Eacteur r dans dA(p,6). Le facteur V s'élimine 

avec le facteur de nonaalisatien des fonctions d'onde de l ' é l ec tron et du 

„e„,rino : » - ± « ( p J e " 1 ^ | - •• ' • 

IV.20) dA(p .e ) dpdfl^B | S » C | % ) 

où p est 1'impulsion de l ' é l e c t ron , p- c e l l e de l 'ant ineutr ino , B l 'angle 
- v -+2 2 1/2 

ent re p et p , E es t l ' é n e r g i e de l 'Électron, E • (p +m ) , de maise m 

E es t l ' é n e r g i e maximale de 1*Électron qui e s t égale â E(N,)-E<N.), 

la dif ietvr . re ent re les énergies des noyaux f inal e t i n i t i a l . 

'.•<. s quant i tés A, B, C dépendent des constantes d' interact ion 

et des amplitudes de Fermi et de Garoc-v-Teller : 

» A - (!c s !
2 *|cs| 2 *|c v |

2 *|c' v i
2 ) |<i>|2 • ' 

• (|c T |
2*!c'T| 2t|cA |

2*|c-A |
2) |<S>]2 . 

b) B - Re (CSC^ * C ' S C ' T * ) [ < I > ] 2 • ' , ' i 

o c - ( | c v |
2 . | c v i

2 - | c s :
2 - | c s |

2 ) |<i>| 2 -

- ï 0 c T | 2 * | c T | 2 - | c A | 2 - | c A | 2 ) |<î>|2 

Si l 'on intègre sur toutes l e s d irect ions Remission de l ' a n t i -

le terme en C disparaît et on obtient 

dA(p) • V t ^ - A ) 2

 d p ( A + B | B ) 
<2n)* E e . -

et quf: donc ? {p} tend vers p = 0 paraboliquement puisque 

2, „ 2 2 , /2~-*2 /1^Z.2~ • : ; " 
P t ^ j . O P (rn Vma ~ * m *P ' 

et que quand p - 0 l 'expression entre parsnthèse e s t une constance. 



avec E : 

la courbe s ' appe l le le Kurie p l o t . 

( ? $ 

Cette dépendance l inéaire est d'accord avec le terre tn A 

i t . Le terme en B do i t S t re nul. 

B = - 0.02 ï 0.09 (Ferrai) 

--O.007 ± 0.010 

a) Re J C - C / * C' C * * | - 0 , S V " S V 

:ondition indique donc que s i on pose 

C s - o. * L 6 E , C ' g - » * s + i 6 ' s 

' o b s e r v a t i o n : s i m. jt_0 a l o r s 

f2j;2 L 2~ 2 £ •= E + E = i 
oax e u 

CE - E ] » p +m taax e r \ i v 

p =• (E -E ) - m 

on au ra i t pour -Mp) : 

d/.(E) _ 4nA' 

(f7 * I<E^VWI 



int si l 'on observe un» désiptéfiratiog qui ne f a i t intervenir qu'une 

on de Ferais donc t e l l e que un noyau avec J ." 0 se transferee en 

avec J • 0 alors on cura pour le tenue entre parenthèse de la 

(IV,31) t-i-dessus : 

! c v

2 Mc' v !
2 - ! c s |

2 - | c s |
2 

l S , r . , c ' v !
2

+ i c s I
2

+ l c s |
2 c 

prédominance Ferai 

0.14 | 

t igp-dOLiillantê Ê6L V. 

: transi t ion Canow-Teller pure on aura 

^^j^j^-•m 

• * 5 -

et- qui montre que l ' in teract ion dosiaaate £Bt A. 

On peut donc ,-jscr C ? = C ' T - 0 

Les srêrjs indications résultent d'autres réactions t e l l e s que 

flV,3fiï N e 1 9 * F 1 9 * e

+ * v f i • [ (Ferra,:- * Ganow-Telier)' '' ' { . . : . 

Observons quede Laforme du coef f ic ient -r dans l e cas d'une transi t ion Ferrai, 

si on f.-iit C v •= C • Û on aura uniquement i l te rade ion S e t l e rapport'-. ''-; 

- = - 1 Par conséquent le plus grand nombre de paires é lec tron- antîneutrino 



v 2 R . [ C s C ' s * - ^ , C ' v ' i | « I > | 2 » [ C T C l

T * - C A C , / i | < Ô > | 2 ._ 

' ? V ' 3 9 1 f * ' ; I | cJ 2 * |c ' s |
2 » |c v | ^ | c ' v |

2 ] :< i>l 2 n |c I | ^ | c ' I |
z » |c A | 2 * |c ;^ 2 ] j f> i : l 

\e s i p - i e r c o r r e s p o n d a n t à e ~ d a n s c e t o r d r e v e s p e c t i v e a e n t . __• :'••'•: 

L ' e x p é r i e n c e i n d i q u e ; • ' • ' . : 

a ) P Ë + v / c p o u r é m i s s i o n d e c 
c x p 

b> ~ a ~ - - 1 . 0 0 ] i 0 . 0 0 8 

C e s r é s u l t a t s e x i g e r a i e n t : l e s i n t e r a c t i o n s 

S_eç_T : , „ « C ' s - C, . , C , - C T 

pa.- c o n s é q u e n t d a n s l ' i n t e r a c t i o n S e t T p o u r l e s l e p t o n s o n a u r a i t 

" ( p e ' C g ( l * Y 5 ) v ( q ^ ) e t t 

û ( p e ; 3 ( l + V ' V * 9 T ; J 

d o n c o n a u r a i t u n " e t u n v comme o n v e r r a danf l l é ^ c h a p i t r e V . 

o u ï . , A a v e c C ' v - - C v . C ' A - - C A 

" t o c " ' , V ï t 
" . . . : - • • . i $ -

C e t t e e x p é r i e n c e c o n i i r c a . d o n c l a n a t u r e d u n é u r t i n o " - l d e u x c o m p o s a n t e s m a i s •fcr?' 

ne r i x e p a s s o n h é l i c i t é . 

V - LA DISTRIBUTION ANGULAIRE D'ELECTRONS EHIS PAR DES KOYAUX POLARISES 

comme d a n s l ' e x p é r i e n c e : ; . '" :••*•'• • • 

civ..-,n / Co 6 0 - K i 6 0 .7* v ' 
I J - 5 J - 4 « 

e s t u n e p u r e t r a n s i t i o n C a r o w — T e l l e r . La d i s t r i b u t i o n a n g u l a i r e e s t d e l a 

f o r m e : . ! . ; : . 

( I V , 4 2 ) W(6) - 1 » a c o s e , c o s 8 - l y - ; 

- 2 R e | C C - C C' * [ | p 

( I V , 4 3 ) a - ' T T fl % — £ • 

| c T i 2 . | c ' T | 2 * | c 4 |
2 * | c A | 2 z. 

On a o b t e n u 3 •= - 0 . 4 , où ? e s t l a p o l a r i s a t i o n d u n o y a u 



On doit donc «voir 

C ' T - * S - C A - C ' A " ° 

C, - - c., v C 'T " ° 

donc_vRtv (voir chapitre V) 

donc V, , v_ 

Lea deux expârieneea ci"mentionnées - mesuré de la polarisation longitudinale 

dea élect.rone iaS» par des nuyauï: non-polarisés et mesure de la distribution 

angulaire tfe» electrons émia par des noyaux polarisés - indiquent donc 

que l'interaction faible est composée soit des couplages S et T •- i t dea 

interactions a et V. 

Dana un eae It neutrino eft polarise â droite dans l 'autre i l est polarisé 

i gauche. 

Bien que l'étude de La corrélation angulaire êlectron-antineutrino nous 

amine i le cçncluiion que les interactions dominantes sont V et A il serait 

evidetinent «Portant de mesurer l 'hél ici té du neutrino. 

Cela a'Été fait.dans une ingénieuse experience de Goldhaber, Grodiins et 
Sunyar. • - ' . ; ; . ' -

Dane !i réaction : 

;-(6n.-'"''.- u-y 

i l y a capture K d'un électron pae le noyau de Eu .Le noyau de Sm et le 

V sont émis en directions opposées (en négligeant L'inpulsion initiale de 

l 'électron). COMME le eoaent angulaire de l'.é'at initiai:'est J.-1/2 («pin 

de Eu "0, Boe*nt angulaire de l'électron K-l/2) l 'é tat final Sm1 * + \£ 

aura pour notent angulaire J , - 1/2 et donc des deux-étàêâ finale possibles 

1 * 1/2, ,1 - 1/2 

c'est le deiutiaae.quifi.eat.réalisé.; Parjionaëqurint^les^spins de.Sa--• ' et'de 

V sont, en direction bppOBÊa. .-,:,.a -..•", ••- "• ,.;..,- rj-i'î . '- : ^ .._.-;• • •;_ '-:•' 

On a donc : _ . ; . . V" . ' . _ _ 

Cela ruât dire que le noyau Sa *. et-la v ' ont la rogne héliçîté. 

Ensuite le noyau Sta émet Uii-.ràySn y : ' 

V 
t 

d 



itiê=atique es t i c i la suivante 

< ' 

(IV,47) 
P - P * P T 

E* - E + E 
T 

où 

E - t î 2 • H 2 ) 1 ' 2 

Par on5équent : 

(IV,48) 
"V2 î 2 

£ - E*-E - M" - M + £—- - E -
Y 2H 2M 

- m * -A- (p -pT 
2M 

On a enc ore : 

(IV,49) 
*2 -*2 2 « 
p - p » E T - 2p E^cosS 

Ainsi : 

T 2M* H^ 
(IV.50) 

s a. + S5L2*» -SSSi 

absorption résonante nour l e s Y émis de Sn dang la iaSwe1 d irect ion dé' : 

: . l o r . p 2 m p * 2 *É^ 2 -2p*E^ • mouvement du noy.iu Sa . Dans ce cas B • 0 e t < 

f 

•• ' ~ Y . „ . _ , - . • ; . 

c ' e s t - à - d i r - d 'après (IV,48) p* - p + E ï ÛH 

Ces y ont la d i r ec t ion de mouvement de Sn e t le nêné spin puisque le',spin 

de Se es t 0 . Donc l ' h é l t c i t é de Y *era égale à ce l l e .du . Sa e t donc â c e l l e 

du v . i--
e 

On a trouvé une h é l i c i t ë negative pour Y e t donc pour V 

V <Vi, •>••-•*••••• 



,CH A. P. I T R, E V • 

THEORIE DU NEUTRINO A DEUX CCMPOSAHTES 

L 'équa t ion de Dirac pour une p a r t i c u l e l i b r e eac : 

(V,l) a) ( Î Y ^ - D O V C X ) - 0 

ou b) (a.p+Sm)iîi(x) = Ei^tx) ' i ,"- - i ? , E - i - j ^ 

Maintenant oa sait que i 

donc : r ^ - -YVY 2 Y 3 CYV> 5 « Y V - o l 

Par consequent 
5 + •* •*• S 

y a - a = cry 

et l'équation de Dirac (V,l) ci-dessus s'Écrit : 

d'où l'on déduit : 

(V,3) (^'^ ~ ̂ n û ) ^ * ) * EY5<W*> 
((a.p)Y5+Bni)4.(x) - E*(^ î.p)Y5+! 

Si l'on introduit les définitions (V,4> suivantes ; 

(V,4) 

on ob t i en t l e s équations couplées : 

a) (o .p) iL(x) - BOTJJ_(X) - - Eik(x> 
(V,5) L * L 

b) (î .p)if R(i:)*Ew|/ L(x). - B|JR(x) 



On v o i t doac que : 

• pf— v(p) = V,. d é f i n i t un an t ineu t r ino â h é l i c i t é p o s i t i v e 

, ~* , u(p) * u . ( p ) e a t un 'neu t r ino 3 h é ï ^ c i t é negat ive 

Conine en gënëraV j t , _ 

~ ( v T i 5 ) " " ^ - * L + t|»R 

Si l'on choisit la representation dea y qui donne pour Y 

alors on voit que ,, - " 

• • •• f*î 

et donc tf>„ et l|i_ ont chacun deux composantes se je peux Écrire ' J J O ( ! L L ] 

^es deux:éqùations~-:- 7 > \ " : :"~""'"~" ;'"- ",'"• " '?^^'"' '• 

//;.'•" .!• a ) (a-.p-jty^ » ~tyL* •'. •• t n - 0 , • 

• • i _f- : --- ' ' : ' b ) ' ; ( O - p ) ^ . - - -El|l R . 

l a deuxUme se dédui t de laj'preinière e t on ob t ien t / ' 

e s t s o i t une p a r t i c u l e gauche (S hf i l i c î t ë negat ive) s o i t une an t i pa r t ici» le '• 

d ro i t e (hj j l ici te 1 p o s i t i v e ) : , i j 3) cox respond.. 2' l a représentati6nf-=-,CJ du groupe 

de Loreatz^hanMgêne^ fc•••* l à . r é p r l s e n t â t i o n ( o , ^ J . • 

On appe l le souvent l e champ ik (x) â deux composante^ qu i !i 

. s a t i s f a i t à l ' é q u a t i o n (V,17a) un champ de Veyl . Le champ V R " <MV:v d é c T ^ ' " 

i:.«ne p a r t i c u l e d r o i t e e t une a n t i p a r t i c u l e gauche. ''-'''' 

' ', Waturelletuent si-'on consid5re l 'Équat ion pour ifJ, ( x ) , r~r-L 0., 

, e l l e n ' e s t pas inva r i an t e pgr rappor t à la ré f lex ion s p a t i a l e puisque „ 

(o. P)ii( L(x> - -Etl 'Jx) ,-f ( a .p ) P i£p <-ï, K Y " E P uV <-x,x D ) 



te pour ra i t poser 

(V,19) K^(jt) - P * L ( x ' ) . . . ; : ? • L . . I " ' . ' - "•"' ;"-' :-"'" 

e t donc la théorie pour ê t r e invar ian te par rapport au groupe. Je Lorente <pii 

cont ient l ' i n v e r s i o n s p a t i a l e a besoin de V R ( x ) . Une the*or ;e avec ^ i q u e n e n t 

'v, à deux cocposoat.es, n ' e s t pas i nva r i an t e par réf lexion s p a t i a l e . 

On peut aussi é c r i r e : , 

(V.20) PVLCx') - VP^W 

On voie dans ce cas que l ' opé ra t i on d ' i nve r s ion s p a t i a l e transforme une 

p a r t i c u l e en une a n t i p a r t i c u l e . 

Ainsi i l y a deux a l t e r n a t i v e s : ou bien on peut cons t ru i re 

une théor ie avec neutr inos â deux composantes e t d ' a u t r e s leptons de masse j * 0 

e t admettre que l ' opé ra t i on d ' ïnvers io . i s p a t i a l e es t . l ' h a b i t u e l l e : 

iMxl •+• ^ ' ' ( x 1 ) = fï/Vc*) pou* l e s de rn ie r s mais l a transformation c i -dessus 

pour les neu t r inos . Dans ce cas l e nombre leptonîque ne se conserve pas 

na i s la théor ie e s t invar ian te par r é f l ex ion s p a t i a l e ou t i e n on a d r e t 

que cornue pour les neutr inos à deux composantes l ' i n v e r s i o n s p a t i a l e des 

au t res champs implique l 'écbange p a r t i c u l e s « - « a n t i p a r t i c u l e s , a t o r s l e 

nombre leptonîque se conserve e t l a théor ie ca t i nva r i an t e sous CP e t I 46 

sous l ' opé ra t i on P convent ionnel le . • -;,. • 

On aperçoi t que l a t héo r i e à deux ccaiposantes du neut r ino . 

est équivalente à la t héor ie de Majorana où le char? M(x) * s t t e l que 

(V.21) M(x) = ± M (x) •= ± CCM(x) . i. . , • ' 

i peut cho i s i r une représen ta t ion t e l l e que 

On voi t que l ' o n peut f a i re l a correspondance t|>, -*• H- (x ) . 

En plus on a : 

(V,23) MM - u | p ^ j l j l ï [ a ( p s ) u ( p , s ) e ~ i p V < K O v e < w ) e i ' ' ? ' ] 

On v o i t que : ~ ~ {( 

( Ï .24) KjCx) . I a - ï 5 ) K ( x ) - jp^-.fi | | p - S [ a ( F 5 - l ) u L ( H ) e " i p x « 

*»*(p,»-*l) f / c ) R ( p î c 1 ' * ] 

Le champ de Majoraraa tL(x) à deux composantes peut donc s o i t a n n i h i l e r un 

http://cocposoat.es


C H A P I T R E VI 

LES CONSTAtiTES C„ ET C. V—--—A 

Expérimentalement, on r.ait encore que la polc i . i sa t ion de^ • cr^r.. 

fols e s t - — . 

L'Ëlfctent de t u t r i c e pour l e s dés in t ég ra t ions - 6 de noyaux c e t , conc.e c. a vu 

(VI . l ) H - i / c / D " (Û(p e )Y°< l -y 5 )vCq- ) ) - C A < a > . ^ I < p c ) a Y 0 ( l - Y 5 ) v ( q - ) ) | 

Haintenant leo deux courautB lepeoniques ci-dessus peuvent s'écrira : 

(ï<P^Ï°Cl-Y 5>v(5 7))-C"<P e>"'°ï"-
, f 5 ) 2 v ('I7 >)" 

:...•'.."•... : ..:,:.• . - i ( [ u * ( p e H i - ï V ï ° a - Y 5 ) v ) 

Par conséquent on peut prendre comme fonc t ion d'onde de l ' É l e c t r o n (1~Y )u(p ) -

L a v a l e u r mayennede l a p o l a r i s a t i o n de l ' ë l e c t r o n e s t donc 

•• ^ . ^ J u + ( p , s ) ( l ^ 5 ) ' ^ ( l - , , ( P 5J 
<£iE> . 5 bJ „ 

| p | y u + ( p B ) ( l - Y 5 ) ( l - Y 5 > " ( p , 3 ) 

. s 

C V I , 3 ) '• ;Tr i (^)Y°a-Y 5 )^( i - ï 5 ; t , ; , . 

2 T r j t i i+m)Y 0 ( l -Y 5 ) | E c 

Zl fi-.ut 3 present d é t e r r e r C y e t C Ca trou • .Cy{ e t \Cf\" 

3 p a r t i r de l a pr 'cbabil i tÉ t o t a l e de (Reintegrat ion de plu-- j u r s noyaux. 

En négl igeoat toujours l e s cor re r t io r . s dues 3 i i n t e r i c t i o n éleccror.-gn-ltiquo 

de l ' é l e c t r o n e t du noyaa on trouve 
Pnu;; 

(vi.4) r - I - - l j i> 7 |
2i<i>| 2

+ |c A |
2j<S>| 2 } | p 2dpcB = t t a-s) 2 

Da.is le cas de t r a n s i t i o n s Ferc i pures 

(VI,5) <o> " 0 (Fera', purs) 



et or nantrcra que 

(VI,6) [<I>! 2 •= 2 

On tr. uve a l o r s ; pour ui 

| C , | - v l -103; - , . . 

Dans le cas de. l a d€aintë^r 

(VI,9) | < I > ] 2 - 1, 

On peut dc tero incr 

(VI, 10) I C j l ^ l c J 2 

~n du neutron l i b r e 

<5>r = 3 

IT^-I = i.23±0.02 

La chase de -r— est déterminée en - c su ran t la d i s t r i b u t i o n angulaire 
A - " 

é lec t rons én is dans l a dés in tégra t ion de.neutr . ins l i b r e s p o l a r i s é s 

a la d i r ec t i on du spin du neutron. 

(VI,12) dfi : 1+a S - ~ 

où S est la direction de wlarisatian du neutron 

des 

relative 

2 ( (C A )^RQ<C v C a ) ) 

|C„ | 2

+ 3 |CJ 2 

'cy * ' c v

i ' ° l i < ' . 



d • 0.002 ! 0.014 C A 

: de p i • p i a " on t i r e d - - 2 - , -

d ' o ù : Q = i ï i l . 6 

CA 
Ainsi il n'y a pas d'évidence po r violation de T en 8-decay etr- < 0 ; 

S/ 

(VI.20) TP- - - 1.23 ± 0.02 , 

'SI : 

Maio i l peut toujours y avoi r une t r è s f a i b l e v i o l a t i o û de T. 

Mous a r r ivons à l a conclusion que i ' a .apl i tude pour l a r eac t ion 

(VI.21) Q * p + e + v 

e s t donc la forme : 

(VI,22) S o - (2 i î ) 4 i6*(P -P -P -P-)M.-

H = ~Z {CU<V V ^ V ^ ^ V X ^ V V 1 ^ 3 ^ 1 ^ ) } lï t V P 

~ = - 1.23 S 0.02 



précéde=aei>C est correct puisqu'il te réfère à des amplitudes, des €l£nenta 

de m:ciIce entre hadcons dans des états ajynptotiques initial et final. 

Voyons olûrs la relation entre le lagrangien (VIlj2) et l'amplitude 

M CV1, 23). 

Four la disintegration - B du neutron l'anplitude S de la réaction 

en ordre plus bas est, en admettant le lagrangien (VIÏ.2) (et' c » 1) : 

• f J* v -i iPJtX* \ ~iPx iP3t0*/ v -iPxi . 

puisque l'invariance de la théorie par ri pport au groupe des translations 

pennée d'écrire pour tour operateur îî(x) : 

no - ."•nw.-"" 

par conséquent 

3(B) ' 

(VII,7) 

-i|d 1x^'. i ( Pp-V l'« HW )<P p|l.*<o)|P i> <Pep;l4«.)|0> -

(VII.S) H<;,-^<P p|h^°>lv(
ï ï < pe > Y;i"~ r5 ) v t pv )) 

Maintenant considérons l'élément de Batxice : 

< p

P i h ô ( ° > i v 

^ | ^ ( o ) | ? o > 

Conrnc i l s'agit d'un vecteur, on peut avec un proton final libre et un 

ne-itron initial libre construire cinq vecteurs : 

1) ïï(Pp)y
Xu(Pn) ; : . 



1 "(p'Hp'-ta) * n 

au»(p'> I (p 'VVi<l W , (p\,-p ) ) >|u(p> " 

- « ïïtp'i | ( p V > W " ( p ' V > } »(PÎ 

j i u (p ' )o""(p ' v -p u ) u (p! -

- u(p )TM»(p)- £ - g - u(p')u(p) 

I - u(p'iu(p) - UCP'IT'VP)- -i- « ( P ' ) « \ « ) 

D'autre parc de la relation : 

if, - fi - a ^ C p V ) - i o l i \ < P v * P ' v ) 

et ce : 

O = ïï(p')(-p" * «io(p)-nT(p')rf(p-n)u(p) -

" Ï(P') I a a<p <"-p' 0)-ic , J Va l itP u+p' v) j u<p) 

i l v i n t : 

(VII,15) SU<P'>° V " » ' H "(P''"(P) 

On peut donc choisir les trois vecteurs indépendants 

la) utP lY^Pn) 

P " 

Nous posons ainsi écrire • 

• B „ < 3 ' ( q 2 ) q ' ' ! u ( P ) 



oQ l e s coe f f i c i en t s de chaque terme sont des fonctions de l ' i n v a r i a n t q (le 

t r a n s f e r t d ' impulsion carré) - lea fac teurs de forme. 

On peut vo i r que a i l a théor ie e s t i nva r i an t e par rapport a l ' i n v e r s i o n du 

temps ces fac teurs de force doivent c t r e des fonctions r f i e l l e s . 

Mous ferons l a dtoonaeraeion pour l e premier fac teur de forme, 

gA (q ) , mais e l l e s ' é tend aux a u t r e s fonc t ions . Soi t a lo r s : 

PivV-^Vt fV 1 ^ 
p 

e t la con t r ibu t ion do ce t Glumenr 3 l 'nmpli tudc de la réac t ion H -*• P + c • 

e s t a l o r s 

Pour l a r éac t ion P -*• N + c + V l a c o n t r i b u t i o n correspondante se ra : 

« ! - <« |v X + |P>f l l | i A | o > '« 

- <p|v*|H>%|«J|u >* -

Maintenant on peut é c r i r e ( a i on se rappe l l e que <$.. |TJI„> =• <Tty. |TI |U>) = 

<N|V* + |P> « <P{VA|N>* ».<TP|TVV' 1 |TN> 

Par conséquent : 

H = <TPjTV^T~1[ ,ni> <Te |T£ ,"V 1 [Tu > = 

L ' invar iance par rapport à l ' i n v e r s i o n du tenps implique donc : 

'-,! . Mj = <TP|V^|TN> ^ e l i ^ f l V > = r • 

(vn.is) = g ^ V ) Cy0YAY°Up)(vVOtI~Y5>u

e) 

On a a i n s i t B J ' W * ' ^ ' ^ v ••"'',. •' 

Par conséquent si l a t h é o r i u esc inva r i an t e par invers ion du temps on 

do i t avoi;-, pour un fac teur cln pha.su'' = 1 '" '*•- > " " 

On -i donc, pnur une théo r i e invariance ; us T : ' l 

http://pha.su'


Considérons maintenant la po r t i e ax ia l e de h : 

-- P |A (o)|P r-> 

l'n proton final et un neutron i n i t i a l l i b r e s permettent la const ruct ion do 

cinq vecteurs cixiauE â savoir : 

4) u(P p)Y uCPp)<T 

5) 7T<p > Y 5 U ( P )Q g 

De ces cinq vecteurs axiaux t r o i s seulement sont indépendants. En e f f e t , 

or. L 1 'équat ion : 

u(p')(r~™)iy u<p)+u(p*)r7( |S-m)u( P ) = 0 

•= u ( p ' ) { p , l V - i • ' • ^ ' | - f . . ) | ï « ( p ) B ] 

un vecteur a a r b i t r a i r e : 

C "(P')TS«(P) - lu "(P'XJ^ A ( P ) 

U ( P ' ) ( | I ' - O M , 3 , ( P ) « - 4 , ' H T J ( W « W - 0 -

• - 2 . ; ( p ' ) ( ï 5 u ( , ) * ' ) . a p'V"-i<raS<p£->PB) Y5<J>> 

par conséquent : 

(VII,23) i j »(p')nUVY5Quu(p) - fj; <I<P')Y SU(P)-U(P')YVU(P) 

on peut donc Écr i re ; 

* 8 A

( 3 ) U 2 ) , V ! U ( P „ ) 



A présent, étant donné un pion à' impulsion p il est impossible de constr-ji 
avec cette seule grandeur un vecteur axial. 

On aura donc : 

a) <0|V*(o)| iT(p)> - 0 . 

< V I 1 1 ' " > i l 
b) <0|A\o)|i7 <pp - U ï ï (p*)p\ 

f est en réalité une constante et s'appelle La constante d'interact ion pu. 

In désintégration du pion : f =f (p ) • f

r ^
m „ ï 

On aura donc 

(vin e> "„2 ' " T 1 P ^ ' V ^ M » >) 

Do la fonction delta en S il résulte que 

(VIII,9) p , H KJ 

st cornue les leptc-ns linais asymptotîques sont libres 

ï(P.) ««-«.) - 0 
(VIII,10) * * * 

'M v t p > , ' " ° 
«. t 

on obtient 

( Ï I I I . l l ) I » , , - i s ^ - î ï m, u(p.) (1-Y5)v(p-- > 

La probabilité de désintégration sera : 

^-L = ̂ ^ ) V 4 ) fVIII.12} 
" ' *Tt2 

A partir du résultat expérimental 

(VIII,13) T a - (£.55±0.02).l0" 8

f i ec 

et ai I'DII identifie *ç?ave" G„ on détermine |f j : 

(VIIÏ, 14) |ff | » 0.97 t^ B-a^ 

Le rapport entre les probabilités pour les désintégrations en y et en élcctri 
est d'après cette théorie : 



et a é té trouvée par Ruderroan e t F i n k e l s t e i n . 

Expérimentalement on trouve : 

R _, » (l .247±0.O28)xl0~ 4 

La valeur -ie R c i -dessus do i t sub i r des co r rec t ions électromagnétiques t e l l e » 

que ce l l e s c i t é e s dans l e s diagrammes : 

K r Y" 
et que nous ne développerons p a s . On ob t i en t R . » 0.965 R * 1.23x10 . 

La théorie e s t en e.-cellent accord avec l ' u n i v e r s a l i t é (e - li) qui 
affirme que l.i théor ie es t invar ian te par rapport aux échanges 

On peut comprendre in tu i t ivemen t , d ' ap rè s l a t héo r i e V-A, pour 

que l le raison R s une valeur auss i f a i b l e . Si l a masse de l ' é l e c t r o n é t a i t 

n u l . y , ce s e r a i t une p a r t i c u l e gauche t and i s que le V e s t une p a r t i c u l e 

d ro i te Donc on devra i t avoir : 

(VIII .16) i»~ - e~ + v à l a l i m i t e m .̂ - 0 

d rDi teChé l ic i t é + 1) 

gau"he(he l i e i t e - 1) 

Mais en ve r tu des conservat ions de l ' iwpu l s ion e t du moment angula i re on 

a u r a i t pour un pion au repos 



C H A P I T R E IX 

COURANTS ET CiaRGES GENERALISES 

I - LES COURANTS FAIBLES 

I.VJS avons développé les arguments h i s t o r iques qui ont about i 

à l.i théor ie des i n t e r a c t i o n s f a i b l e s basée sur l 'hypothèse d'un lagrangien 

e f fec t i f proportionnel au produi t s c a l a i r e d'un courant avec son adjoint 

= JS- \ j u + ( x ) j (x) *• h.< 

le courant - î t courant f a ib le - é t a n t la somme de deux termes : 

( ix .2) J u ( x ) = lUM * h u ( x ) 

le contant leptanique : 

(IX,3) ZU{x) - JLJ(X) " JtJJoO -

v u v 5 , i , • l { % M y \ M - * v < X ) Y P Y \ < X ) | 

ec le courant hadronique h " ( x ) , qui ne pouvant pas ê t r e é c r i t en terne 

d 'opéra teur de champs qui r ep ré sen t e r a i en t des hadrons, e s t aus s i une 

différence de deux terces l 'un v e c t o r i e l e t l ' a u t r e a x i a l : 

( IX,i) h P (x ) = hj(x) - hjj(x) 

L'expérience a conduit à pos tu le r que l e courant hadronique se cowpose 

de deux p a r t i e s , un courant qui conserve l ' é t r a n g è r e des hadrons» ^ ^ ( x ) , 

AS=0 e t un courant qui produi t un changement d ' é t t ange té . des hadrons, 
h ( l ) ( x ï ' i S = l " E t l ' o n a < c o n E D e o n v e T r a a u Chap.XIII, Equation (XIII ,52)) : 

a) hj<x) = h J ( o ; { x ) cose c + h j a ) ( x ) s i n 9 c 

(IX.5) 

b ) h A C x ) - h ï ( „ ) ( l 0 c o s e

c

 + h A U ) < x ) 6 i n 6 c 

I l s ' a g i t maintenant d 'ëcuo^er lus p rop r i é t é s du courant J ( x ) . Count l ' o n 

connaît la forme e x p l i c i t e du courant leptonique 4 U ( x ) , l e problène cen t r a l 

de l a t h é o r i e , es t de découvrir l e s p r o p r i é t é s du courent hadronique, en 



se basant sur les p r o p r i é t é s du courant leptoniqu" qui peuvent ê t r e générai 

au courant, hadronique { c ' e s t - . l - d i r e , les p rop r i é t é s du courant leptonique qi 

ne sont pas modifiées pav Les i n t e r a c t i o n s for tes ) { l ' a lgèbre des courpnraj 

e t sur c e r t a i n s modales t e l que l e s modèles des quarks. 

Ce sera l e but des c h a p i t r e s su ivants de rappeler et d ' é t u d i e r 1 •" 

p rop r i é t é s théoriques e t phénoménologiques des courants e t du I jgrangicn. 

Hais auparavant nous a l lons é t a b l i r In notion de courant c i de charge 

dons le formai ÎBiae lograngicn e t l e £hôor«?mi> de Noethcr. 

I I - COURANTS ET ClURGES. THEOREME DE rJOEÎHER 

Etant donné un ensemble de champs JtpCx)!, l e lagrangien e s t une 

ce r t a ine fonction de ce t ensemble et de ccLui do ses dér ivées premières 

(IX,6) L - l (jio(x)l , JS^iKxllJ 

et l e p r inc ipe d ' a c t i o n é t a b l i t l e s équat ions du champ ip (x) : 

ip^ar <IX,7> % "Sïa,,<pAxYÇ ~ SuTÔÔT 

Si l ' o n d é f i n i t l e s moments canoniques conjugués TT (X) au moyen de l ' ëqua t io i 

La théo r i e quantîque se base sur l e s opéra teurs <p (x) e t ir (x) qui s a t i s fon t 

â l ' a l g è b r e (± désignent commutateur ou anticommutateur) : 

C g > a ( x ) , ^ ( x , ) J * M C , - o ; E V x ) ' V K ' ) : , t = f " ° 

C«Pa(x), i r b < x ' ) ^ . e , - i 6 a b 6 < 3 ) ( « - x ' ) 

La d é f i n i t i o n de courants e t de charges , i n t r o d u i t e par Gell-Mann e t Lévy 

se base sur la t ransformation dù ' lagrangicn indu i te per une transformatian 

de jauge sur l e s champs (p(x) •'" '" ' 

Soi t A (x) un ensemble de fonct ions de j a u g t données ; considérons l a 

t ransformation de jauge ";•-"• . , r 

{IX, 10) (p a(x) + (P a (x ) - if l a ( x ) + . iA a Cx)F a ({•?}) 

où F* M tp M, dépend du champ tp.et de c e r t a i n e s cons tan tes de S t ruc ture de la 

t ransformat ion. 

Si 1îon appui " , ' 

*P, • ^ ( x ) ^ ( x ) - VLA aïx)l?J-;(|«ïj) 



l e changement correspondant de L e s t : 

W a a SC3Vip ) * 

^^W-'^^v-flH)) 

(IX,12bis) 6L •= + î 

3L a v aL 

Ainsi , en fonction de A (x) e t 8 A ( i ) on ob t i en t : 

a I ao\> a 

a V B O V . ) */ 

Ci-Of 

\ 3taV)/. 

• *„c*> ! H-

- a"A„<*> 
aoV) 

Si l ' o n d é f i n i t l e courant par 

(IX.14) j „ U ) 3&7.W 

.»»i;w-.\w.i;c. «L - -A„Ma"j>)-3"A„<x) . j > > 

-a»|A aWj"w| 

•3v"i> 



D'après la formule 

11X.2-U i l ' tx) - ~ -• 

Quvlîi' s i £ « : ' i c j t i o n donner dans ce cas au terme en 3 A 1 Pans l e cas de A 

L..-is.mUf, la formule à applique- pour j M ( x , n ' e s t pas (IX 23) mais p l u t ô t 

qui dans notre cas cioit s ' é c r i r e : 

9 
< X > ' • 3(3 v ) F x 3 If*) 

(IX,27) j U <x) = ie j w ^ i p i p a V l 

puisque, pour / ronstante on a F •= ey> 

l î est fac i le de montrer, dans le cas où l a théor ie e s t invar ian te de j auge , 

cossaent const rui fe le courant . 

Prenons p«i exeicple : 

(IX,281 L'= C ^ U V ) + ( J^ V)-mVV 

e t donc : 

* ' - c i e A ' x )

W ( x 

Nous avons vu que : 

L' = L 

Maintenant posons : 

(IX,29) A M ' (x} = f 

c ' e s t - à - d i r e qu'on f a i t un choix spéc ia l de jauge ; 

<IX,29bic) 3UA(x) = AV(x) 

Dans t e s condi t ions L' c i -dessus devient 



./\> 

L est invariant de jauge il ne peut pas dépendre de A 

3l 
'à A (x) 

i l l - L'ALGEBRE 01 LIE DES CHARGES 

Les transformations usuel les sont : 

(IX,33) w a (x) * « £ ( J C ) = 0> 1(x>*iAb{x)F^ ((<pj) 

où les F sont des combinaisons Jinéaires des tp •' 

(IX.36) F b ( fo l )» : f b ï a „y= c (x ) 

où 11 " ) _ sc.it -; s constantes : <!>'• ip (x} + i g ( f ) A,ip (x) 

Duns re cas l 'expression du courant devient 

oï.jTbi., ja

u(>.) - -i î p ^ ô s y - « \ d » d w 

La charts Q (tî es t : 

11X.38) Q (t) - ^ " ( x l d 3 » • - i '^hjM-N * ^ o V * ^ M d ' 

Mais 

(IX,39) 

"(VV^ 

qjt) - -i <f")M • h w » d w 3 « 

Cotnmo on connaît l e s commutateurs des (p e t ïï on obtient : 

(1X.40) [ Q a ( t ) , ( ^ ^ , 0 3 = - ( f a ) f c c c ( x , t ) 

Q (t> sont les générateurs du gi^upe de jauge de 1ère espèce. Car s i on poM 

(IX.-D ^ e ' ^ « '' • ' • • 

on a : 

<TX,i2) <p (̂x> - e " " i g 6 a ^ o ^ (x) e ^ a S ^ a 

Kotons que 

http://sc.it


U>.itL%M) . - (fj1,,) «J,, ,) ([" ' 'V [ni oocp (s0.n„,(x').p ,;«')) 

c : , - ^(x) tod(x), itc,<x') Wj . ( * '> i t . t . * 

+ tl c (x), i^.Cx') iP d ,(x')J t o ti odCx) -

" ' ^ • S < M ( X " X ' 1 "..(x.cVj.tx'.O - i «^ I tx -x ' ^ .U ' t^CxO 

Cq„<0, Qb(t)l - - i (£,?„) ( £ „ , , J |5 d c , , c ( î , t )« d , ( î , t ) -

- Scd,irc,(î,e)» ( |(î.e) i A -

-»d'd> (£=M'» I ' r . <« )» a <x«d J x | 

" " 1 I ' O <fdV> - ( fcV ««'M j V " ' » d.<«' d 3» 
pour une transformation de Heisenberfj. On a donc pour € infinitésimal 

*;c») - d - i g e ^ ) 5.atx) (uigc > 
(IX.43) 

on obtieot : 

c'esfc-1-dire, : . • .•-• v 1 . ••-

[«^-V^XX)!'* - (f*)^ (Pe(x> 

d'oil'Q^ «at £gale Tï ,g^^ où . ^ loot It» générateur*. 

A partir,de l'expression flX^S)' pour i» cbàr*;« Q,(t) *t.des règles de 

commutation entre lés 0 et -lés ir on obtient (voir note.» la page antérieure) 

(IMS) C q > ) . g b W ) : . - i ^ f > - x ^ f d * ï : / ^ ( x ) ^ ( x ) A 

-On voit que si (et seuleœent si) lés constantes «atisfent i une relation de 

là forme i ' 

-•£, ' 

'3? 



C H A P I T R E X 

LE LAGRAMGIEM LE?TOMiqCE ET L'ALGEBRE DZS ChARGES LEPi HIQUES 

Le lagranglen complet pour les leptono e s t : 

U , l > a) L - L o * L ( y ) * L ( „ , 

1 b) Lo - i ÎÏCiï\-<«1 1)ll*e<iV\-m1 1>e j H 

• 1IV A ? »-'5> v v e ' A i H" ï5>"e I * h-c-

" M 
• «JK..,<x> A.Cx) 

«hio.-^f l<m(,,) W"> 

(Xi2) *., . y 

. est le courant ëlectronagnÊtiçte et 

% ? ;,-<»)- .... 
;Mt\.le. courant faiblev " ' 

L'introduction de 

. conduit! écrire.; 

. '*» :Lo - j I^AyVV.A.V--" 
";'. ; * ^ ^ * » ^ V v | -:• ••V"-' / : ; ' ; ' ' 



\'T> ( ï ) » 

• *,;\ ^„ ,^ * h.c. 

e(T> - v ' v V W ' n ^ , 

' (V) I».A%AI 

PROPSIETcS IW LAGRAKGIEN L E P T O N I Q U E : 

]) Le Iagrangien esc invariant par transformation de ch ira l i t é 

p u i s q u ' i l ne contient que l e s opérateurs v ,(*i e t v (x) poux lesquels ; 

* -Y V. - V. 

On t r a d u i t cela en disanr que l e lagrangien ne coutient pas V„ e t 

donc les neutr inosont deux composantes. . . ' . 

I l s n 'ont aucune int.. : act ion avec l e champ électromagnétique puisque ces 

neutr inos sont équiva lents à ceux de Hajorana. 

En e f f e t , pour un champ de Hajorana M(x) on a identiquement : • 

: ÏÏÏIÔY'VCX):- 0 . . . . . 

En e f f e t de 

p M î x ) ^ " 1 - HcCx) = CCM(x) » 

• * M(x) 

?K(x)fe? _ 1 » (M(x)) c = - tM(x>C~! 

- î M<x) 



on tiro (avec ( f V c - - V . c " V v c - - V v ) 

- - > <K V °B : -

' * = *„ 4 V " 
- - : M Y W H ! 

Maie puisque M(x) •» ± M on a 

gv»^-». : ^ « r - v ^ - 1 -
- ; M c (x)y y H c ; - : M(x)y

Vtt : 

e t donc ; MyMM: = 0. 

Par contre on a 

(2 .9 ) : M Y X 3 X H : * - ; a^MySf : 

comme on l e veut pour l a p a r t i e cinématique. 

2) Si l ' o n f a i t m ZJ"u " 0» le laRrangien e s t i nva r i an t par rapport au groupe 

u n i t a i r e leptpnique Jjy^ *_j%£^ \_ 

,• ( î ) * ( î ) • « ) • - * (ï) 
(X, 10) 

où fé e t ^$L sont deux matr ices u n i t a i r e s a r b i t r a i r e s . 

3 j Un ive r sa l i t é \i + e sauf pour l e s termes' de masse. C 'es t une conséquence 

de l ' i n v a r i a n c e 2) poui 

i des -nombrea lépcôni 

s de masse. L ' e s t inv 

4) Conservation des nombres lépcôniques 

Avec l e s t e rnes de masse t L ' e s t i n v a r i a n t pa r l e groupe spéc ia l ; 

Cela veut d i r e que l ' o n f a i t l e * . t ransformations de jauge du type : 

M r ••>•** 



, •* e 1 < 

ut uL 

ie 2 

Les courants conserves sont ici 

et les charges correspondantes sont les nombres leptoniques 

La conservation de ces deux noobres sÉj-aréraent interdit la réaction 

(X.16) u •* c + y 

qui serait possible par une interaction magnétique de Pauli 

f ê'(x}0VJVlJ(x) F <x) si on avait Nfi • N-

Formalisme de l'isospin 

Si on veut introduire t?-i isospineur pour décrire l'Électron et 

le neutrino il y a une difficulté pour les ternes de nasse, A la limite : 

m » m = 0 

on pourra définir un isospineur pour chaque lepton : . 

») L. 

(>:, 17) 

b) I 

\ e t (x)/- ' \« (x>/ 

et i'a isoscaltire : 

a) R <x> . i (I»rS)«;x) - «.(x) 
(X.18) e i R 

M R„(x) - -i U+Y^vW - |i.(x) 



Alors on peut êcritt 

L<V™u"°> " i l V * ) i A > V y ) * V ' ' ) i ' ' \ V , 0 l 
1 

R<.(x)iY\.1(.<x)«R[i(x)ir',3I>R (x)[ 

* e (Le(x)YA i p I ^ C X ^ M Y ^ yx l jA jU! 

* « |ReU)Y*Rc(x).Rl|(x)YAR)1(x) |A x(x) 

* • ^ i r

c < - > Y , T ^ e < x ) » E i j ( , ) ï \ L ( i ( x ) ! * . 

oil : T j j f iT i „ (o l \ T i - i T , A) o \ 

On y vote la symétrie e * u 

Les courants sont : 

* R.CxJYXïxJtR^CxlY^Cx), 

' m » • J l 1

e w A 4 ' * V l , , l v w i 

Là formé de ces courants montre que L (m - a - 0) n'est pas invariant [ 
rapport à une rotation dans l'espace de l'isosiûn : 

Ux) -* e i U "2 L(x) 

puisque les courants donnent-un rôle privilégie aux axes (3ëme pour S.* . , 

,, tour obtenir; tes termei de, nasse ûnpeut-.le faire en introduisais 
un spineur constant de la forme 

"c?i 



IX.23) • R^Cx) « » V ' ' 

Ce terme n ' e s t évidemnent pac invariant BOUS la rotation (X.22) 

Par conséquent le lagrangien complet pour lea leptons s'Écrira : 

(X.2«) »> L - L o • L ( ï ) • L ( U ) 

b) LO - AU e<x)ir\L e(xHyx>i T \yx)*R.(xHV\R e(x) • 

/2 

L (x> - -j ( 1 - Ï J ) 

ï K W V l . ' V * *•' 

e J t ^ { x ) Aj(x) 

W x ) / \ o L ( x ) / 

RuCx) - j ( l*T 5 )K(x) , 

électromagnétique 

<Y> (x) " L e x)T X 1-Tq 
2 v> • R e < x > y \ (x) • 

+ 1 V 
x ) ï X 

2 L./X, 



et le courait est 

"e r 2 • " e ~*V 2 y 

d'où tjoo = 2(aJ 1 ) + i ^ 2 ) ) 

Considérons le courant ]eptonique faible 

* ,», - *.2 X *U X 

' ( » ) " ' * a ( l ) " - (2 ) 
(X.35) 

*™<*> • 2<'m*"m> ^ I v W A 
• { * , •»%) '+ ~ 2 l ' l " i 4 2 ' 

et définissons la charge leptonique faible 

Q(w)<t) - [d 3 ^ w (x) - 2 | â 3 = c l . V ° ^ V V j 
«,36) 

- |d 3«-jv* U - ï 5 ) ^ V* (1-T 5)»! .> 

Son adjoint esc : 

Le coranutateur [r,QT] introduit.une nouvelle grandeur-

Q ( w ) 3 ( t ) - fd 3i[v <, '
f<n 5)v è-e*(£-ï 5)e*v ) J*(l-Y 5)v l l-

(X,38) , ! • 

- H*<l-V5)u)_- 4 [ d V j W : 

puisque : 

tQ„(t), Q*(t)] - 2 QB 3(t) 

Si on pose 

Q7m(t) - 2K_ - 2 1 

i l vient : 

I [K+,KJ - 2 K3 

[K 3 .K , I .- KV:. 

| .[K,,K_] - - K_ 



î^-nt bien i ' a l gèb re SU(2) x SV(2) 

les rbarges fa ib les <?£**, Q^** . Qui s e tTansfornent coiane 2K+, 

spectivetnent- Pour voir les p ropr ié t é s a?nlogues de la charge 

déf inissons les non-;.res leptoniques 

«!'! • - P ' ? •.* » r : 

Comnie on le s a i e , l ' expér ience suggère que l e s nombres l ep tonique 6 N, se 

co r s j rv fn ; . Par conséquent les M. doivent cocaïuter avec l e s opéra teurs qu i 

décr-.veTt des va r i ab le s physiques, s inon , on d é d u i r a i t fie l 'hypothèse (A é t a n t 

un observable) : 

< E | [ N J , î ï ] ' t ' > i* 0 

- esc un é t a t propre de l ' o p é r a t e u r N. avec va leur propre n« 

( n t - n e , ) < i | ( î | r > F 0 

Par conséquent, s i n £ f n^-.on a u r a i t < £ ] n | t ' > |l 0 et l ' o n p o u r r a i t produire 

j.ie t r a n s i t i o n de l ' é t a t Z à l ' é t a t E 1 ce qui esc impossible s i l ' o n «duet 

la règle de super - sé lec t ion pour l e s nrenbyes lr - toniques. On dédui t de l a 

propr.C-c de N, que -es opéra teurs sont des œu l t i p l e s de l ' i d e n t i t é , que 

la charge C - v ) comute de l aTsan i t r e su ivante avec K , K_, K_ : 

<!• M • *l M -
- «J * V K •-



Q (T) 

On en conclue que Q( vv e s t de la forme : 

ofl K e a t un opéra teur qui comnuto avec K,, K_, 

[K„. K ) - 0 , a - 1, 2 , 3 ^ 

M ! t o , K,, >' 2 , K 3 engendrent l ' a lgebve 11(1) * SU<2) 

Ell e f fe t de l ' exp re s s ion (IX,95) de Q. . on peut déduire 

l < M . 7 » ir - I V « 
!(Y) L 3 * K 3 ! } ' l 

L'a lgèbre des charges Xeptoniques s«»-...ra de awdSle pour l ' é t u d e de l'ï*.lgêbr< 

des charges e t courants h a d r c i q u e s . 

HÇ 



C H A P I T R E XI 

siNIr.oKATIOK DP HUGH ET LA CONSERVATION DES NOMBRES LEPTOBIQUES 

Le lagrangien purement leptonique déc r i r a des r e a c t i o n ! f a i b l e i 

interviennp^t que des leptons , par exemple, la dés in t ég ra t ion du n>on. 

La mesure de l ' hé l i ç i t è " du rauon provenant de l a dévintëg?. '.OU du 

„ - „ • v , . • : „ • 

oue v a la même h ë l i c i t é que V : 

s(v ) « s ( v e ) - - 1 

Nous pouvons donc admettre que l e s deux neut r inos un l a d é s i n t é g r a ­

t ion du 

(XI,3) 

é c r i t s par la théor ie à deux composantes. On é c r i r a donc : 

( I I . 5 ) 

Le théorème de F ierz d i t que, é t a n t donne quatre apineura « r b i t r a i r e a 

3 , 1>,t on a la r e l a t i o n : 

5 , . _ 5 _ 

l Cà •»!%) <W*> • ? D

a < » i W (*3n.*2> 

Rappelons que Oj . I ; ^ . Y* i S , . a1™, !Î A » T \ 5 , Slj, - iy5. 

Nous pouvons donc é c r i r e 

(xi,7) W l r . e ) . - L ;; ^ (T u(i*f 5)n a(i-ï 5)vJ (3yu 



Ainsi la théorie a deux composantes pourv e t v implique l e s couplage» 

S et F et V e t A 

Couae l ' h é l i c i t é de l ' é l e c t r o n esc sa fonction d'onde do i t ê t r e 

(1-Y )e et donc e (1+Y ) . Par conséquent 

1X1.12) a(f~) - - J - C s - C p - 0 

et un obtient donc : 

(XI,13) -> - f ' (« /" -^HIK' 1 -^ . ) 

Historiquement on a admis une superposi t ion des cinq foraes covarisntet ; de 

la foroe : 

L.u-e) - — { ( v ( I ) P ( I ) ) ( e d O C ^ - K J ' j T 5 ) ! ' . ^ • 

» (V | J(X)YVX))(.'«YJ<VC'TY
S>1>,,<'0) * 

(XI, 14) * \ ( v u C x ) o u v u ( x ^ ( ë W B ^ C j ^ C ' j l f ' j v . w ) • 

- ( Ù U ( X ) Y V U ( * ) ) (=(»)VxT 5 <C A «C' i V Y 5 )U e (x)) * 

» { Ï / X H Y V » ) ) (e"(jOiY5CV-C'pY
5>Vx>)} 

Avec ce lagrangien on ob t i en t l a matr ice S pour l a dés in t ég ra t ion du muon : 

* ( " « v X ^ V ) (° ( '« ) Y i t 0V* C 'v 1 f S ) v < ï»e >) 

* (»<V Y Vff v ) ) (S<Pe)YxY
S(VC'AY

S)v(ïve)) • 

(XI,17) u(p) 

: normalisés de t e l l e so r t e que : 

ë .£*<P>^7>-« . 

Pou»- obteni r la p r o b a b i l i t é de t r a n s i t i o n par uai tÉ de temps nous 

devons : a) obteni r | s j ; b) d i v i s e r par VT ou (2ir) S (o ) . ; c) BultipliflT 



V P * c ' s S • c s c
 P * c s S ' 

c„ c ' , ' • c\fi* * c*„c\ • c ' V . ' VA ' V A V A 1 

T T ' 

c \ - c*„c\ 

- v C V C *A - C ' V C A ' 

; - -Oa'-lb'+Lftf' ; - a+4b+6c 

Ô - 3b*-6=' Ô -
3a '+4h ' - I4c* 

L'équation (SI , 19) e s t l a p r o b a b i l i t é de dësinctigrat ion d'un 

it-jor. po la r i sé pour é a e t t r e un é l ec t ron avec impulsion coapr l t e en t re p e t 

p + dp . E l le dépend de cinq paramètres A, p , T\, Ç, 5 , Lé paramètre p e a t 

le paramètre de Michel qui dëtennine essen t ie l l ement l a forme du spec t re 

de 1 ' e l ec t ron émis, n es t t r è s d i f f i c i l e â mesurer ; i l i:aut prendra 

E --*• E _ en ver tu du facteur ^fi. « 1 . Ç détermine l ' a s y a E t r i e de la 

réact ion et à, la forme de la dépendance en E du terme en co» 8. 

On voi t que dans l*hypotbêse de l a t héo r i e à deux composantes pour 

ii."- deux nc-jtrinos e t s i l ' h é l i c i t Ê du V e s t égale â c e l l e .-lu V on aura : 

* s ' c ' s m C i m C \ m C t m C ' v m Ù 

C„ ° - C '_ , C. - - C ' A e t C. - - C„ 

On obt ien t a l o r s 

L 'exis tence de deux neut r inos d i f f é r e n t s v e t v , qui sont d é c r i t s par l a 

théor ie à deux composantes, a é t ë démontrée par 1*expérience. -

On prend le fa isceau de neu t r inos provenant de l a dés intÊgratJon 

du pion posi t i f 

e t en lu i f a i t bombarder des noyaux atomiques. Si ce neut r ino é t a i t iden t ique 

à v^ on devra i t avoi r production d ' é l e c t r o n s avant le seu i l de ï* ip tuduct ion 

des iruons : 

(XI,29) V, i i 



Et le f a i t que l 'on n 'observe pas l e s réactions 

P* t~ e~+Y 

lT -f* e + +«~+e i 

montre que ]e nombre leptonique de y et v . d'uue part, et le noabre 
k-ptonique de e et v d ' a u t r e p a r t se conservent séparéaent. 

On i j u r r a i : avoir une lo*. de conservation de nombre leptonique 
d i f f é r en t e . Au l i eu d'imposer 

1) L conservé, L conserve dans toutes les reactions 
e u 

on pour ra i t imposer 

v + p - p + e + y + v 

sont i n t e r d î t e s par le pr inc ipe 1) n a i s sont p e r u s e s par l e principe 2 ) . 



où T + - i <T 1 + iT 2 >, ï i ( x , o 3 , T 3 ) , ¥ f ( x , o 3 , T 3 ) sont les fonctioi 

d'onde des noyaux i n i t i a l e t f ina l ; T a g i t sur l e s v a r i a b l e s d'îsospÏTt 

du nucléon Â du noya-i. 

L'approximation d'impulse nous donne a l o r s : 

(XII,7) Gv <I> - Gv < ¥ f | T + | ¥ . > 

où T + es t l ' opé ra t eu r d ' i s o s p i n t o t a l T •-5- (T, iT_) . 

Pour 13 réac t ion 

(XII. B) 0 U '- K 1 4 * + e + + V (x) 

0 et N font p a r t i e d'un mul t ip l e t T * 1 e t donc en rappelant que : 

(XII, 0 <T,T - l j T j T . T > - At+TJi(T-T-+1) 

14 14 
T • ! e t que T = 0 pour N e t I , • 1 pour 0 on a 

<i> - fi 

Ainsi on ob t i en t la valeur de (L. à p a r t i r de — : 

(XII,10) 

Le f a i t que G es t presque Sgal à \§ a ^ftt) e a t important e t ' * conduit en 

1949 à l 'énoncé du p r inc ipe de l ' u n i v e r s a l i t é des i n t e r a c t i o n s f a i b l e s . 

En f a i t c e t t e presque é g a l i t é en t re G* J e t * y - G'..est surprenante 

puisque, en plus de l ' i n t e r a c t i o n f a i b l e en t r e nucléons e t Ëlectroinâeutrico* '•'• 

d'une parc , e t l ' i n t e r a c t i o n f a i b l e e n t r e muons e t é l e c t r o n - n e u t r i n o , d 'auLre 

pa r t , l e s nucléons ont des i n t e r a c t i o n s f o r t e s . En absence de ces de rn iè re s 

on pot-rrait en -ffet é c r i r e un lagrangien de l a forne : 

qui p o s t u l e r a i t une é g a l i t é exacte non seulement en t re les constantes 

d ' i n t e r a c t i o n c j 6 ) e t G™ mais ausei en t r e G £ P ) e t . G < f l ) . . ^ 

En r é a l i t é >n a (voir VII,27) 

(XII,12) "• 



où P e s t l ' o p e r a t e u r d ' impuls ion. 

Par conséquent : 

;xn,i7) <p|iJv^(o> IP> - 2pV J (Y ) 

é l t •ornagnétique 

i <p'li(Y 3<o)|p> - ï ï ( P ; ) | Y V ( , » 2 ) + 5 S ~ V 2 P c q 2 ) i U ( P ) 

donc : • ' 

(Xtl.18) < p | j ° Y ) ( o ) | p > - e o U + ( p ) u ( p ) F 1

P ( o l 

On a a i n s i : 

e - e - le I •• • - - • . - - ' 

p o ' e ' ' - • 

La charge de l a p a r t i c u l e en i n t e r a c t i o n fo r te e s t égale 3 la charge Je l a 

p a r t i c u l e sans i n t e r a c t i o n for te : 

Par conséquent s i l e s charges "nues" je | e t | e . | -du proton e t de l ' é l e c t r o n 

sont égales en valeur absolus a l o r s on aura toujours [e_ | •-» |e | grâce â l a •= 

conservation du courant . ,ç\ 

Comme l e s i n t e r a c t i o n s f o r t e s sont î= variantes sous l e groupe dt\ 

ro t a t i ons SII{2) dans l ' e space d ' i s o s p i n , i l y o t r o i s générateurs,;,T_y q u i / ;;•;• 

s a t i s fon t aux commutateurs du type ( IX,49) , oïl ^r 

' C a b l ' 
c . " i c_ . 

(XII.19) [ i , . T k I - i e , 

Considérons a l o r s le c c j ' a n c d ' i so sp in qui conserve l ' é t r a n g e t ë . 

• l 'hypercharge Y), V. 1 ' . ( x ) . 

i J (o)a 

et T ne dépend pas du temps si v A ix) est conservé. 
a (o)a s - -

Définissons le courant ; * 

(XII .21) V ( J ) + - v j + i v j '"' """" •••'' // 

La charge é l e c t r i q u e e s t donnée par l a formule de Gell-Mann - H i s h i j i m a : 

(XII,22) Q - i + | 



. C n V c p - p ' ) < N U * ( p - ) | V ^ _ | 0 U ( p ) > 

• (2TT)3 6 3 ( p - p ' j /2 f + ( w > P ° , P° - p° + p ' ° 

s : i " : p ' ) f j v ( ° ) _ f« î* 3 * 1 0 K < P ) > - < N U * C P ' ) I T_ | 0 1 * ( P ) > 

V p> <T T -1 |T_|T T > - /Ï (2ir) 3 2p°o 3<p'~p) 

par conséquent 

i la liraiie de symétrie exacte de isospin on connaît l ' é l f a e n t de 

• de la réact ion 

et le fait: que f (o) = 1 indique que c e t t e an^l i tude e s t l a loême que s ' i l n ' y 

avait pas des in t e rac t ions f o r t e s . 

On a donc : 

(XII,33) <1> = Sï 

on r é su l t a t qui ne dëpt.nd pas des d é t a i l s de physique n u c l é a i r e . < 

Air.si G = G : les i n t e r ac t ions fo r t e s ne changent: pas 1*Égalité des 

constanu-s, admises dans le lagrangien, Lee forces électromagnétique» d é t r u i s e n t 

la sycé r r i e _"isospin e t donc ces l é s u l t a t s sont v«i«blea en app r sx in t t i on . 

D'autre p a r t , le courant axia l ne se conserve pas e t donc la constante 

d ' i n t e r a c t i o n correspondante change par reoor taa l i sa t ion . 

Or. trouve : 

En r é a l i t é d ' après Cabibbo on a : 

,.-#" 



Il do i t y avoir des cor rec t ions ducs aux i n t e r a c t i o n s H e c t r o n g n é -

; du type na is La table montra que 

ces correc t ions sent p e t i t e s , de l ' o r d r e de Z a . 

2) .Magnétisme fa ib le 

Ecrivons d ' après (XII.35) 

[XII,38) * ( o ) 1 <g Co) + t 5 C ' 

De la re la t ion de couinutation : 

3 ^ ' ^ 3 - | l V < o ) < ° ' l " ^ 3 - - î ' -

(XII, 35) • = , < ' , ' ! T 3 - l K = ) * t ' " l , , i T 3 _ " I > -

. t , < , ' ; , , - i | r f ( . ! , I > T 3 - - i : 

Comme 1'hypercharge commute avec T + (vo i r XII,23) on aura, s i j ^ désigne 

le coûtant d"hypercharge 

(XII,40) G v < p - ; ? 3 = | It V ( * ) 3 ( 0 ) + ± **(o) . T + ]IpjTj - , - / | > , 

et d ' après l ' équa t ion (XII,22) i l vient: ... ,• •;.••;: 

(x i i , 41 ) G V < P ' ; T 3 = | | [ j ( ^ ( o ) , T + H P ; T 3 - - | > • .-; 

On ob t i en t donc • 

^ P < p '> l T ( o ) ( o ) l " ( W > 

-<= v <ptP ' ) | [ j ( *)(o) ,T 

(XII,42) - Gv j<P(P') ' | j (* )(n)|p(r)»"- <n(P') | ' j (*,(o)|ntP)>i/ '^ 



et par conséquent 

8<»«, 2>. V l V > 
4 2 V > - CVP 2

V(, 2) 

, ! , A I * s,Js i S j |iJ(o>|P> - -„(P') 11 V U ' ) - , " * ± F 2 ' ( , '> £ - , n | u<P> 

lijî.. ,p> - ;<p') | F l V)>V<" 2 > Mr %i¥ »«> 

(XII,49) ^ P ' !vJ o ) + (o) |P> - Ù(P') 1 g ^ t q V + g ^ U 2 ) § j j - <ln | T+u(P) 

On voit que j„(x), la partie isovectorielle de j . *<x). et Vï , + (x) sont 
d'un triplet (voir (XÏ1.47)). 

4r*-V. 
Cette deï-nière relation est connue cortee le terme de magnërisufe faible 
(Gell-Mann) 



(o)|=*> (puisque < i ° | j , , ( O ) | T I 0 > - 0 

S? 
J ( 7 ) V 

F^m*) esc le facteur de forme électromagnétique du pion chargé. ?-i°) " 1 

si i ^jfo) n e cont ient pas e . Comrae dans la réac t ion c i -dessus q e s t t r è s 

pe t i t on y fera F <q 2) - 1 . 

Le r é s u l t a t théorique e s t 

iXH.55) R , - A(i.*-n°^**v«) - M -8 

i beta de J , £~ 

î - A+e 
(XII,bb) r - . -

Le courant v e c t o r i e l contr ibue avec un élément de ma t r i ce , d ' a p r è s 

(XII,44) et (XII,47) 

Çf<A|v(»,<„;ir> - c vyp.) | r > V • ^ \ F 2 V > 

(XII, V ) ( 3 ) , „X 

A <,•_• 

Ds-:- le cas de la transition a -* p, à la limite de la symétrie SIK2),- B "" "CV 
À (3) 2 _ - •1tp",' 

la conservation de V . en t r a îne g,, (q ) = 0. I c i , pour t an t , m." i1 m- à l a -\ 
l imi te de SUC'; ?c donc : -

(XII,58) ^<A|q /V^ ;(o)[r>'=<^A(?
,)l(™A-=2ï ï ^ V ) *8 V

( ' 1 ? ) 2Î i S u ï " < P ) 

(XII.59) Lyo q 2 g j 3 ) ( q 2 ) = 0 

par conséquent : 

(XII,60) 2 ^ A | q A v J o ) | ] r > " ° en t ra îne F ^ o ) - 0 

la con t r ibu t ion v e c t o r i e l l e permise e s t donc n u l l e 



C H A P I T R E XIII 

LE MODELE DES QUARKS ET L'AHCLE DE CABIBBO 

I - LE GROUPE SU(3) ET LE HODELE DES QUARKS 

En vertu de l'existence de processus de désintégration avec 

changement d'ëtrangeté tels que : 

(siii.D '" " y~*\ 
K° •+ TI + e + v 

e 

U faut admettre l'existence d'un courant faitia hidronique avec changement 

d'étrangeté. L'expérience a confirme que sa structure est similaire a celle 

de h ( 1 .(x>, â savoir : . 

III,!) h ^ O - V ^ M - A ^ M 

Ce courant a aussi une forme V-A. , . ' - ,-

On est alors amené à se poser la question Buivanxe : le.courant. 

vectoriel V...(x) se conserve-t-il et est-il dans ces conditions, en rapport, 

avec les générateurs d'un groupe de syne.rie ? ... .:'.".;• .•••.'* ••.-.'; 

Nous savons que s i un lagrangiemeBt invar i an t pa r r rappor t 1 SU(2)-ii-

i l y a t r o i s courants conservés qu i COMBUtent avec l 'hypercharge Y. Ces ' «'."-;'-.'•', 

courants conservés ne peuvent donc pas changer l ' é t r a n g e t é . Ainsi i l faut ' .": 

un groupe de symétrie plua l a rge que S0{2) s ' i l y en s un en rapport"avec • 

l ' é v e n t u e l l e conservation de VV_>(x). • -j . . . . ; - - ;. '... •-. 

Ce groupe e s t l e groupe SU(3)- l e groupe des- t ransformat ions •.";• 

unimodulaires e t u n i t a i r e s dans un espace complexe 3 t r o i s distensions. ;.• 

Une t e l l e transformation s ' é c r i t fin gSnérâl : -'...'.-•'--,. :" . 

<XIII,3) e *Fa 

(XIII.4) [F a,F b] = i £ a b c F c 

les F sont hait opérateurs hermitiques et sans trace - las générateurs 

des transformations infinitésimales du groupe SU(3)- ] ' . • •_, 'PI - • 
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"247 "256 

• " d366 " d377 • 

ant nuls . mtres f et i 

Le modèle- des quarks introduit un vecteur à trois composantes, 
ie critposa.ite étant un spineur de Dîrac 

•(i) 
le chrfmp des -quaiks. Et le modèle adme*: que les hadrons jiont des tenseurs 
dans des naces de certaines représentations de SU (3) construites a partir * .-
des deux représentations fondamentales non-équivalentea 3 et 3 . 

Si q représentent Les composantes contravariantes d'un vecteur dans 
l'espace complexe à trois dimensions, elles se transforment sous SU(3) 
d 'après l'équation : 

(HII,7) •fn- k - 1, 2, 3. 

( r i=e sur t • 1,2,3} (66$) est uta matrice uninodulaire et unitaire et 
l'enseeble de ces natrices constitue une representation - la représentation 
tondaroentale - du groupe SU(3). Une autre représentation, noit équivalente, 
la représentation conjuguée - s'obtient 2 partir de la loi de transformation•'-. 
des composantes covariantes ainsi définie : •. :*'"' " .' 

On i 

La non-équivalence des deux représentations provient'iâë^ce.qu'îl,.' 
n'existe aucune matrice à 3 dimensions S telle que v'. '•,.-'" 

( m . » ^ ' . s ^ " 1 ' J ' • - • : ' : . • > ; > :->-.'"-';:; 

(tandis que, dans le cas du groupe Sli(2), une te11^ relation d'équivalence 
existe, S = i 2 ) "' -'; 

Si 'écri t sous la forme de.l'équation (XIII,3) alors; ~ .,';•' ."'' 

(XIII,10) (" . c -
i c aFa 



c'est-à-dire sera le nombre d'éléments indépendants d'un tenseur BymËtr̂ iOe :. 

à m indices supérieurs et n indices inférieurs moins le nombre de conditions 

qui leur sont imposées pour que le tenseur soit sans trace : 

(m+l)(m+2) (n+l)<>-42) _ m(m+l) n<i.H) „ (XIII,U) rlirfim.n) = 

- i (n+l)<n+l)(n+m+2) 

Représentation non 

(0,0) = identique singulet 

(1,0) = 3 j 
(0,1. = 3* ) 

triplet 

Représentation . 0 . 

(1,1) = 8 octet 

(2,0) = 6 j 
(0,2) = 6* ) 

sextet 

(2.1) - 15 j 
(1.2) = 15* [ 

15 

(3,0) - 10 
(0,3) - 10* 

13 , (XIII,12) 

" -

"ft- ' ' ' 

On voit que l'on représente (m,n) par le nombre dinCm.n) si ra > n et par1 ,, 
dilndajn) si a < .., 

On décrit une représentation (c,n) par-un diagranme de tableaux dè:ïour>g î 

U^.I,1.2a) iw.ti 

la première ligne contient n+n carrés et correspond a des Ètatt synëtriques 
la deuxième ligne contient n car-^s 



3 ® 3 " 6 0 3 

es quantiques des quarks 

T - - i l 
3 2 

v - 2-v. 
.5 a 

B 
« " r 3 * ; 

r 1/2 1/2 1/3 1/3 2/3 

" 1/2 -1 /2 1/3 1/3 - in 

0 0 - 2 / 3 1/3 - 1 / 3 

•; a l e s menés nombres quantiques que les 

-_; (pn-np) ~ A 

(XIH.18) — (p>-*-p) 

nsi g représente au; 

t r i p l e t an t iquark . 

l e s é t a t s an t i symétrique s <Je deux quarks que 

Par conséquent on peut é c r i r e pour un système quark-ant iquark : 

(XIII ,19) 3(2.3 - 0 © g - g <+) DD - 1 G) 8 

La configurat ion o a l e s nombres quantiques du v ide , Y • 0 , T = 0 (sauf B « 1} ; 

on peut, donc ï ' o u o l i e r et r ep résen te r l e s tableaux : 

sicipletner.t par la conf igurat ion (XIII .12a) 

Considérons laaintenant le système à t r o i s quarks 

(XIII ,20) 3 ( x ) 3 @ 3 = • © • g ) r j 

La valeur maximale de l 'hypercharge e s t Y » 1 pour t r o i s quarks • 
3 

<E la configurat ion -métrique a u r i T » ^ , un qua r t e t donc. '. : - . ' 

Pour y = o on aura deux quarks (p,p) ou (pn) ou (nn) e t un A sa p a r t i e •_' 

-•y^ : t r i q u e correspondra à T = l , un t r i p l e t . Pour Y * - 1 on aura 1 quark 



; changeons — (pn-np)p * — (pn-np)A 
/2 /2 

— (pn-np)n •+ — (pn-np)X 

on aura une configurat ion avec Y = 0 e t T - 0. 

Si nous changeons — <?l

n

2~
?2al>P; "* ~ç ( p ï * 2 ~ P 2 * l * P 3 

on aura des configurat ions avec I • O e i T * 1. U dern ière p a r t i e T * 0 

es t déjà contenue dans l a première. 

On a donc dans l ' o c t e t : deus é t a t s Y - 1, T - 1/2 

t r o i s É ta t s Y - 0 , T - 1 

un é t a t Y - 0, T * 0 

deux é t a t s Y - - 1 , T - 1/2 

Cette composition imntre q u ' e l l e e s t adaptée pour a ' i d e n t i f i e r avec l ' o c t e t 
: batyons s t ab l e s 

TABLE DE L'OCTEJ BARYOSIQOE 

T Y Composition des quarks 

p 1/2 1 ppn " 

n 1/2 1 pnn 

V 1 0 PPA 

r 1 0 pnA 

r 1 0 nnA 

A 0 0 pnA 

~û 

1/2 -1 p U " 

r 1-/2 - 1 n U ' 

Y - 1, 

Y •= 0 , 

deux nucléons 

lambda'..' —._.-.-,; 

l e s t r o i s s i g ^ i . 

l e s c s i . '•' r'-

Aussi d ' ap rè s l a formule (XIII ,19) on v o i t que l ' o c t e t dee mesons 

cons t i t ué s par le e t a , l e s t r o i s p ions , l e s deux doublets de fcaoïis p*ut 

s ' i d e n t i f i e r A Ja conf igurat ion 8 provenant du produi t 3(5)3 (vn i r p a r ' ' : ' -

::à. 



/m 0 0 \ 

° ° • / 

La transformation de jauge de 1ère espèce 

it 
q •* e q 

produi t , comme on le s a i t , le courant (baryonique) : 

B (x) ~ ^ { x ) Y P q(x) 

qui se conserve. La charge correspondante ( l e nombre baryonique) 

q(x) - - i eB 

cui donne l ieu 

lB,q k (x>] - - qfc(q-> 

La symétrie de L sous le groupe SU(3) exige l ' é g a l i t é des nasses 

En effet sous la transformation : 

(X1I1,26) qU> - e

l E c i 2 * û q ( x ) ~ (I+iE Ai )q(x) 

terme en la masse de L 

• a â V 

transforme a i n s i : 

(XIII,27) •= q-M..q.+ie Jq .H-, \(\J. q - q . i ( * ) . . M.. q,_ 1 

= ^ V i ^ a V V V ^ V i l A 
et donc L n ' e s t inva r i an t que s i m. • m., i , k • p ,n ,A. 

Dans ce cas il y aura huit courants conserves : 

lT(x> - q(x)y' ? 1 
'a ^ x ' 

(XIII ,28) et 

a„ r > ) - o si i 1 - " V 

Les générateurs de SU(3J sont l e s F t e l s que : 

a fl q(x) e 2 ' 



Les courants axit 

(XIII,35) 

et les générateurs F "" sol 

(XIII,36) 

A l >) - q (x ) ïV * \ , « l U ) 

d x A°(x) - F J ( t ) 

Les courants axiaux ne ce coni«rveraient que ai lea Maaes i* tous 
les quarks étaient nulles : 

V.w - ' u™ <V \> 'JVttV*' 

Les générateurs F ne forment pas une algèbre feraee. L'en'eable des 
16 générateurs F , F forae une algèbre fermée'puisque : 

[F att).F b(c)3 - i f . , , c F c ( t ) , 

(XIII,38) [F a

5 ; t ) ,F b

5 ( t>] - i £ a b c F c ( t ) , 

[F a

S (c) ,F b ( t ) ] - i f a ^ 5 ( 0 

C'est une algèbre SU(3) x SD(3), ce qu'on voit en défini»saut : s 
charges chirales gauche et droite : 

P a

L ( t ) - 1 [P n(t) - F . 5 ( t ) ] , 
(XIII,39) 

2 t r a v l 

F a

R ( t ) - \ tP„<0 + P . 5 ( t ) ] 

i alors : 

[F.-(t).F. (t)] - i £.k„y *(t) 

[F »(r). ; » ( t ) I - i f . F / ( t > 

[F/<C), F "COJ - 0 

Les courants chirales associés a F et FR~ 

Les courant» r:(»i et A*j(x) se tr«niforment «oui SU(3) i 
opérateur tenseur qui appartient S là representation 8 : • 

l ' .w. V ' i i - i Wc<*> 
[F,(t). *JW1 - i _„ />> 



' .- qui r é su l t e t.... iOglec ie commuât ion de q(x) • 

111 - !_\ANGI.F "K CABIBBOET L'UNIVERSALITE DES INTERACTIONS FAIBLES 

Avec les hui t [>énératours P on yeut de- r un ensemble de huii 

au t r e s opê ra t -u i s équ iva len t s . 

T * " p i * L F 2 ' 

'I = F - i F 

( U 1 ' , ,U U O» , 1 O 0 , 

0 0 J , f - Il O ol , T 3 " i ( ° ~ 1 0 ) 
0 Û CT \ ) 0 < / ^ 0 0 O' 

( O 0 U 0 0 0* 

o, o.. o I..,. y" - f o o. o-1 , 
o o D ' ..,- >i o o ' 

('•r" o." o - à \ ••v:".'::-. -v :'-•.yo'-'-o Ov 
o - ' o = i ) ^ ( o o - o ) 
o q , : ô ' • - ' • ' - ' : : V * Ô I o 

Y « - | [ o î o ] ,.:; ~ •>. . 
* 0 0 - 2 ' l • • . . • • ' • • . " . • • 

e t ces opérai>:urg ont l e s coranitateuts Bu£v*nts 

[T 3 ,r] a ±T 

Iv\v~] « 2V 

[Vj.V*] - I V 1 

I» 



[ U * . i n - 2D 3 , U 3 -

[ U j . t n . su* 

[Y.T 1] - 0, [Y.T^] - 0 , 

[ i j . i r ] - i I v f , 

[Y.V*1 - ± V1 , 

( T 3 , I T ] - T i r , 

IT, i r ] . s u * . 

IT~,V*] - 0*. [T*,U*] - V* 

!v~,T*] " U~, [u~,T~] - V~ 

[ v \ l T ] - T*. tU*,V~] - T~ 

q l " ( l - y )T q - P Y " ( I - Y >» 
(XIII , 44) _ . __ _ . 

qv"(l-Y )T q • nï"<l-Y : ' )p 

et donc ce sont l e s courants f a ib l e s des quark , qui correspondent aux 

Transi t ions f a ib l e s neutron * proton e t proton -*• neutron respectivement 

(voir équation XI I , 11 ) . 

D'autre p a r t , 

ÏXI I I .W) _ _ 
qtVCi~ynV q - ^ " ( l - y ^ P 

On peut donc considérer ces courants cowne l e * responsables des t r a n s i t i o n s 

Ianbda -*- proton e t proton * lambda respect ivement . • 

Nous a l lons donc admettre que l e s courants f a i b l e s V (x) e t A' (x) ./*' 

sont des membres d'un oc te t de SD(3). Et p u i s q u ' i l n ' y a que deux généra teurs 

de SU(3) qui correspondent , l ' u n i un changement de charge hadronique &Q • - 1 

et d'hypercharge (ou d ' é t r ange t é ) ÛY • 0 , l ' a u t r e 3 ÛQ • 1 . AY * l à savo i r , • -

I et V respectivement, nooa poserons, avec Cabibbo : 

(XI I I ,4 i ) V U(x) - CQ(V
 l J +iV 2

1 1 ) + C x ( V ^ + i V ^ ) 

où v^fje), a =• 1,2, ... 8, sst un octet de courants aous SU(3) tel que lea 

générateurs de ce groupe soient : 

. jv>>A 

Quelles sont les condi t ions aptes à déterminer l e s cons tan tes C e t C ? 

Or s i , en généra l , l e courant V (js) e s t une combinaison l i n é a i r e d* VjJCx) 

(un vecteur de l ' e space a 8 dimensions) 



on p . - . r r a i t toujours fa i re une transformation Slî(3) et [o vecteur V (x) 

cfi •ngdraic <.'e pos i t ion dans Je plan ÙQ ~ 1 «--«ms que l ' on puisse détermine; 

a a d i r e c t i o n . Le f a i t que le lagrangien (X11T,24) a un tenue de maBse 

s ign i f i e que la symétrie SU(3) e s t rompue. En e f f e t , ce terci< p r i v i l é g i e 

les axes 3 ei 8 de l'f.space de l ' o c t e t puisque : 

1 , 

q(x)Mq(x)- qU) f 

^C 0 

) ( 0 n n 0 j q -

a(q(x)Iq(x)) + B ( i ( x ) ^ w ) + Y(q(x)XBq(xj) 

• ! ( m

P " V 

* " T ( m p * °n " 2 V 

~ar conséquent l ' h a n i l cnmen ' H . c qi- : rompt l a symétrie SU(3) con t i en t un 

term-- dt- la ' --• : qMq qui p r i v i l é g i e l e s axes 3 e t 8 (ce ternw conroute 

toutefo is avec T et Y). Dans l 'approximation où l ' on néglige l e s i n t e r a c t i o n s 

t . ctrooagnétiques oo pose m - ta e t a l o r s c ' e s t l ' a x e 8 qui roapt l a «ymétrie 
Sl T(3), c ' e s t - à - d i r e , si o, * m . 

P 

" Il l e u r s , les divergences (XIII ,31) e t (XI i» ,37) s ' é c r i v e n t : 

\ , V a ( î 0 = i ^ t î 0 [ M ' ï a J 4 ( x > ' 
(XII.57a) 

^(X) = i q(x) (M, A > J Y q(x> 

V V X ) ' ( B f a3b * Tf.8b> « W \ <<*> 

( X I t l , S 7 b ) J

w

A a < ^ = iaq(x)Y 5 X a q(x) * 

5 (f 6a3 « ( x ) q ( x ) + d3ac **»"" A***»} 

+ iv ( | « a 8 <<*> Y 5 qOO * d 3 a c q(x) Y 5 \ c q ( x ) ) ; 

puisque : 

M •= a i + B).3 • Y*g 

Pour l e s courants d ' i n t é r ê t physique d ' après (XIII ,54) on a : 

(XIII .59) S^tvJ1 + i V 2

U ) - i (m -a^) (pn) 

et donc le courant v e c t o r i e l sans changement d ' é t ran^e tÉ se conserve quand 

"=p = n«nJ i - e . . quand In symétrie SU(2) es t exacte (en négl igeant l e s e f f e t s 

é lec t romagnét iques) . 



2 2 
t par conséquent : . / ,9^ \ 

(XIXI,v«j = - — , — 
A<Tr+u v ) cos 0 fn ^z 

De la va leur expérimentale de ce rapport i l v i e n t 

ft)tE 6;ro-2: 

A la l imi t e de symétrie SU(3) exacte 

£K = f T <SU(3) exac te ) 

on ob t i en t _ - ' 

(XIII ,66) sinS "3 0,2655 ± O.00C6 

en premier ordre dans l e terme de rupture de SU(3). 



wit £,. • 0 

ms {VIII,l,2) du pion seraient interdites 

;oic m - o 

! masse nulle. 

On voit que ce t t e l imit* es t moins forte que c e l l e ieposée par le nwdSle 

à*s quûrsi puisque d 'après c e l u i - c i 

a (A^-iA^l «• i (py 5 n)( tn +m ) 

"a conservation de ce o^i ran ' exigerait tu • m - 0 . L'expérience semble 
p n 

indiquer \a rr-i-servat ion p a r t i t U e de courant axial (PCAC) due S la p e t i t e 
"s ieur ce la nasse do pion par rapport à la nasse des baryoos. Pourquoi cet 

in té rê t à la conservation de A ,x) ? Pour expliquer l a fa ible renorxalisation 

d..- C. (équation VII,29) . 

Considérons la désintégration beta du neutron e t l 'expression 

(Vil ,24) de ! ' é l ?nenc de natrice du courant ax ia l . Co urne la part ie du courant 

3 ^ P ' l A Ï o ) < ° > l P > • C

v ' f ' i A ^ W l P 

<P' | .Aj o ) (o ) i f - - <f\kv

MM\r> co*S 

< P ' l A ( 4 ) < o ) | P > -

W Î - ^ Û -



<y-v,:M ^"AJCOJÎPJ" • <i)(iq\(q2>) - ^ ( ^ N ^ ^ ' Ï Y ^ ' P J ) 
-q 

où l ' on considère que la mas :e du pion e s t n u l l e . 

Si l 'on compare avec l ' express ion de cet element de matrice en fonction de* 

f.icu'urs de forme on vo i t que ce diagramme ne contr ibue qu ' à l a fonction 
,13) , 2, 

- q 

2 

.TJ £_ e s t la constante de couplage n-N renoroa l i sëe * • £ " ™ l*i * n ( l î 

esc le facteur de forme du pion dans la t r a n s i t i o n pion •+ v ide . 

Ainsi si c e t t e cont r ibut ion domine la valeur du fac teur de forae 

jusqu 'à q J 0 , or. aurs : 

. par consequent : 

f a ) ( o ) .Si 

on obt ien t la r e l a t i o n de Goldberger-Treiman 

(xrv , i3) «wV°> - ^ °K ^ « ^ S 4 

La cens v .^ se réfère à des pions charges . 

Cette r e l a t i o n s e r a i t exacte s i l a masse du pion é t a i t nu l l e • 

On peut la considérer comme approximativement va lab le puisque m * nu . Pour 

déduire de c e t t e équation une an t re r e l a t i v e a des quan t i t é s mesurable» 

physiquement S."- r " u t savoir comment ces quan t i t é s passent , comme fonctions T^ 

de E . , de la - ' ' e u r zéro à la valeur de l a masse du pion ; on admet, faute 

de meil leure connaissance, la v a r i a t i o n l e n t e . Une app l i ca t ion d i r e c t e 

de l a r e l a t i o n de Goldberger-Treiman aux va l eu r s expérimentales 

(XIV,li 

tandis que 

P « 1,22 , ï g * 14,5 

£ . < 0 ' . . . • ° . 6 ' ' 



(XIV,211 < 0 | 3 J A
A ( O ) | T I > - tyn^ 2 

o n obt ient : 

IX1V.2J) C * m^f^ 

Appelons j le courant qui e s t la source du champ *p, c ' e a t - à - d i r e , 

posons par de f in i t i on : 

(XIV,23) jjjix) - (o+m B

î)«) a(x) 

On aura a lo r s pour la dés in t ég ra t ion du neut ron , par exemple : 

. 2 . . 2 
P ' |8 . ,A:(=) |P> - C <P'k<o)|P> - C ï î l l i ï L ^ J ï t S Î J î i 

C ' P , | j « ( ° ) | P > 
U 2 2 

Par dé f in i t ion : 

<XIV,26) < P ' | i , < o ) | P ; 2 , 2 ' ^ g U . ( P ' ) i T S u (P) 
" ' " it ' " 

Si q i* m on dé f in i r a g(q } par l ' é q u a t i o n : 

(XIV',2/) ' P ' ! i n I ( o ) | P > - ^ î g ( q 2 ) î (P ' ) i - r 5 u n <P) 

g(q~) est la constante de couplage pion*-oucl€on hors de couche de masse 

. q W ) . 

Si l 'on cocipare ces deux équations avec l e s équat ions (XIV,7) e t (XIV,8) 

on ob t i en t : 

B i D ( q2, . cJMÙ. . r^sC^h. 

équation exacte pour q f m . 

Etant donné la d é f i n i t i o n (XIV,7) i l v i s n t à pa r t i r *de D(q ) 

(XIV,29) g(o)f_ = Sï 
*«€ 

L'hypothèse PCAC aff inae que <P' [ j _ ^ ) \^> v a r i e lentement comme fonction de' 

q = (P ' -P) dans l ' i n t e r v a l l e 0£q*^m . Si l ' o n remplace a l o r s 

( x i v , 3 o ) g(o) = g o n / ) -:.-" ; - • - : • ' r' 



a •-, 

IV - C O K S E S V A T I O S PARTIELLE DU COURANT AXiAL AVEC ûY - ) 

Lss considérations des paragraphes précédents - d a t i f s au pion «t 

au pôle du pion se transplantant au cas du kaon. Cela veut dire que l e s 

condi t ions é tud iées pour la conservation du courant ax ia l avec AY * 0 e t 

basées sur la p e t i t e valeur de DL sont géneralîsablea au cas du courant axial 

jvec A Y •= 1 et seront basées sur la l imite m. * 0 . Conme ÏIL, — 3HL, c£* 

considérat ions sont raoi.is u t i l e s sous le point de vue physique, 

Au l i eu de la dés in tégra*ion beta du neutron on considérera par 

le :curant axia l y contribue avec l'élément de natrxte : 

:i\ m <P*(n) |A( 1 ) (o) |P(r~)> <P'Cn) |Aj 1 ) + (o) |P(Z~)>si i 

C.-inaae pc ;r l ' équa t ion (VII,24) on pose maintenant : 

(XIV, 38) U J n A A n ^^iCv-m-

par consequent : 

(XIV, 35) 
< n ) | A ( I „ ( o ) | p c £ ) > . ï ï i i < p - ) i t < 1 ) t , v * ...:.;.'.;• 



C H A P I T R E XV 

LA FORME ALGEBRIQUE DE VUHIVZRSALITE 

1 - REGLES DE SELECTION 

On a vu au Chapitre K i l l , paragraphe I I I nue l e s courants f a i b l e s 

sort irer.hres d'un oc te t Stf<3). 

Concne il n ' e x i s t e pas des générateurs de SU(3) avec AY > 1, la 

théor ie conduit aux règles de s é l e c t i o n suivantes ; 

,*S' < I Les réac t ions serai-leptoniques avec |AS| > 1 dont i n t e r d i t e s , 

par exemple : 

= i~ n + e~ • 

b) J AQ = AS) Les réac t ions sea i - Iep ton iques avec AQ - -AS sont i n t e r d i t e s . 

i e f f e t , , coraae le charge hadronique e s t donnée par 

où E es t le nombre baryoniqud, AB - 0 , on aura 

(XV,2) in = A1 3 * | AS 

L'hypothèse AP = _ i S conduit à : 

(XV.3) AT3 = | AQ 

et coi.7as dans les réactions f a ib les ÙC] = I , on a u r a i t dans ces condi t ions : 

(XV,4) iAT 3 ! - | 

Le courant devrai t donc avoir une p a r t i e avec i sosp in supér ieur ou égale 

S 3/2 . Ces termes n ' e x i s t e n t pas dans l ' o c t e t SU(3). 

Par conséquent l e s réac t ions i n t e r d i t e s (XV,5) su ivantes sont i n t e r d i t e s 



J o ) , K ° * ~ ! T - ? - T

? - ^ ' 2 ' 3 2 

:•.-.>- l - i . i I 1 -
2 * 2 ' 

- : ; ( ] ) ! K > ~ M 

ci- qui é t a b l i t le rapport c i - de s sus . 

Si en se rappe l le aue. en négligeant la v io lat ion très fa ible de CP, 

^ M ^ I K S - ^ - I ^ I ^ . ^ - I J ^ I ^ 

K -h T- +e +v 

est interdite par la règle ûS • AO, 

Par conséquent : 

A (K* * Tï c+ e +v__) - A (K,°-+ T +e~+\>a) -

(XV, i n 
! +V ) 

Kj et K, ne sont pas des é ta t s propres de l'Étrangetë c ' e s t pourquoi 

i l s peuvent se dés in tégre r en TÏ e t en ir • 

I l - ELEME'.TS DE KATRICE DU COURANT ENTRE MEMBRES D'UH OCTET 

Mous voulons maintenant déterminer la forrae des é ta t s physiques 

de U représen ta t ion 8. 

Jontre les oper. des part icules de l ' o c t e t sa t i s font 

fF",ir u ] = i f™ 

-< , b | i t «V>-
- i f a c b - i f b a C 



f s v . ' o j T + | c , t 3 - i > - / < t * c 3 ) f e - t 3 + i ) ; t , t . 

On a : 

(XV.21) T. |1 ,0> = ^ 2 | l , l > 

(XV.22) T + | T T J > * Jï\y » 0, t » 1, tj » 1> 

D'autre p a r t , d ' a p r è s (XV.16) 

(XV,23) T+fiT
3> i (F 1 +iF 2 )J i r 3 > - i f 1 3 d |7Td>+i( i f 2 3 d ) !T7 d > - - i f ^ H ^ : 

par conséquent : 

(XV,24> I ]y • 0, t » 1. c 3 « 1> s |t^> - - — ll\> * »I»2»J 

On obtiei a i n s i : 

0 - . 2 5 ) |y - 0 , t " 1, t —1> 5 | t > - — ( K > - x |n ,>) 
^2, 

l>*>. v > 

|it >, | I - : 

Jy = 0 , t - 1, t - 0> 5 | t Q > =• |TI 3 > l?>. |î°: 

'•"' v * i v " i v i r

5 H v • ^4MlV;i.fA3dlV, -%:iii-^MBs?)i 

par consequent 61 

(XV.28) T*|u > - — |y = 1. t - 1/2, t , - l /2> 

XI'. 29) [y - 1, i ' | ' , t 3 + i > - - -p'ClV' .' ' IV> K > , i^.; 

^ * i v - (F6 • ir7) i v . u t 3 i \ v - f ; 3 d i v 

- / Î 
y » 1 , t - I , t - • 

on ob t i en t 

(XV.30) 

Egalement : 

(XV,31) 

• j , t 3 - - - > . • - - ^ • ( i v « . i | V ) 

|y " - 1 , t • I , c . i ' » - - J - ( | n 6 > - f | n >) !?>%' 



XV,32) - 1 . t - * . ! > . - ! . ( | V * i |„ >)| 
Jï 

IK~>, IS"; 

Avec In d e f i n i t i o n des Renerateurs T , et avec la constante de 

s t r u c t u r e du groupe 5U(3) on cons t ru i t donc l e s é t a t s physiques de l ' n c t e t . 

Les raêmes constantes f . déterminent l e f g lSr^nt" de matr ice du 

courant v e c t o r i e l en t re nciabrea d'un oc te t dans l 'approximation permise. 

En e f f e t posons : 

<W,33e> [?„ . B b ] - i f a b c B c 

ûO B s o r t l e s conpusanecs de l ' occec des bacyons oc soie : 

(CT,3;b> <B f (p'>|v*(o) |B.Cp>> - i ïï(p')yiu(p)Caif )• O(q) 

of! 0(a) sont des termes qui 8 'annulent avec q = p '~p . 

On a a l o r s : 

< B £ ( P ' ) | F J B . < P ) > - i f ; , i t <a f : (p ' ) |B k (p)> -

(XV, M) • W (2ïï> 2" 6""--) %! 
f . . « T ) 3 2p°f i 3 (p ' -p) <L, 

Mais â l a l ' n i t e dé s y n é t r i e SI/(3) exac te : . 

'""'• <«f(P') |F 1 1JB 1(p)>.-<à f(y)| |v j l

, ,(i)dV|B.(p)> 

- ^f(p')|fv a°(K,o)d 3»[B.(p)> « 
(XV.35) . / , , . ' • 

.. - C2n) J 6 J (p ' -p> . i u<p')Y u(p) c £ f -

" ' Cai£ 2P ( 2 , ° « tP'-P) « s s , 

On v o i t que 

(XV,36) 
a i f ait 

Pour l e s courants axiaux onccnsit ière ' .que" À (o) appa r t i en t â un oc te t e t donc 

^ioJl\<P)> Ê " 8 ® 8 - T + 8 l " + 8 2 + 10 + 10* + 27 

A'I'éljEny-ijt do Matrice ' ^-.- <• 

. < B f C , ^ Î ^ V o ) f B . C p U ^ • .' ;. • .•.. ' . i = ' f i "• " 

contr ibueront seulement I#s Élémen,'-= .de 8. et.,8 / I l y a deux,combinaisons 

l i n é a i r e s de A (o ) (? . (p )> qui se tral.kfonoent comae un o c t e t : -

« i ^ ' - ' i y ^ ^ f ' f 



(XV,37b> d a . k A*(o)|B i<p}> - | < | ^ I I ) 1 < p ) > . 

On aura donc dans l a l i m i t e SU(3) exacte : 

<B f (p ' ) |A*(o) |B i <p)> -

(XV,38) - i f i i t < B £ ( P ' ) 1 ^ J ( p ) > * d a . v ' B . l p ' ) | w " X f p ) > 

Uans l 'approximation permise : 

U ^ V ' ' ' ^ " ' " ' , ' ^ - G pïï'A
5 u faif 

( X V . 3 9 ) . . , . 
daik ^ < V ' > ! » K <»>%-p " °D »'T * » "ait 

(XV,40) ^ < 3 f ( p ) | A a ( o ) | B . ( p ) > - dt^fy * d a l f CD) u ' ï V « 

M i 'on applique c e t t e méthode à pi? 

n - p+e~+v G = cosâ(GF+G ) 

l~ * A+e~~+v G. = -— G„ cos9 

e A ^ D 
(XV,il) L~ - n+e~+v GA = (G-G ) sint 

D " F ' 

sin9 

Pour 1^ courant v e c t o r i e l on ob t i en t G en f a i s an t 6 • 0 e t G„ a^y 

dans ces formules pour G . 

Pn obt ien t a ins i : 

s inP = 0.228 4 0.006 
(XV,42) 

vr^g- = 0,611 ± 0.014 
V G F 

III - LE THEOREME DE APEH0LLO ET GATTO 

Considérons la réaction C Kn^) "• 

(XV, 43) K + •* T°+e ++y 

Son élément de msExice e s t : , _: "' 

(SV,44) M - - ^ BLne«-iT0(p*) V*(fl)-i V 5 (o ) |K + (p )> ( « ^ C l - Y ^ v J 
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Aii-.si à la U n i t e X — 0 : 

f T ( o ) = 1 

Le théorene d'Adcmgllo e t Gatto affirme que f + <ol d i f f è re Je l ' u n i t é , quand 

1? courant e s r non-conservé, pair des termes du second o r d r e , X , dand le 

pa ra rè t r e A du harùlconien qui rompt l a symétr ie . 

En e f f e t , du connutateur 

(XV,491 [V+,V~] = 2V3 = T 3 + | V 

on t i r e : 

(XV.50) c K + < p 2 ) | [ v \ v - ] ] K + ( P l ) > = 2 ( 2 l ï ) 3 . . ; E K , S 3 ( p ^ ) 

On insère un ensemble complet d ' é t a t s physique!- in t e rméd ia i r e s 

^ î<K +CP 23fv*[n> <nîV-fK""<P1>> 

- K + ( p 2 ) | v " | n > < n ! v + | K + ( P l > > $ = 

(XV,SI) f ~ £ — !<K + (p , ) |V + | i r 0 [p>><TF 0 (p ) |V~ |k + ( P l )> -
J (2T,) 32p° X . 

- 2 ( 2 u ) 3 2E R 6 3 ( P 2 - P l ) 

On dé f in ie le constance f par : 

(XV,52) <n < , <p)|v" l K*(!. 1 )> - / 2 f M ( 2 5 ) 3 ( 2 E 7 | 2 E K ) 1 / 2 S 3 Cp-Pj) .. > ' , 

I l en r é s u l t e que : • 

2fJ.(2-) 3« 3<p 2-p 1)2EK* J_ ^ P j W l p ' X p ' I V I p ^ " 

(XV,53) 
- <P 2 |V I p ' X p ' l v | P l > j . 2<27T)-> 2 E K 0 J ( p 2 - p 1 ) • 

Co=e <p, |V*|pj> ~ 0 '* ) (puisque de [F,.H] - i | d 3 x S ^ C » ) 

i l r é s u l t e ; 

( M . 5 0 < P 2 ! F j P l » . i i E l l M Ï l P i ( 2 , ) 3 6 3 ( p r P l > . s : . ., 

et <p 2|3 V
a [ P l > ~ 0(.\)] il est clair <,ue . .. ' •'. 

(XV,55) f J., - 1 » 0 (A 2) ,; 



C H A P I T R E XVI 

.LES DIFFICULTES DE LA THEORIE V-A DES INTERACTIONS F.'-TBIJSS 

I - LES BOSONS 'INTERMEDIAIRES DES INTERACTIONS FAIBLES 

Après la suggestion i n i t i a l e de Fermi, un avai t esf.-iyc de décr 

lea i n t e r a c t i o n s f a ib l e s au moyen de composantes s c a l a i r e , v e c t o r i e l l e , 

jpGO'.'.doscalaire, ax ia l e e t t e n s o r i e l l e du lagrangien, d ' après une sup t r^os i t ion 

du type donne par l ' équa t i on (111,20) , l e s combinaisons V-A e t S-T+P étant 

i nva r i an te s par rapport au rearrangement de F i e r z , I l n ' y ava i t a i n s i aucune 

ra i son de t e n i r à l ' i d é e d"? bosons in termédia i res- qui s e ra i en t les responsable 

des i n t e r a c t i o n s f a i b l e s - l ' i d é e àa pos tu le r un grand nombre de champs 

in te rmédia i res e t de constantes d ' i n t e r a c t i o n n ' e s t pas s a t i s f a i s a n t e . 

l a conception de Yukawa d ' a s s o c i e r l e s pions aux i n t e r a c t i o n s 

f a i b l e s aus s i bien qu'aux i n t e r a c t i o n s f o r t e s n ' a v a i t pas abouti puisque 

bien que l e s pions donnent l i e u S une i n t e r a c t i o n f a ib le pseudo-scala i re 

indu i te i l s ne peuvent pas d é c r i r e l e s i n t e r a c t i o n s de Fermi ( l 'échange 

de pions ne contr ibue pas aux fac teurs de forme vecteur ou ax ia l dominant 

à q •* 0 dans la . d é s i n t é g r a t i o n b e t a ) . 

Dès le moment néanmoins ou Feynman e t Gell-Mann et Marsiiak e t 

• Sudarshaii montrèrent qje. l e courant f a i b l e é t a î 1 - m quadr ivec teur , l ' a n a l o g i e 

avec l 'e lectrodynamique devint plus frappante : on pensa que l ' i n t e r a c t i o n 

loca le dé Fermi courant-courant pouvait bien ê t r e due à un échange d'un boson 

v e c t o r i a l lourd en t r e l e s couran t s . 

Si l ' o n considère par exemple l a dé s in t ég ra t i on du muen 

le graphe de Feynman pour l ' i . Uract . 'on loca le courant-courant . f i g . KVI.l) 

Figure (XVI,1) r 
Y 



conduit à l'amplitude S de la réaction, qui s'ëcrït en première approximation, 

.'après les règles de Feynœan 

S = - i££ [d4x(vyCx)ï
a(l->5)y(x))(ë(x)Ya(l-Y

5)Ve(x)) 

L'idée que l ' i n t e r a c t i o n e s t le resul t M l'Gchange d'un méson Lourd H, d'j 

masse HL,, ent re l e s couran ts , nous • .->Tiduit 3 remplacer ce graphe par l e 

diapracms de la f igure XVi,2 

Figure (XVI,2) 

/ 
Si l ' on désigne par A_ î,x-y) le propagateur de Feynman du champ v e c t o r i e l . 

W (x) associé aux mêsons U, on aura pour l ' ampl i tude correspondant a ce 

dern ier diagramme l ' e x p r e s s i o n 

s- - - i 4 J[d*xd*y ( y . l l ' i l V l t W ) (iF(='-y))tl8ï<3i)YS(l-Y5)^(>r) 

La constante t , e s t la cons tante d ' i n t e r a c t i o n en t re l e s courants et; l e champ. À 

»°. . . . . . . . . . 
Un champ v e c t o r i e l H^(x) dr .é d 'une masse HL, s a t i s f a i t à l ' é q u a t i o n : 

3 e G
o B U> • mjj »°(x) -P°(x) , 

G a B ( r i - i V w " a V c ) 

Cette équation s ' é c r i t 

(XVI,1) P WB(x) - p. <x) 

est L'opérateur que nous appel lerons opérateur de Proca. 

Dans le v ide , p (x) = U, ) ' équa t ion : 

P„/(ri - o 

doi t conduire à l ' équa t ion de Klein-Gordon en ra i son d e l à r e l a t i o n . r e l a t î v i s t e 

ent re l ' é n e r g i e e t 1'impuLsion. I l do i t donc e x i s t e r un Opérateur ir , l ' o p é r a - . . 

teur de P e i e r l s , t e l quf . *- " 



par c e t t e formule de S* s i l ' o n admît ^ue le t ran^f-Tt d ' i r vision 

t - P V P U ::. -• • • • 

est Eres f a ib le par rapport â l a nasse rjy : 

L ' i d e n t i . i c a t i o n de S e t S' dans c e t t e approximation conduit à l a r e l a t i o n : 

"V /2 

en t re la constante ^ , l a oasse ntT e t l a constante de Fermî. 

I I - INDICATIONS D'USE POSSIBLE UNIFICATION D.ÎS INTERACTIONS FAIBLES ET -

ELECTROMACKSTiqPES 

Pour c a l c u l e r la masse m on doic conna î t re l à cons tante 

d ' i n t e r a c t i o n g . Puisque le méson W es t v e c t o r i e l , l ' a u t e u r a suggéré en 

1958 eue c e t t e constante d ' i n t e r a c t i o n g^ é t a i t égale à . l a charge e , 

cMs:a: i :e d ' I n t e r a c t i o n d'un au t re boson v e c t o r i e l , l e photon, avec l a mat iè re 

% • e / ' ' ' ' ' 

Dans ces condi t ions la masse a , a une valeur de l ' o r d r e de SO nasses 

pro toa iques . 

Dans le même a r t i c l e , l ' a u t e u r suggérai t l ' e x i s t e n c e de mésons 

v e c t o r i e l s chargés W~ et de césons v e c t o r i e l s neu t res w e t e s s a y a i t 

sans succès d ' é l iminer l e s r éac t ions nua observées p rodui tes par lea courants . 

n e u t r e s . -. 

Par conséquent, l 'hypothèse &, « e ind iqua i t pour la première fo i s 

que l e s nésons H e t l e s pht,;ons appar tena ien t 3 ia mène famil le e t que l e s 

i n t e r a c t i o n s ôlcctromapaétîques e t f a i b l e s avaient l a même o r i g i n e , i^cce 

idée trouve sa r é a l i s a t i o n dans le développement é légant e t p r é c i s é laboré 

par Weinberg et par Salam e t VJard. ' 

La t héo r i e de Ferai n ' e s t pas renorcial isable : l è s i n t é g r a l e s 

d ivergentes dos amplitudes d 'o rdre supér ieur au premier ne sont pas absorbées 

dans la renormal isa t ion de la masse e t d e l à constante d ' i n t e r a c t i o n . La-

théor ie des mésons v e c t o r i e l s qui ont une masse n ' e s t pas reL-orraali sable 

non p lus : e l l e n 'a pas d ' i nva r i ance de jauge f;t l e propagateur de Feynman 

possède un term, quadratique dans l ' impuls ion des ; n€sons v i r t u e l s qui 

contr ibue 3 l a divergence des amplitudes d.'ordre supér ieur au premier., 0 '' , 

L ' idée de Salam et "Hard e t c" Weinberg" à été" de' déc r i r e les ' 

bosons v e c t o r i e l s p»*- des --hamos à masse n u l l e , ayairt une invariance de 



L " ej(v) \ * s« "»*» * ^ ^ * V M V J S 

deviendra : 

L • « «l"« * ^ S A * h tf3X * Jo\= 

dès le ancient où les constantes d'znteracticn satisfont aux relations 

„ - ^ H L ' 

Pour settro sur un pied d'égalité les interactions électromagnétiques et les 
interactions faibles sous la forcée d*un lagrangien indépendant de la charge, 
on devrait donc avoir une relation entre la charge e et les constantes 
d'interaction g-, et g , du type indiqué cî-dessus. 

s l'équation (XVJ.4) on obtient l 'égatitë gy • e. 

Pour n B 2 la relation 

n 
a été établie par T.D. Lee. Le modèle de Salam-et Weinberg relie les champs 
v et A â un champ de Yang-Mills Cl et à un champ vectoriel B . La relation 
(XVI,4) y sst remplacée par une autre plus générale. 

IV - VIOLATION DE L'UHITARITE 

La théorie basée sur le lagrangien'; (111,13) ne peut pas décrire les 
réactions faibles au-dessus d'une certaine-énergie. Elle conduit â'une section 
efficace pour la diffusion 

(XVI.5) v £ + C ~ vl + C 

(XVI,6) et y,, + ï~ - V ( , + 2~ 

qui viole la borio d'unitarité. 

Pour voir cela, considérons tout d'abord par aiinplicité une 
collision élastique entre deux particules sans spin. L* /mplitude de diffusion 
s 'écrit , comne il est bien connu : 

. 2TT f(6) - ~ <e)T|0> , 

<g|T|0> = i I (2£+l) T.C-0 P. (cos6) : 



en'fonction de l'impulsion itri-dimensionnelle) initiale k et l'énergie 
totale s dans le système du centre de masse, T.,(s) et o«(3) étant l'amplitude 
d'onde partielle et la phase correspondante. La section efficace différenticllt 
est alors : 

.l'autre part, l 'unitarité de la matrice S conduit au- théorème 

4n . 

qui établit une relation,entre la section efficace totale et la partie imag. 

naire de l'amplitude en avant (8=0).. 

Si, dans une collision, une onde partielle seulement contribue â 

l'amplitude, par exemple l'onde S,on aura : 

Ici f (o) _w T- a in 6 

et par consequent : 
o- < «E « AÉ!L 

tot - ,2 
k s 

si l 'on peut négliger les niasses des particules de telle façon que : 

s = 4k2 

On a donc pour la section efficace élastique, dans ce cas, la borne d'unitarité 

Maintenant»' nous avons besoin de la 3ection efficace des réactions 
fXVI,5), (XVI.6) ; elles sont.: 

- ' 'I . . . • • , -
ou s i rst le carré de l'énergie totaïe."dârïff le sys terne i"du centre de masse 
EC. & eut l'angle de-diffusion'. Un-doit conparer^ês1 équationravuc la section 
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cf f icsce donnée par le formalisme de Jacob e t Wick : 

(XVI,9) § - | < » 3 X < | f | » I J 2 > | 2 

où <\ X,|flA A,> e s t l ' ampl i tude de di f fus ion des p a r t i c u l e s i n i t i a l e s 1 e t 2 , ' 

avec h é l i c i t é s A,, A. dans l e s p a r t i c u l e s f i n a l e s 3 ,4 avec h é l i c i t é s A_Xi, Ce t te 

amplitude es t une s é r i e d'ondes p a r t i e l l e s : 

(XVI,io) <A J A 4 | f |X 1 X 2 > - i t (2J+1)<A 3 X 4 |T J |X 1 > 2 > d j x ' [6) 

où k es t 1'impulsion dans l e système d- cent re de nasse e t 

e s t la matr ice des r o t a t i o n s i- autour de l ' a x e y (voi r Martin £ Spearman, 

Elementary p a r t i c l e theory Chapitre A e t Appendice A)-' 

Si l ' o n compare l 'Équa t ion (XVI,7) pour grandes énerg ies : 

1 ~ 4k 

avec (XVT.9) e t (XPI.IO) on v o i t que seu le 1'onde S (J-0) contr ibue fi la 

r éac t ion (XVI.5) e t que : 

. 25 „2 Os 

«v^.Kv-fk -S 
Corme l ' u n i t a r i t é de l a matr ice S impose 

on voi t que c e t t e condi t ion e s t v io lée quand 

s = 4k 2 > : , 2 . 2ÏÏ 

Ce qui correspond â une énergie t o t a l e dans l e système du cen t re de masse ' 

de l ' o r d r e de 650 GeV. - -, ' . 

D ' a i l l e u r s à la l imi t e des hautes energ ies 3<-'' lepton £ dana l à 

réac t ion (XVI,5) sera une p a r t i c u l e gauche (puisqu'on peut nég l ige r a* aasge 

à ces é n e r g i e s ) . Comme v„ e s t une p a r t i c u l e gauche i l s ' e n s u i t que dan» l e 

système du cent re de casse le moment angula i re t o t a l sur l a d i r e c t i o n du . 

Gouvernent e s t zéro : - """ 



Pour l a reac t ion (XVI,fi) il hau t e s . ene rg i e s , on aura par corn 

dans le cen t re de masse : 

c ' e s t - â - d i r e comme le v es t une p a r t i c u l e d r o i t e e t 9. une p a r t i c u l e gauci 

(on négl ige m*) on v o i t que le moment angu la i r e t o t a l sur l a d i r e c t i o n de 

l ' impuls ion e s t figal 3 1. Pour c e t t e réac t ion on a, d ' ap rè s l ' équa t ion (XV 

à hautes Énergies : 

do (v? ,Q „ C 2 ( I+coa8) 2 

dfl te2 U 

e t on trouve que la condit ion d ' u n i t a r i t é e s t v i o l c e pour ts > 700 GeV (énergie 

t o t a l e dans lé s . c m . ) 

IV - KWl-REflORMALISABILITE DE LA THEOF.IE V-A 

La théor ie ties pe r tu rba t ions basée sur le lagrangien V-A 

conduit à des" termes d ' o r d r e supér ieur £ortemenL d ive rgen t s . 

Par exemple la d i f fus ion 

a . i eu dans c e t t e théor ie d 'accord avec le diagramme 

. Pu Pe .. 
e t son amplitude sera p ropor t ionne l le & : 
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Cet te i n t é g r a l e e s t d ivergente coxae kdlc. Et c e t t e dïvei-gSnce ne peut pas 

ê t r e él iminée par une rcuormal isa t ion^des masses et cons tan tes d ' i n t e r a c t i o n • 

puisque chaque terme d 'ordre supér ieur a une divergence-.de degré 'supérieur 

comme A s i A e s t un parai, t r e de coupure. I l f audra i t 'un.ensemble 
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infini de constances pour élininer ces divergences. La théorie est donc 
non-renorailisabli!. 

La théorie des bosons vectoriels avec masse m, i* O a aussi les ..•-.-
cernes, défauts de violation de l 'unitarite et de non-renormalisabilitC. 

Ces difficultés sont écartées dans le modèle des chnps de jauges 
unifiés oroposë par Weinberg et Salant et Ward. 
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