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Abstract: In the present contribution, a preliminary analysis of the effects of the Generalized

Uncertainty Principle (GUP) with a minimum length, in the context of compact stars,

is performed. On basis of a deformed Poisson canonical algebra with a parametrized

minimum length scale that induces deviations from conventional Quantum Mechanics,

fundamental questions involving the consistence, evidences and proofs of this approach

as a possible cure for unbounded energy divergence are outlined. The incorporation

of GUP effects into semiclassical 2N-dimensional systems is made by means of a time-

invariant distortion transformation applied to their non-deformed counterparts. Assuming

the quantum hadrodynamics σ − ω approach as a toy-model, due to its simplicity and

structured description of neutron stars, we perform a preliminary analysis of GUP effects

with a minimum spacetime length on these compact objects. The corresponding results for

the equation of state and the mass-radius relation for neutron stars are in tune with recent

observations with a maximum mass around 2.5 M⊙ and radius close to 12 km. Our results

also indicate the smallness of the noncommutative scale.

Keywords: noncommutative quantum gravity; generalized uncertainty principle; GUP;

minimal length

1. Introduction

The introduction of genuine gravitational effects in quantum field theory suggests an

effective cutoff (minimal length) in the ultraviolet regime as a possible cure for unbounded

energy divergences (ultraviolet completion). In principle, high-energy probes should be

sensitive to small distance spacetime structures, revealing the quantum nature of gravity.

The known approaches to quantum gravity such as string theory [1–4], loop quantum

gravity [5–7] and quantum geometry [8] indicate, theoretically, the existence of such a

minimal measurable length. In these approaches, the existence of a minimal observable

length is a common feature with the estimated size of the order of the Planck length,

lP ∼ 10−33 cm. A compelling way to incorporate the concept of minimum measurable

length into Quantum Mechanics is to modify the algebra of the Heisenberg uncertainty

principle (HUP), giving rise to the Generalized Uncertainty Principle (GUP). In the HUP

framework there is essentially no restriction on the measurement precision of the particles’
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position. In GUP, the basic phase space noncommutative algebra: [X̂i, P̂j] ̸= 0 is extended

to coordinates [X̂i, X̂j] ̸= 0 and momenta [P̂i, P̂j] ̸= 0. Historically, the original idea of

extending noncommutativity to the coordinates was presented by Heisenberg as an early

attempt to remove the infinite quantities that appear in field theories, in a time long

before the renormalization procedure was developed and gained acceptance [9]. The first

analysis of a quantum theory based on noncommutative coordinates was published by H.

S. Snyder [10].

In a similar approach to the quantization of a classical phase space, a noncommutative

spacetime is defined by replacing coordinates xµ by the Hermitian operators X̂µ [11], which

in turn obey canonical commutation relations

[ X̂µ, X̂ν ] = i θµ ν , (1)

where θµ ν is a constant, real-valued antisymmetric D×D matrix (D-dimensional spacetime)

with dimensions of length squared, that commutes with X̂µ and produces a coordinate

uncertainty relation,

∆xµ ∆xν ≥ 1

2
|θµ ν| . (2)

On many occasions θµν is written as θµν = θ ϵµν, where ϵµν is the antisymmetric tensor and

the parameter θ defines the noncommutative scale.

A relevant question then arises: what is the size of the noncommutative scale? Al-

though there is no discernible definitive answer to this question, a minimum observable

length in quantum field theory and quantum gravity should share the statistical properties

of an expectation value. Different lower bounds have been claimed for the noncommutative

scale. Conceptually, θ should be of the order of the Planck scale l2
P ∼ 10−66 cm2. However,

when the calculation is related to the Landau problem with magnetic fields (∼12 T) in the

region of quantum Hall effect, θ ∼ 10−11 cm2 [12]; in estimating the muon anomalous

magnetic moment θ ∼ 10−15 cm2 [13]; for the lamb shift θ ∼ 10−36 cm2 [14].

Alternatively, A. Kempf developed a deformed algebra, in which a modification of the

canonical commutation relation was of the form [15–17]

[

X̂, P̂
]

= i
(

1 + β P̂2
)

, (3)

where β is a positive parameter that induces deviations from conventional Quantum

Mechanics. Relation (3) then results in a GUP

∆x∆p ≥ 1

2

(

1 + β(∆p)2
)

, (4)

which in turn establishes the minimal length scale

∆x ≥ xmin =
√

β . (5)

For the n-dimensional case, however, the deformed Heisenberg algebra is given by

the commutation relations:

[

X̂i, P̂j

]

= i δij

(

1 + β P̂ 2
)

, (6)
[

P̂i, P̂j

]

= 0 , (7)
[

X̂i, X̂j

]

= 2iβ
(

X̂i P̂j − X̂j P̂i

)

, (8)
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where (8) defines a noncommutative geometry. The relations given in (6)–(8) do not break

rotational symmetry. Indeed, the generators of rotations may still be written in terms of

position and momentum operators as

L̂ij =
1

1 + β p2

(

X̂i P̂j − X̂j P̂i

)

. (9)

These algebra deformations imply profound modifications to the formalism of Quan-

tum Mechanics. While a continuous momentum space is retained as seen from Equation (7),

the introduction of a noncommutative geometry involves the adoption of a quasi-position

formalism. In this scenario, even elementary models such as the harmonic oscillator may

manifest considerable complexity and notable deviations when the energy scales approach

or exceed
√

β [15–17].

Among other formulations, Moayedi et al. [18,19], introduced a deformed covariant

Lorentz algebra to derive a β-modified Dirac equation, as an alternative seesaw-like mech-

anism for the neutrino induced by the presence of a spacetime of minimum length [20].

Marzola et al. in turn [21] developed a Deformed Poisson Brackets Formalism applied to the

MIT Bag Model, introducing minimal length spacetime modifications to thermodynamic

quantities and in the respective equation of state.

In the present contribution we introduce a novel analysis of GUP effects, with minimal

length spacetime, in compact stars. It should be noted that this study comprises a still

very cautious and exploratory research, where the structure of the neutron star is highly

schematic. The main goal is to understand that if there is a GUP, with a minimal length,

then (i) the astrophysics arena represents a relevant ‘laboratory’ to reveal these effects?

(ii) what is the limiting minimal length scale? (iii) we may identify GUP effects in neutron

star data? if so, what kind of effects may be identified?

2. The Deformed Poisson Brackets Formalism

In what follows we present a brief summary of the formalism highlighting the clas-

sical Hamiltonian description based on Poisson brackets and the Heisenberg quantum

formulation based on Dirac commutators.

2.1. Summary of the Formalism

In Classical Mechanics, the phase space of a given system is parametrized in terms

of the canonical coordinates defined in terms of position x and conjugate momentum p

n-tuples

x = (x1, x2, . . . xi . . . , xn) and p = (p1, p2, . . . pi . . . , pn) . (10)

The dynamics of the system are described by Hamilton’s equations of motion in terms

of partial derivatives of the position coordinates and the corresponding conjugate momenta:

ẋi =
∂H(x, p, t)

∂pi
and ṗi = −∂H(x, p, t)

∂xi
for i = 1, 2 . . . n. (11)

where ẋi = −∂xi/∂t and ṗi = ∂pi/∂t and H(x, p, t) represents the Hamiltonian function.

The time evolution of an arbitrary function f (x, p, t), in turn, may be expressed in terms of

Hamilton’s equations of motion as

d f (x, p, t)

dt
=

n

∑
i

(

∂ f (x, p, t)

∂xi
ẋi +

∂ f (x, p, t)

∂pi
ṗi

)

+
∂ f (x, p, t)

∂t

=
n

∑
i

(

∂ f (x, p, t)

∂xi

∂H(x, p, t)

∂pi
− ∂ f (x, p, t)

∂pi

∂H(x, p, t)

∂xi

)

+
∂ f (x, p, t)

∂t
. (12)
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By introducing the Poisson bracket,

{ f (x, p, t), H(x, p, t)} ≡
n

∑
i

(

∂ f (x, p, t)

∂xi

∂H(x, p, t)

∂pi
− ∂ f (x, p, t)

∂pi

∂H(x, p, t)

∂xi

)

, (13)

the eventual explicit time dependence of expression (12) simply runs its course with the time

evolution of the dynamical system governed by the Poisson brackets binary operations:

d f (x, p, t)

dt
= { f (x, p), H(x, p)}+ ∂ f (x, p, t)

∂t
, (14)

simply considering the position and momentum dependence of the functions f (xi, pi)

and H(xi, pi), instead of taking into account a possible explicit time dependence of these

functions. The position coordinates xi and the corresponding conjugate momenta pj obey

Poisson algebra, more precisely

{xi, pj} = δij; {pi, pj} = 0; {xi, xj} = 0. (15)

From a classical point of view, these relationships imply the simultaneous measure-

ment and exact determination of the position and momentum of a particle, without un-

certainties. From this perspective, the transition from classical mechanics to quantum

mechanics can be accomplished by replacing Hamilton’s equations of motion by the cor-

responding Heisenberg equations, the classical variables x and p by the corresponding

Hermitian operators in Hilbert space, X̂ and P̂, and furthermore the Poisson brackets by

the Dirac commutators:

d f̂ (X̂, P̂, t)

dt
= − i

h̄
[ f (X̂, P̂), H(X̂, P̂)] +

∂ f̂ (X̂, P̂, t)

∂t
. (16)

As a result, the Poisson algebra is replaced by the Heisenberg algebra

[

X̂i, P̂j

]

= i δij;
[

P̂i, P̂j

]

= 0;
[

X̂i, X̂j

]

= 0. (17)

which implies the Heisenberg Uncertainty Principle

∆x∆p ≥ h

4π
=

h̄

2
. (18)

The Generalized Uncertainty Principle (GUP) in turn induces a deformation of the

Heisenberg algebra and can be interpreted as also inducing deformations to its classical

limit, which corresponds to the Poisson algebra. In what follows, in order to introduce a

noncommutative algebra, we assume general deformations to the usual canonical commu-

tation relations, such that

[

X̂i, P̂j

]

= i fij(X̂, P̂) −→ {xi, pj} = fij(x, p) , (19)
[

P̂i, P̂j

]

= i hij(X̂, P̂) −→ {pi, pj} = hij(x, p) , (20)
[

X̂i, X̂j

]

= i gij(X̂, P̂) −→ {xi, xj} = gij(x, p) , (21)

where the deformation functions fij, gij and hij are restricted according to the conventional

properties of commutators and brackets: obedience to the bilinearity condition, to the

Jacobi identity and to the Leibniz rule provided the composition product is associative (see
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for instance [22] and references therein). In the particular case of the Kempf formalism,

the commutation relations (6)–(8), induce the following deformed Poisson brackets:

{xi, pj} = δij

(

1 + βp2
)

; {pi, pj} = 0; {xi, xj} = 2β
(

pixj − pjxi

)

. (22)

2.2. Deformation of Differential Volumes

From the perspective of Classical Statistical Mechanics, the phase space of a given

physical system represents the set of all possible physical states of the system when de-

scribed by a given parameterization, where each possible state corresponds uniquely to

a point in the phase space represented by the coordinates (xi, pi). Since both the position

and momentum vary with time, the dynamic behavior of the system can be viewed as a

continuous trajectory of points in the phase space, where the family of phase plane trajecto-

ries represents a phase portrait of the system. In Quantum Statistical Mechanics, however,

the particle has no well-defined trajectory in phase space. The Heisenberg Uncertainty

Principle, and therefore the Heisenberg algebra, effectively implies a discretization of the

phase space in minimal volumes. A modification of the Heisenberg Uncertainty Principle

(i.e., a GUP), therefore, deforms such volumes.

Particularly in [23], the phase space deformation effects are analyzed for the case of

a partition function of a quantum system that is then assumed to fulfill the semiclassical

limit. For a non-deformed Heisenberg algebra, we have the transition

Z = ∑
n

e−En/T −→ Z =
∫

e−H(X,P)/T dNX dNP . (23)

In case of a deformed algebra, it is well known that the expression for the quantum

partition function will remain unaltered, since a sum over deformed volumes will have the

exact same form as the sum over non-deformed ones. However, this is not the case for a

classical partition function. Now we must deal with an integration over phase space that

deviates from the original continuous partition function in (23) having as the Jacobian factor

(for details, see Appendix A)

J =
∂(x, p)

∂(X, P)
. (24)

This Jacobian factor distorts the phase space, relating the canonical variables of the

non-deformed algebra (which we called X and P) to the ones of the deformed algebra x

and p. Namely, we have

Z = ∑
n

e−En/T −→ Z =
∫

e−H(x,p)/T dNx dN p

J
. (25)

An important canonical invariant is the magnitude of a volume element in phase

space. A canonical procedure transforms the 2N-dimensional phase space with coordinates

ηi to another phase space with coordinates ζi [24]. In this sense, the Jacobian of the

transformation between non-deformed and deformed algebras can be written purely as

combinations of deformed Poisson brackets, and, in the particular case of the Kempf

deformed algebra of a 2N-dimensional phase space, we have [23–25]

J =
N

∏
i=1

{xi, pi} =
(

1 + βp2
)N

. (26)

This is an important result that gives us the possibility to calculate (for general de-

formations) the continuous function without introducing canonically conjugated auxil-

iary variables.
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In other words, we may effectively incorporate the effects of a GUP into semiclassical

2N-dimensional systems by applying the following transformation to their non-deformed

counterparts:

dNx dN p −→ dNx dN p

(1 + βp2)N
, (27)

which represents a distortion in the differential volumes of phase space and can be shown to

be invariant under time evolution from the Liouville theorem [25]. The effective formalism

described here has been derived equivalently as a deformation of the Planck constant h

in [26].

3. The QHD-I Model

Quantum hadrodynamics σ − ω model (QHD-I) [27–31], as a relativistic quantum

field theory for baryons and mesons, has been widely applied to studying various nu-

clear phenomena including the hadron-hadron interaction, the hadron-nucleus scattering,

the bulk and single-particle properties of nuclei, among others. It is commonly recognized

that although the quantum chromodynamics is a fundamental theory for strong interac-

tion, the QHD, as an effective field theory formulated in terms of hadronic degrees of

freedom, provides a simple and reliable approach to produce the nuclear observables that

are insensitive to the short-range dynamics. There are various QHD models, renormal-

izable and nonrenormalizable, which were tested in the past to reproduce the empirical

nuclear properties and the experimental data. In particular, the σ − ω model proposed by

Walecka [27,28] contains nucleons with the parametrized mass denoted as M and Lorentz

isoscalar-scalar mesons σ and isoscalar-vector mesons ω. The nonrelativistic approxi-

mations leads to a nucleon-nucleon interaction potential which behaves as short-range

repulsion and medium-range attraction. The model considers that the central effective

potential for the nucleon-nucleon interaction is given by

V(r) =
g2

ω

4π

e−mωr

r
− g2

σ

4π

e−mσr

r
, (28)

where r defines the relative distance between two nucleons, the two constants gσ and

gω are adjusted to reproduce the nucleon-nucleon interaction and the meson masses are

respectively mσ = 550 MeV and mω = 783 MeV.

The σ − ω model can be summarized in a nutshell, starting with the model lagrangian

defined as

L = ψ̄(i γµ Dµ −M)ψ +
1

2
(∂µσ∂µσ − m2

σσ2)− 1

4
FµνFµν +

1

2
m2

ω ωµωµ (29)

where ψ denotes the nucleon wave-function and

Dµ = ∂µ + i gω ωµ ; M = M − gσ σ ; Fµν = ∂µων − ∂νωµ (30)

obtaining the following equations (with □ = ∂µ∂µ)

(□+ m2
σ)σ = gσ ψ̄ ψ ; ∂µFµν + m2

ω ων = gω ψ̄γνψ ;
(

i γµDµ −M
)

ψ = 0 (31)

The parameters M, gσ, gω, mσ, and mω are phenomenological constants that may be

determined (in principle) from experimental observables.

Assuming static and uniform nuclear matter, in its ground state and the mean field

approximation (MFA), nucleons can be seen as under the action of an average nuclear

interaction and operating only with the space and time c-number values of the meson

fields. The higher the baryonic density, the better the validity of this approximation, since,
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at high densities, the fluctuations of the meson fields are negligible when compared with

the amplitudes of the nucleon fields, which allows them to be replaced by their expected

mean values. The mean field approximation is then used [28], which allows the deduction

of a semi-analytical solution and which consists of using the average classical values of the

meson fields:

σ → ⟨σ⟩ ≡ σ0 ; ωµ → ⟨ωµ⟩ ≡ δµ0 ω0 ; M → M∗ = M − gσ σ0⟨Fµν⟩ = 0 ; (32)

where M∗ represents the nucleon effective mass.

Substituting (32) in (31) one obtains

σ0 =
gσ

m2
σ

ρs ; ω0 =
gω

m2
ω

ρB , (33)

with ρs ≡ ⟨ψ̄ψ⟩, which represents the scalar density, and ρB = ⟨ψ†ψ⟩, which denotes

the baryon density. The equation of state (EoS) is calculated from the mean field energy-

momentum tensor ⟨Tµν⟩MFA and in summary can be written as a function of the Fermi

momentum kF:

p = −1

2
m2

σσ2
0 +

1

2
m2

ωω2
0 +

1

3

γ

(2π)3

∫ kF

0

k2

√
M∗2 + k2

d3k ,

ϵ =
1

2
m2

σσ2
0 − 1

2
m2

ωω2
0 +

γ

(2π)3

∫ kF

0
(
√

k2 + M∗2 + gωω0) d3k , (34)

where after integration results in

p = −1

2

m2
σ

g2
σ
(M − M∗)2 +

γ2

72π4

g2
ω

m2
ω

k6
F

+
γ

6π2





(

1

4
k3

F −
3

8
M∗2kF

)

√

M∗2 + k2
F +

3

8
M∗4 ln

kF +
√

M∗2 + k2
F

M∗



 , (35)

and

ϵ =
1

2

m2
σ

g2
σ
(M − M∗)2 +

γ2

72π4

g2
ω

m2
ω

k6
F

+
γ

2π2





(

1

8
M∗2kF +

1

4
k3

F

)

√

M∗2 + k2
F −

1

8
M∗4 ln

kF +
√

M∗2 + k2
F

M∗



 . (36)

The baryon density and the nucleon effective mass are also written in terms of kF

ρB =
γ

(2π)3

∫ kF

0
d3k =

γk3
F

6π2

M∗ = M − g2
σ

m2
σ

γM∗

2π2





1

2
kF

√

M∗2 + k2
F −

1

2
M∗2 ln





kF +
√

M∗2 + k2
F

M∗







 . (37)

At this point it is possible to effectively incorporate the effects of a GUP into the

semiclassical system by applying the transformation (27) to the non-deformed phase space:

d3x d3 p −→ d3x d3 p

(1 + βp2)3
≈ (1 − 3 βp2) d3x d3 p, (38)
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where the approximation is justified1 considering β p2 ≪ 1. The EoS in Equation (34)

modification results in the following expressions2

pβ = −1

2
m2

σσ2
0 +

1

2
m2

ωω2
0 +

γ

6π2

∫ kF

0

k4

√
M∗2 + k2

(1 − 3βk2)dk

ϵβ =
1

2
m2

σσ2
0 − 1

2
m2

ωω2
0 +

γ

2π2

∫ kF

0
k2
√

k2 + M∗2(1 − 3βk2)dk + gω ω0 ρBβ . (39)

After integration, these expressions result in

pβ = −1

2

m2
σ

g2
σ
(M − M∗)2 +

γ2

72π4

g2
ω

m2
ω

k6
F −

γ2β

20π4

g2
ω

m2
ω

k8
F

+
γ

6π2





(

1

4
k3

F −
3

8
M∗2kF

)

√

M∗2 + k2
F +

3

8
M∗4 ln





kF +
√

M∗2 + k2
F

M∗









− γβ

2π2

[(

1

6
k5

F −
5

24
M∗2k3

F +
5

16
M∗4kF

)

√

M∗2 + k2
F

− 5

16
M∗6 ln





kF +
√

M∗2 + k2
F

M∗







 , (40)

and

ϵβ =
1

2

m2
σ

g2
σ
(M − M∗)2 +

γ2

72π4

g2
ω

m2
ω

k6
F −

γ2β

20π4

g2
ω

m2
ω

k8
F

+
γ

2π2





(

1

8
M∗2kF +

1

4
k3

F

)

√

M∗2 + k2
F −

1

8
M∗4 ln





kF +
√

M∗2 + k2
F

M∗









−3γβ

2π2

[

(
1

6
k3

F −
M∗2kF

8
)(M∗2 + k2

F)
3
2 +

M∗4

16
kF

√

M∗2 + k2
F

+
M∗6

16
ln





kF +
√

M∗2 + k2
F

M∗







 . (41)

The new baryon density and the nucleon effective mass may be also written as

ρBβ =
γk3

F

6π2
− 3

10

βγ

π2
k5

F

M∗ = M − g2
σ

m2
σ

γM∗

4π2



kF

√

M∗2 + k2
F − M∗2 ln





kF +
√

M∗2 + k2
F

M∗







 ,

+
g2

σ

m2
σ

γ3M∗β

2π2

[(

1

4
k3

F −
3

8
M∗2kF

)

√

M∗2 + k2
F

+
3

8
M∗4 ln





kF +
√

M∗2 + k2
F

M∗







 . (42)

4. Results and Discussion

In this section we shall explore the novel effects generated by the noncommutative

spacetime GUT deformation applied to the Walecka’s σ − ω formulation for neutron stars,

assumed as a kind of toy-model in view of its formal simplicity. It is well known that this

model predicts a phase transition similar to the liquid-gas transition of the van der Waals

equation of state. Moreover, the coexisting pressure and binodal density properties of the
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two phases are deduced by means of a Maxwell construction applied to the equation of

state of nuclear matter, obtained by employing the principle of least action to the QHD-I

Lagrangian density. At high densities, the system approaches the causal limit p = ϵ,

representing the “stiffest” possible equation of state, as can be seen in Figure 1. Despite its

formal simplicity, a relevant aspect to be highlighted in this theoretical approach, even if

one considers more complete models from the point of view of inserting in the Lagrangian

density, for instance, the fundamental meson octet and baryon decuplet, the dynamics

generated by scalar and vector mesons will remain significantly present. This is because

the neutral scalar and vector components coupled to the nucleons are the most relevant

ingredients for describing nuclear properties in bulk, which is our main concern here.

The results in turn corresponding to the insertion of the GUT deformation into the

QHD-I model are presented in Figures 2–6.

The GUP establishes that the noncommutative spacetime be dependent on a minimal

length parameter
√

β as previously highlighted in Equation (5), whose size ordering is

unknown. Therefore, the strategy here has been to consider it as a free parameter and

identify noticeable changes in related observables at different scales, chosen consistently

from the Planck scale, which represents the lower limits of our current understanding of

quantum mechanics, to the typical dimensions of neutron stars.

In this domain, the smallest physical scale corresponds to the Planck domain with
√

β ∼ lPlanck. This scale is far below typical neutron stars observable range of values which

are of the inverse of Fermi-momentum order, k−1
F . In the sequence, to make contact with

reference calculations [12–14] and consider larger effective noncommutative scales, we

limit the β values to the range [1 × 10−5 fm2 – 5 × 10−2 fm2].

10 12 14 16

Log ε  ( g / cm
3
 ) 

28
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38

L
o

g
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 (

d
y

/c
m

2
 )

 σ − ω  model (original , β = 0 fm
2
)

Neutron Stars

Figure 1. Phase transition in nuclear matter similar to the liquid-gas transition for γ = 4. γ indicates

the spin-isospin degeneracy factor, equal to 4 for symmetric matter (N = Z) and 2 for pure neutron

matter (Z = 0). The plot shows the pressure p as a function of the energy density ε in logarithmic

scale. The curve corresponds to the commutative σ − ω model, where β = 0, representing the original

case. The region marked “Neutron Stars” indicates the typical range of energy density relevant for

neutron star matter.
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Neutron Stars

Figure 2. Noncommutative phase transition for nuclear matter in a logarithmic pressure vs. energy

density plot. The curves correspond to different values of the noncommutativity parameter β,

as indicated in the legend. The figure shows a limit of β = 5 × 10−2 fm2, beyond which the phase

transition ceases to exist.
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Figure 3. Maximum values of pressure as a function of the baryon density ρB/ρ0 in a noncommutative

geometry model for nuclear matter. The curves represent different values of the noncommutativity

parameter β. For finite β, the pressure reaches a maximum value, contrasting with the original com-

mutative case where pmax = ∞. The colored arrows highlight the respective curves for increasing β.
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Figure 4. Maximum values of energy density as a function of the baryon density ρB/ρ0 in a non-

commutative geometry model for nuclear matter. The curves correspond to different values of the

noncommutativity parameter β. For finite β, the energy density reaches a maximum value, contrast-

ing with the original commutative case where εmax = ∞. The colored arrows highlight the behavior

of the curves for increasing β.
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Figure 5. Baryon density ρB/ρ0 as a function of the Fermi momentum kF in a noncommutative

geometry model for nuclear matter. The curves represent different values of the noncommutativity

parameter β. For larger β, the baryon density reaches a maximum value ρmax, as indicated by the

green and orange curves, before decreasing.
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   .

   .

   .

Figure 6. Mass–radius diagram for compact stars obtained for various values of the noncommutativity

parameter β. The curves correspond to different β. The horizontal yellow band represents the mass

constraint from the pulsar J0348 + 0432, while the blue line corresponds to the mass of PSR J1311-3430.

The figure demonstrates that increasing β reduces the maximum mass of the neutron stars.

After solving Equations (40) and (41) for the noncommutative EoS, together with the

equation for the nucleon effective mass (42), the corresponding results are shown in Figure 2

for various values of β exhibiting the behavior of the noncommutative phase transition for

nuclear matter. The figure shows that the phase transition for nuclear matter is present,

as in the usual model (Figure 1), but with a new feature: the pressure has a maximum

value and is “squeezed down” with increasing β. There is a limit of β = 5 × 10−2 fm2 after

which the phase transition ceases to exist. The same effects appear in Figures 3 and 4 for

the pressure and energy density as a function of the baryon density, where the limiting

maximum values are evident. In Figure 5, the baryon density is plotted as a function of kF,

again exhibiting a squeezing down of maximum values, now for ρB. Here an interesting

interpretation can be put forward: when probing short distances, which correspond to

larger kF, in a spacetime that has a large minimum value β, the system becomes dilute and

the density drops with kF.

The consistently observed behavior of decreasing the maximum values of pressure,

energy density, and baryon density as far as the β value increases can be understood

through an analysis of the effects of the minimum scale into the phase space volume of the

solutions of the equations addressed in a comparison and analogy with the corresponding

solutions associated with the motion of a particle in quantum mechanics. In quantum

mechanics, as is well known, the uncertainty principle states that it is not possible to

measure the position and momentum of a particle with absolute precision. A state of

motion can only be given with this indefinitiness and corresponds in phase space to an

elementary cell volume of size (2πh̄)3. The number of quantum states available to a particle

will therefore be finite and corresponds to the total volume of the phase space divided by

the size of the elementary cell

N =
1

(2πh̄)3

∫

dx dy dz dpx dpy dpz. (43)
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In the present case the number of quantum states available consistent with a coherent

description of the properties of a neutron star obey, due to the presence of a minimum scale,

a relation of the type

NNeutron Star =
1

(2πh̄)3
V

β
ps =

1

(2πh̄)3

∫

dNx dN p

(1 + βp2)N
. (44)

The consequences of this transformation of the phase space volume V
β
ps due to the

presence of the minimum scale parameter, β are evident in that V
β
ps decreases as β increases,

with exactly the contrary occurring in the opposite case. This means that in the case where

the volume of the phase space increases, corresponding to the decrease of β, more solutions

consistent with a coherent description of the properties of a neutron star find more space for

their realization. And the opposite occurs when β increases. Therefore, as a consequence,

the maximum values for the quantities previously plotted become dependent on the size

of the phase space of the solutions which in turn depend on the parameter β, with the

largest values of their amplitudes corresponding to the smallest values of the minimum

scale parameter, and the contrary occurring in the opposite case.

Similarly, the same occurs in the curves corresponding to the maximum mass of

neutron star families, with their values squeezing down with increasing β, as we will see

below. In the usual approach, the essential nuclear physics ingredients for astrophysical

calculations are appropriate equations of state (EoS). After the EoSs are chosen, they enter

as input to the Tolman–Oppenheimer–Volkoff equations (TOV), which in turn give as

output some macroscopic stellar properties: radii, masses, and central energy densities.

This may raise a philosophical question: at what level should the noncommutative effects

be introduced? If one follows the idea of first principles, then Einstein’s field equations

should be modified to bring this information, originated at a level of quantum gravity. This

is a long step, still far beyond the current knowledge. The procedure we follow will be

more conservative and consider that the classical field equations remain valid, only the EoS

will be modified by the noncommutative spacetime. The TOV equations then become:

dpβ

dr
= −

[

pβ(r) + ϵβ(r)
]

[Mβ(r) + 4 πr3 pβ(r)]

r[r − 2Mβ(r)]

dMβ

dr
= 4 π r2 ϵβ(r) . (45)

Solving the TOV equations for the EoS (40) and (41), together with the effective mass

expression (42) results in the Mass-Radius diagram of Figure 6. The noncommutative effect

that was seen in the EoS figures is again present, limiting the neutron star’s maximum mass.

In the figure, for comparison, the experimental values of PSR J0348 + 0432, a pulsar-white

dwarf binary system in the constellation Taurus, with mass of 2.01 ± 0.04 M⊙ and PSR

J1311–3430, a pulsar with a spin period of 2.5 ms, with mass of 2.15 M⊙.

One aspect to be highlighted concerns the complementation of the curves that describe

the behavior of stellar masses as a function of their radii. As β increases, the curves

corresponding to the relation M × R become less and less complemented, arriving even to

the limit of not reaching, in the case where β = 3 × 10−2 fm2, their maximum mass value.

This can be understood to the extent that increasing the value of the parameter β will imply

a decrease in both the radii and the stellar masses, for the reasons identified previously, this

occurring mainly in the region of the ‘tails’ of the amplitudes corresponding to the relation

M × R. In this region, the significant decrease in pressure contributes to a decrease in the

complementation of the corresponding curves and, ultimately, to preventing the maximum

mass from being obtained.
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5. Conclusions

As stated before, this study was very cautious and exploratory applied to a schemati-

cally structured neutron star model. The model adopted for a neutron star, as emphasized

previously, due to its formal simplicity and structured characteristics was chosen in or-

der to perform a preliminary analysis of the GUP effects with a minimum length for the

description of the spacetime noncommutativity effects.

The adopted model is well known as Quantum Hadrodynamics (QHD-I), a relativistic

quantum field theory based on a local Lagrangian density with couplings between nucleons

and mesons of the attractive scalar-isoscalar σ and repulsive vector-isoscalar ω types

playing the role of the relevant mean-field effective mesonic degrees of freedom. This

model, despite its formal simplicity, provides a consistent theoretical framework to describe

global static properties of many-body systems under the action of the strong interaction

and in extreme conditions of pressure and density such as those found in neutron stars

and pulsars. The limitations of the model, among others, are reflected in the description of

some of the static properties of nuclear matter, such as the effective mass of the nucleon

and the compressibility of symmetric nuclear matter. In this sense, future theoretical

calculations indicate the need to propose a model for neutron stars that contemplates

a phenomenological Lagrangian formalism with nonlinear scalar, vector and isovector

meson-baryon couplings and the insertion of the fundamental baryon decuplet.

Likewise, a proposal for future work should contemplate the presence of a crust. The

density of nuclear matter at the saturation point, corresponding to the minimum value of

the nuclear binding energy per nucleon, is estimated by means of nuclear mass analyses,

and is of the order of ρ0 = 2.8× 1014 g cm−3 corresponding to n0 = 0.16 nucleons per fermi

cubed. Estimates of the density of the cores of massive neutron stars are in the order of

[5 − 10]ρ0. The challenges of consistently describing a neutron star persist in view of the

extreme physical conditions of these compact objects, conditions far from those on Earth.

In turn, although it is not a crucial point of the present formulation, the outer layer of

neutron stars, - the crust -, with density ρcrust < ρ0, presents very different but extremely

rich theoretical challenges and observational opportunities insofar as depending on the

scenario of its formation, the crust may be very different in its composition and structure.

In developing these scenarios for the crust of a neutron star, it is necessary to employ a

plethora of theoretical and observational knowledge involving, among others, atomic and

plasma physics, the theory of condensed matter, the physics of matter in strong magnetic

fields, the theory of nuclear structure, nuclear reactions, the nuclear many-body problem,

superfluidity, physical kinetics, hydrodynamics, the physics of liquid crystals, and the

theory of elasticity.

We then pose three fundamental questions involving a noncommutative spacetime: if

there is a GUP, with a minimum length, then (i) does the astrophysical arena represent a

relevant laboratory to reveal these effects? (ii) what is the limiting minimum length scale?

(iii) how can we identify GUP effects in observable data from neutron stars?

Even though we are faced with the limitations of the formulation in view of its

preliminary nature, we can partially answer these questions: (i) the model predictions

are in tune with the scales of the astrophysical arena, which contemplates the range of

high energy scales that are beyond terrestrial laboratories and can access unique regimes

in compact stars and in cosmology; furthermore, the values of the maximum masses of

neutron stars are in tune with the most recent observed values, of the order [2.0 − 2.6] M⊙;

the results also indicate that, although the effects of the presence of a minimum scale

broaden the descriptive perspective of a compact star, encompassing a non-commutative

algebra, they do not spoil the effective aspects covered by the QHD formulation; in this

sense, the maximum values of pressure and energy density as a function of the baryon
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density in tune with the QHD-I model predictions stand out; (ii) in the present study the β

values varied in a range from 1 × 10−5 fm2 to 5 × 10−2 fm2; when translated to a minimal

length it results in ∆x ∼ 0.003 fm to 0.22 fm. These values can be compared with the usual

nucleon radius obtained in bag model calculations ranging from 0.2 fm to 1.0 fm [33,34],

resulting in a limiting minimal length scale at the order of the nucleon’s size; (iii) the

cutoff values introduced in the EoS has a direct inference in limiting the maximum neutron

star mass.

A more important conclusion to this last question is reached by reasoning in the

opposite direction: the fact that neutron stars exist is confirmation that the noncommutative

scale must be very small. Even if it is very small, the minimum length may be relevant in

modifying the structure of a primordial phase transition. For example, in the first three

minutes of the creation of the universe [35–37] a cosmological phase transition is believed to

have occurred, generating a global change of the primordial matter. Starting at the Planck

time tP ∼ 10−44 s, the young universe evolved and by the time it reached t ∼ 10−38 s the

grand unified group SU(3)⊗ SU(2)⊗ U(1) had undergone gauge symmetry breaking.

If the minimum length approach is correct, then at this scale the noncommutative effect

may play an important role.

Additional important aspects to be considered in future formulations of the problem

addressed in this contribution concern the thermodynamic consistency of the GUP de-

formation of spacetime, as well as the obedience to causality, to Le Chatelier’s Principle,

a fundamental requirement for satisfying equilibrium configurations of a compact star and

not spoiling the renormalizability of the original formulation. The QHD-I approach in par-

ticular, in its original formulation, is thermodynamically consistent, obeys Le Chatellier’s

Principle, and is also renormalizable due to the presence of counterterms. The systematic

reduction of the phase space due to the presence of the β factor raises new questions about

the formal consistency of coherent descriptive configurations of a neutron star assuming a

noncommutative spacetime, in compliance with these requirements, which deserves this

way further studies.

With particular regard to Le Chatelier’s Principle, the matter of the star must satisfy

the condition

dP/dϵ ≥ 0

which is a necessary condition for the stability of a stable star both with respect to its struc-

ture as a whole and with respect to the elementary regions of non-equilibrium involving

stages of spontaneous contraction or expansion. In our calculations, Le Chatelier’s Principle

is not completely established, particularly in the tail regions of the pressure curves as a

result of the proposed insertion of a minimum length through the GUP deformation, a topic

that deserves more attention in the future. Fortunately, the impact of this non-observance

of Le Chatelier’s Principle does not particularly affect the observation of the effects of a

non-commutative algebra on stellar properties, since the adopted model fundamentally

contemplates the innermost pressure regions of the star. This limitation serves, however,

as motivation for a more in-depth analysis in the future to overcome it.
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Appendix A. Expressing Jacobian as a Combination of the
Poisson Brackets

In this appendix we shall summarize the proof of expressing the Jacobian as a combina-

tion of the Poisson brackets. An important canonical invariant is the magnitude of a volume

element in phase space. A canonical transformation η → ζ transforms the 2N-dimensional

phase space with coordinates ηi to another phase space with coordinates ζi . The volume

element [24]

(dη) = dX1 dX2 . . . dXN dP1 . . . dPN (A1)

transforms to a new volume element

(dζ) = dx1 dx2 . . . dxN dp1 . . . dpN . (A2)

The sizes of the two volume elements are related by the absolute value of the Jacobian

determinant J

(dζ) = J (dη). (A3)

As an example, for N = 1, the transformation from ηi = (X, P) to ζi = (x, p) becomes

J =
∂(x, p)

∂(X, P)
=

∣

∣

∣

∣

∣

∂x
∂X

∂x
∂P

∂p
∂X

∂p
∂P

∣

∣

∣

∣

∣

= {x, p}X,P (A4)

which results in the volume elements

dx dp = {x, p}X,P dX dP . (A5)

For N = 2 we have the transformation from ηi = (X1, P1, X2, P2) to ζi = (x1, p1, x2, p2)

J =
∂(x1, p1, x2, p2)

∂(X1, P1, X2, P2)
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂x1
∂X1

∂x1
∂X2

∂x1
∂P1

∂x1
∂P2

∂x2
∂X1

∂x2
∂X2

∂x2
∂P1

∂x2
∂P2

∂p1
∂X1

∂p1
∂X2

∂p1
∂P1

∂p1
∂P2

∂p2
∂X1

∂p2
∂X2

∂p2
∂P1

∂p2
∂P2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= {x1, p1}X1,P1
{x2, p2}X2,P2

+ {x1, p2}X1,P1
{p1, x2}X2,P2

−{x1, x2}X1,P1
{p1, p2}X2,P2

+ {x2, p2}X1,P1
{x1, p1}X2,P2

+{p1, x2}X1,P1
{x1, p2}X2,P2

− {p1, p2}X1,P1
{x1, x2}X2,P2 . (A6)

An extended and detailed demonstration can be found in the reference of T. V. Fi-

tyo [23]. Let us denote xi = A2i−1, pi = A2i, Aj derivative with respect to Xi we denote

Aj,2i−1, with respect to Pi as Aj,2i. Then

{

Ai, Aj

}

=
D

∑
k=1

(Ai,2k−1 Aj,2k − Ai,2k Aj,2k−1) , (A7)
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where the demonstration regards the proof of the following identity

J =
∂(x1, p1, . . . , xD, pD)

∂(X1, P1, . . . , XD, PD)
=

1

2DD!

2D

∑
i1,...i2D=1

εi1 ...i2D
{Ai1 , Ai2} . . . {Ai2D−1

, Ai2D
}, (A8)

where εi1 ...i2D
is the Levi-Civita symbol.

Notes

1 Concerning the approximation β p2
<< 1, since no large values of k f should be taken into account in our calculations, - according

to the range of values adopted for conventional formulations of equations of state of neutron stars -, our corresponding evaluation

is based on the following preliminary estimate: the maximum value of k f is 5 fm −1 which leads to the maximum value of β

equal to 4 × 10−2 fm2. In case we assume β = 5 × 10−2 fm2 then the corresponding value of k f goes up to 4 fm.

2 In quantum field theory, since we are using a finite normalization volume V, we should be summing over a group of allowed

wave vectors k, for large volume (see [32])

(

1/
∫

d3x

)

× ∑
k

→ 1

(2π)3

∫

d3k

with p = h̄k and h̄ = 1. Accordingly, the normalization volume V should drop out of all physically significant quantities. In these

equations, the angular part in d3k was integrated leaving only the ‘radial’ part in momentum space according to d3k = 4πk2dk.
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