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Abstract: In the present contribution, a preliminary analysis of the effects of the Generalized
Uncertainty Principle (GUP) with a minimum length, in the context of compact stars,
is performed. On basis of a deformed Poisson canonical algebra with a parametrized
minimum length scale that induces deviations from conventional Quantum Mechanics,
fundamental questions involving the consistence, evidences and proofs of this approach
as a possible cure for unbounded energy divergence are outlined. The incorporation
of GUP effects into semiclassical 2N-dimensional systems is made by means of a time-
invariant distortion transformation applied to their non-deformed counterparts. Assuming
the quantum hadrodynamics ¢ — w approach as a toy-model, due to its simplicity and
structured description of neutron stars, we perform a preliminary analysis of GUP effects
with a minimum spacetime length on these compact objects. The corresponding results for
the equation of state and the mass-radius relation for neutron stars are in tune with recent
observations with a maximum mass around 2.5 My and radius close to 12 km. Our results
also indicate the smallness of the noncommutative scale.

Keywords: noncommutative quantum gravity; generalized uncertainty principle; GUP;
minimal length

1. Introduction

The introduction of genuine gravitational effects in quantum field theory suggests an
effective cutoff (minimal length) in the ultraviolet regime as a possible cure for unbounded
energy divergences (ultraviolet completion). In principle, high-energy probes should be
sensitive to small distance spacetime structures, revealing the quantum nature of gravity.
The known approaches to quantum gravity such as string theory [1-4], loop quantum
gravity [5-7] and quantum geometry [8] indicate, theoretically, the existence of such a
minimal measurable length. In these approaches, the existence of a minimal observable
length is a common feature with the estimated size of the order of the Planck length,
Ip ~ 10733 cm. A compelling way to incorporate the concept of minimum measurable
length into Quantum Mechanics is to modify the algebra of the Heisenberg uncertainty
principle (HUP), giving rise to the Generalized Uncertainty Principle (GUP). In the HUP
framework there is essentially no restriction on the measurement precision of the particles’
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position. In GUP, the basic phase space noncommutative algebra: [X;, 15]] # 0 is extended
to coordinates [X;, Xj] # 0 and momenta [P}, P;] # 0. Historically, the original idea of
extending noncommutativity to the coordinates was presented by Heisenberg as an early
attempt to remove the infinite quantities that appear in field theories, in a time long
before the renormalization procedure was developed and gained acceptance [9]. The first
analysis of a quantum theory based on noncommutative coordinates was published by H.
S. Snyder [10].

In a similar approach to the quantization of a classical phase space, a noncommutative
spacetime is defined by replacing coordinates x* by the Hermitian operators X* [11], which
in turn obey canonical commutation relations

[XH,XV] =1i6"Y, (1)

where 0#" is a constant, real-valued antisymmetric D X D matrix (D-dimensional spacetime)
with dimensions of length squared, that commutes with X¥# and produces a coordinate
uncertainty relation,

1
AxtAx' = | )

On many occasions §#" is written as 8V = 6 €/, where €V is the antisymmetric tensor and
the parameter 6 defines the noncommutative scale.

A relevant question then arises: what is the size of the noncommutative scale? Al-
though there is no discernible definitive answer to this question, a minimum observable
length in quantum field theory and quantum gravity should share the statistical properties
of an expectation value. Different lower bounds have been claimed for the noncommutative
scale. Conceptually, 6 should be of the order of the Planck scale /3 ~ 10 cm?. However,
when the calculation is related to the Landau problem with magnetic fields (~12 T) in the
region of quantum Hall effect, § ~ 101! cm? [12]; in estimating the muon anomalous
magnetic moment 6 ~ 10715 em? [13]; for the lamb shift & ~ 10736 cm? [14].

Alternatively, A. Kempf developed a deformed algebra, in which a modification of the
canonical commutation relation was of the form [15-17]

%P =i(1+pP?), 3)

where B is a positive parameter that induces deviations from conventional Quantum
Mechanics. Relation (3) then results in a GUP

1
axdp > > (14 B(8p)?), 4)
2
which in turn establishes the minimal length scale
AX = Xpin = \/B . ®)

For the n-dimensional case, however, the deformed Heisenberg algebra is given by
the commutation relations:
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where (8) defines a noncommutative geometry. The relations given in (6)-(8) do not break
rotational symmetry. Indeed, the generators of rotations may still be written in terms of
position and momentum operators as

. 1

These algebra deformations imply profound modifications to the formalism of Quan-
tum Mechanics. While a continuous momentum space is retained as seen from Equation (7),
the introduction of a noncommutative geometry involves the adoption of a quasi-position
formalism. In this scenario, even elementary models such as the harmonic oscillator may
manifest considerable complexity and notable deviations when the energy scales approach
or exceed /B [15-17].

Among other formulations, Moayedi et al. [18,19], introduced a deformed covariant
Lorentz algebra to derive a f-modified Dirac equation, as an alternative seesaw-like mech-
anism for the neutrino induced by the presence of a spacetime of minimum length [20].
Marzola et al. in turn [21] developed a Deformed Poisson Brackets Formalism applied to the
MIT Bag Model, introducing minimal length spacetime modifications to thermodynamic
quantities and in the respective equation of state.

In the present contribution we introduce a novel analysis of GUP effects, with minimal
length spacetime, in compact stars. It should be noted that this study comprises a still
very cautious and exploratory research, where the structure of the neutron star is highly
schematic. The main goal is to understand that if there is a GUP, with a minimal length,
then (i) the astrophysics arena represents a relevant ‘laboratory’ to reveal these effects?
(i) what is the limiting minimal length scale? (iii) we may identify GUP effects in neutron
star data? if so, what kind of effects may be identified?

2. The Deformed Poisson Brackets Formalism
In what follows we present a brief summary of the formalism highlighting the clas-

sical Hamiltonian description based on Poisson brackets and the Heisenberg quantum
formulation based on Dirac commutators.

2.1. Summary of the Formalism
In Classical Mechanics, the phase space of a given system is parametrized in terms
of the canonical coordinates defined in terms of position x and conjugate momentum p
n-tuples
x=(x1,x2,...%;...,x;) and p=(p1,pP2---Pi---,Pn)- (10)

The dynamics of the system are described by Hamilton’s equations of motion in terms
of partial derivatives of the position coordinates and the corresponding conjugate momenta:

. JoH(x,p,t . JH(x,p,t .
x,-:(apip) and pi:_(ax,P) for i=1,2...n. (11)
where %; = —dx;/0t and p; = dp;/ot and H(x, p, t) represents the Hamiltonian function.

The time evolution of an arbitrary function f(x, p, ), in turn, may be expressed in terms of
Hamilton’s equations of motion as

df(x,p,t) _ -[9f(xpt).  of(xpt), af (x, p, t)
dt _Z< o T T op, ”i>+ ot

1

_ w(of(xpt)9H(x,p,t) 9f(x p,t) OH(x, p,t) af (x, p,t)
_Z< o, w op; ox; >+ a1
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By introducing the Poisson bracket,

1

{F(p, 1), HOx, p, )} = i(af (;;f't) aH(;r,:a, t) of (;;f,t) am;;»)) , (13

the eventual explicit time dependence of expression (12) simply runs its course with the time
evolution of the dynamical system governed by the Poisson brackets binary operations:

YR _ 1 fx,p), Hx,p)) + LR, 1)
simply considering the position and momentum dependence of the functions f(x;, p;)
and H(x;, p;), instead of taking into account a possible explicit time dependence of these
functions. The position coordinates x; and the corresponding conjugate momenta p; obey
Poisson algebra, more precisely

{xi,pi} = ¢ {pipi} =0 {xi,x;} =0. (15)

From a classical point of view, these relationships imply the simultaneous measure-
ment and exact determination of the position and momentum of a particle, without un-
certainties. From this perspective, the transition from classical mechanics to quantum
mechanics can be accomplished by replacing Hamilton’s equations of motion by the cor-
responding Heisenberg equations, the classical variables x and p by the corresponding
Hermitian operators in Hilbert space, X and P, and furthermore the Poisson brackets by
the Dirac commutators:

df (X, P,t) i

T = —ﬁ[f(X, P),H(X,P)] + o (16)
As a result, the Poisson algebra is replaced by the Heisenberg algebra
[Xi, 15]] = 151], [pir p]] = 0; [)A{i, )A(]} =0. (17)
which implies the Heisenberg Uncertainty Principle
h h
AxAp > — = . 1
P T (1)

The Generalized Uncertainty Principle (GUP) in turn induces a deformation of the
Heisenberg algebra and can be interpreted as also inducing deformations to its classical
limit, which corresponds to the Poisson algebra. In what follows, in order to introduce a
noncommutative algebra, we assume general deformations to the usual canonical commu-
tation relations, such that

[Xi, Bj] =i fi(X,P) — {xi,pj} = fij(x,p), (19)
D, b)) = ihij(X,P) — {pi,pj} = hij(x,p), (20)
(R, X] = igi(R P) — {xi,x} = gij(x,p), (21)

where the deformation functions f;;, g;; and h;; are restricted according to the conventional
properties of commutators and brackets: obedience to the bilinearity condition, to the
Jacobi identity and to the Leibniz rule provided the composition product is associative (see
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for instance [22] and references therein). In the particular case of the Kempf formalism,
the commutation relations (6)—(8), induce the following deformed Poisson brackets:

{xi,pj} = 51‘;‘(1 + ﬁPz); {pipi} =0 {xi, %} = 2B(pix; — pjxi).- (22)

2.2. Deformation of Differential Volumes

From the perspective of Classical Statistical Mechanics, the phase space of a given
physical system represents the set of all possible physical states of the system when de-
scribed by a given parameterization, where each possible state corresponds uniquely to
a point in the phase space represented by the coordinates (x;, p;). Since both the position
and momentum vary with time, the dynamic behavior of the system can be viewed as a
continuous trajectory of points in the phase space, where the family of phase plane trajecto-
ries represents a phase portrait of the system. In Quantum Statistical Mechanics, however,
the particle has no well-defined trajectory in phase space. The Heisenberg Uncertainty
Principle, and therefore the Heisenberg algebra, effectively implies a discretization of the
phase space in minimal volumes. A modification of the Heisenberg Uncertainty Principle
(i.e., a GUP), therefore, deforms such volumes.

Particularly in [23], the phase space deformation effects are analyzed for the case of
a partition function of a quantum system that is then assumed to fulfill the semiclassical
limit. For a non-deformed Heisenberg algebra, we have the transition

Z=Y e BT Z::/Q*H@fVTdNXdNP. (23)
n

In case of a deformed algebra, it is well known that the expression for the quantum
partition function will remain unaltered, since a sum over deformed volumes will have the
exact same form as the sum over non-deformed ones. However, this is not the case for a
classical partition function. Now we must deal with an integration over phase space that
deviates from the original continuous partition function in (23) having as the Jacobian factor
(for details, see Appendix A)

_ 9xp)
J= (X, P)" (24)
This Jacobian factor distorts the phase space, relating the canonical variables of the
non-deformed algebra (which we called X and P) to the ones of the deformed algebra x
and p. Namely, we have

N, N
Z:Ze*E”/T — Z:/e*H(x'p)/Tid xd P (25)

T J

An important canonical invariant is the magnitude of a volume element in phase
space. A canonical procedure transforms the 2N-dimensional phase space with coordinates
7; to another phase space with coordinates {; [24]. In this sense, the Jacobian of the
transformation between non-deformed and deformed algebras can be written purely as
combinations of deformed Poisson brackets, and, in the particular case of the Kempf
deformed algebra of a 2N-dimensional phase space, we have [23-25]

N
J=TT{xpi} = (1 + ﬁP2>N ~ (26)
i=1

This is an important result that gives us the possibility to calculate (for general de-
formations) the continuous function without introducing canonically conjugated auxil-
iary variables.
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In other words, we may effectively incorporate the effects of a GUP into semiclassical
2N-dimensional systems by applying the following transformation to their non-deformed
counterparts:

d"xdp
(1+pp2)N”

which represents a distortion in the differential volumes of phase space and can be shown to

dNx dN p — (27)

be invariant under time evolution from the Liouville theorem [25]. The effective formalism
described here has been derived equivalently as a deformation of the Planck constant
in [26].

3. The QHD-I Model

Quantum hadrodynamics ¢ — w model (QHD-I) [27-31], as a relativistic quantum
field theory for baryons and mesons, has been widely applied to studying various nu-
clear phenomena including the hadron-hadron interaction, the hadron-nucleus scattering,
the bulk and single-particle properties of nuclei, among others. It is commonly recognized
that although the quantum chromodynamics is a fundamental theory for strong interac-
tion, the QHD, as an effective field theory formulated in terms of hadronic degrees of
freedom, provides a simple and reliable approach to produce the nuclear observables that
are insensitive to the short-range dynamics. There are various QHD models, renormal-
izable and nonrenormalizable, which were tested in the past to reproduce the empirical
nuclear properties and the experimental data. In particular, the o — w model proposed by
Walecka [27,28] contains nucleons with the parametrized mass denoted as M and Lorentz
isoscalar-scalar mesons ¢ and isoscalar-vector mesons w. The nonrelativistic approxi-
mations leads to a nucleon-nucleon interaction potential which behaves as short-range
repulsion and medium-range attraction. The model considers that the central effective
potential for the nucleon-nucleon interaction is given by

V(I”) = @LW _ éﬂ’ (28)
4t . r
where r defines the relative distance between two nucleons, the two constants g, and
8w are adjusted to reproduce the nucleon-nucleon interaction and the meson masses are
respectively m, = 550 MeV and m,, = 783 MeV.
The 0 — w model can be summarized in a nutshell, starting with the model lagrangian

defined as
£ = §i7"Dy— M)p+ 2 (@00 202 - e L2 w0t @0
= P(iv w— )1/’"‘5( o ‘T_maa)_z v +§mwwyw (29)
where 1 denotes the nucleon wave-function and
Dy=0,+igowy ; M=M-g,0 ; Fu=0d,w,—0dwy (30)

obtaining the following equations (with [J = 9,,0")
O+my)o=ge Py 5 WF" +miw’ =gor'y ;  (iY'Dy—M)p=0 (31)

The parameters M, g, §w, My, and m,, are phenomenological constants that may be
determined (in principle) from experimental observables.

Assuming static and uniform nuclear matter, in its ground state and the mean field
approximation (MFA), nucleons can be seen as under the action of an average nuclear
interaction and operating only with the space and time c-number values of the meson
fields. The higher the baryonic density, the better the validity of this approximation, since,
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at high densities, the fluctuations of the meson fields are negligible when compared with
the amplitudes of the nucleon fields, which allows them to be replaced by their expected
mean values. The mean field approximation is then used [28], which allows the deduction
of a semi-analytical solution and which consists of using the average classical values of the
meson fields:

c—(o)=0 ; = (W) =0ow ; M—=>M =M-gs00(Fun)=0; (32)

where M* represents the nucleon effective mass.
Substituting (32) in (31) one obtains

8o Sw
Cwp= 89 oy 33
00 %Ps 0 2 PB (33)

with ps = ($y), which represents the scalar density, and pp = ('), which denotes
the baryon density. The equation of state (EoS) is calculated from the mean field energy-
momentum tensor (Ty,y)mra and in summary can be written as a function of the Fermi
momentum kg:

= gl 2 kpkizcﬁk
p = 2 ov0 o tw 0 3(271')3 0 /7M*2+k2 7
1 1 ke
€ = Em%ag — Emiw% + 7(22;)3 /0 (VK2 + M*2 + gw) d°k, (34)
where after integration results in
1mg 2, Y 86
= S T(M-— M) 4 L seg
P 2 St o w2
*2 4 Je2
Y 1 3. . " 3. ke + \/M —+ 7
+6ﬂ2[<4k5}8M ka)\/M2+k%+8M4ln e , (35
and
1mg 2, 7 8
= ——I(M—M*)? 4 Swgb
€ zg;,( Vot b
*2 k2
v 1, 1 - 1, kp + \/ M*2 + k%
+27T2[<8M ka+4k%>\/M 2+k§—gM41n e . (36)
The baryon density and the nucleon effective mass are also written in terms of kr
- /kF L
pe = (2m)3 Jo 62
2 M kp + \/ M*2 4+ k2
. _ o YM" |1, /o i 1o F F

At this point it is possible to effectively incorporate the effects of a GUP into the
semiclassical system by applying the transformation (27) to the non-deformed phase space:

Pxd’p

(Y raE ~ (1-3Bp?) &xd’p, (38)

Bxd’p —
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where the approximation is justified' considering p?> < 1. The EoS in Equation (34)
modification results in the following expressions’

_ 1 v ok K 2
g = 3™ (70+2m Cl]04—6%2 0 m(l—Sﬁk )k
1 1
e = o gt + o | "V M - 35k + gawoprp. (59

After integration, these expressions result in

1mg 7 S B s
=——_"9(M-— T dwp6 T F Sw ;8
P 2g3( "Vt o m2 F T 20t m2,

k4 \/M*2 + k3
Y 1.3 3 .0 [ors @ 12 L O apd F F
B (15 503, 5,4 [ars2 1 12

*2 2
S M (kp+ VM +kF> (40)
16 M ’
and
1mg 7’ 8ugs VB Swys
= Z9(M— M* I dw ;6 77«;,{
°p 2g3( )+72n4m2wp 2074 m2, "k
ke + 4/ M2 + k2
o 1 *2 1 3 *2 2 _1 4 F F
+5 3 (8M kp+4kp>,/M +kp — gM*“In o
38,1 M*2kp, . 3 MM
*6 kr + M*2 4 k2
M V r (41)
16 M
The new baryon density and the nucleon effective mass may be also written as
_ dkk_ 3Py
PBE = om2 T 10 2
* k4 \/M*2 + k2
M* = g‘T r)/M ( M*2 +k2 M*2 h’l( T F)) )
4 82 BMp - oM ) M 4
ms 272 8 F
o
kF+ M*2+k2
+§M*4 ln( V e F (42)

4. Results and Discussion

In this section we shall explore the novel effects generated by the noncommutative
spacetime GUT deformation applied to the Walecka’s ¢ — w formulation for neutron stars,
assumed as a kind of toy-model in view of its formal simplicity. It is well known that this
model predicts a phase transition similar to the liquid-gas transition of the van der Waals
equation of state. Moreover, the coexisting pressure and binodal density properties of the
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two phases are deduced by means of a Maxwell construction applied to the equation of
state of nuclear matter, obtained by employing the principle of least action to the QHD-I
Lagrangian density. At high densities, the system approaches the causal limit p = ¢,
representing the “stiffest” possible equation of state, as can be seen in Figure 1. Despite its
formal simplicity, a relevant aspect to be highlighted in this theoretical approach, even if
one considers more complete models from the point of view of inserting in the Lagrangian
density, for instance, the fundamental meson octet and baryon decuplet, the dynamics
generated by scalar and vector mesons will remain significantly present. This is because
the neutral scalar and vector components coupled to the nucleons are the most relevant
ingredients for describing nuclear properties in bulk, which is our main concern here.

The results in turn corresponding to the insertion of the GUT deformation into the
QHD-I model are presented in Figures 2-6.

The GUP establishes that the noncommutative spacetime be dependent on a minimal
length parameter /B as previously highlighted in Equation (5), whose size ordering is
unknown. Therefore, the strategy here has been to consider it as a free parameter and
identify noticeable changes in related observables at different scales, chosen consistently
from the Planck scale, which represents the lower limits of our current understanding of
quantum mechanics, to the typical dimensions of neutron stars.

In this domain, the smallest physical scale corresponds to the Planck domain with
/B ~ Ipianck- This scale is far below typical neutron stars observable range of values which
are of the inverse of Fermi-momentum order, k;l. In the sequence, to make contact with
reference calculations [12-14] and consider larger effective noncommutative scales, we
limit the f values to the range [1 x 107> fm? - 5 x 102 fm?].

38 T | T |
i — 0 - model (original , =0 fmz)
36—
L~ 34
£
]
2t
2
o 32
o0
5]
— L 4
i N
~ Cd
30 — —
Neutron Stars
28|~ -
! | ! | ! |
10 12 14 16

Log ¢ (g/cmB)

Figure 1. Phase transition in nuclear matter similar to the liquid-gas transition for v = 4. 7 indicates
the spin-isospin degeneracy factor, equal to 4 for symmetric matter (N = Z) and 2 for pure neutron
matter (Z = 0). The plot shows the pressure p as a function of the energy density ¢ in logarithmic
scale. The curve corresponds to the commutative o — w model, where 8 = 0, representing the original
case. The region marked “Neutron Stars” indicates the typical range of energy density relevant for

neutron star matter.
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T I T I T I T T
36— .. 2 —]
— 0 - model (original , 3 =0 fm")
i B=1x10" fm’ i
— B=2x10"fm
34 B=3x10" fm’ 1
—_ 2.2
. =5x107 fm
gL P i
Q
3,
=)
o2k -
o0
Q
2L i
<
30 Neutron Stars |
28 | . | . | . —

13 14 15
Loge (g/cm3)

Figure 2. Noncommutative phase transition for nuclear matter in a logarithmic pressure vs. energy
density plot. The curves correspond to different values of the noncommutativity parameter §,
as indicated in the legend. The figure shows a limit of = 5 x 102 fm?, beyond which the phase

transition ceases to exist.

|+ B=0fm’ 1
36 | . B = 3)(10‘2 fm2 pmax = .......‘.‘,..00‘0000000&_‘
B= 3.5><10_2 fm2 M"“‘“‘”‘""m .,
T |+ B=4x107 fm’ ,,....m..., T
(\IE 34 - .‘.0 -| .‘0 |
L . .
> « e
) B _
Q‘ .
)
3 32 —]
B Poax = finite |
30 —]

P/ Py

Figure 3. Maximum values of pressure as a function of the baryon density pg / pp in a noncommutative
geometry model for nuclear matter. The curves represent different values of the noncommutativity
parameter B. For finite §, the pressure reaches a maximum value, contrasting with the original com-
mutative case where pmax = 0. The colored arrows highlight the respective curves for increasing f.
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T I T T T T
* B=0 fm’
- . _ 2.2 _|
16 B=3x10" fm e =o
|+ B=3.5x107fm” i
-2 2 PYSTTYILL L
© B=4x10"f B IS SO
o : m/M' m"‘ﬁtﬁz‘:: o —
“g
&) - -
)
w 14— 1
on
5)
Q| i
€ = finite
131 - 1
12— 1
1 I 1 I 1 I 1 I 1
1 2 3 4 5
Pg ! Py

Figure 4. Maximum values of energy density as a function of the baryon density pg/pg in a non-
commutative geometry model for nuclear matter. The curves correspond to different values of the
noncommutativity parameter . For finite §, the energy density reaches a maximum value, contrast-
ing with the original commutative case where emax = o0. The colored arrows highlight the behavior
of the curves for increasing B.

v =4 (Nuclear Matter)

30 T I T I T I T
- — B=0fm
201 — B=5x10"fm" |
— B=1x10"fm’
- — B=2x10"fm’ T
ol B =3x10" fm’
o
\m -
Q
O — —]
i pmax )
-10 |
) 1 | 1 | 1 | 1 | 1
% 1 2 3 4 5

k, (fm™)

Figure 5. Baryon density pp/pg as a function of the Fermi momentum kr in a noncommutative
geometry model for nuclear matter. The curves represent different values of the noncommutativity
parameter . For larger B, the baryon density reaches a maximum value pmax, as indicated by the
green and orange curves, before decreasing.
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Y =4 (Nuclear Matter)

3 T T I T I T T
251 .
- ﬂ i
2_ —
T 10348+0432 1
s — PSRJ1311-3430
< sk ) |
s — B=0fm
- — B=1x10"fm’ 1
1 — B=2x10"fm’ .
| B=3x10" fm’ |
05 |
1 1 1
0
2 4 6 8 10 12

R (km)

Figure 6. Mass-radius diagram for compact stars obtained for various values of the noncommutativity
parameter . The curves correspond to different 8. The horizontal yellow band represents the mass
constraint from the pulsar J0348 + 0432, while the blue line corresponds to the mass of PSR J1311-3430.
The figure demonstrates that increasing B reduces the maximum mass of the neutron stars.

After solving Equations (40) and (41) for the noncommutative EoS, together with the
equation for the nucleon effective mass (42), the corresponding results are shown in Figure 2
for various values of B exhibiting the behavior of the noncommutative phase transition for
nuclear matter. The figure shows that the phase transition for nuclear matter is present,
as in the usual model (Figure 1), but with a new feature: the pressure has a maximum
value and is “squeezed down” with increasing B. There is a limit of 3 = 5 x 102 fm? after
which the phase transition ceases to exist. The same effects appear in Figures 3 and 4 for
the pressure and energy density as a function of the baryon density, where the limiting
maximum values are evident. In Figure 5, the baryon density is plotted as a function of kr,
again exhibiting a squeezing down of maximum values, now for pp. Here an interesting
interpretation can be put forward: when probing short distances, which correspond to
larger kr, in a spacetime that has a large minimum value S, the system becomes dilute and
the density drops with kr.

The consistently observed behavior of decreasing the maximum values of pressure,
energy density, and baryon density as far as the § value increases can be understood
through an analysis of the effects of the minimum scale into the phase space volume of the
solutions of the equations addressed in a comparison and analogy with the corresponding
solutions associated with the motion of a particle in quantum mechanics. In quantum
mechanics, as is well known, the uncertainty principle states that it is not possible to
measure the position and momentum of a particle with absolute precision. A state of
motion can only be given with this indefinitiness and corresponds in phase space to an
elementary cell volume of size (27t71)3. The number of quantum states available to a particle
will therefore be finite and corresponds to the total volume of the phase space divided by
the size of the elementary cell

1
N= / dx dydz dpy dp, dp.. 43)
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In the present case the number of quantum states available consistent with a coherent
description of the properties of a neutron star obey, due to the presence of a minimum scale,
a relation of the type

1 B 1 dVx d¥p
NNeutronStar - (27‘[71)3va = (2ﬂh)3 / (1+ﬁP2)N . (44)

The consequences of this transformation of the phase space volume Vpﬁs due to the

presence of the minimum scale parameter,  are evident in that st decreases as [ increases,
with exactly the contrary occurring in the opposite case. This means that in the case where
the volume of the phase space increases, corresponding to the decrease of 5, more solutions
consistent with a coherent description of the properties of a neutron star find more space for
their realization. And the opposite occurs when f increases. Therefore, as a consequence,
the maximum values for the quantities previously plotted become dependent on the size
of the phase space of the solutions which in turn depend on the parameter , with the
largest values of their amplitudes corresponding to the smallest values of the minimum
scale parameter, and the contrary occurring in the opposite case.

Similarly, the same occurs in the curves corresponding to the maximum mass of
neutron star families, with their values squeezing down with increasing , as we will see
below. In the usual approach, the essential nuclear physics ingredients for astrophysical
calculations are appropriate equations of state (EoS). After the EoSs are chosen, they enter
as input to the Tolman-Oppenheimer—Volkoff equations (TOV), which in turn give as
output some macroscopic stellar properties: radii, masses, and central energy densities.
This may raise a philosophical question: at what level should the noncommutative effects
be introduced? If one follows the idea of first principles, then Einstein’s field equations
should be modified to bring this information, originated at a level of quantum gravity. This
is a long step, still far beyond the current knowledge. The procedure we follow will be
more conservative and consider that the classical field equations remain valid, only the EoS
will be modified by the noncommutative spacetime. The TOV equations then become:

dpg_ [pp(r) +ep(r)] [Mp(r) + 477 pp(r)]
dr rlr —2Mg(r)]
% = 47¢? eﬁ(r) . (45)

Solving the TOV equations for the EoS (40) and (41), together with the effective mass
expression (42) results in the Mass-Radius diagram of Figure 6. The noncommutative effect
that was seen in the EoS figures is again present, limiting the neutron star’s maximum mass.
In the figure, for comparison, the experimental values of PSR J0348 + 0432, a pulsar-white
dwarf binary system in the constellation Taurus, with mass of 2.01 + 0.04 M and PSR
J1311-3430, a pulsar with a spin period of 2.5 ms, with mass of 2.15 M.

One aspect to be highlighted concerns the complementation of the curves that describe
the behavior of stellar masses as a function of their radii. As § increases, the curves
corresponding to the relation M x R become less and less complemented, arriving even to
the limit of not reaching, in the case where 8 = 3 x 1072 fm?, their maximum mass value.
This can be understood to the extent that increasing the value of the parameter g will imply
a decrease in both the radii and the stellar masses, for the reasons identified previously, this
occurring mainly in the region of the ‘tails’ of the amplitudes corresponding to the relation
M x R. In this region, the significant decrease in pressure contributes to a decrease in the
complementation of the corresponding curves and, ultimately, to preventing the maximum
mass from being obtained.
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5. Conclusions

As stated before, this study was very cautious and exploratory applied to a schemati-
cally structured neutron star model. The model adopted for a neutron star, as emphasized
previously, due to its formal simplicity and structured characteristics was chosen in or-
der to perform a preliminary analysis of the GUP effects with a minimum length for the
description of the spacetime noncommutativity effects.

The adopted model is well known as Quantum Hadrodynamics (QHD-I), a relativistic
quantum field theory based on a local Lagrangian density with couplings between nucleons
and mesons of the attractive scalar-isoscalar ¢ and repulsive vector-isoscalar w types
playing the role of the relevant mean-field effective mesonic degrees of freedom. This
model, despite its formal simplicity, provides a consistent theoretical framework to describe
global static properties of many-body systems under the action of the strong interaction
and in extreme conditions of pressure and density such as those found in neutron stars
and pulsars. The limitations of the model, among others, are reflected in the description of
some of the static properties of nuclear matter, such as the effective mass of the nucleon
and the compressibility of symmetric nuclear matter. In this sense, future theoretical
calculations indicate the need to propose a model for neutron stars that contemplates
a phenomenological Lagrangian formalism with nonlinear scalar, vector and isovector
meson-baryon couplings and the insertion of the fundamental baryon decuplet.

Likewise, a proposal for future work should contemplate the presence of a crust. The
density of nuclear matter at the saturation point, corresponding to the minimum value of
the nuclear binding energy per nucleon, is estimated by means of nuclear mass analyses,
and is of the order of py = 2.8 x 10 g cm 3 corresponding to 19 = 0.16 nucleons per fermi
cubed. Estimates of the density of the cores of massive neutron stars are in the order of
[5 — 10]pp. The challenges of consistently describing a neutron star persist in view of the
extreme physical conditions of these compact objects, conditions far from those on Earth.
In turn, although it is not a crucial point of the present formulation, the outer layer of
neutron stars, - the crust -, with density pcust < po, presents very different but extremely
rich theoretical challenges and observational opportunities insofar as depending on the
scenario of its formation, the crust may be very different in its composition and structure.
In developing these scenarios for the crust of a neutron star, it is necessary to employ a
plethora of theoretical and observational knowledge involving, among others, atomic and
plasma physics, the theory of condensed matter, the physics of matter in strong magnetic
fields, the theory of nuclear structure, nuclear reactions, the nuclear many-body problem,
superfluidity, physical kinetics, hydrodynamics, the physics of liquid crystals, and the
theory of elasticity.

We then pose three fundamental questions involving a noncommutative spacetime: if
there is a GUP, with a minimum length, then (i) does the astrophysical arena represent a
relevant laboratory to reveal these effects? (ii) what is the limiting minimum length scale?
(iii) how can we identify GUP effects in observable data from neutron stars?

Even though we are faced with the limitations of the formulation in view of its
preliminary nature, we can partially answer these questions: (i) the model predictions
are in tune with the scales of the astrophysical arena, which contemplates the range of
high energy scales that are beyond terrestrial laboratories and can access unique regimes
in compact stars and in cosmology; furthermore, the values of the maximum masses of
neutron stars are in tune with the most recent observed values, of the order [2.0 — 2.6] Mg;
the results also indicate that, although the effects of the presence of a minimum scale
broaden the descriptive perspective of a compact star, encompassing a non-commutative
algebra, they do not spoil the effective aspects covered by the QHD formulation; in this
sense, the maximum values of pressure and energy density as a function of the baryon
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density in tune with the QHD-I model predictions stand out; (ii) in the present study the
values varied in a range from 1 x 107° fm? to 5 x 1072 fm?; when translated to a minimal
length it results in Ax ~ 0.003 fm to 0.22 fm. These values can be compared with the usual
nucleon radius obtained in bag model calculations ranging from 0.2 fm to 1.0 fm [33,34],
resulting in a limiting minimal length scale at the order of the nucleon’s size; (iii) the
cutoff values introduced in the EoS has a direct inference in limiting the maximum neutron
star mass.

A more important conclusion to this last question is reached by reasoning in the
opposite direction: the fact that neutron stars exist is confirmation that the noncommutative
scale must be very small. Even if it is very small, the minimum length may be relevant in
modifying the structure of a primordial phase transition. For example, in the first three
minutes of the creation of the universe [35-37] a cosmological phase transition is believed to
have occurred, generating a global change of the primordial matter. Starting at the Planck
time tp ~ 10~% s, the young universe evolved and by the time it reached t ~ 10738 s the
grand unified group SU(3) ® SU(2) ® U(1) had undergone gauge symmetry breaking.
If the minimum length approach is correct, then at this scale the noncommutative effect
may play an important role.

Additional important aspects to be considered in future formulations of the problem
addressed in this contribution concern the thermodynamic consistency of the GUP de-
formation of spacetime, as well as the obedience to causality, to Le Chatelier’s Principle,
a fundamental requirement for satisfying equilibrium configurations of a compact star and
not spoiling the renormalizability of the original formulation. The QHD-I approach in par-
ticular, in its original formulation, is thermodynamically consistent, obeys Le Chatellier’s
Principle, and is also renormalizable due to the presence of counterterms. The systematic
reduction of the phase space due to the presence of the § factor raises new questions about
the formal consistency of coherent descriptive configurations of a neutron star assuming a
noncommutative spacetime, in compliance with these requirements, which deserves this
way further studies.

With particular regard to Le Chatelier’s Principle, the matter of the star must satisfy
the condition

dP/de >0

which is a necessary condition for the stability of a stable star both with respect to its struc-
ture as a whole and with respect to the elementary regions of non-equilibrium involving
stages of spontaneous contraction or expansion. In our calculations, Le Chatelier’s Principle
is not completely established, particularly in the tail regions of the pressure curves as a
result of the proposed insertion of a minimum length through the GUP deformation, a topic
that deserves more attention in the future. Fortunately, the impact of this non-observance
of Le Chatelier’s Principle does not particularly affect the observation of the effects of a
non-commutative algebra on stellar properties, since the adopted model fundamentally
contemplates the innermost pressure regions of the star. This limitation serves, however,
as motivation for a more in-depth analysis in the future to overcome it.
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Appendix A. Expressing Jacobian as a Combination of the
Poisson Brackets

In this appendix we shall summarize the proof of expressing the Jacobian as a combina-
tion of the Poisson brackets. An important canonical invariant is the magnitude of a volume
element in phase space. A canonical transformation ## — ¢ transforms the 2N-dimensional
phase space with coordinates #; to another phase space with coordinates {; . The volume
element [24]

(dﬂ) = Xm dXz . dXN dPl . dPN (Al)
transforms to a new volume element
(dg) :dxl de...dXNdpl de (AZ)

The sizes of the two volume elements are related by the absolute value of the Jacobian
determinant |

(dg) = J (dn). (A3)

As an example, for N = 1, the transformation from 75; = (X, P) to {; = (x, p) becomes

Axp) | % B
] = = ={x,pixp (A4)
aX,P) | & o {xp}
which results in the volume elements
dxdp = {x,p}xp dXdP. (A5)

For N = 2 we have the transformation from #; = (X1, Py, Xp, P>) to {; = (x1, p1, X2, p2)

9y 9y 9y 9y

X, 0X, 0P b,

0 0  dxy  9n

| d(x1, p1, %2, p2) X 9% oF obs
P1 P1 P1 P1

(X1, P1, X2, P2) X, 9X, 9P P

9p2 9p2 9p2 9y

9X; 09X, oP b

= {X1, Pl}Xl,Pl {x2, Pz}Xz,P2 + {x1, Pz}xl,pl {Plfxz}xz,pz

—{x1, 02t %0, AP, P2t xop +{%2, P2} X0, 0 {X1, P10,

Hpu 2t x, e {x1, P2 %00, — {P1 P23 x,,0, {X1, X2} %01, (A6)

An extended and detailed demonstration can be found in the reference of T. V. Fi-
tyo [23]. Let us denote x; = Aj; 1, p; = Az, A; derivative with respect to X; we denote
Ajai—1, with respect to P; as A 5;. Then

D

{AL A} =) (A1 Ajor — Aok Ajok-1) (A7)
k=1
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where the demonstration regards the proof of the following identity

a(xlrplr-'-/xD/pD) 1 2D
| = 3% P X ) ~ D1, & il AunAid e Aoy Anod (A9

i,...iop=1

where ¢;, ;. is the Levi-Civita symbol.

Notes

1

Concerning the approximation 8 p> << 1, since no large values of k + should be taken into account in our calculations, - according
to the range of values adopted for conventional formulations of equations of state of neutron stars -, our corresponding evaluation
is based on the following preliminary estimate: the maximum value of kf is 5 fm ~1 which leads to the maximum value of 8
equal to 4 x 1072 fm?. In case we assume 8 = 5 x 102 fm? then the corresponding value of ks goes up to 4 fm.

In quantum field theory, since we are using a finite normalization volume V, we should be summing over a group of allowed
wave vectors k, for large volume (see [32])

<1//d3x> x%%ﬁ/aﬁk

with p = ik and i = 1. Accordingly, the normalization volume V should drop out of all physically significant quantities. In these
equations, the angular part in d°k was integrated leaving only the ‘radial’ part in momentum space according to dk = 47tk?dk.
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