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Heart disease is one of the major causes of death worldwide, and the traditional diagnostic procedures 
typically cause delays in treatment, particularly in low-resource regions. In this article, we propose 
a novel IoT-based Quantum Kernel-Enhanced Sardine Diffusion Attention Network (Qua-KSar-DCK-
ArNet) for real-time prediction of heart disease. The system is capable of continuously monitoring 
heart-related data such as ECG and heart rate via IoT sensors. Quantum Clustering with k-Means is 
applied to cluster the data, and Z-score Min–Max Normalization is applied for preprocessing. Fast Point 
Transformer is utilized to identify salient features. The Qua-KSar-DCK-ArNet model, a combination 
of quantum and classical deep learning methods, classifies the data for predicting the risk of heart 
disease. The system is fast and accurate, with an accuracy of 99%, significantly improving patient 
outcomes, especially in resource-scarce regions.
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Abbreviations
Qua-KSar-DCK-ArNet	� Quantum Kernel-Enhanced Sardine Diffusion Attention Network
CNN	� Convolutional Neural Network
IoT	� Internet of Things
CHD	� Congenital heart disease
LSTM	� Long short-term memory
DKAN	� Diffusion Kernel Attention Network
SOA	� Sardine Optimization Algorithm
FPT	� Fast Point Transformer
LSA	� Lightweight Self-Attention
MLP	� Multilayer Perceptron

Heart disease claims the lives of more than three million people a year and has been the cause of 53% of deaths 
in the last 5 years1. Obesity, sugar, cholesterol, and high blood pressure are some causes. Improved treatment and 
death prevention are possible with early detection. Artificial intelligence, neural networks, and machine learning 
are some technologies used in research to forecast cardiac disease2,3. However, machine learning cannot see data 
in three dimensions and needs many data. Physicians who use real-time monitoring systems get better results, 
and IoT-based prediction allays worries about security and privacy. This service is also compatible with mobile 
applications for earlier prediction.Many industries, including industry, healthcare, agriculture, and urban areas, 
are utilising the Internet of Things (IoT)4,5. The Internet of Things (IoT) provides practical, reasonably priced, 
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and ecologically friendly solutions, such as wireless sensor networks, smart mobile devices, and identification 
procedures.

It might lengthen equipment lifespans, optimise resource scheduling, and decrease equipment unavailability6,7. 
Through remote patient monitoring and the ability to store patient condition histories in databases, IoT also 
makes early disease detection and diagnosis possible. To tackle challenges and trends in the healthcare sector, 
researchers are exploring the use of IoT in healthcare8,9. For example, deep learning methods have been 
employed to detect heart disease, a complex condition that requires careful management10. Heart disease is the 
leading cause of death globally and is linked to various behavioural risk factors.Congenital heart disease (CHD) 
prevention and monitoring are being revolutionised by the Internet of Things (IoT). IoT-based solutions link 
medical equipment to the internet to collect background data on the surroundings and health of a patient11,12.

Compared to conventional testing procedures, this data can be utilised to follow changes, detect abnormalities, 
and provide quick diagnosis, potentially saving lives.Patients with Congenital Heart Disease (CHD) have a 
better long-term prognosis because of wearable sensors. Continuous monitoring is made possible by IoT-based 
technologies, which help physicians spot issues early13,14. Machine learning algorithms examine patient data 
to find risk variables. While telemedicine improves accessibility and patient care, remote monitoring lowers 
the number of doctor and hospital visits.Lengthy short-term memory (LSTM), appropriate for processing and 
forecasting crucial events in time series with lengthy intervals and delays, is used in the study for CVD research. 
However, due to varying time intervals, ordinary LSTM cannot successfully learn essential components of a 
patient’s medical state in the medical industry15.

Novelty and contribution
The Novelty and contribution of this paper is given below:

•	 This manuscript proposes Quantum Kernel-Enhanced Sardine Diffusion Attention Network for Heart Dis-
ease Prediction in IoT-Based Smart Health Monitoring (Qua-KSar-DCK-ArNet).

•	 Implement Quantum Clustering with k-Means to categorize heart-related data into distinct clusters based on 
disease risk factors, enhancing the organization and analysis of patient information. This method enhances 
predictive accuracy and enables focused interventions for managing heart disease within healthcare environ-
ments.

•	 To preprocess heart-related data using the Z-score Min–Max normalization technique, ensuring improved 
data quality and consistency. This approach effectively scales the data, which helps improve model perfor-
mance and accuracy in predicting heart disease, all while preserving the integrity of the underlying informa-
tion for analysis.

•	 To classify processed heart-related data by creating the Quantum Kernel Sardine Diffusion Classical Kernel 
Attention Network (Qua-KSar-DCK-ArNet).This novel method combines the Quantum–Classical Convolu-
tional Neural Network (Q2CNN) with the Diffusion Kernel Attention Network (DKAN), optimizing param-
eters using the Sardine Optimization Algorithm (SOA) to enhance heart disease prediction accuracy.

•	 Integration of cloud storage for secure, scalable, and accessible storage of patient data, enabling healthcare 
providers to access diagnostic results remotely.

•	 Facilitation of remote diagnosis by sending detected TB data directly to healthcare professionals, accelerating 
response time and improving patient care in underserved regions.

The rest of the manuscript is organized as follows: Section “Literature survey” provides a literature review, 
Section “Proposed methodology” details the proposed technique, Section “Result and discussion” summarizes 
the findings, and Section “Discussion” closes with future studies. The Research work organization is given in 
Fig. 1.

Literature survey
The papers related to Smart Health Monitor for Early Heart Disease Prediction: An IoT-Based Patient Monitoring 
System using Deep Learning Methods are given below:

In 2024, Yenurkar et al.16 introduced an ambulatory blood pressure monitoring (IABPM) systemfor Smart 
Health monitoring for early heart disease prediction of IoT-based patients. A cutting-edge IoT ambulatory blood 
pressure monitoring system can offer real-time blood pressure, systolic, diastolic, and pulse rate measurements 
at predetermined intervals. The system employs machine learning methods such as Naïve Bayes, K-Nearest 
Neighbors, random forest, decision tree, and Support Vector Machine to predict the early warning score for 
CHD. The system’s accuracy in forecasting blood pressure, a critical component of real-time intensive care for 
congestive heart failure, has reached 99.44%.

In 2023, Umer et al.17 introduced an Extra Tree Classifier-Convolutional Neural Network (ET-CNN) for Smart 
Health monitoring for early heart disease prediction of IoT-based patients. Due to the COVID-19 pandemic’s 
severe effects on healthcare, intelligent health monitoring systems have become more popular. Artificial 
intelligence (AI) and the Internet of Things (IoT) have transformed data collecting and communication. The 
activities of cardiac patients are monitored and reported using IoT and AI-based technologies in this study. An 
ensemble model called ET-CNN achieved an accuracy score of 0.9524.

In 2024, Alzakari et al.18 introduced a Bidirectional Long-Short-Term Memory (Bi-LSTM) for a Smart 
Health Monitor to predict early heart disease in IoT-based patients. The development of medical technology has 
revolutionized remote healthcare monitoring, especially in managing chronic conditions like heart disease and 
high blood pressure. A novel approach integrates ECD from comprehensive medical records and physical data 
from patients’ routine monitoring with regular medical monitoring.
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In 2023, Almujally et al.19 introduced a Multilayer Perceptron Neural Network (MPNN) for Smart Health 
monitoring for early heart disease prediction of IoT-based patients.The research centres on a health monitoring 
system designed to track the activities of heart patients and diagnose illnesses through AI and IoT technology. 
The system enables real-time monitoring and disease classification by gathering data from various sources with 
intelligent sensors and AI. Experimental results demonstrate the system’s effectiveness, highlighting its potential 
to improve healthcare, especially during the challenges posed by COVID-19.

In 2023, Akhbarifar et al.20 introduced a Body Area Network and Personal Area Network (BAN-PAN) for 
Smart Health monitoring for early heart disease prediction of IoT-based patients. The COVID-19 pandemic has 
led to a surge in the need for remote patient screening and monitoring. However, the presence of sensitive health 
information raises significant security concerns. This study presents a method for remote health monitoring that 
safeguards health and medical data in cloud-based IoT environments through lightweight block encryption. 
The approach ensures the protection of sensitive information while utilizing data mining techniques to predict 
essential events.

In 2023, Islam et al.21 introduced a Convolutional Long Short-Term Memory Network (CLSTMN)for Smart 
Health monitoring for Early heart disease prediction of IoT-based patients. This research proposes an Internet 
of Things (IoT)-based system designed for remote health monitoring and the early detection of health issues 
in home clinical settings.The system uses three different types of sensors: the MLX90614 non-contact infrared 
sensor for body temperature, the AD8232 ECG sensor module for ECG signal data, and the MAX30100 for 
blood oxygen levels and heart rate. A pre-trained deep learning model classifies potential diseases once the 
gathered data is sent to a server using the MQTT protocol. The technology immediately puts the user in contact 
with a physician for a more precise diagnosis.

In 2024, Pachiyannan et al.22 introduced a Convolutional Neural Network (CNN) for Smart Health monitoring 
for early heart disease prediction of IoT-based patients. A novel healthcare tool called the Machine Learning-
based Congenital Heart Disease Prediction Method (ML-CHDPM) helps quickly diagnose and categorize 
congenital heart disease (CHD) in expectant mothers. Using cutting-edge machine-learning techniques, the 
algorithm classifies instances according to clinical and demographic parameters. The model’s performance is 
assessed using six different measures, showing that it can accurately predict and categorize cases of CHD, which 
is a big step towards early detection and diagnosis. Table 1 shows the Summary of the reviewed approach.

Issues with the integration of IoT in healthcare and solutions
The integration of IoT in healthcare presents challenges such as data security risks, interoperability issues, 
high infrastructure costs, and data overload. Ensuring secure data transmission through encryption and 
block chain technology can mitigate security concerns. Standardized protocols and AI-driven analytics can 
address interoperability and data management issues, improving efficiency. The adoption of 5G and Mobile 
Edge Computing (MEC) enhances real-time data processing and connectivity, enabling faster decision-making. 
Additionally, public–private partnerships can help reduce costs and promote widespread adoption, ensuring 
seamless and efficient healthcare services.

Fig. 1.  Research work organization.
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Types of attacks and security mechanisms
The communication layer in IoT healthcare faces various security threats. MAC layer attacks like collision and 
DoS are countered with error-correction codes and rate limitation. Network threats like sinkhole, Sybil, and 
wormhole are mitigated using authentication and redundancy checks. Transport and application layers face 
SYN flooding, buffer overflow, and logical errors, defended by client puzzles and trusted computing. Physical 
and privacy attacks like PUEA, jamming, and traffic analysis are secured using spread-spectrum, homomorphic 
encryption, and ongoing routing.

Research gap
Heart disease is still a leading killer globally, and traditional diagnostic processes are typically ineffective and 
time-consuming, especially in low-resource settings. Due to the complexity of this system, health systems fail to 
diagnose diseases accurately and on time. Patients are at high risk, as most are treated late, and the dangers come 
from the many heart-related data points published by IoT devices. This research is proposed to solve these issues.

Proposed methodology
Quantum Kernel-Enhanced Sardine Diffusion Attention Network for Heart Disease Prediction in IoT-Based 
Smart Health Monitoring (Qua-KSar-DCK-ArNet) is explained in this section.

Figure 2 shows the workflow diagram of Qua-KSar-DCK-ArNet. The system begins by utilizing an IoT-based 
sensor worn by the patient to continuously collect heart-related data such as ECG, heart rate, and other rele-
vant metrics. The data is transmitted through a mobile phone and securely stored in a cloud-based database. 
After that, the collected heart-related data is divided into clusters using Quantum Clustering with k-Means 
to categorize this data according to the disease risk factors. After that, the clustering of the data is followed 
by the preprocessing using the Z-score Min–Max Normalization technique for better data quality for further 
analysis. Next is feature extraction, which employs the Fast Point Transformer to identify some of the signif-
icant features in data, such as arrhythmia and variability in heart rate. The main subnetwork of the system is 
the Quantum Kernel Sardine Diffusion Classical Kernel Attention Network (Qua-KSar-DCK-ArNet), which is 
used to classify processed data and determine the probability of heart disease.

References Methods Advantages Disadvantages

Yenurkar et a1.16 IABPM High precision (99.44%) in blood pressure prediction for immediate critical care Combining different machine learning methods for 
the best results may be complicated

Umer et a1.17 ET-CNN Vital accuracy (0.9524) results from ensemble learning that combines CNN’s and 
ET’s advantages

It can need a lot of processing power, especially when 
training the model

Alzakari et a1.18 Bi-LSTM Outstanding forecasting accuracy (99.4%) due to Bi-LSTM’s sophisticated time-
series modelling capabilities

Bi-LSTM models may incur significant computational 
costs, particularly in real-time applications

Almujally et a1.19 MPNN Effective in diagnosing and classifying diseases thanks to a flexible and basic neural 
architecture

MPNNs’ efficacy for time-dependent data may be 
limited by their inability to capture temporal trends

Akhbarifar et 
a1.20 BAN-PAN Ensures privacy in cloud-based systems by utilising lightweight block encryption to 

secure health data
Lightweight encryption may raise security issues, 
especially when dealing with susceptible medical data

Islam et a1.21 CLSTMN Combines information from several sensors to provide fast diagnosis and thorough 
health monitoring

Several sensors combined could lead to more 
complicated systems and measurement error margins

Pachiyannan et 
a1.22 CNN Congenital heart disease (CHD) may be quickly and accurately diagnosed, which 

can help with early pregnancy detection
Its decision-making process might need to be 
explained, which is essential for medical diagnosis

Tehseen 
Mazhar23 Fuzzy Enables early detection of diseases, improves physician decision-making, and 

enhances treatment accuracy
Requires a well-structured knowledge base, may 
struggle with uncertain data

Muhammad 
Amir Khan24

(M-ABC) and 
(KNN) Increases prediction accuracy, reduces training time, and optimizes feature selection High dependency on dataset quality, requires 

computational resources

Tehseen 
Mazhar25 IoMT Enhances diagnostic precision, enables personalized treatment, reduces surgical 

errors, and improves patient monitoring
Ethical concerns, data privacy risks, and high 
implementation costs

Yazeed Yasin 
Ghadi26 MEC Improves real-time decision-making, reduces latency, and enhances patient care 

efficiency
Security concerns, decentralization challenges, and 
infrastructure costs

Table 1.  Summary of the reviewed approach.
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Pseudo code of OpHyp-NASH-Gra-Net

Fig. 2.  Workflow diagram of Qua-KSar-DCK-ArNet.
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Data acquisition
The input dataset is from the IoT-based smart health monitoring sensors19. Then, this health data is stored 
in a cloud dataset. This section provides an overview of the dataset sourced from the UCI Machine Learning 
Repository, focusing on clinical records related to heart failure. The dataset comprises patient records for acute 
heart failure, featuring 11 clinical characteristics collected during the follow-up period. Of 299 records, 194 
pertain to male and 105 to female patients. These IoT-detected health data are given to the Quantum clustering 
with k-Means27 to separate heart-related data for detecting heart disease, and its explanations are given below:

Clustering using quantum clustering with k-Means
Clustering using Quantum clustering with k-Means27 is used for clustering for heart disease prediction. The 
procedure entails grouping related records by clustering a dataset of histories into clusters and allocating every 
entry to a cluster represented by a centroid. Given a dataset F = {−→q1 , ....., −→qP } of entries in which each entry 
is a Q-dimensional vector, the purpose of grouping is to allocate every record to one of the different clusters 
{B1, ...., Bl} denoted through centroid correspondingly for comparable records to get the same assignment 
based on a particular distance measure.

k-Means and δ − k-Means
A popular technique for clustering is the k-Means algorithm, which uses a certain distance measure to assign 
each element to its nearest centroid until a predetermined convergence condition is satisfied.It usually uses the 
Euclidean distance, which is given by Eq. (1):

	

f (−→m, −→n ) = ∥−→m − −→n ∥2 =

√√√√
P∑

j=1

(mj − ni)2� (1)

here are two-dimensional real vectors. The second step entails computing a new cluster centre for every cluster 
to update the centroids for the subsequent iteration.

The grouping distribution step is the main emphasis of this, and its classical complexity in time is where the 
quantity of centroids is, is the number of records, and is their dimension. The quantum variant of k-Means, 
known as quantum k-Means, incorporates noise in cluster assignment while preserving classical centroid update 
steps, simulating traditional methods in a quantum environment.

Then, the modernized version of the measured δ − k-Means. Let 
−→
b  be the centroid closest to the point. 

Then, δ − k-Means defines the set of possible labels Kδ (−→q ) for −→q  is given in (2):

	
Kδ (−→q ) =

{
m :

∣∣∣f2
(−→

b , −→q
)

− f2
(−→

bm, −→q
)∣∣∣ ≤ δ

}
� (2)

When δ = 0, δ − k-Means is comparable to the norm, k-means that since there is no consideration of 
uncertainty, Kδ (−→q ) contains only the centroid computed. Conversely, though a high level of permits means to 
contain centroids far from the minimal cluster label, the assignment rule randomly chooses a cluster label from 
the collection, adding additional noise to the process. While quantum k-means guarantees centroid assignments 
without uncertainty by reducing to standard k-means, using more significant ε values to achieve proper grouping 
creates noise.

Quantum distance estimate
An amplitude-encoded quantum circuit for calculating the quantum Euclidean distance between two quantum 
states is shown in this study. The circuit makes use of an extra qubit that is entangled with the states. Between 
the two vectors, the Euclidean distance represents the likelihood of measuring the ancilla in a given state. 
Calculating the quantum Euclidean distance between several vectors in superposition can be done generally 
using this process. This work uses similar principlesto define the quantum k-Means algorithm, allowing for the 
practical assignment of records to clusters based on proximity.

In summary, the clustering methodology aims to enhance heart disease prediction by leveraging classical 
and quantum techniques for efficient data clustering, leading to improved outcomes in predictive analytics. 
Then, this separated heart disease data are given to the pre-processing stage to remove unwanted noise, and its 
explanations are given below:

Pre-processing using Z-score Min–Max normalization technique
This section uses the Z-score Min–Max normalization technique28 to preprocess the input dataset for efficient 
heart disease prediction. The methodologies of data preparation for health data for modelling include data 
scaling techniques such as Z-score normalization and Min–Max normalization. Then, Z-score normalization 
normalizes the data to a mean of one mean and scales it according to the standard deviation. In contrast, Min–
Max normalization scales the data to range over certain limits.

These approaches are used on several health indicators, including blood pressure levels, cholesterol and 
other health factors, including cardiovascular ones, to reduce biases and enhance the efficiency by which models 
are developed to predict heart diseases. Missing values should be dealt with, and certain characters, such as 
commas, should be deleted to keep the data clean. The comical ways of dealing with missing data include mean 
imputation forward and backward filling. The Z-score Min–Max normalization technique preserves the data 
from clutter and is vital for the correct heart disease evaluation. These approaches are instrumental in the 
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activation functions, such as sigmoidal functions and guarantee that each feature’s contribution to the model 
is proportional. For efficient heart disease prediction, the Min–Max normalization scales the data using the 
following formulas (3–4):

	
V P = v − min(v)

max(v) − min(v) � (3)

	
ip = i − min(i)

max(i) − min() � (4)

where V P , ip Represents the normalized value of a financial metric, xxx is the original value, and min(i), 
min(v) and max(v), max(i) these are the minimum and maximum values of the dataset, respectively. With 
daily/weekly/monthly data on patient’s health, most of the vital signs are standardized so that they are on the 
same scale to enhance comparison. This process also reduces the tendency and bias that might be seen in the 
model, and the model’s efficiency improves. Where ip is denoted as the normalized value and i signifies the 
current stock price output. Then the input [J ]J  and output [O]0 pre-processed output is given in Eqs. (5–6):

	
[J ]J =

[
V p

i|p

]
� (5)

	
[O]0 =

[
V ps

ips

]
� (6)

Such techniques are used in the everyday record of the historical health data obtained from IoT-based monitoring 
systems, which ensures that each health parameter can be easily correlated with others to enhance the efficiency 
of the prediction model. Following this preprocessing stage, the data is then forwarded to the feature extraction 
stage to identify and extract the most relevant features for heart disease prediction, as explained below:

Feature extraction based on fast point transformer
After the preprocessing stage, the data moves on to feature extraction to predict outcomes related to heart 
disease, including the chances of disease presence, its severity, and various patient risk factors. This step uses 
the network architecture known as the Fast Point Transformer (FPT)29, designed to integrate complex spatial 
patterns specific to HL datasets while preserving local and global context dependencies. The FPT performs 
feature extraction in three main steps: The three components of centroid-aware voxelization, LSA and centroid-
aware de-voxelization as defined below:

Step 1 Centroid-aware Voxelization
The FPT is initially divided into units, with each health unit having patient coordinates, health features, and 
details of centroids. Because the positions are generally relative to the others, a centroid-to-point positional 
encoding is used to maintain semantic and context features. This encoding captures the relationship between 
data points and their respective units. Given an input set of health data, where M in = {(Mp, ip)}P

p=1, where 
Mp represents the embeddings of the patient health metrics, the FPT voxelized this data into discrete units of 
the p-th patient health metrics and ip represents the embeddings of the equivalentto patient health metrics, 
the FPT vowelizes this data into discrete units u = {(ui, fi, ai)}I

i=1. Each unit ai includes its coordinates fi, 
features fi, and centroid coordinates ai.
To preserve semantic and contextual information during voxelization, a centroid-to-point positional encod-
ing fp ∈ ℵDenc is introduced. This encoding retains the relationship between health metrics and their corre-
sponding units. The centroid of a unit is computed as the average of all data points within that unit, defined 
in Eq. (7):

	 fp = µenc

(
Mp − ai=η(p)

)
� (7)

where ai=η(p) is the centroid of the unit containing the health data Mp, and µenc positional encoding maps the 
relative position to a higher-dimensional feature space. The centroid ai is computed as the average of all patient 
data points within a unit, as shown in Eq. (8):

	
ai = 1

|P (i)|
∑

q∈P (i)
Mp, P (i)� (8)

where P (i) denotes the set of patient data points within the i-th unit, and η(i) maps thepatient data points p to 
its corresponding unit i.

The unit feature fi ∈ ℵDin+Denc is then computed by concatenating the input patient data points Mp( e.g., 
blood pressure, cholesterol levels) and the positional encoding fp and its equation is given in (9):

	 fi = Ψp∈P (i)(ip ⊕ fp)� (9)
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where ⊕ denotes vector concatenation and Ψ it is a permutation-invariant operation, such as averaging over the 
features in the unit.

Step 2 Lightweight Self-Attention (LSA)
Post-voxelization, the features are processed through the Lightweight Self-Attention (LSA) block. This mech-
anism refines the unit features by updating them with contextual information from neighboring units. In 
the best way possible, the LSA gathers essential information from the surrounding area, enhancing feature 
representations to predict heart disease rates better. This inevitably guarantees the computational efficiency of 
the mechanism while at the same time keeping the level of complexity controllable.
Step 3 Centroid-aware devoxelization
Finally, translations of the newly updated unit feature representations back to the original data space are 
obtained. This is done through positional encoding by matching unit-wise features to continuous health 
data points through centroid-to-point style. The resulting feature is computed using a Multilayer Perceptron 
(MLP) with the updated unit feature combined with positional encoding. Following the self-attention pro-
cess, the updated unit features u = {(ui, fi, ai)}′ are devoxelized back into the heart disease outcome space 
to produce the output set P out = {(Mq, lq)} where lq  is the output feature associated with health metrics? 
Mq .
The devoxelization process uses centroid-to-point positional encoding. fp To assign unit-wise features to 
continuous health data points. Specifically, the output feature oq ∈ ℵDout  is computed using a Multilayer Per-
ceptron (MLP) applied to the concatenation of the updated unit feature  f ′

i=η(p) and the positional encoding 
fp and its equation is given in (10):

	 oq = MLP (f ′
i=η(p) ⊕ fp� (10)

where f ′
i=η(p) maps the question Mq  to its corresponding unit i, MLP  maps the health data to its corresponding 

output features.

The method used in the FPT to perform feature extraction is particularly viable for producing feature rep-
resentation with robust local and global dependencies. These features are subsequently used by the Quantum 
Kernel-Enhanced Sardine Diffusion Attention Network (Qua-KSar-DCK-ArNet) to predict heart disease 
outcomes, as detailed below.

Heart disease detection using Quantum Kernel-Enhanced Sardine Diffusion Attention 
Network
After completing feature extraction using FPT, the extracted features are processed by the Quantum Kernel-
Enhanced Sardine Diffusion Attention Network (Qua-KSar-DCK-ArNet). The hybrid network enhances 
learning by combining quantum and classical networks with nested convolutional layers for feature abstraction, 
multiple-dense nested layers for feature patterns, and an attention mechanism for representation. This innovative 
approach merges the Quantum-Classical Convolutional Neural Network (Q2CNN)30 with the Diffusion Kernel 

Fig. 3.  Architecture ofQua-KSar-DCK-ArNet.
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Attention Network (DKAN)31, optimizing parameters through the Sardine Optimization Algorithm (SOA)32 to 
improve the accuracy of heart disease predictions, with further explanations provided below in Fig. 3.

Quantum-classical convolutional neural network
The Quantum-Classical Convolutional Neural Network (Q2CNN) integrates quantum computing principles 
with classical deep learning methods to enhance computational efficiency and predictive accuracy in detecting 
heart disease from IoT intelligent environments. In this hybrid model, circuits process extensive health data 
from multiple IoT devices and find latent correlations that classical networks may not see. The first type of 
layers, the classical convolutional layers, are oriented towards feature extraction and pattern recognition of the 
health metrics. The second type of layers, quantum layers, bring entanglement and superposition into play while 
incorporating them into more expressive data representations. This amalgamation of quantum and classial parts 
allows the Q2CNN to improve the performance of relevant tasks such as heart disease detection with perfect 
precision while reducing the computational parameter of the structure.

	a.	 Quantum state preparation

	To process the classical health data to be fed to quantum processing systems, real-time parameters from IoT de-
vices are collected. PPM also defines conditions such as body functions, including blood pressure, heart rates 
and activities, environments, and health records. This data is normalized and encoded into a quantum-com-
patible format. The data vector e is represented as shown in Eq. (11):

	 e =
[
e1, e2, ..., eq2

]
� (11)

	This vector f  is converted into angle values ϑ as (12):

	 ϑ = πf � (12)

	where ϑ =
[
ϑ1, ϑ2, ..., ϑq2

]
, these angles ϑ is a function mapping the health metrics to angle values suitable 

for quantum state preparation. For a quantum system with q2 input the quantum state |Ψdata⟩ is created by 
applying a rotation gate sy  to the initial quantum state |0⟩⊗p2

 as (13),

	 |Ψdata⟩ = ⊗p2

l=1sy(ϑl) |0⟩� (13)

	This state |Ψdata⟩ represents the rotation gate parameterized by |Ψdata⟩. ​

	b.	  Quantum-classical convolution operation

	In the quantum-classical convolutional layer, a quantum kernel u(φ) is designed using quantum circuits to 
transform the quantum state |Ψdata⟩. The kernel parameters (φ1, φ2, φ3, φ4, φ5) control the quantum oper-
ations applied to |Ψdata⟩. The transformation performed by this kernel is described by Eq. (18):

	 |Ψconv⟩ = R(φ) |Ψdata⟩� (14)

	where R(φ) = u1(φ)u2(φ)...ul(φ) represents the sequence of unitary operations applied by the quantum ker-
nel to extract relevant features from the health data.

	c.	 Quantum pooling and measurement

	To reduce the dimensionality of the quantum convolution results, a quantum pooling gate O consisting of con-
trolled-NOT gates, is applied. This pooling operation maps the convolution results to specific inputs and is 
defined in Eq. (15):

	 |Ψpool⟩ = O |Ψconv⟩� (15)

	After pooling, measurements are performed on the quantum state in the Z-basis to obtain expected values, as 
shown in Eq. (16):

	 T = ⟨Ψdata| O+Z1OV (φ) |Ψdata⟩� (16)

	where Z  is the operator applied to different inputs and O represents the pooling gate.
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	The resulting vector T , with dimensions 1 × (q − 1)2, is the fed attention network for further processing. The 
resulting vector T , with reduced dimensions, serves as input to the attention network for further processing, 
enabling more accurate predictions of heart disease outcomes based on data from the IoT bright environ-
ment. Then, to improve the accuracy, the Q2CNN is integrated with DKAN, and its explanations are given 
below.

Diffusion kernel attention network (DKAN)
In the context of heart disease prediction from intelligent IoT devices, conventional self-attention mechanisms 
face challenges in effectively modeling indirect relationships between various health-related variables, such as 
heart rate, blood pressure, physical activity, and lifestyle factors. Traditional methods typically focus on pairwise 
relationships without indirectly capturing the more profound and complex interactions that may exist among 
these variables. This limitation can reduce the accuracy of heart disease prediction models and hinder the 
identification of hidden patterns influencing patient health. To address this problem, this study proposes the 
Diffusion Kernel Attention Network (DKAN) as a subroutine of the proposed Q2CNN. The DKAN enhances 
how the model computes both first-degree and other-level connections between health-related issues to make 
better decisions and predict better heart disease risk. The DKAN uses the random walk process to capture 
adjacent and non-adjacent correlations between various measures of health gathered from connected intelligent 
IoT devices, including pulse rate, movement and eating patterns.

This random walk is characterized by a transition matrix R ∈ ℵP ×P , representing the chance of passing 
from one health variable to another within the data set. The transition matrix R is computed by normalizing 
the kernel attention K  matrix derived from the self-attention mechanism, ensuring that relationships between 
variables are encoded effectively, and its equation is given in (17):

	
Rpq = Tpq∑P

p=1 Tpq
� (17)

where Rpq  denotes the probability of transitioning from variable p to variable q in one step. By performing S. 
The sum ensures proper normalization of the matrix. Thus, the ordering of diffusion kernel attention is combined 
using the DKAN through a weighted sum. This approach allows the model to sort out indirect relationships 
between health variables of different levels while considering all the discussed levels of interaction. The weights 
ensure. This transition matrix forms the basis for modeling the direct and indirect relationship between health 
metrics.

Since a given clinical quantity may depend on several other clinical quantities, and the clinical quantities 
may, in turn, depend on other clinical quantities in a two-tiered fashion, the multi-step random walks of the 
DKAN create awareness of much broader liaisons in the health-related network beyond just duality. An A k
-step random walk expands the spectrum of relations considered, relationships between the variables that are 
connected not directly. The condition of the heart disease prediction network following -step random walks is 
represented in Eq. (18):

	 Tfk = RKT � (18)

where RK  denotes the T -th power of the transition matrix R. This formulation effectively captures the state 
of the network after considering interactions up to k orders of connectivity. In the context of predicting heart 
disease, this enables the model to gain a deeper insight into the intricate and nuanced factors that contribute to 
the risk of heart disease, as outlined in Eq. (19):

	
TR =

∑K

q=0
αq, RqT � (19)

here are adaptive weights learned during training to optimize the model’s performance. The DKAN combines 
the different orders of diffusion kernel attentions into a weighted sum to integrate them. The above method 
helps the model to focus on the relative indirect couplings between health variables at different interaction 
levels while incorporating all of them. The weights add up some inputs to have a normalized weight for various 
layers of indirect relationships, so working with the DKAN improves the ability to predict the risks of heart 
disease. In an attempt to increase accuracy and decrease the error rates, computational complexity and cost, the 
weight parameters Of Q2CNN-DKAN are fine-tuned with the Sardine Optimization Algorithm (SOA) and its 
explanations are given below:

Optimization with Sardine Optimization Algorithm (SOA)

To further enhance the accuracy of heart disease prediction from smart IoT devices, the weight of the pro-
posed model, namely, Q2CNN-DKAN, is fine-tuned by employing a metaheuristic named the Sardine Op-
timization Algorithm (SOA). This optimization aids in enhancing the model that suppresses the risk levels 
as well as the health condition of the patients by reducing the rates of mispredictions and computations of 
the model. In particular, the SOA strategy allows the exploration and exploitation of the given space and the 
search for such a set of model parameters, which will achieve the maximum accuracy indefining the risks of 
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heart diseases. Figure 4 shows the flow chart of Qua-KSar-DCK-ArNet. The step-by-step procedure of Qua-
KSar-DCK-ArNet are given below:

Pseudo code of Qua-KSar-DCK-ArNet

Fig. 4.  Flow chart of Qua-KSar-DCK-ArNet.
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Step 1 Initialization
The optimization process begins with the random distribution of sardine schools, representing a potential 
solution. Every solution is connected with a set of parameters, such as the weight of the Q2CNN-DKAN 
measure or weights of the network components and the attention layers in the Q2CNN-DKAN architecture. 
These parameters are crucial to span the risk of heart disease indicators, including physiological measures 
and behavioral aspects.
Step 2 Random generation
During this phase, the random generation of the school of sardines is the first step in exploring the SOA space 
to ensure proper exploration. The purpose here is to identify sets of parameters that would exhibit the activity 
of health data, including voltage signals that represent HRV, systolic/diastolic BP, etc. In the implementation 
process, the algorithm will go through most of the possible parameter values to identify settings that enhance 
the reliability of heart disease predictions.
Step 3 Fitness function
Through the measures of the fitness function, the ability of the Q2CNN-DKAN model is evaluated based 
on the accuracy, error rate and amount of time it takes for the model to make predictions. The purpose is to 
minimize the loss function, which aids in improving the forecastsof risk factors of heart disease in the model. 
T﻿he fitness function can be expressed as in Eq. (20):

	 F itness function = Optimize (α)� (20)

Step 4 Sardine schools for attaining the best solution
The optimization process involves the movement and transformation of sardine schools. Operators, such as 
the “oval operator,” are used to iteratively update each sardine’s position in the solution space, guiding the 
search toward the optimal solution. The sardine schools are updated based on adjacent odd and even di-
mensions (yp, xf ), adjusting their positions according to the school’s radius and optimization settings. This 
movement follows these Eqs. (21–23):

	

{
χ = rand() × 2Π
yp = q cos (δl + δ)
xf = q sin (δl + δ)

� (21)

	

{
σl

∣∣∣σl = l
2Π

T Size
1 ≤ l ≤ T Size ∩ l ∈ W

}
� (22)

	

q = t × SearchScope

6 ×
∣∣∣UpLimit − LowLimit

2

∣∣∣
× e−5×( k

K )2
t = 1, 2, 3, ...., 6

� (23)

An odd dimension is an even dimension, and it is school size. Returns a random number from 0 to 1. q is 
the radius of the school, K  is the maximum number of evaluating sardines (i.e., the maximum number of 
using fitness function), and is the present number of evaluating sardines. With k increasing, it decreases 
gradually. Besides, there UpLimit and LowLimit are the upper and lower limits in each dimension. It is a 
setting parameter that is equal to 30%. Worth noting that it t×SearchScope

6  has six values. A set parameter is 
set to 30%, and each school randomly selects a value from six values (5%, 10%, 15%, 20%, 25%, 30%). These 
generated points are uniformly distributed around the center B, α representing the optimization parameters 
needed to achieve the best solution (improving accuracy, reducing error rates, and minimizing computational 
complexity).
Step 5 Termination
The optimization process continues until the termination criteria are met, when the optimal solution is iden-
tified, or a pre-defined number of iterations is reached. The best solution corresponds to the parameters that 
maximize the model’s accuracy in predicting heart disease risk. By optimizing the regularization coefficients, 
the model effectively balances minimizing error rates and computational complexity, thus enhancing predic-
tive performance for heart disease risk assessment based on data collected from intelligent IoT devices.
This manuscript presents the Quantum Kernel-Enhanced Sardine Diffusion Attention Network (Qua-KSar-
DCK-ArNet) for heart disease prediction using IoT-based sensors. The system collects heart data, clusters it 
via Quantum Clustering, preprocesses it with Z-score Min–Max normalization, and extracts features using 
the Fast Point Transformer. It combines quantum and classical techniques for accurate predictions, facilitat-
ing timely clinical decision-making.

Result and discussion
This section presentsthe results and discussions of Quantum Kernel-Enhanced Sardine Diffusion Attention 
Network (Qua-KSar-DCK-ArNet) for heart disease prediction using IoT-based sensors. Here, the concept of An 
IoT-Based Patient Monitoring System is presented.
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Dataset descriptions
The input dataset is taken from the IoT-based smart health monitoring sensors. Then, this health data is stored 
in a cloud dataset. This section provides an overview of the dataset sourced from the UCI Machine Learning 
Repository, focusing on clinical records related to heart failure. The dataset comprises patient records for acute 
heart failure, featuring 11 clinical characteristics collected during the follow-up period. Of 299 records, 194 
pertain to male and 105 to female patients. Among them, 70% of data are taken for training and 30% for testing. 
The training process involves initially dividing the dataset into training, validation, and test sets (70%, 15%, and 
15% respectively). Hyperparameters include a learning rate of 0.001, batch size of 32, number of epochs set to 
100, quantum clustering k-value of 5, and diffusion optimization iterations set at 50. The Adam optimizer was 
used to minimize the cross-entropy loss function. Evaluation criteria encompass accuracy, precision, recall, F1-
score providing comprehensive metrics for model performance assessment.

Performance metrics
The performance metrics such as Accuracy, precision, recall, sensitivity, Computational complexity, computational 
time, and error rate analysis of neural network models such as IoT-based ambulatory blood pressure monitoring 
(IABPM)16, Extra Tree Classifier-Convolutional Neural Network (ET-CNN)17, Bidirectional Long Short-Term 
Memory (Bi-LSTM)18, Multilayer Perceptron Neural Network (MPNN)19, Body Area Network and Personal Area 
Network (BAN-PAN)20, Convolutional Long Short-Term Memory Networks (CLSTMN)21 and Convolutional 
Neural Network (CNN)22 respectively are analyzed.

Table 2 shows the performance metrics equations are given below:

True Positive : Normal correctly calculates as usual.
False Positive ℏ: Normal incorrectly calculates as abnormal.
False Negative ℓ: Abnormal incorrectly calculates, abnormal as usual.
True Negative ξ: Abnormal correctly calculates, abnormal.

Performance analysis
The examinations of the introduced method are clarified here.

Figure 5 shows the examination of Training Accuracy over Epochs with 99.9% accuracy. By evaluating the 
method’s output using the training dataset, training accuracy offers invaluable information about how effectively 
the model assimilates the info it has encountered. A critical measure of the model’s training effectiveness is the 
loss function. A smaller loss function value indicates better model performance.

Figure 6a shows the Convergence plot over Epochs with existing methods. The convergence plot across epochs 
shows the performance of the proposed model compared with existing methods. It illustrates the consistency 
and quickness of the learning process by tracking accuracy or loss over iterations. While a fast convergence 
indicates that the model learns the best patterns quickly, a steady curve indicates robustness. When our model 
is compared with current methods, it shows speedier convergence, lower loss, more robust optimization, better 
generalization, and higher accuracy over alternatives in complex tasks.

Figure  6b compares the ROC curves with existing methods. The proposed model’s ROC curves show 
improved sensitivity and specificity compared to existing processes, resulting in more accurate predictions, 
fewer misclassifications, and an overall diagnostic or detection accuracy improvement.

Figure 7a shows the Accuracy across epochs (stacked).The suggested Qua-KSar-DCK-ArNet routinely beats 
alternative techniques such as IABPM, EFCMN, BI-LSTM, MPNN, and BAN-PAN over several epochs (100–
500), as shown by the accuracy graph. This suggests that the proposed model performs exceptionally well in 

Performance metrics Equations (24–31)

Accuracy

Precision

Recall

Specificity ℓ
ℓ+ℏ (27)

Sensitivity

F1-score 2 ∗ precision∗Recall
precision+Recall

(29)

Disease Prevalence

Negative predict value

Table 2.  Performance metrics equations.
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predicting heart illness with its excellent classification performance. It isessential for efficient health monitoring 
in the Internet of Things-based intelligent systems.

Figure 7a shows the Specificityacross epochs (stacked).Compared to IABPM, EFCMN, BI-LSTM, MPNN, 
and BAN-PAN, Qua-KSar-DCK-ArNet performs better overall epochs and maintains fewer false positives, 
according to the specificity comparison. In IoT-based health monitoring systems, high specificity guarantees the 
system correctly detects those without cardiac disease, minimizing needless warnings.

Figure  7a shows the Sensitivityacross epochs (stacked). The suggested Qua-KSar-DCK-ArNet leads 
consistently in recognizing true positives across several epochs in terms of sensitivity. To maintain patient safety 
in IoT-based health systems, high sensitivity is essential for the prompt and accurate diagnosis of cardiac disease, 
proving the model’s efficacy in decreasing missed diagnoses.

Figure 8a shows the F1 scores across epochs (stacked). Higher F1 scores are routinely achieved by the proposed 
Qua-KSar-DCK-ArNet, demonstrating its superior ability to handle unbalanced heart disease datasets. This 
guarantees accurate forecasts in IoT-based intelligent health monitoring systems, where it’s essential to reduce 
false positives and negatives.

Figure 8b shows the recall across epochs (stacked). The recall graph shows the accuracy of various approaches 
toidentifyingheart disease patients. With its consistent recall leadership, Qua-KSar-DCK-ArNet efficiently 
catches true positives, minimizing the number of missed heart disease diagnoses. High recall is crucial in IoT-
based health systems to guarantee early detection and prompt medical actions.

Figure 8c shows the error rate across epochs (stacked). The Qua-KSar-DCK-ArNet approach, as compared 
to alternative methods, consistently maintains a reduced error rate over several epochs, as seen by the error 
rate comparison. This illustrates its resilience in lowering false positives and negatives, essential for precise and 
trustworthy heart disease prediction in Internet of Things-based intelligent health monitoring systems.

Fig. 6.  a Convergence plot over Epochs and b ROC curves comparison with existing methods.

 

Fig. 5.  a Training Accuracy, b Training loss function over Epochs for Qua-KSar-DCK-ArNet.
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Table 3 and Fig.  9 shows the performance metrics of various models in detecting abnormal and normal 
cases. The proposed Qua-KSar-DCK-ArNet demonstrates exceptional performance, achieving the highest 
accuracy (99.98%), precision (99.34%), recall (99.56%), and F1-score (96.34%). This indicates its effectiveness 
in distinguishing between abnormal and typicalcases, significantly outperforming other models in the analysis.

Table 4 and Fig. 10 show the Positive Predictive Value (PPV) percentages for different approaches across 
multiple data points (DP) displayed in the table. With near-perfect PPV values, the suggested Qua-KSar-DCK-
ArNet consistently beats the other methods, particularly with larger datasets (99.79% for 567 records and 99.79% 
for 5000 records). While techniques like IABPM, ET-CNN, Bi-LSTM, and MPNN exhibit lower and more 
variable PPV, indicating decreased accuracy in positive categorization, BAN-PAN performs well.

Table 5 and Fig.  11 show that the proposed Qua-KSar-DCK-ArNet model is among the models whose 
Negative Predictive Value (NPV) percentages are displayed across various data points (DP) and record counts. 
Among other models, Qua-KSar-DCK-ArNet is particularly good at identifying negative cases in prediction 
tasks; it consistently outperforms other models and achieves the highest NPV across all data sets.

Table 6 and Fig. 12 compare the performance of the proposed Qua-KSar-DCK-ArNet with existing methods 
across various metrics. Qua-KSar-DCK-ArNet achieves superior results in accuracy (99.97%), recall (98.47%), 
and precision (99.59%), along with the lowest Mean Squared Error (0.01) and computational costs. These results 
highlight its effectiveness and efficiency in heart disease detection, outperforming all other methods.

Table 7 and Fig.  13 present a comparison of various optimization techniques used for training neural 
networks, highlighting their fitness regarding training execution duration and accuracy. These methods include 
the Sea-Horse Optimizer Algorithm (SHOA), Green Anaconda Optimization Algorithm (GAOA), Greylag 
Goose Optimization Algorithm (GGOA), Triangulation Topology Aggregation Optimizer Algorithm (TTAOA), 
Gorilla Troops Optimizer Algorithm (GTOA) and the Quantum Kernel-Enhanced Sardine Diffusion Attention 
Network (Qua-KSar-DCK-ArNet). Notably, the proposed Qua-KSar-DCK-ArNet attains the highest training 
accuracy of 99% in the experiment. 89%, while also highly efficient, with an execution time as low as 0. 1 s.

Statistical analysis of the proposed method vs. existing methods
The effectiveness of the projected method is evaluated using five statistical tests: the Shapiro–Wilk test (SW test), 
Wilcoxon Signed-Rank Test (WSR), Friedman Test (FT), Kruskal–Wallis H-test, and Kolmogorov–Smirnov test 
(KS test).

	a.	 SW Test

Fig. 7.  a Accuracy, b Specificity and c Sensitivity Comparison of existing methods across epochs.
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	The Shapiro–Wilk test, or SW test, can be used to determine a sample’s normal distribution. It computes a W 
statistic to compare the sample distribution to a normal distribution. A p-value of less than 0.05 indicates 
statistical significance and suggests that the data may not follow a normal distribution.

	b.	 WSR Test

	The Wilcoxon Signed-Rank Test (WSR), a non-parametric statistical test, compares matching data. In cases 
when the data are not regularly distributed, it ascertains whether the median difference between paired ob-
servations is zero. It rates them to see if there is a substantial deviation of the absolute differences from zero.

Methods

Accuracy Precision Recall F1-score

Abnormal Normal Abnormal Normal Abnormal Normal Abnormal Normal

IABPM 95.76 93.32 77.45 81.70 92.12 80.15 94.12 91.25

ET-CNN 92.66 93.39 87.45 94.49 97.81 92.30 86.41 95.20

Bi-LSTM 95.44 97.45 89.77 78.99 78.91 90.56 91.41 93.23

MPNN 90.25 91.30 81.28 87.59 94.45 95.33 75.27 90.17

BAN-PAN 91.1 92.2 87.30 94.13 92.61 93.49 87.49 96.49

CLSTMN 77.81 92.39 86.44 95.28 86.54 79.34 85.23 67

CNN 91.10 92.2 89.30 94.87 91.10 93.09 92.86 95.76

Qua-KSar-DCK-ArNet (Proposed) 99.98 98.94 99.34 99.17 99.56 99.77 95.45 96.34

Table 3.  Precision, F1-score Accuracyand Recallfor abnormal and normal.

 

Fig. 8.  a F1-Score b Recall and c Error Rate Comparison of existing methods across epochs.
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	c.	 Friedman Test (FT)

	A non-parametric statistical tool called the Friedman technique (FT) can be used to find differences in treat-
ment between test runs. It is used in matched-subject designs and repeated measures to determine whether 
there are statistically significant differences in rankings between related groups when the data are ordinal or 
non-normally distributed.

	d.	 Kruskal–Wallis H-test

Fig. 9.  Accuracy, Precision, Recall and F1-Score Comparison of existing methods.

 

Scientific Reports |        (2025) 15:17306 17| https://doi.org/10.1038/s41598-025-99990-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	Based on ranking data, the Kruskal–Wallis H-test is a nonparametric statistical procedure used to evaluate 
whether there is a statistically significant difference between three or more independent groups. It is appropri-
ate for ordinal or nonnormally distributed data since it considers whether the group median ranks fluctuate.

	e.	 Kolmogorov–Smirnov Test (KS Test)

	The Kolmogorov–Smirnov Test (KS) determines whether a sample conforms to a given distribution by compar-
ing the empirical distribution function to the theoretical distribution. It establishes the degree to which these 
roles vary from one another. A high KS statistic suggests that the sample does not fit the expected distribution 
and indicates a significant difference.

	Table 8 and Fig. 14 presentthe statistical analysis of the proposed Qua-KSar-DCK-ArNet model, showcasing 
its superior performance compared to existing methods. The p-values below 0.001 in tests like the F-test and 
Wilcoxon Signed-Rank indicate high statistical significance. The model also has the lowest Variance Inflation 

DP Records

NPV (%)

IABPM ET-CNN Bi-LSTM MPNN BAN-PAN Qua-KSar-DCK-ArNet (Proposed)

68 567 93.55 90.47 91.68 94.57 95.67 98.95

80 895 90.47 91.36 92.65 95.30 96.44 99.90

100 1568 92.99 92.58 93.45 96.79 97.58 98.55

198 5000 95.79 93.22 94.00 97.30 98.45 97.70

Table 5.  Analysis of disease prevalence using Negative Predicted values (NPV).

 

Fig. 10.  Analysis of disease prevalence using positive predicted values (PPV).

 

DP Records

PPV (%)

IABPM ET-CNN Bi-LSTM MPNN BAN-PAN Qua-KSar-DCK-ArNet (Proposed)

68 567 77.58 80.91 95.3 89.2 82.9 99.79

80 895 92.69 91.68 78.91 90.56 91.41 98.15

100 1568 95.53 84.53 93.57 97.79 95.68 98.35

199 5000 93.36 96.91 94.67 98.79 98.45 99.79

Table 4.  Analysis of disease prevalence using positive predicted values (PPV).
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Factor (1.001), suggesting minimal multi-collinearity. Its mean performance (61,429.83) and moderate stand-
ard deviation (3,725.78) further highlight its reliability and stability, outperforming other models.

Ablation study of the proposed method
An ablation study is a methodical experiment to examine the effects of specific elements or characteristics of 
a suggested approach. An ablation study for the proposed method (Qua-KSar-DCK-ArNet) would include 
methodically eliminating or adjusting particular aspects or techniquesto regulate how they affect the model’s 
overall presentation. Table 9 shows the ablation study of the proposed method compared with previous Siamese 
networks.

Table 9 and Fig. 15 comparisons of different configurations of the model and their performance on datasets.
The proposed method provides better results by adding DKAN and Q2CNN. With these networks, this 

method would have more accuracy. The configuration DKAN exhibits a slight drop in accuracy and attains. 
94.78% for the first dataset and 96.87% for the second dataset. Like that, the newly developed variant Q2CNN 
has slightly improved from the DKAN CNN with the following accuracy: first dataset 96.86%, second dataset 
93.45%. Therefore, the accuracy obtained from the proposed Qua-KSar-DCK-ArNet for the first dataset is 
99.95% and for the second dataset is 99.97%.

Metrics IABPM16 ET-CNN17 Bi-LSTM18 MPNN19 BAN-PAN20 CLSTMN21 CNN22 Qua-KSar-DCK-ArNet (Proposed)

Accuracy 98.95 95.28 94.42 95.14 96.80 96.65 97.58 99.97

Recall 95.1 85.36 80.47 75.74 85.39 93.73 91.53 98.47

Precision 64.83 75.65 85.73 85.64 75.84 91.27 92.46 99.59

Specificity 86.50 89.23 85.84 80.36 75.16 88.27 77.43 99.27

F1-score 90.66 88.53 87.47 85.35 85.40 92.28 94.76 99.46

MSE 0.06 0.05 0.04 0.05 0.03 0.07 0.02 0.01

MAE 0.05 0.05 0.02 0.06 0.04 0.05 0.02 0.01

RMSE 0.75 0.90 0.85 0.80 0.80 0.81 0.86 0.65

AAE 0.07 0.06 0.02 0.05 0.05 0.04 0.03 0.014

Computational cost 0.25 0.30 0.33 0.65 0.55 0.47 0.49 0.015

Computational time 0.54 0.95 0.74 0.67 0.59 0.30 0.84 0.023

Table 6.  Overall analysis of the introduced technique related to prevailing approaches.

 

Fig. 11.  Analysis of disease prevalence using Negative Predicted values (NPV).
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Discussion
The proposed Qua-KSar-DCK-ArNet system demonstrates significant potential in enhancing heart disease 
prediction through IoT-based smart health monitoring. The integration of quantum clustering, advanced 
preprocessing, and deep learning-based attention mechanisms ensures high accuracy and efficient data 
processing. Compared to traditional methods, our approach achieves superior predictive performance while 
enabling real-time diagnosis, which is crucial for early intervention. However, challenges such as data security, 
computational complexity, and system scalability must be addressed for widespread implementation. Future 
improvements will focus on optimizing resource utilization, integrating additional physiological parameters, 
and enhancing model interpretability for clinical applications.

Conclusions
This study presents the Qua-KSar-DCK-ArNet system, an IoT-based smart health monitoring framework for 
heart disease prediction. By leveraging quantum clustering, advanced preprocessing, and a diffusion attention 
network, the system achieves an impressive 99% accuracy, enabling real-time diagnosis and improved patient 
outcomes. The findings highlight its potential for quick and precise heart disease detection, particularly in 
resource-limited settings. Future work will focus on integrating additional physiological data and enhancing 
deep learning techniques to further improve prediction quality and scalability. Moreover, addressing challenges 
related to data security, computational efficiency, and seamless cloud integration will be crucial for its broader 
adoption in clinical practice. Next, we will explore the feasibility of using RTA for, for instance, anticipating and 
preventing heart disease cases, and we aspire to advance the system’s applicability to as many facilities, especially 
those in LMICs, as possible.

Optimization technique Fitness (Training accuracy in (%)) Time in seconds

SHOA33 93.59 0.2

GAOA34 96.35 0.4

GGOA35 94.84 0.3

TTAOA36 95.26 0.6

GTOA37 97.60 0.5

Qua-KSar-DCK-ArNet (Proposed) 99.9 0.1

Table 7.  Fitness of fittest agents.

 

Fig. 12.  Overall analysis of the introduced technique related to prevailing approaches.
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Methods SW test p-value
WSR test/U-test 
p-value H-test p-value KS test p-value FT p-value Mean

Standard 
deviation

Variance 
inflation 
factor

IABPM16 0.035 0.045 0.37 0.029 0.027 261,435.7 2489.67 1.65

ET-CNN17 0.225 0.265 0.047 0.031 0.042 362,024.6 1301.54 1.94

Bi-LSTM18 0.256 0.193 0.36 0.024 0.035 59,998.12 1362.45 1.87

MPNN19 0.347 0.231 0.31 0.021 0.048 343,754.9 2925.43 1.13

BAN-PAN20 0.396 0.286 0.35 0.042 0.032 258,135.8 1236.11 1.82

CLSTMN21 0.262 0.312 0.23 0.025 0.078 59,879.24 1501.43 1.12

CNN17 0.229 0.412 0.28 0.038 0.051 357,932.7 3142.12 1.91

Qua-KSar-DCK-ArNet 
(Proposed) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 61,429.83 3725.78 1.001

Table 8.  Statistical Analysis of the proposed method versus existing methods.

 

Fig. 13.  Fitness of fittest agents.
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Methods
IoT-based smart health 
monitoring sensors

Performance metrics Accuracy (%) Precision (%)

DKAN 94.78 96.87

Q2CNN 96.86 93.45

Qua-KSar-DCK-ArNet (Proposed) 99.95 99.97

Table 9.  Ablation study.

 

Fig. 14.  Statistical analysis of the proposed method versus existing methods.
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Data availability
The data that supports the findings of this study are available within the article.
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