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1 Introduction

The measurement of a quantum mechanical system is of a probabilistic na-
ture, so even determining a measurable quantity requires statistical methods.
This is why state estimation is an important field in quantum information
theory [36, 39, 42].

It is well-known that a measurement applied to a quantum system will
change the state of it in an irreversible way depending on the measurement
outcome. Additionally, D’Ariano and Yuen prove in [15] that it is generally
not possible to determine the state of one single quantum system, whatever
estimation scheme is used. We use therefore several copies of the same system
being in the same state!, perform a sequence of measurements, and estimate
the unknown state from the outcome statistics. This process is usually called
quantum state tomography [13] and can be traced back to the seventies
[22, 24].

The problem of state estimation is quite old, however, the interest in a
thorough mathematical analysis of quantum state estimation procedures has
been flourishing recently [12, 30, 60]. For example, an adaptive observable
selection strategy based on a Bloch vector parameterization in spherical co-
ordinates and on a Bayesian estimation method of qubits in mixed states is
reported in reference [17].

Quantum process tomography is a closely related field, an exhaustive
description of possible tomography methods can be found in [34]. The differ-
ence between quantum state and quantum process tomography is that here
we have a quantum channel and we are interested in its effect. For this
purpose we send a prepared state (that is known) through the channel, and
we make a tomography on the output state to estimate the channel effects.
Many publications in this field deal with a very specific case, namely when

we have a qubit and a channel with one parameter, e.g., the depolarization

IThe preparation of identical states is in general rather difficult to implement in prac-
tice, however in certain physical circumstances, for example in quantum optics, it is natural

to have several copies of the quantum system in the same state.



channel examined in [56]. However, there are some works that investigate the
estimation of multi-parameter channels [7, 63, 37], and the multidimensional
case also appears in Ref. [19, 35, 54].

Quantum control [6, 26, 51] is another problem similar to state estimation.
Its purpose is the same as in classical control theory, i.e., to give an estimate
of the unmeasured time-dependent state variable in order to be used in state
feedback schemes such as noise reduction [10] or state purification [23]. While
in state estimation problems we have a time-invariant problem, in quantum
feedback control we have often a time-depending situation, hence quantum
state filtering is essential [8, 9].

In quantum control it is important not to demolish the state of the sys-
tem completely, therefore a so-called weak measurement is applied [25]. Thus,
post-measurement state still contains information about the original. This
property was used in [28, 29] to reverse the effect of some weak quantum
measurements.”> Weak measurements can be used for state estimation pur-
poses, too. The majority of related articles take a continuous-time approach
[27, 59], but there are some discrete-time models, too [20, 52, 53].

This thesis deals mainly with incorporating partial information into the
state estimation process. In quantum tomography setups some a priori in-
formation about the state can be given in various ways. The most popular
subject in this field is state discrimination: in that case we know that the
system is in one of several given states, and we would like to determine which
one it is [14]. We can have an a priori probability distribution of the true
state, too, as another possibility. This idea was used in [16] to obtain the
optimal phase estimation. Unlike in the state discrimination setup, the pos-
sible states do not form a discrete set, instead, all pure states are considered.
In our setup we know that the state is in a given subset of the whole state
space?, i.e., some parameters of the state are known.

To set up a quantum state estimation two ingredients have to be given:

20f course it can be done with probability less then 1.
3This can be the whole state space itself.



the measurement strategy used to obtain information, and the estimator
mapping the measurement data to the state space. Most publications use
maximum-likelihood (ML), Bayesian or some other simple method to ob-
tain an estimator from measurement data. For the measurement part the
spectrum of approaches is very wide. There are works [4, 21] which per-
form a single measurement on the compound system from identical copies
and obtain optimality in an asymptotic sense. Other authors [43, 49] take
measurements independently on states and deal with the properties of the
estimate when only a finite number of measurements is available.

To obtain the optimality of a measurement setup we have to somehow
measure the error of our estimation, which can be done many ways. In
statistics the accuracy of the estimation is usually quantified by the covari-
ance matrix. The matrices are typically not comparable by the positive
semi-definiteness, hence if different estimation schemes are compared, the
determinant of the covariance matrix can be used instead. This approach
was introduced in references [43, 44]. Their result was that complementary
von Neumann measurements are optimal in the qubit case. A more general
context appears in [5], which is much closer to our approach. A similar re-
sult was obtained earlier by Wooters and Fields [62], but instead of using
the covariance matrix of the estimator, they maximized the average informa-
tion gain to obtain the optimality of complementarity. Another simple error
function is the Hilbert-Schmidt distance, e.g., Scott used this to prove the
optimality of SIC-POVMs [57].

In my thesis I examine different state estimation scenarios and give the
best estimation schemes. I consider the case when we have multiple von
Neumann measurements as well as that of a single POVM measurement.
I analyze the problem of partial a priori information for qubits and multi-
level systems as well. As a special case, I also consider the setup when no
information is known beforehand. I introduce a new generalization of SIC-

POVMs and examine its properties both analytically and numerically.






2 Mathematical background

2.1 Notations

R the set of real numbers

R the n-dimensional (real) Euclidean space

C the set of complex numbers

reX x is an element of set X

AT transpose of matrix A

A* conjugate transpose of matrix A

At inverse of matrix A

[A]; (i,j)th entry of matrix A

Ay k-th element in a series of matrices Aq, Ao, ...

TrA trace of matrix A

det A determinant of matrix A

I unit matrix

v; i-th element of vector v

uT transpose of vector v

M, (C) the set of n x n matrices with complex elements

(X) average value of X

E(X) expected value of random variable X

Var (X) variance/covariance matrix of random variable X

(A, B) or (A|B) | scalar product of A and B

[v) vector from a Hilbert space (ket)

(v linear functional on kets (bra)

di Kronecker delta function (equals to 1 if i = 7, 0
otherwise)

Prob(X) the probability of outcome X

i the probability of the i-th outcome

ALB A is orthogonal to B

A® B tensor product of A and B

AGB direct sum (Cartesian product) of A and B

9



2.2 State of a quantum system

The states of finite quantum systems are represented by nxn density matrices

(p € M,(C)), obeying the following two properties:

that is, the eigenvalues are non-negative numbers.*

The 2-dimensional case

The qubit (short for quantum bit) is the simplest of such states, and will
bear special importance in our further investigations. In this case p is a
2 X 2 matrix, and the so-called Bloch parameterization, as we will see, gives

a geometrically clear viewpoint of the state space:
1
p(ﬁ) = 5 (I + 910’1 + 920'2 + 930’3) 5 (3)

with o;-s denoting the Pauli matrices:

10 0 1
og=1= , 01 = )
01 1 0

that is
p(0) =

1 14603 6;—i-0,
2 | 6i+i-6, 1-6 ] '
Thus the Bloch vector 6 = (6,09, 03) is equivalent to the matrix representa-
tion of qubit states. Using the notation o = (071, 09, 03) we can write instead

of (3) the short version:

p)==-I+06-0).

N —

4Consequently, p is also self-adjoint.
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It is easy to see that (1) holds; the second property of density matrices
(2) transforms to
07 + 05+ 05 < 1,

in the Bloch parameterization. The state space is thus the unit ball in R3.

States on the surface are called pure, others are reffered to as mixed states.’

The n-dimensional case

In the qubit case we used the Pauli matrices as an orthogonal basis to the self-
adjoint matrices in My(C) for parameterization with respect to the Hilbert-
Schmidt inner product:

(A,B) =Tr(A*B)

In the n-dimensional case we will use generalized Pauli matrices for the same
purpose. We set an orthonormal basis on self-adjoint matrices

o
Vi: o, =o0;,

TI'O'Z' =0 and VZ,j . TI'O'in = 51'7]’7

where 1 < i,5 <n?—1and oy = \/LEI. Note that the Pauli matrices in the
previous section were not normalized because of tradition.
Using this basis for parameterization we have

2

p(0) = Z 0o, (4)

and we call 0 = (0y,60,,...,0,2_1) the generalized Bloch vector.
Substituting representation (4) back into property (1), we arrived at

n2-1

1
Trp(f) = Tr Z 0;0; = TrOyoq = Tr 90%1 =0Op/n =1,
i=0

S0 6y = \/iﬁ Eq. (2), however, cannot be reformulated as a closed expression

of the elements of the Bloch vectors. In the following sections, the quantum

states will either be represented as a density matrix or as a Bloch vector.

®Generally pure states have eigenvalues 0 or 1, i.e., p = p? holds.
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Example 2.1 For n = 3 the generalized Pauli matrices are proportional to

the Gell-Mann matrices:

[0 | 0 0
1 1 1 o
g1 = —— Ty = —— s Oq — —— J—
TR T2 T2
0 00
[ | i 0 0
1 1 1 -
oy = — 05 = — , 0= —F—
SG) T2 T V2 Lo
S oo o I
oo=— 100 =i|, os=—1]01 o0,
7 \/§ . 8 \/6
i 0 00 —2

Example 2.2 Forn = 4 we can obtain the generalized Pauli matrices as the

tensor products of 2-dimensional Pauli-matrices (o;):

1
{5-oi@ay}, with i.je{0,1,2,3}

2.3 Measurements

Measurements are of a probabilistic nature in quantum mechanics. Observ-
able quantities correspond to n x n self-adjoint matrices. Let the spectral

decomposition of an observable A be the following:

A=>"\P,. (5)

Here, \; are the different eigenvalues of A, and the P;-s are the corresponding
eigenprojections (P = P, = P?, Y. P, =1, P,P; =0 for i # j).
The possible outcomes of the measurement are the different \; eigenvalues

and the corresponding probability is

Prob (\;) = Tr (oP). (6)

12



A key element of quantum measurements is that it will change the actual
state of the quantum system to
PipP;

- 7

Pi

if the outcome of measurement is \;. Thus each sample can only be used

once for measuring a certain quantity.

Example 2.3 Measurement of the Pauli operator oy:
If one considers in the qubit case the measurement of the observable oy,

then we have the spectral decomposition:

1|11 1 1 -1
0'1:— — =
2111 21 -1 1

The possible outcomes are the different eigenvalues of the observable, i.e.,

=. E+1 — E_l.

+1. The probabilities of these outcomes are

Prob(+1) = TrpE,, =%

Prob(—1) = TrpE_, =54

respectively. The state after measurement is either
T T
=] +1, 0, 0] or 6 =[-1 0, 0]
depending on the outcome.

From the state estimation point of view, only the distribution of the
outcomes (Tr (pP;)) bears important. The eigenvalues \; and the state after
the measurement are irrelevant. A measurement can thus be given as a set
of projections (Py, Ps, ..., Py) on M,(C), and we will call it a von Neumann
measurement.

We will put a special emphasis in the next sections on the case of von
Neumann measurements with two elements: (P, P,). We have then P, =

I — Py, and if P, is a projection, then P; is always a projection, since
Pr=(I-P) =1I-P=1-P =P

13



and
P22:(I—P1)<[—Pl):[—Pl—P1+P12:I—2P1—|—P1:[—P1:P2

So every von Neumann measurement with two elements can be charac-
terized with a projection P by using POVM (P, I — P). In Example 2.3 we
have P = E+1 = %(I + 0'1).

Positive operator valued measurements

We can easily generalize this scenario to the so-called positive operator valued
measurements (POVMs).
A set of self-adjoint operators (Ey, Es, . .., Ey) forms a POVM if and only
if
Vi:E;>0 and Y E;=1 (8)

The probability of observing an outcome related to F; is
pi = Tr (pE;).

Note that unlike von Neumann measurements, POVMs do not necessary

consist solely of projections, only positivity is required.

2.4 The standard state estimation method

This section introduces the important state estimation concepts through the
standard method.

The standard method for qubits

First we perform three different kinds of von Neumann measurements with

two elements (P;, I — P;). Let us have for the observables the three Pauli

matrices o1, 09, 03, i.e., we have the projections: P, = %(I—f—ai), (1=1,2,3).
Then the probability of outcome +1 is

1+ 0;
pi=Tr(pP) = ©)

14



similarly to Example 2.3. From the physical point of view, o;,09 és o3
correspond to measuring the spin in directions x, y and z, respectively.
Because of the high symmetry and the independence of the components
we can easily construct an estimation scheme for the state . Suppose that m
measurements are performed in each direction. Then the relative frequency

v; of the outcomes +1 is a sufficient statistic:

my; .
vii=—, 1=1,2,3
m

with denoting m; the number of (+1)-s in direction i.

The least squares estimator is a well-known and widespread method that
minimizes the squared error. If the relative frequencies resulting from the
measurements are v;, then the deviation from the real value of the state can
be written in the form (because of the independence of the measurements,

there are no cross terms):

1+6; 2 .
SOLS(VaQ): Z (Vi— 5 ) — min.

i=1,2,3

We are going to minimize this expression. It is trivially minimal when the
expressions in brackets are zero. This way, knowing the relative frequencies

v;, an estimate can be given for the Bloch vector 6:

o —1 ] [o2m—1
Om(v)=| 205 —1 | = | 2m2 1 |. (10)
25 — 1 2ms _ |

The notation ém<l/) expresses that the above expression is an estimator of
0, takes m, the number of measurements, as a parameter and also that its
value is a function of the outcome statistics v.

Note that this estimation can provide a result that is physically mean-
ingless (the state will be outside of the Bloch ball), but the probability of

15



having unphysical states vanishes exponentially as the number of measure-
ments increases due to the large deviation theorem. So we will ignore this
problem in the future examinations.

0 (v) is an unbiased estimator since

gflm) 0,
E(ln(v)) = | 25 —1 | =] 6, | =6, (11)
U | 0

since m; is binomially distributed with parameters m and p;, and so from

(9), we know its expected value and variance

1+ 0; 1—6?

4

E(m;) =mp; =m and Var (m;) = mp;(1 —p;)) =m (12)

If we have a random variable X = (X, Xs, ..., X}) with expectation E(X) =

(1, pi, - - -, i), we can also define the covariance matrix:

[Var (X)]i; = E((Xi — ) (X; = 115))

From (12) we can easily calculate the covariance matrix of estimator (10),
too:
1— 63 0 0
Var (0,,(v)) = % 0 1-62 0 , (13)
0 0 1— 63
since m; and m; are independent (i # j), so off-diagonal elements are zeros,

while
Var (m;) 1—067

m2 m

m.
Var (222 1) =4

m
So we get that the variance converges to zero in order of %, where m is
the number of measurements. Together with the unbiasedness (11) of this

estimator we get that (10) is a consistent estimator, i.e., if m converges to

infinity, then ém(l/) — 6 with probability 1.

16



Generally, we can suppose that the estimator is a linear function of v
Om(V) =a-v—+b

and also that we have identical, independent measurements, so we get:

Var (ém(%)) = a*Var () = a? Var (m,) — 2 Var (m;) - m

m2 m2

where m; is the number of (+1)-s in direction 4, after a single measurement.
Note that m; is the sum of m independent and identically distributed vari-
ables, all of which are distributed according to m;. Consequently, Var(m;) =

m - Var(m?). So from (14) we obtain

Var (6,,(1)) = L2 (0104))

m

that is, we have the same optimization problem for m = 1 as for an arbitrary
m up to a normalizing factor. Therefore in further calculations we will always
use the m = 1 case for simplicity, but we will assume that the number of
measurements is sufficient to be close to the asymptotic properties, where we
do not have problems with unphysical estimations.
Finally let us introduce the Fisher information® for an observable having
probability distribution (q¢1, ¢z, ..., q):
1 0q, 0q,
10 =Y 40, 00, 90,

«

If we have one measurement in the i-th direction (that is m = 1), then we

have Bernoulli distribution with probability distribution (HT&, I_Tei), which

has Fisher information:

2 1 1 2 1 1 1
[11(0)]

Since m; has binomial distribution, which is a sum of independent Bernoulli

distributions, we obtain

= 0 0

L,(0)=mL;(0)=m | 0 1_195 0
1
0 0

SWith respect to the state parameters 6 = (01, 0s,...0,2_1).

17



The Cramér-Rao inequality provides us a lower bound for the variance of

parameter estimators. Let us suppose that we have an unbiased estimator
V() of 0, then we have

Var (¥(9)) > L,(0) . (15)

Since ém(u) is an unbiased estimator of § and it fulfills (15) with equality, so

the estimator (10) is an efficient estimator.

The POVM case

Instead of using 3 different von Neumann measurements with two elements:
(P, I — P) = (3(I +0:),5(I —0;)) we can use a single POVM with six

elements:

1 1
Elz—(I—i—O'l), E2:—<I—O'1),
6 6
1 1
Egz—([—l—O'z), E4:—<I—O'2),
6 6
1 1
E5:6([+(73), E6:6<[—O'3).
Then the probabilities of different outcomes are p; = Tr (pE;), so we get:
_1+060, _1-60
P1= 6 3 b2 = 6 )
140, 106,
p3 = 6 Pa = 6
1403 103
D5 = 6 Pe = 6

We can similarly construct an estimator as in the von Neumann case, we
need to repeat the single measurement { £y, Es, F3, Ey, F5, Fg}. Let n; denote
the number of outcomes related to E;, and n = ) n; the total number of
measurements. Then using the relative frequencies v; = “* we can construct

the estimator of 8:

| [
On(v) = | mazme | = | 255 —1 |, (16)
| erne 1 L2

18



Where ﬂl = )’ Dy — — 13 53 = 05

Vo — = .
ni+ng’ 2 n3+ng’ ns+neg

So this estimator is very similar to (10), the only difference is that here
we measure n; + ns times in oy direction, ns + ny times in oy direction and
ns + ng times in o3 direction, instead of m times in each. We can easily
verify that (16) is unbiased, and asymptotically has the same variance for
each state parameter as (10) with m = n/3: the law of large number ensures
that ny +ng ~ 3, n3 +ny ~ 5 and ns +ng ~ 3.

In the literature (16) is often referred to as the standard estimator of a
qubit (e.g., [49]). As we have seen, there is not much difference, so we will

prefer the simpler one (10).

Generalization to n-level quantum systems

A straightforward modification of the measurement setup can lead us to the
multidimensional case [43, 44].

Consider an n-level quantum system with density matrix p € M,(C).
Since the density matrices are self-adjoint matrices with unit trace, they can
be characterized by d = n? — 1 real parameters.

Let E;; denote the n X n matrix units” and set

Xi' = Eij + Eji (Z < ]),

The spectrum of Z;; is {0,1} and the spectrum of X;; and Y;; is {—1,0,1}.
These observables can be used to estimate the n? — 1 real parameters of the
n X n density matrix selectively. If each observable is measured r times, then

m = r(n? — 1) copies of the quantum system are used.

2.5 Complementary and symmetric measurements

In this subsection we expound on two basic properties, that will take impor-
tant role in the efficient state estimation.

"[Eijlk = 0ik - 0

19



Complementarity

The heuristic concept of complementarity was born together with quantum
theory. A mathematical definition is due to Accardi [1] and Kraus [31]. Ref.
[40] provides an overview about complementarity; details are given in [41, 48].

Let H be an n-dimensional Hilbert space. Then the basis ey, e, ..., €, is

complementary to the basis fi, fo, ..., f, if

e P =2 (<ij<n) (17)
If this condition holds then the two bases are also called mutually unbiased.
If two observables A and B have eigenvectors e, e, ..., e, and f1, fa, ..., fu
which are orthonormal bases, then they are complementary if the bases
e1,6s,...,6, and fi, fo,..., fn, are complementary.
The generalization can be made to POVMs. The POVMs {Ey, Es, ..., Ex}
and {F}, Fy, ..., F,,} are complementary if

1
Tr EF; = —Tr E; Tr F; (1<i<k, 1<j<m).
n

or equivalently, the traceless parts of the matrices are orthogonal

Tr Ez
n

Tr F

E; I 1 F-— I, (1<i<k 1<j<m).

The latter property can be extended to subspaces A;, Ay C M,(C). A; and
A, are complementary if the traceless part of matrices A; € A; and Ay € A,

are orthogonal, so we have the orthogonality of the following subspaces:
A1oCIl L A, 6ClI,

where A; © CI is the traceless subspace of A;. In the following sections we
are referring to this property as quasi-orthogonality.
Symmetric measurements

A density matrix p € M,,(C) has n? — 1 real parameters. To cover all param-

eters the POVM has to contain at least n? elements, since the probability

20



distribution has one less degree of freedom than the number of POVM ele-
ments. We can take projections P;, 1 < i < n?, such that

1 " 1 .
Ei= b ;Pi:nl, TbP=_—— #5) (18

and this is called symmetric informationally complete POVM (SIC-POVM)
by Zauner [64] and is currently a rather popular concept [2, 3, 11, 32, 50,
55, 65]. Zauner shoved the existence for n < 5, there has been some analytic
and numerical progress [18, 58], but the existence of a SIC-POVM is still
unknown for a general dimension n.

From the state estimation point of view, the SIC-POVM {FE; : 1 <i <
n?} of an n-level system is optimal among the POVMs having n? elements,
it minimizes the average squared Hilbert-Schmidt distance of the estimation
and the true density [57].

The case when we consider less than n? projections with similar properties
is more interesting. If n? — k (k < n?) parameters are known, then we
want to estimate only the £ — 1 unknown parameters, therefore a POVM
{E; : 1 <i <k} is sufficient for full state reconstruction.

In this case we expect the same kind of symmetry as in the unconditional
version (18). Let us take a set of projections P;, 1 <1i < k such that

1

E;
A

k
P, Y Pi=A and TrPPj=p (i#}). (19)
i=1
The SIC-POVM case corresponds to k = n?, A =n and u = 1/(n + 1), but
there are other parameter sets for which there exists a POVM fulfilling the
conditions of Eq. (19).

Naturally, the optimal POVM depends on the known parameters, there-
fore we use the term of conditional SIC-POVM. This is a new subject of
quantum information theory, the existence of such conditional SIC-POVMs

can be a fundamental question in different quantum tomography problems.

21



2.6 Literature review

In this section we will summarize the results from the literature which are

closely related to our approach.

Optimal state determination by mutually unbiased measurements
[62] The basic ideas of our work can be traced back to the fundamental
work of Wooters and Fields in 1989. They maximized the information gain

of the estimation

Zy(0) = h(0) — h(00), (20)
where h(0) = — [ fo(x log fo(z)dz is the entropy of the prior distribution,
while A (6 |6 =— [ folz h(0]0 = x)dz is the conditional entropy of § given 6.

A key step is that before maximization they take the average of (20) over the
possible true states with respect to the prior distribution, and they obtain

from that the optimality of complementary measurements.

Point estimation of states of finite quantum systems [43] This ar-
ticle of Petz, Hangos and Magyar from 2007 is mostly dealing with the case
of n-dimensional state estimators, but mentions as a side result the optimal-
ity of the complementary measurement for qubits. This is a much weaker
result than the previous one, but they optimize a different quantity: instead
of maximizing the information gain, they minimize the determinant of the

average covariance matrix

det (Var (6)) — min. (21)

Complementarity and state estimation [5] The direct premise of our
work is this article by Baier and Petz from 2010. They used (21) for proving
optimality of complementary measurements in quite general settings, so im-
proved the result of Wooters and Fields. Their approach, however, had its
own limitations: they do not consider either the known parameter case, or
the single POVM case. But they results suggested to us that the determi-

22



nant of the average covariance matrix might be a useful quantity for more

complex state estimation scenarios, too.

Minimal qubit tomography [49] Rehacek, Englert and Kaszlikowski
argued in 2004 that although there are six measurement directions in the
standard method, in the qubit case four of them are enough to obtain all
possible states. So they did not measure in the direction of the axis of the
Bloch ball, but the elements of POVM were related to the vertices of a regular
tetrahedron,

Ei:i(1+ai-a), 1=1,2,3,4, (22)

with Bloch vectors

1 1
a; = —(1,1,1), ag=—(1,—1,—1),
1 1
a3 = —=(—1,1,-1), as=—=(—1,-1,1).

V3

Which is a well-known example of the SIC-POVM in the qubit case.

They applied the maximum likelihood principle to get an estimation for
6. If 0 # 0, the variance of their estimator is higher than that of the standard
method &, however, since their POVM does not contain more elements than

necessary, it is easier to generalize their method to higher dimensions.

Tight informationally complete quantum measurements [57] Scott
described in 2006 a method, that minimizes the expectation of the squared
Hilbert-Schmidt distance

EHIO - ﬁ”z — min7

to obtain the optimal linear state estimation. His result was that if we have
p € M,(C) and a POVM with k& > n?, then the optimal POVM is a tight?

8They also suggested an adaptive measurement procedure, which provides better results

for pure states than the standard method.
9Tightness actually means some strong kind of symmetry, for the exact formulation see

Definition 11 in [57].
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rank-one informationally complete POVM. The case when k = n?, i.e., we
have exactly the necessary number of POVM elements, the optimal POVM
is the n-dimensional SIC-POVM. In our work we are interested in the k < n?
case and we generalize Scott’s method to obtain a result analogous to Lemma

17 in [57]. This enables us to calculate some basic properties of conditional
SIC-POVMs.

24



3 Efficient state estimation

In this section I explain my results in detail. First, the case of von Neumann
measurements is investigated. Detailed examples are presented to give moti-
vation for the method choice. Results concerning the general, n-dimensional
case are also given.

Afterwards, positive operator valued measurements are examined, both
for the qubit and the n-level setup. For the n-dimensional system, results
are only given in the symmetrical case. The asymmetrical variant is much
more difficult, however, it is also very interesting: the optimal measurements
give us a generalization of SIC-POVMs.

The last part investigates this asymmetrical case in more detail: first we
show a numerical method that solves this optimization problem efficiently.
Finally, a different quantity is introduced which settles the question in the
general, n-level case; showing that conditional SIC-POVMs are indeed opti-

mal.
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3.1 Von Neumann measurements [45]

In this section we will use von Neumann measurements with two elements
for state estimation. When multiple parameters are unknown we have to
use multiple von Neumann measurements for complete state reconstruction.
In order to have a unique estimator we use exactly the sufficient number of

projections.

3.1.1 The qubit case

1. Assume first that 6, and 6, are known and we want to estimate
f3. The assumption means that the reduced state is known on the subspace
generated by o; and o,. It is a complementary to the subspace generated by
o3. A projection .

is used to estimate from the result of several measurements; A\? + A3+ A3 = 1.
The probability of getting an outcome related to F is

3 3
1 1
i=1 j=1

p="Trpk ="Tr

1
= —T I ;T = 1 5
r]+ - (; 19)\ razaj> ( —i—g 9)\> 2 + (0, \)),
since Tro;0; = 2 - 9, j, so we have
93)\3 = 2]) —1- 91)\1 — 02/\2 . (23)

In (23) A1, A2, A3 are the parameters of the measurements, #; and 0, are
known constants and 63 is the parameter to estimate. Our aim is to find the
optimal measurement setup A that minimizes the estimation error of 63. We
proceed similarly as we did in Section 2.4. Denote by v the random outcome
of the measurement of E. The random variable v is Bernoulli distributed
with expectation p. The natural unbiased estimate of 5 is

1

ég )\ (2V —-1- 61)\1 — 92)\2) (24)
3
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So the variance of the estimator related to measurement F is

- Varv  1— (), 0)?
Var (05) = 4 ¥ = ¥ :

(25)

Note that if » measurements are performed, then instead of a Bernoulli distri-
bution we will have binomial, so in (24) v is replaced by the relative frequency
of the outcome 1 and the variance (25) should be divided by r. The variance
changes by a constant factor, hence the minimization problem is the same.
We want to argue that the optimal estimate corresponds to the projection
Al = Ay = 0, A3 = =£1, i.e., we measure the coefficient of o3 the most
efficiently if we measure in the direction corresponding to o3. This estimator

has a variance of 1 — 02, however, the inequality

S 1 ()0

Var (63) = YR 03 (26)
3

is not true in general. For example A\ = @ is possible for pure states and then
left-hand side is 0. So it is not true that o3 is generally the best observable,
but as we will show that it is optimal if we take the average of the variance
on the unitarily invariant states.

Since 6y, 0, are given, the only unitarily invariant vector to (1,65, 63) is

(61,05, —03), we should average Var (f3) on them:

A 11— (A0 + Xy +X305)% 1 1 — (X014 Naby — N303)?
<Var(03)>:§. (M6 )\52 303) +§‘ (161 )\?jz 303)

1-— (/\191 + )\292)2 - )\%9%
3

We claim that although (26) is not true in every case, it will be true in the

average sense:

Var (03) ) > 1 — 62, (27)
(Var (62))

Note that the average of the right-hand side of (26) will remain the same,
since 1 — (—63)% =1 — 62.

Eq. (27) is equivalent
(M101 + Aafo)® < 1— A2,
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and this can be easily proved using the Schwartz inequality:
(M1 + Xab)* < (AT + M) (0 +65) <1 A3

so the inequality (27) holds in every case and the equality is possible only in
case A3 = +1.

Theorem 3.1 Assume that 6, and 6y are known parameters and 63 +635 < 1.
In this setting the average covariance will be minimal if \y = Xo = 0 and

A3 = £1, i.e., the projection &% 1S measured.

I+o3 I—03
)

5 5 ) is really optimal but only

So we have that the measurement (

in the average sense.

2. Assume next that 6,0, and 03 are not known. Let the observables
1
Ex25(1+x-0) (x =a,b,c)

be measured in the true state p, where a, b, ¢ are unit vectors in R? (||all; =
Ib]l2 = |lc|ll2 = 1) and @ = (61, 65,05) are the unknown parameters of the

state. The probabilities are

1+ (x,0)

Poi= s Pi= (Pas Pb, Pe) -

If the measurements are performed r times, then p, is estimated by the
relative frequency v, of the outcome 1. Just like earlier, the value of r
does not contribute to the optimization problem, so in what follows, we will
assume that r = 1. The estimate 6 can be found by solving

yx:# (x =a,b,c).

Since it can be written in the form

Vg 1 91
2 Vy = 1+ T ég
Ve 1 ég
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with the matrix

a; as as
T:=1b by b3 |,
€1 C2 C3
the solution is .
0, 2u, — 1
by | =T |20, — 1] . (28)
05 2w, — 1

This is once again an unbiased estimator, the relative frequencies (v,) are
independent and have a Bernoulli distribution, so the covariance matrix of

this estimator is

1 —(a,0)? 0 0
V() =T" 0 1— (b,6)> 0 (T7H" (29)
0 0 1—{c,0)?

We can get the average covariance matrix with the integral
[ vy duie) -
H

S 1 —(a,0)* du(9) 0 0
=7 0 [ 1= (b,6)% du(8) 0 (T
0 0 Jy L= (.6 dyu(6)

where we take the integral on the unitarily invariant states H = {(61, 02, 05) :
62 + 02 + 62 = R?*} with respect to the normalized Lebesgue measure. Due
to the symmetry we can obtain that

/ 1= (0, 0)2du(6) = / 1= (b,0)2du() = / 1= (¢, 0)2du(0) = C

H H H

where C' > 0 is a constant depending on the radius of the sphere (R < 1).

So the average is
/wm@@:O@TrP

The determinant is minimal if det (T*T') = (det T')? is maximal. det T is
the volume of the parallelepiped determined by vectors a,b and ¢, and it is

maximal when they are orthogonal, i.e., E,, E, and E, are quasi-orthogonal.
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Theorem 3.2 Assume that 01,05, 05 are unknown parameters. Then the av-
erage quadratic error will be minimal if the three measurements are comple-

mentary.

A possibility is the measurements originated from the three Pauli matri-

[19: as we can see in Section 2.4.

ces:

3. In the next essential example, 6, §; are not known, but 605 is

given.  Assume that the observables

Ex:%uﬂ:-a) (x = a,b) (30)

are measured in the true state p, where a, b are unit vectors in R3.

In this case the equation to solve has the form
(RN
1% 2 1 92 6363

a; as
by by |
The latter equation yields the estimator
0 v, 1 a
sl CLI-L -]
(92 Vy 1 b3

The mean quadratic error matrix is

[ {1 — {a,0)? 0
0 1-(b6)

where

U:

| @y (31)

We integrate with respect to the unknown 6, and 6, only. The average
variance is the question on the circle M = {(0y,0,) : 07 + 05 = R?}:

1

e M1 — (AN 0)2do =1— (N3 +)\3)R?*/2 — \305.

According to (31) we have the average covariance matrix

- {1 — (a? + a3)R?/2 — a26? 0

U1
0 @i U
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Minimization of a matrix cannot be performed, so our idea is to minimize
the determinant

(1 = (af +a3)R?/2 — a363) (1 — (b7 + b3) R*/2 — b363)
det U?

(32)

under the conditions a? + a3 4+ a3 = 1 and b3 + b3 + b3 = 1.
Let us introduce the notations ¢ = a? + a3 and d = b? + b3. Then we have

to minimize

(1—cR*/2—(1-¢)f3) (1 —dR*/2 — (1 —d)b3) (33)

det U2’

det U? <
(a1, as) L (b1, be). Then det U? = cd and (33) takes the form:

(1 —05 (22— 9?,)) (1 —deg —(R*/2 - 93)) -

Cc

cd, so if ¢ and d are given we should choose a and b such that

On the other hand, we know that ¢ < 1, d < 1, and R* < 1 — 62, so both
factors are always positive, on the other hand they are monotonous in ¢ and d,
hence the optimal case is achieved when ¢ = d = 1. In the parameterization

(30) this means a and b are orthogonal and a3 = b3 = 0.

Theorem 3.3 Assume that 05 is the unknown parameter and 03| # 1. Then
the determinant of the average covariance matriz is minimal if the two von
Neumann measurements are complementary to each other and to os.

3.1.2 The n-dimensional case

In this section we generalize Theorem 3.3 to systems which have more than
two levels. Assume that we have some known parameters and some param-

eters to estimate. Let us use the decomposition
M,(C)=CI® Aa B,

where A and B are linear subspaces and orthogonality is defined with respect
to the Hilbert-Schmidt inner product (A, B) = Tr A*B.
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A state has the density matrix

p=1/n+pa+ps. (34)

We assume that the component p 4 is known and pp should be estimated. Let
the dimension of B be k. The positive contractions E',..., E¥ are used for
independent measurements on several identical copies of the n-level system.
A measurement corresponds to the POVM {E* I — E'}. These operators

have expansion
E'=e¢l+E4y+E; (1<i<k).
The expectations are
pi i=TrpE' = ¢; + Tr paEY + Tr psEj (1<i<k).

We fix an orthonormal basis Fj, ..., F, in B and the unknown component

has the expansion

pg =0 Fy + ...+ O, F,

where 6 = (6,,...,0;) are the parameters to be estimated.

Similarly we make the parameterization for the measurements:
EZB = eilFl + €i2F2 + ...+ 61'ka.

Then i
pi=€i+TTPAEf4+Z€ij€j (1<i<k).

i=1

From that we can make estimates on 6; by solving the equations

k
gz:ez‘FTr,OAEil—i‘Z@”é] (1 SZS]{]),
j=1

where ¢; is the random result of the ¢th measurement. In another form

1
€1 €1 TYPAEA €11 - €1k

= ||+ = |+ |0

k
Ek ek Trpa % €kl Chik
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or in a different notation
€1 e1 + TrpaEly
| = : +TO,
€k ex +Trp AEZ
where T is the k£ x k matrix from the previous formula. Therefore,
&1 e + Tr ,OAE}L‘
=T~ :
€k er + TrpaEY

Since ¢; is an unbiased estimation on p;, # is an unbiased estimation on 6,

hence the covariance matrix is
Var (0) = T~'Var (¢)(T7Y)T,

where we used the notation € = (g1, €9, ...6x)7.

Due to the independence of the measurements the expected value Var (g)
will be diagonal. The random variables ¢; have a Bernoulli distribution and
the variance is

(1 —Tr pE")Tr pE".

We want to take the average:

/(1 — Tt pE")Tx pE" dp(p),

where the integration is going on the unitarily invariant states, and pu is
a the corresponding normalized Haar-measure. For the sake of simplicity
assume that the operators E' have the same spectrum. Then the integral
is a constant (c), that does not depend on the actual E; and so the average

covariance matrix is
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The determinant is minimal if the determinant of the matrix 7" is max-
imal. Geometrically, the determinant is the volume of the parallelepiped
determined by the row vectors. To maximize the determinant, the row vec-
tors should be long. This implies that £ = 0 in (54), since otherwise we
could project E* on to CI @ B, and still have the same elements in 7. So we
have

Ei:€+6i1F1+...+6ika (1§Z§]€),

and then the determinant of the matrix

I/n 0 - 0
€ €11 - Gk
€ €k1  Ckk

is det T'. The angle of the first row and any other row is fixed. To have
a large determinant the rows of 7' should be orthogonal. In this case, the

operators E', ..., E¥ are quasi-orthogonal.

Theorem 3.4 If the positive contractions E*,..., E¥ have the same spec-
trum, then the determinant of the average of the quadratic error matriz is

minimal if the operators E',... E* are quasi-orthogonal to each other and

to A.

Example 3.1 If two qubits are given and the reduced states of both qubits

are known, then the ideal state estimation is connected to the observables

011,022,033,012,023,031,013,021, 032,

with 05 = 0; @ 0. O
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3.2 Estimation with a single POVM [45]

If we want to use one positive operator-valued measure instead of multiple
von Neumann measurements, we can easily extend the a method detailed
previously. In the upcoming part we will use POVMs which have exactly
the sufficient number of components to make the state estimation. Of course
we can use greater number of components but in that case is not trivial the

construction of the estimator.

3.2.1 The qubit case

1. Assume that we have three unknown parameters. They are
0 = (01,605,03) and the positive operator-valued measure {E,, £, E., Eq}

is performed. We write
E,=zi(I+x-0), (z=a,bcd),
where a,b, c,d € R® and ag, by, ¢, dy € R. Then from > E, = I, we have

Ed = [—Ea—Eb—EC:(1—ao—b0—C0)I—(a0a+b0b+COC>'U
= do([+d0)

The positivity conditions for F, are ag > 0 and 1 > (a, a). Similar condi-
tions should hold for the other operators Ey, E., Ey, therefore the conditions

of positivity are:

Qo Z 07 bO Z 07 Co Z 07 dO Z 07 (35)

1> {a,a), 1>(bb), 1>{c,c), 1>(d,d). (36)
The probabilities of different outcomes are
pr=TrE,.p=xo+ zo{x,0) (z=a,b,c).

In matrix notation we have

Pa Qo 01
py| = |bo | +T |0
De Co 05



with matrix T defined as

ap1 QApGo Qapas
T .= bobl bobg bobg

CoC1  CpC2  CpC3

If vy, vy, Ve are the relative frequencies of the outcomes (of different measure-

ments on identical copies), then the solution of the equation

Vg ao 91
Vy = bo + T ég
Ve Co é3
yield the state estimate:
él Vg — Qo
0y | =T | vy —Do | . (37)
é3 Ve — Co

The mean quadratic error matrix is
V() =T"W(T")

where W is the covariance matrix of the random variables v,, 1, .. Since

they have multinomial distribution we have:

Pa(l =pa)  —Dabv —DaPe
W = ” —DaDb Po(1 — ps) —PbPc )
—PaPec —DPbvPe pc<1 - pc)

where r is the number of measurements; we fix » = 1. To get the average
mean quadratic error matrix we integrate this on the rotation invariant states
with respect to the normalized Lebesgue measure p. We have to calculate

two types of integrals

[ =an6) = [ (a0 sl )) (1)) e

= —/Haobgd,u(é’)—aobo /H<a,¢9)d,u(9)—/H apbo (b, 9>du(9)—aobo/ (a,0)(b,0)du(0)

H
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RQ
= —aobo + 0 + 0— aob()?(a, b>,

where H = {(01,065,03) : 67 + 605 + 02 = R*}. The middle integrals are zeros

because of the symmetry: fH v,0)du(f) = 0, Yv. The last integral can be

evaluated as

/H(a,@(b,@)clﬂ(ﬁ):/H (iag94> (Zb ) ) 23: </ 02d (0 )agbg

/=1 /=1

The quantity [, 07du(@) does not depend on ¢, it is a constant, and

Zgz/fﬁd“ /Hi:@edﬂ@z /H R*du(9) = R*.

/=1

Similarly,
2

/H Pa(1—pa)du(f) = /H <a0+a0(a,9>> <1—a0—a0<a,6))du(0):ao(l—ao)—ag%m,a).

. 2 . .
Let us use the notation o = %. The average mean quadratic error matrix is

then
/H V(6) du(6) = T~ Wo(TT) "

with
agp 0 0 ap
Wo = 0 bo 0 - bo [CLO bo Co] —adTT.
0 0 Co Co

The next step is to minimize the determinant

der (17 wa(rn) ) = S =
where after some straightforward simplifications we arrive at
o — (1+afa,a))  —(1+ afa,b)) —(1+4 a(a,c))
A = det —(1+ afa, b)) by — (1 + alb,b)) —(1+ afb,c))
—(1+ afa,c)) —(1+ab,c)) gt —(1+alee)
and
ap az as (a,a) (a,b) (a,c)
B=det?| by by by | =det | (a,b) (b,b) (b,c)
1 C2 C3 (a,c) (b,c) (c,0)
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The minimizer (aopt, bopts Copt) should be symmetric, hence ag = by = ¢y =
dy = 1/4, {a,a) = (b,b) = (¢,c) = z and (a,b) = (a,c) = (b,c) =y. We
suppose that the minimizer does not depend on the radius of the sphere, so
we can suppose R = a = 0. (For arbitrary « see the n dimensional case.)

Then A is a constant and
B =(z—y)*(z +2y)
The positivity conditions from (35) changes to
z2<1, 3(z+2y) <1

The maximum of B is taken at z = 1 and y = —1/3. In this situation 2E; is
a projection P; and Tr P,P; = 1/3.

Theorem 3.5 The optimal POVM is described by projections P; (1 <1< 4)
such that

E;=P/2, Y P=2I, TrRP;=1/3 (i#}).
This optimal POVM is termed minimal qubit tomography [49].

2. Assume that 60,, 63 are not known, but 6, is given. This particular
situation means that we are interested in real matrices. A POVM of three

components { E,, £y, E.} is sufficient. We use the parameterization
E,=xz(I+x-0), (z=ab,c),

where a,b,c are vectors in R3, ag,by,co € R and 0 = (0, 605,03) are the
parameters of the state. From Y  E, = I, we have ap + by + ¢o = 1 and

apa + bob 4 coc = 0. The positivity conditions are:
0<ao,bo,co  |lall,[bl],[le]] < 1.
Similarly to the previous situation we have
{p(a)} [ao(l — ag)} {czoal aoagl [911
=0, +
p(b) bo(l - bQ) b0b1 bobg 93

38



and define matrix 7" as
T [aoal aoagl _ [ao O] [al CZ3:|
boby  bobs 0 bof Lbr b3
If v(a),v(b) are the relative frequencies of the outcomes (of different mea-

surements on identical copies), then the solution of equation

via ap(l —a 0
ol Lo a)
V(b) bo(l — bg) 93
yields the estimator of (6y,63)7
{9:1} _ -1 {y(a) — Oaa0(1 — CLQ)} .
83 V(b) - 92[)0(1 - bg)
If we take the covariance matrix of this estimator, all terms are constants

except p(a) and p(b) which are multinomially distributed, so we get
p(a)(1 =p(a))  —p(a)p(b)

—p(a)p(b)  p(b)(1 —p(b))
We integrate this on the domain H = {(6y,03) : 62 + 02 = R?> — 03}, where R
is a constant (|63] < R <1). T does not depend on 6, so

Var () = T~ [ } (T4 = T7'W(T7Y)".

[ var@aue) =7 ([ wioyauio)) -y (3%)

and 4 is the normalized Lebesgue measure on H. We calculate [, W (6)dpu(6)

as follows:

/ —p(a)p(b) du(6) / —aobo (140101 +as0-+as0s) (1--by0r+baba-+-bss) dp(6)
H

H

= —aobg/ [(1 + a202) + (a191 + 0,303)] [(]_ + 6202) + (6191 + bgeg)] d,u(é’)

We use this separation, because 1 4 asfs is a constant, and a6, + a3f3 has

expectation value 0, since by symmetry E(6;) = E(63) = 0.

/O+wﬁﬁﬂ+®%wM@=O+ﬂﬁﬁﬂ+®%>

/ (1 + a292)(b191 + bgeg)dﬂ(e) =0
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/ (@101 + as03)(1 + bab)dp(f) = 0

/ (a191 + a303)(b191 —I— b3(93)d,u(0) = / alblﬁf —f- agbgegd,u(@),
H H

because E(0,65) = 0, finally we can see that

| Giau®) = [ diauto) = p (39)

where 3 is a constant from interval [0,1 — 63], so we obtain

/H —p(a)p(b)dp(0) = —aobo [(1 + az62)(1 + b26) + Baibr + asbs)] .
Similar calculations give

] (1= pla)p(pdun(8) = an(1 +axte) = a3 [(1 + anfa)? + (e} + )]
and

(1= PO O)(0) = b1+ 1a62) B (1 ab)? + 5007 + 1)
Using the notations

Qo =1+ asls, qo=1+bbh, a" = (ar,a3), b = (by,b3)

we have the integral

/ W (0)du(0) — {aoqa —aglg; + Bla*,a*)]  —aobo [qaqy + B(a*, b)) }
H —aoby [qaqe + B{a*,b%)]  bogs — b3 [q5 + B(b*,0%)]
o [ao% - aéqi _QObOQaQb} _3 [ —CL3<CL*,G*> —Gob()(a*,b*q
—aoboqaqy  bogs — V343 —agho(a*,b*)  —b3(b*,b*)
Dividing the first rows and columns with ag and the second ones with by, we

have
det / W (0)du(0) = a2b; det ({
H

On the other hand,

Qally' — 40 —Gals } 4 {(a*,a*) (a*,b*)
—qaqs  Bby ' — G

*’ * *,b*
detT2=a%badet2[a1 “3]:a3bgdet [2“*2” “ >].

by b3



So we should minimize a determinant of the form A/B, where

<CL*, a*> <a*’ b*
A=detV, B =det =: det C,
at, o) (b, b
aa_l_ 2 —q, a*7a* a*,b*
V = Qatho Za ?sz}—ﬁ{<* *> <* J}::D—ﬂ.C.
—qa® by — G5 (a*,b7) (0", 0%)

For the minimizer (@gp, bopt)We can assume some symmetry conditions:

_ 1
=3

obtain the optimum:

ap = by = ¢ and we will minimize A and maximize B independently to

A= (di1 — B en1)(dog — B ¢22) — (di2 — B c12)® — min, (40)

B = C11C29 — (012)2 — max. (41)

Let us suppose first that ay and by are given (then the elements of D are
constants) and we want to optimize the other variables.
We know that

(a + b, a+ b> = Cy1 + Co9 + 2012 + (CLQ + b2)2 S 1. (42)

If ¢19 > 0, then from (42) we have ¢11 4+ co2 < 1, hence B < 1/4. If ¢15 < 0,

then B is maximal if ¢;5 is maximal, from (42) we have an upper bound:

(ag + b2)* — 11 — ¢

1—
cr2 < 5

(43)

Substituting this upper bound in (41) we have to maximize it in ¢;; and
Coo. Using derivation we can conclude that it is maximal if ¢;; and coy are

maximal:
ci=al+a3<1—a5 and cp=0b]+b3 <105 (44)

Substituting this upper bound in (41) we get

w

B = — ag — a2b2 - bg . (45)

4
which is optimal if ag = by = 0. Then B = 3/4, so it is a global optimum.
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Lemma 3.1 The following inequality is always true:
diz — f c12 <0
Proof. We have
dia — B c12 = —(1 + 62as)(1 + 63b3) — B(a1by + asbs).

Since ¢ < 1 — 62 and

arby + asby = (@, b) = — o [67]] = —/1 - a3y/1 — 83,

so it is enough to show that

(1 4+ 62a2)(1 + 62b2) > (1 — 93)\/1 — ag\/l — b3.

The right-hand side does not depend on the signs, the left-hand side is

minimal if fyay < 0, O30, < 0, so it suffices to prove for positive as, by, 65 that

(1~ 02a2)(1 — Oaba) > (1 — 03)3/1 — ady/1— B3,

This is true since from the Cauchy-Schwarz inequality it follows that

a292+\/1—a§\/1—0§§1 — 1-@2022\/1-@%\/1—0%,

and a similar statement is true for bs. Il

Using this lemma, we get that A is minimal if ¢15 is maximal, and from
there the solution is almost the same as in the previous case, we only have
more complicated calculations. We substitute the upper bound (43) into (40)
and we can obtain that it is minimal if ¢;; and ¢y are maximal. Using the
bounds (44) we get for A a function of as and by; using differentiation we can
obtain that ay = by = 0 gives the optimal solution here, too.

So in both cases we have equality in (44), so (a*,a*) = (b*,b*) = 1 and
equality in (43), so (a*,b*) = —1/2. Since ||a|]| = [|b|| = 1,

gEa _ %(Ha.a), gE,,: %(sza)
are projections. We have ||c|| = ||a + b|| = 1 and this implies that 3E,/2 is a

projection as well.
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Theorem 3.6 The optimal POVM for the unknown 61 and 03 case can be
described by projections P;, 1 < i < 3:

3
2 3 1
Ezzg-P’La Z§1R:§I7 TrO-Q-Pz:07 TrR-P]:Z fO’I" 7/7&]

The optimal POVM is quasi-orthogonal to the subalgebra generated by
09, and symmetrical in the other directions. This POVM can be called condi-
tional symmetric informationally complete POVM, the concept is examined

in detail in Section 3.3.

3. Assume that only 65 is not known, ; and 0, are known constants.
In this case the POVM has only two components {E,, Ep}. Again we use the

parameterization
Ea:(lo([+a'0), Eb:[_Ea-

The conditions for positivity are
1— aop

0<a <1, Jafl <1, af < (46)

The probability of the first outcome is p = ag(1 + (a,d)). From this the

estimation for 65:

A 1
93 = (V — ag — a0a191 - (loageg).
apas
The average of the variance for (6, 0,,03) and (6,, 02, —03) is
1 1 L-1?
3 > Pl =p) = 5o —0; (47)
(05,—05) 1093 003

where L = ag(1+ a16; + ax03). The first term is independent from 63, and it

is minimal if ay = 1/2 and (a1, as,a3) = (0,0,1). So we have obtained:
Theorem 3.7 The average quadratic error is minimal if E, and E, are the
spectral projections of o3.

We can see that the optimal POVM is the von Neumann measurement dis-
cussed in Theorem 3.1, so we do not get any improvement by using POV Ms.
Note that the optimal von Neumann measurement is again a conditional

symmetric informationally complete POVM.
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3.2.2 The n-dimensional case

Now assume that we have the multidimensional system like in Section 3.1.2,
with &£ unknown parameters.

Let us have the POVM with elements

where ¢; € R, f; € RV f .0 = ijijaj and {o; : 1 < j < n?-—1}
are generalized Pauli matrices (Tro; = 0, Tro;0; = 6;;). The positivity

condition for F; is not known, but we have a necessary condition:

Lemma 3.2 If n x n matriz I 4 g - o is positive, then 3, g7 < n® —n. If
Zj gJQ- =n%—n, then I + g- o = nP with a projection P of rank 1.

Proof. A = g-0 is self-adjoint, Tr A = 0. Let A1, Ao, ..., A\, be the eigenvalues
of A. Then

n?—1 n
Z gjz =TrA? = Zx\f
j=1 t=1

Since Y 7 Ay =0 from Tr A = 0 and A\, > —1 from [ + A > 0, we have the

upper bound. Namely, > 7" | A\? is maximal if A1, Mg, ..., A, is a permutation
of the numbers —1,—1,...,—1,n — 1. In this case I + A has eigenvalues
0,0,...,0,n, so it is a multiple of a projection. O

The probabilities of different outcomes are
pi=TrEp=e+e(fi,0), (1<i<k).
In matrix notation we have

D1 €1 01

Dk €k O,

with matrix T defined as

€1 - (f1)1 B (fl)k;

€k'(fk)1 ek'(fk)k
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where (f;); is the j-th component of f;.
If v;, 1 <1 <k are the relative frequencies of the i-th outcomes then we

have the estimator R
01 Vy — €

0=|:|=1" : : (48)
Gk Vi — €L

The covariance matrix of this estimator is
Var (0) = T~ W (T,

where W is the covariance matrix of the random variables v;:

p(l—=p1)  —pip2 .. —DiDk
W _p'1p2 pa(l — P2) - —p?pk ’
—P1Dk — D2k oo pr(1—p)

The average mean quadratic error matrix is then

(Var () = [ Ve (6) () =T [ Weu(o)(T7) ",

H H

where we integrate on the unitarily invariant states fulfilling the conditions
for known parameters with respect to the normalized Haar-measure .

The final step is to minimize the determinant

det ([, Wdu(9)) A ,
det 2(T) = 5 — min. (49)

det (Var (A))) =

From what we have seen in the qubit case, general calculations seem only
feasible in case A = {0}. In our further calculations we will restrict ourselves
to this case (k =n? —1).

Then by using similar arguments as in the qubit case (see the calculations

before Theorem 3.5), we get

/ _pipjdﬂ(g) = —€i€; — 6i€j04<fu fj>7
H

‘L@a—mmmmz@u—@wwﬁunﬁx
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where a > 0 is the constant depending on the domain of the integration.

After simplifications we arrive at

ei' —1—al{fi.fi) -1-a{fi.fa) - —1 —a(f1, faz-1)
Amder | TLTOMRR) @i mloalh) o Slmalh fe)
| l-alf fe) —l=olfe femn) e — 1= alfen fuea) |
and
v (f)ne (f,fr) o (fifra)
B = det? : : = det : :
(frz-)t - (fazot)nea (fir fozo1) - (faeot, fazoa)

The minimizer should be symmetric, hence e; = 1/n? (f;, f;) = x and
(fi, ;Y =y, if i # j, i,j <n*—1. Thus, we obtain

A= (0~ ale = y))" (1 - afz + (1~ 2)y))

and
B=(x—y)" * (z+ (' -2y

Therefore, we minimize

2

%:(xnjy_a)n i (ﬂf+(ni—2)y_a>' 0)

n2—1
We can also calculate the length of f,2 = — > fi:
i=1
(s fao) = (02 = 1) - (z + (n = 2)y) <n? = (51)

where the latter inequality is the condition for the positivity, see Lemma 3.2.

On the other hand, we have condition
r<n®—n (52)

If both inequalities were sharp, then (50) would not be minimal, because

we could increase both x and y with a sufficiently small € and then the value
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of (50) would be smaller. If the equality holds in (51) then the second term
of (50) will be constant, so we want to have as big a difference of x and y as
possible, hence x should be maximal (and then y is minimal). If the equality
holds in (52), then from (51) we have y < —(n* — n)/(n* — 1), and on this

domain (50) has a negative derivative. So the minimum is taken at

N n?—n
r=n"—n, and y=-—— .
n®—1

Lemma 3.2 gives

1

1
I+ fi-o)=-F

n
with some projections P; and

1 1 1
I i?-[ j - - == .

1
Tr P,P; =

n?
Note that we arrived at a system described by Eq. (18), a SIC-POVM. The

following statement is obtained.

Theorem 3.8 If a symmetric informationally complete system exists, then
the optimal POVM is described by its projections P; as E; = P;/n (1 <i <

n?).

For a qubit the existence of the symmetric informationally complete
POVM is obvious, there are other known examples in low dimensions. The

question of existence is for a general n, however, unknown.
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3.3 Conditional SIC-POVMs

In the previous section we obtained a very interesting result in Theorem 3.6:
the optimality of conditional SIC-POVMs fulfilling the combination of sym-
metricalness and complementarity. Interestingly, this was the most difficult
case to prove, the total symmetricalness made the proof easier even in the
general, n-dimensional case (Theorem 3.8). The simplicity of My(C) made
the calculations feasible, but the question is whether there are similar ob-
jects in higher dimensions, and if they exist, whether they are the optimal
measurements in the conditional case.

So we propose in Section 3.3.1 a numerical method which solve the state
estimation problem efficiently and lead us to analytic examples in higher
dimensions.

Finally, in Section 3.3.2 we solve the conditional case generally by intro-

ducing a new quantity for state estimation efficiency.

3.3.1 The numerical approach [46]

In this section, we will show a method for solving the previously described
optimization problem numerically, and then we give the optimal POVMs in
some higher dimensional settings.

Problem statement

The problem is the same as detailed in Section 3.2.2:
e We have an n-dimensional system, with &£ unknown parameters.

e We have an estimator for the unknown parameters (48).

e We have a quantity to minimize: the determinant of the average covari-
ance matrix (49), which is a function of POVM E = (FEy, ..., Eyy1):

DACM(E) = det (Var (6))) = - (C{i ZZ‘%‘W % min.
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It is the term

/H Wdu(6) = / xat (UpU"YW (U pU*) dA(U), (53)

that is problematic to calculate, where A is the Haar-measure on the unitaries
and x is the characteristic function xg(z) = 1, if x € H and ygy(z) = 0, if
r ¢ H).

We can approximate the value of (53) by numerical integration, so in the
following part we define an algorithm which solves this optimization problem

effectively.

The algorithm

We introduce the method through an example: let us assume that we have
a 3-dimensional system, i.e., a qutrit (n = 3), and we know the diagonal
entries of the density matrix p, so k = 6.

We parameterize M3(C) using the Gell-Mann matrices, we use a dense
enough grid on the parameter space R® and check for each grid-point whether
it is an element of H. Actually, the Bloch vector has only 6 parameters since
the diagonal entries of the states are known. The actual calculation consists
simply of checking for all grid points the positive definiteness of the matrix
determined by the actual generalized Bloch-vector. Then we cluster the grid
points of H according to their eigenvalues: we partition the interval [0, 1]; two
states will belong to the same cluster if their eigenvalues are in the same cells.
We choose one cluster, this means all the states with the “same” eigenvalues
(i.e., achievable states using unitary transformations) and we take the sum
of W in these points. Let us note that we do not use a normalized measure
(we do not have to use it in (53), either), since it is not necessary: we get
the same optimization problem up to a constant factor. Another remark is
that if we choose a small cluster, the computation will be less precise than
for a large one, but much faster.

The next problem is how to select new POVMs to get better and better

estimations. We choose an arbitrary initial point in the interior of the state
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space and in each step, we take a new random POVM by perturbing the
parameters using a normal distribution with a given variance. This means
that for each E;, (j = 1,...6), we calculate V) = a\) + N;(0, s(t)), we repeat
the random realization of normal vectors for E;, while ¢ will determine a
positive matrix, then we continue the realization with E5, and so on. The
variance of the normal distribution (s(t)) is decreased in time: first we need
a larger variance for faster convergence, but near the boundary of the state
space of POVMs we will easily get negative eigenvalues if the disturbance is
too high. If we have a new Bloch vector for all the 6 POVM elements, we
take all the variation of ) and a¥) (@) € {a'9 a(}), and we check for all
the 26 = 64 cases whether the correlated E; = I — B, — Ey — ... — Eg will be
a physically possible state or not. Then we go through the valid POVMs and
we use simulated annealing [33] for this series of POVMs. Let the current
best POVM be E and the next in the line to check is E, then we change the
best POVM to E with probability:

~ 1

P(E — F)= _ ,
( ) 1+ exp <1og(DACM(E));log(DAC’M(E)))

where T is the so-called temperature. For high temperatures, the proba-
bilities are close to 1/2 so the optimal POVM can roam freely, but for low
temperatures, we change the current best POVM only if the new POVM is
really better. This transition probability determines a special kind of Glauber
dynamics, so there is a good chance that it will converge to the global opti-
mum. The reason why we use simulated annealing instead of simply selecting
the best POVM from the line is because otherwise the algorithm tends to
set in one direction and it only converges to the boundary of the state space.
The simulated annealing is useful here because it can change this path by
overcoming potential barriers. Also we increase the temperature from time

to time to help escape from local optima.
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Results

The implementation of this algorithm was made with Mathematica [61], the
typical running time is a few minutes and we get quite good convergence to
the optimal POVM. This algorithm helps us find optimal POV Ms in different

scenarios, even analytically:

Proposition 3.1 If p € M3(C) and we do know the diagonal elements of p,
then the optimal POVM 1us

1 1 1 1 &b g2 1 ¢ &
E L 1 1 1|,E L 1 &|,E Lo 1
= — y = = 9 g 3 - = g € I
1 7 2 7 3 7
1 11 - | et 81
1 et &
1 - - -
E4—? g 1 & yEs = Ea, Eg = E3, E7 = Fy,
e e 1

where € = exp (%2%).
We can easily check that this POVM fulfills the following conditions in
(19) with constants k =7, A =7/3, u = 2/9.

Proposition 3.2 If p € M4(C) and we know the off-diagonal elements of p,
then the optimal POVM is

1 0 0 0 0 0 0 O

0 0 0 O 01 0 O
El — 9 E2 -

0 0 0 O 0 0 0 O

0 0 0 O 0 0 0 O

0 0 0 O 0 0 0 O

0 0 0 O 0 0 0 O
El = ) El =

0 0 1 0 0 0 0 O

0 0 0 O 0 0 0 1

So the POVM contains the diagonal matrix units., which have the prop-
erties (19) too, with constants k =4, A =1, u = 0.

o1



Proposition 3.3 If p € M4(C) and we do not know the parameters related
to{o1®1I, 091, 031}, i.e., we want to estimate My® I, then the optimal
POVM is

E=F®I i=12234,

where Fj-s are the elements of the 2-dimensional SIC-POVM (22).

In this case P;-s are projections of rank two and (19) holds with k£ = 4,
A=2, u= %

Proposition 3.4 If p € M4(C) and we do not know the parameters related
to{oy®@1,001,031, I @01, I ® 0, I ® 03}, then the optimal POVM
has the following properties:

e Fi, E5, FE3 are in My ® I and have the eigenvalues: (%, ,0,0)

~no

e Fy FE5, Fg are in I @ My and have the eigenvalues: (%, %,0,0)
e E; has eigenvalues (%, %, %,0)

This does not fulfill the conditions in (19), although one can observe some
kind of symmetry.

Let us note that the speed of search for the optimal POVM mainly de-
pends on the number of unknown parameters, so if we do not have many
unknown parameters the problem is not much more difficult in 4 dimensions
than in the detailed 3-dimensional case.

Another useful remark is that if we are interested in finding conditional
SIC-POVMs of rank one, then we can create a much faster algorithm using

the condition (19) and using the parameterization of pure states.

3.3.2 The n-dimensional case [47]

In the following we examine the case of M, (C) and use the decomposition

to three orthogonal subspaces:

M,(C)=A®BaC, (54)
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where A := {A\[ : A € C} is one dimensional. Denote the orthogonal projec-
tions to the subspaces A, B,C by A, B, C.
Then the density matrix p € M, (C) has the decomposition

I
p=5+Bp+Cp,

since Ap = % Assume that Bp is the known traceless part of p and Cp

is the unknown traceless part of p. If the dimension of B is m, then the

2 _m —1. For

dimension of C| i.e., the number of unknown parameters is n
the state estimation we have to use a POVM with at least N = n? —m
elements. To get a unique solution we will use a POVM with exactly N
elements: {E1, Fs, ..., Ex}.

Let us suppose that o; is an orthonormal basis of self-adjoint matrices,
such that og € A (then oy = \/LE[) and for 1 <i <n? —1, o; are either in B
or in C. We parameterize the quantum state accordingly:

n?—1
1=0

Then from Trp = 1 we have 6, = \/Lﬁ The positivity condition can not be
expressed in general, but a necessary condition for the coefficients can be

obtained:
n?—1

ZQ?:Tr/ﬂS 1. (55)
i=0

We use the notation p, = p — Bp. The aim of the state estimation is to
cover p,.
If {Q; : 1 < i < N} are self-adjoint matrices satisfying the following
equation
1 N
=1 o = Qi i = i
pe = + Z 0,0 Z piQ pi = TrpE
o;eC i=1
then {@; : 1 <i < N}isadual frame of {E; : 1 <i < N}. In this case the

state estimation formula can be written as
N
i=1
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We define the distance as

N
s = Aull3 = Tr (p — p)* = D (i — P) (0 — P1){(Qi, Q)

ij=1

and its expectation is

— pipi (Qi, Q)

N
=2
by
N
Z (Qi, Qi) — szszzij]
N
2"

Ellp. — p:ll3

(Qi, Qi) — Tr (p.)*.

We concentrate on the first term which is

N

Z(Tr Eip)(Qi, Qi) (56)

i=1

and we take the integral with respect to the Haar measure on the unitaries
U(n).
Note first that for any projection II of rank 1

/ UIIU* du(U) =
U(n)
with some constant ¢. If " | II; = I, then
ne = Z/ UTLU* du(U) =
i=1 /U(1)
and we have ¢ = I /n. Therefore for A = 3" | \;,II; we have
/ UAU* du(U)i)\»ciTrA
Uln) = n
and application to the integral of (56) gives
1
/ Tr E;(UpU*) du(U) = ETr E;.
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So we get the following quantity for the error of the state estimation:

N

T := /IE (|UpU* = Up U*(|3) dpu(U) = %Z(Tl" E;)(Qi, Qi) — Tr (p")?

i=1
This is the quantity to be minimized. Since the second part is constant, our
task is to minimize the first part:

N

> (Tr E;)(Qs, Qi) — min. (57)

i=1
We define the superoperator:
N
F:M,—»A®C, F=) |E)E[(TrE)"
i=1

It will have rank N, so if N < n? the inverse of F does not exists, but we
can use its pseudo-inverse F~, so that F~|o;) =0, if 0; € B.

R; is the canonical dual frame of F;, if
|Ri) = F~|P), (58)

where

P, = (TrE)'E; (59)

Lemma 3.3 For a fized E;, (57) is minimal if Q; = R;, i.e., if we use the

canonical dual frame.

Proof. Let us use the notation W; = Q); — R;. Then
N N N
S TEIR) W = > TrE|RNQi| - TrEi|Ri)(R|
i=1 z;l i=1 N
= > TEF|P)(Qi - Y TrEF|P)(P[F-
i=1 i=1

N N
= F Y TEIRNQ| - F (Y T EIR)(R|)F-
i=1 i=1
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— FIO-FFF =FII-FII=0, (60)

where IT = A + C, and we use that from

N

o) =Y (Eillp)|Q:)

i=1
it follows that

N
=) |Qi)(Ei.
i=1
So we have
N N N
Y T E(Qi, Qi) = D TrE(W;, Wi)+ ) TrE(W; Ri)
i=1 i=1 i=1

N N
+> TrE(R, Wi) + > Tr E{(R;, R;)
=1 =1

N N

i=1 i=1

N
> T Ei(Ri, Ry).

i=1

v

O
From this lemma we know the optimal dual frame for a fixed POVM FE;,
and the following lemma provides a property for the optimal POVM:

Lemma 3.4 The quantity in (57) is minimal if

n—1

C.
N -1

F=A-+

Proof. From (60) we have

> (TrE)|R)(R| =F T =F,

i=1
so we have the equation:

> (TrE))(Ri, R;) = Tr (F).

i=1
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Let 14,15, ..., 1,2 be the eigenvalues of F. Since the rank of F is IV, we have

v; = 0 for ¢ > N. We want to minimize

Tr(F) = Zl. (61)

It is easy to check that A is an eigenfunction of F with v; = 1 eigenvalue:

N

F|I) = (TvE)|P)(P;, I) = Z (Tr E3)| ) Z |E) =

i=1

and we have the following condition:

N N N
d v=TF=) (P,P)TtF; <) TrF,=TrI=n. (62)

i=1 i=1
Combining these conditions we get that the measurement is optimal if 1, =

— n—1
vy = .. —I/N—N1 O

An important observation is, that to achieve the minimum in Lemma 3.4,
the inequality (62) must hold as an equality. That means that in the optimal
case we have

(P, P) = 1. (63)

From the definition of P; (59) we know that P; > 0 and Tr P, = 1. Adding
(63) to this condition we can conclude that in the optimal case P; is a rank-
one projection (Vi : 1 < i < N). From (61) we can see that the minimal
value of (57) is 1 + % The only question that remains unanswered is
whether we can achieve this lower bound and when.

Let us use the notation \; = Tr F}, then from Lemma 3.4 we obtain the

following equation for the optimal POVM:

N
—1
F=3 MP)P|=A+—C.

From that we can obtain

Do MQIP)PIRQ) = (QIA +
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with @ := P, —d - I. Since (P;|Q) = Tr P,P, — d, the left-hand side of (64)
becomes

N

> XNQIPHPIQ) = M(1 = d)* + > Xi(Tx PP, — d)*.

i=1 i#k

We can compute the right-hand side as well:
AP, —dl)=AP, —dl =A(P,—I/n)+1/n—dl =1(1/n—d),
(QIA|Q) = (1/n — d)Tr (P, — dI) = n(1/n — d)*

When P, = Zij\;o ¢;o;, then

ClQ) = Z Ci0, (QIC|Q) = Z cz.

o’iEC’ O’iEC

So (64) becomes

M1 =P + S N BP —d) = n(1/n—df + ==L 5" (65)

i#£k o,€C

From (55) we have
Zcfgl—cgzl—l/n. (66)
o, eC

This implies

n—1

Me(1—d)? <n(l/n—d)*+

which is true for every value of d, so

Cn(l/n—d)?+ 2L(1—-1/n)
M < e (i—ap

By differentiating we can obtain that the right hand side is minimal if

~ N-—n
~n(N—1)
and then we get
n
A < N

28



Since Zf\;k/\k =n, we have \; = Ay = ... = Ay =n/N.
From that follows that there is an equality in (66), too. So we have
Zc?zl—cg = ¢=0,iffc;,¢e B = Tro,P.=0,if 0; € B.
o, eC
On the other hand from (65) we have
n < N —n \2
S (PP, - —) — 0.
s N n(N —1)
Thus, N
-n
Tr PP, = ——— if i#k.
P n(N —1) it
So we can obtain the following result:

Theorem 3.9 In the conditional case, the elements of optimal POVM can
be described as multiples of rank-one projections satisfying the following prop-
erties (1 <i,j < N):

n N —n
=P, TrPP =
N PN TLIN

So we proved that the conditional SIC-POVMs are the optimal (if they

E; = (it#37), TroP,=0 (Vl:0,€ B).

exist), and using the notations of (19), we get the constants: k = N, A = %,
= % Now we present some examples related to the previous theorem

with different N values.

Corollary 3.1 If we do not have any a priori information about the state
(m =0,N =n?), then
1
TrPPp=—— (i#£]
r J n _|_ 1 (Z # J)
so the optimal POVM is the well-known SIC-POVM (if it exists).

Corollary 3.2 If we know the off-diagonal elements of the state and we want
to estimate the diagonal entries (m = n* —n, N = n), then from Theorem
3.9 it follows that the optimal POVM has the properties

Tr PP, =0 (i#3j), ZB =1, and P;is diagonal.
i=1
So the diagonal matriz units form an optimal POVM.
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Corollary 3.3 If we know the diagonal elements of the state and we want
to estimate the off-diagonal entries (m =n —1, N =n? —n+ 1), then from

Theorem 3.9 it follows that the optimal POVM has the properties

n—-1 , . a n?—n+1
Tr PPy = —— (i #]), ;B:TI

2

and P; has a constant diagonal. A 3-dimensional example for this case is

shown in Proposition 3.1
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4 Conclusions and discussion

A density matrix p € M, (C) has n? — 1 real parameters. If the parameters
0 = (01,0, ...,0;) are not known, but the others are known, we can use this
information to estimate § = (él, éQ, cen ék) We also need an error function
1o, é) to minimize. In our work, we mostly concentrate on minimizing the

determinant of the average covariance matrix

£(8,6) = det (Var (d)) — min . (67)

In Section 3.1 the results about multiple von Neumann measurements are
discussed. The thorough examination of the different 2-dimensional settings
shows the origin and motivation of the usage of (67) for state estimation
problems. We suppose that we have exactly the sufficient number of POVMs
with two elements: {F\,I — F1}, {Fy,I — F3}, ... ,{Fy,I — Fy}. Theorem
3.4 summarizes the results: the optimal measurements are von Neumann
measurements, they are complementary to each other and to the subspace
generated by the known parameters.

This is not a surprising result, since Wooters and Fields showed that
it is the observable set consisting of orthogonal observables that results in
the most information [62], so it is a common anticipation that the comple-
mentary (quasi-orthogonal) von Neumann measurements are optimal. The
main novelty here is the case when some parameters are known. Using this
information less measurements are needed, and we also obtain the quasi-
orthogonality of measurement for the known parameters. After we published
our work online, similar idea appeared also in [60]. They minimize a different
quantity, but get the same phenomenon, proving it is independent from the

actual scenario.

In Section 3.2 we cover the case of a single positive operator valued mea-
surement {Fy, Fy, ..., Ex}. We optimize the quantity introduced in the pre-
vious section, but here we get calculations that are much more difficult than

in the qubit case. This suggests that the main result is not as general as
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in the von Neumann case. In n dimensions, analytic results could only be
achieved for the case when neither element of the density is assumed to be
known. In that setting the symmetrical informationally complete POVMs
(SIC-POVMs) are optimal (Theorem 3.8). That is exactly the result that we
expected, but it proves the generality of the method used (67), since it yields
strong results in very different settings.

We also have a very interesting result in Theorem 3.6: if some parameters
are known and some parameters unknown the optimal POVM is symmetrical
and complementary to the subspace of the known parameters. This theorem
is a combination of Theorems 3.4 and 3.8. We can think of the optimal

measurement as a generalization of SIC-POVMs, hence we named them con-

ditional SIC-POVMs.

Sections 3.3 investigates the properties of this new concept. There are ba-
sically two different approaches, which provide different kinds of results. First
we present a numerical algorithm to optimize (67), which gives us the optimal
POVM in different scenarios. Proposition 3.2 provides a trivial example of
conditional SIC-POVMs, namely the diagonal matrix units. This result can
be extended to any dimension (see Corollary 3.2), providing a simple example
for existence. Proposition 3.3 is an example for conditional SIC-POVMs that
contain projections of rank 2. So it is not necessary to restrict our investiga-
tion to rank-one projections. On the one hand this is a good result, since the
set of rank-one projection is very small; on the other hand, it is inconvenient,
since rank-one projections are easier to handle. There is a conjecture that
a SIC-POVM exists in every dimension. However, in the conditional case
the situation is more complex, a conditional SIC-POVM does not necessarily
exist (Proposition 3.4). Proposition 3.1 provides the first non-trivial example
of a conditional SIC-POVM. Thus the determinant of the average covariance
matrix (67), is not only suited to provide analytical results in many cases,
but we can also use it efficiently in more difficult non-symmetric settings for
numerical optimization.

In the second part we obtain the optimality of conditional SIC-POVMs
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analytically. But instead of using (67) we minimize the square of the Hilbert-
Schmidt distance. This quantity was used in [57] to obtain the optimality of
SIC-POVMs, we generalized their method to the conditional case. Theorem
3.9 states that the optimal POVM

e contains rank-one projections,

e fulfills the symmetry conditions (19) with constants depending only
on the dimensionality of the state and on the number of unknown

parameters,
e is complementary to the subspace of known parameters.

This result is quite strong, but has some limitations, too. For example, it does
not ensure the existence of such a POVM. From Corollary 3.1 we can see that
the SIC-POVM is a special case of conditional SIC-POVMs. The existence of
SIC-POVMs is not known in general, so the general existence of conditional
SIC-POVMs is a problem at least as difficult. Moreover, Proposition 3.3 and
3.4 show examples when Theorem 3.9 is not applicable. But it also proves
the optimality of existing conditional SIC-POVMs, see Corollary 3.2 and 3.3.
The latter scenario is the generalization of Proposition 3.1. We have found
a way to construct such POVMs for infinitely many dimensions [47], i.e.,
a whole class of non-trivial conditional SIC-POVMs. Let us also note that
minimizing the average squared Hilbert-Schmidt distance (57) gives the same
result as the determinant of the average covariance matrix (67) in all POVM
cases examined. So it seems that in the conditional case the conditional SIC-
POVM is the optimal one (if it exists) independently from the particular
minimization problem, so it might play an important role in many quantum

estimation problems.
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