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1 Introduction

The measurement of a quantum mechanical system is of a probabilistic na-

ture, so even determining a measurable quantity requires statistical methods.

This is why state estimation is an important field in quantum information

theory [36, 39, 42].

It is well-known that a measurement applied to a quantum system will

change the state of it in an irreversible way depending on the measurement

outcome. Additionally, D’Ariano and Yuen prove in [15] that it is generally

not possible to determine the state of one single quantum system, whatever

estimation scheme is used. We use therefore several copies of the same system

being in the same state1, perform a sequence of measurements, and estimate

the unknown state from the outcome statistics. This process is usually called

quantum state tomography [13] and can be traced back to the seventies

[22, 24].

The problem of state estimation is quite old, however, the interest in a

thorough mathematical analysis of quantum state estimation procedures has

been flourishing recently [12, 30, 60]. For example, an adaptive observable

selection strategy based on a Bloch vector parameterization in spherical co-

ordinates and on a Bayesian estimation method of qubits in mixed states is

reported in reference [17].

Quantum process tomography is a closely related field, an exhaustive

description of possible tomography methods can be found in [34]. The differ-

ence between quantum state and quantum process tomography is that here

we have a quantum channel and we are interested in its effect. For this

purpose we send a prepared state (that is known) through the channel, and

we make a tomography on the output state to estimate the channel effects.

Many publications in this field deal with a very specific case, namely when

we have a qubit and a channel with one parameter, e.g., the depolarization

1The preparation of identical states is in general rather difficult to implement in prac-

tice, however in certain physical circumstances, for example in quantum optics, it is natural

to have several copies of the quantum system in the same state.
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channel examined in [56]. However, there are some works that investigate the

estimation of multi-parameter channels [7, 63, 37], and the multidimensional

case also appears in Ref. [19, 35, 54].

Quantum control [6, 26, 51] is another problem similar to state estimation.

Its purpose is the same as in classical control theory, i.e., to give an estimate

of the unmeasured time-dependent state variable in order to be used in state

feedback schemes such as noise reduction [10] or state purification [23]. While

in state estimation problems we have a time-invariant problem, in quantum

feedback control we have often a time-depending situation, hence quantum

state filtering is essential [8, 9].

In quantum control it is important not to demolish the state of the sys-

tem completely, therefore a so-called weak measurement is applied [25]. Thus,

post-measurement state still contains information about the original. This

property was used in [28, 29] to reverse the effect of some weak quantum

measurements.2 Weak measurements can be used for state estimation pur-

poses, too. The majority of related articles take a continuous-time approach

[27, 59], but there are some discrete-time models, too [20, 52, 53].

This thesis deals mainly with incorporating partial information into the

state estimation process. In quantum tomography setups some a priori in-

formation about the state can be given in various ways. The most popular

subject in this field is state discrimination: in that case we know that the

system is in one of several given states, and we would like to determine which

one it is [14]. We can have an a priori probability distribution of the true

state, too, as another possibility. This idea was used in [16] to obtain the

optimal phase estimation. Unlike in the state discrimination setup, the pos-

sible states do not form a discrete set, instead, all pure states are considered.

In our setup we know that the state is in a given subset of the whole state

space3, i.e., some parameters of the state are known.

To set up a quantum state estimation two ingredients have to be given:

2Of course it can be done with probability less then 1.
3This can be the whole state space itself.
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the measurement strategy used to obtain information, and the estimator

mapping the measurement data to the state space. Most publications use

maximum-likelihood (ML), Bayesian or some other simple method to ob-

tain an estimator from measurement data. For the measurement part the

spectrum of approaches is very wide. There are works [4, 21] which per-

form a single measurement on the compound system from identical copies

and obtain optimality in an asymptotic sense. Other authors [43, 49] take

measurements independently on states and deal with the properties of the

estimate when only a finite number of measurements is available.

To obtain the optimality of a measurement setup we have to somehow

measure the error of our estimation, which can be done many ways. In

statistics the accuracy of the estimation is usually quantified by the covari-

ance matrix. The matrices are typically not comparable by the positive

semi-definiteness, hence if different estimation schemes are compared, the

determinant of the covariance matrix can be used instead. This approach

was introduced in references [43, 44]. Their result was that complementary

von Neumann measurements are optimal in the qubit case. A more general

context appears in [5], which is much closer to our approach. A similar re-

sult was obtained earlier by Wooters and Fields [62], but instead of using

the covariance matrix of the estimator, they maximized the average informa-

tion gain to obtain the optimality of complementarity. Another simple error

function is the Hilbert-Schmidt distance, e.g., Scott used this to prove the

optimality of SIC-POVMs [57].

In my thesis I examine different state estimation scenarios and give the

best estimation schemes. I consider the case when we have multiple von

Neumann measurements as well as that of a single POVM measurement.

I analyze the problem of partial a priori information for qubits and multi-

level systems as well. As a special case, I also consider the setup when no

information is known beforehand. I introduce a new generalization of SIC-

POVMs and examine its properties both analytically and numerically.
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2 Mathematical background

2.1 Notations

R the set of real numbers

Rn the n-dimensional (real) Euclidean space

C the set of complex numbers

x ∈ X x is an element of set X

Aᵀ transpose of matrix A

A∗ conjugate transpose of matrix A

A−1 inverse of matrix A

[A]i,j (i, j)th entry of matrix A

Ak k-th element in a series of matrices A1, A2, . . .

TrA trace of matrix A

detA determinant of matrix A

I unit matrix

vi i-th element of vector v

vᵀ transpose of vector v

Mn(C) the set of n× n matrices with complex elements

〈X〉 average value of X

E(X) expected value of random variable X

Var (X) variance/covariance matrix of random variable X

〈A,B〉 or 〈A|B〉 scalar product of A and B

|v〉 vector from a Hilbert space (ket)

〈v| linear functional on kets (bra)

δi,j Kronecker delta function (equals to 1 if i = j, 0

otherwise)

Prob(X) the probability of outcome X

pi the probability of the i-th outcome

A ⊥ B A is orthogonal to B

A⊗B tensor product of A and B

A⊕B direct sum (Cartesian product) of A and B
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2.2 State of a quantum system

The states of finite quantum systems are represented by n×n density matrices

(ρ ∈Mn(C)), obeying the following two properties:

Tr (ρ) = 1 (1)

ρ ≥ 0, (2)

that is, the eigenvalues are non-negative numbers.4

The 2-dimensional case

The qubit (short for quantum bit) is the simplest of such states, and will

bear special importance in our further investigations. In this case ρ is a

2× 2 matrix, and the so-called Bloch parameterization, as we will see, gives

a geometrically clear viewpoint of the state space:

ρ(θ) =
1

2
(I + θ1σ1 + θ2σ2 + θ3σ3) , (3)

with σi-s denoting the Pauli matrices:

σ0 = I =

[
1 0

0 1

]
, σ1 =

[
0 1

1 0

]
,

σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
,

that is

ρ(θ) =
1

2

[
1 + θ3 θ1 − i · θ2

θ1 + i · θ2 1− θ3

]
.

Thus the Bloch vector θ = (θ1, θ2, θ3) is equivalent to the matrix representa-

tion of qubit states. Using the notation σ = (σ1, σ2, σ3) we can write instead

of (3) the short version:

ρ(θ) =
1

2
(I + θ · σ) .

4Consequently, ρ is also self-adjoint.
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It is easy to see that (1) holds; the second property of density matrices

(2) transforms to

θ21 + θ22 + θ23 ≤ 1,

in the Bloch parameterization. The state space is thus the unit ball in R3.

States on the surface are called pure, others are reffered to as mixed states.5

The n-dimensional case

In the qubit case we used the Pauli matrices as an orthogonal basis to the self-

adjoint matrices in M2(C) for parameterization with respect to the Hilbert-

Schmidt inner product:

〈A,B〉 = Tr (A∗B)

In the n-dimensional case we will use generalized Pauli matrices for the same

purpose. We set an orthonormal basis on self-adjoint matrices

∀i : σi = σ∗i , Tr σi = 0 and ∀i, j : Trσiσj = δi,j,

where 1 ≤ i, j ≤ n2 − 1 and σ0 = 1√
n
I. Note that the Pauli matrices in the

previous section were not normalized because of tradition.

Using this basis for parameterization we have

ρ(θ) =
n2−1∑
i=0

θiσi, (4)

and we call θ = (θ1, θ2, . . . , θn2−1) the generalized Bloch vector.

Substituting representation (4) back into property (1), we arrived at

Tr ρ(θ) = Tr
n2−1∑
i=0

θiσi = Tr θ0σ0 = Tr θ0
1√
n
I = θ0

√
n = 1,

so θ0 = 1√
n
. Eq. (2), however, cannot be reformulated as a closed expression

of the elements of the Bloch vectors. In the following sections, the quantum

states will either be represented as a density matrix or as a Bloch vector.

5Generally pure states have eigenvalues 0 or 1, i.e., ρ = ρ2 holds.
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Example 2.1 For n = 3 the generalized Pauli matrices are proportional to

the Gell-Mann matrices:

σ1 =
1√
2


0 1 0

1 0 0

0 0 0

 , σ2 =
1√
2


0 −i 0

i 0 0

0 0 0

 , σ3 =
1√
2


1 0 0

0 −1 0

0 0 0

 ,

σ4 =
1√
2


0 0 1

0 0 0

1 0 0

 , σ5 =
1√
2


0 0 −i
0 0 0

i 0 0

 , σ6 =
1√
2


0 0 0

0 0 1

0 1 0

 ,

σ7 =
1√
2


0 0 0

0 0 −i
0 i 0

 , σ8 =
1√
6


1 0 0

0 1 0

0 0 −2

 ,

Example 2.2 For n = 4 we can obtain the generalized Pauli matrices as the

tensor products of 2-dimensional Pauli-matrices (σi):

{1

2
· σi ⊗ σj}, with i, j ∈ {0, 1, 2, 3}

2.3 Measurements

Measurements are of a probabilistic nature in quantum mechanics. Observ-

able quantities correspond to n × n self-adjoint matrices. Let the spectral

decomposition of an observable A be the following:

A =
k∑
i=1

λiPi. (5)

Here, λi are the different eigenvalues of A, and the Pi-s are the corresponding

eigenprojections (P ∗i = Pi = P 2
i ,
∑

i Pi = I, PiPj = 0 for i 6= j).

The possible outcomes of the measurement are the different λi eigenvalues

and the corresponding probability is

Prob (λi) = Tr (ρPi). (6)
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A key element of quantum measurements is that it will change the actual

state of the quantum system to

ρi =
PiρPi

TrPiρPi
, (7)

if the outcome of measurement is λi. Thus each sample can only be used

once for measuring a certain quantity.

Example 2.3 Measurement of the Pauli operator σ1:

If one considers in the qubit case the measurement of the observable σ1,

then we have the spectral decomposition:

σ1 =
1

2

[
1 1

1 1

]
− 1

2

[
1 −1

−1 1

]
=: E+1 − E−1.

The possible outcomes are the different eigenvalues of the observable, i.e.,

±1. The probabilities of these outcomes are

Prob(+1) = Tr ρE+1 = 1+θ1
2

Prob(−1) = Tr ρE−1 = 1−θ1
2

respectively. The state after measurement is either

θ+1 =
[

+1, 0, 0
]ᵀ

or θ−1 =
[
−1, 0, 0

]ᵀ
depending on the outcome.

From the state estimation point of view, only the distribution of the

outcomes (Tr (ρPi)) bears important. The eigenvalues λi and the state after

the measurement are irrelevant. A measurement can thus be given as a set

of projections (P1, P2, . . . , Pk) on Mn(C), and we will call it a von Neumann

measurement.

We will put a special emphasis in the next sections on the case of von

Neumann measurements with two elements: (P1, P2). We have then P2 =

I − P1, and if P1 is a projection, then P2 is always a projection, since

P ∗2 = (I − P1)
∗ = I − P ∗1 = I − P1 = P2
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and

P 2
2 = (I − P1)(I − P1) = I − P1 − P1 + P 2

1 = I − 2P1 + P1 = I − P1 = P2.

So every von Neumann measurement with two elements can be charac-

terized with a projection P by using POVM (P, I − P ). In Example 2.3 we

have P = E+1 = 1
2
(I + σ1).

Positive operator valued measurements

We can easily generalize this scenario to the so-called positive operator valued

measurements (POVMs).

A set of self-adjoint operators (E1, E2, . . . , Ek) forms a POVM if and only

if

∀i : Ei ≥ 0 and
∑
i

Ei = I. (8)

The probability of observing an outcome related to Ei is

pi = Tr (ρEi).

Note that unlike von Neumann measurements, POVMs do not necessary

consist solely of projections, only positivity is required.

2.4 The standard state estimation method

This section introduces the important state estimation concepts through the

standard method.

The standard method for qubits

First we perform three different kinds of von Neumann measurements with

two elements (Pi, I − Pi). Let us have for the observables the three Pauli

matrices σ1, σ2, σ3, i.e., we have the projections: Pi = 1
2
(I +σi), (i = 1, 2, 3).

Then the probability of outcome +1 is

pi = Tr(ρPi) =
1 + θi

2
. (9)

14



similarly to Example 2.3. From the physical point of view, σ1, σ2 és σ3

correspond to measuring the spin in directions x, y and z, respectively.

Because of the high symmetry and the independence of the components

we can easily construct an estimation scheme for the state θ. Suppose that m

measurements are performed in each direction. Then the relative frequency

νi of the outcomes +1 is a sufficient statistic:

νi :=
mi

m
, i = 1, 2, 3

with denoting mi the number of (+1)-s in direction i.

The least squares estimator is a well-known and widespread method that

minimizes the squared error. If the relative frequencies resulting from the

measurements are νi, then the deviation from the real value of the state can

be written in the form (because of the independence of the measurements,

there are no cross terms):

ϕLS(ν, θ) =
∑
i=1,2,3

(
νi −

1 + θi
2

)2

→ min.

We are going to minimize this expression. It is trivially minimal when the

expressions in brackets are zero. This way, knowing the relative frequencies

νi, an estimate can be given for the Bloch vector θ:

θ̂m(ν) =



2ν1 − 1

2ν2 − 1

2ν3 − 1


=



2m1

m
− 1

2m2

m
− 1

2m3

m
− 1


. (10)

The notation θ̂m(ν) expresses that the above expression is an estimator of

θ, takes m, the number of measurements, as a parameter and also that its

value is a function of the outcome statistics ν.

Note that this estimation can provide a result that is physically mean-

ingless (the state will be outside of the Bloch ball), but the probability of
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having unphysical states vanishes exponentially as the number of measure-

ments increases due to the large deviation theorem. So we will ignore this

problem in the future examinations.

θ̂m(ν) is an unbiased estimator since

E(θ̂m(ν)) =



2E(m1)
m
− 1

2E(m2)
m
− 1

2E(m3)
m
− 1


=



θ1

θ2

θ3


= θ, (11)

since mi is binomially distributed with parameters m and pi, and so from

(9), we know its expected value and variance

E(mi) = mpi = m
1 + θi

2
and Var (mi) = mpi(1− pi) = m

1− θ2i
4

(12)

If we have a random variable X = (X1, X2, . . . , Xk) with expectation E(X) =

(µ1, µ2, . . . , µk), we can also define the covariance matrix:

[Var (X)]i,j = E ((Xi − µi)(Xj − µj))

From (12) we can easily calculate the covariance matrix of estimator (10),

too:

Var (θ̂m(ν)) =
1

m


1− θ21 0 0

0 1− θ22 0

0 0 1− θ23

 , (13)

since mi and mj are independent (i 6= j), so off-diagonal elements are zeros,

while

Var
(

2
mi

m
− 1
)

= 4
Var (mi)

m2
=

1− θ2i
m

.

So we get that the variance converges to zero in order of 1
m

, where m is

the number of measurements. Together with the unbiasedness (11) of this

estimator we get that (10) is a consistent estimator, i.e., if m converges to

infinity, then θ̂m(ν)→ θ with probability 1.
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Generally, we can suppose that the estimator is a linear function of ν

θ̂m(ν) = a · ν + b

and also that we have identical, independent measurements, so we get:

Var (θ̂m(νi)) = a2Var (νi) = a2
Var (mi)

m2
= a2

Var (m∗i ) ·m
m2

, (14)

where m∗i is the number of (+1)-s in direction i, after a single measurement.

Note that mi is the sum of m independent and identically distributed vari-

ables, all of which are distributed according to m∗i . Consequently, V ar(mi) =

m · V ar(m∗i ). So from (14) we obtain

Var (θ̂m(νi)) =
Var (θ̂1(νi))

m
,

that is, we have the same optimization problem for m = 1 as for an arbitrary

m up to a normalizing factor. Therefore in further calculations we will always

use the m = 1 case for simplicity, but we will assume that the number of

measurements is sufficient to be close to the asymptotic properties, where we

do not have problems with unphysical estimations.

Finally let us introduce the Fisher information6 for an observable having

probability distribution (q1, q2, . . . , ql):

[I(θ)]i,j =
∑
α

1

qα

∂qα
∂θi

∂qα
∂θj

If we have one measurement in the i-th direction (that is m = 1), then we

have Bernoulli distribution with probability distribution (1+θi
2
, 1−θi

2
), which

has Fisher information:

[I1(θ)]i,i =
2

1 + θi
· 1

2
· 1

2
+

2

1− θi
· 1

2
· 1

2
=

1

1− θ2i
.

Since mi has binomial distribution, which is a sum of independent Bernoulli

distributions, we obtain

Im(θ) = mI1(θ) = m


1

1−θ21
0 0

0 1
1−θ22

0

0 0 1
1−θ23

 .
6With respect to the state parameters θ = (θ1, θ2, . . . θn2−1).
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The Cramér-Rao inequality provides us a lower bound for the variance of

parameter estimators. Let us suppose that we have an unbiased estimator

Ψ(θ) of θ, then we have

Var (Ψ(θ)) ≥ Im(θ)−1. (15)

Since θ̂m(ν) is an unbiased estimator of θ and it fulfills (15) with equality, so

the estimator (10) is an efficient estimator.

The POVM case

Instead of using 3 different von Neumann measurements with two elements:

(Pi, I − Pi) =
(
1
2
(I + σi),

1
2
(I − σi)

)
we can use a single POVM with six

elements:

E1 =
1

6
(I + σ1), E2 =

1

6
(I − σ1),

E3 =
1

6
(I + σ2), E4 =

1

6
(I − σ2),

E5 =
1

6
(I + σ3), E6 =

1

6
(I − σ3).

Then the probabilities of different outcomes are pi = Tr (ρEi), so we get:

p1 =
1 + θ1

6
, p2 =

1− θ1
6

,

p3 =
1 + θ2

6
, p4 =

1− θ2
6

,

p5 =
1 + θ3

6
, p6 =

1− θ3
6

.

We can similarly construct an estimator as in the von Neumann case, we

need to repeat the single measurement {E1, E2, E3, E4, E5, E6}. Let ni denote

the number of outcomes related to Ei, and n =
∑
ni the total number of

measurements. Then using the relative frequencies νi = ni

n
we can construct

the estimator of θ:

θ̂n(ν) =



n1−n2

n1+n2

n3−n4

n3+n4

n5−n6

n5+n6


=



2ν̃1 − 1

2ν̃2 − 1

2ν̃3 − 1


, (16)
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where ν̃1 = n1

n1+n2
, ν̃2 = n3

n3+n4
, ν̃3 = n5

n5+n6
.

So this estimator is very similar to (10), the only difference is that here

we measure n1 + n2 times in σ1 direction, n3 + n4 times in σ2 direction and

n5 + n6 times in σ3 direction, instead of m times in each. We can easily

verify that (16) is unbiased, and asymptotically has the same variance for

each state parameter as (10) with m = n/3: the law of large number ensures

that n1 + n2 ∼ n
3
, n3 + n4 ∼ n

3
and n5 + n6 ∼ n

3
.

In the literature (16) is often referred to as the standard estimator of a

qubit (e.g., [49]). As we have seen, there is not much difference, so we will

prefer the simpler one (10).

Generalization to n-level quantum systems

A straightforward modification of the measurement setup can lead us to the

multidimensional case [43, 44].

Consider an n-level quantum system with density matrix ρ ∈ Mn(C).

Since the density matrices are self-adjoint matrices with unit trace, they can

be characterized by d = n2 − 1 real parameters.

Let Eij denote the n× n matrix units7 and set

Zii := Eii (1 ≤ i < n),

Xij := Eij + Eji (i < j),

Yij := −iEij + iEji (i < j).

The spectrum of Zii is {0, 1} and the spectrum of Xij and Yij is {−1, 0, 1}.
These observables can be used to estimate the n2 − 1 real parameters of the

n×n density matrix selectively. If each observable is measured r times, then

m = r(n2 − 1) copies of the quantum system are used.

2.5 Complementary and symmetric measurements

In this subsection we expound on two basic properties, that will take impor-

tant role in the efficient state estimation.
7[Eij ]k,l = δi,k · δj,l
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Complementarity

The heuristic concept of complementarity was born together with quantum

theory. A mathematical definition is due to Accardi [1] and Kraus [31]. Ref.

[40] provides an overview about complementarity; details are given in [41, 48].

Let H be an n-dimensional Hilbert space. Then the basis e1, e2, . . . , en is

complementary to the basis f1, f2, . . . , fn if

|〈ei, fj〉|2 =
1

n
(1 ≤ i, j ≤ n). (17)

If this condition holds then the two bases are also called mutually unbiased.

If two observablesA andB have eigenvectors e1, e2, . . . , en and f1, f2, . . . , fn

which are orthonormal bases, then they are complementary if the bases

e1, e2, . . . , en and f1, f2, . . . , fn are complementary.

The generalization can be made to POVMs. The POVMs {E1, E2, . . . , Ek}
and {F1, F2, . . . , Fm} are complementary if

TrEiFj =
1

n
TrEi TrFj (1 ≤ i ≤ k, 1 ≤ j ≤ m).

or equivalently, the traceless parts of the matrices are orthogonal

Ei −
TrEi
n

I ⊥ Fj −
TrFj
n

I, (1 ≤ i ≤ k, 1 ≤ j ≤ m).

The latter property can be extended to subspaces A1,A2 ⊂Mn(C). A1 and

A2 are complementary if the traceless part of matrices A1 ∈ A1 and A2 ∈ A2

are orthogonal, so we have the orthogonality of the following subspaces:

A1 	 CI ⊥ A2 	 CI,

where A1 	 CI is the traceless subspace of A1. In the following sections we

are referring to this property as quasi-orthogonality.

Symmetric measurements

A density matrix ρ ∈Mn(C) has n2−1 real parameters. To cover all param-

eters the POVM has to contain at least n2 elements, since the probability
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distribution has one less degree of freedom than the number of POVM ele-

ments. We can take projections Pi, 1 ≤ i ≤ n2, such that

Ei =
1

n
Pi,

n2∑
i=1

Pi = nI, TrPiPj =
1

n+ 1
(i 6= j) (18)

and this is called symmetric informationally complete POVM (SIC-POVM)

by Zauner [64] and is currently a rather popular concept [2, 3, 11, 32, 50,

55, 65]. Zauner shoved the existence for n ≤ 5, there has been some analytic

and numerical progress [18, 58], but the existence of a SIC-POVM is still

unknown for a general dimension n.

From the state estimation point of view, the SIC-POVM {Ei : 1 ≤ i ≤
n2} of an n-level system is optimal among the POVMs having n2 elements,

it minimizes the average squared Hilbert-Schmidt distance of the estimation

and the true density [57].

The case when we consider less than n2 projections with similar properties

is more interesting. If n2 − k (k < n2) parameters are known, then we

want to estimate only the k − 1 unknown parameters, therefore a POVM

{Ei : 1 ≤ i ≤ k} is sufficient for full state reconstruction.

In this case we expect the same kind of symmetry as in the unconditional

version (18). Let us take a set of projections Pi, 1 ≤ i ≤ k such that

Ei =
1

λ
Pi,

k∑
i=1

Pi = λI and TrPiPj = µ (i 6= j). (19)

The SIC-POVM case corresponds to k = n2, λ = n and µ = 1/(n + 1), but

there are other parameter sets for which there exists a POVM fulfilling the

conditions of Eq. (19).

Naturally, the optimal POVM depends on the known parameters, there-

fore we use the term of conditional SIC-POVM. This is a new subject of

quantum information theory, the existence of such conditional SIC-POVMs

can be a fundamental question in different quantum tomography problems.
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2.6 Literature review

In this section we will summarize the results from the literature which are

closely related to our approach.

Optimal state determination by mutually unbiased measurements

[62] The basic ideas of our work can be traced back to the fundamental

work of Wooters and Fields in 1989. They maximized the information gain

of the estimation

Iθ(θ̂) = h(θ)− h(θ̂|θ), (20)

where h(θ) = −
∫
f0(x) log f0(x)dx is the entropy of the prior distribution,

while h(θ̂|θ) = −
∫
f0(x)h(θ̂|θ = x)dx is the conditional entropy of θ̂ given θ.

A key step is that before maximization they take the average of (20) over the

possible true states with respect to the prior distribution, and they obtain

from that the optimality of complementary measurements.

Point estimation of states of finite quantum systems [43] This ar-

ticle of Petz, Hangos and Magyar from 2007 is mostly dealing with the case

of n-dimensional state estimators, but mentions as a side result the optimal-

ity of the complementary measurement for qubits. This is a much weaker

result than the previous one, but they optimize a different quantity: instead

of maximizing the information gain, they minimize the determinant of the

average covariance matrix

det 〈Var (θ̂)〉 → min . (21)

Complementarity and state estimation [5] The direct premise of our

work is this article by Baier and Petz from 2010. They used (21) for proving

optimality of complementary measurements in quite general settings, so im-

proved the result of Wooters and Fields. Their approach, however, had its

own limitations: they do not consider either the known parameter case, or

the single POVM case. But they results suggested to us that the determi-
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nant of the average covariance matrix might be a useful quantity for more

complex state estimation scenarios, too.

Minimal qubit tomography [49] Rehacek, Englert and Kaszlikowski

argued in 2004 that although there are six measurement directions in the

standard method, in the qubit case four of them are enough to obtain all

possible states. So they did not measure in the direction of the axis of the

Bloch ball, but the elements of POVM were related to the vertices of a regular

tetrahedron,

Ei =
1

4
(I + ai · σ), i = 1, 2, 3, 4, (22)

with Bloch vectors

a1 =
1√
3

(1, 1, 1), a2 =
1√
3

(1,−1,−1),

a3 =
1√
3

(−1, 1,−1), a4 =
1√
3

(−1,−1, 1).

Which is a well-known example of the SIC-POVM in the qubit case.

They applied the maximum likelihood principle to get an estimation for

θ. If θ 6= 0, the variance of their estimator is higher than that of the standard

method 8, however, since their POVM does not contain more elements than

necessary, it is easier to generalize their method to higher dimensions.

Tight informationally complete quantum measurements [57] Scott

described in 2006 a method, that minimizes the expectation of the squared

Hilbert-Schmidt distance

E‖ρ− ρ̂‖2 → min,

to obtain the optimal linear state estimation. His result was that if we have

ρ ∈ Mn(C) and a POVM with k ≥ n2, then the optimal POVM is a tight9

8They also suggested an adaptive measurement procedure, which provides better results

for pure states than the standard method.
9Tightness actually means some strong kind of symmetry, for the exact formulation see

Definition 11 in [57].
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rank-one informationally complete POVM. The case when k = n2, i.e., we

have exactly the necessary number of POVM elements, the optimal POVM

is the n-dimensional SIC-POVM. In our work we are interested in the k < n2

case and we generalize Scott’s method to obtain a result analogous to Lemma

17 in [57]. This enables us to calculate some basic properties of conditional

SIC-POVMs.
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3 Efficient state estimation

In this section I explain my results in detail. First, the case of von Neumann

measurements is investigated. Detailed examples are presented to give moti-

vation for the method choice. Results concerning the general, n-dimensional

case are also given.

Afterwards, positive operator valued measurements are examined, both

for the qubit and the n-level setup. For the n-dimensional system, results

are only given in the symmetrical case. The asymmetrical variant is much

more difficult, however, it is also very interesting: the optimal measurements

give us a generalization of SIC-POVMs.

The last part investigates this asymmetrical case in more detail: first we

show a numerical method that solves this optimization problem efficiently.

Finally, a different quantity is introduced which settles the question in the

general, n-level case; showing that conditional SIC-POVMs are indeed opti-

mal.
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3.1 Von Neumann measurements [45]

In this section we will use von Neumann measurements with two elements

for state estimation. When multiple parameters are unknown we have to

use multiple von Neumann measurements for complete state reconstruction.

In order to have a unique estimator we use exactly the sufficient number of

projections.

3.1.1 The qubit case

1. Assume first that θ1 and θ2 are known and we want to estimate

θ3. The assumption means that the reduced state is known on the subspace

generated by σ1 and σ2. It is a complementary to the subspace generated by

σ3. A projection

E =
1

2
(I + λ · σ)

is used to estimate from the result of several measurements; λ21 +λ22 +λ23 = 1.

The probability of getting an outcome related to E is

p = Tr ρE = Tr

[
1

2

(
I +

3∑
i=1

θiσi

)
· 1

2

(
I +

3∑
j=1

λjσj

)]
=

=
1

4
Tr I +

1

4

(
3∑

i,j=1

θiλjTr σiσj

)
=

1

2

(
1 +

3∑
i=1

θiλi

)
=

1

2
(1 + 〈θ, λ〉) ,

since Trσiσj = 2 · δi,j, so we have

θ3λ3 = 2p− 1− θ1λ1 − θ2λ2 . (23)

In (23) λ1, λ2, λ3 are the parameters of the measurements, θ1 and θ2 are

known constants and θ3 is the parameter to estimate. Our aim is to find the

optimal measurement setup λ that minimizes the estimation error of θ3. We

proceed similarly as we did in Section 2.4. Denote by ν the random outcome

of the measurement of E. The random variable ν is Bernoulli distributed

with expectation p. The natural unbiased estimate of θ3 is

θ̂3 =
1

λ3
(2ν − 1− θ1λ1 − θ2λ2) . (24)
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So the variance of the estimator related to measurement E is

Var (θ̂3) = 4
Var ν

λ23
=

1− 〈λ, θ〉2

λ23
. (25)

Note that if r measurements are performed, then instead of a Bernoulli distri-

bution we will have binomial, so in (24) ν is replaced by the relative frequency

of the outcome 1 and the variance (25) should be divided by r. The variance

changes by a constant factor, hence the minimization problem is the same.

We want to argue that the optimal estimate corresponds to the projection

λ1 = λ2 = 0, λ3 = ±1, i.e., we measure the coefficient of σ3 the most

efficiently if we measure in the direction corresponding to σ3. This estimator

has a variance of 1− θ23, however, the inequality

Var (θ̂3) =
1− 〈λ, θ〉2

λ23
≥ 1− θ23 (26)

is not true in general. For example λ = θ is possible for pure states and then

left-hand side is 0. So it is not true that σ3 is generally the best observable,

but as we will show that it is optimal if we take the average of the variance

on the unitarily invariant states.

Since θ1, θ2 are given, the only unitarily invariant vector to (θ1, θ2, θ3) is

(θ1, θ2,−θ3), we should average Var (θ̂3) on them:〈
Var (θ̂3)

〉
=

1

2
· 1− (λ1θ1 + λ2θ2 + λ3θ3)

2

λ23
+

1

2
· 1− (λ1θ1 + λ2θ2 − λ3θ3)2

λ23
=

=
1− (λ1θ1 + λ2θ2)

2 − λ23θ23
λ23

We claim that although (26) is not true in every case, it will be true in the

average sense: 〈
Var (θ̂3)

〉
≥ 1− θ23. (27)

Note that the average of the right-hand side of (26) will remain the same,

since 1− (−θ3)2 = 1− θ23.
Eq. (27) is equivalent

(λ1θ1 + λ2θ2)
2 ≤ 1− λ23,
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and this can be easily proved using the Schwartz inequality:

(λ1θ1 + λ2θ2)
2 ≤ (λ21 + λ22)(θ

2
1 + θ22) ≤ 1− λ23

so the inequality (27) holds in every case and the equality is possible only in

case λ3 = ±1.

Theorem 3.1 Assume that θ1 and θ2 are known parameters and θ21 +θ22 < 1.

In this setting the average covariance will be minimal if λ1 = λ2 = 0 and

λ3 = ±1, i.e., the projection I±σ3
2

is measured.

So we have that the measurement
(
I+σ3
2
, I−σ3

2

)
is really optimal but only

in the average sense.

2. Assume next that θ1, θ2 and θ3 are not known. Let the observables

Ex =
1

2
(I + x · σ) (x = a, b, c)

be measured in the true state ρ, where a, b, c are unit vectors in R3 (‖a‖2 =

‖b‖2 = ‖c‖2 = 1) and θ = (θ1, θ2, θ3) are the unknown parameters of the

state. The probabilities are

px :=
1 + 〈x, θ〉

2
, p := (pa, pb, pc) .

If the measurements are performed r times, then px is estimated by the

relative frequency νx of the outcome 1. Just like earlier, the value of r

does not contribute to the optimization problem, so in what follows, we will

assume that r = 1. The estimate θ̂ can be found by solving

νx =
1 + 〈x, θ̂〉

2
(x = a, b, c).

Since it can be written in the form

2

 νaνb
νc

 =

 1

1

1

+ T

 θ̂1θ̂2
θ̂3


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with the matrix

T :=


a1 a2 a3

b1 b2 b3

c1 c2 c3

 ,
the solution is  θ̂1θ̂2

θ̂3

 = T−1

 2νa − 1

2νb − 1

2νc − 1

 . (28)

This is once again an unbiased estimator, the relative frequencies (νx) are

independent and have a Bernoulli distribution, so the covariance matrix of

this estimator is

V (θ) = T−1


1− 〈a, θ〉2 0 0

0 1− 〈b, θ〉2 0

0 0 1− 〈c, θ〉2

 (T−1)∗. (29)

We can get the average covariance matrix with the integral∫
H

V (θ) dµ(θ) =

= T−1


∫
H

1− 〈a, θ〉2 dµ(θ) 0 0

0
∫
H

1− 〈b, θ〉2 dµ(θ) 0

0 0
∫
H

1− 〈c, θ〉2 dµ(θ)

 (T−1)∗;

where we take the integral on the unitarily invariant states H = {(θ1, θ2, θ3) :

θ21 + θ22 + θ23 = R2} with respect to the normalized Lebesgue measure. Due

to the symmetry we can obtain that∫
H

1− 〈a, θ〉2dµ(θ) =

∫
H

1− 〈b, θ〉2dµ(θ) =

∫
H

1− 〈c, θ〉2dµ(θ) = C

where C > 0 is a constant depending on the radius of the sphere (R ≤ 1).

So the average is ∫
V (θ) dµ(θ) = C (T ∗T )−1.

The determinant is minimal if det (T ∗T ) = (detT )2 is maximal. detT is

the volume of the parallelepiped determined by vectors a, b and c, and it is

maximal when they are orthogonal, i.e., Ea, Eb and Ec are quasi-orthogonal.
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Theorem 3.2 Assume that θ1, θ2, θ3 are unknown parameters. Then the av-

erage quadratic error will be minimal if the three measurements are comple-

mentary.

A possibility is the measurements originated from the three Pauli matri-

ces: I+σi
2

, as we can see in Section 2.4.

3. In the next essential example, θ1, θ2 are not known, but θ3 is

given. Assume that the observables

Ex =
1

2
(I + x · σ) (x = a, b) (30)

are measured in the true state ρ, where a, b are unit vectors in R3.

In this case the equation to solve has the form[
νa

νb

]
=

1

2

([
1

1

]
+ U

[
θ̂1

θ̂2

]
+

[
a3θ3

b3θ3

])
,

where

U =

[
a1 a2

b1 b2

]
.

The latter equation yields the estimator[
θ̂1

θ̂2

]
= U−1

(
2

[
νa

νb

]
−
[

1

1

]
− θ3

[
a3

b3

])
.

The mean quadratic error matrix is

U−1
[

1− 〈a, θ〉2 0

0 1− 〈b, θ〉2

]
(U−1)∗. (31)

We integrate with respect to the unknown θ1 and θ2 only. The average

variance is the question on the circle M = {(θ1, θ2) : θ21 + θ22 = R2}:

1

2Rπ

∫
M

1− 〈λ, θ〉2 dθ = 1− (λ21 + λ22)R
2/2− λ23θ23.

According to (31) we have the average covariance matrix

U−1
[

1− (a21 + a22)R
2/2− a23θ23 0

0 1− (b21 + b22)R
2/2− b23θ23

]
(U−1)∗.
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Minimization of a matrix cannot be performed, so our idea is to minimize

the determinant

(1− (a21 + a22)R
2/2− a23θ23) (1− (b21 + b22)R

2/2− b23θ23)
detU2

(32)

under the conditions a21 + a22 + a23 = 1 and b21 + b22 + b23 = 1.

Let us introduce the notations c = a21 +a22 and d = b21 + b22. Then we have

to minimize(
1− cR2/2− (1− c)θ23

) (
1− dR2/2− (1− d)θ23

) 1

detU2
. (33)

detU2 ≤ cd, so if c and d are given we should choose a and b such that

(a1, a2) ⊥ (b1, b2). Then detU2 = cd and (33) takes the form:(
1− θ23
c
− (R2/2− θ23)

)(
1− θ23
d
− (R2/2− θ23)

)
.

On the other hand, we know that c ≤ 1, d ≤ 1, and R2 ≤ 1 − θ23, so both

factors are always positive, on the other hand they are monotonous in c and d,

hence the optimal case is achieved when c = d = 1. In the parameterization

(30) this means a and b are orthogonal and a3 = b3 = 0.

Theorem 3.3 Assume that θ3 is the unknown parameter and |θ3| 6= 1. Then

the determinant of the average covariance matrix is minimal if the two von

Neumann measurements are complementary to each other and to σ3.

3.1.2 The n-dimensional case

In this section we generalize Theorem 3.3 to systems which have more than

two levels. Assume that we have some known parameters and some param-

eters to estimate. Let us use the decomposition

Mn(C) = CI ⊕A⊕ B,

where A and B are linear subspaces and orthogonality is defined with respect

to the Hilbert-Schmidt inner product 〈A,B〉 = TrA∗B.
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A state has the density matrix

ρ = I/n+ ρA + ρB. (34)

We assume that the component ρA is known and ρB should be estimated. Let

the dimension of B be k. The positive contractions E1, . . . , Ek are used for

independent measurements on several identical copies of the n-level system.

A measurement corresponds to the POVM {Ei, I − Ei}. These operators

have expansion

Ei = eiI + Ei
A + Ei

B (1 ≤ i ≤ k).

The expectations are

pi := Tr ρEi = ei + Tr ρAE
i
A + Tr ρBE

i
B (1 ≤ i ≤ k).

We fix an orthonormal basis F1, . . . , Fk in B and the unknown component

has the expansion

ρB = θ1F1 + . . .+ θkFk,

where θ = (θ1, . . . , θk) are the parameters to be estimated.

Similarly we make the parameterization for the measurements:

Ei
B = ei1F1 + ei2F2 + . . .+ eikFk.

Then

pi = ei + Tr ρAE
i
A +

k∑
j=1

eijθj (1 ≤ i ≤ k).

From that we can make estimates on θ̂i by solving the equations

εi = ei + Tr ρAE
i
A +

k∑
j=1

eij θ̂j (1 ≤ i ≤ k),

where εi is the random result of the ith measurement. In another form ε1...
εk

 =

 e1...
ek

+

Tr ρAE
1
A

...

Tr ρAE
k
A

+

 e11 · · · e1k
...

. . .
...

ek1 · · · ekk

 θ̂ᵀ
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or in a different notation ε1...
εk

 =

 e1 + Tr ρAE
1
A

...

ek + Tr ρAE
k
A

+ T θ̂ᵀ ,

where T is the k × k matrix from the previous formula. Therefore,

θ̂ᵀ = T−1


 ε1...
εk

−
 e1 + Tr ρAE

1
A

...

ek + Tr ρAE
k
A


 .

Since εi is an unbiased estimation on pi, θ̂ is an unbiased estimation on θ,

hence the covariance matrix is

Var (θ̂) = T−1Var (ε)(T−1)ᵀ,

where we used the notation ε = (ε1, ε2, . . . εk)
ᵀ.

Due to the independence of the measurements the expected value Var (ε)

will be diagonal. The random variables εi have a Bernoulli distribution and

the variance is

(1− Tr ρEi)Tr ρEi.

We want to take the average:∫
(1− Tr ρEi)Tr ρEi dµ(ρ),

where the integration is going on the unitarily invariant states, and µ is

a the corresponding normalized Haar-measure. For the sake of simplicity

assume that the operators Ei have the same spectrum. Then the integral

is a constant (c), that does not depend on the actual Ei and so the average

covariance matrix is

〈Var (θ̂)〉 = T−1


c 0 · · · 0

0 c · · · 0
...

. . .
...

0 0 · · · c

 (T−1)ᵀ = cT−1(T−1)ᵀ.
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The determinant is minimal if the determinant of the matrix T is max-

imal. Geometrically, the determinant is the volume of the parallelepiped

determined by the row vectors. To maximize the determinant, the row vec-

tors should be long. This implies that Ei
A = 0 in (54), since otherwise we

could project Ei on to CI ⊕B, and still have the same elements in T . So we

have

Ei = e+ ei1F1 + . . .+ eikFk (1 ≤ i ≤ k),

and then the determinant of the matrix
1/n 0 · · · 0

e e11 · · · e1k
...

...
. . .

...

e ek1 · · · ekk


is detT . The angle of the first row and any other row is fixed. To have

a large determinant the rows of T should be orthogonal. In this case, the

operators E1, . . . , Ek are quasi-orthogonal.

Theorem 3.4 If the positive contractions E1, . . . , Ek have the same spec-

trum, then the determinant of the average of the quadratic error matrix is

minimal if the operators E1, . . . , Ek are quasi-orthogonal to each other and

to A.

Example 3.1 If two qubits are given and the reduced states of both qubits

are known, then the ideal state estimation is connected to the observables

σ11, σ22, σ33, σ12, σ23, σ31, σ13, σ21, σ32,

with σij = σi ⊗ σj. �
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3.2 Estimation with a single POVM [45]

If we want to use one positive operator-valued measure instead of multiple

von Neumann measurements, we can easily extend the a method detailed

previously. In the upcoming part we will use POVMs which have exactly

the sufficient number of components to make the state estimation. Of course

we can use greater number of components but in that case is not trivial the

construction of the estimator.

3.2.1 The qubit case

1. Assume that we have three unknown parameters. They are

θ = (θ1, θ2, θ3) and the positive operator-valued measure {Ea, Eb, Ec, Ed}
is performed. We write

Ex = x0(I + x · σ), (x = a, b, c, d),

where a, b, c, d ∈ R3 and a0, b0, c0, d0 ∈ R. Then from
∑
Ex = I, we have

Ed = I − Ea − Eb − Ec = (1− a0 − b0 − c0)I − (a0a+ b0b+ c0c) · σ

= d0(I + d · σ).

The positivity conditions for Ea are a0 ≥ 0 and 1 ≥ 〈a, a〉. Similar condi-

tions should hold for the other operators Eb, Ec, Ed, therefore the conditions

of positivity are:

a0 ≥ 0, b0 ≥ 0, c0 ≥ 0, d0 ≥ 0, (35)

1 ≥ 〈a, a〉, 1 ≥ 〈b, b〉, 1 ≥ 〈c, c〉, 1 ≥ 〈d, d〉. (36)

The probabilities of different outcomes are

px = TrExρ = x0 + x0〈x, θ〉 (x = a, b, c).

In matrix notation we have papb
pc

 =

 a0b0
c0

+ T

 θ1θ2
θ3


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with matrix T defined as

T :=


a0a1 a0a2 a0a3

b0b1 b0b2 b0b3

c0c1 c0c2 c0c3

 .
If νa, νb, νc are the relative frequencies of the outcomes (of different measure-

ments on identical copies), then the solution of the equation νaνb
νc

 =

 a0b0
c0

+ T

 θ̂1θ̂2
θ̂3


yield the state estimate:  θ̂1θ̂2

θ̂3

 = T−1

 νa − a0νb − b0
νc − c0

 . (37)

The mean quadratic error matrix is

V (θ) = T−1W (T−1)∗

where W is the covariance matrix of the random variables νa, νb, νc. Since

they have multinomial distribution we have:

W =
1

r

 pa(1− pa) −papb −papc
−papb pb(1− pb) −pbpc
−papc −pbpc pc(1− pc)

 ,
where r is the number of measurements; we fix r = 1. To get the average

mean quadratic error matrix we integrate this on the rotation invariant states

with respect to the normalized Lebesgue measure µ. We have to calculate

two types of integrals∫
H

−papbdµ(θ) = −
∫
H

(
a0 + a0〈a, θ〉

)(
b0 + b0〈b, θ〉

)
dµ(θ)

= −
∫
H

a0b0dµ(θ)−a0b0
∫
H

〈a, θ〉dµ(θ)−
∫
H

a0b0〈b, θ〉dµ(θ)−a0b0
∫
H

〈a, θ〉〈b, θ〉dµ(θ)
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= −a0b0 + 0 + 0− a0b0
R2

3
〈a, b〉,

where H = {(θ1, θ2, θ3) : θ21 + θ22 + θ23 = R2}. The middle integrals are zeros

because of the symmetry:
∫
H
〈v, θ〉dµ(θ) = 0, ∀v. The last integral can be

evaluated as∫
H

〈a, θ〉〈b, θ〉dµ(θ) =

∫
H

(
3∑
`=1

a`θ`

)(
3∑

m=1

bmθm

)
dµ(θ) =

3∑
`=1

(∫
H

θ2`dµ(θ)

)
a`b`

The quantity
∫
H
θ2`dµ(θ) does not depend on `, it is a constant, and

3∑
`=1

∫
H

θ2`dµ(θ) =

∫
H

3∑
`=1

θ2`dµ(θ) =

∫
H

R2dµ(θ) = R2.

Similarly,∫
H

pa(1−pa)dµ(θ) =

∫
H

(
a0+a0〈a, θ〉

)(
1−a0−a0〈a, θ〉

)
dµ(θ) = a0(1−a0)−a20

R2

3
〈a, a〉.

Let us use the notation α = R2

3
. The average mean quadratic error matrix is

then ∫
H

V (θ) dµ(θ) = T−1W0(T
ᵀ)−1,

with

W0 =

 a0 0 0

0 b0 0

0 0 c0

−
 a0b0
c0

 [ a0 b0 c0 ]− αTT ᵀ.

The next step is to minimize the determinant

det
(
T−1W0(T

ᵀ)−1
)

=
det (W0)

det 2(T )
=
A

B
,

where after some straightforward simplifications we arrive at

A = det


a−10 − (1 + α〈a, a〉) −(1 + α〈a, b〉) −(1 + α〈a, c〉)
−(1 + α〈a, b〉) b−10 − (1 + α〈b, b〉) −(1 + α〈b, c〉)
−(1 + α〈a, c〉) −(1 + α〈b, c〉) c−10 − (1 + α〈c, c〉)


and

B = det 2


a1 a2 a3

b1 b2 b3

c1 c2 c3

 = det


〈a, a〉 〈a, b〉 〈a, c〉
〈a, b〉 〈b, b〉 〈b, c〉
〈a, c〉 〈b, c〉 〈c, c〉

 .
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The minimizer (aopt, bopt, copt) should be symmetric, hence a0 = b0 = c0 =

d0 = 1/4, 〈a, a〉 = 〈b, b〉 = 〈c, c〉 = z and 〈a, b〉 = 〈a, c〉 = 〈b, c〉 = y. We

suppose that the minimizer does not depend on the radius of the sphere, so

we can suppose R = α = 0. (For arbitrary α see the n dimensional case.)

Then A is a constant and

B = (z − y)2(z + 2y)

The positivity conditions from (35) changes to

z ≤ 1, 3(z + 2y) ≤ 1

The maximum of B is taken at z = 1 and y = −1/3. In this situation 2Ei is

a projection Pi and TrPiPj = 1/3.

Theorem 3.5 The optimal POVM is described by projections Pi (1 ≤ i ≤ 4)

such that

Ei = Pi/2,
∑
i

Pi = 2I, TrPiPj = 1/3 (i 6= j).

This optimal POVM is termed minimal qubit tomography [49].

2. Assume that θ1, θ3 are not known, but θ2 is given. This particular

situation means that we are interested in real matrices. A POVM of three

components {Ea, Eb, Ec} is sufficient. We use the parameterization

Ex = x0(I + x · σ), (x = a, b, c),

where a, b, c are vectors in R3, a0, b0, c0 ∈ R and θ = (θ1, θ2, θ3) are the

parameters of the state. From
∑
Ex = I, we have a0 + b0 + c0 = 1 and

a0a+ b0b+ c0c = 0. The positivity conditions are:

0 ≤ a0, b0, c0 ‖a‖, ‖b‖, ‖c‖ ≤ 1.

Similarly to the previous situation we have[
p(a)

p(b)

]
= θ2

[
a0(1− a2)
b0(1− b2)

]
+

[
a0a1 a0a3

b0b1 b0b3

] [
θ1

θ3

]
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and define matrix T as

T :=

[
a0a1 a0a3

b0b1 b0b3

]
=

[
a0 0

0 b0

] [
a1 a3

b1 b3

]
If ν(a), ν(b) are the relative frequencies of the outcomes (of different mea-

surements on identical copies), then the solution of equation[
ν(a)

ν(b)

]
= θ2

[
a0(1− a2)
b0(1− b2)

]
+ T

[
θ̂1

θ̂3

]
yields the estimator of (θ1, θ3)

ᵀ[
θ̂1

θ̂3

]
= T−1

[
ν(a)− θ2a0(1− a2)
ν(b)− θ2b0(1− b2)

]
.

If we take the covariance matrix of this estimator, all terms are constants

except ρ̂(a) and ρ̂(b) which are multinomially distributed, so we get

Var (θ̂) = T−1
[
p(a)(1− p(a)) −p(a)p(b)

−p(a)p(b) p(b)(1− p(b))

]
(T−1)∗ = T−1W (T−1)∗.

We integrate this on the domain H = {(θ1, θ3) : θ21 + θ23 = R2− θ22}, where R

is a constant (|θ2| ≤ R ≤ 1). T does not depend on θ, so∫
H

Var (θ̂)dµ(θ) = T−1
(∫

H

W (θ)dµ(θ)

)
(T−1)∗ (38)

and µ is the normalized Lebesgue measure on H. We calculate
∫
H
W (θ)dµ(θ)

as follows:∫
H

−p(a)p(b) dµ(θ) =

∫
H

−a0b0(1+a1θ1+a2θ2+a3θ3)(1+b1θ1+b2θ2+b3θ3) dµ(θ)

= −a0b0
∫
H

[(1 + a2θ2) + (a1θ1 + a3θ3)] [(1 + b2θ2) + (b1θ1 + b3θ3)] dµ(θ)

We use this separation, because 1 + a2θ2 is a constant, and a1θ1 + a3θ3 has

expectation value 0, since by symmetry E(θ1) = E(θ3) = 0.∫
H

(1 + a2θ2)(1 + b2θ2)dµ(θ) = (1 + a2θ2)(1 + b2θ2)∫
H

(1 + a2θ2)(b1θ1 + b3θ3)dµ(θ) = 0
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∫
H

(a1θ1 + a3θ3)(1 + b2θ2)dµ(θ) = 0∫
H

(a1θ1 + a3θ3)(b1θ1 + b3θ3)dµ(θ) =

∫
H

a1b1θ
2
1 + a3b3θ

2
3dµ(θ),

because E(θ1θ3) = 0, finally we can see that∫
H

θ21dµ(θ) =

∫
H

θ23dµ(θ) =: β (39)

where β is a constant from interval [0, 1− θ22], so we obtain∫
H

−p(a)p(b)dµ(θ) = −a0b0 [(1 + a2θ2)(1 + b2θ2) + β(a1b1 + a3b3)] .

Similar calculations give∫
H

(1− p(a))p(a)dµ(θ) = a0(1 + a2θ2)− a20
[
(1 + a2θ2)

2 + β(a21 + a23)
]

and∫
H

(1− p(b))p(b)dµ(θ) = b0(1 + b2θ2)− b20
[
(1 + b2θ2)

2 + β(b21 + b23)
]
.

Using the notations

qa = 1 + a2θ2, qb = 1 + b2θ2, a∗ = (a1, a3), b∗ = (b1, b3)

we have the integral∫
H

W (θ)dµ(θ) =

[
a0qa − a20 [q2a + β〈a∗, a∗〉] −a0b0 [qaqb + β〈a∗, b∗〉]
−a0b0 [qaqb + β〈a∗, b∗〉] b0qb − b20 [q2b + β〈b∗, b∗〉]

]

=

[
a0qa − a20q2a −a0b0qaqb
−a0b0qaqb b0qb − b20q2b

]
− β

[ −a20〈a∗, a∗〉 −a0b0〈a∗, b∗〉
−a0b0〈a∗, b∗〉 −b20〈b∗, b∗〉

]
.

Dividing the first rows and columns with a0 and the second ones with b0, we

have

det

∫
H

W (θ)dµ(θ) = a20b
2
0 det

([
qaa
−1
0 − q2a −qaqb
−qaqb qbb

−1
0 − q2b

]
− β

[ 〈a∗, a∗〉 〈a∗, b∗〉
〈a∗, b∗〉 〈b∗, b∗〉

])
.

On the other hand,

detT 2 = a20b
2
0 det 2

[
a1 a3

b1 b3

]
= a20b

2
0det

[ 〈a∗, a∗〉 〈a∗, b∗〉
〈a∗, b∗〉 〈b∗, b∗〉

]
.

40



So we should minimize a determinant of the form A/B, where

A = detV, B = det

[ 〈a∗, a∗〉 〈a∗, b∗〉
〈a∗, b∗〉 〈b∗, b∗〉

]
=: detC,

V =

[
qaa
−1
0 − q2a −qaqb
−qaqb qbb

−1
0 − q2b

]
− β

[ 〈a∗, a∗〉 〈a∗, b∗〉
〈a∗, b∗〉 〈b∗, b∗〉

]
=: D − β · C.

For the minimizer (aopt, bopt)we can assume some symmetry conditions:

a0 = b0 = c0 = 1
3
, and we will minimize A and maximize B independently to

obtain the optimum:

A = (d11 − β c11)(d22 − β c22)− (d12 − β c12)2 → min, (40)

B = c11c22 − (c12)
2 → max. (41)

Let us suppose first that a2 and b2 are given (then the elements of D are

constants) and we want to optimize the other variables.

We know that

〈a+ b, a+ b〉 = c11 + c22 + 2c12 + (a2 + b2)
2 ≤ 1. (42)

If c12 ≥ 0, then from (42) we have c11 + c22 ≤ 1, hence B ≤ 1/4. If c12 < 0,

then B is maximal if c12 is maximal, from (42) we have an upper bound:

c12 ≤
1− (a2 + b2)

2 − c11 − c22
2

. (43)

Substituting this upper bound in (41) we have to maximize it in c11 and

c22. Using derivation we can conclude that it is maximal if c11 and c22 are

maximal:

c11 = a21 + a23 ≤ 1− a22 and c22 = b21 + b23 ≤ 1− b22. (44)

Substituting this upper bound in (41) we get

B =
3

4
− a22 − a2b2 − b22 . (45)

which is optimal if a2 = b2 = 0. Then B = 3/4, so it is a global optimum.
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Lemma 3.1 The following inequality is always true:

d12 − β c12 ≤ 0

Proof. We have

d12 − β c12 = −(1 + θ2a2)(1 + θ2b2)− β(a1b1 + a3b3).

Since c ≤ 1− θ22 and

a1b1 + a3b3 = 〈a∗, b∗〉 ≥ −‖a∗‖‖b∗‖ ≥ −
√

1− a22
√

1− b22,

so it is enough to show that

(1 + θ2a2)(1 + θ2b2) ≥ (1− θ22)
√

1− a22
√

1− b22.

The right-hand side does not depend on the signs, the left-hand side is

minimal if θ2a2 ≤ 0, θ2b2 ≤ 0, so it suffices to prove for positive a2, b2, θ2 that

(1− θ2a2)(1− θ2b2) ≥ (1− θ22)
√

1− a22
√

1− b22.

This is true since from the Cauchy-Schwarz inequality it follows that

a2θ2 +
√

1− a22
√

1− θ22 ≤ 1 =⇒ 1− a2θ2 ≥
√

1− a22
√

1− θ22,

and a similar statement is true for b2. �

Using this lemma, we get that A is minimal if c12 is maximal, and from

there the solution is almost the same as in the previous case, we only have

more complicated calculations. We substitute the upper bound (43) into (40)

and we can obtain that it is minimal if c11 and c22 are maximal. Using the

bounds (44) we get for A a function of a2 and b2; using differentiation we can

obtain that a2 = b2 = 0 gives the optimal solution here, too.

So in both cases we have equality in (44), so 〈a∗, a∗〉 = 〈b∗, b∗〉 = 1 and

equality in (43), so 〈a∗, b∗〉 = −1/2. Since ‖a‖ = ‖b‖ = 1,

3

2
Ea =

1

2
(I + a · σ),

3

2
Eb =

1

2
(I + b · σ)

are projections. We have ‖c‖ = ‖a+ b‖ = 1 and this implies that 3Ec/2 is a

projection as well.
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Theorem 3.6 The optimal POVM for the unknown θ1 and θ3 case can be

described by projections Pi, 1 ≤ i ≤ 3:

Ei =
2

3
Pi,

3∑
i=1

Pi =
3

2
I, Tr σ2Pi = 0, TrPiPj =

1

4
for i 6= j.

The optimal POVM is quasi-orthogonal to the subalgebra generated by

σ2, and symmetrical in the other directions. This POVM can be called condi-

tional symmetric informationally complete POVM, the concept is examined

in detail in Section 3.3.

3. Assume that only θ3 is not known, θ1 and θ2 are known constants.

In this case the POVM has only two components {Ea, Eb}. Again we use the

parameterization

Ea = a0(I + a · σ), Eb = I − Ea.

The conditions for positivity are

0 ≤ a0 ≤ 1, ‖a‖ ≤ 1, ‖a‖ ≤ 1− a0
a0

(46)

The probability of the first outcome is p = a0(1 + 〈a, θ〉). From this the

estimation for θ3:

θ̂3 =
1

a0a3
(ν − a0 − a0a1θ1 − a0a2θ2).

The average of the variance for (θ1, θ2, θ3) and (θ1, θ2,−θ3) is

1

2

∑
{θ3,−θ3}

1

a20a
2
3

p(1− p) =
L− L2

a20a
2
3

− θ23 (47)

where L = a0(1 + a1θ1 + a2θ2). The first term is independent from θ3, and it

is minimal if a0 = 1/2 and (a1, a2, a3) = (0, 0, 1). So we have obtained:

Theorem 3.7 The average quadratic error is minimal if Ea and Eb are the

spectral projections of σ3.

We can see that the optimal POVM is the von Neumann measurement dis-

cussed in Theorem 3.1, so we do not get any improvement by using POVMs.

Note that the optimal von Neumann measurement is again a conditional

symmetric informationally complete POVM.
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3.2.2 The n-dimensional case

Now assume that we have the multidimensional system like in Section 3.1.2,

with k unknown parameters.

Let us have the POVM with elements

Ei = ei(I + fi · σ) (1 ≤ i ≤ k + 1),

where ei ∈ R, fi ∈ Rn2−1, fi · σ =
∑

j fijσj and {σj : 1 ≤ j ≤ n2 − 1}
are generalized Pauli matrices (Tr σi = 0, Trσiσj = δi,j). The positivity

condition for Ei is not known, but we have a necessary condition:

Lemma 3.2 If n × n matrix I + g · σ is positive, then
∑

j g
2
j ≤ n2 − n. If∑

j g
2
j = n2 − n, then I + g · σ = nP with a projection P of rank 1.

Proof. A = g ·σ is self-adjoint, TrA = 0. Let λ1, λ2, . . . , λn be the eigenvalues

of A. Then
n2−1∑
j=1

g2j = TrA2 =
n∑
t=1

λ2t .

Since
∑n

t=1 λt = 0 from TrA = 0 and λt ≥ −1 from I + A ≥ 0, we have the

upper bound. Namely,
∑n

t=1 λ
2
t is maximal if λ1, λ2, . . . , λn is a permutation

of the numbers −1,−1, . . . ,−1, n − 1. In this case I + A has eigenvalues

0, 0, . . . , 0, n, so it is a multiple of a projection. �

The probabilities of different outcomes are

pi = TrEiρ = ei + ei〈fi, θ〉, (1 ≤ i ≤ k).

In matrix notation we have p1...
pk

 =

 e1...
ek

+ T

 θ1...
θk


with matrix T defined as

T :=


e1 · (f1)1 . . . e1 · (f1)k

...
. . .

...

ek · (fk)1 . . . ek · (fk)k

 ,
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where (fi)j is the j-th component of fi.

If νi, 1 ≤ i ≤ k are the relative frequencies of the i-th outcomes then we

have the estimator

θ̂ =

 θ̂1...
θ̂k

 = T−1

 ν1 − e1...

νk − ek

 . (48)

The covariance matrix of this estimator is

Var (θ̂) = T−1W (T−1)∗,

where W is the covariance matrix of the random variables νi:

W =


p1(1− p1) −p1p2 . . . −p1pk
−p1p2 p2(1− p2) . . . −p2pk

...
...

. . .
...

−p1pk −p2pk . . . pk(1− pk)

 ,
The average mean quadratic error matrix is then

〈Var (θ̂))〉 =

∫
H

Var (θ̂) dµ(θ) = T−1
∫
H

Wdµ(θ)(T ᵀ)−1,

where we integrate on the unitarily invariant states fulfilling the conditions

for known parameters with respect to the normalized Haar-measure µ.

The final step is to minimize the determinant

det 〈Var (θ̂))〉 =
det

(∫
H
Wdµ(θ)

)
det 2(T )

=
A

B
→ min. (49)

From what we have seen in the qubit case, general calculations seem only

feasible in case A = {0}. In our further calculations we will restrict ourselves

to this case (k = n2 − 1).

Then by using similar arguments as in the qubit case (see the calculations

before Theorem 3.5), we get∫
H

−pipjdµ(θ) = −eiej − eiejα〈fi, fj〉,∫
H

pi(1− pi)dµ(θ) = ei(1− ei)− e2i α 〈fi, fi〉,
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where α > 0 is the constant depending on the domain of the integration.

After simplifications we arrive at

A = det


e−11 − 1− α〈f1, f1〉 −1− α〈f1, f2〉 · · · −1− α〈f1, fn2−1〉
−1− α〈f1, f2〉 e−12 − 1− α〈f2, f2〉 · · · −1− α〈f2, fn2−1〉

...
...

...

−1− α〈f1, fn2−1〉 −1− α〈f2, fn2−1〉 · · · e−1n2−1 − 1− α〈fn2−1, fn2−1〉


and

B = det 2


(f1)1 . . . (f1)n2−1

...
. . .

...

(fn2−1)1 . . . (fn2−1)n2−1

 = det


〈f1, f1〉 . . . 〈f1, fn2−1〉

...
. . .

...

〈f1, fn2−1〉 . . . 〈fn2−1, fn2−1〉

 .
The minimizer should be symmetric, hence ei = 1/n2, 〈fi, fi〉 = x and

〈fi, fj〉 = y, if i 6= j, i, j ≤ n2 − 1. Thus, we obtain

A = (n2 − α(x− y))n
2−2(1− α(x+ (n2 − 2)y))

and

B = (x− y)n
2−2 · (x+ (n2 − 2)y)

Therefore, we minimize

A

B
=

(
n2

x− y
− α

)n2−2(
1

x+ (n2 − 2)y
− α

)
. (50)

We can also calculate the length of fn2 = −
n2−1∑
i=1

fi:

〈fn2 , fn2〉 = (n2 − 1) · (x+ (n2 − 2)y) ≤ n2 − n (51)

where the latter inequality is the condition for the positivity, see Lemma 3.2.

On the other hand, we have condition

x ≤ n2 − n (52)

If both inequalities were sharp, then (50) would not be minimal, because

we could increase both x and y with a sufficiently small ε and then the value
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of (50) would be smaller. If the equality holds in (51) then the second term

of (50) will be constant, so we want to have as big a difference of x and y as

possible, hence x should be maximal (and then y is minimal). If the equality

holds in (52), then from (51) we have y ≤ −(n2 − n)/(n2 − 1), and on this

domain (50) has a negative derivative. So the minimum is taken at

x = n2 − n, and y = −n
2 − n
n2 − 1

.

Lemma 3.2 gives

Ei =
1

n2
(I + fi · σ) =

1

n
Pi

with some projections Pi and

TrPiPj =
1

n2
〈I + fiσ, I + fjσ〉 =

1

n
+

1

n2
y =

1

n+ 1
.

Note that we arrived at a system described by Eq. (18), a SIC-POVM. The

following statement is obtained.

Theorem 3.8 If a symmetric informationally complete system exists, then

the optimal POVM is described by its projections Pi as Ei = Pi/n (1 ≤ i ≤
n2).

For a qubit the existence of the symmetric informationally complete

POVM is obvious, there are other known examples in low dimensions. The

question of existence is for a general n, however, unknown.
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3.3 Conditional SIC-POVMs

In the previous section we obtained a very interesting result in Theorem 3.6:

the optimality of conditional SIC-POVMs fulfilling the combination of sym-

metricalness and complementarity. Interestingly, this was the most difficult

case to prove, the total symmetricalness made the proof easier even in the

general, n-dimensional case (Theorem 3.8). The simplicity of M2(C) made

the calculations feasible, but the question is whether there are similar ob-

jects in higher dimensions, and if they exist, whether they are the optimal

measurements in the conditional case.

So we propose in Section 3.3.1 a numerical method which solve the state

estimation problem efficiently and lead us to analytic examples in higher

dimensions.

Finally, in Section 3.3.2 we solve the conditional case generally by intro-

ducing a new quantity for state estimation efficiency.

3.3.1 The numerical approach [46]

In this section, we will show a method for solving the previously described

optimization problem numerically, and then we give the optimal POVMs in

some higher dimensional settings.

Problem statement

The problem is the same as detailed in Section 3.2.2:

• We have an n-dimensional system, with k unknown parameters.

• We have an estimator for the unknown parameters (48).

• We have a quantity to minimize: the determinant of the average covari-

ance matrix (49), which is a function of POVM E = (E1, . . . , Ek+1):

DACM(E) = det 〈Var (θ̂))〉 =
det

(∫
H
Wdµ(θ)

)
det 2(T )

→ min.
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It is the term∫
H

Wdµ(θ) =

∫
χH(UρU∗)W (UρU∗) dλ(U), (53)

that is problematic to calculate, where λ is the Haar-measure on the unitaries

and χ is the characteristic function χH(x) = 1, if x ∈ H and χH(x) = 0, if

x 6∈ H).

We can approximate the value of (53) by numerical integration, so in the

following part we define an algorithm which solves this optimization problem

effectively.

The algorithm

We introduce the method through an example: let us assume that we have

a 3-dimensional system, i.e., a qutrit (n = 3), and we know the diagonal

entries of the density matrix ρ, so k = 6.

We parameterize M3(C) using the Gell-Mann matrices, we use a dense

enough grid on the parameter space R8 and check for each grid-point whether

it is an element of H. Actually, the Bloch vector has only 6 parameters since

the diagonal entries of the states are known. The actual calculation consists

simply of checking for all grid points the positive definiteness of the matrix

determined by the actual generalized Bloch-vector. Then we cluster the grid

points of H according to their eigenvalues: we partition the interval [0, 1]; two

states will belong to the same cluster if their eigenvalues are in the same cells.

We choose one cluster, this means all the states with the “same” eigenvalues

(i.e., achievable states using unitary transformations) and we take the sum

of W in these points. Let us note that we do not use a normalized measure

(we do not have to use it in (53), either), since it is not necessary: we get

the same optimization problem up to a constant factor. Another remark is

that if we choose a small cluster, the computation will be less precise than

for a large one, but much faster.

The next problem is how to select new POVMs to get better and better

estimations. We choose an arbitrary initial point in the interior of the state
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space and in each step, we take a new random POVM by perturbing the

parameters using a normal distribution with a given variance. This means

that for each Ej, (j = 1, ...6), we calculate â(j) = a(j) +N8(0, s(t)), we repeat

the random realization of normal vectors for E1, while â(1) will determine a

positive matrix, then we continue the realization with E2, and so on. The

variance of the normal distribution (s(t)) is decreased in time: first we need

a larger variance for faster convergence, but near the boundary of the state

space of POVMs we will easily get negative eigenvalues if the disturbance is

too high. If we have a new Bloch vector for all the 6 POVM elements, we

take all the variation of a(j) and â(j) (ã(j) ∈ {a(j), â(j)}), and we check for all

the 26 = 64 cases whether the correlated E7 = I −E1−E2− . . .−E6 will be

a physically possible state or not. Then we go through the valid POVMs and

we use simulated annealing [33] for this series of POVMs. Let the current

best POVM be E and the next in the line to check is Ẽ, then we change the

best POVM to Ẽ with probability:

P(E → Ẽ) =
1

1 + exp
(

log(DACM(Ẽ))−log(DACM(E))
T

) ,
where T is the so-called temperature. For high temperatures, the proba-

bilities are close to 1/2 so the optimal POVM can roam freely, but for low

temperatures, we change the current best POVM only if the new POVM is

really better. This transition probability determines a special kind of Glauber

dynamics, so there is a good chance that it will converge to the global opti-

mum. The reason why we use simulated annealing instead of simply selecting

the best POVM from the line is because otherwise the algorithm tends to

set in one direction and it only converges to the boundary of the state space.

The simulated annealing is useful here because it can change this path by

overcoming potential barriers. Also we increase the temperature from time

to time to help escape from local optima.
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Results

The implementation of this algorithm was made with Mathematica [61], the

typical running time is a few minutes and we get quite good convergence to

the optimal POVM. This algorithm helps us find optimal POVMs in different

scenarios, even analytically:

Proposition 3.1 If ρ ∈M3(C) and we do know the diagonal elements of ρ,

then the optimal POVM is

E1 =
1

7

 1 1 1

1 1 1

1 1 1

 , E2 =
1

7

 1 ε6 ε2

ε 1 ε3

ε5 ε4 1

 , E3 =
1

7

 1 ε2 ε3

ε5 1 ε

ε4 ε6 1

 ,

E4 =
1

7

 1 ε4 ε6

ε3 1 ε2

ε ε5 1

 , E5 = E2, E6 = E3, E7 = E4,

where ε = exp
(
2πi
7

)
.

We can easily check that this POVM fulfills the following conditions in

(19) with constants k = 7, λ = 7/3, µ = 2/9.

Proposition 3.2 If ρ ∈M4(C) and we know the off-diagonal elements of ρ,

then the optimal POVM is

E1 =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , E2 =


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0



E1 =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

 , E1 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 .
So the POVM contains the diagonal matrix units., which have the prop-

erties (19) too, with constants k = 4, λ = 1, µ = 0.
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Proposition 3.3 If ρ ∈ M4(C) and we do not know the parameters related

to {σ1⊗I, σ2⊗I, σ3⊗I}, i.e., we want to estimate M2⊗I, then the optimal

POVM is

Ei = Fi ⊗ I, i = 1, 2, 3, 4,

where Fi-s are the elements of the 2-dimensional SIC-POVM (22).

In this case Pi-s are projections of rank two and (19) holds with k = 4,

λ = 2, µ = 2
3
.

Proposition 3.4 If ρ ∈ M4(C) and we do not know the parameters related

to {σ1 ⊗ I, σ2 ⊗ I, σ3 ⊗ I, I ⊗ σ1, I ⊗ σ2, I ⊗ σ3}, then the optimal POVM

has the following properties:

• E1, E2, E3 are in M2 ⊗ I and have the eigenvalues: (2
7
, 2
7
, 0, 0)

• E4, E5, E6 are in I ⊗M2 and have the eigenvalues: (2
7
, 2
7
, 0, 0)

• E7 has eigenvalues (2
7
, 1
7
, 1
7
, 0)

This does not fulfill the conditions in (19), although one can observe some

kind of symmetry.

Let us note that the speed of search for the optimal POVM mainly de-

pends on the number of unknown parameters, so if we do not have many

unknown parameters the problem is not much more difficult in 4 dimensions

than in the detailed 3-dimensional case.

Another useful remark is that if we are interested in finding conditional

SIC-POVMs of rank one, then we can create a much faster algorithm using

the condition (19) and using the parameterization of pure states.

3.3.2 The n-dimensional case [47]

In the following we examine the case of Mn(C) and use the decomposition

to three orthogonal subspaces:

Mn(C) = A⊕B ⊕ C, (54)
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where A := {λI : λ ∈ C} is one dimensional. Denote the orthogonal projec-

tions to the subspaces A,B,C by A,B,C.

Then the density matrix ρ ∈Mn(C) has the decomposition

ρ =
I

n
+ Bρ+ Cρ,

since Aρ = I
n
. Assume that Bρ is the known traceless part of ρ and Cρ

is the unknown traceless part of ρ. If the dimension of B is m, then the

dimension of C, i.e., the number of unknown parameters is n2 −m− 1. For

the state estimation we have to use a POVM with at least N = n2 − m

elements. To get a unique solution we will use a POVM with exactly N

elements: {E1, E2, . . . , EN}.
Let us suppose that σi is an orthonormal basis of self-adjoint matrices,

such that σ0 ∈ A (then σ0 = 1√
n
I) and for 1 ≤ i ≤ n2 − 1, σi are either in B

or in C. We parameterize the quantum state accordingly:

ρ =
n2−1∑
i=0

θiσi.

Then from Tr ρ = 1 we have θ0 = 1√
n
. The positivity condition can not be

expressed in general, but a necessary condition for the coefficients can be

obtained:
n2−1∑
i=0

θ2i = Tr ρ2 ≤ 1. (55)

We use the notation ρ∗ = ρ −Bρ. The aim of the state estimation is to

cover ρ∗.

If {Qi : 1 ≤ i ≤ N} are self-adjoint matrices satisfying the following

equation

ρ∗ =
1

n
I +

∑
σi∈C

θiσi =
N∑
i=1

piQi, pi = Tr ρEi,

then {Qi : 1 ≤ i ≤ N} is a dual frame of {Ei : 1 ≤ i ≤ N}. In this case the

state estimation formula can be written as

ρ̂∗ =
N∑
i=1

p̂iQi.
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We define the distance as

‖ρ∗ − ρ̂∗‖22 = Tr (ρ∗ − ρ̂∗)2 =
N∑

i,j=1

(pi − p̂i)(pj − p̂j)〈Qi, Qj〉

and its expectation is

E‖ρ∗ − ρ̂∗‖22 =
N∑

i,j=1

(piδ(i, j)− pipj)〈Qi, Qj〉

=
N∑
i=1

pi〈Qi, Qi〉 − 〈
N∑
i=1

piQi,

N∑
j=1

pjQj〉

=
N∑
i=1

pi〈Qi, Qi〉 − Tr (ρ∗)
2.

We concentrate on the first term which is

N∑
i=1

(TrEiρ)〈Qi, Qi〉 (56)

and we take the integral with respect to the Haar measure on the unitaries

U(n).

Note first that for any projection Π of rank 1∫
U(n)

UΠU∗ dµ(U) = c

with some constant c. If
∑n

i=1 Πi = I, then

nc =
n∑
i=1

∫
U(n)

UΠiU
∗ dµ(U) = I

and we have c = I/n. Therefore for A =
∑n

i=1 λiΠi we have∫
U(n)

UAU∗ dµ(U) =
n∑
i=1

λic =
I

n
TrA

and application to the integral of (56) gives∫
TrEi(UρU

∗) dµ(U) =
1

n
TrEi.
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So we get the following quantity for the error of the state estimation:

T :=

∫
E
(
‖Uρ∗U∗ − Uρ̂∗U∗‖22

)
dµ(U) =

1

n

N∑
i=1

(TrEi)〈Qi, Qi〉 − Tr (ρ∗)2

This is the quantity to be minimized. Since the second part is constant, our

task is to minimize the first part:

N∑
i=1

(TrEi)〈Qi, Qi〉 → min. (57)

We define the superoperator:

F : Mn → A⊕ C, F =
N∑
i=1

|Ei〉〈Ei|(TrEi)
−1.

It will have rank N , so if N < n2 the inverse of F does not exists, but we

can use its pseudo-inverse F−, so that F−|σi〉 = 0, if σi ∈ B.

Ri is the canonical dual frame of Fi, if

|Ri〉 = F−|Pi〉, (58)

where

Pi = (TrEi)
−1Ei (59)

.

Lemma 3.3 For a fixed Ei, (57) is minimal if Qi = Ri, i.e., if we use the

canonical dual frame.

Proof. Let us use the notation Wi = Qi −Ri. Then

N∑
i=1

TrEi|Ri〉〈Wi| =
N∑
i=1

TrEi|Ri〉〈Qi| −
N∑
i=1

TrEi|Ri〉〈Ri|

=
N∑
i=1

TrEiF
−|Pi〉〈Qi| −

N∑
i=1

TrEiF
−|Pi〉〈Pi|F−

= F−
N∑
i=1

TrEi|Pi〉〈Qi| − F−
( N∑
i=1

TrEi|Pi〉〈Pi|
)
F−
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= F−Π− F−FF− = F−Π− F−Π = 0, (60)

where Π = A + C, and we use that from

|ρ∗〉 =
N∑
i=1

〈Ei||ρ〉|Qi〉

it follows that

Π =
N∑
i=1

|Qi〉〈Ei|.

So we have

N∑
i=1

TrEi〈Qi, Qi〉 =
N∑
i=1

TrEi〈Wi,Wi〉+
N∑
i=1

TrEi〈Wi, Ri〉

+
N∑
i=1

TrEi〈Ri,Wi〉+
N∑
i=1

TrEi〈Ri, Ri〉

=
N∑
i=1

TrEi〈Wi,Wi〉+
N∑
i=1

TrEi〈Ri, Ri〉

≥
N∑
i=1

TrEi〈Ri, Ri〉.

�

From this lemma we know the optimal dual frame for a fixed POVM Ei,

and the following lemma provides a property for the optimal POVM:

Lemma 3.4 The quantity in (57) is minimal if

F = A +
n− 1

N − 1
C.

Proof. From (60) we have

N∑
i=1

(TrEi)|Ri〉〈Ri| = F−Π = F−,

so we have the equation:

N∑
i=1

(TrEi)〈Ri, Ri〉 = Tr (F−).
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Let ν1, ν2, . . . , νn2 be the eigenvalues of F. Since the rank of F is N , we have

νi = 0 for i > N . We want to minimize

Tr (F−) =
N∑
i=1

1

νi
. (61)

It is easy to check that A is an eigenfunction of F with ν1 = 1 eigenvalue:

F|I〉 =
N∑
i=1

(TrEi)|Pi〉〈Pi, I〉 =
N∑
i=1

(TrEi)|Pi〉 =
N∑
i=1

|Ei〉 = |I〉

and we have the following condition:

N∑
i=1

νi = Tr F =
N∑
i=1

〈Pi, Pi〉TrFi ≤
N∑
i=1

TrFi = Tr I = n. (62)

Combining these conditions we get that the measurement is optimal if ν2 =

ν3 = . . . = νN = n−1
N−1 . �

An important observation is, that to achieve the minimum in Lemma 3.4,

the inequality (62) must hold as an equality. That means that in the optimal

case we have

〈Pi, Pi〉 = 1. (63)

From the definition of Pi (59) we know that Pi ≥ 0 and TrPi = 1. Adding

(63) to this condition we can conclude that in the optimal case Pi is a rank-

one projection (∀i : 1 ≤ i ≤ N). From (61) we can see that the minimal

value of (57) is 1 + (N−1)2
n−1 . The only question that remains unanswered is

whether we can achieve this lower bound and when.

Let us use the notation λi = TrFi, then from Lemma 3.4 we obtain the

following equation for the optimal POVM:

F =
N∑
i=1

λi|Pi〉〈Pi| = A +
n− 1

N − 1
C.

From that we can obtain

N∑
i=1

λi〈Q|Pi〉〈Pi|Q〉 = 〈Q|A +
n− 1

N − 1
C|Q〉, (64)
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with Q := Pk − d · I. Since 〈Pi|Q〉 = TrPiPk − d, the left-hand side of (64)

becomes

N∑
i=1

λi〈Q|Pi〉〈Pi|Q〉 = λk(1− d)2 +
∑
i 6=k

λi(TrPiPk − d)2.

We can compute the right-hand side as well:

A(Pk − dI) = APk − dI = A(Pk − I/n) + I/n− dI = I(1/n− d),

〈Q|A|Q〉 = (1/n− d)Tr (Pk − dI) = n(1/n− d)2

When Pk =
∑N

i=0 ciσi, then

C|Q〉 =
∑
σi∈C

ciσi, 〈Q|C|Q〉 =
∑
σi∈C

c2i .

So (64) becomes

λk(1− d)2 +
∑
i 6=k

λi(TrPiPk − d)2 = n(1/n− d)2 +
n− 1

N − 1

∑
σi∈C

c2i . (65)

From (55) we have ∑
σi∈C

c2i ≤ 1− c20 = 1− 1/n. (66)

This implies

λk(1− d)2 ≤ n(1/n− d)2 +
n− 1

N − 1
(1− 1/n),

which is true for every value of d, so

λk ≤ min
d

n(1/n− d)2 + n−1
N−1(1− 1/n)

(1− d)2

By differentiating we can obtain that the right hand side is minimal if

d =
N − n
n(N − 1)

and then we get

λk ≤
n

N
.
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Since
∑N

i=k λk = n, we have λ1 = λ2 = . . . = λN = n/N .

From that follows that there is an equality in (66), too. So we have∑
σi∈C

c2i = 1− c20 ⇒ ci = 0, if σi ∈ B ⇒ Tr σiPk = 0, if σi ∈ B.

On the other hand from (65) we have∑
i 6=k

n

N

(
TrPiPk −

N − n
n(N − 1)

)2
= 0.

Thus,

TrPiPk =
N − n
n(N − 1)

if i 6= k.

So we can obtain the following result:

Theorem 3.9 In the conditional case, the elements of optimal POVM can

be described as multiples of rank-one projections satisfying the following prop-

erties (1 ≤ i, j ≤ N):

Ei =
n

N
Pi, TrPiPj =

N − n
n(N − 1)

(i 6= j), Tr σlPi = 0 (∀l : σl ∈ B).

So we proved that the conditional SIC-POVMs are the optimal (if they

exist), and using the notations of (19), we get the constants: k = N , λ = N
n

,

µ = N−n
n(N−1) . Now we present some examples related to the previous theorem

with different N values.

Corollary 3.1 If we do not have any a priori information about the state

(m = 0, N = n2), then

TrPiPj =
1

n+ 1
(i 6= j)

so the optimal POVM is the well-known SIC-POVM (if it exists).

Corollary 3.2 If we know the off-diagonal elements of the state and we want

to estimate the diagonal entries (m = n2 − n,N = n), then from Theorem

3.9 it follows that the optimal POVM has the properties

TrPiPj = 0 (i 6= j),
n∑
i=1

Pi = I, and Pi is diagonal.

So the diagonal matrix units form an optimal POVM.
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Corollary 3.3 If we know the diagonal elements of the state and we want

to estimate the off-diagonal entries (m = n− 1, N = n2 − n+ 1), then from

Theorem 3.9 it follows that the optimal POVM has the properties

TrPiPj =
n− 1

n2
(i 6= j),

n∑
i=1

Pi =
n2 − n+ 1

n
I

and Pi has a constant diagonal. A 3-dimensional example for this case is

shown in Proposition 3.1
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4 Conclusions and discussion

A density matrix ρ ∈ Mn(C) has n2 − 1 real parameters. If the parameters

θ = (θ1, θ2, . . . , θk) are not known, but the others are known, we can use this

information to estimate θ̂ = (θ̂1, θ̂2, . . . , θ̂k). We also need an error function

f(θ, θ̂) to minimize. In our work, we mostly concentrate on minimizing the

determinant of the average covariance matrix

f(θ, θ̂) = det 〈Var (θ̂)〉 → min . (67)

In Section 3.1 the results about multiple von Neumann measurements are

discussed. The thorough examination of the different 2-dimensional settings

shows the origin and motivation of the usage of (67) for state estimation

problems. We suppose that we have exactly the sufficient number of POVMs

with two elements: {F1, I − F1}, {F2, I − F2}, . . . , {Fk, I − Fk}. Theorem

3.4 summarizes the results: the optimal measurements are von Neumann

measurements, they are complementary to each other and to the subspace

generated by the known parameters.

This is not a surprising result, since Wooters and Fields showed that

it is the observable set consisting of orthogonal observables that results in

the most information [62], so it is a common anticipation that the comple-

mentary (quasi-orthogonal) von Neumann measurements are optimal. The

main novelty here is the case when some parameters are known. Using this

information less measurements are needed, and we also obtain the quasi-

orthogonality of measurement for the known parameters. After we published

our work online, similar idea appeared also in [60]. They minimize a different

quantity, but get the same phenomenon, proving it is independent from the

actual scenario.

In Section 3.2 we cover the case of a single positive operator valued mea-

surement {E1, E2, . . . , Ek}. We optimize the quantity introduced in the pre-

vious section, but here we get calculations that are much more difficult than

in the qubit case. This suggests that the main result is not as general as
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in the von Neumann case. In n dimensions, analytic results could only be

achieved for the case when neither element of the density is assumed to be

known. In that setting the symmetrical informationally complete POVMs

(SIC-POVMs) are optimal (Theorem 3.8). That is exactly the result that we

expected, but it proves the generality of the method used (67), since it yields

strong results in very different settings.

We also have a very interesting result in Theorem 3.6: if some parameters

are known and some parameters unknown the optimal POVM is symmetrical

and complementary to the subspace of the known parameters. This theorem

is a combination of Theorems 3.4 and 3.8. We can think of the optimal

measurement as a generalization of SIC-POVMs, hence we named them con-

ditional SIC-POVMs.

Sections 3.3 investigates the properties of this new concept. There are ba-

sically two different approaches, which provide different kinds of results. First

we present a numerical algorithm to optimize (67), which gives us the optimal

POVM in different scenarios. Proposition 3.2 provides a trivial example of

conditional SIC-POVMs, namely the diagonal matrix units. This result can

be extended to any dimension (see Corollary 3.2), providing a simple example

for existence. Proposition 3.3 is an example for conditional SIC-POVMs that

contain projections of rank 2. So it is not necessary to restrict our investiga-

tion to rank-one projections. On the one hand this is a good result, since the

set of rank-one projection is very small; on the other hand, it is inconvenient,

since rank-one projections are easier to handle. There is a conjecture that

a SIC-POVM exists in every dimension. However, in the conditional case

the situation is more complex, a conditional SIC-POVM does not necessarily

exist (Proposition 3.4). Proposition 3.1 provides the first non-trivial example

of a conditional SIC-POVM. Thus the determinant of the average covariance

matrix (67), is not only suited to provide analytical results in many cases,

but we can also use it efficiently in more difficult non-symmetric settings for

numerical optimization.

In the second part we obtain the optimality of conditional SIC-POVMs
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analytically. But instead of using (67) we minimize the square of the Hilbert-

Schmidt distance. This quantity was used in [57] to obtain the optimality of

SIC-POVMs, we generalized their method to the conditional case. Theorem

3.9 states that the optimal POVM

• contains rank-one projections,

• fulfills the symmetry conditions (19) with constants depending only

on the dimensionality of the state and on the number of unknown

parameters,

• is complementary to the subspace of known parameters.

This result is quite strong, but has some limitations, too. For example, it does

not ensure the existence of such a POVM. From Corollary 3.1 we can see that

the SIC-POVM is a special case of conditional SIC-POVMs. The existence of

SIC-POVMs is not known in general, so the general existence of conditional

SIC-POVMs is a problem at least as difficult. Moreover, Proposition 3.3 and

3.4 show examples when Theorem 3.9 is not applicable. But it also proves

the optimality of existing conditional SIC-POVMs, see Corollary 3.2 and 3.3.

The latter scenario is the generalization of Proposition 3.1. We have found

a way to construct such POVMs for infinitely many dimensions [47], i.e.,

a whole class of non-trivial conditional SIC-POVMs. Let us also note that

minimizing the average squared Hilbert-Schmidt distance (57) gives the same

result as the determinant of the average covariance matrix (67) in all POVM

cases examined. So it seems that in the conditional case the conditional SIC-

POVM is the optimal one (if it exists) independently from the particular

minimization problem, so it might play an important role in many quantum

estimation problems.
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