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Abstract

This thesis is focused on various aspects of particle physics and cosmology from

String/M theory. Assuming our universe is a solution of string/M theory, physics

below the unification scale is an effective 4D supergravity theory with an abun-

dance of moduli and axions. The phenomenology of moduli and axions in an early

universe is studied. We particularly study dark radiation constraints on a generic

Axiverse scenario and provide various solutions to it. The simplest solution re-

quires the lightest modulus decays only into its own axion superpartner and this

severely constrains the moduli Kahler potential and mass matrix. We also study

a model building aspect of string/M theory. It has been shown that a discrete

symmetry on a manifold with G2 holonomy combined with symmetry breaking

Wilson lines provide a solution to the doublet-triplet splitting problem. We ex-

tend the idea to a new class of model based on M theory compactified on a G2

manifold which leads to a novel solution where the colour triplets are decoupled.

The models also involves an extra vector-like standard model multiplet to restore

gauge unification. We will also discuss the phenomenology of the new light states

and the induced R-parity violation. We will also study the prospects of searches

from a future generation of colliders. We focus in particular on the search at

a 100 TeV collider via the WZ channel. The motivation from string/M theory

models leads to the assumption that Higgsinos form the lightest supersymmetric

particle. We design simple signal regions for the trilepton channel and find that

neutralinos-charginos could be discovered(excluded) up to 1.1 (1.8) TeV.



Chapter 1

Introduction

Quantum Field Theory (QFT) is a mathematical framework which describes the

quantum behaviour of the physical system consistently with special relativity.

Depending on the symmetry properties, interactions, and particle content, QFT

can be used to describe a wide range of physical systems such as elementary

particles and condensed matter. One particular example is the standard model of

particle physics (SM) which is a QFT in 4 dimensions with SU(3)×SU(2)×U(1)

gauge symmetry. The standard model is the most successful particle physics

model ever known. Its predictions confront many experimental observations at

the precision of one part in a billion in some cases.

Albeit successful, there are many reasons to expect physics beyond the Stan-

dard Model (BSM) [1–11]. Experimentally, the most notorious one is the existence

of dark matter and dark energy. Although there is strongly convincing yet indirect

evidence for the dark sector, there is no possible candidate in the SM. Moreover,

the SM offers no mechanism and ingredient for generating the neutrino masses

which have been confirmed from neutrino oscillation experiments. From theoreti-

cal side, the hierarchy problem is also a strong motivation to call for BSM physics
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stabilising the SM Higgs mass against quadratic divergences. Also, the SM allows

non-vanishing terms that break CP symmetry of the strong interaction sector.

However, strong CP violation is severely constrained experimentally by the limit

from neutron electric dipole moment experiments.

One of the most well-motivated BSM theory is low energy supersymmetry

(SUSY). Not only does SUSY provide an explanation to most of the puzzles we

listed above, it also contains attractive features such as radiative electroweak

symmetry breaking (REWSB) and gauge unification. If nature really is super-

symmetric, a supersymmetric standard model with soft supersymmetry breaking

could contain at least a hundred parameters waiting to be determined by future

experiments. To address such questions and many more to come systematically,

we need a complete theory whose low energy limit is described by supersymmetry.

Such a complete theory must also be capable of providing a consistent description

ranging from the cosmological scale down to the particle physics scale. So far,

string/M theory is one of the leading candidates offering a solution to the con-

sistency of quantum gravity. Similarly to QFT, string/M theory is a very broad

framework. Due to recent developments in string compactification, it is possi-

ble to formulate a model with features needed to connect to low energy physics

such as massive moduli fields and supersymmetry breaking with a small positive

cosmological constant.

Although there might be a lot to understand from a formal perspective of

string/M theory, one can still draw generic low energy predictions from the string/M

framework that become interesting phenomenologically. The goal of this thesis

work is to study phenomenological consequences from a string/M theory frame-

work and constrain them from experiments. We will from now on assume that

our universe is indeed described by a solution of string/M theory with low energy
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supersymmetry and grand unification. Given this basic assumption, the physics

below the grand unification scale can be described by a 4-dimensional supergrav-

ity theory. One particular distinctive feature from other supersymmetric BSM

models is that particle content of the theory is not only that of the minimal

supersymmetric standard model but also moduli and axions which are low en-

ergy remnants of the string compactification. The existence of these additional

scalar fields is perhaps the most generic prediction from string theory framework

applying to our assumption.

The moduli fields are essentially higher dimensional gravitons, i.e., massless

scalar fields with Planck suppressed interactions. They arise naturally from the

geometry of the extra dimensions. For example, the most common types are

volume moduli and complex structure moduli which control the shape and the

size of the extra dimensions. Not only do they play a role in extra dimensional

space, they also connect with low energy physics directly. The crucial property

of the moduli fields is that their vacuum expectation values set the low energy

physical parameters such as gauge couplings and yukawa couplings. However, if

the moduli fields are massless, their vacuum expectation values would not be fixed.

In addition, the presence of massless scalar fields would lead to new long range

forces which have not been observed in nature. This means that all moduli must

be stabilised by their potential with significant masses in order to connect with real

world physics. The substantial progress has been made on moduli stabilisation in

various corners of string theory [12–17].

In the supergravity theory, the gravitino mass m3/2 sets the typical scale of all

scalar field masses including moduli. With this implication, the moduli play a very

important role in an early universe via vacuum misalignment mechanism [18–20].

At early times, when the Hubble scale H is higher than the moduli mass, the field
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is frozen due to the friction term in the equation of motion. When the universe

expands and H decreases to become the order of the moduli mass, the coherent

oscillation of moduli fields starts, leading to the matter-dominated universe. Since

the moduli have Planck suppressed couplings, the lifetime can be approximated

as τ = M2
pl/m

3
3/2. Their lifetime must be less than ∼ 10−1 second, otherwise their

decay products will destroy the successful predictions of Big Bang nucleosynthesis

(BBN). This is known as the cosmological moduli problem [21,22]. This requires

the limit of gravitino mass to be m3/2 >∼ 10 TeV. This leads to another generic

prediction from string theory that the universe is matter-dominated before BBN

era [23].

Although moduli can be stabilised and get heavy masses, their axionic partners

which arise from Kaluza Klein (KK) zero modes of antisymmetric tensor fields in

higher dimensions, are protected by shift symmetries. Similar to the QCD axion,

their masses are generated from instanton effects. Since the axionic potential is

generically suppressed by instanton actions, axions arising from string compact-

ification are expected to be very light. The number of axions depends on the

topological property of the compactified manifold and associated with the corre-

sponding Betti number of the manifold [24, 25]. Many examples of compactified

manifolds have been studied and the Betti number ranges from 1 to 1000 [26–28].

This leads to the notion of the string Axiverse, i.e., the universe filled with many

ultra light axions [29].

Axions also play very significant roles in the dark sector of the universe. Similar

to moduli fields, when H ∼ ma axions also behave like matter. However, there

is one important difference from moduli: axions have an extremely long lifetime

due to their very small masses. Therefore if axions are produced non-thermally,

they can be a perfect candidate for dark matter. Axions can also be an additional
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component of the radiation energy density of the universe also known as dark

radiation. Since moduli with mass ∼ TeV can decay into SM particles as well

as their axion partners, axions produced from moduli decay will be relativistic.

This leads to an extra component of radiation from axions whose extremely weak

couplings separate them from the SM thermal bath. The dark radiation from

axion is one of the generic predictions which is often constrained severely from

precision cosmological observables. I will focus on the dark radiation constraints

in the Axiverse scenario in this thesis.

Recently, significant progress has been made in the context of M theory com-

pactification on a manifold with G2 holonomy. The moduli stabilisation in this

framework has been investigated in [30]. It was shown in [31, 32] that under

reasonable assumptions, a G2 compactification gives rise to the resulting N = 1

supergravity theory with low scale supersymmery breaking. Assuming that parti-

cle content of the visible sector to be at least that of MSSM, it provides the basis

for studying phenomenological consequences in M theory framework. A study

of a new class of models from M theory framework in which I made substantial

contributions will form another section of the thesis.

In the rest of this chapter we will review various topics that can be useful in

this thesis. We will review the origin of scalar fields from string theory. We will

also review supersymmetric phenomenological models where the µ problem and

R-parity violation are the main focus. Finally we will provide an outline for the

thesis.
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1.1 Scalar fields from string theory

We review scalar fields resulting from string compactification in this section. To

give an idea, it is rather insightful to review the Kaluza Klein compactification of

the original fifth dimension model as the simplest example before moving on to the

string/M theory compactification on Calabi-Yau/G2 manifold. The idea of the

fifth dimension was proposed [33] in an attempt to unify electromagnetism with

gravity. The 5D gravity is reduced to 4D gravity plus an abelian gauge theory if

the fifth dimension is compactified on a circle which is assumed to be too small

to be observed from current experiments.

1.1.1 Introduction to Compactification

The simplest example of the scalar fields from compactification is the Kaluza Klein

states. Let’s consider an action of a real massless scalar field in a Minkowski space

with D = 5

S =

∫
d5x∂Mφ∂

Mφ (1.1)

where M = 0, . . . , 4 with ηMN = diag(−,+,+,+,+). Assume that the fifth

direction gets compactified in a circle of radius R, i.e, the 5D space is a product

of M5 =M4 × S1. We write the coordinate as xM = (xµ, y), where µ = 0, 1, 2, 3

and y ∈ [0, 2πR]. The equation of motion in 5D reads

∂M∂
Mφ = ∂µ∂

µφ+ ∂2
yφ = 0 (1.2)
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Due to the periodicity of the field φ(xµ, y) = φ(xµ, y + 2πR), we can expand the

field in a Fourier series

φ(x, y) =
1√
2πR

∞∑
n=−∞

φn(x)einy/R. (1.3)

Substitute back to the equation of motion we get

∂µ∂
µφn +

n2

R2
φn = 0 (1.4)

which means that φn(x) is a scalar field in 4D with mass n
R

. The analysis shows

that a single scalar field in higher dimension under a compactification process

gives rise to an infinite tower of particles with masses n
R

where n ∈ Z.

Now let’s consider the gravity part of the KK compactification. The 5D Ein-

stein Hilbert action is written as

S = M3
5

∫
d5x
√
−GR5d (1.5)

where G = det(GMN) and R5d is the 5D Ricci scalar. Again we perform Fourier

expansion on the metric field

GMN =
1√
2πR

∞∑
n=−∞

Gn
MN(x)einy/R. (1.6)

As we see in the analysis on a scalar field, 4D theory will contain massless fields

and a tower of massive states. The massless sector turns out to be the usual

graviton gµν , a vector field Aµ and a scalar field S living in the zero mode of the
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5D metric as [33–35]

G0
MN = eS/3

gµν + e−SAµAν e−SAµ

e−SAν e−S

 . (1.7)

S is the simplest example of the moduli field which has a vanishing potential and

its vev parametrises a microscopic property which is identified as the inverse of

the radius in this case.

The presence of moduli fields arising from the higher dimensional metric is

generic to any compactified manifolds. This gives rise to many interesting physical

consequences as we will review later on. Another instructive example is the torus

T 2 = S1 × S1 which we can identify moduli fields associated with its area and its

shape as

S = R1R2, U = R2/R1 (1.8)

where R1 and R2 are inner radius and outer radius respectively.

1.1.2 Moduli and Axions from String Compactification

Although our examples so far have been illustrative, in a compactification lead-

ing to more realistic physics, a compactified manifold is typically non-trivial. In

string/M theory we certainly start from a 10D or 11D maximally supersymmetric

theory. Therefore the compactified manifold must break some portion of super-

symmetry resulting in a preferable phenomenology. This is the main criterior for

string compactifications. For example, it was found that the superstring com-

pactification on a Calabi-Yau manifold leads to N = 1 supersymmetry in 4D [36].

Similar results can also be found in M-theory compactification on a manifold with

G2 holonomy [37,38].
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To analyse the more general case, the higher dimensional metric can be de-

composed into gMN → gµν ⊕ gµn ⊕ gmn. The zero modes from gµν are the lower

dimensional graviton, whereas massless modes corresponding to gauge bosons

come from gµn. To find the moduli fields which correspond to the extra dimen-

sional metric gmn, we begin by writing a metric perturbation gmn = g̃mn + hmn.

Then the moduli fields hmn, which parametrises the degeneracy of the vacuum,

can be found by the condition RMN(gmn) = 0. The vanishing Ricci curvature is

a necessary condition for a manifold with the holonomy groups preserving super-

symmetry [24,25,39].

For example, in G2 manifold compactification [38], the vanishing Ricci curva-

ture gives rise to the Lichnerowicz equation

∆Lhmn ≡ −∇2
Mhmn − 2Rmpnqh

pq + 2Rp
(mhp)n = 0. (1.9)

In order to perform Kaluza Klein analysis, we write the perturbation as

hMN = hMN(x)ρ(y) (1.10)

where x is the 4 dimensional coordinate and y denotes coordinates in higher

dimensions. If we write the covariant derivative as

∇2
M = ∇2

µ +∇2
m, (1.11)

we can see that the fluctuations leads to a tower of scalar fields in 4 dimensions

with masses given by the eigenvectors of the Lichnerowicz operator

hMN∇2
µρ(y) = −(∆LhMN)ρ(y) = −λhMNρ(y) (1.12)
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Therefore, the zero modes of the Lichnerowicz operator can be identified as mass-

less moduli fields in 4 dimensions.

From the 11D supergravity theory, there is also a 3-form field C with field

strength G = dC. Under Kaluza Klein compactification, the 3-form field leads

to a pseudoscalar field in 4D. The equation of motion is d ∗ G = 1
2
G ∧ G. The

pseudoscalars also known as axions can be obtained from the KK ansatz

C =

b3(X)∑
I=1

ωI(x)tI(y) (1.13)

where ωI form a basis for the harmonic 3-forms on G2 manifold. The number of

scalar fields is determined from the third betti number b3(X) which is the number

of linearly independent harmonic 3-forms. It was shown that axions and moduli

pair up giving b3(X) massless complex scalars fields which are the components of

massless chiral superfields in 4D N = 1 supergravity.

1.2 Supersymmetry

Supersymmetry is a symmetry which relates fermions to bosons. From the top-

down point of view, supersymmetry guarantees the absence of quadratic diver-

gences and provides consistency in string theory. Supersymmetry also stabilises

the mass of scalar fields such as Higgs boson and therefore becomes a solution to

the electroweak hierarchy problem. These reasons have led to the extensive stud-

ies in the past decades on a compactification which gives supersymmetric theories

at low energies.

A supersymmetry transformation turns a fermionic state into a bosonic state
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and vice versa:

Q|fermion〉 = |boson〉, Q|boson〉 = |fermion〉. (1.14)

The supersymmetry is also a spacetime symmetry. In fact supersymmetry gen-

erators, Qα and Qα̇, which are also fermionic operators form the supersymmetry

algebra

{Qα, Qβ̇} = 2σµ
αβ̇
Pµ, [Mµν , Qα] = i(σµν)

β
αQβ (1.15)

{Qα, Qβ} = {Qα̇, Qβ̇} = [P µ, Qα] = [P µ, Qα̇] = 0 (1.16)

where Pµ and Mµν are Poincare operators. The irreducible representations of the

supersymmetry algebra are called supermultiplets. In the superfield formalism,

different field components are unified into a single superfield using the notion of

superspace where the Minkowski coordinates is combined with the anticommuting

spinorial coordinates θα, θα̇. There are 2 types of supermultiplets required to

construct the supersymmetry Lagrangian:

• The chiral superfield Φ, containing a complex scalar φ, a Weyl fermion ψ

and an auxiliary field F . The expansion in superfield coordinates is written

as

Φ(x, θ, θ) = φ(y) +
√

2θαψα(y) + θαθαF (y). (1.17)

where yµ = xµ + iθασµ
αβ̇
θ
β̇
. Notice that due to the fact that scalar fields

and fermionic fields have mass dimension 1 and 3
2

respectively, the spinorial

coordinates have mass dimension −1
2

whereas the auxiliary field F has mass

dimension 2.

• The vector superfield under the Wess-Zumino gauge consists of gauge bosons
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Aµ, Weyl spinors called gauginos λ and an auxiliary field D. The expansion

in superspace is

V (x, θ, θ) = −θασµ
αβ̇
θ
β̇
Aµ(x)+iθαθαθβ̇λ

β̇
(x)−iθα̇θ

α̇
θβλβ(x)+

1

2
θαθαθβ̇θ

β̇
D(x)

(1.18)

Notice that botht the vector superfield and the auxiliary field D have no

mass dimension in total. The field strength lives in a chiral superfield defined

from a vector superfield:

Wα =
1

4
Dβ̇D

β̇
e−VDαe

V (1.19)

where D’s denote the supersymmetric covariant derivatives.

1.2.1 The Supergravity Action

For the N = 1 supergravity, the supersymmetry transformation which is pro-

moted to be spacetime dependent, is proved to be invariant by introducting a

gravity supermultiplet containing a spin-2 graviton and a spin-3/2 gravitino. The

supergravity action is non-renormalisable and hence considered to be an effective

theory with a cut off below Planck scale. A supergravity action is characterised

by 3 functions:

• The gauge kinetic function f(Φi) introduces a field dependence on gauge

kinetic terms. It is a holomorphic function of chiral fields. The gauge

kinetic Lagrangian is given by

1

4
f(Φi)Tr

∫
d2θWαWα + h.c. (1.20)
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The expansions and the integration in superspaces gives a gauge kinetic

term, and an axion θ term given by

− 1

4
Re(f)FµνF

µν − 1

4
Im(f)FµνF̃

µν (1.21)

The later term is central to the strong CP problem which we will explain in

later chapters.

• The Kahler potential K(Φi,Φi) is a real function of the chiral multiplets. It

has mass dimension 2 where the Lagrangian can be obtain by integrating

the full superspace: ∫
d2θd2θK. (1.22)

The role of the Kahler potential is to provide kinetic terms for both scalar

and fermionic components of the chiral multiplets. It is useful to emphasise

that the complex scalar of Φ recieves a non-canonical kinetic term as

Kij∂µφ
i∂µφ

j
, where Kij ≡

∂2K

∂Φi∂Φ
j

(1.23)

where Kij is called the Kahler metric. We will later explore this aspect

extensively in chapter 2 where the chiral superfields contains moduli/axions.

The complete supergravity action is invariant under Kahler transformation

K(Φi,Φi)→ K(Φi,Φi) + F (Φi) + F (Φi) (1.24)

where F (Φi) is any holomorphic function of the chiral field. In the case of

canonical kinetic terms, the chiral field Φ gauged under a gauge group with
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the vector superfield V receives the kinetic term from

K = Φ†eV Φ (1.25)

• The superpotential W (Φi) is a holomorphic function with mass dimension

3. It captures interactions between chiral superfields in the model such as

Yukawa couplings and fermion mass terms. The Lagrangian can be calcu-

lated from ∫
d2θW (Φi) + h.c. (1.26)

1.2.2 Renormalisable Action

To illustrate supersymmetric actions, we will consider the simplest case where the

action is renormalisable. This will be useful in the case of the minimal setup in the

next subsection. The renormalisable version of 3 functions is drastically simplified.

The gauge kinetic function is taken to be a constant and normalised to 1. The

Kahler potential will be given in the canonical form where the superpotential

contains at most a cubic power in chiral fields. For a chiral field Φ gauge under a

gauge group with a vector field V the most general Lagrangian is given by

L =
1

4
Tr

∫
d2θWαWα + h.c.

+

∫
d2θd2θΦ†eV Φ +

∫
d2θW (Φi) + h.c. (1.27)
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After the superspace integration and integrating out auxiliary fields, the La-

grangian is written as

L = Tr

[
−1

4
FµνF

µν − iλσµDµλ

]
+

θg2

32π2
Tr
[
FµνF̃

µν
]

+DµφD
µφ− iψσµDµψ + i

√
2gφλψ − i

√
2gψλφ

−1

2

∂2W

∂φi∂φj
ψiψj − 1

2

∂2W

∂φ
i
∂φ

jψ
i
ψ
j

−∂W
∂φi

∂W

∂φ
i +

g2

2

∑
a

∣∣φi(T a)ijφj∣∣2 (1.28)

Notice that the action is completely controled by the superpotential in the case

of the renormalisable action.

1.2.3 The Minimal Supersymmetric Standard Model

In order to solve the electroweak hierarchy problem, the superpartners of all the

standard model particles must also be included. For all quarks and leptons who

live in the chiral multiplet, there are scalar partners (squarks and sleptons) for

each of them. Gauginos which are fermionic partners of SM gauge bosons is in-

cluded to complete the vector multiplets. In the Higgs sector, a single doublet is

not enough to construct down-type yukawa couplings due to the holomorphicity

of the superpotential. This leads to 2 Higgs doublets model in the supersym-

metric version of SM which also contain Higgs partners called Higgsinos. The

full spectrum of particle is shown in table 1.1 and 1.2. If the theory contains

only renormalisable operators, this model is called the minimal supersymmetric

standard model (MSSM). The MSSM superpotential is given by

WMSSM = yuHuQu− ydHdQd− yeHdLe+ µHuHd (1.29)
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Field spin 0 spin 1/2 SU(3)c × SU(2)L × U(1)Y
Q (ũL d̃L) (uL dL) (3,2, 1

6
)

u ũR uR (3,1,−2
3
)

d d̃R dR (3,1, 1
3
)

L (ν̃ ẽL) (ν eL) (1,2,−1
2
)

e ẽR eR (1,1, 1)

Hu (H+
u H0

u) (H̃+
u H̃0

u) (1,2, 1
2
)

Hd (H0
d H

−
d ) (H̃0

d H̃
−
d ) (1,2,−1

2
)

Table 1.1: Chiral multiplets in MSSM

Name spin 1/2 spin 1 SU(3)c × SU(2)L × U(1)Y
gluons, gluinos g̃ g (8,1, 0)

W bosons, winos W̃±, W̃ 0 W±,W 0 (1,3, 0)

B boson, binos B̃0 B0 (1,1, 0)

Table 1.2: Vector multiplets in MSSM

where family indices are suppressed.

Since supersymmetry implies that a particle has the same mass as its partner

and such a partner of any standard model particle has not been observed yet, this

motivates us for breaking supersymmetry. In general the effect of supersymmetry

breaking can be parametrised by introducting extra terms called soft terms. In

order to keep the hierarchy between the weak scale and the Planck scale, the soft

terms are only allowed to break supersymmetry but not re-introduce the quadratic

divergences to scalar masses. All possible soft terms in MSSM is given by [40–42]

L = −1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.

)
−
(
auũQ̃Hu − add̃Q̃Hd − aeẽL̃Hd + c.c.

)
(1.30)

−m2
Q̃
Q̃†Q̃−m2

L̃
L̃†L̃−m2

ũũ
†ũ−m2

d̃
d̃†d̃−m2

ẽẽ
†ẽ

−m2
HuH

∗
uHu −m2

Hd
H∗dHd − (BµHuHd + c.c.)
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which consists of the gaugino masses M1,M2,M3, trilinear coupling au, ad, ae and

scalar masses squared m2
j and Bµ. Supersymmetry is clearly broken since the soft

terms give masses to all scalar partners and gauginos of MSSM but not to SM

particles.

Apart from the superpotential in 1.29, there are other operators that are al-

lowed by gauge symmetries. However, they are not included because they lead to

the violation of the baryon number and the lepton number. In general they are

the following terms:

W 6L = λLLe+ λ′LQd+ µ′LHu (1.31)

W 6B = λ′′udd (1.32)

where family indices are understood and being omitted. The result of the theory

containing these operators leads to the proton decay problem. If both λ and λ′ are

significant, the proton decay rate would be too large and make protons unstable.

Assuming squark masses are ∼ TeV, the rough estimation for proton decay width

is

Γp ≈ |λλ′|2
m5
p

m4
q̃

(1.33)

which typically gives lifetime of the proton to be many order of magnitude below

1 second unless λ and λ′ were suppressed. This result strongly contradicts with

the current experimental lower limit of 1033 years. To prevent such a problem in

the MSSM, a new symmetry called R-parity is introduced. R-parity is a global

symmetry Z2 with the quantum number defined as

PR = (−1)3(B−L)+2s (1.34)
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where s is the spin of the particle. This symmetry clearly solves proton decay

problem since it forbids W6L and W 6B while maintaining WMSSM. The important

consequence is that all standard model particles and Higgs bosons have PR = 1

where all squarks, sleptons, gauginos and Higgsinos have PR = −1. As a result,

R-parity also leads to the stability of the lightest supersymmetric particle (LSP).

If the LSP does not have an electric charge, it could be a perfect candidate for

dark matter. The breaking of R-parity which induces proton decay and LSP decay

is one of the main concerns for the model building aspect of particle physics. We

will discuss this issue in more detail later.

Although the construction of the MSSM is aimed to solve the hierarchy prob-

lem, the MSSM still suffers from another naturalness problem. Analysing the

Higgs potential and requiring an electroweak scale ∼ 100 GeV leads to the con-

straint on 2 mass scales of MSSM parameter: µ and m2
soft ∼ m2

Hu
,m2

Hd
. Namely,

they must be fine-tuned to stay within an order of magnitude of the electroweak

scale. Since there is no theoretical reason to expect µ which is supersymme-

try preserving parameter being accidentally close to the values of supersymmetry

breaking parameters, this is a fine-tuning problem also known as the µ problem.

Several solutions have been proposed such as the Kim-Nilles mechanism [43] and

the Giudice-Masiero mechanism [44]. While various solutions are different in de-

tail, they all generically propose an extension of MSSM to include a new field

and a discrete symmetry. The µ term is assumed to vanish at tree level due to

the discrete symmetry then non-renormalisable operators regenerate back µ from

the additional field that breaks the discrete symmetry. A similar idea can also be

found in various corners of string compatifications [45]. This idea will be revisited

again in chapter 3.
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1.3 Thesis Outline

This thesis is organised as following. In chapter 2 based on the publication [46],

we will describe the origin of moduli and axions from a string/M theory frame-

work. We will motivate the Axiverse scenario and study its phenomenologies. In

particular, we will focus on dark radiation which is significantly constrained by ex-

periments. We will show the detailed analyses of dark radiation coming from the

Axiverse and propose some possible solutions. It will be shown that the simplest

solution requires the lightest modulus decays only into its own axion superpartner

and this severely constrains the moduli Kahler potential and mass matrix.

In chapter 3 based on the publication [47], we will review the basic idea of

the models based on M theory compactified on a G2 manifold. Then we will

review Witten’s proposal on the discrete symmetry as a solution to the doublet-

triplet splitting. The solution to µ problem in the framework will be also studied.

We will present the construction of the new set of models based on GUT group

SO(10) which leads to a novel solution where the colour triplets are decoupled.

The model also involves an extra vector-like Standard model family to restore

gauge unification. We will also discuss about the phenomenology of the new light

states and the induced R-parity violation.

In chapter 4 based on the publication [48], we will complement the thesis by a

study from the bottom-up approach. We will present the prospects for discovering

charginos and neutralinos at a future collider which has been discussed recently.

We will focus in particular on the search at a 100 TeV collider with 3000 fb−1

luminosity via the WZ channel. The motivation from string/M theory models

leads to the assumption that Higgsinos form the lightest supersymmetric particle

where Winos form the second lightest supersymmetric particle. We design simple

but effective signal regions for the trilepton channel and find that neutralinos-
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chargino could be discovered (excluded) up to 1.1 (1.8) TeV.
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Chapter 2

Axiverse Dark Radiation

2.1 Introduction

2.1.1 Scalar fields from string theory

String/M theory is mathematically consistent in a 10-dimensional or 11-dimensional

space-time. In order to obtain low-energy physics in 4-dimensional space-time, the

extra dimensions must be compact and very small in size which is inaccessible by

the current energy scale. Although the effective theory in 4 dimensions may differ

in many ways depending on the details in which the extra dimensions is com-

pactified, the existence of extra scalar fields, known as modulus, is generic. For

example, the common type of moduli that appear naturally from the geometry are

volume moduli and complex structure moduli. They are fields that parametrise

the extra-dimension metric and complex structure of the compactified manifold:

they control the size and the shape of the extra dimensions. Due to the complex-

ity of the topology required to give a real world physics [16], we often find that

string compactification typically gives rise to a large number of moduli ∼ O(100).

In the 4-dimension effective field theory limit the moduli simply become scalar

21



fields with gravitational-strength interactions, i.e., they are essentially gravitons

from the extra dimensions.

The crucial aspect of moduli is that they make a direct contact with low energy

physics. Let’s consider interactions such as

s

mpl

F 2
µν , or

s

mpl

ψ 6∂ψ (2.1)

where s is a modulus field. If the modulus is massless, these interactions lead to a

long range force which has not been observed yet. Therefore, the mechanism for

stabilising moduli fields, i.e., giving them a potential, is necessary. Moduli sta-

bilisation also gives rise to low-energy physical parameters through their vacuum

expectation values. For example, the above Lagrangian give rises to the Maxwell

term, L = 1
4e2
F 2
µν where the electromagnetic coupling is completely determined

by a modulus vev as e2 = s
4mpl

. In fact, all physical quantities are determined by

modulus vevs in a similar fashion.

Now let us consider the complex partners of the moduli fields from string

theory – axions. The axions arise in string theory as Kaluza Klein (KK) zero

modes of antisymmetric tensor fields. The fact that moduli and axions pair up

to form a chiral supermultiplet implies that the number of axions in 4D theory

has topological origin and is expected to be of an order O(100). Although moduli

receive the mass from moduli stabilisation, axions is typically massless because of

the shift symmetry which is a remnant of the higher-dimensional gauge invariance

of the tensor fields. However, there are plenty of string instantons other than the

QCD one that break shift symmetries and generate potential to axions. The axion

22



effective lagrangian can be parametrised as

L =
1

2
f 2
a (∂θ)2 −

∑
i

Λ4
iUi(θ) (2.2)

where fa is an axion decay constant which is typically of order the compactifica-

tion scale, Λ is the energy scale generated from instanton effect, and U(θ) is a

periodic function. If we assume supersymmetry breaking below the Planck scale,

the overall energy scale is generated from the interference between instanton and

supersymmetry breaking sources as Λ4 ∼M2
plm

2
susye

−Sinst . Then the mass of axions

is determined by [49,50]

m2
a =

M2
plm

2
susy

f 2
a

e−Sinst (2.3)

We can see that, because of the exponential factor from instanton actions, axions

are expected to be very light and distributed over many orders of magnitude.

Note that moduli can be stabilised by the same set of the superpotentials

where the supersymmetry breaking terms are mainly responsible for generating

potential for moduli. Another important point is that in order to stabilise axions,

one requires the superpotential to contain as many independent terms as there are

axions present in the theory. This requirement is easy to fulfill when the number

of supersymmetric cycles in the compactification is large enough [50].

The axions from string theory can also play a significant role in solving the

strong CP problem. The QCD gauge invariance allows a topological term in the

Lagrangian.

L =
g2
s

4π

θQCD
8π

FµνF̃
µν (2.4)

Since quarks are massive so that there is no U(1)A to rotate the term away, the

strong CP-violating θQCD parameter is physical. This can be observed from the
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electric dipole moment of the neutron and the measurements gives the upper

bound θQCD < 10−10. The axion provides an explanation why θQCD is so small.

Similar to the Maxwell term from moduli coupling, there will be an axion-QCD

instanton interaction term:

a

fa
FµνF̃

µν (2.5)

which promotes the θQCD parameter from QCD topological term into a dynam-

ical field. When the axion is stabilised around its minimum θQCD = 0 which is

consistent with the experiment.

The decay constants are constrained from many experiments. The cooling

process of stars and supernovae due to axion emission lead to an upper bound

on axionic interaction and hence a lower bound fa > 109 GeV. The upper bound

comes from the over production of the axion as a dark matter which we will review

in the next subsection.

2.1.2 Moduli and Axions in an early universe

Extremely weakly coupled scalar fields like moduli and axions can have a con-

siderable impact on cosmological dynamics due to the “vacuum misalignment”

mechanism [18–20]. The equation of motion for a massive scalar field φ in the

expanding universe is given by

φ̈+ (3H + Γφ)φ̇+m2φ2 = 0 (2.6)

where H is the Hubble scale, m is the mass of the scalar field and Γφ is the

decay width of φ. At very early times when H � m, the friction term dominates

and the fields are frozen at order one values (mpl for the moduli and fa for the

axions). Then, as the Universe expands and H decreases, when H becomes of
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order∼ ms or ma, the field starts oscillating around the minimum with a frequency

of order ms or ma. The equation of states also oscillates around w = 0 and the

corresponding contribution to the energy density scales as ρa ∝ a−3.Since moduli

behave as ordinatry matter, even if the Universe was radiation dominated prior

to this point, a modulus field will quickly dominate the Universe since its energy

density is comparable to radiation at the onset of the oscillations. Next, when

the Hubble scale reduces to be of order the modulus decay width, Γs ∼ m3
s

m2
pl

,

the modulus field decays. For ms ∼ TeV, the decay products of the moduli

will reionise the nuclei produced from Big Bang Nucleosynthesis (BBN). This is

known as the cosmological moduli problem [21,22]. The problem will be avoided

if ms ≥ 30 TeV; one could also avoid it by assuming that the Hubble scale after

inflation is always smaller than ms or if there is a late period of inflation which

dilutes the moduli fields, however, both of these options require tuning and are

presumably not generic. Therefore, we conclude that string/M theory seems to

predict that the early Universe prior to nucleosynthesis is matter dominated.

The axions also participate in the vacuum misalignment mechanism but there

are important differences. The axion masses are small such that their lifetimes

are, unlike the moduli, generically extremely long, with lifetimes that can easily be

cosmologically relevant. Hence, there will be a contribution to the energy density

in the form of axion fields today, which behaves as cold dark matter.

Notice that the decay of the moduli releases a large amount of entropy which

dilutes any relics which existed prior to nucleosynthesis, e.g. ten orders of magni-

tude dilution is typical. This significantly weakens the upper bound on the QCD

axion decay constant, compared to radiation dominated Universes, to be of order

1015 GeV [50–53]. This effect also significantly dilutes other relics that may have

formed previously, such as domain walls, monopoles or thermal WIMPs.
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Another important aspect of moduli-axion physics is the dark radiation which

I will describe in detail in this chapter. The moduli as extradimensional gravitons,

can decay into Standard Model particles, into supersymmetric particles as well as

axions. Since the axions are so light and the moduli have masses in the tens of TeV

regime, axions produced this way will be relativistic with energies of order several

TeV. The expansion of the Universe and precision cosmological observables are

sensitive to the relative abundance of relativistic particles. This can be captured

by the observable called Neff which is “the effective number of neutrino species”

defined as

ρrad = ρe± + ργ +Neffρν (2.7)

However, Neff is actually sensitive to all forms of relativistic matter, regardless of

how such matter couples to the Standard Model. In that sense, Neff provides a

very useful probe of additional, “hidden,” radiation from the sectors beyond the

Standard Model. Assuming that a heavy particle such as the moduli field decays

into particles from hidden and visible sectors, the extra contribution from dark

radiation to Neff is usually parametrised by

∆Neff =
43

7

ρDR
ρrad

(
g∗Tν
g∗Tr

)1/3

(2.8)

where g∗Tν , g
∗
Tr

are the effective degrees of freedom at the neutrino decoupling

temperature and the reheating temperature, ρDR and ρrad are the radiation energy

density of the dark sector and the visible sector at the reheating temperature. The

full detail calculation can be found in Appendix A.1.

The Standard Model prediction 1 forNeff at the time of recombination is 3.045,

whilst measurements from CMB observations by WMAP 9-year polarisation data

1The number is not exactly 3 due to small corrections at the time of neutrino decoupling.
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[54], South Pole Telescope [55], Atacama Cosmology Telescope [56], and Planck

2015 [57] are Neff = 3.84 ± 0.40 (WMAP9), Neff = 3.62 ± 0.48 (SPT), Neff =

2.79± 0.56 (ACT), Neff = 3.15± 0.23 (Planck2015) respectively. In a sense, this

is a surprising result since one might expect Neff to be much, much larger naively.

So, from the perspective of string/M theory or the idea of hidden sectors more

generally, the question actually becomes: why is Neff so small?. For instance,

if, as we have already argued, there are large numbers of light axions and the

moduli have significant branching ratios into them, why isn’t Neff of order N ,

the number of axions? We will investigate this question in this chapter.

There have been a number of interesting prior studies on axionic dark radiation

in string theory [58–68]. These papers consider examples which have very few light

axions. Instead, our interest here is to the dependence of Neff on the number of

light axions.

2.2 The Axiverse Induced Dark Radiation Prob-

lem

We will illustrate the problem by beginning with a simple model and gradually

considering more and more general (realistic) cases as we go on.

The simplest Lagrangian involving a modulus (s), an axion (t) and a gauge

field strength Fµν is arguably of the form:

L
m2
pl

=
c

s2
∂µs∂

µs+
c

s2
∂µt∂

µt+ c̃sFµνF
µν − m̃2(s− so)2 (2.9)

where c and c̃ are constants. so reflects that s will have a non-zero vacuum

expectation value. In our conventions, s and t are dimensionless and mpl is the
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Planck mass. Note that the electric charge is identified with 1
4e2

= c̃s which will be

absorbed by the normalisation of the photon field. Therefore the photon-moduli

couplings do not have any effect on the calculation of ∆Neff

This form of the Lagrangian arises in supersymmetric string and M theory

models e.g. the universal axio-dilaton Lagrangian or the model independent ax-

ion/modulus multiplet in heterotic string compactifications [25]. From this La-

grangian we can canonically normalise the fields after setting s to its vacuum value

and compute the partial decay widths

Γ(ŝ→ t̂t̂) =
1

64πc

m3

m2
pl

(2.10)

and

Γ(ŝ→ γγ) =
1

64πc

m3

m2
pl

(2.11)

where m = m̃〈s〉√
2c

is the physical moduli mass.

The contribution to dark radiation of axion from moduli decay can be calcu-

lated from [58–60]

∆Neff =
43

7

Γaxions
Γvisible

(
g∗Tν
g∗Tr

)1/3

(2.12)

We can take the decay of moduli into two photons as a model for the decay of the

moduli into Standard Model particles, so this calculation gives

∆Neff ∼ O(1) (2.13)

since ∆Neff is given by the ratio of the decay width of the modulus decay into

axions versus Standard Model particles. This illustrates the fact that the moduli

couple semi-universally to all particles (as one expects, since, after all they are

extra dimensional gravitons).
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In this work we are interested in the case when there are a large number, N of

axion/moduli multiplets, (ti, si). The previous Lagrangian can then be generalised

to

L = m2
pl

∑
i

(
ai
s2
i

∂µsi∂
µsi +

ai
s2
i

∂µti∂
µti + ãisiFµνF

µν − m̃2
i (s

2
i − 〈si〉2)) (2.14)

where ai’s are constants. This Lagrangian arises from a supergravity theory con-

taining N chiral superfields with scalar components zj = tj + isj with Kahler

potential K = −3 lnV where V = Πis
ai
i . This Kahler potential is a typical term

which would arise in string/M theory compactifications2. Let us now calculate

Neff ≡ NSM +∆Neff . To do this we need to evaluate the N2 partial decay widths

Γ(ŝj → t̂it̂i) which can readily be calculated to be

Γ(ŝj → t̂it̂i) =
δij
64π

1

aj

m3
j

m2
pl

(2.15)

where mj =
m̃j〈s〉√

2aj
. On the other hand we also calculate

Γ(ŝj → γγ) =
1

64π

1

(
∑

i ãi〈si〉)2

ã2
j〈sj〉2

aj

m3
j

m2
pl

(2.16)

which results in

∆Neff =
(
∑

i ãi〈si〉)2

ã2
j〈sj〉2

=
1

(16πα)2ã2
j〈sj〉2

(2.17)

where we used the fact that the sum which appears is related to the coupling

constant of the gauge theory and have set the numerical factors in equation 2.12

to one for simplicity. Important points to note about this example are:

a) due to the diagonal mass and kinetic terms, a given modulus field ŝj decays

2In the next section we will study more concrete string/M theory examples.
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only into its axion partners;

b) the moduli with the smallest masses will decay last.

When the last (and lightest) modulus decays it substantially dilutes the energy

density of particles produced from previous decays of heavier moduli. Hence, in

computing ∆Neff we are only interested in axions produced from the lightest

moduli fields.

Now, in this particular case α is interpreted as the fine structure constant

evaluated when the moduli decay takes place just before BBN, so 16πα is an

order one number, independent of N . On the other hand, since 1
16πα

is a sum of

the N terms ãj〈sj〉, if all N terms contribute similar amounts to the sum, we would

have Neff ∼ N2 which is our first indication of the Axiverse induced dark radiation

problem. In this particular, very special model, observational consistency requires

that the value of α arises only from the modulus sj and hence that ∆Neff is order

one or smaller. Let us discuss more typical models.

In much more generality, the moduli dependent kinetic terms are not of the

form ai
s2i

; rather they will be given by more complicated functions which are ho-

mogeneous of degree minus two. This is because the moduli Kahler potentials in

string/M theory compactifications can be written as logarithms of homogeneous

functions of fixed degrees, which implies that their second derivatives are homo-

geneous of said degree. Thus, one has a kinetic mixing matrix Kij whose entries

are homogeneous of degree minus two. Before we discuss this most general case,

we consider an intermediate, but instructive case: models in which the kinetic

coefficients are diagonal, but arbitrary functions of degree minus two, fi. This

sort of example occurs when the Kahler potential is dominated by a single term,

but which could depend on all the moduli. In this case we have, setting mpl = 1:
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L = fi(∂µsi)
2 + fi(∂µti)

2 + ãisiF
2
µν +

∑
i

m̃2
i s

2
i (2.18)

Normalising the fields

si =
1√
2〈fi〉

ŝi, ti =
1√
2〈fi〉

t̂i, Aµ =
1

2
√
ãi〈si〉

Âµ (2.19)

gives the Lagrangian

L =
1

2
(∂µŝi)

2 +
1

2
(∂µt̂i)

2 +
1

4
F̂ 2
µν +

〈∂jfi〉
2
√

2
√
〈fj〉〈fi〉

ŝj(∂µt̂i)
2 +

ãj

4
√

2〈fi〉ãi〈si〉
ŝjF̂

2
µν

(2.20)

This results in

Γ(ŝj → t̂it̂i) =
1

256π

1

〈fj〉
1

〈fi〉2
〈∂jfi〉2

m3
j

m2
pl

(2.21)

Γ(ŝj → Axions) =
1

256π

(
N∑
i=1

1

〈fj〉
1

〈fi〉2
〈∂jfi〉2

)
m3
j

m2
pl

Γ(ŝj → γγ) =
1

64π

1

〈fj〉
ã2
j(∑N

i=1 ãi〈si〉
)2

m3
j

m2
pl

where mj =
m̃j√
2〈fj〉

. The key point here is the sum over N terms in the second of

the above equations. If the kinetic coefficient fi depends on sj then sj will be able

to decay into titi and, in the general case we will have N such decays producing

light axions, giving

∆Neff ∝ N (2.22)

The fact that the decay width of the lightest moduli into axions is of order N is

independent of the moduli couplings to the hidden sector since it only depends

on the number of fields.
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It is also instructive to illustrate the N -dependence in simple examples as these

demonstrate how the Axiverse induced dark radiation problem might be solved.

In the first example we take all of the kinetic coefficients equal and to be given by

fi =
1∑
k s

2
k

=
1

s2
1 + . . .+ s2

N

≡ 1

S2
rms

(2.23)

The decay width of the j-th modulus to decay into the i-th axion is then

Γ(ŝj → t̂it̂i) =
1

64π

〈sj〉2

〈S2
rms〉

m3
j

m2
pl

(2.24)

which implies that the total decay width of the j-th modulus to decay into axions

is a sum of N terms which adds up to

Γ(ŝj → axions) =
N

64π

〈sj〉2

〈S2
rms〉

m3
j

m2
pl

(2.25)

By comparison, the decay width into gauge bosons is

Γ(ŝj → γγ) =
1

64π

ã2
j〈S2

rms〉(∑N
i=1 ãi〈si〉

)2

m3
j

m2
pl

(2.26)

which leads to

∆Neff (sj) = N
〈sj〉2

〈S2
rms〉

(∑N
i=1 ãi〈si〉

)2

ã2
j〈S2

rms〉
= N

〈sj〉2

〈S2
rms〉

1

(16πα)2ã2
j〈S2

rms〉
(2.27)

Clearly, in this example, we can see that if the vev of Srms is sufficiently large in

(11d units) then one can suppress the axion contribution to the dark radiation

density.
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Finally, let us discuss the most general case. The following Lagrangian:

L =
N∑
i=1

N∑
j=1

CijUiksk∂µtj∂
µtj (2.28)

is the most general Lagrangian coupling moduli fields to axions with two deriva-

tives of the axion fields. Here, Cij arises from diagonalising the Kahler metric Kij

and Uij, which we have ignored until now arises from diagonalising the moduli

mass matrix. We supplement this Lagrangian with typical terms coupling the

moduli to Standard Model and supersymmetric particles. The Lagrangian for

moduli-gauge boson interactions is

L =
N∑
i=1

BiUikskFµνF
µν (2.29)

and the Lagrangian for moduli-scalar kinetic interactions is

L =
N∑
i=1

DiUikskDµfD
µf (2.30)

Dropping numerical factors, the decay width of sk, into various channels is:

Γaxions =
N∑
j=1

Γ(sk → tjtj)

=
N∑
j=1

(
N∑
i=1

CijUik

)2
m3
sk

M2
PL

Γgauge particles = nG

(
N∑
i=1

BiUik

)2
m3
sk

M2
PL

Γfermions/sfermions = nf

(
N∑
i=1

DiUik

)2
m3
sk

M2
PL

(2.31)

where nG and nf are the numbers of gauge bosons and fermions respectively.
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Even though the most general model has so many parameters, one can see that

we expect Neff ∝ N :

〈∆Neff〉 ∝
Γaxions
Γvisible

∝ N〈C〉2

nG〈B〉2 + nf〈D〉2
∝ N (2.32)

This arises because we expect the mean values C, B and D to be comparable

and that (
∑N

i=1 Uik)
2 to be order one. This is borne out by explicit calculations, see

e.g. [13,23,30–32,58–60,69]. In other words, since the moduli couplings to axions

are comparable to their couplings to the Standard Model particles, the string/M

theory axiverse is in serious tension with observed limits on the amount of dark

radiation. In special examples with low numbers of axions, one can see that it is

possible to generate acceptably small amounts of dark radiation assuming certain

couplings are small enough, for example, [58–62, 65–67]. But in general, this will

be difficult to avoid.

2.3 String/M theory examples

2.3.1 Calabi-Yau Compactifications

In Calabi-Yau compactifications of superstring theories to four dimensions, The

moduli and axion kinetic terms in the Lagrangian are derived from a function of

the moduli fields called the Kahler potential, K, which, up to a coefficient is given

by

K = −a lnVX (2.33)

Here, VX is the volume of the Calabi-Yau manifold (as a function of the moduli).

This is a sum of terms with coefficients given by the triple intersection numbers

dijk. The coefficient a takes different values, depending upon which string theory
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one is considering. In the heterotic and Type IIA compactifications, the volume

is given as a function of the Kahler moduli Si as:

VX =
n∑
i=1

dijkSiSjSk (2.34)

Clearly, in a completely generic case, with many non-zero entries in dijk, VX is a

sum of many terms and Kij will not be diagonal. Hence, upon diagonalisation,

when expanding around a particular vacuum state, the matrices Cij, Uij and the

coefficients Bi and Di will be quite general and we expect Neff ∝ N .

In the LARGE volume scenario of [13,69], there is a modulus field with a vev

much larger than that of the other moduli. In this case, the volume functional of

the Calabi-Yau threefold is approximated by

V = s
3/2
1 − s3/2

2 − . . .− s3/2
N (2.35)

K = −2 lnV (2.36)

In the limit where the s1 vev is larger than the other vevs, s1 � si, the diagonalised

Kahler metric is approximately

f1 = K11 ≈
3

4s2
1

, fi = Kii ≈
3

8s
3/2
1 s

1/2
i

(2.37)

∂1f1 = − 3

2s3
1

, ∂if1 = 0, ∂1fi = − 9

16s
5/2
1 s

1/2
i

, ∂ifi = − 3

16s
3/2
1 s

3/2
i

(2.38)

For s1, it turns out that ∆Neff ∝ N . This can be seen as follows. The decay
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widths to axions are

Γ(ŝ1 → t̂1t̂1) =
1

256π

(
16

3

)
m3

m2
pl

(2.39)

Γ(ŝ1 → t̂i 6=1t̂i 6=1) =
3

256π

m3

m2
pl

(2.40)

Γ(ŝ1 → axions) =
1

256π

(
16

3
+ 3(N − 1)

)
m3

m2
pl

(2.41)

whilst the gauge boson channel gives

Γ(ŝ1 → γγ) =
1

48π

ã2
j〈s2

1〉(∑N
i=1 ãi〈si〉

)2

m3

m2
pl

(2.42)

resulting in a dark radiation contribution of

∆Neff (s1) =

(
1 +

9

16
(N − 1)

) (∑N
i=1 ãi〈si〉

)2

ã2
1〈s2

1〉
(2.43)

This is interesting, because in LARGE volume models, the vev s1 is expected

to be much larger than the other vevs, hence one expects a suppression of ∆Neff

in this case, following our discussion in section two. Furthermore, s1 is typically

the lightest modulus in this scenario [69].

For completeness, for sj 6=1, the dark radiation density doesn’t depend on N :

Γ(ŝj 6=1 → t̂j 6=1t̂j 6=1) =
1

128π

〈s1〉3/2

〈sj〉3/2
m3

m2
pl

(2.44)

Γ(ŝj 6=1 → t̂j 6=it̂j 6=i) = 0 (2.45)

Γ(ŝj 6=1 → axions) =
1

128π

〈s1〉3/2

〈sj〉3/2
m3

m2
pl

(2.46)
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gauge boson channel is

Γ(ŝj 6=1 → γγ) =
1

24π

ã2
j〈s

1/2
j 〉〈s

3/2
1 〉(∑N

i=1 ãi〈si〉
)2

m3

m2
pl

(2.47)

So the total dark radiation density is proportional to

∆Neff (sj 6=1) =
3

16

(∑N
i=1 ãi〈si〉

)2

ã2
j〈s2

j〉
(2.48)

2.3.2 Diagonal Kahler metrics

Clearly, from the above discussions, one can suppress dark radiation from moduli

decays when the Kahler metric for the moduli fields is approximately diagonal.

This will be the case when the Volume function is dominated by just one term

only.

VX =
N∏
i=1

Saii , K = −3
N∑
i=1

ai lnSi (2.49)

where ai are microscopic parameters whose sum is a constant determined by the

geometry of the extra dimensions. This is unity for the Calabi-Yau case and 7
3

for

G2-manifolds. To demonstrate the suppression of Neff , it is helpful to translate

the effective supergravity Lagrangian into decay width coefficients. We review the

calculation explicitly below.

The kinetics terms for moduli and axions are controlled by Kahler metric as

following

L =
1

2
Kij∂

µsi∂µs
j +

1

2
Kij∂

µti∂µt
j (2.50)

After canonically normalisation of moduli and axions, we can expand Kahler

metric as a function of the moduli field. After taking the moduli mixing into
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account, the result for the interaction Lagrangian is

Ls̃k t̃i t̃i =
1

2

∑N
j=1

∂KD
ii

∂sj
Ujk

(KD
ii )3/2

s̃k∂
µt̃i∂µt̃

j (2.51)

where KD is Kahler metric after diagonalisation. s̃, t̃ are canonically normalised

fields after mixing. Straightforwardly, one can derive the decay width into axions

as

Γaxions =
1

32π

N∑
i=1

(
N∑
j=1

1√
KD
ii

∂ lnKD
ii

∂sj
Ujk

)2
m3
Xk

M2
pl

(2.52)

For the gauge sector, the Lagrangian typically takes the form

L = −1

4

(
N∑
i=1

Nizi

)
FµνF

µν (2.53)

After canonically normalisation of moduli and gauge fields, we get the interaction

terms between moduli and gauge fields.

L =
1

4

1(∑N
i=1 Ni〈si〉

) N∑
i=1

NiUik√
KD
ii

s̃kFµνF
µν (2.54)

Then the moduli decay width into gauge bosons/gauginos can be written as

Γgauge =
NG

32π

(
N∑
i=1

α√
KD
ii

NiUik

)2
m3
Xk

M2
pl

(2.55)

For matter sector, the generic interaction terms can be found from

L = KαβDµf
αDµfβ +Kαβ f̃

α 6Df̃β (2.56)

Then, after normalisation of moduli field and fermions/sfermions fields, the inter-
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action terms become

L =
N∑
i=1

1√
KD
ii

∂ lnKD
αα

∂si
Uiks̃k

(
Dµf

αDµfα + f̃α 6Df̃α
)

(2.57)

Therefore, the decay width into fermion can be written as

Γfermion ∝

(
N∑
i=1

1√
KD
ii

∂ lnKD
αα

∂si
Uik

)2
m3
Xk

M2
pl

(2.58)

To summarise, the decay width coefficients are given as follow:

Cij =
1√
KD
ii

∂ lnKD
ii

∂sj

Bi =
α√
KD
ii

Ni (2.59)

Di =
1√
KD
ii

∂ lnKD
αα

∂si

where KD
ij is the diagonal Kahler metric.

From (2.49), it is trivial to show that the coefficients are diagonal when the

volume function is dominated by a single term:

Cij = Ciδij (2.60)

Following the previous analysis, this simple relation implies that ∆Neff becomes

independent of N on average.

〈∆Neff〉 ∝
〈C〉2

nG〈B〉2 + nf〈D〉2
(2.61)

where the orthogonality of rotation matrix, (
∑N

i=1 U
2
ik) = 1, has been used.

The physical reason for this behaviour is that this particular volume form
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forces each modulus to decay only into its axionic partner. If we assume further

that this basis is already physical, i.e. there is no further mixing between moduli

or axions, it becomes clear that dark radiation, regardless of N, consists of only

one species of axion which is the partner of the last modulus to decay.

The moduli mixing matrix can also play a role in suppressing dark radiation.

Again, though non-generic, this occurs when there is a relation between the moduli

mass matrix and the eigenvalues of the Kahler metric:

√
KD
ii ∝ Uij (2.62)

The above relation is equivalent to

1

Ci
∝ Uik,

1

Bi

∝ Uik,
1

Di

∝ Uik (2.63)

In this case, the correlation becomes

〈∆Neff〉 ∝
N〈C〉2

nGN2〈B〉2 + nfN2〈D〉2
∝ 1

N
(2.64)

Therefore, under these very special circumstances, dark radiation can actually

be suppressed by the number of axions on average. This counter-intuitive result

is merely the effect of increasing N-dependence of the moduli to visible sector

couplings so that dark radiation is dominated by standard model radiation (neu-

trinos). Most likely, this is merely a curious observation rather than a realistic

case.
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Mass matrix in G2 compactified M-theory

In this subsection, we put together some of these results in a concrete setting where

the moduli mass matrix is known, namely G2-compactified M theory. Again, we

are assuming that K is dominated by a single term:

K = −3 ln

(
N∏
i=1

saii

)
(2.65)

where
∑N

i=1 ai = 7
3
. From above, Neff becomes independent of the number of

axions in this model. However, regardless of this advantage, one could easily find

that the typical value of Neff , although independent of N , is actually too large in

practice e.g. ∆Neff ∼ 10. We would therefore like to investigate the possibility

of further suppressing dark radiation in this setup.

We briefly recall some details of moduli stabilisation. It has been shown in [31]

that with a hidden sector with two gauge groups where first group is sQCD with

1 flavour of quarks and second group is pure glue sQCD leads to dS vacua. The

superpotential is written as

W = A1φ
aeib1

∑N
i NiSi + A2e

ib2
∑N
i NiSi (2.66)

where φ is the meson superfield in the hidden sector. With the superpotential

and Kahler potential being specified, it is straightforward yet tedious to work out
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the mass mixing matrix resulting from moduli stabilisation [23,30].

Ukj =

√
aj+1

(
∑j

i=1 ai)(
∑j+1

i=1 ai)

√
ak, , k ≤ j

Ukj = −

√∑j
i=1 ai∑j+1
i=1 ai

, k = j + 1

UkN =

√
3ak
7

(2.67)

where i = 1 . . . N−1 are the degenerate light moduli and i = N is heavy modulus.

Notice that except k = j+1, Ukj ∝
√
ak ∝

√
Kk. Therefore, we the element Uj+1,j

will be suppressed if it turned out that:

j∑
i=1

ai � aj+1 (2.68)

As a result, one would expect 1
N

suppression on dark radiation under this condi-

tion.

The modulus decay width can be calculated from [23]

ΓXj = DXj

m3
Xj

M2
Pl

DXj = α

(
N∑
k=1

U2
kj

ak

)
+ β

(
N∑
k=1

Ukj√
ak

)2

(2.69)

where α and β are index-independent parameters dependent on the microscopic

details of the G2 manifold. The first term represents the decay width into axions

where the latter represents decay width into visible particles. From (2.67) and

(2.69) it is trivial to see that total decay width of jth modulus and corresponding
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dark radiation are controlled by

Γj ∝
∑j

i=1 ai
aj+1

(2.70)

∆Neff (Xj) ∝
ja2

j+1 + (
∑j

i=1 ai)
2

(jaj+1 −
∑j

i=1 ai)
2

(2.71)

Applying (2.68), we clearly see that ∆Neff (Xj) ∝ 1
j

and Γj becomes smallest.

This is essential to the model because it guarantees that the last decay modulus

exhibits 1
N

behaviour. For practical purpose, only j = N − 1 in condition (2.68)

will be assumed.

Next, we will explicitly show correlations between the number of axions and

Neff . Instead of scanning the N parameters ai space, we will give systematic

examples of simple configurations of the ai which work:

The first example is when n of the ai are large and the rest small:

ai = {εā, . . . , εā︸ ︷︷ ︸
N−n

,
7

3n
− εā(N − n)

n
, . . . ,

7

3n
− εā(N − n)

n︸ ︷︷ ︸
n

} (2.72)

The second is a geometric sequence of ais,

a = {a0, a0, a0r, a0r
2, . . . , a0r

N−2} (2.73)

Though these can be viewed as toy models at best, they both illustrate that, in

principle, the amount of dark radiation can actually decrease as one increases the

number of axions. This is illustrated in the two figures.
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Figure 2.1: Left: Result from geometric sequence configurations showing ∆Neff

as a function of N , where r = 2. Right: Result from double moduli dominated
configurations showing ∆Neff as a function of N , where εN = 0.1

2.4 Conclusions and Outlook

∆Neff is a very powerful probe of light degrees of freedom in the hidden sector and,

somewhat surprisingly, has been constrained to be quite small, consistent with

zero. The Axiverse induced Dark Radiation Problem arises from the plethora of

light degrees of freedom that can be present in string/M theory compactifications

to four dimensions. Though we focused on the axions, similar conclusions can

be drawn from hidden photons and other light particles in the hidden sector.

We pointed out several possible mechanisms via which this problem could be

avoided: a) a relatively large modulus vev as in the LARGE volume scenario; b)

alignment between the axion kinetic and mass mixing matrices so that the last

modulus to decay does so predominantly into its axionic partner. It would be very

interesting to explore these mechanisms in more detail in various specific models.

One potential problem with the large vev solution in practice is that the large vev

corresponds to a weak Standard Model coupling. In general, it might be difficult

to make the vev large enough without making the Standard Model coupling too

small.
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Figure 2.2: Left: Result from geometric sequence configurations showing ∆Neff

as a function of r, where points in blue, red, yellow, green are N = 30, 50, 100, 200
respectively. Right: Result from double moduli dominated configurations showing
∆Neff as a function of εN , where points in blue, red, yellow, green are N =
30, 50, 100, 200 respectively
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Chapter 3

Particle Physics from M theory

inspired models

3.1 Introduction

Results over the past decade or so have shown that the simple combination of

supersymmetry breaking moduli stabilisation and string/M theory can in fact be

a very useful guide to constructing models [12,13,31,32,70]. Namely, the progress

in understanding supersymmetry breaking and moduli stabilisation in string/M

theory has been shown to lead to effective models with distinctive features and

very few parameters.

One is thus led to consider supersymmetric grand unified theories (GUTs)

based on simple groups, such as SU(5) which explain the fermion quantum num-

bers and unify the three Standard Model forces, in the string/M theory context.

In doing so, however, we have to face the basic problem of GUTs – the Higgs

doublet-triplet splitting problem: the Standard Model Higgs doublet is unified

into a GUT multiplet containing colour triplets which can mediate proton decay
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too quickly. In many models, including those originating in string/M theory,

this problem is often solved by making the colour-triplets very massive [71–73],

something often achieved with a discrete symmetry whose effective action on the

triplets is different from that on the doublets.

In this chapter, we will extend the scope of the M theory approach from the

previously considered SU(5)/MSSM case arising from M theory on G2 mani-

folds [32,74] to SO(10), where an entire fermion family Q, uc, dc, L, ec, N , includ-

ing a charge conjugated right-handed neutrino N , is unified within a single 16

representation denoted 16m. In particular we focus on the Higgs doublet-triplet

splitting problem, whose solution turns out to be necessarily quite different in the

SO(10) case, leading to distinct phenomenological constraints and predictions.

We first review some basic ideas and results from M theory, followed by review

on discrete symmetry and µ problem, then we will review SU(5) models as an

example before moving on to a discussion of the new SO(10) case.

3.1.1 M theory on G2 manifolds

In this section, we provide a review on the phenomenology of the low energy limit

of compactified M theories on a G2 manifold. The in-depth details can be found

in [30–32]. It has been shown that M theory compactifed on a G2 manifold gives

rise to a 4D theory with N = 1 supersymmetry. The gauge fields and the chiral

fermions arise from different types of singularities on the G2 manifolds [38]. A G2

manifold with fluxes would generate a large mass scale and therefore it is not phe-

nomenologically interesting. Instead, we assume that only non-perturbative effect

plays a role in moduli stabilisation. We will consider G2 manifolds which have 2

non-abelian asymtotically free gauge groups, SU(Q)×SU(P + 1) where a pair of

vector like quarks is charged under SU(P +1). At energies lower than these gauge
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groups confinement scales, the superpotential is generated non-perturbatively as

W = M3
Pl

(
C1Pφ

2/P eib1f1 + C2Qe
ib2f2

)
, b1 =

2π

P
, b2 =

2π

Q
(3.1)

where φ is the effective meson field coming from a pair of vector like quarks. C1,

C2 are normalisation constants which are calculable for a given G2 manifold. f1

and f2 are gauge kinetic functions of the two hidden sectors which are generically

different from each others. To study the vacua semi-analytically, we assume

f1 = f2 = fhid =
N∑
i=1

N i(ti + isi) (3.2)

where si are the N geometric moduli from the metric of G2 manifold, ai are the

axions as zero modes of the 3-form fields, and N i are integers determined by the

homology class of the hidden sector 3-cycles.

The supergravity potential is fully determined when the superpotential and

the Kahler potential are given. However, it is generically difficult to compute the

matter Kahler potential from first principle. Due to the fact that chiral super-

multiplets are localised in 3-dimensional subspaces, we assume that the Kahler

potential takes the canonical form

K

M2
Pl

= −3 ln(4π1/3V7) + φφ (3.3)

where V7 is the volume of the G2 manifold in units of the eleven-dimensional

Planck length. The volume is parametrised by the moduli as V7 =
∏N

i=1 s
ai
i where

ai are positive rational numbers constrained by
∑N

i=1 ai = 7/3.

The values of the moduli at the minima are given by the set of constants

determining the potential {ai, N i, C1, C2, P,Q,N} which are calculable for a given
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G2 manifold consistent with our assumptions. It was shown in [30] that all moduli

are stabilised with a vev 〈si〉 ' O(0.1)MPl leading to supersymmetry breaking

and a small cosmological constant. Note that the F term of the meson field is

much greater than those of moduli fields, Fφ ' O(0.01)m3/2MPl where m3/2 is

the gravitino mass characterising susy breaking scale.

The observable sector gauge theory lives in a three-manifold different from

the one supporting the hidden sector. The conical singularities on the observable

three-manifold support chiral matter fields. The full low energy supergravity

theory of the visible and hidden sectors is defined by the following:

K

M2
Pl

=
(
−3 ln(4π1/3V7) + φφ

)
+ K̃αβ(si)Φ

α
Φβ + (Z(si)HuHd + h.c.) + . . . (3.4)

W = M3
Pl

(
C1Pφ

2/P eib1f1 + C2Qe
ib2f2

)
+ Y ′αβγΦ

αΦβΦγ (3.5)

f1 = f2 = fhid =
N∑
i=1

N i(ti + isi), Im(f 0
vis) =

N∑
i=1

N i
vissi (3.6)

The visible sector is thus characterised by the Kahler metric K̃αβ and un-normalised

Yukawa couplings Y ′αβγ of the visible sector chiral matter fields Φα and the tree-

level gauge kinetic function f 0
vis of the visible sector gauge fields. The un-normalised

Yukawa couplings in these vacua arise from membrane instantons which connect

singulartities where chiral superfields are supported.

Y ′αβγ = Cαβγe
i2π

∑
i l
αβγ
i (ti+isi) (3.7)

where Cαβγ is an O(1) constant and lαβγi are integers characterising the 3-cycle

encapsulating the three singularities supporting the chiral multiplets Φα,Φβ,Φγ.

Given the effective supergravity lagrangian, one can evaluate the soft terms

from the vevs of the scalar and auxiliary fields of the moduli. The order parameter
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for the breaking is given by the gravitino mass

m3/2 = e
K

2MPl
|W |
M2

Pl

(3.8)

which is found to naturally lies between 10 - 100 TeV. The gravitino mass sets the

scale of all scalar in supergravity. The soft scalar masses [75] (after normalisation

of the visible Kahler potential) can be expressed as

m2
αβ = (m2

3/2 + V0)δαβ − U †ΓαβU (3.9)

Γαβ ≡ eK̂Fm
(
∂m∂nK̃αβ − ∂mK̃αγK̃

γδ∂nK̃δβ

)
F n (3.10)

In order to calculate the non-diagonal and non-universal parts, we need to know

the moduli and meson dependence. However, it is known to be difficult to compute

in a generic string and M theory vacua. We assume here that the non-diagonal

and non-universal parts depend on only F-term of moduli and meson fields. From

Fi << Fφ, we get

m2
αβ ≈ m2

3/2δαβ (3.11)

This result implies that the flavor changing neutral currents will be suppressed.

The calculation of the un-normalised trilinear couplings is simplified by the same

assumptions and given by

A′αβγ =
Ŵ∗
|Ŵ |

eK̂F φK̂φY
′
αβγ (3.12)

The normalised couplings can be obtained

Aαβγ ≈ O(1)m3/2Yαβγ (3.13)
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Notice that in our framework, the scalar soft masses and trilinear terms are of

order m3/2.

The computation of gaugino masses does not depend on the matter Kahler

potential. In G2 vacua, the tree-level contribution is suppressed therefore other

contributions such as anomaly mediation and threshold effects can be equally

important. It has been shown in [30] that at the unification scale the gaugino

masses are expected to be

ma
1/2 = O(100 GeV) (3.14)

Note that the gaugino masses are not universal due to contribution from the

anomaly mediation.

3.1.2 Discrete symmetry and Wilson line

One of the main problems of GUT theories is the fast proton decay mediated by

colour triplet partners of Higgs doublets. To prevent a significant decay rate, the

colour triplets must be either very massive (often of order GUT scale) or com-

pletely decoupled from the standard model sector. For most string theories, the

splitting/decoupling can be accomplished by a Wilson line in the higher dimen-

sional theory, but in M theory, this is not possible since matter only exists in four

dimensions. It was then noticed by Witten [74] that the presence of a geometric

discrete symmetry of the G2 manifolds whose action is enhanced by Wilson line

phases leads to a symmetry that does not commute with the GUT gauge group.

Therefore, this allows different components of the GUT multiplet to have differ-

ent discrete charges and hence preventing proton decay. Here I will review the

mechanism in SU(5) GUT theories studied in [45] before proceeding to SO(10)

51



GUT theories in later sections.

In M-theory compactified on a hidden manifold X with G2 holonomy, gauge

fields are localised on a 3 dimension submanifold K, whereas the chiral multi-

plets are localised on points in K where a conical singularity is developed. To

break the GUT symmetry, we assume that K is not simply-connected. Since

the fundamental group of K is non-vanishing, there exists a non-trivial gauge

field configurations, i.e., a Wilson line. The GUT group is broken down into the

subgroup that commutes with Wilson lines. If the survival subgroup has n U(1)

factors then a Wilson line can be expressed as

W = exp

(
i2π

N

n∑
i

aiQi

)
=

∞∑
m=0

1

m!

(
i2π

N

n∑
i=1

aiQi

)m

, (3.15)

where Qi are the generators of the U(1) factors, ai are coefficients of the linear

combination that are only constrained by WN = 1.

If K admits a discrete symmetry of the geometry isomorphic to the funda-

mental group which we assume to be ZN symmetry for simplicity, the discrete

symmetry action and the Wilson line charges would mix leading to a discrete

symmetry that does not commute with the GUT group. This means we have

non-GUT preserving selection rules, which will constraint our Lagrangian below

the GUT scale.

To illustrate how Witten’s proposal leads to preventing proton decay, let’s

consider the case of SU(5) as shown in [45]. We assume the following: 5
w

is

the multiplet containing Hd and D and is localised along the Wilson line; 5h is

the multiplet containing Hu; 5
m

and 10m are the matter multiplets. Then the
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transformation rules for these multiplets under ZN are:

5
w → ηω

(
ηδHw

d ⊕ ηγD
w)
,

5h → ηχ5h, (3.16)

5
m → ητ5

m
,

10m → ησ10m,

where η ≡ e2πi/N , 2δ + 3γ = 0 mod N . By requiring that Yukawa couplings,

Majorana neutrino masses, and colour-triplet masses must be present, we obtain

constraints on the charges as can be seen in Table 3.1 where we chose ω = 0. One

can solve these by writing all angles in terms of σ.

χ = −γ = −2σ mod N

δ = −3σ +N/2 mod N (3.17)

τ = 2σ +N/2 mod N

The µ term and other proton decay operators must also be forbidden. The con-

straints are shown in Table 3.2. It is then trivial to see that all of the constraints

are satisfied with a Z4 symmetry. For example, N = 4, σ = 1.

Coupling Constraint
Up-type Yukawas Hh

u10m10m 2σ + χ = 0 mod N
Down-type Yukawas Hw

d 10m5
m

σ + τ + δ = 0 mod N
Majorana Masses of neutrinos Hh

uH
h
u5

m
5
m

2χ+ 2τ = 0 mod N

Colour-triplet masses D
w
Dh χ+ γ = 0 mod N

Table 3.1: Couplings and charges for SU(5) operators.

53



Coupling Constraint
µ term Hw

d H
h
u −5σ +N/2 6= 0 mod N

Dimension 5 proton decay 10m10m10m5
m

5σ −N/2 6= 0 mod N
Dimension 3 R-parity violation 5H5

m
N/2 6= 0 mod N

Dimension 4 R-parity violation 10m5
m

5
m

5σ 6= 0 mod N

Table 3.2: Couplings and charges for SU(5) operators.

3.1.3 Effective µ-terms and trilinear couplings

In an essence of the doublet-triplet splitting mechanism from the discrete sym-

metry arising from earlier arguments, the Higgs doublets mass parameter, µ must

vanish at the GUT scale. However, the limit on the Higgsinos mass constrains

µ ≥ O(100) GeV. The discrete symmetry must therefore be broken. In M Theory

compactified on a G2 manifold without fluxes there is a natural way of generating

effective µ terms. An effective µ-term of order TeV scale can be generated by

moduli vev from interactions in the Kahler potential, the mechanism which is

similar to Giudice-Masiero mechanism [44].

To see how the above considerations lead to a natural O(1 TeV) µ term con-

sider the Kahler potential interaction

K ⊃ s

mPl

XX + h.c. , (3.18)

here we take the coefficient to be or order one, and s symbolically represents a

modulus field, and X a chiral supermultiplet in some gauge irrep, with X another

chiral supermultiplet in the charge conjugated irrep. As moduli arise from zero

modes of the Lichnerowicz equation, they are naturally charged under the discrete

symmetry. Since there are many of them, the above coupling is generally allowed

even if XX is forbidden by the same discrete symmetry.

As a consequence of the moduli stabilisation and associated vevs, an effective µ

54



parameter for the X field will be generated. This effective parameter appearing in

the superpotential is derived from the usual supergravity mass formulae [75] [76]

when taking the flat – global SUSY – limit of supergravity.

In the end one finds that the effective superpotential µ term is given by

µX = 〈m3/2KXX − F κKXXκ〉 , (3.19)

which leads to

µX =
〈s〉
mPl

m3/2 +
〈Fs〉
mPl

, (3.20)

and since Fs � m3/2〈s〉 the moduli vev dominates. One finds

µX ∼ 0.1m3/2 , (3.21)

and since m3/2 ∼ O(10 TeV), we have µX ' O(1 TeV). Notice that this analysis

is valid for all vector-like pairs XX. This means that if one adds extra vector-like

states to the model, beyond the MSSM spectrum, one has to worry about possible

mixings and LHC-reachable extra fermionic matter. This will be studied below

when we construct the SO(10) model.

Similar to the above procedure to generate µ parameters, our framework can

generate effective trilinear terms in the superpotential. They will mediate proton

decay but also provide a LSP decay channel, since they can be R-parity violating.

These interactions play an important role for the low-energy model, and have to

be studied in detail.

Trilinear interactions are generated in the same way as the effective µ terms
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dsicussed above. Consider the Kahler potential contribution

K ⊃ s

m2
pl

XY Z + h.c. , (3.22)

where s does not have to be the same moduli as above, and X, Y , and Z are chiral

supermultiplets. As one can see, these interactions are more suppressed than

the effective µ-terms studied before, they will, however, still appear as effective

trilinear couplings in the superpotential as

Weff ⊃
(〈s〉m3/2 + Fs)

m2
pl

m3/2XY Z , (3.23)

Again, since Fs � 〈s〉m3/2, the F-term contribution is sub-leading and we can

estimate the order of magnitude of the effective coupling. This turns out to be

small

〈s〉
m2
pl

m3/2 → 0.1
m3/2

mPl

∼ 10−14 , (3.24)

but it will have a deep impact on the LSP lifetime, as it will be discussed below.

We also note that in principle these cannot be big enough to generate realistic

Yukawa couplings. One is then led to expect the Yukawa couplings to be generated

by tree-level interactions as discussed above.

3.2 SO(10)

Following the review, we now turn to the M theory approach to SO(10), where

a novel solution to the doublet-triplet splitting problem seems to be required.

Since the Wilson line is in the adjoint representation, it can break SO(10) to

SU(3) × SU(2) × U(1)Y × U(1) and the Wilson line itself is a combination of

U(1)Y and the additional U(1). If we consider a fundamental of SO(10) localised
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along a Wilson line, then its transformation properties under the ZN symmetry

are

10w → ηω
(
η−αHw

d ⊕ ηβD
w ⊕ ηαHw

u ⊕ η−βDw
)
. (3.25)

In minimal SO(10) the µ-term arises from a term in the superpotential of the

form

W ⊃ µ10w10w = µ
(
Hw
uH

w
d +DwD

w)
, (3.26)

The discrete symmetry will forbid this term in a general model. As in the SU(5)

case, once the symmetry is broken by moduli vevs, the term will be generated in

the Kähler potential via the Giudice-Masiero mechanism. This will give a µ-term

at the TeV scale, which, in SO(10) also generates a similar mass for the triplet

D.

We can add extra 10 multiplets and forbid some couplings between the differ-

ent members of the various 10 multiplets. Consider one additional 10, denoted

10h without Wilson line phases: 10h → ηξ10h. We have eight possible gauge

invariant couplings with a 10w and 10h that can be written in matrix form as

W ⊃ HT
d · µH ·Hu + D

T ·MD ·D, (3.27)

where µH and MD are two 2×2 superpotential mass parameters matrices, HT
u,d =(

Hw
u,d, H

h
u,d

)
, D

T
=
(
D
w
, D

h
)

, and DT =
(
Dw, Dh

)
. The entries of the matrices

are non-vanishing depending on which of the following discrete charge combina-
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tions are zero (mod N)

DwD
w
, Hw

uH
w
d : 2ω,

DhD
h
, Hh

uH
h
d : 2ξ,

Hw
uH

h
d : α + ω + ξ, (3.28)

Hh
uH

w
d : −α + ω + ξ,

DwD
h

: −β + ω + ξ,

DhD
w

: β + ω + ξ.

The doublet-triplet splitting solution would be for µH to have only one zero eigen-

value, with MD having all non-zero eigenvalues, i.e., all except a pair of Higgs

doublet are massive. One finds that there is no choice of constraints within a ZN

symmetry from Eq. (3.28) that accomplishes this. It was shown that a possibility

of adding more 10 multiplets does not work as well. Therefore, we shall only

consider a single light 10w, without any extra 10 multiplets at low energies.

Assuming a single light 10w, it is possible to use the discrete symmetry to

forbid certain couplings, namely to decouple Dw and D
w

from matter. Such cou-

plings arise from the operator 10w16m16m, with 16m denoting the three SO(10)

multiplets, each containing a SM family plus right handed neutrino N . If 16m

transforms as ηκ16m, the couplings and charge constraints are in Table 3.3, where

we allow for up-type quark Yukawa couplings together with couplings to the right-

handed neutrinos,

yijuH
w
u 16mi 16mj ≡ yijuH

w
u (Qiu

c
j + LiNj + i↔ j), (3.29)

and similarly for down-type quarks and charged leptons. Explicit examples real-

58



ising these conditions will be given later.

Table 3.3: Couplings and charges for SO(10) operators.

Coupling Constraint
Hw
u 16m16m 2κ+ α + ω = 0 mod N

Hw
d 16m16m 2κ− α + ω = 0 mod N

Dw16m16m 2κ− β + ω 6= 0 mod N

D
w
16m16m 2κ+ β + ω 6= 0 mod N

The suppression of colour triplet couplings to matter was previously considered

by Dvali in [77] and also [78–80] from a bottom-up perspective.

Next we consider the breaking of the discrete symmetry via the moduli vevs as

discussed above, leading to proton decay. For proton decay, the relevant operators

can be generated in the Kähler potential, schematically, writing D = Dw,

K ⊃ s
m2
pl
DQQ+ s

m2
pl
Decuc + s

m2
pl
DNdc +

+ s
m2
pl
Ddcuc + s

m2
pl
DQL. (3.30)

Just like the µ-term, the effective superpotential may be calculated from super-

gravity to be

Weff ⊃ λDQQ+ λDecuc + λDNdc +

+λDdcuc + λDQL, (3.31)

where

λ ≈ 1

m2
pl

(
〈s〉m3/2 + 〈Fs〉

)
∼ 10−14. (3.32)

Notice that unlike the case of SU(5), there is no SO(10) invariant bilinear term

κLHu whose presence would lead to fast proton decay. We estimate the scalar
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triplet induced proton decay rate to be

Γp ≈
|λ2|2

16π2

m5
p

m4
D

. (3.33)

Generically, the mass of the colour triplets is of the same order as µ, i.e., mD ∼ 103

GeV, so the proton lifetime is

τp = Γ−1
p ∼ 1038 yrs, (3.34)

which exceeds the current experimental limit.

Now consider the D triplet decay rate:

ΓD ∼ λ2mD ∼ (0.1 sec)−1. (3.35)

The associated lifetime of 0.1 sec is (just) short enough to be consistent with

BBN constraint. They will also give interesting collider signatures due to their

long-lived nature.

3.2.1 Vector-like Family

Gauge coupling unification is in general spoiled by light colour triplets, unless they

are also accompanied by additional light doublet states. In the present framework,

the only way we know of to circumvent this issue is the presence of light additional

states which complete the triplets into complete GUT multiplets. Happily, this

can also be achieved by use of the discrete symmetry. First we introduce a vector-

like pair of 16’s, labelled as 16X + 16X . Next a GUT-scale mass is given to their

colour triplet components dcX , d
c
X whilst keeping the remaining particles light.

Suitable charges under the discrete symmetry can forbid the appropriate mass
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terms and the large mass can arise from membrane instantons if the 16X and

16X are close by on the G2 manifold [71].

We take 16X to be localised along a Wilson line, and find that it transforms

under the discrete symmetry as

16X →ηx
(
η−3γL⊕ η3γ+δec ⊕ η3γ−δN ⊕ η−γ−δuc⊕

⊕ η−γ+δdc ⊕ ηγQ
)
. (3.36)

Assuming 16X transforms without Wilson line phases, 16X → ηx 16X , the condi-

tion for the mass term is

dcXd
c
X : x− γ + δ + x = 0 mod N, (3.37)

whilst forbidding all the other self couplings that would arise from 16X16X .

The light Dw and D
w

from the original 10w then “complete” the 16X + 16X

pair, since they have the same SM quantum numbers as the missing dcX , d
c
X . The

light states in the 16X and 16X also obtain masses via the Kähler potential of

order a TeV via the Giudice-Masiero mechanism. Gauge unification is clearly

restored, albeit with a larger gauge coupling at the GUT scale due to the extra

low energy matter content (relative to the MSSM).

Note that one can consider a model beyond simplicity by adding more vector-

like multiplets which is consistent with anomaly cancellation constraints and gauge

unification. However, such a model results in too large 1-loop gauge running

coefficients so that the gauge couplings approach infinity before they unify. To

avoid non-perturbativity issue, we are constrained to the model with 16X and

16X .

Effective µ-terms induced by moduli vevs of the form µ16m16X are then gen-
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erated and one might be concerned about too much mixing with quarks and

leptons. However, one finds that all the light components of the extra matter

decouple from ordinary matter, with mixings supressed by terms of order (3.32).

For example, consider the up-type quark sector. The superpotential contribution

to the mass matrix is, schematically, UL ·Mu · UR , with UL =

(
ui uX ucX

)T
,

UR =

(
(uc)i uX ucX

)T
, and

Mu =


yiju 〈Hu〉 µiXQ 0

0 µXXQ 0

µjXu 0 µXu

 (3.38)

Here µiXQ, µ
j
Xu, µXXQ, µXu are moduli induced µ-type parameters of O(TeV)

while the vanishing entries are non-zero only to first order in moduli-induced

trilinear interactions that are vanishingly small, O(10−14). We have found nu-

merically that flavour changing neutral currents (FCNCs) are highly suppressed

by this structure. This can be understood analytically in the approximation that

the electroweak masses can be ignored, since yu〈Hu〉/µ ∼ O(0.1). In this ap-

proximation, the third lightest u-quark will be given by the two component Weyl

quarks

t = u′3 '
1√

(µ3
X)2 + (µXXQ)2

((µXXQ)u3 − (µ3
X)uX), (3.39)

tc = (uc3)′ ' 1√
(µ3

Xu)
2 + (µXu)2

((µXu(u
c)3 − (µ3

Xu)u
c
X), (3.40)

and as a result the light up-quark, which we denote t, does not result in a mixing

including ucX . This is important, since ucX in UL couples to Z differently, only

through the electromagnetic contribution to the neutral current and not via the Jµ3

contribution. Consequently, FCNCs will be naturally suppressed and the CKM
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matrix should have only small deviations from unitarity. Furthermore we note

that the resulting matter states couple to the Higgses and Z as in the MSSM.

3.2.2 See-saw Mechanism

Introducing the 16X and 16X will play a crucial role in breaking the extra U(1)

subgroup of SO(10) and generating right-handed neutrino masses. We assume

that a mechanism similar to the one proposed by Kolda-Martin [81] is in effect,

such that the right-handed neutrino components acquire a non-trivial high-scale

vev along the D-flat direction, 〈NX〉 = 〈NX〉 = vX , which in turn breaks the rank.

However the scale vX is constrained, as discussed below.

Presence of the 16X and 16X with vevs in their right-handed neutrino com-

ponents gives us the possibility of having a see-saw mechanism for light physical

neutrino masses. Such a mechanism is welcome since representations larger than

the 45 are absent in M theory [82]. In the present framework, a Majorana mass

term for the right handed neutrino in 16m is generated by letting the discrete

symmetry to allow the Planck suppressed operator 1
mpl

16X16X16m16m. This re-

quires charges to satisfy 2x + 2κ = 0 mod N , and leads to the Majorana mass

M ∼ vX
2

mpl
.

Due to the nature of SO(10), the neutrinos will have the same Yukawa coupling

as the up-type quarks yiju , as in Eq. (3.29), leading to their Dirac masses being

the same as the up-quark masses. For the case of the top quark mass we would

need M ∼ 1014 GeV in order to give a realistic neutrino mass. Such a high value

can only be achieved by the above see-saw mechanism if vX & 1016 GeV.

The magnitude of vX is also constrained by R-parity violating (RPV) dy-

namically generated operators, due to moduli and NX , NX vevs, arising from the
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Kähler interactions

KRPV ⊃
s

m3
pl

16X16m16m16m +
s

m2
pl

10w16X16m. (3.41)

Because moduli are also charged under the discrete symmetry, these operators

are expected to be allowed due to generic charges of O(100) moduli. Since s

and NX acquire vevs, these operators generate the effective superpotential terms

(otherwise forbidden by the discrete symmetry),

W eff
RPV ⊃ λ

vX
mpl

LLec + λ
vX
mpl

LQdc + λ
vX
mpl

ucdcdc +

+λvXLHu, (3.42)

with λ ∼ O(10−14). One can absorb the last term into µHdHu by a small rotation

O(vX/mpl) in (Hd, L) space,

W eff
RPV ⊃ ye

vX
mpl

LLec + yd
vX
mpl

LQdc + λ
vX
mpl

ucdcdc, (3.43)

where the first two terms originate from the Yukawa couplings yeHdLe
c, etc., and

we have dropped the O(λ) contributions to these terms since now the Yukawa

rotated contributions are much larger.

We emphasise that there exist explicit solutions to the constraints on all of the

charges and couplings that we have discussed. These are Table 3.3, Eq. (3.37),

the Majorana mass term, suppressing the RPV operators and cross-terms between

the visible matter, 16X and 16X necessary for Eq. (3.38). An example is given by

(N,ω, α, β, κ, x, γ, δ, x) = (16, 4, 0, 1, 6, 2, 1, 13, 2). (3.44)
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which is also anomaly free, as can be checked by explicit calculations [83].

The last term in Eq. (3.42) is the bilinear RPV operator which mixes the

up-type Higgsino and neutrinos [84, 85]. The contribution to neutrino masses is

tighly constrained leading to λvX . O(1 GeV), which translates to the upper

bound vX . 1014 GeV in contradiction with the see-saw requirement vX ∼ 1016

GeV assumed in the above estimates. However, there is a natural way within this

framework to further suppress the bilinear RPV terms. This happens when the

charges of the moduli fields under the discrete symmetry are such that the leading

order terms in K, which are linear in the moduli i.e. s
m2
pl
vXLHu, are forbidden

by the symmetry, with the leading term arising at higher order in the moduli. If

the leading term arises at cubic order or higher, (e.g. K ∼ s3

m4
pl
vXLHu then the

suppression will be sufficient. Furthermore, some moduli may have smaller vevs

than others in a detailed model, leading to additional suppression.

The RPV terms in Eq. (3.43) induce the lightest supersymetric particle (LSP)

decay. We can estimate its lifetime as [45]:

τLSP '
3.9× 10−9 sec

(vX/mpl)
2

( m0

10 TeV

)4
(

100 GeV

mLSP

)5

. (3.45)

Since, as discussed above, vX/mpl ∼ 10−2, one finds τLSP ∼ 10−4 sec. This value

is compatible with current bounds τLSP . 1 sec [86], from Big Bang Nucleosyn-

thesis. The result implies that the LSP is not a good dark matter candidate in

M-theory framework. However, without the stable LSP, there are other possibil-

ity explaining dark matter in SO(10) models. As mentioned in the last chapter,

axions from the string theory framework as a dark matter are the most common

prediction [49,50].

Note that in this framework, gravitino is not a candidate for dark matter since
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it is not a stable particle with O(10) TeV mass. In fact the abundance of gravitino

might be a problem to the BBN prediction as discussed before since its lifetime

is of order
M2
pl

m3
3/2

∼ 1 sec. However, the decay of the lightest modulus generically

produces a large amount of entropy such that the initial abundance of gravitino is

diluted away. The gravitino thermal production from the lightest modulus is also

found to be kinetically forbidden since we typically find that the lighest modulus

is lighter than 2m3/2.

Since any global symmetries is explicitly broken from planck suppressed opera-

tors [70], there is no associated goldstone bosons such as R-axion from R-symmetry

as a dark matter candidate.

Another possible solution would be an assumption that there exists a particle

in a hidden sector that is lighter than the LSP and there is a portal between 2

sectors. In string/M theory framework, the portal connection is typically in the

form of the kinetic mixing terms as argued in [87].

3.3 Conclusion

We have discussed the origin of an SO(10) SUSY GUT from M theory on a G2

manifold. We were naturally led to a novel solution of the doublet-triplet splitting

problem involving an extra 16X + 16X vector-like pair where discrete symmetries

of the extra dimensions were used to prevent proton decay by suppressing the

Yukawa couplings of colour triplets. Such models maintain gauge coupling unifi-

cation but with a larger GUT coupling than predicted by the MSSM. We argue

that these extra multiplets, also required to break the additional U(1) gauge sym-

metry, inevitably lead to significant R-parity violating effects when combining with

the see-saw mechanism. Even though the moduli potential generically breaks the
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discrete symmetry, we have seen that one naturally satisfies the constraints from

the proton lifetime and decays affecting BBN. We also have found a consistent

scenario for neutrino masses arising from the high scale see-saw mechanism, with

sufficiently suppressed RPV contributions. We emphasise the main prediction of

this approach, namely light states with the quantum numbers of a 16X + 16X

vector-like pair which might be accessible in future LHC searches.
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Chapter 4

Bottom-up Approach and Future

Colliders

4.1 Introduction

In the MSSM, the chargino-neutralino sector is particularly important for several

phenomenological reasons. Firstly, this sector contains Higgsinos, whose mass

parameter, µ, plays a crucial role in electroweak symmetry breaking. If the MSSM

provides a solution to the gauge hierarchy problem, at least some of the charginos

and neutralinos must be present not too far from the electroweak scale. Secondly,

many SUSY breaking scenarios suggest that one of the neutralinos becomes the

lightest SUSY particle (LSP). Typically, the lightest neutralino is stable due to a

discrete symmetry (e.g. R-parity) and might be a promising candidate for dark

matter. Such a stable neutralino also plays a crucial role in collider phenomenology

since the decay of supersymmetric particles will always produce the LSP, leading

to a distinctive missing energy signature.

The ATLAS and CMS experiments at the CERN Large Hadron Collider (LHC)
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have put considerable effort into looking for charginos and neutralinos in the

LHC data. In hadron colliders the expected limit and discovery reach for the

charginos and neutralinos are considerably weaker compared to those for squarks

and gluinos. For the χ̃±1 χ̃
0
2 → W±χ̃0

1Zχ̃
0
1 simplified model with mχ̃±

1
= mχ̃0

2
and

mχ̃0
1

= 0 GeV, the current limit is mχ̃±
1

>∼ 400 GeV [88,89]. The projection for the

14 TeV LHC has been estimated for the same simplified model by ATLAS [90].

The 5-σ discovery reach (95% CL limit) for the chargino mass is about 550 (880)

GeV for 300 fb−1 and 800 (1100) GeV for 3000 fb−1. For massive neutralinos

(mχ̃0
1
> 0 GeV) or models with BR(χ̃0

2 → hχ̃0
1) > 0, the limit and discovery reach

become even weaker. These limits are well below those required by typical dark

matter models.

Recently, there has been discussion on the next generation of circular col-

liders, including high energy proton-proton machines. Several physics cases at

proton-proton colliders with
√
s ' 100 TeV have already been studied [91–102].

In particular, the limit and discovery reach for coloured SUSY particles have been

studied in the context of simplified models assuming a 100 TeV proton-proton col-

lider with 3000 fb−1 of integrated luminosity [91]. The mono-jet search [96] as well

as the mono-photon, soft lepton and disappearing track searches [100, 101] have

been studied in the similar setup for production of the pure W -inos (Higgsinos),

assuming they are the main component of the LSP. The 100 TeV colliders will

provide a great opportunity to discover heavier charginos and neutralinos beyond

the LHC reach.

In this chapter we investigate chargino-neutralino search at a 100 TeV collider

assuming 3000 (1000) fb−1 luminosity exploiting the WZ channel. In stead of

employing a simplified model approach, we work on a model which may arise

as a limit of concrete models. In particular we assume M2 > µ > 0 and
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M2 − µ � mZ , where M2 is the W -ino mass and µ is the Higgsino mass. In

this scenario Higgsinos form the main component of the lighter charginos and

neutralinos (χ̃±1 , χ̃
0
1, χ̃

0
2 ∼ H̃±, H̃0

1 , H̃
0
2 ) and W -inos compose the heavier charginos

and neutralinos (χ̃±1 , χ̃
0
3 ∼ W̃±, W̃ 0). This assumption is partly motivated by

naturalness, by anomaly mediation SUSY breaking scenarios, by string/M theory

models and by split supersymmetry [31,32,70,103–108]

The assumption can also be realised in string/M theory framework. However

in order to satisfy M2 > µ > 0.1m3/2, gaugino mass cannot be suppressed with re-

spect to the gravitino mass. From the supergravity computation [75], the gaugino

formula

m1/2 =
eK/2F i∂ifvis

2iImfvis
(4.1)

implies that F -term of the geometric moduli appearing in the gauge kinetic func-

tion are not suppressed. This case could happen when the moduli are stabilised

by string-loop effects or perturbative effects in Kahler potential [109].

The rest of the chapter is organised as follows. In section 4.2, we describe

the model setup and study the production cross sections and branching ratios of

charginos and neutralinos. After clarifying our simulation setup in section 4.3,

various kinematic distributions for signal and background are studied in section

4.4, which will be used to design optimal event selection cuts for the chargino-

neutralino search. In section 4.5, we present the result of our analysis and derive

the limit and discovery reach in the M2−µ parameter plane. The conclusions are

given in section 4.6.
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4.2 The cross sections and branching ratios

4.2.1 The model setup

We focus on the models with M2 > µ > 0 and M2 − µ� mZ , where the µ is the

mass of the Higgsinos andM2 is the mass of theW -inos since theW -ino production

cross section is larger than the Higgsino cross section. We assume that all the

other SUSY particles, including the B-ino, are decoupled and all SUSY breaking

parameters are real for simplicity. In this situation the mixing between W -ino

and Higgsino is negligible; the two Higgsino doublets are the lightest charginos

and the two lightest neutralinos (which are almost degenerate) and the W -inos

(SU(2) triplet) are the second lightest charginos and the third lightest neutralino

(almost mass degenerate):

χ̃±1 , χ̃
0
1, χ̃

0
2 ∼ H̃±, H̃0

1 , H̃
0
2 with mχ̃±

1
' mχ̃0

1
' mχ̃0

2
' |µ|,

χ̃±2 , χ̃
0
3 ∼ W̃±, W̃ 0 with mχ̃±

2
' mχ̃0

3
' |M2|, (4.2)

where H̃0
1/2 = 1√

2
(H̃0

u ∓ H̃0
d) is the neutral Higgsino mass eigenstate. With this

setup, the remaining free parameters are M2, µ and tan β. We use tan β = 10

throughout our numerical study. We give examples of the mass spectrum and

splittings in table 4.1.

However, the impact of tan β on the production cross section and branching

ratio of the charginos and neutralinos that are W -ino or Higgsino like is almost

negligible unless tan β is extremely small. The tan β dependence of the cross

section is shown in figure 4.2. We therefore believe our results including the

chargino-neutrino mass reach are still useful for other values of tan β.

71



M2 [GeV] µ [GeV] tan β χ̃0
1 [GeV] χ̃0

2 [GeV] χ̃±1 [GeV] χ̃0
3 [GeV] χ̃±2 [GeV]

1500 1200 5 1185.8 1200.8 1192.0 1514.8 1508.0
1500 1200 10 1187.6 1202.0 1195.8 1513.18 1504.2
1500 1200 50 1189.2 1201.2 1199.1 1511.8 1599.9
2500 1200 5 1196.5 1200.6 1198.1 2503.9 2501.9
2500 1200 10 1196.9 1200.7 1199.0 2503.6 2501.0
2500 1200 50 1197.3 1200.9 1200.0 2503.4 2500.2
3500 1200 5 1198.0 1200.5 1199.0 3502.3 3501.1
3500 1200 10 1198.2 1200.6 1199.5 3502.2 3500.6
3500 1200 50 1198.4 1200.7 1199.9 3502.1 3500.1

Table 4.1: The mass spectrum for various benchmarks. Notice that tan β depen-
dence on the mass spectrum is mostly neglible and the degeneracies appearing in
4.2 is valid up to soft activities.

4.2.2 The cross sections

We show the leading order (LO) cross sections for the W -ino and Higgsino pair

productions at a 100 TeV proton-proton collider in figure 4.1. The cross sections

are calculated using MadGraph 5 [110]. Since squarks are decoupled, the W -inos

and Higgsinos are produced via the s-channel diagrams exchanging off-shell W±

and Z bosons. For the pure W -inos and Higgsinos, there is no associated W -

ino-Higgsino production process. Pair production of the same neutralino states,

W̃ 0W̃ 0, H̃0
1H̃

0
1 , H̃0

2H̃
0
2 , are also absent.

One can see that the W̃±W̃ 0 production mode has the largest cross section.

The LO cross section varies from 103 fb to 10−2 fb for the W -ino mass from 500

GeV to 8 TeV.

72



100 TeV

B̃ W̃ H̃

(B̃, W̃0, H̃0
d, H̃0

u)

Nmix =

0
BB@

1 0 0 0
0 1 0 0
0 0 0.7071 0.7071
0 0 �0.7071 0.7071

1
CCA ,

(W̃+, H̃+
u , )

Umix = Vmix =

✓
1 0
0 1

◆

Figure 4.1: The leading order cross sections for the W -ino and Higgsino pair pro-
ductions at a 100 TeV proton-proton collider with decoupled squarks and sleptons.
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Figure 4.2: The cross sections for the χ̃±2 χ̃
0
3 ∼ W̃±W̃ 0 production as a function of

tan β .
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4.2.3 The branching ratios

The W -ino-Higgsino interaction is derived from the kinetic terms of Higgsinos.

L ⊃
[
H†ue

VHu +H†de
VHd

]
θ4

⊃
√

2g(H∗uW̃
aT aH̃u −H∗dW̃ aT aH̃d) + h.c. (4.3)

The Higgs and Higgsino fields can be written in terms of the Goldstone bosons

and the mass eigenstates as:

H+
u

H0
u

 =

 sin β · φ+ + · · ·
1√
2
(cosα · h+ i sin β · φ0) + · · ·

 ,

H̃+
u

H̃0
u

 '
 H̃+

1√
2
(H̃0

1 + iH̃0
2 )

 ,

H0
d

H−d

 =

−1√
2
(sinα · h+ i cos β · φ0) + · · ·

− cos β · φ− + · · ·

 ,

H̃0
d

H̃−d

 '
 1√

2
(H̃0

1 − iH̃0
2 )

H̃−

 ,

(4.4)

where h is the SM like Higgs boson, and φ0 and φ± are the Goldstone bosons to

be eaten by the SM gauge bosons, Z and W±, respectively. The angles α and β

represent the mixing for the neutral and charged Higgs mass matrices.

In the large tan β limit, we have cosα/ sinα ' (− sin β)/ cos β, and one can

see that the hW̃H̃, φ0W̃ H̃ and φ±W̃ H̃ have the same coupling. In this limit one
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can find the following results using the Goldstone equivalence theorem [111].

BR(W̃±) '


0.5 → W±H̃0

1 or W±H̃0
2

0.25 → hH̃±

0.25 → ZH̃±

BR(W̃ 0) '


0.5 → W±H̃∓

0.25 → hH̃0
1 or hH̃0

2

0.25 → ZH̃0
1 or ZH̃0

2

(4.5)

The different CP properties between h and φ0, and H̃0
1 and H̃0

2 result in the

different rates for W̃ 0 → hH̃0
1 and W̃ 0 → ZH̃0

1 , hH̃
0
2 . These rates are given by

BR(W̃± → W±H̃0
1 ) ' BR(W̃± → W±H̃0

2 ),

BR(W̃ 0 → hH̃0
1/2) ' BR(W̃ 0 → ZH̃0

2/1),

BR(W̃ 0 → ZH̃0
1 )

BR(W̃ 0 → hH̃0
1 )
' 1− 2|µ/M2|

1 + 2|µ/M2|
. (4.6)

Figure 4.3 shows the branching ratios of W̃± and W̃ 0, which have been cal-

culated using SUSY-HIT [112]. One can see that the branching ratios approach

eq. (4.5) in the large M2 limit. For the region where |M2−µ| is close to the masses

of SM bosons, the decay mode into W± enhances since it has the largest phase

space factor.

Since the charged and neutral W -inos are almost mass degenerate, it may

not be possible to resolve W̃± → XY and W̃ 0 → X ′Y ′ in hadron colliders if

XY is equal to X ′Y ′ up to soft activities. Similarly, four degenerate Higgsinos

would not be resolvable, since H̃± and H̃0
2 usually decay promptly into H̃0

1 and

their decay products are too soft to be detected. We therefore categorise the
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(a) (b)

Figure 4.3: The branching ratios of W̃± (a) and W̃ 0 (b) as functions of M2.
The µ parameter is fixed at 200 GeV. The SUSY particles other than W -inos and
Higgsinos are decoupled.

processes into distinguishable groups in terms of the SM bosons appearing in the

final states. For example, χ′χ′ → WZχχ process (WZ mode) includes W̃+W̃− →

(W±H̃0
1/2)(ZH̃∓), W̃±W̃ 0 → (W±H̃0

1/2)(ZH̃0
1/2), (ZH̃±)(W±H̃∓) and W̃ 0W̃ 0 →

(W±H̃∓)(ZH̃0
1/2). We show the cross sections of the all 6 distinguishable modes,

WZ, Wh, WW , ZZ, Zh and hh modes, in the M2 − µ plane in figure 4.4.

One can see that the modes containing at least one W have considerably larger

cross sections compared to the others at the same mass point. In particular, the

WZ mode is promising1 because one can reduce the QCD and tt̄ backgrounds

significantly by requiring three high pT leptons (see figure 4.5). Taking advantage

of this we henceforth study the expected discovery reach and exclusion limit for

chargino-neutralino production in the WZ mode.

In figure 4.6, we show the cross section of the WZ mode after taking account of

the branching ratios of the gauge bosons into 3`+ ν. The black curve represents

the limit beyond which less than 5 signal events (χ′χ′ → WZχχ → 3`νχχ)

1The Wh mode is also interesting. See [113–117] for some recent studies.
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Figure 4.4: The cross sections of the 6 distinguishable modes, χ′χ′ → XY χχ with
XY = WZ,Wh,WW,ZZ,Zh and hh, as functions of M2 and µ. SUSY particles
other than W -inos and Higgsinos are decoupled.

are produced, assuming the integrated luminosity of 3000 fb−1. This provides a

rough estimate of the theoretically maximum possible exclusion limit assuming

zero background with perfect signal efficiency.
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Figure 4.5: The dominant event topology for signal events.
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Figure 4.6: The cross section of χ′χ′ → WZχχ→ 3 `νχχ as a function of M2 and
µ. The black curve represents the limit beyond which less than 5 signal events
are produced, assuming the integrated luminosity of 3000 fb−1.

4.3 The simulation setup

We use the Snowmass background samples [118] to estimate the Standard Model

(SM) backgrounds. We include the relevant SM processes, which are summarised

in table 4.2.

For signal events we first generate chargino and neutralino production events

using MadGraph 5 with the parameters obtained by SUSY-HIT. We consider two
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Name Snowmass Relevant sub-processes σNLO
total [pb]

diboson VV W+W−, W±Z, ZZ 3298.4
top-pair + gauge boson ttV tt̄W±, tt̄Z, tt̄ h 219.9

top + gauge boson tV tW±, t̄W± 3582.2
triple gauge boson VVV W+W−W±, W+W−Z, W±ZZ, ZZZ 36.4

Table 4.2: The Standard Model background included in the analysis. For each
background category, we only list sub-processes relevant in the 3 lepton analysis.
Reported cross sections include all sub-processes in corresponding background
categories.

production processes pp→ χ+
2 χ
−
2 and pp→ χ±2 χ

0
3, where χ±2 ∼ W̃± and χ0

3 ∼ W̃ 0.

The generated samples are then passed to BRIDGE [119] to have the charginos and

neutralinos decay. We then only accept the events with W and Z in the final

states, and pass those events once again to BRIDGE to let W and Z decay leptoni-

caly. Finally we simulate the effects of parton shower, hadronization and detector

resolutions using Pythia 6 [120] and Delphes 3 [121]. The detector simulation is

tuned according to the Snowmass detector framework [118].

4.4 The kinematic distributions

In this section we show some kinematic distributions for the background and

signal events. We consider the WZ mode for signal and diboson (VV) and top-

pair plus gauge boson (ttV) processes for backgrounds. The signal distributions

are generated at a benchmark point: M2 = 1.4 TeV, µ = 200 GeV. Throughout

this section we use a notation denoting the i-th hardest lepton (electron or muon)

by `i (namely, pT (`i) > pT (`j) for i < j).

Figure 4.7(a) shows the normalised distributions of the leading lepton pseudo-

rapidity, η`1 , for signal (black) and background (red for VV and green for ttV).

The distributions are obtained at a parton level without selection cuts apart from
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pT (`1) > 10 GeV to understand the bare distribution before taking the detector

acceptance into account. One can see that the leptons in the background tend

to be more forward compared to the signal leptons. The production threshold is

much lower for the backgrounds and more asymmetric momentum configurations

are allowed for the initial partons. If one of the initial partons has a much larger

momentum than the other, the system is boosted in the direction of the beam pipe

and the leptons tend to be produced in the forward region.2 Another effect is as

follows. Unlike the signal, production of the backgrounds have a contribution from

t-channel diagrams. In 100 TeV colliders, the SM gauge bosons can effectively be

regarded as “massless” particles and there is an enhancement in the region of the

phase space where the gauge bosons are produced in the forward region.

Figure 4.7(b) shows the pT distributions of the three hardest leptons. The

distributions are obtained after taking the hadronization and detector effects into

account and requiring at least 3 leptons (with pT > 10 GeV, |η| < 2.5), of which

two are same flavour and opposite sign (SFOS). As can be seen, the pT -spectrum

of background leptons has peaks below 100 GeV, whilst the signal peaks at around

300, 150 and <∼ 50 GeV for the leading, second leading and third leading leptons

for our benchmark point.

We also show the Emiss
T distributions in figure 4.7(c), where we use the same

event sample as those in figure 4.7(b). The main source of the Emiss
T in the

background are the neutrinos produced from W and Z decays and the distribution

has a peak around 30−40 GeV. Above this peak, the background Emiss
T distribution

falls quickly. On the other hand, a large Emiss
T can be produced from the signal

from the decays of heavy charginos and neutralinos. The typical scale of Emiss
T

2For the W+Z background, the initial state is often u and d̄. If the partonic collision energy
is much smaller than the proton-proton collision energy, it is more likely to find a valence quark
u carrying a larger fraction of the proton momentum compared to the sea quark d̄.

80



is given by ∼ M2/2. As can be seen, the signal distribution has a peak around

500 GeV. This indicates that a hard cut on Emiss
T will greatly help to improve the

signal to background ratio.

We show the transverse mass mT distributions in figure 4.7(d), where the

event samples are again the same as those used in figure 4.7(b). We define mT ≡√
2|pT (`′)||Emiss

T |(1− cos ∆φ), where `′ is the hardest lepton amongst those not

chosen as the SFOS lepton pair and ∆φ is the azimuthal difference between the

`′ and the direction of −→p miss
T . In the WZ background, this distribution has an

endpoint atmW and above the endpoint the distribution drops very sharply. In the

signal events, the distributions are much broader, as can be seen in figure 4.7(d). A

harsh cut on mT would also be very helpful to reject a large fraction of background

without sacrificing too many signal events.

4.5 The limit and discovery reach

4.5.1 The event selection

Our event selection consists of two parts: preselection and signal region (SR) selection.

The preselection requirement is:

• exactly three isolated leptons with pT > 10 GeV and |η| < 2.5,

• a same-flavour opposite-sign (SFOS) lepton pair with |mSFOS
`` − mZ | < 10

GeV,

• no b-tagged jet.

With the first condition one can effectively reject the QCD, hadronic tt̄ and single

gauge boson backgrounds. The definition of lepton isolation and some discussion
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Signal Region 3 lepton pT [GeV] Emiss
T [GeV] mT [GeV]

Loose > 100, 50, 10 > 150 > 150
Medium > 250, 150, 50 > 350 > 300

Tight > 400, 200, 75 > 800 > 1100

Table 4.3: The event selection cuts required in the signal regions. These cuts are
applied on top of the preselection cuts.

around it is given in Appendix A.2. The second condition is introduced to remove

the leptonic SM processes without Z bosons, such as tt̄W± and W+W−W±. The

last condition is effective to reduce the SM backgrounds containing top quarks.

In the simulation we use the b-tagging efficiency of about 70 %, which is set in the

Delphes card used in the Snowmass backgrounds.

In order to obtain as large coverage as possible in the M2−µ parameter plane,

we define three signal regions: Loose, Medium, Tight. These signal regions are de-

fined in table 4.3. The selection cuts are inspired by the kinematical distributions

shown in figure 4.7. The Loose region, which has the mildest cuts, is designed to

constrain the degenerate mass region (M2 >∼ µ), whereas the Tight region, which

has the hardest cuts, targets the hierarchical mass region (M2 � µ). The Medium

region is also necessary to extend the coverage in the intermediate mass region.

The visible cross section (the cross section for the events satisfying the event

selection requirements) for each signal region is shown in Appendix A.3. The

information for the detailed breakdown of the background contribution and the

visible cross section at each step of the selection is also shown. The number of total

background events are expected to be 38400, 810 and 12.3 for the Loose, Medium

and Tight signal regions, respectively, at 3000 fb−1 of integrated luminosity.
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4.5.2 The result

In figure 4.8(a), we show the 2σ exclusion limits in the µ−M2 parameter plane

obtained by the different signal regions. The shaded regions have S/
√
B ≥ 2,

where S and B are the number of expected signal and background events falling

into the signal regions, respectively. For signal we use a constant k-factor of

1.3 across the parameter plane. One can see that the three signal regions are

complementary and M2 can be constrained up to ∼ 1.8 TeV for µ <∼ 800 GeV.

Figure 4.8(b) shows the 5σ discovery reach (S/
√
B ≥ 5) obtained from the

different signal regions. As can be seen, the Loose and Medium signal regions

provide the discovery reach up to about 850 and 1.1 TeV, respectively, for µ <∼ 450

GeV. On the other hand, the Tight signal region does not have sensitivity to

S/
√
B ≥ 5.

We show in figure 4.9(a) the global 2 σ exclusion limits for integrated lumi-

nosities of 3000 fb−1 (red) and 1000 fb−1 (blue). The global exclusion limit is

obtained by choosing the signal region that provides the largest S/
√
B for each

mass point. The shaded regions around the solid curves represent the uncertainty

when varying the background yields by ±30 %. One can see that changing the

background by 30 % results in a ∼ 100 GeV shift in M2 for the µ � M2 region.

M2 can be constrained up to 1.8 TeV with µ <∼ 800 GeV for 3000 fb−1, which can

be compared with the projected chargino neutralino mass limit of 1.1 TeV for the

high luminosity LHC with 3000 fb−1 obtained by ATLAS [90]. For 1000 fb−1 the

limit on M2 is about 1.5 TeV with µ <∼ 400 GeV as can be seen in figure 4.9(a).

Figure 4.9(b) shows the global 5σ discovery reach for 3000 fb−1 (red) and 1000

fb−1 (blue) with the 30 % uncertainty bands for background. One can see that

charginos and neutralinos can be discovered up to M2 <∼ 1.1 TeV with µ <∼ 500

GeV for 3000 fb−1 integrated luminosity, which can be compared with the pro-
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jected ATLAS value of 0.8 TeV for the high luminosity LHC [90]. For 1000 fb−1,

charginos and neutralinos can be discovered up to 900 GeV with µ <∼ 250 GeV.

Note that in our simulation we include both the WZ and ZZ modes in the

signal sample, though the contribution from ZZ mode is typically less than about

5 % after the selection cuts. We have also investigated the contribution from the

other modes and found these to be of order ∼ 10 % or less, predominantly from

Zh. This can therefore be considered as a small uncertainty on the discovery

limit.

4.6 Conclusion

We studied the prospect of chargino and neutralino searches at a 100 TeV pp

collider assuming 3000 (1000) fb−1 of integrated luminosity. Our particular fo-

cus was the case where the Higgsinos form the lightest SUSY states (the lightest

charginos and the two lightest neutralinos, which are almost mass degenerate)

and W -inos form the second lightest states (the heavier charginos and the third

lightest neutralino, which are almost mass degenerate). The other SUSY particles

including B-ino are assumed to be decoupled, which is partly motivated by the

current LHC results as well as popular scenarios of SUSY breaking and its medi-

ation. We have shown that in this situation the LO production cross sections of

2 TeV W -inos are as large as 100 fb−1 and the branching ratio of W -inos follows

a simple formula, which can be derived from the Goldstone equivalence theorem.

From a study of kinematic distributions of signal and background we found

harsh cuts on lepton pT (> 50 − 400 GeV), Emiss
T (> 150 − 800 GeV) and mT

(> 150 − 1100 GeV) are beneficial to improve the signal and background ratio

and designed three complementary signal regions. Using these three signal regions,
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we found the 5 σ discovery reach (2 σ exclusion limit) for the chargino-neutralino

mass is 1.1 (1.8) TeV for µ <∼ 500 (800) GeV, which can be compared with the

projected LHC reach (limit) of 0.8 (1.1) TeV obtained by ATLAS [90]. For 1000

fb−1 the discovery reach (exclusion limit) for the chargino-neutralino mass is found

to be 0.9 (1.5) TeV for µ <∼ 250 (400) GeV.

We would also like to comment on other hierarchies in the chargino-neutralino

spectrum. In this study we have focused on a particular hierarchy (|M2| � |µ|)

of the W -ino and Higgsino states. If the LSP is a W -ino and the Higgsinos are

not decoupled, one can consider the Higgsino pair production process followed

by the decay of Higgsinos into the W -inos. As can be seen from figure 4.1, the

chargino-neutralino production has the largest cross section similarly to the W -

ino production case, though the size of the cross section is about 5 times smaller

compared to the W -ino production. Moreover the same argument based on the

Goldstone equivalence theorem still holds for the Higgsino decay modes and leads

to Br(H̃0
1/2 → ZW̃ 0)/Br(H̃0

1/2 → hW̃ 0) ∼ 1. Therefore, the most promising

channel in this scenario is again WZ + missing energy final state and they are

effectively searched for by the 3-lepton analysis we have proposed in this work.3

The same argument applies for the B-ino LSP case with non-decoupled Higgsinos.

Note added: There is a similar study in [122]. The authors considered a

variable: HT (jets)/Meff , where HT (jets) is the scalar sum of all reconstructed

jet pT ’s and Meff is the sum of all reconstructed object pT ’s. This ratio is very

useful to discriminate the chargino-neutralino signal from background. We have

checked that adding this variable to our event selection improves our exclusion

limit (discovery reach) by 200 (300) GeV if the detector simulation is taken into

account and the effective lepton separation of ∆R = 0.3 is used. The authors

3For a concrete study, see [122].
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of [122] used a milder lepton isolation criteria and their study is without a detector

simulation.
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Figure 4.7: The distributions before the selection cuts of (a) the leading lepton
pseudo-rapidity, η`1 , (b) pT of the three hardest leptons, (c) the missing transverse
energy, Emiss

T , (d) the transverse mass, mT . The backgrounds are diboson (VV)
and associated top-pair plus vector boson production (ttV). The signal events are
generated at our benchmark point, M2 = 1.4 TeV and µ = 200 GeV, and only
WZ mode is considered. The parton level events are used for (a), whilst the
detector level events after applying the 3 lepton + SFOS cuts are used for (b),
(c) and (d).
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(a) (b)

Figure 4.8: The exclusion limits (a) and the discovery reaches (b) obtained from
three signal regions. As discussed before, the value of tan β has no impact on
the result unless tan β is extremely small. We used tan β = 10 in this plot. The
integrated luminosity of 3000 fb−1 is assumed.

(a) (b)

Figure 4.9: The global exclusion limits (a) and the discovery reaches (b) for 3000
fb−1 (red) and 1000 fb−1 (blue). The shaded region represent the uncertainty
when varying the background yield by 30 %.
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Chapter 5

Conclusions

Motivated by recent developments in string compactification, string/M theory can

make a connection with low energy physics giving interesting phenomenologies.

In this thesis, we take a point of view that our universe is in fact a solution of

string/M theory and explore various phenomenological consequences.

We argue that dark radiation is very useful in offering a powerful test on

string/M theory framework. Due to the smallness of an observable such as ∆Neff ,

a light degree of freedom coming from string compactification is severely con-

strained. We investigate the dark radiation constraint in the Axiverse scenario

and provide several possible mechanisms in which the problem might be allevi-

ated. First, a relatively large vev of a particular modulus can suppress the axion

contribution to the dark radiation density. However, since large moduli vevs cor-

respond to a weak standard model coupling, it might be difficult to make the vev

large enough without making the standard model coupling too small. Another so-

lution might be an alignment between the axion kinetic and mass mixing matrices

so that the lightest modulus decays mainly to its axionic partner.

We also explore the model building aspect of string phenomenology. We study
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the origin of an SO(10) SUSY GUT from M theory on a G2 manifold. A discrete

symmetry non-commuting with SO(10) constructing from Witten’s proposal can

be used to solve the doublet-triplet splitting problem where yukawa couplings

of colour triplets are suppressed. Including an extra 16X + 16X vector-like pair

restores the gauge coupling unification with a larger GUT coupling than predicted

by the MSSM. We also study R-parity violating operators from the model and

found that the constraints from the proton lifetime and decays affecting BBN are

naturally satisfied. The RPV contribution to neutrino masses can be suppressed.

We also present results from a physics study of a future proton-proton collider.

Motivated by string/M theory framework, we investigate searches for chargino-

neutralino at a 100 TeV collider assuming 3000 fb−1 luminosity. We focus particu-

larly on the scenario where Higgsinos mainly form the lightest charginos/neutralinos

and Winos mainly form the second lightest charginos/neutralinos. We found that

the WZ channel (χ′χ′ → WZχχ) is promising because the QCD background and

tt are reduced sinificantly by requiring three high pT leptons. We compare sig-

nal and background in various kinematical distributions and design signal regions

for the trilepton channel and evaluate discovery/exclusion limits. Assuming 3000

fb−1 luminosity, Winos could be discovered up to 1.1 TeV if the spectrum is not

compressed.

There are possible directions for future research. From theoretical point of

view, it would be very interesting to exploit the mechanisms we learned from

Axivere-induced dark radiation problem. The study could galvanize a new idea

on a string compactification consistent with the Axiverse scenario. Within the

reach of the LHC and future colliders, the new physics is most likely to be dis-

covered. It is therefore crucial to pin down string/M theory frameworks from

the the top-down and bottom-up approach with equal importance. Within the
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model SO(10) GUT from M theory compactified on a G2 manifold we studied,

extra states such as those of 16X + 16X might be accessible. The study of the

extra U(1) symmetry breaking is also very important for R-parity violation and

neutrino physics. Moreover, the understanding of the SO(10) case can be easily

generalised to a larger gauge group such as E6 or E8. From a bottom-up perspec-

tive, the potential of the next generation colliders which has been widely discussed

is very exciting. The detailed study of physics scenarios in future machines might

eventually provide a powerful test on our understanding of particle physics from

string/M framework.
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Appendix A

Appendices

A.1 Neff calculation

In this section, we compute the effective number of neutrinos in order to address

the dark radiation problem. At the time of Big Bang Nucleosynthesis, the effective

number of neutrinos is defined from

ρrad = ρe± + ργ +Neffρν (A.1)

where ρν is energy density of one specie of neutrino. Any additional weakly

interacting particles moving relativistically such as axions contributes more energy

density to the radiation part and this effect can be included inside the definition

of Neff as following

ρ′rad = ρe± + ργ +Neffρν + ρa

= ρe± + ργ +Neffρν

(
1 +

ρa
ρ3ν

)
∆Neff

Neff

=
ρa
ρ3ν

(A.2)
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where ρ3ν is the energy density for 3 species of neutrino. Since both neutrinos and

axion are not in thermal equilibrium between the time of neutrino decoupling to

the time of BBN (2.5 MeV - 1 MeV), their energy density dilute in exactly the

same way. Thus, we have

ρa(BBN)

ρ3ν(BBN)
=

ρa(νdec)

ρ3ν(νdec)
(A.3)

At this period, the thermal plasma consists of electrons, positrons, photons and

neutrinos with the same temperature. Therefore, one can find the energy den-

sity ratio between neutrinos and the standard model radiation from counting the

degrees of freedom each components has

ρrad
ρ3ν

= 1 +
ρe±

ρ3ν

+
ργ
ρ3ν

= 1 +
2× 2× 7/8

3× 2× 7/8
+

2

3× 2× 7/8

=
43

21
(A.4)

Putting all relations together, we obtain

∆Neff =
Neffρa(BBN)

ρ3ν(BBN)

=
3ρa(νdec)

ρ3ν(νdec)

=
43ρa(νdec)

7ρrad(νdec)
(A.5)

To make predictions from the moduli branching fractions, we need to relate this

quantity to the time of reheating in the moduli decay scenario. Firstly, because

of its very weak coupling, axions have never been in thermal equilibrium. As a

consequence, its energy density scales as 1/a4 where a is the scaling factor. We
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can write

ρa(νdec)

ρa(reheat)
=
a4(reheat)

a4(νdec)
(A.6)

On the other hand, the standard model radiation part is in the thermal equilibrium

from the time of reheating to the time of neutrino decoupling. To find the scaling

factor, we use the fact that the comoving entropy is conserved S ∼ a3g?(T )T 3.

Therefore, we get

ρrad ∼ g?(T )T 4

∼ 1

a4g
1/3
? (T )

ρrad(νdec)

ρrad(reheat)
=

a4(reheat)g
1/3
? (reheat)

a4(νdec)g
1/3
? (νdec)

(A.7)

Substitute (A.6), we obtain

ρa(νdec)

ρrad(νdec)
=

ρa(reheat)

ρrad(reheat)

g
1/3
? (νdec)

g
1/3
? (reheat)

(A.8)

Then, the effective number of neutrinos can be written as

∆Neff =
43

7

ρa(reheat)

ρrad(reheat)

g
1/3
? (νdec)

g
1/3
? (reheat)

=
43

7

Br(Xi → axions)

1− Br(Xi → axions)

g
1/3
? (νdec)

g
1/3
? (reheat)

(A.9)

A.2 The lepton isolation requirement

In hadron colliders, leptons (electrons and muons) may arise from heavy hadron

decays. Those “background” leptons are usually found together with other parti-

cles around them. The leptons originating from gauge boson decays can therefore
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be distinguished from the background leptons by investigating activity around the

lepton. For this check, Delphes 3 uses an isolation variable, I, defined as

I(`) =

∆R<R, pT (i)>pmin
T∑

i 6=`
pT (i)

pT (`)
, (A.10)

where the numerator sums the pT of all particles (except for the lepton itself)

with pT > pmin
T lying within a cone of radius R around the lepton. If I(`) is

smaller than Imin, the lepton is said to be isolated, otherwise it gets rejected as

background. The Snowmass samples were generated using Delphes 3 with the

lepton isolation parameters R = 0.3, pmin
T = 0.5 and Imin = 0.1.

A 100 TeV collider can explore charginos and neutralinos with their mass scale

of a few TeV. If the mass hierarchy between W -ino states and Higgsino states are

much higher than the gauge bosons mass scale, the W and Z produced from the

W -ino decays will be highly boosted. If such a boosted Z decays into a pair

of same-flavour opposite-sign (SFOS) leptons, those two leptons can be highly

collimated, and one may be rejected by the isolation criteria defined above.

To see the impact of this effect, we show the ∆RSFOS (the distance between

the SFOS pair1) distributions in figure A.1. In figure A.1, the background sample

consists of the most relevant processes, WZ and ttZ, which we have generated us-

ing MadGraph 5 and Phythia 6.2 For signal, we examine three benchmark points:

(M2, µ)/GeV = (800, 200), (1200, 200) and (1800, 200). The particle level sam-

ples are passed to Delphes 3 with the same detector setup as used in Snowmass

but with R = 0.05 for the lepton isolation cone radius.

1To be explicit, ∆RSFOS =
√

(∆φSFOS)2 + (∆ηSFOS)2, where ∆φSFOS and ∆ηSFOS are the
azimuthal and pseudo-rapidity differences between the SFOS lepton pair.

2In the WZ sample, two extra partons are matched with the parton shower radiation with
the MLM merging scheme [123].
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Figure A.1: The distributions of ∆RSFOS, the distance between the SFOS lepton
pair, (a) after preselection cuts, (b) after additional cuts: Emiss

T > 500 GeV and
mT > 200 GeV. For both plots, detector simulation has been done by Delphes

3 using the same detector setup as the one used in Snowmass samples but with
R = 0.05.

Figure A.1(a) shows the ∆RSFOS distributions after the preselection cuts. As

can be seen, signal events are more concentrated around the small ∆RSFOS values,

while the background has a rather flat distribution. One can also see that a smaller

∆RSFOS is preferred for model points with larger mass hierarchy.

In Figure A.1(b) we present the same distributions of ∆RSFOS but with the

requirement of Emiss
T > 500 GeV and mT > 200 GeV on top of the preselection

cuts. As can be seen, the distributions are more concentrated for signal and back-

ground compared to the distributions with only preselection cuts. This is because

the harsh cuts on Emiss
T and mT call for large

√
ŝ for the partonic collision, leading

to more boosted Z for both signal and background events. One can see that the

significant fraction of events has a SFOS lepton pair lying within ∆RSFOS < 0.3

of each other, and it is expected that the Snowmass lepton isolation criteria with

R = 0.3 would reject some fraction of signal and background events. We there-

fore believe that employing smaller lepton isolation cone radius will improve the

96



chargino-neutralino mass reach to some extent, although a dedicated study in this

direction is beyond the scope of this work.

A.3 The visible cross sections

In this section we report the visible cross sections (the cross section after cuts)

for each step of the selection cuts for different processes. Four sets of samples are

considered for the SM background, which are defined in table 4.2. We show the

results for three benchmark model points for signal: (M2, µ)/GeV = (800, 200),

(1200, 200) and (1800, 200). The (visible) cross sections with k-factor = 3 are

shown in fb for all tables in this section. Table A.1 shows the (visible) cross

sections for the cuts employed in the preselection stage. Table A.2, A.3 and A.4

show the visible cross sections for the cuts used in Loose, Medium and Tight signal

regions, respectively. The last columns in tables A.2, A.3 and A.4 show S/
√
B

assuming 3000 fb−1 of integrated luminosity for the three different benchmark

points.

Process No cut = 3 lepton |mSFOS
`` −mZ | < 10 no-b jet

VV 3025348 2487 2338 2176
ttV 220161 792 552 318
tV 2764638 68.9 6.07 4.12

VVV 36276 76.1 56.2 56.2
BG total 6046422 3424 2952 2554

(M2, µ) = (800, 200) 1.640 0.588 0.565 0.534
(M2, µ) = (1200, 200) 0.397 0.124 0.119 0.111
(M2, µ) = (1800, 200) 0.0863 0.0190 0.0179 0.0170

Table A.1: The (visible) cross sections (in fb) for the cuts employed in the prese-
lection. The column marked ”No cut” shows the cross sections for the background
processes (defined in table 4.2) and the cross section times branching ratio into 3
leptons via WZ for signal benchmark points.
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Process p`T > (100, 50, 10) Emiss
T > 150 mT > 150 S/

√
B

VV 647 106 5.1
ttV 176 41.2 6.6
tV 0.665 0.391 0.0793

VVV 23.4 6.0 1.06
BG total 847 153 12.8

(M2, µ) = (800, 200) 0.506 0.465 0.381 5.82
(M2, µ) = (1200, 200) 0.109 0.103 0.090 1.38
(M2, µ) = (1800, 200) 0.0168 0.0164 0.0150 0.234

Table A.2: The visible cross sections (in fb) used in the Loose signal region.
The last column shows S/

√
B assuming the 3000 fb−1 luminosity for different

benchmark points.

Process p`T > (250, 150, 50) Emiss
T > 350 mT > 300 S/

√
B

VV 33.8 3.13 0.106
ttV 9.84 0.780 0.119
tV 0.037 0.0213 0.00132

VVV 1.87 0.291 0.0442
BG total 45.6 4.22 0.271

(M2, µ) = (800, 200) 0.170 0.107 0.0845 8.89
(M2, µ) = (1200, 200) 0.0572 0.0463 0.0408 4.30
(M2, µ) = (1800, 200) 0.0099 0.0088 0.0081 0.845

Table A.3: The visible cross sections (in fb) used in the Medium signal region.
The last column shows S/

√
B assuming the 3000 fb−1 luminosity for different

benchmark points.
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Process p`T > (400, 200, 75) Emiss
T > 800 mT > 1100 S/

√
B

VV 5.65 0.123 0.00166
ttV 1.03 0.0056 0.00092
tV 0.015 0.0001 0

VVV 0.350 0.0109 0.00153
BG total 7.05 0.140 0.00411

(M2, µ) = (800, 200) 0.0460 0.0020 0.0012 1.00
(M2, µ) = (1200, 200) 0.0238 0.0070 0.0052 4.45
(M2, µ) = (1800, 200) 0.0053 0.0031 0.0026 2.22

Table A.4: The visible cross sections (in fb) used in the Tight signal region.
The last column shows S/

√
B assuming the 3000 fb−1 luminosity for different

benchmark points.
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