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Abstract

This thesis is focused on various aspects of particle physics and cosmology from
String/M theory. Assuming our universe is a solution of string/M theory, physics
below the unification scale is an effective 4D supergravity theory with an abun-
dance of moduli and axions. The phenomenology of moduli and axions in an early
universe is studied. We particularly study dark radiation constraints on a generic
Axiverse scenario and provide various solutions to it. The simplest solution re-
quires the lightest modulus decays only into its own axion superpartner and this
severely constrains the moduli Kahler potential and mass matrix. We also study
a model building aspect of string/M theory. It has been shown that a discrete
symmetry on a manifold with G5 holonomy combined with symmetry breaking
Wilson lines provide a solution to the doublet-triplet splitting problem. We ex-
tend the idea to a new class of model based on M theory compactified on a Go
manifold which leads to a novel solution where the colour triplets are decoupled.
The models also involves an extra vector-like standard model multiplet to restore
gauge unification. We will also discuss the phenomenology of the new light states
and the induced R-parity violation. We will also study the prospects of searches
from a future generation of colliders. We focus in particular on the search at
a 100 TeV collider via the W Z channel. The motivation from string/M theory
models leads to the assumption that Higgsinos form the lightest supersymmetric
particle. We design simple signal regions for the trilepton channel and find that

neutralinos-charginos could be discovered(excluded) up to 1.1 (1.8) TeV.



Chapter 1

Introduction

Quantum Field Theory (QFT) is a mathematical framework which describes the
quantum behaviour of the physical system consistently with special relativity.
Depending on the symmetry properties, interactions, and particle content, QFT
can be used to describe a wide range of physical systems such as elementary
particles and condensed matter. One particular example is the standard model of
particle physics (SM) which is a QFT in 4 dimensions with SU(3) x SU(2) x U(1)
gauge symmetry. The standard model is the most successful particle physics
model ever known. Its predictions confront many experimental observations at
the precision of one part in a billion in some cases.

Albeit successful, there are many reasons to expect physics beyond the Stan-
dard Model (BSM) [1-11]. Experimentally, the most notorious one is the existence
of dark matter and dark energy. Although there is strongly convincing yet indirect
evidence for the dark sector, there is no possible candidate in the SM. Moreover,
the SM offers no mechanism and ingredient for generating the neutrino masses
which have been confirmed from neutrino oscillation experiments. From theoreti-

cal side, the hierarchy problem is also a strong motivation to call for BSM physics



stabilising the SM Higgs mass against quadratic divergences. Also, the SM allows
non-vanishing terms that break CP symmetry of the strong interaction sector.
However, strong CP violation is severely constrained experimentally by the limit
from neutron electric dipole moment experiments.

One of the most well-motivated BSM theory is low energy supersymmetry
(SUSY). Not only does SUSY provide an explanation to most of the puzzles we
listed above, it also contains attractive features such as radiative electroweak
symmetry breaking (REWSB) and gauge unification. If nature really is super-
symmetric, a supersymmetric standard model with soft supersymmetry breaking
could contain at least a hundred parameters waiting to be determined by future
experiments. To address such questions and many more to come systematically,
we need a complete theory whose low energy limit is described by supersymmetry.
Such a complete theory must also be capable of providing a consistent description
ranging from the cosmological scale down to the particle physics scale. So far,
string/M theory is one of the leading candidates offering a solution to the con-
sistency of quantum gravity. Similarly to QFT, string/M theory is a very broad
framework. Due to recent developments in string compactification, it is possi-
ble to formulate a model with features needed to connect to low energy physics
such as massive moduli fields and supersymmetry breaking with a small positive
cosmological constant.

Although there might be a lot to understand from a formal perspective of
string/M theory, one can still draw generic low energy predictions from the string/M
framework that become interesting phenomenologically. The goal of this thesis
work is to study phenomenological consequences from a string/M theory frame-
work and constrain them from experiments. We will from now on assume that

our universe is indeed described by a solution of string/M theory with low energy



supersymmetry and grand unification. Given this basic assumption, the physics
below the grand unification scale can be described by a 4-dimensional supergrav-
ity theory. One particular distinctive feature from other supersymmetric BSM
models is that particle content of the theory is not only that of the minimal
supersymmetric standard model but also moduli and axions which are low en-
ergy remnants of the string compactification. The existence of these additional
scalar fields is perhaps the most generic prediction from string theory framework
applying to our assumption.

The moduli fields are essentially higher dimensional gravitons, i.e., massless
scalar fields with Planck suppressed interactions. They arise naturally from the
geometry of the extra dimensions. For example, the most common types are
volume moduli and complex structure moduli which control the shape and the
size of the extra dimensions. Not only do they play a role in extra dimensional
space, they also connect with low energy physics directly. The crucial property
of the moduli fields is that their vacuum expectation values set the low energy
physical parameters such as gauge couplings and yukawa couplings. However, if
the moduli fields are massless, their vacuum expectation values would not be fixed.
In addition, the presence of massless scalar fields would lead to new long range
forces which have not been observed in nature. This means that all moduli must
be stabilised by their potential with significant masses in order to connect with real
world physics. The substantial progress has been made on moduli stabilisation in
various corners of string theory [12-17].

In the supergravity theory, the gravitino mass ms/, sets the typical scale of all
scalar field masses including moduli. With this implication, the moduli play a very
important role in an early universe via vacuum misalignment mechanism [18-20].

At early times, when the Hubble scale H is higher than the moduli mass, the field



is frozen due to the friction term in the equation of motion. When the universe
expands and H decreases to become the order of the moduli mass, the coherent
oscillation of moduli fields starts, leading to the matter-dominated universe. Since
the moduli have Planck suppressed couplings, the lifetime can be approximated
as 7= My /m3 . Their lifetime must be less than ~ 10~" second, otherwise their
decay products will destroy the successful predictions of Big Bang nucleosynthesis
(BBN). This is known as the cosmological moduli problem [21,22]. This requires
the limit of gravitino mass to be ms/, 2, 10 TeV. This leads to another generic
prediction from string theory that the universe is matter-dominated before BBN
era [23].

Although moduli can be stabilised and get heavy masses, their axionic partners
which arise from Kaluza Klein (KK) zero modes of antisymmetric tensor fields in
higher dimensions, are protected by shift symmetries. Similar to the QCD axion,
their masses are generated from instanton effects. Since the axionic potential is
generically suppressed by instanton actions, axions arising from string compact-
ification are expected to be very light. The number of axions depends on the
topological property of the compactified manifold and associated with the corre-
sponding Betti number of the manifold [24,25]. Many examples of compactified
manifolds have been studied and the Betti number ranges from 1 to 1000 [26-28].
This leads to the notion of the string Aziverse, i.e., the universe filled with many
ultra light axions [29].

Axions also play very significant roles in the dark sector of the universe. Similar
to moduli fields, when H ~ m, axions also behave like matter. However, there
is one important difference from moduli: axions have an extremely long lifetime
due to their very small masses. Therefore if axions are produced non-thermally,

they can be a perfect candidate for dark matter. Axions can also be an additional



component of the radiation energy density of the universe also known as dark
radiation. Since moduli with mass ~ TeV can decay into SM particles as well
as their axion partners, axions produced from moduli decay will be relativistic.
This leads to an extra component of radiation from axions whose extremely weak
couplings separate them from the SM thermal bath. The dark radiation from
axion is one of the generic predictions which is often constrained severely from
precision cosmological observables. I will focus on the dark radiation constraints
in the Axiverse scenario in this thesis.

Recently, significant progress has been made in the context of M theory com-
pactification on a manifold with G5 holonomy. The moduli stabilisation in this
framework has been investigated in [30]. It was shown in [31,32] that under
reasonable assumptions, a (G compactification gives rise to the resulting N =1
supergravity theory with low scale supersymmery breaking. Assuming that parti-
cle content of the visible sector to be at least that of MSSM, it provides the basis
for studying phenomenological consequences in M theory framework. A study
of a new class of models from M theory framework in which I made substantial
contributions will form another section of the thesis.

In the rest of this chapter we will review various topics that can be useful in
this thesis. We will review the origin of scalar fields from string theory. We will
also review supersymmetric phenomenological models where the p problem and
R-parity violation are the main focus. Finally we will provide an outline for the

thesis.



1.1 Scalar fields from string theory

We review scalar fields resulting from string compactification in this section. To
give an idea, it is rather insightful to review the Kaluza Klein compactification of
the original fifth dimension model as the simplest example before moving on to the
string/M theory compactification on Calabi-Yau/Gs manifold. The idea of the
fifth dimension was proposed [33] in an attempt to unify electromagnetism with
gravity. The 5D gravity is reduced to 4D gravity plus an abelian gauge theory if
the fifth dimension is compactified on a circle which is assumed to be too small

to be observed from current experiments.

1.1.1 Introduction to Compactification

The simplest example of the scalar fields from compactification is the Kaluza Klein
states. Let’s consider an action of a real massless scalar field in a Minkowski space
with D =5

S = /d%aMw% (1.1)

where M = 0,...,4 with nyy = diag(—,+,+,+,+). Assume that the fifth
direction gets compactified in a circle of radius R, i.e, the 5D space is a product
of M5 = M, x S*. We write the coordinate as xy = (z,,y), where p =0,1,2,3

and y € [0,27R]. The equation of motion in 5D reads

oMb = 0,06 + 926 = 0 (1.2)



Due to the periodicity of the field ¢(z,,y) = ¢(x,,y + 27 R), we can expand the

field in a Fourier series

LN g pemlR
Pay) = = > alx)em™in, (1.3)

n=—oo

Substitute back to the equation of motion we get

n2
0,0" by, + ﬁqbn =0 (1.4)

which means that ¢, () is a scalar field in 4D with mass %. The analysis shows

that a single scalar field in higher dimension under a compactification process
gives rise to an infinite tower of particles with masses % where n € Z.
Now let’s consider the gravity part of the KK compactification. The 5D Ein-

stein Hilbert action is written as
S = M§’/d5x\/—GR5d (1.5)

where G = det(Gyn) and Rsq is the 5D Ricci scalar. Again we perform Fourier

expansion on the metric field

1 .
MN — \/ﬁ Z G?\%N(x)elny/R' (16)

As we see in the analysis on a scalar field, 4D theory will contain massless fields
and a tower of massive states. The massless sector turns out to be the usual

graviton g, a vector field A, and a scalar field S living in the zero mode of the



5D metric as [33-35]

GO oSP3 g +e5AA, e5A, | )
e SA, e=d
S is the simplest example of the moduli field which has a vanishing potential and
its vev parametrises a microscopic property which is identified as the inverse of
the radius in this case.

The presence of moduli fields arising from the higher dimensional metric is
generic to any compactified manifolds. This gives rise to many interesting physical
consequences as we will review later on. Another instructive example is the torus
T? = S' x S! which we can identify moduli fields associated with its area and its

shape as

S=RiRy, U=Ry/ (1.8)

where R; and R, are inner radius and outer radius respectively.

1.1.2 Moduli and Axions from String Compactification

Although our examples so far have been illustrative, in a compactification lead-
ing to more realistic physics, a compactified manifold is typically non-trivial. In
string/M theory we certainly start from a 10D or 11D maximally supersymmetric
theory. Therefore the compactified manifold must break some portion of super-
symmetry resulting in a preferable phenomenology. This is the main criterior for
string compactifications. For example, it was found that the superstring com-
pactification on a Calabi-Yau manifold leads to N = 1 supersymmetry in 4D [36].
Similar results can also be found in M-theory compactification on a manifold with

G5 holonomy (37, 38].



To analyse the more general case, the higher dimensional metric can be de-
composed into gyn — Guv D gun © Gmn- The zero modes from g, are the lower
dimensional graviton, whereas massless modes corresponding to gauge bosons
come from g¢,,. To find the moduli fields which correspond to the extra dimen-
sional metric ¢,,,, we begin by writing a metric perturbation g,., = gmn + Pmn-
Then the moduli fields h,,,, which parametrises the degeneracy of the vacuum,
can be found by the condition Ry/n(gmn) = 0. The vanishing Ricci curvature is
a necessary condition for a manifold with the holonomy groups preserving super-
symmetry [24,25,39)].

For example, in G5 manifold compactification [38], the vanishing Ricci curva-

ture gives rise to the Lichnerowicz equation
Aphmn = =Vt hmn — 2Rpngh? + 2R, hyy, = 0. (1.9)
In order to perform Kaluza Klein analysis, we write the perturbation as
han = hon (2)p(y) (1.10)

where x is the 4 dimensional coordinate and y denotes coordinates in higher

dimensions. If we write the covariant derivative as
2 w2 2
\V4 —VH+Vm, (1.11)

we can see that the fluctuations leads to a tower of scalar fields in 4 dimensions

with masses given by the eigenvectors of the Lichnerowicz operator

B Vep(y) = —(Aphan)p(y) = =N p(y) (1.12)



Therefore, the zero modes of the Lichnerowicz operator can be identified as mass-
less moduli fields in 4 dimensions.

From the 11D supergravity theory, there is also a 3-form field C' with field
strength G = dC. Under Kaluza Klein compactification, the 3-form field leads
to a pseudoscalar field in 4D. The equation of motion is d x G = %G A G. The

pseudoscalars also known as axions can be obtained from the KK ansatz

C=3 W @ty) (113)

where w! form a basis for the harmonic 3-forms on G5 manifold. The number of
scalar fields is determined from the third betti number b3(X) which is the number
of linearly independent harmonic 3-forms. It was shown that axions and moduli
pair up giving b3(X') massless complex scalars fields which are the components of

massless chiral superfields in 4D N = 1 supergravity.

1.2 Supersymmetry

Supersymmetry is a symmetry which relates fermions to bosons. From the top-
down point of view, supersymmetry guarantees the absence of quadratic diver-
gences and provides consistency in string theory. Supersymmetry also stabilises
the mass of scalar fields such as Higgs boson and therefore becomes a solution to
the electroweak hierarchy problem. These reasons have led to the extensive stud-
ies in the past decades on a compactification which gives supersymmetric theories
at low energies.

A supersymmetry transformation turns a fermionic state into a bosonic state

10



and vice versa:
Q|fermion) = |boson), @|boson) = |fermion). (1.14)

The supersymmetry is also a spacetime symmetry. In fact supersymmetry gen-
erators, Q, and Q,, which are also fermionic operators form the supersymmetry

algebra

{Qas Qp} = 207, Py IM™,Qu] = i(0,)2Q5 (1.15)

{QOMQIB} = {@dﬂaﬁ} = [Pana] = [Pu7@o}] =0 (116)

where P, and M, are Poincare operators. The irreducible representations of the
supersymmetry algebra are called supermultiplets. In the superfield formalism,
different field components are unified into a single superfield using the notion of
superspace where the Minkowski coordinates is combined with the anticommuting
spinorial coordinates 6,60;. There are 2 types of supermultiplets required to

construct the supersymmetry Lagrangian:

e The chiral superfield ®, containing a complex scalar ¢, a Weyl fermion
and an auxiliary field F'. The expansion in superfield coordinates is written

as

D(x,0,0) = p(y) + V20U (y) + 0“0, F (y). (1.17)

where y* = z# + @'0"‘05 Bgﬁ. Notice that due to the fact that scalar fields
and fermionic fields have mass dimension 1 and % respectively, the spinorial
coordinates have mass dimension —% whereas the auxiliary field F' has mass

dimension 2.

e The vector superfield under the Wess-Zumino gauge consists of gauge bosons

11



A, Weyl spinors called gauginos A and an auxiliary field D. The expansion

in superspace is

V(w,0.0) = —0°0" 0 A, () +i0°0,0,% (a;)—mdédeﬂﬁ(ggw%eaeaéﬁ-ésp(x)

(1.18)
Notice that botht the vector superfield and the auxiliary field D have no
mass dimension in total. The field strength lives in a chiral superfield defined

from a vector superfield:

L
W, = Z—lDBD’Be’VDaeV (1.19)

where D’s denote the supersymmetric covariant derivatives.

1.2.1 The Supergravity Action

For the N = 1 supergravity, the supersymmetry transformation which is pro-
moted to be spacetime dependent, is proved to be invariant by introducting a
gravity supermultiplet containing a spin-2 graviton and a spin-3/2 gravitino. The
supergravity action is non-renormalisable and hence considered to be an effective
theory with a cut off below Planck scale. A supergravity action is characterised

by 3 functions:

o The gauge kinetic function f(®;) introduces a field dependence on gauge
kinetic terms. It is a holomorphic function of chiral fields. The gauge

kinetic Lagrangian is given by

1
1 f(®;)Tr / d*OW W, + h.c. (1.20)

12



The expansions and the integration in superspaces gives a gauge kinetic

term, and an axion # term given by
1 , 1 ~
— ZRe(f)FWF“ - ZIm(f)FWF“ (1.21)

The later term is central to the strong CP problem which we will explain in

later chapters.

The Kahler potential K (®;, ®;) is a real function of the chiral multiplets. It
has mass dimension 2 where the Lagrangian can be obtain by integrating

the full superspace:

/ d*0d*0K. (1.22)

The role of the Kahler potential is to provide kinetic terms for both scalar
and fermionic components of the chiral multiplets. It is useful to emphasise

that the complex scalar of ® recieves a non-canonical kinetic term as

RPK
0DIOD

Kijﬁuqbiﬁ“aj, where K;; = (1.23)

where K7 is called the Kahler metric. We will later explore this aspect
extensively in chapter 2 where the chiral superfields contains moduli/axions.

The complete supergravity action is invariant under Kahler transformation
(P, ®;) — K(Py, ®;) + F(P) + F(;) (1.24)

where F'(®;) is any holomorphic function of the chiral field. In the case of

canonical kinetic terms, the chiral field ® gauged under a gauge group with

13



the vector superfield V' receives the kinetic term from

K =o' o (1.25)

e The superpotential W (®;) is a holomorphic function with mass dimension
3. It captures interactions between chiral superfields in the model such as
Yukawa couplings and fermion mass terms. The Lagrangian can be calcu-

lated from

/ 2OV (®;) + hoc. (1.26)

1.2.2 Renormalisable Action

To illustrate supersymmetric actions, we will consider the simplest case where the
action is renormalisable. This will be useful in the case of the minimal setup in the
next subsection. The renormalisable version of 3 functions is drastically simplified.
The gauge kinetic function is taken to be a constant and normalised to 1. The
Kahler potential will be given in the canonical form where the superpotential
contains at most a cubic power in chiral fields. For a chiral field & gauge under a

gauge group with a vector field V' the most general Lagrangian is given by

1
L = ZTr/d20WaWa+h.c.

+ / d*0d*0dTeV d + / d*OW (®;) + h.c. (1.27)

14



After the superspace integration and integrating out auxiliary fields, the La-

grangian is written as

2

1 3 6 -
L = Tr {—ZFWF"”—MJ“DW\] —i—%Tr | Fu |

+D, D p — iho" Dyt + iV 29N — iV 29N

10w . 1 0*W

20¢'0¢) vy 208 0¢ v

oW oW g “)igi|

o g Tz 2Tl (1.28)

Notice that the action is completely controled by the superpotential in the case

of the renormalisable action.

1.2.3 The Minimal Supersymmetric Standard Model

In order to solve the electroweak hierarchy problem, the superpartners of all the
standard model particles must also be included. For all quarks and leptons who
live in the chiral multiplet, there are scalar partners (squarks and sleptons) for
each of them. Gauginos which are fermionic partners of SM gauge bosons is in-
cluded to complete the vector multiplets. In the Higgs sector, a single doublet is
not enough to construct down-type yukawa couplings due to the holomorphicity
of the superpotential. This leads to 2 Higgs doublets model in the supersym-
metric version of SM which also contain Higgs partners called Higgsinos. The
full spectrum of particle is shown in table 1.1 and 1.2. If the theory contains
only renormalisable operators, this model is called the minimal supersymmetric

standard model (MSSM). The MSSM superpotential is given by

Whssm = Yo Hu QU — yaHyQd — y. HyLeE + uH, Hy (1.29)

15



Field | spin 0 | spin 1/2 | SU(3). x SU(2), x U(1)y
Q | (updg) | (updp) (3,2, ¢)
u U UR (3,1,-2)
C_Z dR dR (ga 7%)
L (ver) (ver) (1,2, —3)
€ gR €ER (17 1, 1)
H, | (H HY) | (Hy HY) (1,2,3)
Hy | (Hg Hy) | (Hy Hy) (1,2,—3)
Table 1.1: Chiral multiplets in MSSM
Name spin 1/2 | spinl | SU(3). x SU(2), x U(1)y
gluons, gluinos g g (8,1,0)
W bosons, winos | W, W° | W W?° (1,3,0)
B boson, binos B B° (1,1,0)

Table 1.2: Vector multiplets in MSSM

where family indices are suppressed.

Since supersymmetry implies that a particle has the same mass as its partner
and such a partner of any standard model particle has not been observed yet, this
motivates us for breaking supersymmetry. In general the effect of supersymmetry
breaking can be parametrised by introducting extra terms called soft terms. In
order to keep the hierarchy between the weak scale and the Planck scale, the soft
terms are only allowed to break supersymmetry but not re-introduce the quadratic

divergences to scalar masses. All possible soft terms in MSSM is given by [40-42]

1 . — o~
L= - <M3gg + MyWW + M,BB + c.c.)
— (auﬁ@Hu — adJ@Hd — a.6LHy + c.c.) (1.30)
—m%@TCNQ — m%sz — m2u'u — mfﬁj— mie'e

—my, HiH, —m3 HyHy — (BuH,Hy + c.c.)

16



which consists of the gaugino masses M, My, M3, trilinear coupling a,,, a4, a. and
scalar masses squared m? and Bpu. Supersymmetry is clearly broken since the soft
terms give masses to all scalar partners and gauginos of MSSM but not to SM
particles.

Apart from the superpotential in 1.29, there are other operators that are al-
lowed by gauge symmetries. However, they are not included because they lead to
the violation of the baryon number and the lepton number. In general they are

the following terms:

Wy = ALLe+ NLQd+ y/LH, (1.31)

Wy = XN'udd (1.32)

where family indices are understood and being omitted. The result of the theory
containing these operators leads to the proton decay problem. If both A and \" are
significant, the proton decay rate would be too large and make protons unstable.
Assuming squark masses are ~ TeV, the rough estimation for proton decay width
is
m>
2
L, =~ |\ —Z (1.33)

mg

which typically gives lifetime of the proton to be many order of magnitude below
1 second unless A and )\ were suppressed. This result strongly contradicts with
the current experimental lower limit of 103 years. To prevent such a problem in
the MSSM, a new symmetry called R-parity is introduced. R-parity is a global

symmetry Zs with the quantum number defined as

PR — (_1)3(37[/)4*28 (134)
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where s is the spin of the particle. This symmetry clearly solves proton decay
problem since it forbids Wy, and Wy while maintaining Wyssm. The important
consequence is that all standard model particles and Higgs bosons have P = 1
where all squarks, sleptons, gauginos and Higgsinos have Pp = —1. As a result,
R-parity also leads to the stability of the lightest supersymmetric particle (LSP).
If the LSP does not have an electric charge, it could be a perfect candidate for
dark matter. The breaking of R-parity which induces proton decay and LSP decay
is one of the main concerns for the model building aspect of particle physics. We
will discuss this issue in more detail later.

Although the construction of the MSSM is aimed to solve the hierarchy prob-
lem, the MSSM still suffers from another naturalness problem. Analysing the
Higgs potential and requiring an electroweak scale ~ 100 GeV leads to the con-
straint on 2 mass scales of MSSM parameter: p and mZg ~ m% ,m7 . Namely,
they must be fine-tuned to stay within an order of magnitude of the electroweak
scale. Since there is no theoretical reason to expect p which is supersymme-
try preserving parameter being accidentally close to the values of supersymmetry
breaking parameters, this is a fine-tuning problem also known as the p problem.
Several solutions have been proposed such as the Kim-Nilles mechanism [43] and
the Giudice-Masiero mechanism [44]. While various solutions are different in de-
tail, they all generically propose an extension of MSSM to include a new field
and a discrete symmetry. The p term is assumed to vanish at tree level due to
the discrete symmetry then non-renormalisable operators regenerate back p from
the additional field that breaks the discrete symmetry. A similar idea can also be
found in various corners of string compatifications [45]. This idea will be revisited

again in chapter 3.
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1.3 Thesis Outline

This thesis is organised as following. In chapter 2 based on the publication [46],
we will describe the origin of moduli and axions from a string/M theory frame-
work. We will motivate the Axiverse scenario and study its phenomenologies. In
particular, we will focus on dark radiation which is significantly constrained by ex-
periments. We will show the detailed analyses of dark radiation coming from the
Axiverse and propose some possible solutions. It will be shown that the simplest
solution requires the lightest modulus decays only into its own axion superpartner
and this severely constrains the moduli Kahler potential and mass matrix.

In chapter 3 based on the publication [47], we will review the basic idea of
the models based on M theory compactified on a G5 manifold. Then we will
review Witten’s proposal on the discrete symmetry as a solution to the doublet-
triplet splitting. The solution to p problem in the framework will be also studied.
We will present the construction of the new set of models based on GUT group
SO(10) which leads to a novel solution where the colour triplets are decoupled.
The model also involves an extra vector-like Standard model family to restore
gauge unification. We will also discuss about the phenomenology of the new light
states and the induced R-parity violation.

In chapter 4 based on the publication [48], we will complement the thesis by a
study from the bottom-up approach. We will present the prospects for discovering
charginos and neutralinos at a future collider which has been discussed recently.
We will focus in particular on the search at a 100 TeV collider with 3000 fb~1
luminosity via the WZ channel. The motivation from string/M theory models
leads to the assumption that Higgsinos form the lightest supersymmetric particle
where Winos form the second lightest supersymmetric particle. We design simple

but effective signal regions for the trilepton channel and find that neutralinos-
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chargino could be discovered (excluded) up to 1.1 (1.8) TeV.
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Chapter 2

Axiverse Dark Radiation

2.1 Introduction

2.1.1 Scalar fields from string theory

String/M theory is mathematically consistent in a 10-dimensional or 11-dimensional
space-time. In order to obtain low-energy physics in 4-dimensional space-time, the
extra dimensions must be compact and very small in size which is inaccessible by
the current energy scale. Although the effective theory in 4 dimensions may differ
in many ways depending on the details in which the extra dimensions is com-
pactified, the existence of extra scalar fields, known as modulus, is generic. For
example, the common type of moduli that appear naturally from the geometry are
volume moduli and complex structure moduli. They are fields that parametrise
the extra-dimension metric and complex structure of the compactified manifold:
they control the size and the shape of the extra dimensions. Due to the complex-
ity of the topology required to give a real world physics [16], we often find that
string compactification typically gives rise to a large number of moduli ~ O(100).

In the 4-dimension effective field theory limit the moduli simply become scalar
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fields with gravitational-strength interactions, i.e., they are essentially gravitons
from the extra dimensions.
The crucial aspect of moduli is that they make a direct contact with low energy

physics. Let’s consider interactions such as

5 9 5 —
m_F,uln or m_Q/J ﬁi/] (21)
pl pl

where s is a modulus field. If the modulus is massless, these interactions lead to a
long range force which has not been observed yet. Therefore, the mechanism for
stabilising moduli fields, i.e., giving them a potential, is necessary. Moduli sta-
bilisation also gives rise to low-energy physical parameters through their vacuum

expectation values. For example, the above Lagrangian give rises to the Maxwell

1

term, L = 12

F 3V where the electromagnetic coupling is completely determined

by a modulus vev as e? = T
mpl

In fact, all physical quantities are determined by
modulus vevs in a similar fashion.

Now let us consider the complex partners of the moduli fields from string
theory — axions. The axions arise in string theory as Kaluza Klein (KK) zero
modes of antisymmetric tensor fields. The fact that moduli and axions pair up
to form a chiral supermultiplet implies that the number of axions in 4D theory
has topological origin and is expected to be of an order @(100). Although moduli
receive the mass from moduli stabilisation, axions is typically massless because of
the shift symmetry which is a remnant of the higher-dimensional gauge invariance
of the tensor fields. However, there are plenty of string instantons other than the

QCD one that break shift symmetries and generate potential to axions. The axion

22



effective lagrangian can be parametrised as

£ = 312007 = Y A (0) (2.2)

where f, is an axion decay constant which is typically of order the compactifica-
tion scale, A is the energy scale generated from instanton effect, and U(#) is a
periodic function. If we assume supersymmetry breaking below the Planck scale,
the overall energy scale is generated from the interference between instanton and
supersymmetry breaking sources as A* ~ M2m2 e~ %t Then the mass of axions

is determined by [49, 50]

m? = 2T o= Sinst (2.3)

We can see that, because of the exponential factor from instanton actions, axions
are expected to be very light and distributed over many orders of magnitude.

Note that moduli can be stabilised by the same set of the superpotentials
where the supersymmetry breaking terms are mainly responsible for generating
potential for moduli. Another important point is that in order to stabilise axions,
one requires the superpotential to contain as many independent terms as there are
axions present in the theory. This requirement is easy to fulfill when the number
of supersymmetric cycles in the compactification is large enough [50].

The axions from string theory can also play a significant role in solving the
strong CP problem. The QCD gauge invariance allows a topological term in the

Lagrangian.

92 0gcp 1
L=, F (2.4)

Since quarks are massive so that there is no U(1)4 to rotate the term away, the

strong CP-violating 0gcp parameter is physical. This can be observed from the
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electric dipole moment of the neutron and the measurements gives the upper
bound fgep < 1071°. The axion provides an explanation why fgcp is so small.
Similar to the Maxwell term from moduli coupling, there will be an axion-QCD

mstanton interaction term:

fﬁFWFW (2.5)

which promotes the 6gcp parameter from QCD topological term into a dynam-
ical field. When the axion is stabilised around its minimum 6gcp = 0 which is
consistent with the experiment.

The decay constants are constrained from many experiments. The cooling
process of stars and supernovae due to axion emission lead to an upper bound
on axionic interaction and hence a lower bound f, > 10° GeV. The upper bound
comes from the over production of the axion as a dark matter which we will review

in the next subsection.

2.1.2 Moduli and Axions in an early universe

Extremely weakly coupled scalar fields like moduli and axions can have a con-
siderable impact on cosmological dynamics due to the “vacuum misalignment”
mechanism [18-20]. The equation of motion for a massive scalar field ¢ in the

expanding universe is given by

o+ (3H 4+T4)p +m?¢* =0 (2.6)

where H is the Hubble scale, m is the mass of the scalar field and I'; is the
decay width of ¢. At very early times when H > m, the friction term dominates
and the fields are frozen at order one values (my; for the moduli and f, for the

axions). Then, as the Universe expands and H decreases, when H becomes of
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order~ myg or m,, the field starts oscillating around the minimum with a frequency
of order my or m,. The equation of states also oscillates around w = 0 and the
corresponding contribution to the energy density scales as p, oc a~2.Since moduli
behave as ordinatry matter, even if the Universe was radiation dominated prior
to this point, a modulus field will quickly dominate the Universe since its energy
density is comparable to radiation at the onset of the oscillations. Next, when
the Hubble scale reduces to be of order the modulus decay width, I'y ~ g—fi,
the modulus field decays. For mg ~ TeV, the decay products of the moduli
will reionise the nuclei produced from Big Bang Nucleosynthesis (BBN). This is
known as the cosmological moduli problem [21,22]. The problem will be avoided
if my > 30 TeV; one could also avoid it by assuming that the Hubble scale after
inflation is always smaller than m, or if there is a late period of inflation which
dilutes the moduli fields, however, both of these options require tuning and are
presumably not generic. Therefore, we conclude that string/M theory seems to
predict that the early Universe prior to nucleosynthesis is matter dominated.

The axions also participate in the vacuum misalignment mechanism but there
are important differences. The axion masses are small such that their lifetimes
are, unlike the moduli, generically extremely long, with lifetimes that can easily be
cosmologically relevant. Hence, there will be a contribution to the energy density
in the form of axion fields today, which behaves as cold dark matter.

Notice that the decay of the moduli releases a large amount of entropy which
dilutes any relics which existed prior to nucleosynthesis, e.g. ten orders of magni-
tude dilution is typical. This significantly weakens the upper bound on the QCD
axion decay constant, compared to radiation dominated Universes, to be of order

10 GeV [50-53]. This effect also significantly dilutes other relics that may have

formed previously, such as domain walls, monopoles or thermal WIMPs.
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Another important aspect of moduli-axion physics is the dark radiation which
[ will describe in detail in this chapter. The moduli as extradimensional gravitons,
can decay into Standard Model particles, into supersymmetric particles as well as
axions. Since the axions are so light and the moduli have masses in the tens of TeV
regime, axions produced this way will be relativistic with energies of order several
TeV. The expansion of the Universe and precision cosmological observables are
sensitive to the relative abundance of relativistic particles. This can be captured
by the observable called N.;; which is “the effective number of neutrino species”

defined as

Prad = Pet + Py + Neprpy (2.7)

However, N,y is actually sensitive to all forms of relativistic matter, regardless of
how such matter couples to the Standard Model. In that sense, N.ss provides a
very useful probe of additional, “hidden,” radiation from the sectors beyond the
Standard Model. Assuming that a heavy particle such as the moduli field decays
into particles from hidden and visible sectors, the extra contribution from dark

radiation to Ngys is usually parametrised by

43 * 1/3
AN, ; = PR (91, (2.8)
7 Prad g}r

where g7, g7 are the effective degrees of freedom at the neutrino decoupling
temperature and the reheating temperature, ppr and p,.q are the radiation energy
density of the dark sector and the visible sector at the reheating temperature. The
full detail calculation can be found in Appendix A.1.

The Standard Model prediction ! for N, z; at the time of recombination is 3.045,

whilst measurements from CMB observations by WMAP 9-year polarisation data

!The number is not exactly 3 due to small corrections at the time of neutrino decoupling.
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[54], South Pole Telescope [55], Atacama Cosmology Telescope [56], and Planck
2015 [57] are N.sr = 3.84 £ 0.40 (WMAP9), N.sr = 3.62 £ 0.48 (SPT), Nesr =
2.79£0.56 (ACT), Nesr = 3.15£0.23 (Planck2015) respectively. In a sense, this
is a surprising result since one might expect N.¢; to be much, much larger naively.

So, from the perspective of string/M theory or the idea of hidden sectors more
generally, the question actually becomes: why is Ness so small?. For instance,
if, as we have already argued, there are large numbers of light axions and the
moduli have significant branching ratios into them, why isn’t Ny of order N,
the number of axions? We will investigate this question in this chapter.

There have been a number of interesting prior studies on axionic dark radiation
in string theory [58-68|. These papers consider examples which have very few light
axions. Instead, our interest here is to the dependence of N.¢; on the number of

light axions.

2.2 The Axiverse Induced Dark Radiation Prob-
lem

We will illustrate the problem by beginning with a simple model and gradually
considering more and more general (realistic) cases as we go on.
The simplest Lagrangian involving a modulus (s), an axion (¢) and a gauge

field strength F),, is arguably of the form:

L

— = %@s@”’s + %8#258“75 + EsF, " —m?(s — s,)? (2.9)
m s s

where ¢ and ¢ are constants. s, reflects that s will have a non-zero vacuum

expectation value. In our conventions, s and ¢ are dimensionless and m,, is the
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Planck mass. Note that the electric charge is identified with ﬁ = ¢s which will be
absorbed by the normalisation of the photon field. Therefore the photon-moduli
couplings do not have any effect on the calculation of AN,y

This form of the Lagrangian arises in supersymmetric string and M theory
models e.g. the universal axio-dilaton Lagrangian or the model independent ax-
ion/modulus multiplet in heterotic string compactifications [25]. From this La-
grangian we can canonically normalise the fields after setting s to its vacuum value

and compute the partial decay widths

an 1 m3
I'(s = tt) = — 2.1
(5 =1t) 6dmcm?, (2.10)
and
1 m3
I'(s — = — 2.11
(670 = e (211)

where m = % is the physical moduli mass.

The contribution to dark radiation of axion from moduli decay can be calcu-

lated from [58-60]

43 Famions (@) 1/3 (2 12)

ANy = —
1 7 I"L)isible g}r

We can take the decay of moduli into two photons as a model for the decay of the

moduli into Standard Model particles, so this calculation gives
ANgppr ~ O(1) (2.13)

since ANy is given by the ratio of the decay width of the modulus decay into
axions versus Standard Model particles. This illustrates the fact that the moduli
couple semi-universally to all particles (as one expects, since, after all they are

extra dimensional gravitons).
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In this work we are interested in the case when there are a large number, N of
axion/moduli multiplets, (¢;, s;). The previous Lagrangian can then be generalised

to
L =m Z(gaﬂsiaﬂsi + %@tﬁ”ti s Fy P —m2(s2 — (s1)?)  (2.14)

where a;’s are constants. This Lagrangian arises from a supergravity theory con-
taining N chiral superfields with scalar components z; = t; + is; with Kahler
potential K = —3InV where V' = II;s{*. This Kahler potential is a typical term
which would arise in string/M theory compactifications®. Let us now calculate
Nejr = Ny +ANgs¢. To do this we need to evaluate the N? partial decay widths

['(s; — t;t;) which can readily be calculated to be

o 5. 1 m3
(s, — ti; v 2.15
(55 ) 641 a; m?, ( )
where m; = f;% On the other hand we also calculate
1 1 a?(s;)% m3
I‘ . — — — 7\ J 216
(Sj 77) 647 (ZZ ai<8i>)2 a; mgl ( )
which results in
ANeff — (Zla’ <S >) — (217)

ai(s;)? (16ma)?ai(s;)?
where we used the fact that the sum which appears is related to the coupling
constant of the gauge theory and have set the numerical factors in equation 2.12

to one for simplicity. Important points to note about this example are:

a) due to the diagonal mass and kinetic terms, a given modulus field $; decays

2In the next section we will study more concrete string/M theory examples.
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only into its axion partners;

b) the moduli with the smallest masses will decay last.

When the last (and lightest) modulus decays it substantially dilutes the energy
density of particles produced from previous decays of heavier moduli. Hence, in
computing AN.¢; we are only interested in axions produced from the lightest
moduli fields.

Now, in this particular case a is interpreted as the fine structure constant
evaluated when the moduli decay takes place just before BBN, so 167« is an
order one number, independent of N. On the other hand, since ﬁ is a sum of
the N terms a;(s;), if all N terms contribute similar amounts to the sum, we would
have N,y ~ N? which is our first indication of the Aziverse induced dark radiation
problem. In this particular, very special model, observational consistency requires
that the value of « arises only from the modulus s; and hence that AN, is order
one or smaller. Let us discuss more typical models.

In much more generality, the moduli dependent kinetic terms are not of the
form Z—%, rather they will be given by more complicated functions which are ho-
mogeneous of degree minus two. This is because the moduli Kahler potentials in
string/ M theory compactifications can be written as logarithms of homogeneous
functions of fixed degrees, which implies that their second derivatives are homo-
geneous of said degree. Thus, one has a kinetic mixing matrix K;; whose entries
are homogeneous of degree minus two. Before we discuss this most general case,
we consider an intermediate, but instructive case: models in which the kinetic
coefficients are diagonal, but arbitrary functions of degree minus two, f;. This

sort of example occurs when the Kahler potential is dominated by a single term,

but which could depend on all the moduli. In this case we have, setting m,;, = 1:
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L= fi(0us:)* + fi(Outi)? + QisiFL, + > s (2.18)

Normalising the fields
$i = —F—=58i, ti=—F7—=t; Ay= Ay (2.19)

gives the Lagrangian

1. 1, . 1. (0; fi) fia g a; LA
£ = —(8 81)2 + —((9 ti)Z + —FQV + ]—3(8 ti)Q + —J,VS'FQV
27" 2" VAT DI 4/2(fiyas(s)) "
(2.20)
This results in
G id) = 2 L g™ (2.21)
PO 26w () ()T omy |
1 (o= 1 1 ;
I'(s; - Axions) = —— — (0, f:)? J
j 256 (Z ART ARG
11 a m?
L(s; = 7y) = —=
647 (f;) (va_l?iz <82>) m2
where m; = ZL&). The key point here is the sum over N terms in the second of

the above equations. If the kinetic coefficient f; depends on s; then s; will be able
to decay into ¢;t; and, in the general case we will have N such decays producing

light axions, giving

ANeff x N (222)

The fact that the decay width of the lightest moduli into axions is of order N is
independent of the moduli couplings to the hidden sector since it only depends

on the number of fields.
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It is also instructive to illustrate the N-dependence in simple examples as these
demonstrate how the Axiverse induced dark radiation problem might be solved.

In the first example we take all of the kinetic coefficients equal and to be given by

1 1 1
L= = = 2.23
J St st + sk SEs (223)
The decay width of the j-th modulus to decay into the i-th axion is then
Y. L (s;)> mj

647 (S?

rms> m]Q)l

which implies that the total decay width of the j-th modulus to decay into axions

is a sum of NV terms which adds up to

N (s;)* m;

['(8; — axions) = 2.25
( ’ 64m <S7?ms> m?}l ( )
By comparison, the decay width into gauge bosons is
: 1 a(Sh.)  mj
Rl =) = gz e o)
(Zi:l ai<5i>> Pl
which leads to
S ads))
(f (EL@E) e
ANsf(s;) = N—=2 — =N — (2.27)
S @SR (52 (16m0)?a3(S2,.,)

Clearly, in this example, we can see that if the vev of S,,,, is sufficiently large in
(11d units) then one can suppress the axion contribution to the dark radiation

density.
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Finally, let us discuss the most general case. The following Lagrangian:

N
L= Z Z CijUikskﬁutja“tj (228)

=1 j=1

is the most general Lagrangian coupling moduli fields to axions with two deriva-
tives of the axion fields. Here, C;; arises from diagonalising the Kahler metric Kj;
and U;;, which we have ignored until now arises from diagonalising the moduli
mass matrix. We supplement this Lagrangian with typical terms coupling the
moduli to Standard Model and supersymmetric particles. The Lagrangian for

moduli-gauge boson interactions is

N
L= BUpscFuF" (2.29)
i=1
and the Lagrangian for moduli-scalar kinetic interactions is
N
L= DiUysiD,fD"f (2.30)

i=1

Dropping numerical factors, the decay width of si, into various channels is:

N
Pasions = Y Tlsk = tt)

Jj=1
N N 2 q
— C U msk
- igYik M2
j=1 \i=1 PL
2
N 3
r - By, | —
gauge particles - nG iYik M2
i=1 PL
N 2 m3
Sk
Ffermions/sfermions - nf D’L Uzkj 2 (231)
Z M2,
=1

where ng and ny are the numbers of gauge bosons and fermions respectively.
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Even though the most general model has so many parameters, one can see that

we expect Negp oc N:

Faxions
(AN ff) o x x N (2.32)

Lpisie  na(B)2+ng(D)?

This arises because we expect the mean values C, B and D to be comparable
and that (ZZN:l Ui)? to be order one. This is borne out by explicit calculations, see
e.g. [13,23,30-32,58-60,69]. In other words, since the moduli couplings to axions
are comparable to their couplings to the Standard Model particles, the string/M
theory axiverse is in serious tension with observed limits on the amount of dark
radiation. In special examples with low numbers of axions, one can see that it is
possible to generate acceptably small amounts of dark radiation assuming certain
couplings are small enough, for example, [58-62,65-67]. But in general, this will

be difficult to avoid.

2.3 String/M theory examples

2.3.1 Calabi-Yau Compactifications

In Calabi-Yau compactifications of superstring theories to four dimensions, The
moduli and axion kinetic terms in the Lagrangian are derived from a function of
the moduli fields called the Kahler potential, K, which, up to a coefficient is given
by

K =—-alnVx (2.33)

Here, Vy is the volume of the Calabi-Yau manifold (as a function of the moduli).
This is a sum of terms with coefficients given by the triple intersection numbers

dijx. The coefficient a takes different values, depending upon which string theory
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one is considering. In the heterotic and Type ITA compactifications, the volume

is given as a function of the Kahler moduli S; as:

Vy =) dijiSiS;Sk (2.34)

i=1

Clearly, in a completely generic case, with many non-zero entries in d;;;, Vx is a
sum of many terms and K;; will not be diagonal. Hence, upon diagonalisation,
when expanding around a particular vacuum state, the matrices C;;, U;; and the
coefficients B; and D; will be quite general and we expect Negr oc N.

In the LARGE volume scenario of [13,69], there is a modulus field with a vev
much larger than that of the other moduli. In this case, the volume functional of

the Calabi-Yau threefold is approximated by

V = 5?0—33/2—...—5%2 (2.35)

K = -2V (2.36)

In the limit where the s; vev is larger than the other vevs, s; > s;, the diagonalised

Kahler metric is approximately

3 3
=Ky~ — =Ky ——— 2.37
fl 11 48%’ f 83?/233/2 ( )
3 9 3
Ofi= - Bfi=0, Ohfim——— Ofim=—— (238
lfl 28?’ fl 1f 163?/233/2 f 165?/23?/2 ( )

For sy, it turns out that AN.sr oc N. This can be seen as follows. The decay
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widths to axions are

Do i) = (?) Z_jl
L(81 = tiptiz) = %g—;
I'($; — axions) = ﬁ (? +3(N — 1)) —;
whilst the gauge boson channel gives
1 a(st)  m®

I'(s; — =
(Sl 77) 487T (ZN ’d<s>>2m§[
=1 21\t

resulting in a dark radiation contribution of

AN, 5(s1) = (1 e 1)> (Ziggzi;;»)

(2.39)
(2.40)

(2.41)

(2.42)

(2.43)

This is interesting, because in LARGE volume models, the vev s; is expected

to be much larger than the other vevs, hence one expects a suppression of AN,y

in this case, following our discussion in section two. Furthermore, s; is typically

the lightest modulus in this scenario [69].

For completeness, for s;.1, the dark radiation density doesn’t depend on N :

1 (s)%?m3
1287 (s;)%/2 m2,

L(3j1 = tjzitjzs) = 0

D(3j0 = L) =

1 <51>3/2 m3
1287 (s;)%/2 m2,

['(8j41 — axions) =

36
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(2.45)
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gauge boson channel is

ARG

I'(8;21 — = J 2.47
(8]7’51 77) 247T <ZN ’d’l<s'>)2ml2)l ( )
=1 "1\

So the total dark radiation density is proportional to

Sl
ANess(sj21) = 1% ( 20 ) (2.48)

2.3.2 Diagonal Kahler metrics

Clearly, from the above discussions, one can suppress dark radiation from moduli
decays when the Kahler metric for the moduli fields is approximately diagonal.

This will be the case when the Volume function is dominated by just one term

only.
N N
Vy=][]5" K=-3> ahs, (2.49)
=1 =1

where a; are microscopic parameters whose sum is a constant determined by the
geometry of the extra dimensions. This is unity for the Calabi-Yau case and g for
Go-manifolds. To demonstrate the suppression of N, it is helpful to translate
the effective supergravity Lagrangian into decay width coefficients. We review the
calculation explicitly below.

The kinetics terms for moduli and axions are controlled by Kahler metric as

following

1 . 1 S
£ = éKij('?“slaﬂsj —+ §Kij8“tlﬁﬂtj (250)

After canonically normalisation of moduli and axions, we can expand Kahler

metric as a function of the moduli field. After taking the moduli mixing into

37



account, the result for the interaction Lagrangian is

1 ZN aKD

j=1 Ds; J - =i ~
£§k~i”i 5W$k8“t 8Mt] (251)
where K is Kahler metric after diagonalisation. 3, ¢ are canonically normalised

fields after mixing. Straightforwardly, one can derive the decay width into axions

as

2
1 aln KP m3

Faxions = ( Ujk) — (2.52)
327 Z parl /KP Mgl

=1

For the gauge sector, the Lagrangian typically takes the form

N
1 § : v

After canonically normalisation of moduli and gauge fields, we get the interaction

terms between moduli and gauge fields.

NUz;€~

|
Z(ZZ Ni(s )Z\/_

L= (2.54)

Then the moduli decay width into gauge bosons/gauginos can be written as

3

2
mX

r ——N,U; b 2.55

gauge = ( E 7 k) Mgz ( )

For matter sector, the generic interaction terms can be found from

L =KosD,f*D"f* + Kopf* Df° (2.56)

Then, after normalisation of moduli field and fermions/sfermions fields, the inter-
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action terms become

N
r— Z 1 aano[z)a zkgk (DufaDufa + f~a ’Dfa) (257)
=1

\/Ki? 0s;

Therefore, the decay width into fermion can be written as

N 2
1 9lnKP, mi,
I'fermion (il KD s, Uz‘k) _Mﬁz (2.58)
To summarise, the decay width coefficients are given as follow:
1 OlnKP?
Cij — nng
A /KZ? 8s]~
!
B, = —N; (2.59)
VKD
D, — 1 OlmKZP,

Vv EKE 0s;

where K 5 is the diagonal Kahler metric.
From (2.49), it is trivial to show that the coefficients are diagonal when the

volume function is dominated by a single term:

Following the previous analysis, this simple relation implies that AN, ;s becomes

independent of N on average.

()
n(B)? +ny(D)?

<ANeff> X (261)

where the orthogonality of rotation matrix, (Y.~ , U2) = 1, has been used.

The physical reason for this behaviour is that this particular volume form
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forces each modulus to decay only into its axionic partner. If we assume further
that this basis is already physical, i.e. there is no further mixing between moduli
or axions, it becomes clear that dark radiation, regardless of N, consists of only
one species of axion which is the partner of the last modulus to decay.

The moduli mixing matrix can also play a role in suppressing dark radiation.
Again, though non-generic, this occurs when there is a relation between the moduli

mass matrix and the eigenvalues of the Kahler metric:

The above relation is equivalent to
1 1 1
a XX Uik:; E X Uik, E X U,k (263)

In this case, the correlation becomes

N{(C)? 1
<AN6ff> 0.8 nGN2<B>2 I an2<D>2 X N (264)

Therefore, under these very special circumstances, dark radiation can actually
be suppressed by the number of axions on average. This counter-intuitive result
is merely the effect of increasing N-dependence of the moduli to visible sector
couplings so that dark radiation is dominated by standard model radiation (neu-
trinos). Most likely, this is merely a curious observation rather than a realistic

case.
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Mass matrix in GG, compactified M-theory

In this subsection, we put together some of these results in a concrete setting where
the moduli mass matrix is known, namely Gs-compactified M theory. Again, we

are assuming that K is dominated by a single term:

K =-3In <1N_[ sfi> (2.65)

where Zf\il a; = % From above, N.;; becomes independent of the number of
axions in this model. However, regardless of this advantage, one could easily find
that the typical value of N.s¢, although independent of N, is actually too large in
practice e.g. ANg¢y ~ 10. We would therefore like to investigate the possibility
of further suppressing dark radiation in this setup.

We briefly recall some details of moduli stabilisation. It has been shown in [31]
that with a hidden sector with two gauge groups where first group is sQCD with
1 flavour of quarks and second group is pure glue sQCD leads to dS vacua. The

superpotential is written as
W = Ay gleitt T NiSi g g, oibe X7 NS (2.66)

where ¢ is the meson superfield in the hidden sector. With the superpotential

and Kahler potential being specified, it is straightforward yet tedious to work out
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the mass mixing matrix resulting from moduli stabilisation [23,30].

aj4+1 .
Up: = 9+l Var, . k<j
’ \/( a0 )

i=1 Qi i=1
J
_ = lal o
Ukj— Zgillaz s k?—]+1
3
Uy = % (2.67)

where ¢ = 1... N —1 are the degenerate light moduli and ¢ = NN is heavy modulus.
Notice that except & = j+1, Uy; o< y/ai o< /K. Therefore, we the element U, ;

will be suppressed if it turned out that:

J
Z a; K Q1 (2.68)

As a result, one would expect suppression on dark radiation under this condi-
tion.

The modulus decay width can be calculated from [23]

3

mx,
FXj - DXJ
I,
N 2
Ui
Dx, = a(Z > <Z U’”) (2.69)
k=1

where o and 3 are index-independent parameters dependent on the microscopic
details of the G manifold. The first term represents the decay width into axions
where the latter represents decay width into visible particles. From (2.67) and

(2.69) it is trivial to see that total decay width of j* modulus and corresponding
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dark radiation are controlled by

I a
Fj XX ==l (270)
j+1
jajz'-f-l + (Z?:l a;)”
(Jajr1 — Dy ai)?

ANeff(Xj) X (271)

Applying (2.68), we clearly see that AN.s(X;) o % and I'; becomes smallest.
This is essential to the model because it guarantees that the last decay modulus
exhibits % behaviour. For practical purpose, only j = N — 1 in condition (2.68)
will be assumed.

Next, we will explicitly show correlations between the number of axions and
Neyr. Instead of scanning the N parameters a; space, we will give systematic
examples of simple configurations of the a; which work:

The first example is when n of the a; are large and the rest small:

i = €Ay .. €Oy — L o — ——————— 2.72
¢ {La ,—/€a§n n 3n n ' ( )
N—-n ~

The second is a geometric sequence of a;s,

a = {ag, ag, agr, apr?, . .., agr™ ~*} (2.73)

Though these can be viewed as toy models at best, they both illustrate that, in
principle, the amount of dark radiation can actually decrease as one increases the

number of axions. This is illustrated in the two figures.
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Figure 2.1: Left: Result from geometric sequence configurations showing AN,s
as a function of N, where r = 2. Right: Result from double moduli dominated
configurations showing AN,s; as a function of NV, where eN = 0.1

2.4 Conclusions and Outlook

AN,y is a very powerful probe of light degrees of freedom in the hidden sector and,
somewhat surprisingly, has been constrained to be quite small, consistent with
zero. The Axiverse induced Dark Radiation Problem arises from the plethora of
light degrees of freedom that can be present in string/M theory compactifications
to four dimensions. Though we focused on the axions, similar conclusions can
be drawn from hidden photons and other light particles in the hidden sector.
We pointed out several possible mechanisms via which this problem could be
avoided: a) a relatively large modulus vev as in the LARGE volume scenario; b)
alignment between the axion kinetic and mass mixing matrices so that the last
modulus to decay does so predominantly into its axionic partner. It would be very
interesting to explore these mechanisms in more detail in various specific models.
One potential problem with the large vev solution in practice is that the large vev
corresponds to a weak Standard Model coupling. In general, it might be difficult
to make the vev large enough without making the Standard Model coupling too

small.
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Figure 2.2: Left: Result from geometric sequence configurations showing AN, s

as a function of r, where points in blue, red, yellow, green are N = 30, 50, 100, 200
respectively. Right: Result from double moduli dominated configurations showing

ANy as a function of eN, where points in blue, red, yellow, green are N =
30, 50, 100, 200 respectively
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Chapter 3

Particle Physics from M theory

inspired models

3.1 Introduction

Results over the past decade or so have shown that the simple combination of
supersymmetry breaking moduli stabilisation and string/M theory can in fact be
a very useful guide to constructing models [12,13,31,32,70]. Namely, the progress
in understanding supersymmetry breaking and moduli stabilisation in string/M
theory has been shown to lead to effective models with distinctive features and
very few parameters.

One is thus led to consider supersymmetric grand unified theories (GUTS)
based on simple groups, such as SU(5) which explain the fermion quantum num-
bers and unify the three Standard Model forces, in the string/M theory context.
In doing so, however, we have to face the basic problem of GUTs — the Higgs
doublet-triplet splitting problem: the Standard Model Higgs doublet is unified

into a GUT multiplet containing colour triplets which can mediate proton decay
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too quickly. In many models, including those originating in string/M theory,
this problem is often solved by making the colour-triplets very massive [71-73],
something often achieved with a discrete symmetry whose effective action on the
triplets is different from that on the doublets.

In this chapter, we will extend the scope of the M theory approach from the
previously considered SU(5)/MSSM case arising from M theory on Gy mani-
folds [32,74] to SO(10), where an entire fermion family @, u¢,d¢, L, e, N, includ-
ing a charge conjugated right-handed neutrino N, is unified within a single 16
representation denoted 16™. In particular we focus on the Higgs doublet-triplet
splitting problem, whose solution turns out to be necessarily quite different in the
SO(10) case, leading to distinct phenomenological constraints and predictions.
We first review some basic ideas and results from M theory, followed by review
on discrete symmetry and g problem, then we will review SU(5) models as an

example before moving on to a discussion of the new SO(10) case.

3.1.1 M theory on (G5 manifolds

In this section, we provide a review on the phenomenology of the low energy limit
of compactified M theories on a GGy manifold. The in-depth details can be found
in [30-32]. It has been shown that M theory compactifed on a Gy manifold gives
rise to a 4D theory with A/ = 1 supersymmetry. The gauge fields and the chiral
fermions arise from different types of singularities on the Gy manifolds [38]. A G,
manifold with fluxes would generate a large mass scale and therefore it is not phe-
nomenologically interesting. Instead, we assume that only non-perturbative effect
plays a role in moduli stabilisation. We will consider G manifolds which have 2
non-abelian asymtotically free gauge groups, SU(Q) x SU(P + 1) where a pair of

vector like quarks is charged under SU(P+1). At energies lower than these gauge
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groups confinement scales, the superpotential is generated non-perturbatively as
W = M}:il (01P¢Q/Peib1f1 + C2Qeib2f2) c b=, by = (3'1)

where ¢ is the effective meson field coming from a pair of vector like quarks. Cf,
C5 are normalisation constants which are calculable for a given GG manifold. f;
and fy are gauge kinetic functions of the two hidden sectors which are generically

different from each others. To study the vacua semi-analytically, we assume

N
fi :f2:fhid:ZNi<ti+i3i) (3.2)
i=1

where s; are the N geometric moduli from the metric of G5 manifold, a; are the
axions as zero modes of the 3-form fields, and N°* are integers determined by the
homology class of the hidden sector 3-cycles.

The supergravity potential is fully determined when the superpotential and
the Kahler potential are given. However, it is generically difficult to compute the
matter Kahler potential from first principle. Due to the fact that chiral super-
multiplets are localised in 3-dimensional subspaces, we assume that the Kahler

potential takes the canonical form
= —3In(473V;) 4 6o (3.3)

where V7 is the volume of the (G5 manifold in units of the eleven-dimensional

N
i1 S; where

Planck length. The volume is parametrised by the moduli as V; = []
a; are positive rational numbers constrained by Zf\il a; =7/3.
The values of the moduli at the minima are given by the set of constants

determining the potential {a;, N*, C}, Cy, P,Q, N} which are calculable for a given
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(3 manifold consistent with our assumptions. It was shown in [30] that all moduli
are stabilised with a vev (s;) ~ O(0.1)Mp, leading to supersymmetry breaking
and a small cosmological constant. Note that the F term of the meson field is
much greater than those of moduli fields, Fy ~ O(0.01)mg/,Mp; where mg, is
the gravitino mass characterising susy breaking scale.

The observable sector gauge theory lives in a three-manifold different from
the one supporting the hidden sector. The conical singularities on the observable
three-manifold support chiral matter fields. The full low energy supergravity

theory of the visible and hidden sectors is defined by the following:

K - ~ —a
AL (=3In(473V7) + ¢¢) + Kap(s:)® ®° + (Z(s;)H Hy + h.c.) + ... (3.4)
W = M3, (clpqs?/f’efblfl + CHQe™ ) + Y’m@acbﬁclﬂ (3.5)
f1:f2 fhld_ZNzt +ZS) U’LS Z visS (36)

i=1

The visible sector is thus characterised by the Kahler metric }N(ag and un-normalised
Yukawa couplings Y, 5 of the visible sector chiral matter fields ®* and the tree-
level gauge kinetic function fU._ of the visible sector gauge fields. The un-normalised
Yukawa couplings in these vacua arise from membrane instantons which connect
singulartities where chiral superfields are supported.

17 = Capye™ Zili tin) (3.7)

where Cyg, is an O(1) constant and &

are integers characterising the 3-cycle
encapsulating the three singularities supporting the chiral multiplets &%, ®7, .
Given the effective supergravity lagrangian, one can evaluate the soft terms

from the vevs of the scalar and auxiliary fields of the moduli. The order parameter
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for the breaking is given by the gravitino mass

x_|W
msjo = e2Mp; | 2|
Pl

(3.8)

which is found to naturally lies between 10 - 100 TeV. The gravitino mass sets the
scale of all scalar in supergravity. The soft scalar masses [75] (after normalisation

of the visible Kahler potential) can be expressed as

mag = (mg/z + Vo)bas — U Tl (3.9)

Pas = X P (0m0n Ky — DRy K700, K55 ) P (3.10)

In order to calculate the non-diagonal and non-universal parts, we need to know
the moduli and meson dependence. However, it is known to be difficult to compute
in a generic string and M theory vacua. We assume here that the non-diagonal
and non-universal parts depend on only F-term of moduli and meson fields. From
F; << Fy, we get

mag & M3 s0a (3.11)

This result implies that the flavor changing neutral currents will be suppressed.
The calculation of the un-normalised trilinear couplings is simplified by the same

assumptions and given by

!y = |W*| KPR, (3.12)

The normalised couplings can be obtained

Aaﬁ'y ~ O(l)mg/gyag,y (313)
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Notice that in our framework, the scalar soft masses and trilinear terms are of
order msg /.

The computation of gaugino masses does not depend on the matter Kahler
potential. In G5 vacua, the tree-level contribution is suppressed therefore other
contributions such as anomaly mediation and threshold effects can be equally
important. It has been shown in [30] that at the unification scale the gaugino

masses are expected to be

mi, = 0100 GeV) (3.14)

Note that the gaugino masses are not universal due to contribution from the

anomaly mediation.

3.1.2 Discrete symmetry and Wilson line

One of the main problems of GUT theories is the fast proton decay mediated by
colour triplet partners of Higgs doublets. To prevent a significant decay rate, the
colour triplets must be either very massive (often of order GUT scale) or com-
pletely decoupled from the standard model sector. For most string theories, the
splitting/decoupling can be accomplished by a Wilson line in the higher dimen-
sional theory, but in M theory, this is not possible since matter only exists in four
dimensions. It was then noticed by Witten [74] that the presence of a geometric
discrete symmetry of the GGy manifolds whose action is enhanced by Wilson line
phases leads to a symmetry that does not commute with the GUT gauge group.
Therefore, this allows different components of the GUT multiplet to have differ-
ent discrete charges and hence preventing proton decay. Here I will review the

mechanism in SU(5) GUT theories studied in [45] before proceeding to SO(10)
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GUT theories in later sections.

In M-theory compactified on a hidden manifold X with G5 holonomy, gauge
fields are localised on a 3 dimension submanifold K, whereas the chiral multi-
plets are localised on points in K where a conical singularity is developed. To
break the GUT symmetry, we assume that K is not simply-connected. Since
the fundamental group of K is non-vanishing, there exists a non-trivial gauge
field configurations, i.e., a Wilson line. The GUT group is broken down into the
subgroup that commutes with Wilson lines. If the survival subgroup has n U(1)

factors then a Wilson line can be expressed as

W = exp ( Z ale) = Z <z27r Z alQl> , (3.15)

where @); are the generators of the U(1) factors, a; are coefficients of the linear
combination that are only constrained by W¥ =

If K admits a discrete symmetry of the geometry isomorphic to the funda-
mental group which we assume to be Zyn symmetry for simplicity, the discrete
symmetry action and the Wilson line charges would mix leading to a discrete
symmetry that does not commute with the GUT group. This means we have
non-GUT preserving selection rules, which will constraint our Lagrangian below
the GUT scale.

To illustrate how Witten’s proposal leads to preventing proton decay, let’s
consider the case of SU(5) as shown in [45]. We assume the following: 5 is
the multiplet containing Hy and D and is localised along the Wilson line; 5" is

the multiplet containing H,; 5 and 10™ are the matter multiplets. Then the
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transformation rules for these multiplets under Zy are:

5" = n (WHYy @' D"),

5" — nx5", (3.16)

where = €*/N 26 + 3y = 0 mod N . By requiring that Yukawa couplings,
Majorana neutrino masses, and colour-triplet masses must be present, we obtain
constraints on the charges as can be seen in Table 3.1 where we chose w = 0. One

can solve these by writing all angles in terms of o.

X=—7=—20 mod N
d=—-30+N/2 mod N (3.17)

T=20+N/2 mod N

The p term and other proton decay operators must also be forbidden. The con-
straints are shown in Table 3.2. It is then trivial to see that all of the constraints

are satisfied with a Z; symmetry. For example, N =4, 0 = 1.

Coupling Constraint
Up-type Yukawas H"10™10™ | 20+ x=0mod N
Down-type Yukawas HY¥10™5" | 0+ 7+d=0mod N
Majorana Masses of neutrinos H!H"5"5™ | 2x + 27 = 0 mod N
Colour-triplet masses D" D" X +v=0mod N

Table 3.1: Couplings and charges for SU(5) operators.
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Coupling Constraint
p term HYH" —50 + N/2 # 0 mod N
Dimension 5 proton decay 10m10™10™5" | 50 — N/2 # 0 mod N
Dimension 3 R-parity violation 5455 N/2 # 0 mod N
Dimension 4 R-parity violation 10m5"5" 50 # 0 mod N

Table 3.2: Couplings and charges for SU(5) operators.

3.1.3 Effective u-terms and trilinear couplings

In an essence of the doublet-triplet splitting mechanism from the discrete sym-
metry arising from earlier arguments, the Higgs doublets mass parameter, p must
vanish at the GUT scale. However, the limit on the Higgsinos mass constrains
p > O(100) GeV. The discrete symmetry must therefore be broken. In M Theory
compactified on a GG manifold without fluxes there is a natural way of generating
effective p terms. An effective p-term of order TeV scale can be generated by
moduli vev from interactions in the Kahler potential, the mechanism which is
similar to Giudice-Masiero mechanism [44].

To see how the above considerations lead to a natural O(1 TeV) u term con-

sider the Kahler potential interaction

K> -2 XX +he. | (3.18)
mpy

here we take the coefficient to be or order one, and s symbolically represents a
modulus field, and X a chiral supermultiplet in some gauge irrep, with X another
chiral supermultiplet in the charge conjugated irrep. As moduli arise from zero
modes of the Lichnerowicz equation, they are naturally charged under the discrete
symmetry. Since there are many of them, the above coupling is generally allowed
even if XX is forbidden by the same discrete symmetry.

As a consequence of the moduli stabilisation and associated vevs, an effective u
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parameter for the X field will be generated. This effective parameter appearing in
the superpotential is derived from the usual supergravity mass formulae [75] [76]
when taking the flat — global SUSY — limit of supergravity.

In the end one finds that the effective superpotential p term is given by

px = (m3pKyx — FPKyx,) (3.19)

which leads to

px = ——Mg/ + ; (3.20)

and since Fy < mg/2(s) the moduli vev dominates. One finds

Hnx ~ 0.1m3/2 s (321)

and since mg/, ~ O(10 TeV), we have px ~ O(1 TeV). Notice that this analysis
is valid for all vector-like pairs X X. This means that if one adds extra vector-like
states to the model, beyond the MSSM spectrum, one has to worry about possible
mixings and LHC-reachable extra fermionic matter. This will be studied below
when we construct the SO(10) model.

Similar to the above procedure to generate p parameters, our framework can
generate effective trilinear terms in the superpotential. They will mediate proton
decay but also provide a LSP decay channel, since they can be R-parity violating.
These interactions play an important role for the low-energy model, and have to
be studied in detail.

Trilinear interactions are generated in the same way as the effective p terms
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dsicussed above. Consider the Kahler potential contribution

K> -—-XYZ+he. (3.22)

where s does not have to be the same moduli as above, and X, Y, and Z are chiral
supermultiplets. As one can see, these interactions are more suppressed than
the effective u-terms studied before, they will, however, still appear as effective

trilinear couplings in the superpotential as

((s)ymz/2 + F)

pl

Weff D) mg/zXYZ s (323)

Again, since F, < (s)msg/2, the F-term contribution is sub-leading and we can
estimate the order of magnitude of the effective coupling. This turns out to be
small

s Mg — 01722 L1071t (3.24)
2 /
my, mpj

but it will have a deep impact on the LSP lifetime, as it will be discussed below.
We also note that in principle these cannot be big enough to generate realistic
Yukawa couplings. One is then led to expect the Yukawa couplings to be generated

by tree-level interactions as discussed above.

3.2 SO(10)

Following the review, we now turn to the M theory approach to SO(10), where
a novel solution to the doublet-triplet splitting problem seems to be required.
Since the Wilson line is in the adjoint representation, it can break SO(10) to
SU(3) x SU(2) x U(l)y x U(1) and the Wilson line itself is a combination of

U(1)y and the additional U(1). If we consider a fundamental of SO(10) localised
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along a Wilson line, then its transformation properties under the Zyn symmetry

are

10° = n¥ (n *HY ® ”’D" ®n“H" @ n*ﬂDw) : (3.25)

In minimal SO(10) the u-term arises from a term in the superpotential of the

form

W D p10"10" = p (HYHY + DD") (3.26)

The discrete symmetry will forbid this term in a general model. As in the SU(5)
case, once the symmetry is broken by moduli vevs, the term will be generated in
the Kahler potential via the Giudice-Masiero mechanism. This will give a p-term
at the TeV scale, which, in SO(10) also generates a similar mass for the triplet
D.

We can add extra 10 multiplets and forbid some couplings between the differ-
ent members of the various 10 multiplets. Consider one additional 10, denoted
10" without Wilson line phases: 10" — 7f10". We have eight possible gauge

invariant couplings with a 10® and 10" that can be written in matrix form as
WoHY uy-H,+D - Mp-D, (3.27)

where py and Mp are two 2 X 2 superpotential mass parameters matrices, HZ 4=
(Hffjdy Hff,d), ET = (Ew,5h>, and DT = (D“’, Dh). The entries of the matrices

are non-vanishing depending on which of the following discrete charge combina-
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tions are zero (mod N)

D¥D", H'HY : 2w,
D*D", HhH! . 2,
HYH!: a+w+¢, (3.28)
H'HY : —a+w+¢,
h

DYD": —B+4+w+E,

D'"D": B+w+¢.

The doublet-triplet splitting solution would be for gy to have only one zero eigen-
value, with Mp having all non-zero eigenvalues, i.e., all except a pair of Higgs
doublet are massive. One finds that there is no choice of constraints within a Zy
symmetry from Eq. (3.28) that accomplishes this. It was shown that a possibility
of adding more 10 multiplets does not work as well. Therefore, we shall only
consider a single light 10*, without any extra 10 multiplets at low energies.
Assuming a single light 10", it is possible to use the discrete symmetry to
forbid certain couplings, namely to decouple D and D" from matter. Such cou-
plings arise from the operator 10¥16™16™, with 16™ denoting the three SO(10)
multiplets, each containing a SM family plus right handed neutrino N. If 16™
transforms as n*16™, the couplings and charge constraints are in Table 3.3, where
we allow for up-type quark Yukawa couplings together with couplings to the right-

handed neutrinos,
Y HY167'167 =y HY (QiuS + LiNj + i <+ j), (3.29)
and similarly for down-type quarks and charged leptons. Explicit examples real-
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ising these conditions will be given later.

Table 3.3: Couplings and charges for SO(10) operators.

Coupling Constraint
H*16M16™ 2k+ o+ w =0 mod N
H716™m16™ 2k —a+w =0 mod N
D*16™16™ 2k — [+ w # 0 mod N
D“16™16™ 2k + f +w #0 mod N

The suppression of colour triplet couplings to matter was previously considered
by Dvali in [77] and also [78-80] from a bottom-up perspective.

Next we consider the breaking of the discrete symmetry via the moduli vevs as
discussed above, leading to proton decay. For proton decay, the relevant operators
can be generated in the Kahler potential, schematically, writing D = D",

K D = DQQ + - De‘u’ + > DNd° +

2 2 2
pl pl pl

+-5Ddu® + 5 DQL. (3.30)
pl pl

Just like the p-term, the effective superpotential may be calculated from super-

gravity to be

Werr D ADQQ + ADeus + ADNd° +

+ADdu® + ADQL, (3.31)

where

P o ((symg/2 + (Fy)) ~ 107 (3.32)

Notice that unlike the case of SU(5), there is no SO(10) invariant bilinear term

kLH, whose presence would lead to fast proton decay. We estimate the scalar
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triplet induced proton decay rate to be

N2 m

5
~ 2 3.33

P 16m2 md, ( )

Generically, the mass of the colour triplets is of the same order as y, i.e., mp ~ 103

GeV, so the proton lifetime is
7 =T, ~ 10% yrs, (3.34)

which exceeds the current experimental limit.

Now consider the D triplet decay rate:
Lp ~ XNmp ~ (0.1 sec) ™. (3.35)

The associated lifetime of 0.1 sec is (just) short enough to be consistent with
BBN constraint. They will also give interesting collider signatures due to their

long-lived nature.

3.2.1 Vector-like Family

Gauge coupling unification is in general spoiled by light colour triplets, unless they
are also accompanied by additional light doublet states. In the present framework,
the only way we know of to circumvent this issue is the presence of light additional
states which complete the triplets into complete GUT multiplets. Happily, this
can also be achieved by use of the discrete symmetry. First we introduce a vector-
like pair of 16’s, labelled as 16x + 16x. Next a GUT-scale mass is given to their
colour triplet components dS,d¢x whilst keeping the remaining particles light.

Suitable charges under the discrete symmetry can forbid the appropriate mass

60



terms and the large mass can arise from membrane instantons if the 16y and
16 are close by on the Gy manifold [71].
We take 16y to be localised along a Wilson line, and find that it transforms

under the discrete symmetry as

]-GX _)nac (U—S’yL D nS’y—HSec D ,'737—6N D n—'y—éuc@

ey M enQ). (3.36)

Assuming 16 transforms without Wilson line phases, 16 x — 7% 16, the condi-

tion for the mass term is
dexdy :x—~y+6+Z=0 mod N, (3.37)

whilst forbidding all the other self couplings that would arise from 16x16 .

The light D* and D" from the original 10” then “complete” the 16y + 16y
pair, since they have the same SM quantum numbers as the missing d%, dcx. The
light states in the 16x and 16x also obtain masses via the Kihler potential of
order a TeV via the Giudice-Masiero mechanism. Gauge unification is clearly
restored, albeit with a larger gauge coupling at the GUT scale due to the extra
low energy matter content (relative to the MSSM).

Note that one can consider a model beyond simplicity by adding more vector-
like multiplets which is consistent with anomaly cancellation constraints and gauge
unification. However, such a model results in too large 1-loop gauge running
coefficients so that the gauge couplings approach infinity before they unify. To
avoid non-perturbativity issue, we are constrained to the model with 16x and
16x.

Effective p-terms induced by moduli vevs of the form ;16™16x are then gen-
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erated and one might be concerned about too much mixing with quarks and
leptons. However, one finds that all the light components of the extra matter
decouple from ordinary matter, with mixings supressed by terms of order (3.32).
For example, consider the up-type quark sector. The superpotential contribution

T

to the mass matrix is, schematically, Uy, - M,, - Ug , with U, = (uz Ux EX> ,
T

Ur = ((uc)Z Ux u}) , and

Zj (Hy) Mg(Q 0

M, = 0 txxq 0 (3.38)

/ﬂ;}u 0 Hxu
Here /@(Q, ug(u, LxxQ, fxy are moduli induced p-type parameters of O(TeV)
while the vanishing entries are non-zero only to first order in moduli-induced
trilinear interactions that are vanishingly small, O(107'%). We have found nu-
merically that flavour changing neutral currents (FCNCs) are highly suppressed
by this structure. This can be understood analytically in the approximation that
the electroweak masses can be ignored, since y,(H,)/pu ~ O(0.1). In this ap-
proximation, the third lightest u-quark will be given by the two component Weyl

quarks

1
= uy =~ xxo)us — (ux)ux), 3.39
= (i~ (), (639)

1
xu ()3 — (1515, 3.40
N (uxu)Q((” (u)3 — (kx,)u%) (3.40)

t¢ = (ug)' ~

and as a result the light up-quark, which we denote t, does not result in a mixing
including u¢y. This is important, since u¢y in Uy, couples to Z differently, only
through the electromagnetic contribution to the neutral current and not via the J§

contribution. Consequently, FCNCs will be naturally suppressed and the CKM
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matrix should have only small deviations from unitarity. Furthermore we note

that the resulting matter states couple to the Higgses and Z as in the MSSM.

3.2.2 See-saw Mechanism

Introducing the 16x and 16y will play a crucial role in breaking the extra U(1)
subgroup of SO(10) and generating right-handed neutrino masses. We assume
that a mechanism similar to the one proposed by Kolda-Martin [81] is in effect,
such that the right-handed neutrino components acquire a non-trivial high-scale
vev along the D-flat direction, (Nx) = (Nx) = vy, which in turn breaks the rank.
However the scale vy is constrained, as discussed below.

Presence of the 16x and 16y with vevs in their right-handed neutrino com-
ponents gives us the possibility of having a see-saw mechanism for light physical
neutrino masses. Such a mechanism is welcome since representations larger than
the 45 are absent in M theory [82]. In the present framework, a Majorana mass
term for the right handed neutrino in 16" is generated by letting the discrete
symmetry to allow the Planck suppressed operator #NEXEX 16™16™. This re-
quires charges to satisfy 2z + 2k = 0 mod N, and leads to the Majorana mass

2

M ~ 2,
mpl
Due to the nature of SO(10), the neutrinos will have the same Yukawa coupling
as the up-type quarks %, as in Eq. (3.29), leading to their Dirac masses being
the same as the up-quark masses. For the case of the top quark mass we would
need M ~ 10 GeV in order to give a realistic neutrino mass. Such a high value
can only be achieved by the above see-saw mechanism if vy > 1016 GeV.

The magnitude of vy is also constrained by R-parity violating (RPV) dy-

namically generated operators, due to moduli and Ny, N x vevs, arising from the
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Kahler interactions

Kppy > —16x16™16™16™ + —10"1616". (3.41)
My My

Because moduli are also charged under the discrete symmetry, these operators
are expected to be allowed due to generic charges of O(100) moduli. Since s
and Nx acquire vevs, these operators generate the effective superpotential terms
(otherwise forbidden by the discrete symmetry),

WeH, 5 A LLet + A\ LQde + A\ uedede +
mp My mpi

+AvxLH,, (3.42)

with A ~ O(107!). One can absorb the last term into uH,;H, by a small rotation

O(vx/my) in (Hy, L) space,

W Sy LLe® + yg—x LQd° + A\—Xuedede, (3.43)
M M My
where the first two terms originate from the Yukawa couplings y.HyLe®, etc., and
we have dropped the O(\) contributions to these terms since now the Yukawa
rotated contributions are much larger.

We emphasise that there exist explicit solutions to the constraints on all of the
charges and couplings that we have discussed. These are Table 3.3, Eq. (3.37),
the Majorana mass term, suppressing the RPV operators and cross-terms between

the visible matter, 16x and 16 necessary for Eq. (3.38). An example is given by

(N,w,a, 8, k,2,7,0,T) = (16,4,0,1,6,2,1,13,2). (3.44)

64



which is also anomaly free, as can be checked by explicit calculations [83].

The last term in Eq. (3.42) is the bilinear RPV operator which mixes the
up-type Higgsino and neutrinos [84,85]. The contribution to neutrino masses is
tighly constrained leading to Avx < O(1 GeV), which translates to the upper
bound vy < 10'* GeV in contradiction with the see-saw requirement vy ~ 101°
GeV assumed in the above estimates. However, there is a natural way within this
framework to further suppress the bilinear RPV terms. This happens when the
charges of the moduli fields under the discrete symmetry are such that the leading
order terms in K, which are linear in the moduli i.e. mL?ﬂUXLHu, are forbidden
by the symmetry, with the leading term arising at higher order in the moduli. If
the leading term arises at cubic order or higher, (e.g. K ~ %UXLHU then the
suppression will be sufficient. Furthermore, some moduli may have smaller vevs
than others in a detailed model, leading to additional suppression.

The RPV terms in Eq. (3.43) induce the lightest supersymetric particle (LSP)

decay. We can estimate its lifetime as [45]:

3.9 x 109 sec < mo >4 (100 GeV)5

(vx/my)?  \10 TeV (3.45)

TLSP =
mrsp

Since, as discussed above, vy /m, ~ 1072, one finds 775p ~ 10~ *sec. This value
is compatible with current bounds 7.sp < 1 sec [86], from Big Bang Nucleosyn-
thesis. The result implies that the LSP is not a good dark matter candidate in
M-theory framework. However, without the stable LSP, there are other possibil-
ity explaining dark matter in SO(10) models. As mentioned in the last chapter,
axions from the string theory framework as a dark matter are the most common
prediction [49, 50].

Note that in this framework, gravitino is not a candidate for dark matter since
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it is not a stable particle with O(10) TeV mass. In fact the abundance of gravitino

might be a problem to the BBN prediction as discussed before since its lifetime

2

is of order Tigp’ ~ 1 sec. However, the decay of the lightest modulus generically
3/2

produces a large amount of entropy such that the initial abundance of gravitino is
diluted away. The gravitino thermal production from the lightest modulus is also
found to be kinetically forbidden since we typically find that the lighest modulus
is lighter than 2my ;.

Since any global symmetries is explicitly broken from planck suppressed opera-
tors [70], there is no associated goldstone bosons such as R-axion from R-symmetry
as a dark matter candidate.

Another possible solution would be an assumption that there exists a particle
in a hidden sector that is lighter than the LSP and there is a portal between 2
sectors. In string/M theory framework, the portal connection is typically in the

form of the kinetic mixing terms as argued in [87].

3.3 Conclusion

We have discussed the origin of an SO(10) SUSY GUT from M theory on a Gy
manifold. We were naturally led to a novel solution of the doublet-triplet splitting
problem involving an extra 16y + 16 x vector-like pair where discrete symmetries
of the extra dimensions were used to prevent proton decay by suppressing the
Yukawa couplings of colour triplets. Such models maintain gauge coupling unifi-
cation but with a larger GUT coupling than predicted by the MSSM. We argue
that these extra multiplets, also required to break the additional U(1) gauge sym-
metry, inevitably lead to significant R-parity violating effects when combining with

the see-saw mechanism. Even though the moduli potential generically breaks the
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discrete symmetry, we have seen that one naturally satisfies the constraints from
the proton lifetime and decays affecting BBN. We also have found a consistent
scenario for neutrino masses arising from the high scale see-saw mechanism, with
sufficiently suppressed RPV contributions. We emphasise the main prediction of
this approach, namely light states with the quantum numbers of a 16x + 16x

vector-like pair which might be accessible in future LHC searches.

67



Chapter 4

Bottom-up Approach and Future
Colliders

4.1 Introduction

In the MSSM, the chargino-neutralino sector is particularly important for several
phenomenological reasons. Firstly, this sector contains Higgsinos, whose mass
parameter, (i, plays a crucial role in electroweak symmetry breaking. If the MSSM
provides a solution to the gauge hierarchy problem, at least some of the charginos
and neutralinos must be present not too far from the electroweak scale. Secondly,
many SUSY breaking scenarios suggest that one of the neutralinos becomes the
lightest SUSY particle (LSP). Typically, the lightest neutralino is stable due to a
discrete symmetry (e.g. R-parity) and might be a promising candidate for dark
matter. Such a stable neutralino also plays a crucial role in collider phenomenology
since the decay of supersymmetric particles will always produce the LSP, leading

to a distinctive missing energy signature.

The ATLAS and CMS experiments at the CERN Large Hadron Collider (LHC)
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have put considerable effort into looking for charginos and neutralinos in the
LHC data. In hadron colliders the expected limit and discovery reach for the
charginos and neutralinos are considerably weaker compared to those for squarks
and gluinos. For the Yix) — W*¥VZx? simplified model with M+ = mygg and
mgo = 0 GeV, the current limit is Mgt 2, 400 GeV [88,89]. The projection for the
14 TeV LHC has been estimated for the same simplified model by ATLAS [90].
The 5-0 discovery reach (95% CL limit) for the chargino mass is about 550 (880)
GeV for 300 fb~! and 800 (1100) GeV for 3000 fb~!. For massive neutralinos
(mg > 0 GeV) or models with BR(Y3 — hx?) > 0, the limit and discovery reach
become even weaker. These limits are well below those required by typical dark
matter models.

Recently, there has been discussion on the next generation of circular col-
liders, including high energy proton-proton machines. Several physics cases at
proton-proton colliders with /s ~ 100 TeV have already been studied [91-102].
In particular, the limit and discovery reach for coloured SUSY particles have been
studied in the context of simplified models assuming a 100 TeV proton-proton col-
lider with 3000 fb~! of integrated luminosity [91]. The mono-jet search [96] as well
as the mono-photon, soft lepton and disappearing track searches [100, 101] have
been studied in the similar setup for production of the pure W-inos (Higgsinos),
assuming they are the main component of the LSP. The 100 TeV colliders will
provide a great opportunity to discover heavier charginos and neutralinos beyond
the LHC reach.

In this chapter we investigate chargino-neutralino search at a 100 TeV collider
assuming 3000 (1000) fb~! luminosity exploiting the WZ channel. In stead of
employing a simplified model approach, we work on a model which may arise

as a limit of concrete models. In particular we assume My > p > 0 and
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My — 1 > my, where M, is the W-ino mass and p is the Higgsino mass. In
this scenario Higgsinos form the main component of the lighter charginos and
neutralinos (Y5, X2, X3 ~ H*, HY, HY) and W-inos compose the heavier charginos
and neutralinos ()Zli,fgg ~ Wi,/WVO). This assumption is partly motivated by
naturalness, by anomaly mediation SUSY breaking scenarios, by string/M theory
models and by split supersymmetry [31,32,70,103-108]

The assumption can also be realised in string/M theory framework. However
in order to satisfy My > p > 0.1mg/9, gaugino mass cannot be suppressed with re-
spect to the gravitino mass. From the supergravity computation [75], the gaugino

formula
€K/2Fiaz‘fms

4.1
2ZIH1f VLS ( )

myje =

implies that F-term of the geometric moduli appearing in the gauge kinetic func-
tion are not suppressed. This case could happen when the moduli are stabilised
by string-loop effects or perturbative effects in Kahler potential [109].

The rest of the chapter is organised as follows. In section 4.2, we describe
the model setup and study the production cross sections and branching ratios of
charginos and neutralinos. After clarifying our simulation setup in section 4.3,
various kinematic distributions for signal and background are studied in section
4.4, which will be used to design optimal event selection cuts for the chargino-
neutralino search. In section 4.5, we present the result of our analysis and derive
the limit and discovery reach in the M — 4 parameter plane. The conclusions are

given in section 4.6.
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4.2 The cross sections and branching ratios

4.2.1 The model setup

We focus on the models with My > > 0 and Ms — 1 > my, where the p is the
mass of the Higgsinos and M, is the mass of the W-inos since the W-ino production
cross section is larger than the Higgsino cross section. We assume that all the
other SUSY particles, including the B-ino, are decoupled and all SUSY breaking
parameters are real for simplicity. In this situation the mixing between W-ino
and Higgsino is negligible; the two Higgsino doublets are the lightest charginos
and the two lightest neutralinos (which are almost degenerate) and the W-inos
(SU(2) triplet) are the second lightest charginos and the third lightest neutralino

(almost mass degenerate):

~+ ~0 0 7+ 770 7170 : ~ ~ ~
Xi:X1:Xe ~ H™, Hy,H;, with Mgk = Mg = Mgs = |l

w0 o~ WEW with mgs ~ mgg o | Mo], (4.2)
where f[?ﬂ = \/Li(flg F ng) is the neutral Higgsino mass eigenstate. With this
setup, the remaining free parameters are My, u and tan 3. We use tan g = 10
throughout our numerical study. We give examples of the mass spectrum and
splittings in table 4.1.

However, the impact of tan § on the production cross section and branching
ratio of the charginos and neutralinos that are WW-ino or Higgsino like is almost
negligible unless tan 8 is extremely small. The tan 3 dependence of the cross
section is shown in figure 4.2. We therefore believe our results including the

chargino-neutrino mass reach are still useful for other values of tan S.
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Ms [GeV] | 11 [GeV] | tan 3 | XY [GeV] | X9 [GeV] | X7 [GeV] | X§ [GeV] | X5 [GeV]
1500 1200 5 1185.8 1200.8 1192.0 1514.8 1508.0
1500 1200 10 1187.6 1202.0 1195.8 1513.18 1504.2
1500 1200 50 1189.2 1201.2 1199.1 1511.8 1599.9
2500 1200 5 1196.5 1200.6 1198.1 2503.9 2501.9
2500 1200 10 1196.9 1200.7 1199.0 2503.6 2501.0
2500 1200 50 1197.3 1200.9 1200.0 2503.4 2500.2
3500 1200 > 1198.0 1200.5 1199.0 3502.3 3501.1
3500 1200 10 1198.2 1200.6 1199.5 3502.2 3500.6
3500 1200 50 1198.4 1200.7 1199.9 3502.1 3500.1

Table 4.1: The mass spectrum for various benchmarks. Notice that tan 8 depen-
dence on the mass spectrum is mostly neglible and the degeneracies appearing in
4.2 is valid up to soft activities.

4.2.2 The cross sections

We show the leading order (LO) cross sections for the W-ino and Higgsino pair
productions at a 100 TeV proton-proton collider in figure 4.1. The cross sections
are calculated using MadGraph5 [110]. Since squarks are decoupled, the W-inos
and Higgsinos are produced via the s-channel diagrams exchanging off-shell W=
and Z bosons. For the pure W-inos and Higgsinos, there is no associated W-
ino-Higgsino production process. Pair production of the same neutralino states,
WOWO, H?H?, ﬁgﬁg, are also absent.

One can see that the WO production mode has the largest cross section.
The LO cross section varies from 10® fb to 1072 fb for the WW-ino mass from 500

GeV to 8 TeV.
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Figure 4.1: The leading order cross sections for the WW-ino and Higgsino pair pro-
ductions at a 100 TeV proton-proton collider with decoupled squarks and sleptons.
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Figure 4.2: The cross sections for the Y3 X3 ~ WEWO production as a function of
tan 3 .
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4.2.3 The branching ratios

The W-ino-Higgsino interaction is derived from the kinetic terms of Higgsinos.

£ > |HieVH,+ He Hy N

S V2g(HWT*H, — H;W*T*Hy,) + h.c. (4.3)

The Higgs and Higgsino fields can be written in terms of the Goldstone bosons

and the mass eigenstates as:

HF sinf - ¢t + - HF H*

H? \/Li(cos&~h+isinﬁ-¢0)+~~ H) %(ﬁ?+lﬁg)
HY _ Zina-h+icosf-¢%) + - H? N %(ﬁf—iHS)
Hy —cosf-p” +--- f[d_ H-

where h is the SM like Higgs boson, and ¢° and ¢* are the Goldstone bosons to
be eaten by the SM gauge bosons, Z and W=, respectively. The angles o« and 3
represent the mixing for the neutral and charged Higgs mass matrices.

In the large tan 8 limit, we have cosa/sina ~ (—sin3)/cos 3, and one can

see that the hW H, ¢°W H and ¢=W H have the same coupling. In this limit one
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can find the following results using the Goldstone equivalence theorem [111].

( ~ ~
0.5 — W*H) or W=HY

BR(IW*) ~ < 025 — hH*

| 025 — ZH*
(

05 — W*rHT

BR(W®) =~ ¢ 025 — hH? or hHY (4.5)

| 025 — ZH or ZH?Y

The different CP properties between h and ¢°, and HY and HY result in the

different rates for W° — hH? and W° — ZH? hH?. These rates are given by

12

BR(W* — W*H?) BR(W* — W*HY),

—~ ~

BR(W® — hHY,) ~ BR(W° - ZH),),
BR(W° — ZHY) 1 —2|p/ M|
BR(W° — hHY) 1+ 2|p/Ms|

(4.6)

Figure 4.3 shows the branching ratios of W#* and WO, which have been cal-
culated using SUSY-HIT [112]. One can see that the branching ratios approach
eq. (4.5) in the large M5 limit. For the region where |Ms — | is close to the masses
of SM bosons, the decay mode into W# enhances since it has the largest phase
space factor.

Since the charged and neutral W-inos are almost mass degenerate, it may
not be possible to resolve W% — XY and W° — X'Y” in hadron colliders if
XY is equal to XY’ up to soft activities. Similarly, four degenerate Higgsinos
would not be resolvable, since H* and HY usually decay promptly into H? and

their decay products are too soft to be detected. We therefore categorise the
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Figure 4.3: The branching ratios of W# (a) and W° (b) as functions of M.
The p parameter is fixed at 200 GeV. The SUSY particles other than W-inos and
Higgsinos are decoupled.

processes into distinguishable groups in terms of the SM bosons appearing in the
final states. For example, x'x" — W Zxx process (W Z mode) includes WHWw- =
(WEHY,)(ZHT), WEW — (WHHY ) (ZH,,), (ZH*)(W*HT) and WOW° —
(WHF)(Z }NI? J5)- We show the cross sections of the all 6 distinguishable modes,
WZ, Wh, WW, ZZ, Zh and hh modes, in the My — p plane in figure 4.4.

One can see that the modes containing at least one W have considerably larger
cross sections compared to the others at the same mass point. In particular, the
W Z mode is promising’ because one can reduce the QCD and tt backgrounds
significantly by requiring three high pr leptons (see figure 4.5). Taking advantage
of this we henceforth study the expected discovery reach and exclusion limit for
chargino-neutralino production in the WZ mode.

In figure 4.6, we show the cross section of the W Z mode after taking account of
the branching ratios of the gauge bosons into 3¢ 4 v. The black curve represents

the limit beyond which less than 5 signal events (x'x' — WZxx — 3lvxy)

!The Wh mode is also interesting. See [113-117] for some recent studies.
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Figure 4.4: The cross sections of the 6 distinguishable modes, x'x’ — XY yx with
XY =WZWhWW,ZZ, Zh and hh, as functions of My and . SUSY particles
other than W-inos and Higgsinos are decoupled.

are produced, assuming the integrated luminosity of 3000 fb=!. This provides a

rough estimate of the theoretically maximum possible exclusion limit assuming

zero background with perfect signal efficiency.
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Figure 4.5: The dominant event topology for signal events.
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Figure 4.6: The cross section of x'x' — W Zxx — 3lvxx as a function of My and
p. The black curve represents the limit beyond which less than 5 signal events
are produced, assuming the integrated luminosity of 3000 fb—!.

4.3 The simulation setup

We use the Snowmass background samples [118] to estimate the Standard Model
(SM) backgrounds. We include the relevant SM processes, which are summarised
in table 4.2.

For signal events we first generate chargino and neutralino production events

using MadGraph 5 with the parameters obtained by SUSY-HIT. We consider two
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3298.4
219.9
3582.2

Name Snowmass Relevant sub-processes oNLO pb]
diboson VV WW-, W*Z, 727
top-pair + gauge boson ttV HW=*, ttZ, tth
top + gauge boson tV tW*, tW=
triple gauge boson VVV WW-W* WYW~-Z W*ZZ, 2727

36.4

Table 4.2: The Standard Model background included in the analysis. For each
background category, we only list sub-processes relevant in the 3 lepton analysis.
Reported cross sections include all sub-processes in corresponding background
categories.

production processes pp — x5 x5 and pp — X3 X3, where Xi ~ W#* and X3 ~ wo.
The generated samples are then passed to BRIDGE [119] to have the charginos and
neutralinos decay. We then only accept the events with W and Z in the final
states, and pass those events once again to BRIDGE to let W and Z decay leptoni-
caly. Finally we simulate the effects of parton shower, hadronization and detector

resolutions using Pythia 6 [120] and Delphes 3 [121]. The detector simulation is

tuned according to the Snowmass detector framework [118].

4.4 The kinematic distributions

In this section we show some kinematic distributions for the background and
signal events. We consider the W Z mode for signal and diboson (VV) and top-
pair plus gauge boson (ttV) processes for backgrounds. The signal distributions
are generated at a benchmark point: My = 1.4 TeV, pu = 200 GeV. Throughout
this section we use a notation denoting the i-th hardest lepton (electron or muon)
by ¢; (namely, pr(¢;) > pr(¢;) for i < j).

Figure 4.7(a) shows the normalised distributions of the leading lepton pseudo-
rapidity, 7, for signal (black) and background (red for VV and green for ttV).

The distributions are obtained at a parton level without selection cuts apart from
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pr(f1) > 10 GeV to understand the bare distribution before taking the detector
acceptance into account. One can see that the leptons in the background tend
to be more forward compared to the signal leptons. The production threshold is
much lower for the backgrounds and more asymmetric momentum configurations
are allowed for the initial partons. If one of the initial partons has a much larger
momentum than the other, the system is boosted in the direction of the beam pipe
and the leptons tend to be produced in the forward region.? Another effect is as
follows. Unlike the signal, production of the backgrounds have a contribution from
t-channel diagrams. In 100 TeV colliders, the SM gauge bosons can effectively be
regarded as “massless” particles and there is an enhancement in the region of the
phase space where the gauge bosons are produced in the forward region.

Figure 4.7(b) shows the pr distributions of the three hardest leptons. The
distributions are obtained after taking the hadronization and detector effects into
account and requiring at least 3 leptons (with pr > 10 GeV, |n| < 2.5), of which
two are same flavour and opposite sign (SFOS). As can be seen, the ppr-spectrum
of background leptons has peaks below 100 GeV, whilst the signal peaks at around
300, 150 and < 50 GeV for the leading, second leading and third leading leptons
for our benchmark point.

We also show the B distributions in figure 4.7(c), where we use the same
event sample as those in figure 4.7(b). The main source of the EX* in the
background are the neutrinos produced from W and Z decays and the distribution
has a peak around 30—40 GeV. Above this peak, the background EI* distribution
falls quickly. On the other hand, a large E* can be produced from the signal

from the decays of heavy charginos and neutralinos. The typical scale of Fiss

2For the W™ Z background, the initial state is often u and d. If the partonic collision energy
is much smaller than the proton-proton collision energy, it is more likely to find a valence quark
u carrying a larger fraction of the proton momentum compared to the sea quark d.
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is given by ~ Ms/2. As can be seen, the signal distribution has a peak around
500 GeV. This indicates that a hard cut on EX* will greatly help to improve the
signal to background ratio.

We show the transverse mass mg distributions in figure 4.7(d), where the

event samples are again the same as those used in figure 4.7(b). We define my =

V2|pr(0)|| ER| (1 — cos Ag), where ¢ is the hardest lepton amongst those not
chosen as the SFOS lepton pair and A¢ is the azimuthal difference between the
¢ and the direction of 7?” In the WZ background, this distribution has an
endpoint at my, and above the endpoint the distribution drops very sharply. In the
signal events, the distributions are much broader, as can be seen in figure 4.7(d). A
harsh cut on my would also be very helpful to reject a large fraction of background

without sacrificing too many signal events.

4.5 The limit and discovery reach

4.5.1 The event selection

Our event selection consists of two parts: preselection and signal region (SR) selection.

The preselection requirement is:
e exactly three isolated leptons with pr > 10 GeV and || < 2.5,

e a same-flavour opposite-sign (SFOS) lepton pair with |m3F% —my| < 10

GeV,
e no b-tagged jet.

With the first condition one can effectively reject the QCD, hadronic ¢t and single

gauge boson backgrounds. The definition of lepton isolation and some discussion
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Signal Region | 3 lepton pr [GeV] | EX [GeV] | mr [GeV]
Loose > 100, 50, 10 > 150 > 150
Medium > 250, 150, 50 > 350 > 300
Tight > 400,200, 75 > 800 > 1100

Table 4.3: The event selection cuts required in the signal regions. These cuts are
applied on top of the preselection cuts.

around it is given in Appendix A.2. The second condition is introduced to remove
the leptonic SM processes without Z bosons, such as ttW* and W+W-W=. The
last condition is effective to reduce the SM backgrounds containing top quarks.
In the simulation we use the b-tagging efficiency of about 70 %, which is set in the
Delphes card used in the Snowmass backgrounds.

In order to obtain as large coverage as possible in the My — pu parameter plane,
we define three signal regions: Loose, Medium, Tight. These signal regions are de-
fined in table 4.3. The selection cuts are inspired by the kinematical distributions
shown in figure 4.7. The Loose region, which has the mildest cuts, is designed to
constrain the degenerate mass region (My 2 i), whereas the Tight region, which
has the hardest cuts, targets the hierarchical mass region (M > u). The Medium
region is also necessary to extend the coverage in the intermediate mass region.

The visible cross section (the cross section for the events satisfying the event
selection requirements) for each signal region is shown in Appendix A.3. The
information for the detailed breakdown of the background contribution and the
visible cross section at each step of the selection is also shown. The number of total
background events are expected to be 38400, 810 and 12.3 for the Loose, Medium

and Tight signal regions, respectively, at 3000 fb=! of integrated luminosity.
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4.5.2 The result

In figure 4.8(a), we show the 20 exclusion limits in the y — M, parameter plane
obtained by the different signal regions. The shaded regions have S/vB > 2,
where S and B are the number of expected signal and background events falling
into the signal regions, respectively. For signal we use a constant k-factor of
1.3 across the parameter plane. One can see that the three signal regions are
complementary and M, can be constrained up to ~ 1.8 TeV for p < 800 GeV.

Figure 4.8(b) shows the 50 discovery reach (S/v/B > 5) obtained from the
different signal regions. As can be seen, the Loose and Medium signal regions
provide the discovery reach up to about 850 and 1.1 TeV, respectively, for p < 450
GeV. On the other hand, the Tight signal region does not have sensitivity to
S/VB > 5.

We show in figure 4.9(a) the global 20 exclusion limits for integrated lumi-
nosities of 3000 fb~! (red) and 1000 fb~! (blue). The global exclusion limit is
obtained by choosing the signal region that provides the largest S/ VB for each
mass point. The shaded regions around the solid curves represent the uncertainty
when varying the background yields by 430%. One can see that changing the
background by 30 % results in a ~ 100 GeV shift in M, for the u < M, region.
M, can be constrained up to 1.8 TeV with ¢ < 800 GeV for 3000 fb~!, which can
be compared with the projected chargino neutralino mass limit of 1.1 TeV for the
high luminosity LHC with 3000 fb~! obtained by ATLAS [90]. For 1000 fb~! the
limit on Ms is about 1.5 TeV with p < 400 GeV as can be seen in figure 4.9(a).

Figure 4.9(b) shows the global 5 o discovery reach for 3000 fb~! (red) and 1000
fb~' (blue) with the 30 % uncertainty bands for background. One can see that
charginos and neutralinos can be discovered up to My < 1.1 TeV with p < 500

GeV for 3000 fb~! integrated luminosity, which can be compared with the pro-
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jected ATLAS value of 0.8 TeV for the high luminosity LHC [90]. For 1000 fb™!,
charginos and neutralinos can be discovered up to 900 GeV with p < 250 GeV.
Note that in our simulation we include both the WZ and ZZ modes in the
signal sample, though the contribution from ZZ mode is typically less than about
5% after the selection cuts. We have also investigated the contribution from the
other modes and found these to be of order ~ 10 % or less, predominantly from
Zh. This can therefore be considered as a small uncertainty on the discovery

limit.

4.6 Conclusion

We studied the prospect of chargino and neutralino searches at a 100 TeV pp
collider assuming 3000 (1000) fb~! of integrated luminosity. Our particular fo-
cus was the case where the Higgsinos form the lightest SUSY states (the lightest
charginos and the two lightest neutralinos, which are almost mass degenerate)
and W-inos form the second lightest states (the heavier charginos and the third
lightest neutralino, which are almost mass degenerate). The other SUSY particles
including B-ino are assumed to be decoupled, which is partly motivated by the
current LHC results as well as popular scenarios of SUSY breaking and its medi-
ation. We have shown that in this situation the LO production cross sections of
2 TeV W-inos are as large as 100 fb~! and the branching ratio of W-inos follows
a simple formula, which can be derived from the Goldstone equivalence theorem.

From a study of kinematic distributions of signal and background we found
harsh cuts on lepton pr (> 50 — 400 GeV), EFs (> 150 — 800 GeV) and mr
(> 150 — 1100 GeV) are beneficial to improve the signal and background ratio

and designed three complementary signal regions. Using these three signal regions,
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we found the 5o discovery reach (2o exclusion limit) for the chargino-neutralino
mass is 1.1 (1.8) TeV for u < 500 (800) GeV, which can be compared with the
projected LHC reach (limit) of 0.8 (1.1) TeV obtained by ATLAS [90]. For 1000
fb~! the discovery reach (exclusion limit) for the chargino-neutralino mass is found
to be 0.9 (1.5) TeV for p < 250 (400) GeV.

We would also like to comment on other hierarchies in the chargino-neutralino
spectrum. In this study we have focused on a particular hierarchy (|Mas| > |u|)
of the W-ino and Higgsino states. If the LSP is a W-ino and the Higgsinos are
not decoupled, one can consider the Higgsino pair production process followed
by the decay of Higgsinos into the W-inos. As can be seen from figure 4.1, the
chargino-neutralino production has the largest cross section similarly to the W-
ino production case, though the size of the cross section is about 5 times smaller
compared to the W-ino production. Moreover the same argument based on the
Goldstone equivalence theorem still holds for the Higgsino decay modes and leads
to B?"(]:I?/2 — ZWO)/BT’(I:J?/Q — hWO) ~ 1. Therefore, the most promising
channel in this scenario is again W2 + missing energy final state and they are
effectively searched for by the 3-lepton analysis we have proposed in this work.?
The same argument applies for the B-ino LSP case with non-decoupled Higgsinos.

Note added: There is a similar study in [122]. The authors considered a
variable: Hrp(jets)/M.ss, where Hr(jets) is the scalar sum of all reconstructed
jet pr’s and M,y is the sum of all reconstructed object py’s. This ratio is very
useful to discriminate the chargino-neutralino signal from background. We have
checked that adding this variable to our event selection improves our exclusion
limit (discovery reach) by 200 (300) GeV if the detector simulation is taken into

account and the effective lepton separation of AR = 0.3 is used. The authors

3For a concrete study, see [122].
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of [122] used a milder lepton isolation criteria and their study is without a detector

simulation.
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Figure 4.7: The distributions before the selection cuts of (a) the leading lepton
pseudo-rapidity, 7y, , (b) pr of the three hardest leptons, (c) the missing transverse
energy, EXss (d) the transverse mass, my. The backgrounds are diboson (VV)
and associated top-pair plus vector boson production (ttV). The signal events are
generated at our benchmark point, My = 1.4 TeV and p = 200 GeV, and only
W Z mode is considered. The parton level events are used for (a), whilst the
detector level events after applying the 3 lepton + SFOS cuts are used for (b),
(c) and (d).
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the result unless tan 3 is extremely small. We used tan f = 10 in this plot. The
integrated luminosity of 3000 fb=! is assumed.
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Figure 4.9: The global exclusion limits (a) and the discovery reaches (b) for 3000
fb~! (red) and 1000 fb~! (blue). The shaded region represent the uncertainty
when varying the background yield by 30 %.
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Chapter 5

Conclusions

Motivated by recent developments in string compactification, string/M theory can
make a connection with low energy physics giving interesting phenomenologies.
In this thesis, we take a point of view that our universe is in fact a solution of
string/M theory and explore various phenomenological consequences.

We argue that dark radiation is very useful in offering a powerful test on
string/M theory framework. Due to the smallness of an observable such as ANy,
a light degree of freedom coming from string compactification is severely con-
strained. We investigate the dark radiation constraint in the Axiverse scenario
and provide several possible mechanisms in which the problem might be allevi-
ated. First, a relatively large vev of a particular modulus can suppress the axion
contribution to the dark radiation density. However, since large moduli vevs cor-
respond to a weak standard model coupling, it might be difficult to make the vev
large enough without making the standard model coupling too small. Another so-
lution might be an alignment between the axion kinetic and mass mixing matrices
so that the lightest modulus decays mainly to its axionic partner.

We also explore the model building aspect of string phenomenology. We study
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the origin of an SO(10) SUSY GUT from M theory on a Gy manifold. A discrete
symmetry non-commuting with SO(10) constructing from Witten’s proposal can
be used to solve the doublet-triplet splitting problem where yukawa couplings
of colour triplets are suppressed. Including an extra 16x + 16y vector-like pair
restores the gauge coupling unification with a larger GUT coupling than predicted
by the MSSM. We also study R-parity violating operators from the model and
found that the constraints from the proton lifetime and decays affecting BBN are
naturally satisfied. The RPV contribution to neutrino masses can be suppressed.

We also present results from a physics study of a future proton-proton collider.
Motivated by string/M theory framework, we investigate searches for chargino-
neutralino at a 100 TeV collider assuming 3000 fb~! luminosity. We focus particu-
larly on the scenario where Higgsinos mainly form the lightest charginos/neutralinos
and Winos mainly form the second lightest charginos/neutralinos. We found that
the WZ channel (x'x" — W Zxy) is promising because the QCD background and
tt are reduced sinificantly by requiring three high pr leptons. We compare sig-
nal and background in various kinematical distributions and design signal regions
for the trilepton channel and evaluate discovery/exclusion limits. Assuming 3000
fb~! luminosity, Winos could be discovered up to 1.1 TeV if the spectrum is not
compressed.

There are possible directions for future research. From theoretical point of
view, it would be very interesting to exploit the mechanisms we learned from
Axivere-induced dark radiation problem. The study could galvanize a new idea
on a string compactification consistent with the Axiverse scenario. Within the
reach of the LHC and future colliders, the new physics is most likely to be dis-
covered. It is therefore crucial to pin down string/M theory frameworks from

the the top-down and bottom-up approach with equal importance. Within the
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model SO(10) GUT from M theory compactified on a G5 manifold we studied,
extra states such as those of 16x + 16x might be accessible. The study of the
extra U(1) symmetry breaking is also very important for R-parity violation and
neutrino physics. Moreover, the understanding of the SO(10) case can be easily
generalised to a larger gauge group such as Fg or Eg. From a bottom-up perspec-
tive, the potential of the next generation colliders which has been widely discussed
is very exciting. The detailed study of physics scenarios in future machines might
eventually provide a powerful test on our understanding of particle physics from

string/M framework.
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Appendix A

Appendices

A.1 N, calculation

In this section, we compute the effective number of neutrinos in order to address
the dark radiation problem. At the time of Big Bang Nucleosynthesis, the effective

number of neutrinos is defined from

Prad = Pet T P~ + Neffpl/ (Al)

where p, is energy density of one specie of neutrino. Any additional weakly
interacting particles moving relativistically such as axions contributes more energy
density to the radiation part and this effect can be included inside the definition

of Ny as following

Praa = Pex + py+ Negrpy + pa

= pei+p7+Neffpu <1+5_a>
3v
ANep . pa (A.2)
Nery P3v
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where ps,, is the energy density for 3 species of neutrino. Since both neutrinos and
axion are not in thermal equilibrium between the time of neutrino decoupling to
the time of BBN (2.5 MeV - 1 MeV), their energy density dilute in exactly the

same way. Thus, we have

pa(BBN)  py(vdec)
p3,(BBN)  ps,(vdec) (A-3)

At this period, the thermal plasma consists of electrons, positrons, photons and
neutrinos with the same temperature. Therefore, one can find the energy den-
sity ratio between neutrinos and the standard model radiation from counting the

degrees of freedom each components has

Prad = 1+ Pet + Py
P3v P3v P3v
2x2x7/8 2
= 1+ +
3x2xT7/8 3x2x7/8
43
= — A4
o1 (A.4)
Putting all relations together, we obtain
Nesspa(BBN)
ANy = ——————=
1 p37/(BBN)
_ 3pa(vdec)
~ psu(vdec)
43p,(vd
_ 43 (vdec) (A5)
7praa(vdec)

To make predictions from the moduli branching fractions, we need to relate this
quantity to the time of reheating in the moduli decay scenario. Firstly, because
of its very weak coupling, axions have never been in thermal equilibrium. As a

consequence, its energy density scales as 1/a* where a is the scaling factor. We
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can write

4
pa(vdec) _a (reheat) (A.6)
pa(reheat) a*(vdec)

On the other hand, the standard model radiation part is in the thermal equilibrium
from the time of reheating to the time of neutrino decoupling. To find the scaling
factor, we use the fact that the comoving entropy is conserved S ~ a3q,(T)T3.

Therefore, we get

Prad ~ YGx (T>T4

1
a'g.*(T)
Praa(vdec) a4(reheat)gi/ ?(reheat) (A7)
Prad(reheat) at(vdec)gy/? (vdec) '
Substitute (A.6), we obtain
pa(vdec)  po(reheat) gi/?’(udec) (A.8)
prad(vdec)  praa(reheat) o1/ % (reheat) ‘
Then, the effective number of neutrinos can be written as
43 p.(reheat) g/ ?(vdec)
ANeff = — 173
7 praa(reheat) g1/ (reheat)
43 Br(X; — axions) gi/?’(ydec) (A.9)

71— Br(X; — axions) 13 (reheat)

A.2 The lepton isolation requirement

In hadron colliders, leptons (electrons and muons) may arise from heavy hadron
decays. Those “background” leptons are usually found together with other parti-

cles around them. The leptons originating from gauge boson decays can therefore
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be distinguished from the background leptons by investigating activity around the

lepton. For this check, Delphes 3 uses an isolation variable, I, defined as

AR<R, pr(i)>ppin

Z pT(i)

I(6) = #;T G , (A.10)

where the numerator sums the pr of all particles (except for the lepton itself)
with pr > p®® lying within a cone of radius R around the lepton. If I({) is
smaller than I.;,, the lepton is said to be isolated, otherwise it gets rejected as
background. The Snowmass samples were generated using Delphes 3 with the
lepton isolation parameters R = 0.3, p® = 0.5 and I,,,;, = 0.1.

A 100 TeV collider can explore charginos and neutralinos with their mass scale
of a few TeV. If the mass hierarchy between W-ino states and Higgsino states are
much higher than the gauge bosons mass scale, the W and Z produced from the
W-ino decays will be highly boosted. If such a boosted Z decays into a pair
of same-flavour opposite-sign (SFOS) leptons, those two leptons can be highly
collimated, and one may be rejected by the isolation criteria defined above.

To see the impact of this effect, we show the ARgros (the distance between
the SFOS pair!) distributions in figure A.1. In figure A.1, the background sample
consists of the most relevant processes, W2 and ttZ, which we have generated us-
ing MadGraph 5 and Phythia 6.2 For signal, we examine three benchmark points:
(Ms, 1)/GeV = (800, 200), (1200, 200) and (1800, 200). The particle level sam-
ples are passed to Delphes 3 with the same detector setup as used in Snowmass

but with R = 0.05 for the lepton isolation cone radius.

ITo be explicit, ARsros = \/(A¢SFOS)2 + (Ansros)?, where A¢sros and Ansrog are the
azimuthal and pseudo-rapidity differences between the SFOS lepton pair.

2In the W Z sample, two extra partons are matched with the parton shower radiation with
the MLM merging scheme [123].
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Figure A.1: The distributions of A Rsrog, the distance between the SFOS lepton
pair, (a) after preselection cuts, (b) after additional cuts: E¥* > 500 GeV and
myp > 200 GeV. For both plots, detector simulation has been done by Delphes
3 using the same detector setup as the one used in Snowmass samples but with

R =0.05.

Figure A.1(a) shows the ARgrog distributions after the preselection cuts. As
can be seen, signal events are more concentrated around the small A Rspog values,
while the background has a rather flat distribution. One can also see that a smaller
A Rsros is preferred for model points with larger mass hierarchy.

In Figure A.1(b) we present the same distributions of ARgpos but with the
requirement of E > 500 GeV and mr > 200 GeV on top of the preselection
cuts. As can be seen, the distributions are more concentrated for signal and back-
ground compared to the distributions with only preselection cuts. This is because
the harsh cuts on Es and my call for large V/§ for the partonic collision, leading
to more boosted Z for both signal and background events. One can see that the
significant fraction of events has a SFOS lepton pair lying within A Rgros < 0.3
of each other, and it is expected that the Snowmass lepton isolation criteria with
R = 0.3 would reject some fraction of signal and background events. We there-

fore believe that employing smaller lepton isolation cone radius will improve the
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chargino-neutralino mass reach to some extent, although a dedicated study in this

direction is beyond the scope of this work.

A.3 The visible cross sections

In this section we report the visible cross sections (the cross section after cuts)
for each step of the selection cuts for different processes. Four sets of samples are
considered for the SM background, which are defined in table 4.2. We show the
results for three benchmark model points for signal: (Ms, 1) /GeV = (800, 200),
(1200, 200) and (1800, 200). The (visible) cross sections with k-factor = 3 are
shown in fb for all tables in this section. Table A.1 shows the (visible) cross
sections for the cuts employed in the preselection stage. Table A.2, A.3 and A.4
show the visible cross sections for the cuts used in Loose, Medium and Tight signal
regions, respectively. The last columns in tables A.2, A.3 and A.4 show S/ B

assuming 3000 fb~! of integrated luminosity for the three different benchmark

points.

Process No cut | =3 lepton | [m3f®® —mz| < 10 | no-b jet

VvV 3025348 2487 2338 2176

ttV 220161 792 552 318

tV 2764638 68.9 6.07 4.12

VVV 36276 76.1 56.2 56.2

BG total 6046422 3424 2952 2554

(Ms, 1) = (800, 200) 1.640 0.588 0.565 0.534
(Ma, 12) = (1200,200) | 0.397 0.124 0.119 0.111
(M, 1) = (1800,200) | 0.0863 | 0.0190 0.0179 0.0170

Table A.1: The (visible) cross sections (in fb) for the cuts employed in the prese-
lection. The column marked ”No cut” shows the cross sections for the background
processes (defined in table 4.2) and the cross section times branching ratio into 3
leptons via W Z for signal benchmark points.
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Process ph > (100,50, 10) | ERs > 150 | mp > 150 || S/VB
VvV 647 106 5.1
ttV 176 41.2 6.6
tV 0.665 0.391 0.0793
VVV 23.4 6.0 1.06
BG total 847 153 12.8
(Ma, 11) = (300, 200) 0.506 0.465 0.381 5.82
(M, 1) = (1200, 200) 0.109 0.103 0.090 1.38
(My, 1) = (1800, 200) 0.0168 0.0164 0.0150 0.234

Table A.2: The visible cross sections (in fb) used in the Loose signal region.
The last column shows S/v/B assuming the 3000 fb~! luminosity for different

benchmark points.

Process ph > (250,150, 50) | B2 > 350 | mqy > 300 | S/vVB
\'AY 33.8 3.13 0.106
ttV 9.84 0.780 0.119
tV 0.037 0.0213 0.00132
VVV 1.87 0.291 0.0442
BG total 45.6 4.22 0.271
(Ma, 1) = (300, 200) 0.170 0.107 0.0845 | 8.89
(Ma, 1) = (1200, 200) 0.0572 0.0463 0.0408 | 4.30
(M, 1) = (1800, 200) 0.0099 0.0088 0.0081 0.845

Table A.3: The visible cross sections (in fb) used in the Medium signal region.
The last column shows S/v/B assuming the 3000 fb~! luminosity for different

benchmark points.
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Process ph > (400,200, 75) | E¥ss > 800 | my > 1100 || S/VB
\'A% 5.65 0.123 0.00166
ttV 1.03 0.0056 0.00092
tV 0.015 0.0001 0
VVV 0.350 0.0109 0.00153
BG total 7.05 0.140 0.00411
(Ma, 12) = (300, 200) 0.0460 0.0020 0.0012 | L00
(Ma, 11) = (1200, 200) 0.0238 0.0070 0.0052 | 4.45
(Ma, 1) = (1800, 200) 0.0053 0.0031 0.0026 | 2.22

Table A.4: The visible cross sections (in fb) used in the Tight signal region.
The last column shows S/ VB assuming the 3000 fb~! luminosity for different

benchmark points.
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