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1. Introduction

These lecture notes contain material I presented during the XVIII Modave Summer School
in Mathematical Physics. My intention was to give a brief introduction to the subject of Non-
commutative Geometry, accessible to Ph.D. students in physics, without assuming comprehensive
mathematical background. Due to the time constraints, certain choices of material covered during
the lectures had to be done. I am aware of the fact that these choices are biased by my personal
research interests. These notes are not intended to substitute the extensive literature on the subject,
and I recommend the reader familiarize themselves with both original scientific and review papers
as well as existing textbooks. Some of them one can find in the list of references, e.g. [1–5]. This
list is by no means comprehensive and I apologize to all the authors whose articles or books are not
listed therein. Despite the fact that these lectures were intended to provide a gentle introduction to
the subject, I decided to include also several results which are very recent, especially the ones that
I was working on during my Ph.D. studies at Jagiellonian University under the supervision of prof.
Andrzej Sitarz. The choice of the presented material is then biased by the content of my Ph.D.
thesis [6], especially due to the fact that I was presenting these lectures during the week before my
Ph.D. defense. Some more technical discussions and a more complete list of references for further
reading can be found also therein. In these notes, I am trying to avoid using very sophisticated
techniques, concentrating on physical applications. However, mathematical formalism is necessary
to fully understand the importance of the discussed notions. Instead of starting with axioms, I try
to motivate them. In my opinion, this approach has the advantage that it presents the subject as an
active area of research and motivates the reader to call into question the made assumptions. Instead
of assuming a series of God-given axioms, I prefer to challenge revealed truths. It turns out, as is
usually the case in physics, that such a procedure allows for the existence of models with intriguing
properties. In my research on Noncommutative Geometry, I have seen this many times.

The organization of these notes is as follows. The content of each section corresponds roughly
to one lecture from a series given during the workshop. I start by posing a question about the meaning
of geometry. In section 2 I motivate the use of Noncommutative Geometry, ending up with the
notion of a spectral triple obtained by the consideration of pre-Fredholm modules and their role in
differential calculus. To establish these objects, we formulate topological notions in 𝐶∗-algebraic
language, represent them in terms of certain operators, describe the correspondence between vector
bundles and modules, and discuss the notion of noncommutative differential calculus. For the
latter, we briefly discuss the role of Hopf algebra structures and bicovariance for noncommutative
differential forms. One step further and we will be in the land of Fredholm modules allowing for
the algebraic formulation of differential calculus. This section is concluded with the definition of a
spectral triple as a specific example of a Fredholm module. In section 3 I discuss several types of
spectral triples, starting with finite-dimensional examples and discussing their classification. Then I
briefly present different additional structures that can be added on top of a bare spectral triple. This
includes grading, the real structure as well as a series of further conditions between these objects.
Finally, the example of the canonical spectral triple as a link with classical geometry is described,
together with the famous Connes’ reconstruction theorem and its consequences. The aim of section
4 is to answer the question of how one can derive physical action out of the geometric data. Starting
from the bosonic spectral action and its asymptotic expansion, the main idea behind the spectral
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action principle is presented. I then briefly present computational techniques based on symbolic
calculus for pseudodifferential operators and the role of Wodzicki residue. Next, the construction
of almost-commutative geometries is presented. Their role in considerations of gauge theories
within the spectral geometry framework is then discussed and illustrated by the standard derivation
of effective action for Yang-Mills theories. In section 5 these methods are used to describe the
Standard Model of particle physics. I briefly discuss the appearance of the Higgs field in this
formulation and comment on some potential issues that might arise from this construction. As a
next step, I summarize in section 6 how to include pseudo-Riemannian structures for finite spectral
triples and the consequences of its existence in the case of the Standard Model and also for its
particular extension, the Pati-Salam model. Finally, section 7 contains a short list of other possible
applications of Noncommutative Geometry in physical models. Due to the time constraint, I wasn’t
able to present the details during the given lectures, and these applications are then only briefly
summarized. This list is of course not complete and only some potential applications are chosen to
illustrate the plenty of possibilities. The choice is very subjective and biased by my own research
interest. It is by no means dictated by the importance of a particular application, etc.

2. What is geometry?

Before starting any discussion about possible applications of generalized or noncommutative
geometries to physical models, one has to first answer the question stated in the title of this section.
The answer looks seemingly obvious, however, it really depends on the perspective. Having only
experience with school geometry, one can naively think that the only things, it tells us about, are
shapes of figures or distances between their specific points. Up some level of complexity, it is,
in essence, true, but it is not the only thing we can associate with the notion of geometry. For
our purpose, the geometry will be thought of as a sum of two ingredients. The first of them is a
topology, which in particular tells us about how the points of our spaces are separated by open sets.
It also takes into account continuous deformations of objects under consideration and introduces
the concept of homeomorphism and homeomorphic equivalence. Several topological invariants
can tell us how particular spaces differ from each other. The second ingredient of geometry can be
called a metric geometry. It contains information about the distances between points which can be
measured using a metric, which is a basic object in Riemannian geometry. Here we also have the
concept of differential manifolds, and vector bundles over them as well as their sections defining
vector fields, which are fundamental objects in many physical models. Continuing along these lines
one introduces the notion of connections on bundles (e.g. related to gauge fields in physics) and
their curvature.

In this section, I will briefly discuss some of the aforementioned concepts and describe their
equivalent formulation that allows for generalizations. The first notion that has to be explored is
topology. For a reason that will be clear later, I will need only locally compact Hausdorff spaces.
The space M is locally compact if each point has a compact neighborhood. We can think of M
as a collection of points {𝑥}𝑥∈M with a set of conditions imposed on them. But can we forget
about the points? Is it possible to fully characterize (class of) topological spaces without referring
directly to the notion of a point? The answer turns out to be positive and leads to the concept
of pointless topology (or, after discussing metricity, pointless geometry [7]). But is this topology
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indeed pointless or it has some nontrivial implications and interesting applications? The fact we
can algebraically describe the space without directly using its points has an advantage in that this
construction can be naturally generalized and allows for highly nontrivial extensions of the usual
down-to-earth meaning of geometry.

In order to show how this works in practice, we start with the observation that instead of looking
at the space we can equally well consider maps defined on it. It should be not surprising since it
is exactly what we are doing in physics. For most practical purposes, we are working with fields
defined on a given space. Moreover, the physical observables also are functions on physical space
or spaces of parameters, e.g. on the phase space in classical mechanics. Also, the distances, etc.
are at the end functions that associate numbers with pairs of points. Therefore, this perspective
should not be anything strange for a physicist, but realizing this fact was the first step towards a
generalizable algebraic formulation of the notion of geometry.

Let us then start by taking M to be a compact space. I will later show how to generalize
the main results for only locally compact spaces, but at this moment we can restrict to this class
of spaces to simplify the discussion. We can construct the space 𝐶 (M) of all continuous maps
from M to C. This set has many interesting features, in particular, of an algebraic nature. First
of all, notice that for any two functions 𝑓1, 𝑓2 from 𝐶 (M) also the sum 𝑓1 + 𝑓2 belongs to 𝐶 (M).
Moreover, if 𝜆 ∈ C and 𝑓 ∈ 𝐶 (M), then 𝜆 𝑓 ∈ 𝐶 (M). Furthermore, these two operations are
associative. In other words, 𝐶 (M) is a vector space. But this is not the only structure that 𝐶 (M) is
naturally equipped with. One can also introduce point-wise multiplication, i.e. for 𝑓1, 𝑓2 ∈ 𝐶 (M)
we define ( 𝑓1 · 𝑓2) (𝑥) := 𝑓1(𝑥) 𝑓2(𝑥) with 𝑥 ∈ M. This leads to an algebra structure on the space
of complex-valued continuous functions of M. What is remarkable, the multiplication operation
is commutative, i.e. 𝑓1 · 𝑓2 = 𝑓2 · 𝑓1. As we will see shortly, this feature will be of crucial
importance. However, this is not the final word one can say about this space. Since we are working
with complex-valued functions, there is yet another natural operation one can consider. Mainly,
for any 𝑓 ∈ 𝐶 (M) we define 𝑓 ∗ ∈ 𝐶 (M) by 𝑓 ∗(𝑥) := 𝑓 (𝑥), 𝑥 ∈ M, where 𝑧 stands for the usual
complex conjugation in C. Therefore, up to now, we know that 𝐶 (M) is a commutative ∗-algebra.
So far so good, but there is even more one can do. The function ∥ · ∥ : 𝐶 (M) −→ C defined by
∥ 𝑓 ∥ = sup

𝑥∈M
| 𝑓 (𝑥) | is a well-defined norm on 𝐶 (M), so that (𝐶 (M), ∥ · ∥) is a Banach algebra.

This means that it is complete, i.e. every Cauchy sequence of points in 𝐶 (M) has a limit in 𝐶 (M),
and for all 𝑓 , 𝑔 ∈ 𝐶 (M) we have an inequality ∥ 𝑓 𝑔∥ ≤ ∥ 𝑓 ∥∥𝑔∥. At this point, one can ask about
further relations between the Banach algebra structure and the ∗-structure. Indeed, it turns out that

∀ 𝑓 ∈ 𝐶 (M) ∥ 𝑓 ∥2 = ∥ 𝑓 ∗ 𝑓 ∥, (1)

which is a defining relation of a 𝐶∗-algebra. To sum up, we know now that 𝐶 (M) is a commutative
𝐶∗-algebra. In other words, there is a natural way of attaching a 𝐶∗-algebra to a given compact
space. One can then generalize this construction to locally compact spaces by considering 𝐶0(M),
the algebra of continuous functions vanishing at infinity.

Let us now explore a little bit the world of 𝐶∗-algebras. To be precise, a 𝐶∗-algebra A is a
Banach algebra which has a ∗-structure s.t. for all 𝑎 ∈ A we have ∥𝑎∗𝑎∥ = ∥𝑎∥2. As a first exercise,
I suggest proving that the norm ∥ · ∥ on a A is unique. Please also make a precise sense of this
statement. One can easily show that the following are natural examples of 𝐶∗-algebras: C, 𝑀𝑛 (C),

4



P
o
S
(
M
o
d
a
v
e
2
0
2
2
)
0
0
1

Modave lectures on Noncommutative Geometry and its applications to physics Arkadiusz Bochniak

𝑁⊕
𝑖=1

𝑀𝑛𝑖 (C) and 𝐵(H) for a Hilbert space H . Notice that not all of them are commutative. This

is the feature that will allow us to discuss noncommutative topologies. But before that, we need to
introduce and discussed further notions and their basic properties. The first of them is related to the
observation that if M was compact, then𝐶 (M) naturally contains a unit element with respect to the
multiplication, i.e. it is an unital commutative 𝐶∗-algebra, while for only locally compact space M,
the commutative 𝐶∗-algebra 𝐶0(M) do not have any such an element. However, there is a natural
construction, called unitization, that allows for adding a unit to a given 𝐶∗-algebra A. It is done
by considering A+ = A × C with a multiplication (𝑎, 𝜆) (𝑏, 𝜌) := (𝑎𝑏 + 𝜆𝑏 + 𝜌𝑎, 𝜆𝜌). Then one
can easily check that A+ is an unital 𝐶∗-algebra with 1+ = (0, 1) as a unit. Why this construction
is important? To answer this question, we need to remind a one-point compactification known
from classical topology. To a locally compact Hausdorff space, M we associate its Alexandroff
compactification by adding a point at infinity, M+ = M⊔ {∞} and defining the resulting topology
by adding to the collection of open sets on M the family {(M \ 𝐶) ∪ {∞} : 𝐶 − compact in M}.
One can show [1] that the Alexandroff compactification of the underlying space is related to the
unitization of the corresponding𝐶∗-algebras by𝐶0(M)+ = 𝐶 (M+). As a result, for many purposes,
we can assume from the very beginning that the space M is compact.

Above we have demonstrated that one can naturally assign a commutative 𝐶∗-algebra to a
locally compact Hausdorff space. In other words, we have established that there exists an arrow

Topology // C∗-algebras. (2)

Moreover, this assignment extends also to the level of morphisms between the spaces, leading to
the conclusion that one can think of it in the language of category theory and functorial properties.
I will not discuss here this aspect but the reader familiar with category theory is highly invited to
formulate the above statement rigorously by providing the precise description of involved categories
and the functorial mapping. The natural question that arises at this moment is the existence of an
arrow that goes in the opposite direction. Moreover, are these two arrows inverses of each other?
That is, is it possible to associate a topological space to a given 𝐶∗-algebra in a way that applying
the resulting construction to a 𝐶∗-algebra obtained as 𝐶 (M) reproduces exactly the space M? The
answer is affirmative within the class of commutative 𝐶∗-algebras. Before showing this, we need to
introduce some mathematical notions. Firstly, we need a notion of a character on a Banach algebra
A. It is defined as a non-zero homomorphism 𝜇 : A −→ C. The space of all characters on A
is denoted by 𝑀 (A) and, if A is commutative, it is called the Gelfand spectrum of A. On this
space, there is a natural topology, the so-called Gelfand topology, which is the relative topology
determined by the inclusion 𝑀 (A) ↩→ 𝐵A∗ (0, 1), where the unit ball on the right is compact in the
weak∗ topology by Banach-Alaoglu theorem. One then can show that 𝑀 (A) equipped with this
topology is a locally compact Hausdorff space [1]. Therefore, there is a way to produce topological
spaces out of commutative 𝐶∗-algebras, and moreover, we end up within exactly the same class
of topological spaces we started with. It remains to argue that the two constructions we have are
indeed inverses of each other. To formulate the precise theorem we need a notion of a Gelfand
transformation, which is defined as a map

A ∋ 𝑎 ↦−→ �̂� ∈ 𝐶0(𝑀 (A)), (3)
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where �̂� : 𝑀 (A) ∋ 𝜇 ↦−→ 𝜇(𝑎) ∈ C, the so-called Gelfand transform of an element 𝑎. The
fundamental Gelfand-Naǐmark theorem then says that the above Gelfand transformation is an
isometric ∗-isomorphismA � 𝐶0(𝑀 (A)) [1]. In other words, there is a one-to-one correspondence
between locally compact Hausdorff spaces and commutative 𝐶∗-algebras,

Topology oo // Commutative C∗-algebras. (4)

Furthermore, under the above identification, the compactness of the topological space corresponds
to the fact that the algebra is unital. This discussion motivates the natural generalization one can
introduce. Mainly, suppose we forget about the adjective on the right-hand side of the above
correspondence. What is then on the left-hand size? In other words, we would like to have the
following picture:

Noncommutative Topology oo // Noncommutative C∗-algebras. (5)

One can then think of noncommutative 𝐶∗-algebras as algebras of functions on something that can
be referred to as noncommutative space. This is the main idea behind Noncommutative Geometry.
Again, there is also a rigorous categorical version of the above statement and the reader is invited
to explore the formulation of the above correspondence using this language. Knowing that for the
classical case, we can forget about the points and work purely on the algebraic level, one can then
extend this to the category of noncommutative algebras and think of them as generalized geometries.

Let us now look more closely at the algebraic side. First of all, arbitrary𝐶∗-algebras seem to be
quite general and one may wonder how artificial is this notion. Physicists used to work with a more
concrete picture, or more precisely, more concrete realizations or representations of mathematical
objects. Fortunately, such a formulation exists also for these algebras and it is given by the famous
GNS representation [8]. Any 𝐶∗-algebra (commutative or not) can be represented as an algebra
of bounded operators on a certain separable Hilbert space H . In other words, its elements can be
understood as operators acting on H . Therefore, by the aforementioned duality, we can now encode
topology in terms of some (properties of) bounded operators.

Of course, this is not the end of the story. Our goal is to describe not only the topology but we
need the information about distances and differential structures in our space to be able to really talk
about its geometry. It seems like the following two aspects have to be discussed:

(a) We need smoothness to be able to compute certain derivatives. In many places in the classical
Riemannian geometry, one has to differentiate functions to compute certain quantities like
curvatures, etc. To encode these ideas in the algebraic language we expect that having an
algebraic version of smoothness will be necessary.

(b) The fundamental objects in Riemannian geometry are sections of vector bundles. This
includes vector fields, differential forms, and any tensor fields. On the other hand, these
are also the notions that naturally appear in physical models. Therefore, we can expect
that having established their algebraic version could shed a light on possible applications of
Noncommutative Geometry in physics.

Regarding the first aspect, we can make use of the fact that smooth functions form a dense
∗-subalgebra 𝐶∞(M) of 𝐶 (M). This is a consequence of the classical Stone-Weierstrass theorem.
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This suggests that one could use ∗-algebras instead of 𝐶∗-algebras, but having in mind that there is
a larger 𝐶∗-algebra in which the ∗-algebra is densely embedded. This is how this issue is (usually)
solved in Noncommutative Geometry. The second aspect is more subtle. First of all, the standard
way of translating bundle-like notions into a noncommutative world is by making use of the Serre-
Swan theorem [1]. Roughly speaking, it establishes a correspondence between vector bundles
and modules over the algebra of functions on the manifold. The object of a particular interest is
the 𝐶∞(M)-bimodule Ω1(M) of differential 1-forms. It is naturally equipped with a differential
operator 𝑑 : 𝐶∞(M) −→ Ω1(M) that satisfies the Leibniz rule. The last property allows in particular
for the extension of the Ω1(M) into higher-order differential forms, resulting in the construction of
the differential complex Ω•(M) that can be also understood in terms of differential graded algebra
(DGA). The algebraic analog of the space of 1-forms is first-order differential calculus (FODC). It
is a pair (Ω1(A), 𝑑) of a bimodule over A, Ω1(A), and a linear map 𝑑 from A into Ω1(A) s.t. the
Leibniz rule is satisfied, i.e. for all 𝑎, 𝑏 ∈ A we have 𝑑 (𝑎𝑏) = (𝑑𝑎)𝑏 + 𝑎(𝑑𝑏). We stress that since,
in general, the algebra A is not necessarily commutative, we have to be careful about the order in
the multiplication operation. For functions over the manifold M this was not the case, and indeed
it simplified a lot of the subtleties existing in the noncommutative world. We remark that since
it is possible that more than one noncommutative generalization can give the same commutative
limit, it is usually not obvious what is the right choice for the noncommutative analog of classical
objects. The noncommutative world is therefore much richer than the one we used to work with
in classical geometry. It might also happen that a straightforward generalization of commutative
notions that are known to be uniquely defined by a given set of axioms, in the noncommutative
framework may lead to a whole family of allowed objects. Therefore, the question of how many
first-order differential calculi are allowed on a given noncommutative algebra is then fully justified.
One can also ask about their classification. The answer can be compactly formulated for the class
of bicovariant calculi and is known as Woronowicz theorem [9]. In its formulation, the role played
but yet another algebraic structure, Hopf algebras, is crucial. We will now do a small detour and
give a brief presentation of these objects. It turns out that Hopf algebras are significant only for the
differential calculi, but appear in many different branches of Noncommutative Geometry and its
application to physics. Later on, we will discuss some other aspects related to the so-called Quantum
Riemannian Geometry [10] and also very briefly the role of certain Hopf algebra structures in the
renormalization problems in quantum field theories [11].

In order to define the notion of Hopf algebra we need to first introduce tools that allow for
rephrasing algebraic definitions in a much more accessible form. We then use diagrammatic
techniques. To illustrate how they work, we begin with the notion of an unital algebra, which
is a vector space A equipped with two maps: multiplication 𝑚 : A ⊗ A −→ A and a unit
𝜂 : C ∋ 𝜆 ↦→ 𝜆1A ∈ A. These maps are supposed to satisfy a few compatibility conditions which
are equivalent to the statement that the multiplication has to be associative and the multiplication
by unit acts like an identity operation. These conditions can be written purely algebraically but I
prefer another way of representing them using a graphical method (see e.g. [12] for a more detailed
discussion and further examples). The multiplication map can be represented by the following
diagram
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which has a simple intuitive interpretation when one reads it from the top to the bottom: take two
elements, say 𝑎, 𝑏 ∈ A, and multiply them obtaining, as a result, a new element 𝑚(𝑎 ⊗ 𝑏) ∈ A.
For the identity map, the corresponding diagram is

which again can be easily interpreted as an insertion of the unit in the algebra A. The associativity
of the multiplication is then represented as

while the fact that 𝜂 is the unit can be schematically drawn as follows:

Equipped with the graphical tools we are ready to discuss further algebraic structures which will
finally lead us to the notion of Hopf algebra. As a next step, we need an object which is dual to
algebra. The reader familiar with some basics of category theory should easily guess the name of
this object: a coalgebra. A is called a coalgebra if it possesses a map Δ : A → A ⊗ A, called
a comultiplication or a coproduct, and a map 𝜀 : A −→ C, called a counit, that satisfy conditions
dual to the ones for multiplication and unit. To draw them one can simply place a mirror along the
horizontal line and read them from the ones for the algebra. More precisely, the maps Δ and 𝜀 are
represented, respectively, by the following diagrams:

The coproduct satisfies the coassociativity condition,

and together with the counit, they satisfy

Imagine now a situation on a vector space A we have an algebra structure given by (𝑚, 𝜂) and a
coalgebra structure defined by the maps Δ and 𝜀. It would be great if these two are not completely
independent but rather they are compatible with each other. The notion which arises in such a
situation is the one of bialgebra. We say that A is a bialgebra if it is both algebra and coalgebra,
and the conditions represented in the following diagrams are fulfilled:

8
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and

In the first diagram, the new structure appears. Notice that we have to interchange two elements of
A and to represent this operation diagrammatically we have introduced a new symbol. Working
within the category of vector spaces it is not necessary to be very careful about the intersection of
the lines since in this case the interchange is given simply by the flip operation 𝑎 ⊗ 𝑏 ↦→ 𝑏 ⊗ 𝑎,
and it is involutive. However, it might happen that in other categories this is not the case, and a
more general notion is needed. This leads to the consideration of the so-called braided monoidal
categories. In such a situation, the braiding Ψ that generalized the flip map does not need to satisfy
Ψ2 = id. Such structures play an important role in the theory of anyons, where the braiding has a
physical meaning of interchanging particles on a two-dimensional surface and it is related to the
statistics of such collective excitations. In these lecture notes, I will not discuss this undeniably
exciting topic, and the interested reader is highly invited to consult e.g. [13] for further details of
the mathematical background and applications in physical systems.

So far we have defined the notion of a bialgebra. Suppose (A, 𝑚, 𝜂,Δ, 𝜀) is such an object
and consider the space End(A) of endomorphisms on A. For any two elements 𝑓 , 𝑔 of the latter,
the convolution 𝑓 ∗ 𝑔 is defined through 𝑓 ∗ 𝑔 = 𝑚( 𝑓 ⊗ 𝑔)Δ. One easily checks that this operation
defines a multiplication on End(A). Since id is also an endomorphism on A, one can ask if this
map has an inverse with respect to the convolution. If this is true, the bialgebra A is called a Hopf
algebra. In other words, a Hopf algebra A is a bialgebra together with a map 𝑆 : A −→ A s.t.

The map 𝑆 is called an antipode. As an exercise, I suggest demonstrating that on a given bialgebra
there exists at most one Hopf algebra structure, i.e. the antipode is unique.

As a first example consider a finite group𝐺 and a ring 𝑅, and let A be the group ring 𝑅[𝐺]. For

example, C[𝐺] =
{∑

𝑖

𝜆𝑖𝑔𝑖 : 𝜆𝑖 ∈ C, 𝑔𝑖 ∈ 𝐺

}
. The multiplication and a unit are naturally inherited

from the group structure on 𝐺. For the coproduct, we can take Δ(𝑔) = 𝑔 ⊗ 𝑔, while 𝜀(𝑔) = 1𝑅

and 𝑆(𝑔) = 𝑔−1. These maps are then extended by linearity. One can easily check that they indeed
define a Hopf algebra. We remark that for a generic Hopf algebra A an element 𝑎 ∈ A is called
group-like if Δ(𝑎) = 𝑎 ⊗ 𝑎.

For a second example, we again start with a finite group 𝐺 but then we defined A to be
the space 𝐶 (𝐺). This has a natural algebra structure, as we discussed before. The coproduct
can be introduced using the group structure on 𝐺. Mainly, we define Δ( 𝑓 ) (𝑥, 𝑦) = 𝑓 (𝑥𝑦). Its
coassociativity follows from the associativity of the multiplication in 𝐺. Next, 𝜀( 𝑓 ) = 𝑓 (1𝐺) and
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𝑆( 𝑓 ) (𝑥) = 𝑓 (𝑥−1). Again, it is a simple exercise to show the remaining conditions for being a Hopf
algebra.

From the above examples, one can expect that there is a deeper relationship between groups and
Hopf algebras. Indeed, Hopf algebras are sometimes called noncommutative analogs of groups,
and the notion of Hopf algebra symmetry often appears in physical literature (see e.g. [14]) as
a generalization of the usual group symmetry. We also remark that some authors use the name
quantum groups for Hopf algebras. It is, however, not a fully precise statement. In this context, it is
better to call them Drinfeld–Jimbo-type quantum groups [15]. There is another notion of quantum
groups that involves also the 𝐶∗-algebraic structure originating from Woronowicz compact matrix
quantum groups [9]. I will come back to the last version of quantum groups and quantum spaces
at the end of these notes and I will very briefly discuss their potential applications in the modern
theory of quantum information.

Having defined Hopf algebras, one can follow this route and, by a complete analogy from
the theory of algebras, consider the notion of modules over Hopf algebras, etc., but now there are
more structures that have to be compatible with each other. However, since we have in hand also
co-objects, we can also think of comodules, etc., that would involve the coproduct and counit, so
that we will deal with coactions.

Suppose we are interested in FODC over a Hopf algebraA. It would be great if these calculi will
not be too wild, i.e. they should satisfy certain compatibility conditions with the algebraic structures
we have. This regularity condition is known as bicovariance and was studied by Woronowicz [9].
He was then able to classify such calculi. The crucial object that appears in this classification is
the so-called universal FODC. It is defined by taking Ω1

𝑢 (𝐴) to be the kernel of the multiplication
map 𝑚 on A, and the differential operator is defined by 𝑑𝑢 (𝑎) = 𝑎 ⊗ 1 − 1 ⊗ 𝑎. Obviously, it is an
example of a FODC since the Leibniz rule is satisfied. But why it was called universal? The reason
is that for any A-bimodule Ω1(A) defining a FODC (Ω1(A), 𝑑) over A, there exists a unique map
𝜄𝑑 : Ω1

𝑢 (A) −→ Ω1(A) s.t. 𝑑 = 𝜄𝑑 ◦ 𝑑𝑢. In other words, every FODC can be obtained from the
universal one.

Having a FODC calculus, one can then try to define higher forms in a way compatible with the
Leibniz rule. We will not discuss here the details which can be found e.g. in [1]. The take-home
message from the above discussion is that one can introduce in this way analogs of differential forms
in the noncommutative world. The noncommutative space in this language is just a (dense subset
of a) 𝐶∗-algebra we started with. We know that we can think of its elements as bounded operators
on a certain Hilbert space H . In other words, there exists a representation 𝜋 : A −→ 𝐵(H). It
would be great if we can also encode the differential forms in the same language. Therefore, the
natural question arises: when it is possible to think of differential forms as bounded operators on
the same Hilbert space H? It turns out that the answer is affirmative if we can find an unbounded
self-adjoint operator 𝐹 on H s.t. it is involutive and its commutators with all 𝜋(𝑎), 𝑎 ∈ A are
bounded as operators on H . Then 𝜋(𝑎0) [𝐹, 𝜋(𝑎1)] . . . [𝐹, 𝜋(𝑎𝑛)] defines the representation 𝜋𝐹

of Ω•(A) on the same Hilbert space H . This observation motivated the notion of a Fredholm
module which allows for an algebraic formulation of differential calculus [1]. A Fredholm module
is essentially a pair (𝜋, 𝐹) of a representation of 𝜋 : A −→ 𝐵(H) and an operator 𝐹 that satisfies
the aforementioned conditions (for the commutators, instead of being bounded one usually assumes
here their compactness). One can also allow for less restrictive conditions. Mainly, we do not
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demand that the above requirements are strictly satisfied but we allow for small deviations. In this
world, the word small means up to compact operators. More precisely, instead of e.g. assuming that
𝐹 is selfadjoint, we demand only that 𝜋(𝑎) (𝐹 − 𝐹∗) is a compact operator for any 𝑎 ∈ A. Similarly
for the other conditions. This leads to the notion of the pre-Fredholm module. Equivalence classes
of such objects are central in the so-called K-homology theory, which together with the K-theory
forms a framework that unifies all the notions we need - the KK-theory. I will not discuss in these
lecture notes any more sophisticated aspects of this branch of mathematics. The interested reader
can consult e.g. [1, 16] and references therein. Let us stress here that by satisfying the properties
that allow for the representation of differential forms, pre-Fredholm modules are usually understood
as a generalized version of geometries. For our purposes, we will need only their special cases for
which the operator 𝐹 is obtained from a more concrete construction. We will see that this type of
example is very natural and appears in my place in theoretical physics.

Having announced and motivated the object of interest, let us finally define it. Suppose that on
the Hilbert space H , on which an unital ∗-algebra A is (faithfully) represented, we have given an
(essentially, i.e. on a dense domain,) self-adjoint operator D which has compact resolvent (i.e. a
map 𝜆 ↦→ (D − 𝜆)−1) and every commutator [D, 𝜋(𝑎)] is bounded (in the essentially self-adjoint
case: can be extended to a bounded operator), 𝑎 ∈ A. Under these assumptions, the operator
𝐹 = D(1 + D2)−1/2 defines a pre-Fredholm module. In other words, the triple (A,H ,D) can be
understood as a generalized version of geometry, since it contains information about the differential
structure on a noncommutative manifold A. Such a triple is called a spectral triple. In these
lecture notes, we will identify geometry with a spectral triple. In the next sections, I will discuss
this notion in more detail, study the canonical examples and present some applications to physics.

3. Spectral Triples and all that

The goal of this section is to briefly discuss the concept of spectral triples and further motivate
their use. Firstly, following mostly the approach presented in [2, 17], I will describe how to
algebraically encode distances on finite spaces. This will lead us to a version of Connes’ distance
formula for finite geometries. As one can guess, for finite spaces one can fully classify spectral
triples describing possible geometries. I will briefly discuss how this can be achieved using
decorated graphs. The reader interested in a more detailed discussion is invited to consult [18]. Yet
another approach, based on purely algebraic considerations of matrix algebras can be found in [19].
The second approach will be especially useful in the next sections when I will show some existing
proposals on how one can include the Lorentzian structure into the language of spectral geometry.

The rest of this section is dedicated to the discussion of general spectral triples and their certain
subclasses. I will present an overview of several additional structures that one can include on top
of a spectral triple. They are motivated either by geometrical properties known from classical
Riemannian theory or are imposed based on physical considerations. The chosen way of presenting
this part of the material is highly biased by the way of thinking one can find in my Ph.D. thesis
[6]. The approach of not assuming too much will manifest itself many times in these lecture notes.
We will see how the classical manifolds fit into the general framework and how to algebraically
compute distances on them.

11
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We start our discussion of spectral triples with the simplest possible examples - finite spaces.
Let 𝑋 = {1, . . . , 𝑁} be a space consisting of 𝑁 points. To simplify the notation we write here
𝑘 instead of 𝑥𝑘 . According to the ideas of Noncommutative Geometry, we should replace 𝑋 by
the algebra A of functions on 𝑋 . Since the space is finite, we deal here with a discrete topology
and do not need to care about subtle topological aspects that will play a role in the case of e.g.
Riemannian manifolds. Since 𝑋 has 𝑁 points, any function 𝑎 defined on it will be completely
specified by 𝑁 numbers: 𝑎(1), . . . , 𝑎(𝑁). We would like to represent these functions as operators
acting on a certain Hilbert space. Since |𝑋 | = 𝑁 , the natural choice for the Hilbert space is
H = C𝑁 . How does the function 𝑎 act on H? This representation is chosen to be given by an
action of a diagonal matrix on a vector from H . In other words, we identify 𝑎 ∈ A with the matrix
diag(𝑎(1), . . . , 𝑎(𝑁)) ∈ 𝑀𝑁 (C) = End(H). In the spirit of Gelfand duality, we identify 𝐴 with 𝑋 .
The set 𝑋 can, in principle, correspond to several configurations of 𝑁 points that differ e.g. by the
relative distances between them. Let then 𝑑 𝑗𝑘 = dist( 𝑗 , 𝑘) be the distance between the points 𝑗 and
𝑘:

Denote by d the collection of all such numbers for points in 𝑋 , i.e. d = {𝑑 𝑗𝑘 : 𝑗 , 𝑘 ∈ 𝑋}. Of
course, not every family of real numbers will lead to a set of distances on finite space. A finite
subset of R forms a family d if and only if

• 𝑑 𝑗𝑘 = 𝑑𝑘 𝑗 ,

• 𝑑 𝑗𝑘 ≥ 0,

• 𝑑 𝑗𝑘 = 0 ⇔ 𝑗 = 𝑘 ,

• 𝑑 𝑗𝑙 ≤ 𝑑 𝑗𝑘 + 𝑑𝑘𝑙 .

This is nothing else than the usual conditions in the definition of a metric. We would like to find
an operator D acting on H from which the family d can be deduced. In other words, the goal is
to encode information about the metric structure in terms of operators acting on the same space on
which the algebra is represented. Since we are working now with finite spaces, the operators we
are dealing with are just matrices and all the computations reduce to manipulations of matrices. As
a first example, we start with the simplest and simultaneously non-trivial example - the two-point
space, 𝑋 = {1, 2}. In this situation we have H = C2 and the representation of A on H is given by
𝜋(𝑎) = diag(𝑎(1), 𝑎(2)). Let us define the operator D to be of the form

D =

(
0 1

𝑑12
1
𝑑12

0

)
. (6)

A simple computation shows that

[D, 𝜋(𝑎)] = 1
𝑑12

(
0 𝑎(2) − 𝑎(1)

𝑎(1) − 𝑎(2) 0

)
. (7)
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How to extract the distance 𝑑12 from it? Notice first that the norm of this matrix is 1
𝑑12

|𝑎(1) − 𝑎(2) |.
Therefore, computing [D, 𝜋(𝑎)] and knowing the algebraA, we can in principle get the information
about the distance between the two points. This result generalizes to any finite space. Indeed, it
turns out that for any 𝑁 ≥ 2 there exists a Hilbert space H𝑁 , a corresponding representation 𝜋𝑁 of
A on H𝑁 , and a Hermitian matrix D𝑁 ∈ End(H𝑁 ) s.t.

∥ [D𝑁 , 𝜋𝑁 (𝑎)] ∥ = max
𝑗≠𝑘

{
1
𝑑 𝑗𝑘

|𝑎( 𝑗) − 𝑎(𝑘)
}
. (8)

This result can be proven by induction and be found in [2]. Obviously,

sup
𝑎∈A

{|𝑎( 𝑗) − 𝑎(𝑘) | : ∥ [D𝑁 , 𝜋𝑁 (𝑎)] ∥ ≤ 1} ≤ 𝑑 𝑗𝑘 , (9)

but also the opposite inequality holds as one can easily show by constructing a concrete function 𝑎

that saturates the above upper bound on the supremum (for details see again [2]). This leads to an
explicit formula to compute the distances 𝑑 𝑗𝑘 out of the algebraic data (A = C𝑁 ,H𝑁 ,D𝑁 ). One
can easily check that this system defines a spectral triple. The commutators 𝑑 (𝑎) := [D, 𝜋(𝑎)] play
a special role. It is an easy exercise to show that 𝑑 defined in this way satisfies the Leibniz rule and
therefore leads to the construction of the space of differential 1-forms, Ω1

D (A) := {∑
𝑘

𝑎𝑘 [𝐷, 𝑏𝑘] :

𝑎𝑘 , 𝑏𝑘 ∈ A}, where we have omitted the symbol 𝜋 of representation identifying the elements of
the algebra with the corresponding operators on the Hilbert space. This notation will be used from
now on as long as this will not lead to any confusion. The set Ω1

D (A) is known in the literature as
the space of Connes’ 1-forms. This construction can be performed for more general spectral triples.

In the above discussion, we have seen that finite spaces lead to examples of finite spectral triples,
i.e. the ones with finite-dimensional algebra A. The natural question that arises is if we can describe
all possible spectral triples with finite-dimensional algebras. The answer to this question turns out
to be affirmative as was shown by Krajewski [18] and Paschke and Sitarz [19]. Using the fact that
any unital ∗-algebra which can be faithfully represented on a finite-dimensional Hilbert space is a

direct sum of matrix algebras, A =
𝑁⊕
𝑖=1

𝑀𝑛𝑖 (C), one can then use a corresponding decomposition of

the Hilbert space H =
𝑁⊕
𝑖=1
C𝑛𝑖 ⊗ 𝑉𝑖 with dim(𝑉𝑖) being the multiplicity of the representation 𝑛𝑖 , to

study possible operators satisfying required set of conditions. One can do this purely algebraically
or use diagrammatic techniques known as Krajewski diagrams. For the latter, we will illustrate this
in a simple example with A = 𝑀𝑛1 (C) ⊕𝑀𝑛2 (C) andH = (C𝑛1 ⊗𝑉1) ⊕ (C𝑛2 ⊗𝑉2) with dim(𝑉1) = 1
and dim(𝑉2) = 2. The pair (A,H) encodes the vertices of a graph. In our example, this gives two
vertices - one per each 𝑛 𝑗 , 𝑗 = 1, 2. The second of them, however, has to be doubled because the
dimension of the corresponding space𝑉2 is equal to 2. The operator 𝐷 can be written as 𝐷 =

∑
𝑖, 𝑗

𝐷𝑖, 𝑗

with 𝐷𝑖 𝑗 : C𝑛𝑖 ⊗ 𝑉𝑖 −→ C𝑛 𝑗 ⊗ 𝑉 𝑗 s.t. 𝐷𝑖 𝑗 = 𝐷∗
𝑗𝑖

. Every such non-zero 𝐷𝑖 𝑗 gives rise to an edge of
the graph with vertices {𝑛 𝑗}𝑁𝑗=1. In other words, edges of this graph are decorated by the 𝐷𝑖 𝑗 maps.
It turns out that there is a one-to-one correspondence between decorated graphs (i.e. ordered pairs
(𝐺,Λ) with 𝐺 being a finite graph and Λ ⊆ N+) and finite spectral triples up to unitary equivalence,
where we say that two spectral triples (𝜋1 : A −→ H1,D1) and (𝜋2 : A −→ H2,D2) with the same
algebra A are unitarily equivalent if there exists a unitary matrix 𝑈 s.t. 𝑈𝜋𝑎 (𝑎)𝑈∗ = 𝜋2(𝑎) and
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𝑈D1𝑈
∗ = D2. For a precise statement and further examples e.g. [2] and references therein. The

main message of this discussion is that one can reduce the problem of classification of finite spectral
triples to the classification of decorated graphs. Of course, demanding that our spectral triple
satisfies further conditions will reflect in the structure of the corresponding Krajewski diagram.
These graphical methods are especially useful when our triple is equipped with other structures that
can be formulated in terms of the existence of further operators that satisfy certain commutativity
conditions with the already existing ones, in particular with the D operator.

As advertised above, our next goal is to add additional structures on (A,H ,D). Here we do
not longer assume that we are working with finite triples. I will often refer to these extra structures
as decorations. This is because, in principle, we do not need to have them always but there are
situations in which the presence of these structures mimics certain properties known from classical
geometry. The first such decoration is the grading. It is implemented by a self-adjoint operator
𝛾 = 𝛾∗ ∈ 𝐵(H) which squares to an identity operator, commutes with the representation of the
algebra A, and anticommutes with the operator D. A spectral triple equipped with such a grading
operator is called even. If no such 𝛾 exists the name of an odd triple is used. The presence of
such grading essentially means that we can divide the content of the Hilbert space into two parts
and adjust the action of the operator D accordingly. We will shortly see that the presence of this
grading in the case of the triple describing the Standard Model of particle physics will be related to
the fact of having two chiralities of particles. This will allow distinguishing on the algebraic level
left-handed particles from right-handed ones.

The second structure that is usually present on spectral triples is related to the fact that an
algebra A possesses a ∗-structure. This leads to the conclusion that it would be great to have some
operator on the corresponding Hilbert space that implements an involution. One can do this by using
an antilinear isometry 𝐽 on H . Again, we have to take into account compatibility conditions with
the remaining structures in the spectral triple. In particular, we have to demand that D𝐽 = 𝜖𝐽D,
𝐽2 = 𝜖 ′id and 𝐽𝛾 = 𝜖 ′′𝛾𝐽 with 𝜖, 𝜖 ′, 𝜖 ′′ = ±1. Since each of the signs can take two possible values,
we have eight allowed combinations. The choice of these signs corresponds to the choice of the
so-called KO-dimension, which is a number modulo eight (having a much deeper meaning in the
KR-theory, but this discussion is much beyond the scope of this introductory lecture notes). The
operator 𝐽 defines a real structure and the resulting triple is called real. The reader familiar with the
Tomita-Takesaki modular theory [20] should immediately formulate a question if the presence of
the 𝐽 operator allows for implementing a bimodule structure on H . Having a real structure allows
for, in addition to the left action,

A ×H ∋ (𝑎, 𝜙) ↦−→ 𝑎𝜓 ∈ H , (10)

defining also the right one:

H ×A ∋ (𝜓, 𝑎) ↦−→ 𝐽𝑎∗𝐽−1𝜓 ∈ H . (11)

The existence of the bimodule structure means that the above two actions commute with each other,
i.e. the so-called zeroth order condition is satisfied:

∀𝑎, 𝑏 ∈ A [𝑎, 𝐽𝑏∗𝐽−1] = 0. (12)
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This condition does not involve the operator D but only relates the real structure with the represen-
tations of the algebra A. Now, it is time for adding the operator D into the game. The so-called
first-order condition,

∀𝑎, 𝑏 ∈ A
[
[D, 𝑎], 𝐽𝑏∗𝐽−1] = 0, (13)

is the one that is very often imposed on a spectral triple. It essentially relates 1-forms obtained
from the left representation of the algebra A with the right representation. If it is understood in this
way, one can easily generalize the first-order condition to the situation when the real structure is
not present but we have given only two independent representations: 𝜋𝐿 and 𝜋𝑅 (the left and right
one, respectively). The role of the 1-forms for particular representations turns out to be crucial in
the formulation of other classes of spectral triples. Having defined the space Ω1

D (A) of Connes’
1-forms, one can construct the algebra generated by A and Ω1

D (A) understood as a complex 𝐶∗-
subalgebra of 𝐵(H). The resulting algebra is denoted by 𝐶𝑙D (A) and called a Clifford algebra for
the given spectral triple. It can be used to formulate further conditions one can impose on a given
spectral triple [21, 22]. The so-called second-order condition can be formulated by demanding that
𝐽𝐶𝑙D (A)𝐽−1 is contained in the commutant of 𝐶𝑙D (A) in 𝐵(H). One can also ask when the
above inclusion is actually equality. If it is the case, we say that we have a Hodge spectral triple or
that the spectral triple satisfies the Hodge property. This notion originates from the consideration
of the spectral triple defined as follows. Let (M, 𝑔) be an oriented closed Riemannian manifold
equipped with a Hermitian vector bundle 𝐸 −→ M. Let 𝑐 : Γ∞(M, 𝑇∗

C
M ⊗ 𝐸) −→ Γ∞(M, 𝐸) be the

unitary Clifford action and suppose that ∇𝐸 is a connection compatible with 𝑔. Then one can define
A = 𝐶∞(M), H = 𝐿2(M, 𝐸) and D = 𝑐 ◦∇𝐸 . Taking 𝐸 =

∧• 𝑇∗
C
M, the operator D corresponds

to the Hodge-de Rham operator known from the theory of differential forms.
We are now ready to present the example that will motivate the use of spectral triples as

generalized geometries. This, the so-called canonical spectral triple, is constructed as follows.
Let M be a closed four-dimensional Riemannian manifold, with metric 𝑔, equipped with a spin
structure. As an algebra we take A = 𝐶∞(M), the algebra of smooth functions on the given
manifold M. Let S −→ M be a spinor bundle over M that gives the spin structure. The Hilbert
space is taken to consist of square-integrable sections of this bundle, H = 𝐿2(M,S). Since M
is a Riemannian manifold it possesses the unique Levi-Civita connection, which can be then lifted
to the spin bundle leading to the spin connection 𝜔. Using the associated Clifford algebra with
generators 𝛾𝜇 satisfying {𝛾𝜇, 𝛾𝜈} = 2𝑔𝜇𝜈 𝐼4, one can then construct an operator, whose action on
sections of the spinor bundle is locally given by

DM = 𝑖𝛾𝜇 (𝜕𝜇 + 𝜔𝜇). (14)

It is called the Dirac operator for M. Notice that the Clifford algebra 𝐶𝑙4(M) naturally possesses
a grading 𝛾 which in this case is given by the 𝛾5 operator. Moreover, we have therein a charge
conjugate operator 𝐶 which can be used to define a real structure 𝐽. To summarize, the system
(𝐶∞(M), 𝐿2(M,S),DM , 𝛾, 𝐽) forms an even real spectral triple of KO-dimension 4. Moreover,
it satisfies the first-order condition. In this context, the first-order condition means that the Dirac
operator is a first-order differential operator. We remark that the canonical spectral triple can be
obtained from the previous construction with the bundle 𝐸 taking to be the spinor bundle S.

The canonical spectral triple described above is of particular interest due to Connes’ recon-
struction theorem [23]. Its essence is that starting with a spectral triple that has commutative algebra
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as one of the defining data, one can reconstruct a spin manifold s.t. the canonical triple constructed
out of the geometric data on this manifold agrees with the triple one started with. Of course, one
has to impose several additional requirements on the initial triple in order to be able to rigorously
formulate this equivalence. For the purpose of these lectures, I will not discuss the details here, and
the interested reader is invited to consult existing reviews on this topic e.g. [2, 24] or original papers,
e.g. [25]. The take-home message from the reconstruction theorem is that there is a one-to-one cor-
respondence between suitably regular manifolds and suitably regular commutative spectral triples.
In other words, such commutative spectral triples are algebraic analogs of these geometries. This
can be taken as a down-to-earth motivation for studying these algebraic objects, without referring to
the deeper understanding in terms of pre-Fredholm modules and the language of KK-theory. Out of
the Dirac operator, one can of course construct a corresponding pre-Fredholm module following the
method presented before. However, from now on we think of the canonical triple as a toy model for
the nature of what we would like to describe using more sophisticated constructions. The picture of
Noncommutative Geometry is then a natural consequence of this example. We can think of general
spectral triples as being an algebraic description of noncommutative manifolds and the operator D
for a general spectral triple is called a Dirac operator.

Let us discuss yet another aspect of the canonical triple. Since it corresponds to the classical
Riemannian manifold, one can expect that there should exist a way to compute the distances between
points on these manifolds, and, if the reconstruction is indeed correct, the obtained metric should
be related to the usual geodesic distance. It is indeed the case. We have already seen that for
finite spectral triples, there exists Connes’ distance formula that involves the Dirac operator and the
algebra itself, and it reconstructs the metric on the finite space. This prescription turns out to be true
also in the context of the reconstruction theorem, where instead of algebras of functions on finite
spaces, we consider algebras A of smooth functions on a given manifold. The Connes’ distance
formula takes the form

𝑑 (𝑥, 𝑦) = sup
𝑓 ∈A

{| 𝑓 (𝑥) − 𝑓 (𝑦) | : ∥ [D, 𝑓 ] ∥ ≤ 1} , (15)

and indeed the distances computed in this way coincide with the geodesic distances on M.
Finally, we stress that even if there exists a set of axioms under which a given commutative

spectral triple corresponds to a certain manifold, it does not imply that we have to assume these
requirements also for the case of more general noncommutative spectral triples. Indeed, there are
known many examples of objects that one would like to call noncommutative spaces but they are
beyond this class. For a short review of this problem, I refer to [6] and references therein. For
this reason, when considering spectral triples that potentially can have some interesting physical
applications we are not forced to assume all the conditions that were crucial to establishing Connes’
reconstruction theorem. In principle, there is no reason to restrict our attention only to objects
that are very similar to classical geometries. The physics does not need to be like that! One can
equally well think of more exotic spaces and their potential applications for physical models. At the
philosophical level, one can think of this point of view as replacing the semi-classical approach to
quantum mechanics with its purely quantum version. Of course, this is only a very naive resemblance
but I think that it appropriately illustrates the main point. The Noncommutative Geometry was
derived by making analogies with the classical one, but having established the dictionary we can

16



P
o
S
(
M
o
d
a
v
e
2
0
2
2
)
0
0
1

Modave lectures on Noncommutative Geometry and its applications to physics Arkadiusz Bochniak

try to weaken the link with the commutative case. This is yet another way of saying that are trying
to do not assume too much. I will show later how different modifications of the usual approach to
geometry can lead to interesting physical phenomena.

4. Where is physics?

In the previous sections, I presented a very brief introduction to the ideas behind the concept
of Noncommutative Geometry. The use of certain algebraic structures was motivated by looking
closely at objects present in classical geometry and trying to reformulate their properties in purely
algebraic terms. As advertised in the title of these lectures, these constructions should have some
interesting applications to physical models. So, where the physics is hidden? In order to answer
this question, or at least propose an answer that could possibly satisfy mathematically oriented
physicists, we first have to stress once again the main concept we discussed in the previous sections.
Mainly, the choice of geometry is nothing else than the choice of a spectral triple. This crucial idea
in the presented approach to Noncommutative Geometry, if treated seriously, leads to nontrivial
consequences. Suppose, we agree with this statement and let us then consider Einstein’s point of
view on gravity. According to it, gravity is just geometry. In other words, Einstein’s general theory
of relativity tells us that the theory of gravity can be described using purely geometric terms. We,
therefore, have an example of a physical theory whose content is equivalent to the knowledge of
the geometry of a certain space. Following this way of thinking one can propose to use other
geometries, maybe even noncommutative ones, to describe and understand other physical theories.
In order to do so, we have to first establish how Einstein’s theory can be encoded in algebraic objects
associated with a given manifold. One way of doing this is by using the observation that physical
theories are mostly formulated in the language of Lagrangians or actions, very often valid only on
some characteristic effective energy scale. This is also the case for general relativity. The Einstein-
Hilbert action leads to Einstein’s equations describing the dynamical content of this theory. The
aforementioned procedure is roughly speaking the main idea behind the so-called spectral action
principle. Since the geometry is given by a spectral triple, we can try to find a way of constructing
certain functional out of these data and interpret it as an action for some physical theory. More
precisely, letΛ > 0 be a constant that we would like to interpret as an effective energy scale on which
the action or Lagrangian should be a valid description of our theory. Out of the Dirac operator D we
construct its renormalized version, DΛ =

|D |
Λ

. Using this new operator we can e.g. easily answer
the question of the number of eigenvalues of D that are smaller than Λ. This can be achieved by
computing Tr𝜒[0,1] (DΛ), where 𝜒[0,1] is the characteristic function of the unit interval. This is the
simplest example of spectral functionals. It turns out that its mild modification gives us what we
want to extract the physical Langragian from a given spectral triple! This is achieved by defining
the so-called bosonic spectral action,

𝑆𝑏 (D) = Tr 𝑓 (DΛ), (16)

where 𝑓 : R+ −→ R+ is a smooth function s.t. the operator 𝑓 (DΛ) is of a trace class. In practice,
one uses a smooth approximation of 𝜒[0,1] . The computation of the spectral action from the very
definition is usually a complicated task. But it turns out that one does not need to do it in order
to extract interesting information. Indeed, under certain regularity conditions on the spectral triple
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(see e.g. [2]) one can compute the asymptotic expansion as Λ −→ ∞ of the bosonic spectral action.
The coefficients in this expansion are expressed in terms of the coefficients in the heat kernel
expansion, Tr𝑒−𝑡D2

=
∑
𝛼
𝑐𝛼𝑡

𝛼. Let us come back to the canonical spectral triple associated with
a given manifold and compute the leading terms of the asymptotic expansion. It turns out that the
result is just the Einstein-Hilbert action for the general theory of relativity (with a cosmological
constant term) formulated on the manifold we started with. This observation is the essence of the
spectral action principle. We can start with any spectral triple for which the asymptotic expansion
of the bosonic spectral action exists, and then we interpret the leading terms in this expansion as
effective physical action. In other words, spectral action is a way to produce physical models out of
noncommutative geometries. This leads to a generalized version of the statement that physics is a
geometry.

The above way of extracting the leading terms is, however, not the only one. There exists
another possibility which is based on manipulating symbols of differential operators acting on
certain bundles. To be more precise, let 𝐸 → M be a finite-dimensional vector bundle over a given
closed manifold. In (the sections of) this bundle one can consider the action of pseudodifferential
operators. To understand this class of objects one can start by defining them of R𝑛, and then use
a standard way of generalizing definitions locally from R𝑛 into manifolds and bundles over them.
The action of such an operator on a test function 𝑢 is of the form

𝑃(𝑥, 𝐷)𝑢(𝑥) = 1
(2𝜋)𝑛

∫
R𝑛

𝑒𝑖𝑥 ·𝜉𝑃(𝑥, 𝜉)�̂�(𝜉)𝑑𝜉, (17)

i.e. the integral representation in terms of the Fourier transform is used. In order to have the above
expression well-defined one has to assume something about the function 𝑃(𝑥, 𝜉), i.e. it has to
belong to a certain class. One of the typical conditions is that this function belongs to a so-called
Hörmander class, i.e.

|𝜕𝛼
𝜉 𝜕

𝛽
𝑥 𝑃(𝑥, 𝜉) | ≤ 𝐶𝛼𝛽 (1 + |𝜉 |)𝑚−|𝛼 | . (18)

For the purpose of these lectures, I assume that some conditions are imposed to make all the
operations mathematically legal and I will not discuss the technical details here. For the practical
applications, we will use concrete differential operators - usually, a square of the Dirac operator -
and all the subtle points raised here will be irrelevant. But for the purpose of presenting some crucial
properties, we will stay for a moment in this more general class of operators. One can show that the
set of pseudodifferential operators actually is an algebra. To illustrate what it means in practice, let
us take first a simple differential operator, say 𝜕2

1 +2𝜕1. In the Fourier representation, we essentially
replace every differential operator by its symbol via 𝜕 𝑗 → 𝑖𝜉 𝑗 , leading to−𝜉2

2 +𝑖𝜉1. The leading term
is called the principal symbol, and if it is invertible on {(𝑥, 𝜉) : 𝜉 ≠ 0}, then the operator is called
elliptic. The multiplication in the algebra of operators mimics the rule for computing the derivative
of a composition of functions. Let 𝜎𝑃 (𝑥, 𝜉) =

∑
𝛼
𝜎𝑃,𝛼 (𝑥)𝜉𝛼 and 𝜎𝑄 (𝑥, 𝜉) = ∑

𝛼
𝜎𝑄,𝛽 (𝑥)𝜉𝛽 be two

symbols corresponding to operators 𝑃 and 𝑄, respectively. Here 𝛼 and 𝛽 are multi-indices. Then

𝜎𝑃𝑄 (𝑥, 𝜉) =
∑︁
𝛾

(−1) |𝛾 |
𝛾!

𝜕
𝜉
𝛾 𝜎𝑃 (𝑥, 𝜉)𝜕𝑥

𝛾𝜎𝑄 (𝑥, 𝜉). (19)

Let D be the Dirac operator on a certain manifold and define 𝑃 = D2. This operator is elliptic and

𝜎𝑃 (𝑥, 𝜉) = a2 + a1 + a0, (20)
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where a 𝑗 is homogeneous in 𝜉’s in order 𝑗 . For this concrete example, a2 is obtained from 𝑃 by
collecting all the terms that contain second derivatives are replacing them with the corresponding
symbols. Similarly for other a 𝑗’s. As an exercise, I suggest showing that for the symbol of the
operator 𝑃−1 we have

b0 = a−1
2 ,

b1 = −
(
b0a1 − 𝑖𝜕

𝜉
𝑎 (b0)𝜕𝑥

𝑎 (a2)
)
b0,

b2 = −
(
b1a1 + b0a0 − 𝑖𝜕

𝜉
𝑎 (b0)𝜕𝑥

𝑎 (a1) − 𝑖𝜕
𝜉
𝑎 (b1)𝜕𝑥

𝑎 (a2) −
1
2
𝜕
𝜉
𝑎 𝜕

𝜉

𝑏
(b0)𝜕𝑥

𝑎 𝜕
𝑥
𝑏 (a2)

)
b0,

(21)

where now b 𝑗 is the homogeneous part of order −2 − 𝑗 .
The algebra of pseudodifferential operators has a nice feature, showed for the first time by

M. Wodzicki [26], that there is exactly one normalized trace on it, which can be explicitly computed
in terms of integrals over a cosphere bundle with a certain symbol of a given operator. This trace
is called the Wodzicki residue and is denoted by Wres(·). It turns out [27] that the heat kernel
coefficients are related to Wodzicki residua of certain powers of the Dirac operator. In particular,
the leading terms of the bosonic spectral action are then

𝑆𝑏 (D) ∼ Λ4Wres(D−4) + 𝑐ΛWres(D−2), (22)

with some constant 𝑐. For the canonical spectral triple, these terms correspond to the Einstein-
Hilbert action together with the cosmological constant term. One can now imagine a situation
in which starting with another spectral triple could lead to some modified gravity models. Their
effective actions can be simply read from these leading terms and the whole problem reduces to
the computation of Wodzicki residua for D−4 and D−2. This idea was used in [28, 29] to produce
models that go beyond Einstein’s general relativity and share some features with bimetric theories.
The crucial step in the computations was based on the aforementioned formulas for b 𝑗’s.

An important remark is in place here. Notice that all of these models are Euclidean. One needs
some kind of Wick rotation scheme to get physically (cosmologically) interesting results. However,
the purely Lorentzian formulation of the spectral action principle seems to be still beyond the
applicability of known techniques and existing machinery. There exists, however, a zoo of proposals
for pseudo-Riemannian generalizations of spectral triples - some of them will be discussed later
in these lectures. Nevertheless, the main problem with the spectral action is the lack of ellipticity
of the operator D2. Instead, this operator is hyperbolic in the Lorentzian setup and the usual heat
kernel methods are ill-defined since the corresponding symbol is non-invertible.

4.1 Towards particle physics: AC-manifolds

In the previous section, we briefly motivated the use of the machinery of spectral geometry
to derive potential action functionals for physical models. In order to do this, we concentrated
on Einstein’s vision of gravity as geometrical theory. Since one can derive its corresponding
(Euclidean version of) Lagrangian from the canonical spectral triple associated with (suitably
regular) Riemannian space, the natural expectation was that following this idea one can derive also
modified gravity models by changing the initial data - a spectral triple. On the other hand, it is not
clear how to derive other than gravity models that are of practical interest. In this part of the lecture,
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we will briefly discuss how gauge theories fit in the framework of Noncommutative Geometry. We
start with an observation that gravity itself can be understood as a gauge model and the symmetry
group consists of diffeomorphisms of the space. We would like to describe field theories so that
they should live on a given manifold. In other words, there is always a space that plays a role of
a background. This quite oversimplified picture is beyond the main idea of almost-commutative
geometries - finite extensions of classical spaces. We would like to think of them as Cartesian
product M×𝐹 of the usual manifold with some finite dimensional space. One can easily recognize
this construction as an analogy to the Kaluza-Klein models. In the latter, one uses a circle 𝑆1

instead of a finite space. Notice that dim(M × 𝐹) = dim(M) + dim(𝐹) = dim(M) since 𝐹 is
zero-dimensional, but for the Kaluza-Klein model we have dim(M × 𝑆1) = dim(M) + 1. This
seemingly small difference will have important consequences. The simplest example of the space
𝐹 is 𝐹 = Z𝑁 ⊆ 𝑆1 with 𝑁 > 0. Then A𝐹 = 𝐶∞(𝐹) = C𝑁 and, as a result, A = 𝐶∞(M × 𝐹) �
𝐶∞(𝑀,C𝑁 ) � 𝐶∞(M) ⊗C𝑁 . Since we would like to formulate the model from the very beginning
on the algebraic level, our starting point should be the choice of an algebra A. In the case of
almost-commutative models, we then take it to be of the form A = 𝐶∞(M) ⊗ A𝐹 , with 𝐹 being a

finite-dimensional algebra, i.e. A𝐹 =
𝑁⊕
𝑖=1

𝑀𝑛𝑖 (C). From this construction, one can guess that the

full spectral triple for such types of geometries should be (properly understood) a product of the
canonical triple associated with the manifold and some finite one. This is indeed the case as we
will see shortly. Before discussing these details, let us first look again more closely at the case with
𝐹 = Z𝑁 . For 𝑁 = 2 we have M × Z2 = M ⊕ M and consequently A = 𝐶∞(M) ⊕ 𝐶∞(M), i.e.
we have two disjoint copies of the same Riemannian space (M, 𝑔). This picture generalizes to any
𝑁 > 0:

We can now imagine a situation in which we would like to move within this product space starting
e.g. from point 𝑥1 in the above figure. There are essentially two possible directions to move:
reaching points on the same layer we started with, e.g. 𝑥2, or moving to the other layer, say to point
𝑥′2. This very intuitive picture can be formalized in terms of vector bundles and connections over
such a product space. This will be of crucial importance for the discussion of gauge fields in the
framework of spectral geometry, using certain principal bundles. We will discuss this aspect more
carefully in a moment, but first, let us remark on some naive expectations one can have from this
picture. First of all, we should be able to derive actions for gauge theories using spectral techniques.
Secondly, the possibility of a movement in the finite direction should produce some effective fields
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on the level of the asymptotic expansion of a spectral action. We will see that this is indeed the
case, and, in particular, the Higgs field will appear exactly in this way.

Let us now finally define the almost-commutative geometry. We have already seen the choice
for the algebra, A = 𝐶∞(M) ⊗A𝐹 . Since it is just a tensor product, the Hilbert space on which we
would like to represent it has an analogous structure, i.e. we take H = 𝐿2(M,S) ⊗ H𝐹 . That was
the easiest part. Now, we introduce the Dirac operator to this product geometry. It has to be done
in a self-consistent way. The choice is motivated by the expected form of a Laplace-type operator
on a tensor product. Notice that since the square of the canonical Dirac operator on a Riemannian
manifold is a Laplace-type operator, we should require that for the Dirac operator D on the product
geometry we should have D2 = D2

M + D2
𝐹

. One can easily check that the choice DM ⊗ D𝐹 does
not work and it has to be modified. Let us remark that the canonical triple was naturally equipped
with a grading given by the 𝛾5 operator in the associated Clifford algebra. It is therefore naturally
demanded that tensoring with the even finite triple should also lead to an even product. Therefore
the existing grading will restrict possible choices for the product Dirac operator, and this choice has
to be done in a way that the product Dirac operator anticommutes with the product grading. I will
not discuss all of the nuances here, referring the reader to [30] for a detailed discussion. For the
purpose of these lectures, we assume that dim(M) = 4 and present the finite result:

D = DM ⊗ id + 𝛾5 ⊗ D𝐹 , 𝛾 = 𝛾5 ⊗ 𝛾𝐹 . (23)

If, moreover, the real structures are taken into account, the one on the product geometry is simply
𝐽 = 𝐽M ⊗ 𝐽𝐹 .

4.2 Gauge theories from spectral action

Having defined almost-commutative geometries, we will now show how they can be used to
encode gauge theories. The first observation, already mentioned previously, is that the symmetries
of a Riemannian manifold are described by the group of their diffeomorphisms. More precisely,
Diff (M) � Aut(𝐶∞(M)). Therefore, one can naively define Diff (M × 𝐹) as the automorphism
group of 𝐶∞(M) ⊗ A𝐹 . But this is not the full symmetry group. There are also transformations
induced by the unitaries of the algebra that implements the inner symmetries. We can think of
them as the gauge group associated with the almost-commutative geometry. Under these inner
symmetries, the Dirac operator transforms as 𝐷 ↦→ 𝐷𝑈 = 𝑈𝐷𝑈∗, where 𝑈 = 𝑢𝐽𝑢𝐽−1 with a
unitary element 𝑢 in the product algebra. The full symmetry group is then

{𝑈 = 𝑢𝐽𝑢𝐽−1 : 𝑢 ∈ U(A)} ⋊ Diff (M). (24)

One can expect that having two spectral triples which are related by a certain symmetry transfor-
mation, the resulting physical action should not depend on this choice. There should be then a way
of identifying two spectral triples and exploring this new type of gauge freedom. The appropriate
way of doing this turns out to be based on the notion of Morita equivalence. It goes back to the
notion of Morita equivalence for algebras, which is expressed in terms of bimodules over them (for
details see [2]), and then this can be generalized to the whole data in a spectral triple. Of particular
importance is the so-called Morita self-equivalence condition which, in particular, restricts the
number of possible Hermitian connections ∇ : A → Ω1(A) associated with 𝑑 (·) = [D, · ] to the
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ones of the form 𝑑 + 𝜔 with 𝜔 = 𝜔∗ ∈ Ω1
D (A). This corresponds to replacing the bare Dirac

operator D by the whole family of them:

D𝜔 = D + 𝜔 + 𝜖𝐽𝜔𝐽−1. (25)

The resulting operator is called a fluctuation of the Dirac operator. It essentially takes into account
the gauge freedom we have when we construct physical theories in the language of spectral geometry.
We then expect that e.g. Yang-Mills type terms in the physical action should appear if we use the
fluctuated Dirac operator in the spectral action and perform the asymptotic expansion for it. Let
us remark also that, effectively, the fluctuated Dirac operator is constructed by simply adding an
arbitrary 1-form to the bare one. This again illustrates the importance of the set of 1-forms in
Noncommutative Geometry.

In the remaining part of this section, I will summarize the steps one has to perform to finally
derive an effective bosonic action for Yang-Mills type theories. This will closely follow the
presentation in [2] and the reader is invited to consult this book for detailed proofs of all the
statements below. However, most of them are, essentially, based on straightforward algebraic
manipulations and the reader is more than welcome to try to demonstrate these results first by
themselves and then check these derivations in the existing literature.

We start with the almost-commutative geometry with dim(M) = 4 and a finite algebra chosen
so that its unitaries correspond more or less to the gauge group of the Yang-Mills-type theory we
would like to describe. This statement can be made more precise but for our purposes, we don’t
need to go into these technical details. The statement more or less should be understood here that
we do not really care if we take 𝑈 (𝑁) or 𝑆𝑈 (𝑁), or their quotients by some discrete group. This
can be fixed later on. We then have an almost-commutative manifold, and for it, we can compute
the set of Connes’ 1-forms Ω1

D (A). Let 𝜔 = 𝑎[D, 𝑏] be some 1-form. By linearity, it is enough
to take just one summand here. By computing the commutators with the continuous part and the
finite one, we can parametrize this 1-form in the following way:

𝜔 = 𝛾𝜇 ⊗ 𝐴𝜇 + 𝜎 ⊗ 𝜙, (26)

where 𝜙 = 𝑎[D𝐹 , 𝑏]. Since we need to compute D𝜔 , the fluctuated Dirac operator, we first need

𝛾𝜇 ⊗ 𝐴𝜇 + 𝜖𝐽𝛾𝜇 ⊗ 𝐴𝜇𝐽
−1 (27)

which we denote by 𝛾𝜇 ⊗ 𝐵𝜇. Defining

Φ = 𝐷𝐹 + 𝜙 + 𝐽𝐹𝜙𝐽𝐹 , ∇𝐸 = ∇S ⊗ id + 𝑖id ⊗ 𝐵, (28)

one can finally write
D𝜔 = −𝑖𝛾𝜇∇𝐸

𝜇 + 𝛾5 ⊗ Φ. (29)

Its square, i.e. the associated Laplace-type operator, is of the form 𝐷2
𝜔 = Δ𝐸 + 𝐹 with

Δ𝐸 = −𝑔𝜇𝜈 (∇𝐸
𝜇∇𝐸

𝜈 − Γ
𝜌
𝜇𝜈∇𝐸

𝜌 ), (30)

𝐹 = −1
4
𝑅 ⊗ 1 − 1 ⊗ Φ2 + 𝑖

2
𝛾𝜇𝛾𝜈 ⊗ 𝐹𝜇𝜈 − 𝑖𝛾5𝛾

𝜇 ⊗ 𝐷𝜇Φ, (31)
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where 𝐷𝜇Φ = 𝜕𝜇Φ + 𝑖[𝐵𝜇,Φ]. Then one can proceed with the computation of the asymptotic
expansion for the spectral action. Again, I will present only the final answer and the method of
derivation can be found in e.g. [2]. Finally, we get

Tr 𝑓
(
D𝜔,Λ

)
∼

∫
M

√
𝑔𝑑4𝑥 (dim(H𝐹)LM + L𝐵 + LΦ) (32)

with

L𝑀 =
𝑓4Λ

4

2𝜋2 − 𝑓2Λ
2

24𝜋2 𝑅 + 𝑓 (0)
16𝜋2

(
Δ𝑅

30
− 7

360
𝑅𝜇𝜈𝜌𝜎𝑅

𝜇𝜈𝜌𝜎 − 1
45

𝑅𝜇𝜈𝑅
𝜇𝜈 + 1

180
𝑅2

)
, (33)

L𝐵 =
𝑓 (0)
24𝜋2 Tr(𝐹𝜇𝜈𝐹

𝜇𝜈), (34)

LΦ = −2 𝑓2Λ2

4𝜋2 Tr(Φ2) + 𝑓 (0)
8𝜋2 Tr(Φ4) + 𝑓 (0)

24𝜋2ΔTr(Φ2) + 𝑓 (0)
48𝜋2 𝑅Tr(Φ2) + 𝑓 (0)

8𝜋62
Tr

[
(𝐷𝜇Φ) (𝐷𝜇Φ)

]
,

(35)
where 𝐹𝜇𝜈 = 𝜕𝜇𝐵𝜈 − 𝜕𝜈𝐵𝜇 + 𝑖[𝐵𝜇, 𝐵𝜈] and 𝑓 𝑗 denotes the ( 𝑗 − 1)th moment of the function 𝑓 .
In addition to the geometric part LM , we easily recognize the Yang-Mills action. The role of the
field Φ will become clear in the next section when we will discuss an application of these general
formulas to the Standard Model of particle physics.

5. The Standard Model

As advertised in the previous section we discuss here an application of the spectral action
method to the Standard Model of particle physics. The way of presenting this material is rather
standard and can be found in many classical textbooks - see e.g. the ones listed in the list of
references. Here I will concentrate on the main ideas behind the Connes-Chamseddine construction,
rather than presenting the detailed computations which can be easily found in the aforementioned
references.

We start with the choice of algebra. As it was mentioned in the previous section, this should
correspond to the choice of the gauge group for the model. Since the Standard Model has (up to a
finite subgroup) the gauge group of the form 𝑈 (1) × 𝑆𝑈 (2) × 𝑆𝑈 (3), the simplest natural choices
for the finite algebra is A𝐹 = C ⊕ H ⊕ 𝑀3(C), where H denotes the algebra of quaternions. The
second question we have to answer is the choice of a finite Hilbert space. Which one is the proper
one? To find the answer we look at the fermionic spectral action, which essentially has a form
𝑆 𝑓 (D) ∼ ⟨Ψ|D|Ψ⟩ with Ψ ∈ H . By comparing this expression with the one known from field
theory, one can guess that a reasonable choice would be by taking H𝐹 to have a dimension equal
to the number of independent fermionic species in the model. So, what are they? In the standard
construction by A. Connes and A. Chamseddine, this is taken to be 96. Why? We think of each
fermion with a fixed chirality and charge as an element of a basis of H𝐹 . In this picture, for every
antiparticle, we have associated a basis vector that is independent of the one for the corresponding
particle. Also, both the number of colors for quarks and the number of generations are taken into
account. As a grading operator on the finite space we take the standard chirality 𝛾 represented as
an operator on H𝐹 . Also the real structure 𝐽𝐹 is the natural one that essentially (up to complex
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conjugation to make it antilinear) interchanges particles with their antiparticles. Having an algebra
and a Hilbert space, we should now, according to the general prescription, define a representation
of this algebra on the Hilbert space. In the Connes-Chamseddine construction, it is done as follows.
First, assume for simplicity that there is only one generation of particles. One will, later on, extend
the representation diagonally in order to take into account also the number of generations. Following
the standard notation, we denote an element of A𝐹 by (𝜆, 𝑞, 𝑚), where 𝜆 is a complex number, 𝑞
stands for a quaternion, and 𝑚 belongs to 𝑀3(C). Then such an element is represented on both

the leptonic sector and for each quark color as an operator

(
𝜆 0
0 �̄�

)
⊕ 𝑞. Its action on antileptons is

taken to be just a multiplication by �̄�, whereas, on the antiquark sector, the corresponding operator
is id4 ⊗ 𝑚. Notice that in the latter case, the color structure is already included.

It remains to find a Dirac operator for the finite part of the product triple. This is a nontrivial
question and the standard Connes-Chamseddine choice is as follows. Decomposing the Hilbert
space H𝐹 according to

H𝐹 =

((
C2
𝑅 ⊕ C2

𝐿

)
⊗ C4◦

)
⊕

(
C4 ⊗

(
C2◦
𝑅 ⊕ C2◦

𝐿

))
, (36)

the Dirac operator is taken to be

D =

(
𝑆 𝑇∗

𝑇 𝑆

)
(37)

with the 𝑆 operator on the leptonic sector being given by

𝑆𝑙 =

©«
0 0 Υ∗

𝜈 0
0 0 0 Υ∗

𝑒

Υ𝜈 0 0 0
0 Υ𝑒 0 0

ª®®®®¬
, (38)

whereas for quarks one chooses

𝑆𝑞 ⊗ id3 =

©«
0 0 Υ∗

𝑢 0
0 0 0 Υ∗

𝑑

Υ𝑢 0 0 0
0 Υ𝑑 0 0

ª®®®®¬
⊗ id3. (39)

The 𝑇 operator is non-zero only for 𝜈𝑅 and given by 𝑇𝜈𝑅 = Υ𝑅 �̄�𝑅. In the case of three generations
of particles, Υ’s are promoted to 3 × 3 matrices.

The immediate consequence of the chosen representation can be observed when restrict to the
subspace spanned by {𝜈𝐿 , 𝜈𝑅, �̄�𝐿 , �̄�𝑅}. In the case of one generation, we identify Υ𝜈 with 𝑚𝜈 and
similarly for Υ𝑅, Υ𝑅 = 𝑚𝑅. The spectrum of the operator D𝐹 restricted to this subspace can be
easily computed and in the limit 𝑚𝜈 ≪ 𝑚𝑅 one gets the following eigenvalues: ±𝑚𝑅 and ±𝑚2

𝜈

𝑚𝑅
.

This leads to the celebrated seesaw mechanism: there exists a heavy neutrino with mass 𝑚𝑅 and a
light neutrino with mass 𝑚2

𝜈

𝑚𝑅
.

In general, the matrices Υ𝑒,Υ𝜈 ,Υ𝑢,Υ𝑑 have the physical meaning of matrices of Yukawa
parameters, while 𝑌𝑅 corresponds to the Majorana mass matrix.
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The natural question that arises is the uniqueness of the choice of the finite part of the Dirac
operator. It turns out that the answer is negative. There is plenty of choices that are self-consistent.
A lot of arguments were invented to reasonably reduce the number of possible choices but not all of
them are fully convincing. In the next section, I will show how introducing the Lorenztian structure
on the finite part of the spectral triple can be used to reduce the number of such choices. For a
moment we simply accept the above choice and present its consequences.

First of all, as one can expect, the spectral action technique produces the bosonic part of the
classical action for the Standard Model. It is, in general, given on a curved background, but for our
purpose, we will assume a flat torus as a background geometry to simplify the discussion. In this
case, the resulting Lagrange density is of the form L = 96L𝑀 + L𝐴 + L𝐻 with

L𝐴 =
𝑓 (0)
𝜋2

(
10
3
Λ𝜇𝜈Λ

𝜇𝜈 + Tr(𝑄𝜇𝜈𝑄
𝜇𝜈) + Tr(𝑉𝜇𝜈𝑉

𝜇𝜈)
)
, (40)

L𝐻 =
𝑏 𝑓 (0)
2𝜋2 |𝐻 |4 + 𝑒 𝑓 (0) − 2𝑎 𝑓2Λ2

𝜋2 |𝐻 |2 + 𝑎 𝑓 (0)
2𝜋2 |𝐷𝜇𝐻 |2, (41)

where I have omitted the terms of L𝐻 that introduce a constant shift (and can contribute to a
cosmological constant). Here

𝑎 = Tr
(
Υ∗
𝜈Υ𝜈 + Υ∗

𝑒Υ𝑒 + 3Υ∗
𝑢Υ𝑢 + 3Υ∗

𝑑Υ𝑑

)
, (42)

𝑏 = Tr
(
(Υ∗

𝜈Υ𝜈)2 + (Υ∗
𝑒Υ𝑒)2 + 3(Υ∗

𝑢Υ𝑢)2 + 3(Υ∗
𝑑Υ𝑑)2

)
(43)

and
𝑒 = Tr

(
Υ∗
𝑅Υ𝑅Υ

∗
𝜈Υ𝜈

)
, (44)

Λ, 𝑄 and 𝑉 corresponds to gauge fields for the groups 𝑈 (1), 𝑆𝑈 (2) and 𝑆𝑈 (3), respectively, and
𝐻 is an effective parametrization of the field Φ - for details see e.g. [2–4, 17].

Next, one writes 𝑄𝜇 on the basis of Pauli matrices, 𝑉𝜇 on the basis of Gell-Mann matrices,
and parametrizes the corresponding coefficients of these expansions by 𝑄𝑎

𝜇 = 1
2𝑔2𝑊

𝑎
𝜇 and 𝑉 𝑖

𝜇 =
1
2𝑔3𝐺

𝑖
𝜇, where coupling parameters are explicitly introduced. We also add the one for the Λ field:

Λ𝜇 = 1
2𝑔1𝑌𝜇. Finally, expressing the Lagrangian in terms of these new fields and demanding that

the kinetic energy terms have the canonical form we obtain a GUT-like relation 𝑔2
3 = 𝑔2

2 = 5
3𝑔

2
1 and

the potential term for the 𝐻 field is

Lpot =
𝑏𝜋2

2𝑎2 𝑓 (0)
|𝐻 |4 − 2𝑎 𝑓2Λ2 − 𝑒 𝑓 (0)

𝑎 𝑓 (0) |𝐻 |2, (45)

which is nothing else than the Higgs potential. Therefore, the spectral action produces not only
the gauge fields but also the Higgs field. If we come back to the picture of almost-commutative
geometry in which we can move within layer or move between layers, we recognize that this is a
way in which the spectral geometry unifies the Higgs field and the gauge fields. Gauge fields can
be interpreted in this very pictorial formulation as a result of a movement within one layer, while
the Higgs field is a gauge field for the interlayer movements.

For 2𝑎 𝑓2Λ2 > 𝑒 𝑓 (0) the Higgs minimum is at 2𝑎2 𝑓2Λ
2−𝑎𝑒 𝑓 (0)
𝑏𝜋2 ≡ 𝑣2. Using the standard

parametrization 𝐻 = 𝑢(𝑥)
(
𝑣 + ℎ(𝑥)

0

)
we can then rewrite the Lagrangian in terms of the ℎ field and
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find a relation between the Higgs mass and the parameter 𝑣. Moreover, introducing 𝑀𝑊 = 1
2𝑣𝑔2 and

𝑀𝑍 = 1
2𝑣

√︃
𝑔2

1 + 𝑔2
2, after some algebraic manipulations one can relate the Higgs mass 𝑚ℎ with the

𝑊-boson mass 𝑀𝑊 and the quartic interaction parameter 𝜆 for the Higgs field: 𝑚2
ℎ
=

4𝜆𝑀2
𝑊

3𝑔2
2

. Now,
using the renormalization group techniques, starting from the ΛGUT energy scale, one can show
[2, 4] that 167GeV ≤ 𝑚ℎ ≤ 176GeV. This value is different than the experimental one, but it is of
the right order of magnitude. There were several attempts to avoid this discrepancy. It is beyond
the scope of these notes to discuss this problem. Let me mention only that it results in plenty of
possible extensions of the Standard Model which have several intriguing features and non-trivial
physical consequences.

Before finishing this section, let me briefly comment on other potential issues that are present in
the formulation of the Standard Model within this framework. First of all, notice that in the Hilbert
space H = 𝐿2(M,S) ⊗ H𝐹 we are counting multiple times certain degrees of freedom. Indeed
both parts of this tensor product contain information about the chiralities and particle-antiparticle
pairs. As a result, there are effectively four times more degrees of freedom than needed. This
is a famous fermion doubling problem and one needs to eliminate this redundancy to obtain the
proper physical Lagrangian. There are several approaches to solving this issue. Let me mention
here some classical ones and I will come back to this problem in one of the forthcoming sections.
To eliminate the chirality doubling one can introduce certain projections to reduce the full Hilbert
space. The other factor of two can be cured by modifying the fermionic spectral action by inserting
a real structure operator. Moreover, there are also approaches to this problem that relates it to the
presence of the Lorentzian structure [31].

6. Towards pseudo-Riemannian spectral triples

In this section, we briefly discuss a method that allows for the reduction of possible Dirac
operators describing the content of the Standard Model and its extension. This discussion is mostly
based on the results obtained in [32–34]. We work here only with finite spectral triples. We start
our discussion with the definition of a pseudo-Riemannian spectral triple proposed in [32, 33]. A
pseudo-Riemannian spectral triple of signature (𝑝, 𝑞) is a tuple (A,H ,D, 𝐽, 𝛾, 𝛽), where

• A and H are as in the Euclidean case.

• If 𝑝 + 𝑞 is divisible by 2 then there exists a grading 𝛾.

• Both zeroth and first-order conditions hold.

• 𝛽 is an additional grading that defines the Krein structure on the Hilbert space.

• 𝐷† = (−1) 𝑝𝛽D𝛽, i.e. the Dirac operator is self-adjoint with respect to the Krein structure.

• D𝛾 = −𝛾D.

• D𝐽 = 𝜖𝐽D, 𝐽2 = 𝜖 ′id and 𝐽𝛾 = 𝜖 ′′𝛾𝐽. The choice of (𝜖, 𝜖 ′, 𝜖 ′′) defines the KO-dimension
being 𝑝 − 𝑞 (mod 8).

• 𝛽𝛾 = (−1) 𝑝𝛾𝛽
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• 𝛽𝐽 = (−1)
𝑝 (𝑝−1)

2 𝜖 𝑝𝐽𝛽.

Moreover, if
𝑘∑︁
𝑖=1

(
𝐽𝑎𝑖𝐽−1

)
𝑎𝑖0 [D, 𝑎𝑖1] . . . [D, 𝑎𝑖𝑛] =

{
𝛾, 𝑝 + 𝑞 even,
id, 𝑝 + 1 odd,

(46)

then this geometry is called orientable. If a similar representation exists for 𝛽 then the geometry is
called time-orientable. The above definition is motivated by the presence of analogous structures
in the usual Clifford algebra of signature (𝑝, 𝑞). For example, in the case of 𝐶𝑙1,3, the role of 𝛽 is
played by the 𝛾0 matrix, as one can easily guess.

Suppose one gives us a pseudo-Riemannian finite spectral triple as above. It turns out that
it is possible to construct out of it a pair of two Riemannian ones. One can accomplish this by
simply modifying the Dirac operator. These two choices correspond to D+ = 1

2 (D + D†) and
D− = 𝑖

2 (D − D†). Redefining in an appropriate way also the real structure, we finally take
D𝐸 = D+ + D− and we end up with a Riemannian spectral triple. Some of the properties of the
resulting triple can be then interpreted as a shadow of the existence of the pseudo-Riemannian one
from which it was constructed.

Applying this idea to the spectral triple describing the Standard Model and considering possible
Dirac operators D and gradings 𝛽 that implement time orientation, we end up [33] with the
conclusion that the only pseudo-Riemmanian structure 𝛽 that is physically allowed is the one that
implements the grading distinguishing between leptons and quarks. The only Dirac operator that is
consistent with this structure is exactly the one that does not allow for leptoquarks and allows only
for an extension by a sterile neutrino. Let us now briefly describe how this result was obtained.
In order do to so, it is convenient to use another representation of the Hilbert space. Mainly, we

organize its elements according to H𝐹 = 𝐹 ⊕ 𝐹∗ with H𝐹 ∋
(
𝑣

𝑤

)
, where

𝑣 =

©«
𝜈𝑅 𝑢1

𝑅
𝑢2
𝑅

𝑢3
𝑅

𝑒𝑅 𝑑1
𝑅

𝑑2
𝑅

𝑑3
𝑅

𝜈𝐿 𝑢1
𝐿

𝑢2
𝐿

𝑢3
𝐿

𝑒𝐿 𝑑1
𝐿

𝑑2
𝐿

𝑑3
𝐿

ª®®®®¬
, 𝑤 =

©«
𝜈𝑅 𝑒𝑅 𝜈𝐿 𝑒𝐿

𝑢1
𝑅 𝑑

1
𝑅 𝑢1

𝐿 𝑑
1
𝐿

𝑢2
𝑅 𝑑

2
𝑅 𝑢2

𝐿 𝑑
2
𝐿

𝑢3
𝑅 𝑑

3
𝑅 𝑢3

𝐿 𝑑
3
𝐿

ª®®®®®¬
. (47)

Here the upper index refers to the color of a quark. The real structure is simply given by

(
𝑣

𝑤

)
↦→

(
𝑤∗

𝑣∗

)
.

In order to efficiently work with the operators onH𝐹 one notices that End(H𝐹) � 𝑀4(C) ⊗𝑀2(C) ⊗
𝑀4(C). This allows for writing both the grading and a representation of the algebra in a compact
form:

𝛾 =

(
12

−12

)
⊗ 𝑒11 ⊗ 14 + 14 ⊗ 𝑒22 ⊗

(
−12

12

)
, (48)

𝜋(𝜆, 𝑞, 𝑚) =
©«
𝜆

�̄�

𝑞

ª®®¬ ⊗ 𝑒11 ⊗ 14 +
(
𝜆

𝑚

)
⊗ 𝑒22 ⊗ 14, (49)

where 𝑒𝑖 𝑗 is the matrix with 1 in entry (𝑖, 𝑗) and zeros otherwise.
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This representation is convenient to work with Dirac operators and to try to classify possible
choices. First of all, the requirement of the first order condition reduces the number of possibilities
to the once of the form D = D0 + 𝐽𝐹D0𝐽

−1
𝐹

with

D0 =

(
0 𝑀

𝑀† 0

)
⊗ 𝑒11 ⊗ 𝑒11+

(
0 𝑁

𝑁† 0

)
⊗ 𝑒11 ⊗ (1−𝑒11) +

(
𝐴 𝐵

0 0

)
⊗ 𝑒12 ⊗ 𝑒11+

(
𝐴† 0
𝐵† 0

)
⊗ 𝑒21 ⊗ 𝑒11,

(50)
where 𝑀, 𝑁, 𝐴, 𝐵 ∈ 𝑀2(C). The standard Connes-Chamseddine choice corresponds to 𝑀 = 𝑆𝑙,
𝑁 = 𝑆𝑞, 𝐴 = 𝑇 , and 𝐵 = 0. It turns out that the only physically acceptable choice of the 𝛽 grading
is

𝛽 = 𝜋(1, 12,−13)𝐽𝐹𝜋(1, 12,−13)𝐽−1
𝐹 , (51)

and Dirac operators compatible with it are of the above form with 𝐵 = 0 and 𝐴 satisfying 𝐴 =

𝐴 · diag(1,−1) and there are no restrictions on 𝑀 and 𝑁 . In particular, the first two constraints
mean that only a sterile neutrino is allowed as an extension of the standard picture. Moreover, no
leptoquarks are allowed since there is no such mixing on the level of the Dirac operator. In this
picture, this is a consequence of the existence of the pseudo-Riemannian structure on the finite
spectral triple. Moreover, it turns out that the resulting triple satisfies the Hodge property.

The above analysis was extended in [34] to the family of Pati-Salam models. They are potential
extensions of the Standard Model with the gauge group 𝑆𝑈 (2) × 𝑆𝑈 (2) × 𝑆𝑈 (4). The finite algebra
is A𝐹 = H𝐿 ⊕H𝑅 ⊕𝑀4(C) which again can be represented on 𝑀4(C) ⊕𝑀4(C). There are, however,
two natural choices for grading. One of them is the previously discussed 𝛾, while the second one is

𝛾∗ =

(
12

−12

)
⊗ 𝑒11 ⊗

(
1

−13

)
+

(
−1

13

)
⊗ 𝑒22 ⊗

(
12

−12

)
, (52)

which corresponds to the situation in which left-handed leptons have the same parity as right-
handed quarks. One can again classify all possible pseudo-Riemannian structures and Dirac
operators compatible with them. This leads to the conclusion that the full Pati-Salam algebra has to
be reduced toH𝐿 ⊕H𝑅 ⊕C⊕𝑀3(C) and no leptoquarks are allowed. This corresponds to the family
of Left-Right Symmetric models with the gauge group 𝑆𝑈 (2)𝑅 × 𝑆𝑈 (2)𝐿 × 𝑆𝑈 (3) ×𝑈 (1)𝐵−𝐿 .

7. Further applications - selected topics

In this last section, I will briefly present further selected applications of noncommutative
geometries in physics. This list is highly incomplete and all the technical details are omitted. The
purpose of this section is to illustrate that tools of Noncommutative Geometry can be successfully
applied in a variety of situations.

7.1 Quantum Riemannian Geometry

Here I will present another approach to Noncommutative Geometry based on the Hopf-algebraic
structures associated with the algebra we are working with as well as with the module of differentials
1-forms. The details of what I will only briefly mention here can be found in a comprehensive book
by E. Beggs and S. Majid [10] which I highly recommend.
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For a given (Hopf) algebra A we are considering a FODC (Ω1(A), 𝑑). The choice of this
calculus is essentially a starting point in most of the approaches known as Quantum Riemannian
Geometry (QRG). We would like to define geometric-like objects for purely quantum (which in
this framework is usually a synonym of being noncommutative) geometry. This should be done on
the level of FODC. In the remaining part of this subsection, I will show how some of the classical
geometric objects can be formulated in this language. We start with the observation that Ω1(A) is
a bimodule over A. Then one can define a linear connection on it as a pair of maps (∇, 𝜎) s.t.

• ∇ : Ω1(A) −→ Ω1(A) ⊗A Ω1(A) is a linear map.

• 𝜎 : Ω1(A) ⊗A Ω1(A) −→ Ω1(A) ⊗A Ω1(A) is a bimodule map, called a generalized
braiding.

These two maps are subject to the following conditions:

• ∇(𝑎𝜔) = 𝑑𝑎 ⊗A 𝜔 + 𝑎∇𝜔,

• ∇(𝜔𝑎) = (∇𝜔)𝑎 + 𝜎(𝜔 ⊗A 𝑑𝑎),

for all 𝑎 ∈ A and 𝜔 ∈ Ω1(A). As for classical geometry, one would like to have a notion of a
Levi-Civita connection. In order to achieve this goal we need first the definition of a torsion. It is
defined as a linear map Ω1(A) −→ Ω2(A) given by 𝑇∇ = ∧ ◦ ∇ − 𝑑. Next, the metric has to be
defined. Within the QRG it is taken as a pair of an element 𝑔 = 𝑔 (1) ⊗ 𝑔 (2) ∈ Ω1(A) ⊗A Ω1(A)
and a bimodule map (· , ·) : Ω1(A) ⊗AΩ1(A) −→ A s.t. it is an inverse of 𝑔 in the following sense:

∀𝜔 ∈ Ω1(A) (𝜔, 𝑔 (1) )𝑔 (2) = 𝜔 = 𝑔 (1) (𝑔 (2) , 𝜔). (53)

We say that a given connection is compatible with the metric 𝑔 if

(∇ ⊗ id)𝑔 + (𝜎 ⊗ id) (id ⊗ ∇)𝑔 = 0. (54)

One would like to define a Levi-Civita as a torsion-free (𝑇∇ = 0) and metric-compatible one.
However, in contrast to the classical situation, this does not lead to a unique solution. There are
plenty of possible connections that satisfy these two conditions. More requirements are necessary.
I will not discuss them here and refer to e.g. [10] and also to [35] for concrete examples. This
illustrates that the noncommutative world is much richer.

The next objects one can construct are related to the curvature of space. For example, the
Riemannian curvature is defined as a linear map from Ω1(A) into Ω1(A) ⊗A Ω1(A) given by
𝑅∇ = (𝑑 ⊗ id − id ∧ ∇)∇. The definition of the Ricci curvature is more subtle and requires a
bimodule map 𝜄 that lifts 2-forms into a tensor product on 1-forms. It is highly non-unique and for
this reason, the Ricci curvature depends on this choice for 𝜄. But having chosen this map once, one
can then proceed and define also Ricci scalar as well as the Einstein tensor.

Of course, the natural question of comparison between these geometric quantities and the ones
obtained from Connes’ spectral approach arises. Under certain assumptions they can agree - this
topic is however beyond the scope of these lectures and can be found e.g. in [10].
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7.2 Quantum spaces for quantum information

Here I will just present an idea of how quantum (noncommutative) spaces can be used in
quantum information theory. Let us first imagine a classical scenario. We have two players trying
to convince an external referee that a certain object has some well-defined properties. It can be,
for example, some graphs can be colored by using a given number of colors, or there exists a
homomorphism or isomorphism between two objects. In information theory, these problems are
referred to as classical two-players games. Let us call these players, as usual Alice and Bob, and
suppose that the referee has two sets of questions: 𝑋 from which the question is chosen for Alice,
and 𝑌 - the set of questions for Bob. Suppose the referee chooses 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 . Now,
Alice can give her answer from a set 𝐴, say 𝑎 ∈ 𝐴, while Bob chooses 𝑏 ∈ 𝐵. The number
𝑝(𝑎, 𝑏 |𝑥, 𝑦) is a conditional probability describing such a single round. It turns out that certain
problems can be reformulated in a way such that the answers for them will be affirmative if and
only if there exists a winning strategy for some game. For example, the chromatic number for a
graph can be defined as the minimal one for which there exists a winning strategy for some two-
player game. Suppose now that the players are no longer classical, but quantum. By it, we mean
that they share some quantum, most probably entangled state, and instead of providing answers
from finite sets, they perform quantum measurements. This can be reformulated in terms of some
𝐶∗-algebras, and therefore there is a natural generalization to the case where the sets of questions
and/or answers are also quantum, i.e. they are described by some noncommutative 𝐶∗-algebras. I
will not discuss the details here since they are much beyond the scope of these introductory notes.
A more comprehensive discussion can be found e.g. in [36].

7.3 Hopf algebras and renormalization in QFT

Most of the renormalizability problems that arise in quantum field theories are quite well-
understood on the physical level. However, rigorous mathematical treatment of them requires
sophisticated methods that are far beyond the traditional academic courses. In this very short
subsection, I will present an idea known as the Connes-Kreimer approach to renormalization [11]
that uses certain algebraic structures of Hopf algebras to encode combinatorial procedures known
from quantum field theories.

It is based on the observation that starting from a commutative graded bialgebra that is
connected, one can define on it antipodal map. In other words, such a bialgebra is always a
Hopf algebra and, moreover, there exists a recursive formula for this antipodal map 𝑆. Let me
briefly recall here the definition of a connected commutative graded bialgebra. As a vector space, it
is given by 𝐻 =

⊕
𝑛≥0

𝐻𝑛, where 𝐻0 = C. Moreover, the counit is a zero map on
⊕
𝑛≥1

𝐻𝑛. Furthermore,

𝑚(𝐻𝑚 ⊗ 𝐻𝑛) ⊆ 𝐻𝑚+𝑛, Δ(𝐻𝑛) ⊆
⊕
𝑝+𝑞=𝑛

𝐻𝑝 ⊗ 𝐻𝑞 . (55)

If 𝐻 is such a bialgebra, then one can define 𝑆 recursively. I will not write its precise form here
but illustrate this with a concrete example.

Let us take a field theory, for concreteness: let it be a bosonic 𝜙𝑛 one, but this construction
can be also generalized to e.g. QED, etc. The standard way to compute physical quantities is by
using Feynmann diagrams. Let us then take 𝐻 to be a set of one-particle irreducible diagrams Γ.
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We can construct formal linear combinations of them and produce a vector space on 𝐻. Moreover,
the disjoint sum of such diagrams defines a natural multiplication structure, while

Δ(Γ) = Γ ⊗ 1 + 1 ⊗ Γ +
∑︁
𝛾⊂Γ

1PI, proper

𝛾 ⊗ Γ/𝛾 (56)

defined a coproduct. Here Γ/𝛾 denotes the diagram obtained from Γ by shrinking its proper
subdiagram 𝛾 to a point. There is also a natural counit structure defined to be zero on all non-trivial
diagrams. One can then check that all the axioms of being connected commutative graded bialgebra
are satisfied and therefore there exists an antipode map that makes it into a Hopf algebra. In this
case, it is given by

𝑆(Γ) = −Γ −
∑︁
𝛾⊂Γ

𝑆(𝛾)Γ/𝛾. (57)

One can easily recognize the combinatorial structure of the BPHZ renormalization scheme here!
The problem of renormalization can be then studied using this language. I refer the interested reader
to [37] for further details of this approach.

7.4 Non-product geometries

Here I will briefly comment on applications of non-product spectral geometries to both the
Standard Model and cosmology. It was actually the main topic of my Ph.D. thesis. Let me start with
a simple observation that for a Lorentzian manifold, the fermionic spectral action can be written
equivalently in two possible ways. We can write either

∫
M �̄�D𝜓 or

∫
M 𝜓†D̃𝜓, where D = 𝛾0D

is the Krein shift of the Lorentzian Dirac operator D. One can impose certain conditions on the
Krein shift instead of on the original Lorentzian operator. This idea can be applied also to the triple
that is aimed to describe the physical Standard Model.

First, we have to choose the Hilbert space. By reverse engineering the physical model, we take
it to consist of ©«

𝜈𝑅 𝑢1
𝑅

𝑢2
𝑅

𝑢3
𝑅

𝑒𝑅 𝑑1
𝑅

𝑑2
𝑅

𝑑3
𝑅

𝜈𝐿 𝑢1
𝐿

𝑢2
𝐿

𝑢3
𝐿

𝑒𝐿 𝑑1
𝐿

𝑑2
𝐿

𝑑3
𝐿

ª®®®®¬
(58)

but now every entry is a Weyl spinor field defined on M. The algebra 𝐶∞(C) ⊗ A𝐹 is the standard
one, but we are now choosing two different representations of it on the Hilbert space. We do
not impose real structure and define left and right representations independently, 𝜋𝐿 (𝜆, 𝑞, 𝑚) =©«
𝜆

�̄�

𝑞

ª®®¬ and 𝜋𝑅 (𝜆, 𝑞, 𝑚) =
(
𝜆

𝑚𝑇

)
. The Dirac operator is taken as the sum of the Lorentzian

one on the manifold M and a finite endomorphism D𝐹 from 𝑀4(C) ⊗ id ⊗ 𝑀4(C). Now each part
of this Dirac operator has opposite commutativity relation with the natural grading. From the very
construction, there is no fermion doubling here.

The main idea now is to impose certain conditions on the Krein shift of this full operator and
deduce from them the properties of the finite part. Starting from the first-order condition, modified
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accordingly to work with two independent representations - [[D, 𝜋𝐿], 𝜋𝑅] = 0, we deduce that
there is no color symmetry breaking [38]. Moreover, the D𝐹 operator has to be of the form

D𝐹 =

(
𝑀𝑙

𝑀
†
𝑙

)
⊗ id ⊗ 𝑒11 +

(
𝑀𝑞

𝑀
†
𝑞

)
⊗ id ⊗ (14 − 𝑒11). (59)

If there is no massless neutrino for three generations this spectral triple has the Hodge property.
Furthermore, the lack of real structure can be interpreted as the source of CP violation in the physical
Standard Model.

One can also try to compute the spectral action [39] for such a model. But since it is purely
Lorentzian, at the moment this can be done only for some simplified situations. For example, we
can start with the spatial and static case and compute the spectral action for such Krein shift. The
obtained result agrees with the physical action (under these simplifying assumptions). One can also
start with the Wick-rotated version of the full Lorentzian Dirac operator and in this case, the new
topological 𝜃-term appears in the electroweak sector.

This non-product structure requires further investigations but already the aforementioned results
suggest its interesting potential applications in particle physics. It would be interesting to relate this
structure to other existing proposals, e.g. [40, 41].

Another potential application of non-product geometries is to describe modified gravity models
that might have intriguing cosmological consequences. In order to present the main idea let me
come back to the intuitive picture of multi-layer systems for almost-commutative geometry. For the
two-point model, i.e. with A𝐹 = C2, the resulting geometry was described as (M, 𝑔) ⊕ (M, 𝑔).
This picture can be easily modified by replacing metric 𝑔 in the second copy with some other one,
say 𝑓 . In the corresponding Dirac operator, we have to then replace the diagonal part diag(D,D)
by diag(D𝑔,D 𝑓 ). One can expect that from the gravity sector of the spectral action, we will have
an effective action containing, in addition to the usual Einstein-Hilbert terms for the two metrics,
also an interaction term between them. This suggests that spectral methods can be potentially used
to describe Hassan-Rosen bimetric gravity models [42]. This idea was discussed in detail in [43]
and it turns out that the effective potential has a different form but it shares a lot of features with the
bimetric models. One can now try different modifications of the classical triples and try to derive
other modified gravity models. This shows that Noncommutative Geometry, and especially spectral
methods, can have more intriguing applications in cosmology.

8. Conclusions

In these short lecture notes, I have briefly discussed some subjectively chosen aspects of Non-
commutative Geometry together with their certain applications in modern physics. The presented
material of course did not cover the whole range of this very broad subject. I tried to show only
the main ideas and some applications in a way that is accessible to Ph.D. students in physics, and
for this reason, some of the material was oversimplified with respect to classical textbooks. Once
again, I apologize to the authors whose ideas and results were not mentioned in these introductory
notes. I also owe an apology to those whose results have not been properly cited - where possible I
have tried to use references to textbooks I value for the style of presentation rather than to original
source articles. I hope that the students attending my lectures as well as readers reading these notes
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had fun playing with noncommutative worlds and used the aforementioned textbooks to consult the
material that I have only very briefly mentioned here.
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