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Summary. — These notes are based on lectures at the PSSCMP/PiTP summer
school that was held at Princeton University and the Institute for Advanced Study
in July, 2015. They are devoted largely to topological phases of matter that can
be understood in terms of free fermions and band theory. They also contain an
introduction to the fractional quantum Hall effect from the point of view of effective
field theory.

PACS 11.15.Yc – Cher-Simons gauge theory.
PACS 73.43.Cd – Quantum Hall effects theory.
PACS 73.20.-r – Electron states at surfaces and interfaces.

314 Introduction
314 1. Lecture One
314 1

.
1. Relativistic dispersion in one space dimension

316 1
.
2. Three dimensions

320 1
.
3. The Nielsen-Ninomiya theorem

323 1
.
4. The Berry connection

324 1
.
5. Some examples

325 1
.
6. Band crossing at the Fermi energy

327 1
.
7. Including spin

327 1
.
8. A system with many bands

329 1
.
9. Two dimensions

331 1
.
10. Weyl fermions and Fermi arcs

335 1
.
11. Gapless boundary modes from Dirac fermions

337 1
.
12. Discrete lattice symmetries and massless Dirac fermions

340 1
.
13. Simple examples of band Hamiltonians

341 2. Lecture Two
341 2

.
1. Chern-Simons effective action

343 2
.
2. Quantization of the Chern-Simons coupling

345 2
.
3. Quantization of the Hall conductivity

346 2
.
4. Relation to band topology

348 2
.
5. Proof of the equivalence

351 2
.
6. Edge states and anomaly inflow

352 2
.
7. The charge pump
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Introduction

In recent years, a number of fascinating new applications of quantum field theory in
condensed matter physics have been discovered. For an entrée to the literature, see the
review articles [1-3] and the book [4].

The present notes are based on the first three of four lectures that I gave on these
matters at the PSSCMP/PiTP summer school at Princeton University and the Institute
for Advanced Study in July, 2015. These lectures contained very little novelty; I simply
explained what I have been able to understand of a fascinating subject. (The fourth
lecture did contain some novelty and has been written up separately [5].) The references
include some classic recent and less recent papers, but they are certainly not complete.

In these lectures, I mostly concentrated on phases of matter that can be understood
in terms of non-interacting electrons and topological band theory. The main exception
was a short introduction to some aspects of the fractional quantum Hall effect.

These notes mostly follow the original lectures rather closely. Some topics have been
slightly rearranged and a few matters for which unfortunately there was no time in
the original lectures have been added. Some topics treated here were described from a
different point of view by other lecturers at the school, especially Charlie Kane and Nick
Read.

1. – Lecture One

1.1. Relativistic dispersion in one space dimension. – We will start by asking under
what conditions we should expect to find a relativistic dispersion relation for electrons
in a crystal. In one space dimension, the answer is familiar. Writing ε(p) for the single-
particle energy ε as a function of momentum p, generically ε(p) crosses the Fermi energy
with a non-zero slope at some p = p0 (fig. 1).

Then linearizing the dispersion relation around p = p0, we get

ε = ε(p0) + v(p − p0) + O((p − p0)2), v =
∂ε

∂p

∣∣∣∣
p=p0

.(1.1)

Apart from the additive constant ε(p0) and the shift p → p − p0, this is a relativistic
dispersion relation, analogous to ε = cp, with the speed of light c replaced by v. For
v > 0 (v < 0), the gapless mode that lives near p = p0 travels to the right (left).

The corresponding continuum model describing the modes near p = p0 is

H = v

∫ ∞

−∞
dx ψ∗

(
−i

∂

∂x

)
ψ.(1.2)
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Fig. 1. – In one dimension, the single-particle energy ε(p) generically crosses the Fermi energy
at an isolated momentum p0.

This is a relativistic action for a 1d chiral fermion, except that v appears instead of c
and −i∂/∂x represents p− p0 instead of p. Also we have omitted from H the “constant”
ε(p0) per particle:

ε(p0)
∫ ∞

−∞
dxψ∗ψ.(1.3)

This one-dimensional case gives an easy first example of how global conditions in
topology constrain the possible low energy field theory that we can get —and how these
constraints often mirror familiar facts about relativistic field theory and “anomalies.”
We have to remember that in the context of a crystal, the momentum p is a periodic
variable. Because ε(p) is periodic, it follows (fig. 2) that for every time ε(p) crosses the
Fermi energy εF from below, there is another time that it crosses εF from above So
actually there are equally many gapless left-moving and right-moving fermion modes.

In relativistic terminology, the right-moving and left-moving modes are said to have

Fig. 2. – In one dimension, for every value of the momentum at which ε(p) increases above εF ,
there is another point at which it decreases below εF .
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positive and negative chirality. The motivation for this terminology is that the massless
Dirac equation in 2 spacetime dimensions is

(
γ0 ∂

∂t
+ γ1 ∂

∂x

)
ψ = 0,(1.4)

where γμ are Dirac matrices, obeying the Clifford algebra relations

{γμ, γν} = 2ημν , ημν = diag(−1, 1).(1.5)

In Hamiltonian form, the Dirac equation is

i
∂ψ

∂t
= −iγ

∂ψ

∂x
,(1.6)

where γ = γ0γ1 (whose analog in 3 + 1 dimensions is usually called γ5) is the “chirality
operator.” So a fermion state of positive or negative chirality is right-moving or left-
moving.

Thus a more realistic Hamiltonian for the gapless charged modes will be something
like

H = −v−

∫ ∞

−∞
dx ψ∗

−

(
−i

∂

∂x

)
ψ− + v+

∫ ∞

−∞
dx ψ∗

+

(
−i

∂

∂x

)
ψ+,(1.7)

where ψ+ and ψ− are modes of positive and negative chirality, and in general they
propagate with different velocities. If one is familiar with quantum gauge theories and
anomalies, one will recognize that this topological fact —which is a 1d analog of the
3d Nielson-Ninomiya theorem that we get to presently— has saved us from trouble. A
purely (1+1)-dimensional theory with, say, n+ right-moving gapless electron modes and
n− left-moving ones is “anomalous,” meaning that it is not gauge-invariant and does not
conserve electric charge —unless n+ = n−. The anomaly is the (1+1)-dimensional version
of the Adler-Bell-Jackiw anomaly [6, 7], which is very important in particle physics.

We can actually see the potential anomaly by re-examining fig. 2, but now assuming
that a constant electric field is turned on. In the presence of an electric field with a sign
such that dp/dt > 0 for each electron, the electrons will all “flow” to the right in the
picture. This creates electrons at p = p+ and holes at p = p−, so the charge carried by
the p = p+ mode or by the p = p− mode is not conserved, although the total charge is
conserved, of course. Thus charge conservation depends on having both types of mode
equally.

1.2. Three dimensions. – There is certainly more that one could say in 1 space di-
mension, but instead we are going to go on to spatial dimension 3. As a preliminary,
recall that quantum mechanical energy levels repel, which means that if H(λ) is a generic
1-parameter family of Hamiltonians, depending on a parameter λ, and with no particu-
lar symmetry, then generically its energy levels do not cross as a function of λ (fig. 3).
But [8] how much do levels repel each other? Generically, how many parameters do we
have to adjust to make two energy levels coincide?
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Fig. 3. – Generically, quantum mechanical energy levels do not cross as a parameter is varied.

The answer to this question is that we have to adjust 3 real parameters, because a
generic 2 × 2 Hermitian matrix depends on 4 real parameters

H =
(

a b

b c

)
,(1.8)

but a 2 × 2 Hermitian matrix whose energy levels are equal depends on only 1 real
parameter

H =
(

a 0
0 a

)
.(1.9)

To put this differently, any 2 × 2 Hermitian matrix is

H = a +�b · �σ,(1.10)

where �σ are the Pauli matrices. The condition for H to have equal eigenvalues is �b = 0,
and this is three real conditions.

In three dimensions, a band Hamiltonian H(p1, p2, p3) depends on three real param-
eters, so it is natural for two bands to cross at some isolated value p = p∗. Near p = p∗,
and looking only at the two bands in question, the Hamiltonian looks something like

H = a(p) +�b(p) · �σ,(1.11)

where �b(p) = 0 at p = p∗. Expanding near p = p∗,

bi(p) =
∑

j

bij(p − p∗)j + O((p − p∗)2),(1.12)

bij =
∂bi

∂pj

∣∣∣∣
p=p∗

.
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Thus dropping a constant and ignoring higher order terms, the band splitting is described
near p = p∗ by

H ′ =
∑
i,j

σibij(p − p∗)j .(1.13)

Apart from a shift p → p − p∗, this is essentially a chiral Dirac Hamiltonian in 3 + 1
dimensions. Let us review this fact. The massless Dirac equation in 3 + 1 dimensions is

3∑
μ=0

γμ∂μψ = 0, {γμ, γν} = 2ημν , ημν = diag(−1, 1, 1, 1).(1.14)

In Hamiltonian form, this equation is

i
∂ψ

∂t
= −i

∑
k

γ0γk
∂ψ

∂xk
.(1.15)

To represent the four gamma matrices, we need 4 × 4 matrices (which can be chosen to
be real). However, the matrix

γ5 = iγ0γ1γ2γ3(1.16)

is Lorentz-invariant. It obeys γ2
5 = 1, so its eigenvalues are ±1. We can place on ψ

a “chirality condition” γ5ψ = ±ψ, reducing to a 2 × 2 Dirac Hamiltonian. But then,
because of the factor of i in the definition of γ5, and in contrast to what happens in 1+1
dimensions, the adjoint of ψ obeys the opposite chirality condition.

Once we reduce to a chiral 2 × 2 Dirac Hamiltonian with γ5ψ = ±ψ, the matrices
γ0γi that appear in the Dirac Hamiltonian are 2× 2 Hermitian matrices and we can take
them to be, up to sign, the Pauli sigma matrices

σi = ±γ0γi.(1.17)

The point is that, if γ5ψ = ±ψ, then in acting on ψ,

σiσj = δij + iεijkσk.(1.18)

(One may prove this for i = 1, j = 2 from the explicit identity γ0γ1γ0γ2 = iγ0γ3γ5. The
general case then follows from rotation symmetry.)

So the Dirac Hamiltonian

H = −i
∑

k

γ0γk
∂

∂xk
(1.19)

becomes for a chiral fermion

H = ∓ic
∑

k

σk ∂

∂xk
= ±c �σ · �p.(1.20)
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Fig. 4. – A pair of bands described by a chiral Dirac Hamiltonian.

The sign depends on the fermion chirality, which determines which sign we had to pick in
eq. (1.17). (I have restored c, the speed of light.) As a matter of terminology, a charged
relativistic fermion of definite chirality – in other words, with a definite value of γ5 – is
called a Weyl fermion. The physical meaning of the eigenvalue of γ5 is that it determines
the fermion “helicity” (spin around the direction of motion). Note that “helicity” is only
a Lorentz-invariant notion for a massless particle (which is never at rest in any Lorentz
frame) and indeed our starting point was the massless Dirac equation. The antiparticle
—which one can think of as a hole in the Dirac sea— has opposite helicity(1), somewhat
as it has opposite charge. The chiral Dirac Hamiltonian of eq. (1.20) describes two bands
with E = ±c|p| (fig. 4).

Thus, the chiral Dirac Hamiltonian basically coincides with the generic Hamilto-
nian (1.13) that we found for a 2×2 band crossing, with the replacement cpk →

∑
j bkjpj .

This replacement means, of course, that the fermion modes near p = p∗ do not propagate
at velocity c but much more slowly. Also, they do not necessarily propagate isotropically
in the standard Euclidean metric on R3. In general, the natural metric governing these
modes is

||p||2 =
∑

i

⎛⎝∑
j

bijpj

⎞⎠2

.

In other words, the effective metric is

Gij =
∑

k

bi
kbj

k.

(1) This happens because —in contrast to what happens in 1 + 1 dimensions— if the γμ are
real then the chirality operator γ5 is imaginary. Accordingly ψ and its Hermitian adjoint obey
opposite chirality conditions. The basic example in particle physics is that, in the approximation
in which they are massless, neutrinos and antineutrinos have opposite helicity.
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Fig. 5. – The interior of the hexagon symbolizes the Brillouin zone B. We consider a band
Hamiltonian that is gapped except at finitely many points, which are indicated by dots.

Finally, and very importantly, the chirality of the gapless electron mode is given by

sign det(bij) = sign det
(

∂bi

∂pj

)∣∣∣∣
p=p∗

.(1.21)

A gap crossing in which this determinant is positive (or negative) corresponds to a
relativistic massless chiral fermion (or Weyl fermion) with γ5 = +1 (or γ5 = −1).

1.3. The Nielsen-Ninomiya theorem. – Now, however, we should remember something
about relativistic quantum field theory in 3 + 1 dimensions. A theory of a U(1) gauge
field (of electromagnetism) coupled to a massless chiral charged fermion of one chirality,
with no counterpart of the opposite chirality, is anomalous: gauge invariance fails at the
quantum level, and the theory is inconsistent. In 1 + 1 dimensions, we avoided such a
contradiction because of a simple topological fact that ε(p) passes downward through
the Fermi energy as often as it passes upwards, as in fig. 2. An analogous topological
theorem saves the day in 3+1 dimensions. This is the Nielsen-Ninomiya theorem [9,10],
which was originally formulated as an obstruction to a lattice regularization of relativistic
chiral fermions(2).

In formulating this theorem, we assume that the band Hamiltonian H(p) is gapped
except at finitely many isolated points in the Brillouin zone B (fig. 5). We will attach an
integer to each of these bad points, and show that these integers add up to 0.

To get started, we assume there are only two bands. Also, by simply subtracting a
c-number function of p from H(p), we can make H(p) traceless, without changing the
band crossings. So

H(p) = �b(p) · �σ

for some vector-valued function �b(p). Now away from the bad points, �b(p) �= 0 and so we
can define a unit vector

�n(p) =
�b

|�b|
.

(2) The Nielsen-Ninomiya theorem involves ideas somewhat analogous to those developed by
Thouless, Kohmoto, Nightingale, and den Nijs [11] in celebrated work on the quantum Hall
effect. We will describe their result in Lecture Two.



THREE LECTURES ON TOPOLOGICAL PHASES OF MATTER 321

Fig. 6. – A small sphere S around a bad point p∗ at which two levels cross.

The mapping p → �n(p) is defined away from the bad points. We want to understand its
topological properties.

Let us consider just one of the bad points, say at p = p∗, and let S be a small sphere
around this bad point (fig. 6). The map p → �n(p) is defined everywhere on S. This
is a mapping from one two-sphere —namely S— to another two-sphere – parametrized
by the unit vector �n. We will call that second two-sphere S�n. In any dimension d, a
continuous mapping from one d-dimensional sphere Sd to another sphere of the same
dimension always has a “winding number” or “wrapping number,” the net number of
times the first sphere wraps around the second. This reflects the fact that

πd(Sd) ∼= Z.

Before developing any general theory, let us see what the winding number is in the
case of the relativistic Dirac Hamiltonian H = ±�σ · �p, where the sign is the fermion
chirality. For this Hamiltonian, �b = ±�p, and hence �n = ±�p/|�p |. The bad point is �p = 0,
and we can take the sphere S that surrounds the bad point to be the unit sphere |�p | = 1.
Thus the map from S to S�n is just

�n = ±�p.(1.22)

This is the identity map, of winding number 1, in the case of + chirality, and it is minus
the identity map, which winds around in reverse, with winding number −1, in the case
of − chirality.

The Nielsen-Ninomiya theorem is the statement that the sum of the winding numbers
at the bad points is always 0. Generically (in the absence of lattice symmetries that would
lead to a more special behavior) a bad point of winding number bigger than 1 in absolute
value will split into several bad points of winding number ±1. (We give in sect. 1.5 an
explicit example of how this occurs.) So generically, the bad points all have winding
numbers ±1, corresponding to gapless Weyl fermions of one chirality or the other. In
this case, the vanishing of the sum of the winding numbers means that there are equally
many gapless modes of positive or negative chirality, as a relativistic field theorist would
expect for anomaly cancellation.

How does one prove that the sum of the winding numbers is 0? One rather down-
to-earth method is as follows. The winding number for a map from S to S�n can be
expressed as an integral formula:

w(S) =
1
4π

∫
d2p εμν�n · ∂μ�n × ∂ν�n.(1.23)
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Fig. 7. – B′ is defined by removing a small open set Uα around each bad point pα in the Brillouin
zone.

An equivalent way to write the same formula is

w(S) =
1
4π

∫
S

d2p εμν εabcna
∂nb

∂pμ

∂nc

∂pν
.(1.24)

Now

0 = ∂λ

(
ελμν�n · ∂μ�n × ∂ν�n

)
,(1.25)

since the right hand side is ελμν∂λ�n · ∂μ�n × ∂ν�n, which vanishes because it is the triple
cross product of three vectors ∂λ�n, ∂μ�n, and ∂ν�n that are all normal to the sphere |�n| = 1.

For each bad point pα, let Uα be a small open ball around pα whose boundary is a
sphere Sα. Let B be the full Brillouin zone, and let B′ be what we get by removing from
B all of the Uα. Thus the boundary of B′ is ∂B′ = ∪αSα (fig. 7). Then from Stokes’s
theorem,

0 =
1
4π

∫
B′

d3p ∂λ

(
ελμν(n · ∂μn × ∂νn)

)
=

∑
α

1
4π

∫
Sα

d2p εμν �n · ∂μ�n × ∂ν�n

=
∑
α

w(Sα).

Thus the sum of the winding numbers at bad points is 0, as promised.
In terms of differential forms, one can express this argument more briefly as follows.

Let η be the volume form of S�n. Thus, η is a closed 2-form whose integral is 1:

0 = dη,

∫
S�n

η = 1.(1.26)

Given a map ϕ : S → S�n, the corresponding winding number is

w(S) =
∫

S

ϕ∗(η).(1.27)

So

0 =
∫

B′
ϕ∗(dη) =

∫
B′

dϕ∗(η) =
∑
α

∫
Sα

ϕ∗(η) =
∑
α

w(Sα).(1.28)
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Fig. 8. – Transporting a quantum wave function over a path in some parameter space. One can
think of the parameter space as a sphere that surrounds a bad point in the Brillouin zone.

1.4. The Berry connection. – Another approach to the same result involves the Berry
connection [12], and more fundamentally the line bundle on which the Berry connection
is a connection. This approach is useful in generalizations. For each value of p away from
the bad points, the Hamiltonian H(p) has one negative eigenvalue, so the space of filled
fermion states of momentum p is a 1-dimensional complex vector space that I will call Lp.
The fancy way to describe this situation is to say that as p varies, Lp varies as the fiber
of a complex line bundle L over the Brillouin zone B. A vector in Lp is a wave function
ψp that obeys H(p)ψp = −ψp. We can ask for ψp to be normalized, 〈ψp, ψp〉 = 1, but
there is no natural way to fix the phase of ψp.

However, suppose that we vary p continuously by a path p = p(s) from, say, p1 to
p2, as indicated in fig. 8. For example, we can consider a path that lies in a sphere
|p− p∗| = ε around a bad point p∗. If we make any arbitrary choice of the phase of ψp at
p = p1, then we can parallel transport the phase of ψp along the given path by requiring
that at all p along the path 〈

ψp,
d
ds

ψp

〉
= 0.(1.29)

Concretely, the real part of this equation ensures that 〈ψp, ψp〉 is constant along the path,
and the imaginary part of the equation determines how the phase of ψp depends on the
parameter s.

Having a rule of parallel transport of the phase of ψp along any path amounts to

Fig. 9. – Parallel transport of a wave function around a closed loop.
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Fig. 10. – Generically, the band-crossing points in the Brillouin zone support Weyl fermions of
positive and negative chirality. The Nielsen-Ninomiya theorem says that there are equally many
of both types, as shown here.

defining a connection on B′ (more exactly on the line bundle L → B′ whose sections we
are parallel transporting). A connection on a complex line bundle L is the same as an
abelian gauge field, which we will call A. Parallel transport around a closed loop γ using
the Berry connection does not bring us back to the starting point (fig. 9). That is, the
Berry connection is not flat; it has a curvature F = dA. This curvature, divided by 2π,
represents (modulo torsion) the first Chern class of the line bundle L → B′:

c1(L) ←→ F
2π

.(1.30)

If pα is one of the bad points at which two bands cross and Sα is a small sphere
around pα, then the flux of F/2π over the sphere Sα is the winding number, as defined
earlier:

wα(S) =
∫

Sα

F
2π

.(1.31)

The Bianchi identity for any abelian gauge field A asserts that

dF = 0.(1.32)

So once again we get the Nielsen-Ninomiya theorem

0 =
∫

B′

dF
2π

=
∑
α

∫
Sα

F
2π

=
∑
α

w(Sα).(1.33)

So a more precise picture of the bad points in the Brillouin zone for a generic two-
band system is as shown in fig. 10. A bad point labeled by + or − supports a gapless
Weyl fermion of positive or negative chirality; the Nielsen-Ninomiya theorem says that
there are equally many + and − points.

1.5. Some examples. – It is instructive to see concretely how two bad points of opposite
chirality can annihilate as a parameter is varied. In relativistic physics, this can happen as
follows (I am jumping ahead slightly, as we have not yet formulated the Nielsen-Ninomiya
theorem for a system with more than two bands). Consider a four-band system in which
the first two bands describe a Weyl fermion of positive chirality and the last two bands
describe a Weyl fermion of negative chirality. Altogether, these four bands describe a
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Fig. 11. – Band crossing below the fermi surface (left) or at the fermi surface (right).

four-component Dirac fermion. A Dirac fermion can have a bare mass, and when we add
a bare mass term to the Hamiltonian, the band crossings disappear.

This is the usual relativistic picture, but in condensed matter physics, there is more
freedom and the annihilation of two bad points can perfectly well occur for a two-band
system. Consider the explicit Hamiltonian

H(p1, p2, p3) =
(

f(p3) p1 − ip2

p1 + ip2 −f(p3)

)
.(1.34)

If f(p3) = p3, this is the basic Hamiltonian H = �σ · �p of a Weyl fermion. More generally,
if f(p3) is any smooth function with only simple zeroes, then a band crossing occurs at
any zero of f(p3) (with p1 = p2 = 0), and gives a Weyl fermion of positive or negative
chirality depending on the sign of df/dp3 at the zero. A simple model with

f(p3) = p2
3 − a(1.35)

gives, for a > 0, a pair of Weyl points with positive or negative chirality at p3 = ±√
a.

The two Weyl points coalesce for a = 0 and disappear for a < 0. This phenomenon does
not arise in relativistic physics for a two-band system, since the effective Hamiltonian
near �p = a = 0 does not have Lorentz symmetry or even rotation symmetry.

If is also of some interest to see how a band crossing point of multiplicity s > 1 can
split into s points each of multiplicity 1. For this, consider the model Hamiltonian

H(p1, p2, p3) =
(

p3 g(x)
g(x) −p3

)
,(1.36)

where g is a polynomial in the complex variable x = p1 + ip2. If g(x) = x, we have
again the basic Weyl Hamiltonian. Band crossings occur at zeroes of g (with p3 = 0).
A simple zero gives a Weyl point of positive chirality and a multiple zero gives a band
crossing point of higher multiplicity. So for example, the choice g(x) =

∏s
i=1(x − bi)

gives a model with a single band crossing point of multiplicity s if the bi are all equal,
and s such points each of multiplicity 1 if the bi are generic.

1.6. Band crossing at the Fermi energy . – So far, we have seen how band crossings
modeled by a chiral Dirac Hamiltonian can arise naturally in condensed matter physics.
But if we want this to have striking consequences, it will not do to have the band crossing
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Fig. 12. – Two band-crossing points related by a discrete left-right symmetry. The fact that the
number of electrons per unit cell is an integer makes it natural for both to occur at the fermi
surface.

at a random energy; we are really only interested in a band crossing that is at, or very
near, the Fermi energy εF . Thus we want the picture to look like the one on the right
and not the one on the left in fig. 11. Moreover, it will not do if the band structure is as
shown on the right of the figure in part of the Brillouin zone, and like what is shown on
the left in some other part. In that case, we will get a “normal metal” (because of the
band crossing that is above or below εF ), and its effects will probably swamp the more
subtle “semi-metal” effects due to the band crossing which is at εF .

Ideally, we want the Fermi surface to consist only of a finite set of Weyl points at
which two bands cross precisely at εF . There will have to be an even number of such
points, with their chiralities adding to zero. How can we arrange that all band crossings
occur at εF ? As a first step, how can we arrange so that they are all at the same energy?
In the context of condensed matter physics, the way to do this is to find a material that
has discrete spatial symmetries (and/or time-reversal symmetries) that permute all of
the bad points. Some of these symmetries have to be space or time orientation-reversing,
since they have to exchange + and − points. The picture will then look more like what
is shown in fig. 12, with a left-right symmetry that exchanges the two bad points.

But how can we arrange so that the energy at which the band crossings occur is
precisely εF ? Here we run into one of the beautiful things in this subject. We can get
that for free, because the number of electrons per unit cell is an integer. For example, if
there is precisely one electron per unit cell that is supposed to be filling the two bands in
our model, the Fermi energy will be where we want it, because in fig. 12, at every value
of the momentum �p away from the two bad points, precisely one state lies below εF and
one lies above εF . Hence the band-crossing energy is the Fermi energy at half-filling.
There are many important examples of this phenomenon. The oldest and best-known
is graphene (in two dimensions), which we will discuss in Lecture Three. More recent
examples involve Weyl semi-metals in three dimensions.

To be more exact, it is natural in this situation to have the band crossings at εF in
the sense that, given a band Hamiltonian like the one we have assumed, any nearby band
Hamiltonian with the same symmetries leads qualitatively to the picture of fig. 12. But
this result is not forced by the universality class; a large enough deformation preserving
the discrete symmetries will give an ordinary metal. We show in fig. 13 how to modify
the band structure, preserving its symmetry, so that the level crossings are no longer at
the Fermi energy.
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Fig. 13. – This band structure has the same left-right symmetry as in fig. 12, but describes an
ordinary metal rather than a Weyl semimetal. That is because with this band structure, the
energy of the band crossings —indicated by the horizontal line— passes below some of the states
in the lower band and hence is below the fermi energy.

1.7. Including spin. – On contemplating the statement “the band crossings will occur
at εF if precisely one electron per unit cell is filling these two bands,” one may wonder
if spin is being included in this counting. Actually, our discussion has been so general
that it makes sense with or without spin. But there are two somewhat different cases.

In one case, spin-orbit couplings are important. It is not a good approximation to
consider spin to be decoupled from orbital motion. The bands we have been drawing
are the exact bands, taking spin and spin-dependent forces into account. In the second
case, spin-dependent forces are small and to begin with one ignores them and considers
orbital motion only. In such a case, the two bands described by a Dirac Hamiltonian
are orbital bands. When we include spin, in first approximation we simply double the
picture, so that now there are four bands —two copies of the familiar picture. In this
approximation, we get 2 chiral Weyl fermions, and they have the same chirality because
(if the spin is decoupled from orbital motion) the spin up and spin down electrons have
the same band Hamiltonian and so the same chirality.

However, there always are spin-orbit forces in nature and generically the two pairs of
bands will be split. The exact problem is a four-band problem. Assuming the density of
electrons is such that 2 of the 4 bands are supposed to be filled, the crossings we care
about (as they may be at or very near the Fermi energy) are those between the second and
third bands, in order of increasing energy. The N band version of the Nielsen-Ninomiya
theorem that we come to in a moment ensures that there will still be two Weyl crossings
between the second and third bands (with the same chirality as before) but generically
at slightly different energies and momenta. The Fermi energy cannot equal the energy
of each of these crossings, and generically it does not equal either of them, but it will be
close, assuming that the spin-orbit forces are weak.

A very crude picture of two nearby Weyl crossings neither of which is quite at the
Fermi energy is in fig. 14. Naively this leads to a normal metal with a very small density
of charge carriers, but this is not the full story because Fermi liquid theory does not work
well when the density of charge carriers is very small.

1.8. A system with many bands. – Now let us discuss the generalization of the Nielsen-
Ninomiya theorem for an N band system. We assume that the density of electrons is
such that k bands should be filled, for some integer k < N . We let Hp be the full
N -dimensional space of states at momentum p. At any value of p such that the k-th
band (in order of increasing energy) does not meet the (k + 1)-th, Hp has a well-defined
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Fig. 14. – Two nearby band crossings that are not quite at the Fermi energy.

subspace H′
p spanned by the k lowest states. The definition of H′

p does not make sense at
points at which the k-th band meets the (k + 1)-th. Just as before, to make this happen
we have to adjust three parameters, so as in fig. 5, there will be finitely many bad points
in the Brillouin zone at which H′

p is not defined.
Wherever H′

p is well-defined, it defines a k-dimensional subspace of Hp
∼= CN . The

space of all k-dimensional subspaces of CN is called the Grassmannian Gr(k,N). If pα

is an isolated point on which H′
p is not defined, then H′

p is defined on a small sphere Sα

around pα. Because π2(Gr(k,N)) ∼= Z, we can attach an integer-valued winding number
w(Sα) to each pα.

Any of the explanations that we gave before for the case of two bands can be adapted
to prove the Nielsen-Ninomiya theorem∑

α

wα = 0.(1.37)

For example, let us consider the explanation based on the Berry connection. Letting
B′ be as before the “good part” of the Brillouin zone with small neighborhoods of bad
points removed, we have a rank k complex vector bundle H′ → B′ whose fiber at p ∈ B′

is H′
p. This is just the bundle spanned by the k lowest bands. On this bundle, there is

a Berry connection, which is now a U(k) gauge field.
It is defined as follows. To parallel transport ψp ∈ H′

p along a path γ ⊂ B′ (fig. 8),
we require that(3)

〈ψ′| d
ds

|ψ〉 = 0, for all ψ′ ∈ H′
p.(1.38)

In other words, dψ/ds is required to be orthogonal to H′
p, for all s. This gives a connection

or U(k) gauge field A on H′ → B′. It has a curvature F = dA + A ∧ A. The winding
number w(Sα) is

w(Sα) =
∫

Sα

c1(H′) =
∫

Sα

TrF
2π

.

(3) The condition that ψp(s) should be in H′
p(s) for all s determines the s dependence of ψp(s)

up to the freedom to add an s-dependent element of H′
p(s). This freedom is fixed by eq. (1.38).
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Fig. 15. – A generic crossing between the k-th band and the (k + 1)-th band, for any k, is
governed by the same chiral Dirac Hamiltonian that we originally encountered in the case of a
two band system.

Using the Bianchi identity dTrF = 0, we get, with the help of Stokes’s theorem

0 =
∫

B′
d

TrF
2π

=
∑
α

∫
Sα

TrF
2π

=
∑
α

w(Sα).(1.39)

Thus, the proof using the Berry connection is the same as it was for two bands, except
that we have to put a trace everywhere.

Generically, the winding number at a bad point is ±1, just as in the two band case.
The generic behavior at a crossing of winding number ±1 is the familiar Weyl crossing
between the k-th and (k + 1)-th bands (fig. 15). So the points with winding number ±1
give chiral Weyl fermions, and the Nielsen-Ninomiya theorem says that there are equally
many of these of positive or negative chirality.

1.9. Two dimensions. – None of this relied on discrete symmetries, though much of it
becomes richer if one does consider materials with discrete symmetries. But what if we
want to get massless Dirac fermions in 2 space dimensions rather than 3? This will not
work without discrete symmetries because generically there would be no band crossings
as we vary the 2 parameters of a 2-dimensional Brillouin zone.

In 2 + 1 dimensions, there are only three γ matrices γ0, γ1, γ2, and they can be
given a 2-dimensional representation. So a Dirac fermion in 2 + 1 dimensions has only 2
components and the massless Dirac Hamiltonian is

H = σ1p1 + σ2p2.(1.40)

(To derive this from the relativistic Dirac equation γμ∂μψ = 0, one basically follows the
derivation of eq. (1.15) in 3 space dimensions.) The energy levels are ±|p|, and there is
a level crossing at p = 0. We know that such a level crossing is non-generic in 2 space
dimensions, and concretely it is possible to perturb the Dirac Hamiltonian by adding a
mass term:

H = σ1p1 + σ2p2 + σ3m.(1.41)

The massive Dirac Hamiltonian has non-degenerate energy levels ±
√

p2 + m2.
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However, the mass term violates some symmetries. The reflection symmetry of H =
σ1p1 + σ2p2 is

Rψ(t, x1, x2) = σ2ψ(t,−x1, x2)(1.42)

and the mass term

H ′ = mσ3(1.43)

is odd under this. The mass term is similarly odd under time-reversal. With the Hamil-
tonian (1.41) and the standard representation(4) of the σ-matrices, time-reversal is

Tψ(t, �x) = ±σ1ψ(−t, �x).(1.44)

The sign is actually physically meaningful and this turns out to be important in the
theory of topological superconductors, though we will not explore that subject in the
present lectures.

The physical reason that a mass term violates reflection symmetry R and time-reversal
symmetry T is as follows. If ψ is a two-component electron field in two dimensions, then
at any given value of the spatial momentum �p, one component of ψ is a creation operator
and one is an annihilation operator. Hence ψ describes for each value of �p only a single
state of charge 1 (along with a corresponding hole or antiparticle of charge −1). If the ψ
particle is massive, we can study it in its rest frame and its one spin state will transform
with spin 1/2 or −1/2 under the rotation group. (In 2 space dimensions, the rotation
group is just the abelian group SO(2) and has 1-dimensional representations.) Either
choice of sign is odd under R or T, so the mass term must violate those symmetries. By
contrast, if m = 0, the fermion cannot be brought to rest, and in 2 space dimensions, we
cannot define its spin(5). So the m = 0 theory can be R- and T- conserving.

(4) In studying a T-invariant theory, it is often more convenient to start with real 2× 2 gamma
matrices γμ, and that is what we will generally do. In that case, the σ-matrices appearing in
the Hamiltonian are the real matrices σi = γ0γi, as in eq. (1.17). With such a convention,
T acts by Tψ(t, �x) = ±γ0ψ(−t, �x). Hidden in this statement is the following. Suppose that
we expand the complex (Dirac) fermion field ψ in terms of two Hermitian (Majorana) fermion
fields χ1, χ2, via ψ = χ1 + iχ2. Then χ1 and χ2 transform with opposite signs under T:
Tχ1(t, �x) = ±γ0χ1(−t, �x), Tχ2(t, �x) = ∓γ0χ2(−t, �x). Since T is antiunitary, Ti = −iT, the
opposite signs in the transformation of χ1 and χ2 ensures the simple transformation that we
have claimed for ψ. Analogous statements hold later (see footnote 7) when we describe the
action of T in 3 space dimensions.
(5) In D spacetime dimensions, the “spin” of a relativistic particle is always described by the
transformation of the quantum state under the “little group,” the subgroup of the Lorentz group
SO(1, D−1) that preserves its energy-momentum D-vector pμ. For a massive particle, the little
group is SO(D − 1) and the spin is a representation of this group. For a massless particle, the
little group is an extension of SO(D − 2) by a non-compact group of “translations,” and the
“spin” is actually determined by a representation of SO(D − 2). (The “translation” part of
the little group acts trivially in all conventional relativistic field theories. For an attempt to
construct a theory in which this would not be the case, see [13].) For D = 3, SO(D−2) is trivial
and there is no notion of the “spin” of a massless particle. In this explanation, we have ignored
reflection and time-reversal symmetry. A massless particle in D = 3 does have a meaningful
transformation under the discrete spacetime symmetries, when these are present.
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Fig. 16. – A particle reflecting at right angles from the boundary must reverse its helicity (the
component of its angular momentum along the direction of motion) if it is to conserve its angular
momentum.

This tells us that in a 2d crystal, it should be possible to find gapless Dirac-like modes
as long as the crystal has a suitable R or T symmetry, and the gapless modes occur at
an R- or T-invariant value of the momentum. It is not hard to give examples. The most
famous example is graphene; we will discuss this case in Lecture Three. For now, I will
just remark that rather as for Weyl points in 3 space dimensions, there are two versions,
either a material that with spin included has an R or T symmetry that leads to a gapless
mode, or a material with small spin-orbit forces that has the appropriate property if
spin and spin-orbit forces are ignored. In the latter case, in the real world, one will get
modes with a gap that is very small but not quite zero. This is indeed what happens in
graphene [14].

1.10. Weyl fermions and Fermi arcs. – Now we will begin our discussion of topologi-
cally-determined edge modes in condensed matter physics. We will do this in 3 space di-
mensions and we will start by considering a non-chiral massless Dirac fermion ψ. For now,
never mind how to realize this in condensed matter physics. We suppose that ψ is confined
to a half-space (possibly the interior of a crystal) and we ask what kind of boundary con-
dition it should obey when it is reflected from a boundary. For reflection at right angles,
as sketched in fig. 16, a simple boundary condition would conserve angular momentum.

By “conserving angular momentum,” I mean that for a boundary condition at x1 = 0,
the component J1 of angular momentum around the x1 axis should be conserved(6). Since
the direction of motion is reversed in the scattering, the helicity has to be reversed. For a
Dirac fermion, that is possible, because a Dirac fermion has both helicities. See eq. (1.57)
below for the angular momentum conserving but helicity-violating boundary condition
that is possible for a Dirac fermion.

But what sort of boundary condition can we have for a massless Weyl fermion, which
has only one helicity? Obviously, the boundary condition cannot reverse the helicity, and
therefore it cannot conserve angular momentum. Any boundary condition will have to

(6) In a crystal, J1 might be conserved only mod n, for n = 2, 3, 4, or 6. The argument below
will show that the boundary condition on a Weyl fermion cannot conserve J1 mod n for any
n > 1.
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pick a preferred direction in the boundary plane. For a chiral Dirac Hamiltonian

H = −i�σ · ∂

∂�x
,(1.45)

a good boundary condition at x1 = 0 is

Mψ|x1=0 = ψ|x1=0(1.46)

with

M = σ2 cos α + σ3 sin α(1.47)

for some angle α.
What makes this a good boundary condition is that it makes H = −i�σ · �∇ Hermitian.

To prove that H = −i�σ · �∇ is Hermitian,

〈ψ1,Hψ2〉 = 〈Hψ1, ψ2〉,(1.48)

one has to integrate by parts. A potential boundary term in this integration by parts
vanishes because {M,σ1} = 0, and our choice M = σ2 cos α+σ3 sinα was made to ensure
this. In particular, this will not work if we pick M = σ1, and that again shows that the
boundary condition cannot be invariant under rotation of the x2-x3 plane. It cannot
even preserve a non-trivial discrete subgroup of this rotation symmetry, such as might
be present in a crystal.

Hermiticity would let us add additional momentum-dependent terms to the operator
M that appears in the boundary condition, but in the low momentum limit, near the
band-crossing point, it forces M to take the form that we have indicated, with some
value of α. In continuum field theory, we could regard α as a free parameter. That is
not really the situation in condensed matter physics. In a concrete model whose band
structure in bulk leads to the existence of a band-crossing point described by a chiral
Dirac Hamiltonian, solving the Schrodinger equation near the boundary of the system
will determine an effective value of α. However, modifying the boundary, for example
by adding an extra layer of atoms on the surface of a material, would generically change
that value.

The value of α can be absorbed in a rotation of the x2-x3 plane, so in analyzing the
consequences of the boundary condition, we can consider the special case α = 0, meaning
that the boundary condition is σ2ψ| = ψ|. Something very interesting happens when we
solve the Schrodinger equation with this boundary condition. Let us try to solve the
equation Hψ = 0 assuming that σ2ψ = ψ everywhere (not only on the boundary) and
also assuming that ∂ψ/∂x2 = 0. Then

Hψ = −i (σ1∂1 + σ2∂2 + σ3∂3) ψ = −iσ1(∂1 − i∂3)ψ.(1.49)

(Recall that σ3 = −iσ1σ2, so σ3ψ = −iσ1ψ.) So we can solve Hψ = 0 with

ψ = exp(ik1x3 + k1x1)ψ0,(1.50)
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where ψ0 is a constant spinor obeying

σ2ψ0 = ψ0.(1.51)

Moreover, this solution is plane-wave normalizable if

k1 < 0.(1.52)

More generally, for any real ε, we can solve Hψ = εψ with

ψ = exp(iεx2) exp(ik1x3 + k1x1)ψ0.(1.53)

Assuming that our system is supported in the half-space x1 ≥ 0, with boundary at
x1 = 0, these solutions decay exponentially away from the boundary as long as k1 ≤
0. They provide our first examples of topologically determined edge-localized states in
condensed matter physics.

For each energy ε that is close enough to the band-crossing energy so that the above
analysis is applicable, we have found edge-localized states that are supported on a ray
k1 ≤ 0, k2 = ε in the k1-k2 plane. At the endpoint k1 = 0 of the ray, edge-localization
breaks down and the solution becomes a plane wave (with momentum in the x2 direction
only). As such it is indistinguishable from a bulk state.

From the point of view of condensed matter physics, the fact that the edge-localized
states of given energy lie on a staight line in momentum space is certainly not universal.
We could add all sorts of higher order terms to the Hamiltonian and the boundary
condition, and this would modify the dispersion relation of the edge-localized states, just
as it would modify the dispersion relation for bulk states. However, the analysis that we
have made is universal near the band-crossing point at �k = 0. This analysis shows that
at any energy sufficiently near the band-crossing energy, there is an arc of edge-localized
states, known as a Fermi arc [15].

An arc parametrizing edge-localized states can only end when the state in question
ceases to be edge-localized. But at that point, as in our example, the edge-localized
state becomes indistinguishable from some bulk plane-wave state. In the presence of a
boundary at x3 = 0, the quantities k1, k2, and ε are conserved but k3 is not. So the
values of k1, k2, and ε at the endpoint of a Fermi arc will coincide with the corresponding
values for some bulk plane-wave state, with some value of k3. (In general, though not in
our simple model, this value will depend on ε.)

A Fermi arc that has an end associated to a band-crossing point will inevitably have a
second end, which will be associated to some other band-crossing point. Let us examine
this matter from the point of view of the Nielsen-Ninomiya theorem. In general, we
know that there are always multiple Weyl points in the Brillouin zone, say at momenta
�kα, α = 1, . . . , s. In the presence of a boundary at x1 = 0, the perpendicular part
k⊥ = k1 of the momentum is not conserved and we should classify the Weyl points only
by k‖ = (k2, k3).

In bulk, because momentum is conserved, gapless modes at different values of �k do
not “mix” with each other and can be treated separately. But when we consider the
behavior near a boundary, the “perpendicular” component k⊥ of the momentum is not
conserved and we should only use k‖. So we project the bad points to 2 dimensions, as
in fig. 17. As long as the projections k

‖
α of the Weyl points are all distinct, they will be

connected pairwise by Fermi arcs.
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Fig. 17. – Projection of band-crossing points from the bulk Brillouin zone, which is parametrized

by �k, to the surface Brillouin zone, which is parametrized by k‖ only. (In the picture, k⊥ runs

horizontally and k‖ runs vertically.) Generically the band-crossing points occur at distinct values

of k‖. In this case, their projections are ends of Fermi arcs.

But if two Weyl points of opposite chirality project to the same point in the boundary
momentum space, as in fig. 18, then there is no need for either one to connect to a Fermi
arc. From a low energy point of view, the two modes of opposite chirality combine
to a Dirac fermion with both chiralities. A Dirac fermion admits a rotation-invariant
boundary condition and can be gapped, as we discuss in sect. 1.11.

Of course, whether two given Weyl points coincide when projected to the boundary
depends on which boundary face we consider. But the discrete symmetries that make
Weyl points interesting can also make it natural, for some crystal facets, that two Weyl
points have the same projection. In fact, this will have to happen if a crystal has a non-
trivial group of rotations that preserves the plane x1 = 0. Since a single Weyl fermion
would not admit a boundary condition that preserves J1 mod n for any n > 1, in the
presence of such a conservation law, we will never get just one Weyl fermion at a given
value of k‖.

Fig. 18. – Discrete symmetries may make it natural for two or more band crossing points to
occur at the same value of k‖.
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1.11. Gapless boundary modes from Dirac fermions. – It is also possible to get
boundary-localized modes from Dirac fermions, and this is important in understand-
ing topological insulators. In the absence of discrete symmetries, and without tuning
any parameters, it is not natural in condensed matter physics to get a massless Dirac
(as opposed to Weyl) fermion in three space dimensions. For a four-component fermion
field ψ with both chiralities, mass terms are possible; in fact there are two such terms.
The general Lorentz-invariant massive Dirac equation is(∑

μ

γμ∂μ − m − im′γ5

)
ψ = 0.(1.54)

The corresponding Hamiltonian is

H = γ0�γ · �p − imγ0 − im′γ1γ2γ3.(1.55)

Relativistically, to get a massless Dirac fermion, we need a reason for m = m′ = 0.
Symmetries (spacetime or chiral symmetries) are the obvious place to look.

Let us consider the case of assuming time-reversal symmetry T. This is enough to set
one of the two parameters to 0 but not both. The Dirac equation becomes(7)(∑

μ

γμ∂μ − m

)
ψ = 0.(1.56)

Generically m is not 0 but of course if we adjust one parameter, we can make m vanish.
In condensed matter physics, what we adjust to make a parameter in the Hamiltonian

vanish might be, for example, the chemical composition of an alloy. However, we ob-
serve that while eq. (1.55) is the general Lorentz-invariant Hamiltonian for this system,
in condensed matter physics we should not assume Lorentz-invariance of the Hamilto-
nian and more terms are possible. The analysis of a more general Hamiltonian is more
complicated. But there is a useful lesson that we can learn from a further study of the
relativistic case.

Consider a Dirac fermion confined to the half-space x1 ≥ 0. The Dirac operator
admits a natural, rotation-invariant boundary condition

γ1ψ|x1=0 = ±ψ|x1=0,(1.57)

with some choice of sign. This stands in contrast to a Weyl fermion, which as we dis-
cussed earlier does not admit a rotation-symmetric boundary condition. The boundary
condition (1.57) is helicity-violating, because γ1 anticommutes with the chirality or he-
licity operator γ5 = iγ0γ1γ2γ3. So it would not make sense for a Weyl fermion, which is
an eigenstate of γ5 and has only one helicity. Note that the boundary condition (1.57)
is T-conserving, with the action of T defined in footnote 7, because γ1 commutes with
γ1γ2γ3. The sign in the boundary condition can be reversed by ψ → γ5ψ, which also

(7) This is invariant under Tψ(t, �x) = γ1γ2γ3ψ(−t, �x). We assume that the gamma matrices
are real 4 × 4 matrices obeying {γμ, γν} = 2ημν , where ημν = diag(−1, 1, 1, 1).
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changes the sign of the mass parameter m in eq. (1.56). So as long as we consider both
signs of m, we can choose a + sign in the boundary condition.

Let x‖ be the coordinates along the boundary and

γ · ∂‖ =
∑
μ�=1

γμ∂μ(1.58)

the (2 + 1)-dimensional Dirac operator along the boundary. We can obey the (3 + 1)-
dimensional Dirac equation in the half-space x1 ≥ 0 with

ψ = exp(mx1)ψ‖(x‖),(1.59)

where

γ1ψ‖ = ψ‖, γ · ∂‖ψ‖(x‖) = 0.(1.60)

For m > 0, this solution is highly unnormalizable. But for m < 0, it is plane-wave
normalizable and localized along the boundary.

To be more precise, since ψ‖ was constrained to obey the massless (2+1)-dimensional
Dirac equation

γ · ∂‖ψ‖(x‖) = 0,(1.61)

we get a (2 + 1)-dimensional massless Dirac fermion. (This is a standard 2-component
Dirac fermion in 2 + 1 dimensions, because half of the components of the original 4-
component (3+1)-dimensional Dirac fermion are removed by the constraint γ1ψ‖ = ψ‖.)

In a T-invariant theory, a phase that is gapped in bulk and has a single boundary-
localized massless Dirac fermion is essentially different from a phase that is gapped both
on the bulk and on the boundary. That is because once we find a single boundary-
localized massless fermion, small T-invariant perturbations, even if they violate Lorentz
symmetry, will not cause the boundary to be gapped. Indeed, we recall that T-invariance
does not allow a single (2 + 1)-dimensional Dirac fermion to acquire a mass.

However, T-invariance would permit a pair of Dirac fermions in 2 + 1 dimensions to
acquire bare masses. The T-invariant Dirac equation for such a pair is(8)(

2∑
μ=0

γμ∂μ − i
(

0 m
−m 0

))(
ψ1

ψ2

)
= 0.(1.62)

(Upon diagonalizing the mass term, one learns that this gives two (2 + 1)-dimensional
massive Dirac fermions with equal and opposite masses.) Thus, in a condensed matter
system of 3 space dimensions with T-invariance and no other special properties, the
number of boundary-localized Dirac fermions will be generically either 0 or 1. These
are two different phases; one cannot pass between them, maintaining T-invariance, as
long as the bulk theory is gapped. (When the bulk is gapless, a boundary gapless mode

(8) T acts by Tψi(t, �x) = γ0ψi(−t, �x), i = 1, 2. The mass term has been chosen to be Hermitian
while ensuring T-invariance.
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Fig. 19. – Generically, the band crossing point of the edge-localized mode of a topological
insulator in 3 space dimensions does not occur at the Fermi energy. Accordingly, the boundary
has much in common with a normal metal.

can disappear by becoming indistinguishable from a bulk mode.) The case that there
is a gapless Dirac mode on the boundary is the 3-dimensional topological insulator [16].
Topological band theory gives a powerful way to understand this phase, but we will not
explore that here.

What we have said shows that when the mass of a bulk Dirac fermion passes through
0, this results in a phase transition between an ordinary insulator and a topological in-
sulator. That is a particularly simple path between these two phases that looks natural
from a relativistic point of view. But this path is non-generic in the context of condensed
matter physics, provided T is the only pertinent symmetry, because in condensed matter
physics the Hamiltonian will generically contain additional terms that do not respect
Lorentz invariance. It turns out [17,18] that generically the transition from an ordinary
insulator to a topological one is a more complicated process with an intermediate con-
ducting phase(9). With P assumed as well as T, the simple model in which the phase
transition between the two types of insulator involves a massless Dirac fermion is indeed
valid. We return to this point at the end of sect. 1.12.

Generically, in the context of condensed matter physics, the fermi energy εF of a
topological insulator does not pass through the Dirac point in the boundary theory. So
(fig. 19) the boundary of a topological insulator is more like an ordinary metal than the
Weyl semimetals that we talked about before. Relativistically, the boundary theory is
analogous to the theory of a massless Dirac fermion with a non-zero chemical potential.

1.12. Discrete lattice symmetries and massless Dirac fermions. – Because the Hamil-
tonian need not be Lorentz-invariant, we have really not yet found a way to generate
massless Dirac fermions in condensed matter physics, even assuming time-reversal sym-
metry and varying one parameter. However, massless Dirac fermions can become natural
if more symmetry is assumed. In what follows, we sketch a construction in [19], leaving
some details to the reader. For some of the background, see [20].

(9) Starting with a trivial insulator, as one varies a parameter, the system undergoes a transi-
tion described in sect. 1

.
5, with appearance of a pair of Weyl points of opposite chirality. This

happens simultaneously at two equal and opposite values of �p, exchanged by T. Going further,
the Weyl points reconnect and annihilate, leaving a topological insulator.
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First, let us reconsider the relativistic massless Dirac fermion in 3 + 1 dimensions.
The Hamiltonian is H = γ0�γ · �p, where now the γμ are 4× 4 matrices and we assume no
chiral projection. Equivalently, the Hamiltonian is conjugate to

H =
(

�σ · �p 0
0 −�σ · �p

)
.(1.63)

The energy levels are ±|�p |, each occurring with multiplicity 2.
One explanation of the twofold degeneracy of the bands is the following. The massless

non-chiral Dirac Hamiltonian has both time-reversal symmetry T and parity symmetry
P. Each of these reverses the sign of the spatial momentum, so the product PT is a
symmetry at any given momentum. But PT is an antiunitary symmetry, and in acting
on a fermion state, (PT)2 = −1. The existence of an antiunitary symmetry that leaves �p
fixed and squares to −1 means that the energy levels at each momentum have a Kramers
degeneracy, which accounts for the doubling.

It is perfectly natural in condensed matter physics to consider a material with PT sym-
metry. Indeed, many non-magnetic materials have T symmetry, and many crystals have
P symmetry (usually called inversion symmetry in the context of condensed matter). In a
PT-symmetric material, all bands will have 2-fold degeneracy. If spin-orbit forces can be
ignored, this is simply the 2-fold degeneracy resulting from spin. However, PT symmetry
forces an exact 2-fold degeneracy of all bands even with spin-dependent forces included.

The question arises of whether in a PT-symmetric material, and for the moment
assuming no further symmetry, the generic 2-fold degeneracy of the bands becomes a
4-fold degeneracy somewhere in the Brillouin zone. To answer this question, we consider
a generic PT symmetric system with 4 bands. The unitary group acting on 4 states (that
is, on the states of 4 bands at a given value of �p ) is in general U(4). The subgroup of
this group that commutes with an antiunitary symmetry PT that satisfies (PT)2 = −1 is
Sp(4). The fifteen 4×4 traceless Hermitian matrices that might conceivably lift the band
degeneracy transform under Sp(4) as 15 = 5 ⊕ 10. The PT-invariant ones transform as
5. In fact, the group Sp(4) is the double cover Spin(5) of SO(5), and the 5 of Sp(4) is
just the defining 5-dimensional representation of SO(5).

For a basis of 5 traceless, Hermitian, PT-invariant 4×4 matrices, we can take gamma
matrices(10) γ̂1, . . . , γ̂5, obeying {γ̂i, γ̂j} = 2δij . The general PT-invariant traceless 4-
band Hamiltonian is therefore

H =
5∑

i=1

Ai(�p )γ̂i.(1.64)

To get a 4-fold band degeneracy, we need to make the five functions Ai(�p ) simultaneously
vanish. Generically, in spatial dimension 3, this will not happen anywhere in the Brillouin
zone. Therefore, to get a massless Dirac fermion, we need to assume more symmetry.

Let us consider a crystal with a Zn rotation symmetry, where the most convenient
values(11) of n are 4 and 6. We assume that the band degeneracy of interest will occur
at a Zn-invariant value of the momentum. (In general, only the subgroup of Zn that

(10) We place hats on these gamma matrices as they do not coincide with the SO(3, 1) gamma
matrices that were used in the relativistic description. We explain the relationship in eq. (1.67).
(11) A similar story holds for n = 3 with slight modifications.
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leaves fixed the momentum at which a given band degeneracy occurs will be relevant in
protecting that degeneracy.) We can arrange the crystal axes so that Zn leaves p1 fixed.
We can also assume, without essential loss of generality, that the Zn-invariant value of
the momentum at which there will be a massless fermion satisfies p2 = p3 = 0. Further,
we can assume that near p2 = p3 = 0, Zn is generated by an element R that acts as a
2π/n rotation of the p2-p3 plane, leaving p1 fixed.

R will be realized on the 4 fermion bands as an element of Sp(4); it will act on the
5 gamma matrices as an element of SO(5). A general element of SO(5) of order n has
eigenvalues 1, exp(±2πir/n), exp(±2πis/n) in the 5 representation, for some integers r, s
which we can take to be non-negative and(12) ≤ n. For a reason that we will explain in
a moment, we can assume that r + s is odd. Different cases are of interest for condensed
matter physics, but to get a massless Dirac fermion we need r (or s) to equal 1 while the
other is non-zero. Since r + s is odd, if r = 1 and s �= 0 then s is even and ≥ 2.

The reason that r + s should be odd is as follows. If the gamma matrices transform
under R as 1, exp(±2πir/n), exp(±2πis/n), then the 4 bands that they act on transform
under R as exp(πi(±r ± s)/n). But on fermions one wants Rn = −1, which corresponds
to r + s odd. For r = 1, the eigenvalues of R acting on the 4 bands are

exp(±πi/n) exp(±2πis′/n), s′ = s/2,(1.65)

where s′ is an integer since s is even.
We can pick a basis of the 5 gamma matrices so that γ̂1 is R-invariant, the γ̂2-γ̂3

plane is rotated by R by an angle 2π/n, and the γ̂4-γ̂5 plane is rotated by R by an angle
2πs/n. Let us now analyze the Hamiltonian, first along the axis p2 = p3 = 0, and then
slightly away from this axis.

At p2 = p3 = 0, the momentum is R-invariant. The only R-invariant gamma matrix
is γ̂1, so a general R-invariant Hamiltonian is H = γ̂1A(p1). It is natural for A(p1) to
have a simple zero at some value of p1, and that is where a massless Dirac fermion will
occur. Expanding the Hamiltonian in powers of p2 and p3, because of the assumption
that r = 1, the γ̂2-γ̂3 plane is rotated by R just like the p2-p3 plane and the Hamiltonian
can have a term B(p1)(γ̂2p2 + γ̂3p3). The coefficients of γ̂4, γ̂5 vanish up to higher order
in p2, p3 because s ≥ 2. Thus to linear order in p2, p3, the Hamiltonian is

H = A(p1)γ̂1 + B(p1)(γ̂2p2 + γ̂3p3).(1.66)

There is a massless Dirac fermion at any simple zero of A(p1), assuming that B(p1) �= 0
at that point.

The assumption that r (or s) equals 1 is actually rather natural, for the following
reason. It led to the result (1.65) for the transformation of the 4 bands under R. But
this is the result that one would expect if the 4 bands of interest are the tensor product
of 2 spatial bands with 2 spin states. The eigenvalues of a 2π/n rotation acting on
the spin states of a spin 1/2 particle are exp(±πi/n), and the eigenvalues of such a
rotation acting on 2 spatial bands in a PT-invariant system will be exp(±2πis′/n) for
some integer s′.

(12) We can further restrict to r ≤ n/2. We could restrict r, s to be both ≤ n/2, but then we
would need to include a possible overall minus sign in eq. (1.65) below, because of the fact that
the group Sp(4) that acts on the bands is a double cover of the group SO(5) that acts on the
gamma matrices.
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From a relativistic point of view, one would account for what we have found by saying
that what microscopically is the spatial rotation R has behaved in the effective theory
at low energies as a combination of a spatial rotation and a chiral symmetry. The chiral
symmetry, which is expressed in the above analysis as the rotation of the γ̂4-γ̂5 plane,
arises if s �= 0. To explain this point more fully, observe that the relation between the
five terms in the PT-invariant relativistic Dirac Hamiltonian (1.55) and the five terms in
eq. (1.64) comes from

γ0γi = γ̂i (i = 1, 2, 3), −iγ0 = γ̂4, iγ1γ2γ3 = γ̂5.(1.67)

Thus the rotation of the γ̂4-γ̂5 plane is a rotation of the parameters m and m′ in the
relativistic Hamiltonian (1.55). In relativistic physics, a symmetry that rotates those
parameters is usually called a chiral symmetry and such a symmetry forces the vanishing
of the fermion mass.

In the preceding analysis, we have made use only of PT and not of separate P and
T symmetry. This is appropriate if a material has only PT symmetry and not separate
P and T symmetries, or if the material has both symmetries but the band degeneracy
of interest occurs at a value of the momentum that is PT-invariant but not P- or T-
invariant. A further interesting construction [21] becomes possible in a material that
does have separate P and T symmetry, and governs band degeneracies that occur at
values of the momentum that are invariant under both symmetries. It turns out to be
necessary to consider non-symmorphic symmetries (symmetries that mix rotations and
partial lattice translations in an essential way). For an introduction, focusing on an
analogous problem in 2 space dimensions, see [22].

As a simple example of the consequences of assuming both P and T symmetry, we
reconsider the transition, discussed in sect. 1.11, between an ordinary insulator and a
topological one. In fact, with both P and T symmetry(13), this phase transition occurs
when a Dirac fermion mass passes through 0, rather than by the more complicated
route described in footnote 9. The point is that PT symmetry enables us to express the
Hamiltonian in terms of five functions, as in eq. (1.64) (with eq. (1.67) as a recipe to
express the relativistic Hamiltonian (1.55) in terms of the five functions Ai of eq. (1.64)).
When we assume separate T and P symmetry, only one(14) of the five functions Ai,
namely A4 = m, is T- and P-invariant. The other Ai are all odd and vanish at the T-
and P-invariant point �p = 0. So at �p = 0, a 4-fold band degeneracy can be achieved by
setting to 0 the one parameter m.

1.13. Simple examples of band Hamiltonians. – We conclude by giving simple examples
of band Hamiltonians to illustrate some of these ideas.

One goal is to describe a simple band Hamiltonian that can be approximated near
�p = 0 by the chiral Dirac Hamiltonian H = �σ · �p. For this purpose, the main difference
between band theory and the relativistic problem is that in band theory the components

(13) We assume that the bands are not all even or all odd under P, so that P �= ±1 as an element
of Sp(4). Otherwise the low energy physics is quite different.
(14) A simple way to see this is to observe that P must be an element of Sp(4) obeying
P2 = 1, P �= ±1. Any such element (other than P = ±1) acts on the gamma matrices as
diag(−1,−1,−1,−1, 1) (up to conjugation) and so leaves invariant precisely one linear combi-
nation of the Ai. With standard relativistic conventions that were used in writing eq. (1.55), P
acts by Pψ(t, �x) = iγ0ψ(t,−�x) and the P-invariant coupling is A4 = m.
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of the momentum are periodic variables. We assume a simple cubic lattice of lattice
spacing a so that the linear components of the momentum have period 2π/a. To write
a band Hamiltonian, we can replace the linear component pi, i = 1, 2, 3 of the electron
momentum by 1

a sin(pia), which has the correct periodicity and is equivalent to pi for
small pi. This motivates the band Hamiltonian

H =
1
a

3∑
i=1

σi sin(pia).(1.68)

The formula sin u = (eiu − e−iu)/2i shows that, when written in coordinate space, this
Hamiltonian describes nearest neighbor hopping on the cubic lattice.

For �p → 0, this Hamiltonian can be approximated by �σ · �p, so there is a Weyl point of
positive chirality at �p = 0. However, a little reflection shows that the model actually has
a total of 8 Weyl points in the Brillouin zone; they are the 8 points at which each of the
pi equals 0 or π/a. Using the criterion (1.21), the reader can verify that 4 of these Weyl
points have positive chirality and 4 have negative chirality. Thus the net chirality is 0,
in keeping with the Nielsen-Ninomiya theorem. Indeed, the Nielsen-Ninomiya theorem
was inspired by examples such as this one.

We can similarly write a periodic version of the non-chiral 4-component Dirac Hamil-
tonian (1.55):

H =
1
a

3∑
i=1

γ0γi sin(pia) − imγ0.(1.69)

We have set m′ = 0 to ensure T and P invariance (assuming that m is an even function
of �p ). If m = 0, there are massless Dirac fermions at the same 8 points as before. If m is
non-zero, the system is gapped for all �p. It is an insulator and in fact a trivial one if m is
a constant. However, we get something new if m is a more general periodic function of �p.
Assuming that m is small, the term in H proportional to m is only important near the 8
points that support an almost massless Dirac fermion. Moreover, all that really matters
is the sign of m at those 8 points. We would like m(�p ) to have a finite Fourier expansion
in powers of exp(±ipia) (so that the position space Hamiltonian has finite range). Even
with this constraint, there is no problem to vary independently the sign of m(�p ) at the 8
points of interest. When one of those signs passes through 0, an edge-localized massless
Dirac fermion appears or disappears. Thus this Hamiltonian with a suitable function
m(�p ) gives a simple model of a topological insulator in 3 space dimensions.

What we have described is somewhat analogous to the Haldane model [23] of a topo-
logically non-trivial band insulator in 2 space dimensions. We will come to that model
in sect. 3.3.

2. – Lecture Two

2.1. Chern-Simons effective action. – Today we will begin with an introduction to
some aspects of the integer quantum Hall effect. First I just want to explain from the
point of view of effective field theory why there is an integer quantum Hall effect in the
first place. We consider a material that not only is an insulator, but more than that has no
relevant degrees of freedom – not even topological ones – in the sense that its interaction
with an electromagnetic field can be described by an effective action for the U(1) gauge
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field A of electromagnetism only, without any additional degrees of freedom. (This
would certainly not be true in a conductor, whose interaction with an electromagnetic
field cannot be described without including the charge carriers in the description, along
with A. But more subtly, as we will discuss, it is not true in a fractional quantum Hall
system, whose effective field theory requires topological degrees of freedom coupled to
A.)

In a (3 + 1)-dimensional material with no relevant degrees of freedom, the effective
action for the electromagnetic field can have all sorts of terms associated to various
familiar effects. For example, ferromagnetism and ferroelectricity correspond to terms in
the effective action that are linear in �E or �B

I ′ =
∫

W3×R

(
�a · �E +�b · �B

)
.(2.1)

(Here W3 is the spatial volume of the material and R parametrizes the time, so the
“world-volume” of the material is M4 = W3 × R.) Similarly, electric and magnetic
susceptibilities correspond to terms bilinear in �E or �B:

I ′′ =
∫

W3×R

(αijEiEj + βijBiBj) ,(2.2)

and so on.
All these terms are manifestly gauge-invariant in the sense that they are integrals

of gauge-invariant functions: the integrands are constructed only from �E and �B (and
possibly their derivatives). In 2 + 1 dimensions, there is a unique term that is gauge-
invariant but does not have this property. This is the Chern-Simons coupling

CS =
1
4π

∫
M2×R

d3xεijkAi∂jAk.(2.3)

The density εijkAi∂jAk that is being integrated is definitely not gauge-invariant, but the
integral is gauge-invariant up to a total derivative. In fact, under Ai → Ai + ∂iφ, we
have

εijkAi∂jAk → εijkAi∂jAk + ∂i

(
εijkφ∂jAk

)
.(2.4)

Roughly speaking, this shows that CS is gauge-invariant, but we have to be more
careful because of electric charge quantization. If the quantum of electric charge is
carried by a field ψ of charge 1 transforming as

ψ → eiφψ,(2.5)

then we should consider φ to be defined only modulo 2π:

φ ∼= φ + 2π.(2.6)

Given this fact, the previous proof of gauge-invariance of CS, in which φ was assumed
to be single-valued, is not quite correct. We will be more careful in a moment.
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Fig. 20. – The Dirac string emanating from a magnetic monopole is unobservable because the
laws of nature are invariant under gauge transformations in which eiφ is single-valued, but φ is
not.

Before I go on, though, I want to point out that logically, one could consider a theory in
which one is only allowed to make a gauge transformation Ai → Ai + ∂iφ with a single-
valued φ. But that theory is not the real world. Dirac showed that the Schrodinger
equation of electrons, protons, and neutrons can be consistently coupled with magnetic
monopoles, and that this consistency is only possible because the Schrodinger equation
is invariant under gauge transformations in which eiφ is single-valued although φ is not.
This is needed to make the Dirac string unobservable (fig. 20).

Anyway our microscopic knowledge that the Schrodinger equation is invariant under
any gauge transformation such that eiφ is single-valued (even if φ is not single-valued)
implies constraints on the effective action that we would not have without that knowledge.
We want to understand those constraints.

2.2. Quantization of the Chern-Simons coupling . – To do this, we will consider the
following situation: we take our two-dimensional material to be a closed two-manifold, for
instance S2, and we will take “time” to be a circle S1 of circumference β. (For example,
we might be computing Tr e−βH .) Thus we consider a material whose “worldvolume” is
M3 = S2 × S1 (fig. 21).

One might not be able to engineer this situation in the real world, but it is clear
that the Schdrodinger equation makes sense in this situation. So we can consider it in
deducing constraints on the effective action that can arise from the Schrodinger equation.

The gauge field that we want to consider on M3 = S2 × S1 is as follows. We place a
unit of Dirac magnetic flux on S2:∫

S2
dx1dx2

F

2π
= 1.(2.7)

Fig. 21. – A (2+1)-dimensional manifold S2 ×S1 that is used in analyzing the gauge-invariance
of the Chern-Simons action.
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(This is the right quantum of flux if the covariant derivative of the electron is Diψ =
(∂i − iAi)ψ, meaning that I am writing A for what is often called eA. This lets us avoid
factors of e in many formulas.)

And we take a constant gauge field in the S1 or time direction:

A0 =
s

β
,(2.8)

with constant s. For this gauge field, one can calculate(15)

CS =
1
4π

∫
M3=S2×S1

d3xεijkAi∂jAk = s.(2.9)

Note that the holonomy of A around the “time” circle is

exp

(
i

∫ β

0

A0dt

)
= exp

(
i

∫ β

0

(s/β)dt

)
= exp(is).(2.10)

The gauge transformation

φ =
2πt

β
,(2.11)

which was chosen to make eiφ periodic, acts by

s → s + 2π(2.12)

and so leaves the holonomy invariant. (This must be true, because with my normalization
of A, this holonomy is the phase factor when an electron is parallel-transported around
the circle and so is physically meaningful.)

So we have in this example CS = s, and a gauge transformation can act by s → s+2π.
Thus CS is not quite gauge-invariant; it is only gauge-invariant mod 2π. Here we must
remember what is essentially the same fact that was exploited by Dirac in his theory
of the magnetic monopole. The classical action I enters quantum mechanics only via
a factor exp(iI) in the Feynman path integral (or exp(iI/�) if one restores �), so it is
enough if I is well-defined and gauge-invariant mod 2πZ. Since CS is actually gauge-
invariant mod 2πZ (we showed this in an example but it is actually true in general), it
can appear in the effective action with an integer coefficient:

Ieff = kCS + . . . .

(15) This is actually a slightly tricky calculation, because in the presence of non-vanishing mag-
netic flux on S2, the gauge field Ai has a Dirac string singularity. A safe way to do the calculation
is to compute the derivative of CS with respect to s, using the fact that in any infinitesimal vari-
ation of A, one has δCS = (1/4π)

R

εijkδAiFjk, which is written only in terms of gauge-invariant
quantitities Fjk and δAi. Evaluating this formula for the case that δAi = ∂Ai/∂s = δi0 and
that there is one unit of magnetc flux on S2, one finds that ∂CS/∂s = 1. Using also the fact
that CS vanishes at s = 0, one arrives at eq. (2.9).
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Fig. 22. – A two-dimensional sample.

2.3. Quantization of the Hall conductivity . – The point of this explanation has been to
explain why k has to be an integer – sometimes called the “level.” The fact that k is an
integer gives a macroscopic explanation of the quantization of the Hall current. Indeed
for any material whose interaction with an electromagnetic potential A is governed by
an effective action Ieff , the induced current in the material is

Ji = −δIeff

δAi
.(2.13)

We are interested in the case that

Ieff = kCS =
k

4π

∫
M3

d3xεijkAi∂jAk.(2.14)

Let us consider a material sitting at rest at x3 = 0 and thus parametrized by x1, x2

(fig. 22). The current in the x2 direction is

J2 = −δIeff

δA1
=

kF01

2π
=

kE1

2π
.(2.15)

This is called a Hall current: an electric field in the x1 direction has produced a current
in the x2 direction. The Hall current has a quantized coefficient k/2π (usually called
ke2/h; recall that my A is usually called eA and that I set � = 1 so h = 2π), where the
quantization follows from the fact that CS is not quite gauge-invariant.

One may wonder “How then can one have a fractional quantum Hall effect?” I will
give a short answer for now, postponing more detail for Lecture Three(16). One cannot
get an integer quantum Hall effect in a description in which A is the only relevant degree
of freedom. However, from a macroscopic point of view, this can happen in a material
that generates an additional “emergent” U(1) gauge field a that only propagates in the

(16) For a useful introduction to the very rich subject of effective field theories of the fractional
quantum Hall effect, with references to the literature up to that time, see [24].
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material. We normalize a so that it has the same flux quantum(17) 2π as A. We will
write fij = ∂iaj − ∂jai for the field strength of a. An example of a gauge-invariant
effective action that leads to a fractional quantum Hall effect is

Ieff =
1
2π

∫
M3

d3x εijkAi∂jak − r

4π

∫
M3

d3x εijkai∂jak.(2.16)

An oversimplified explanation of why this gives a fractional quantum Hall effect is the
following. One argues that as a appears only quadratically in the effective action, one
can integrate it out using its equation of motion. This equation is

f =
1
r
F,(2.17)

implying that up to a gauge transformation a = A/r. Substituting this in Ieff , we get an
effective action for A only that describes a fractional quantum Hall effect:

I ′eff =
1
r
CS(A) =

1
r

1
4π

∫
M3

d3x εijkAi∂jAk.(2.18)

Here 1/r appears where k usually does, and this suggests that the Hall conductivity
in this model is 1/r. That is correct. But there clearly is something wrong with the
derivation because the claimed answer for the effective action I ′eff = (1/r)CS(A) does
not make sense as it violates gauge invariance. The mistake is that in general, as F
may have a flux quantum of 2π, and f has the same allowed flux quantum (otherwise
the action we assumed would not be gauge-invariant), for a given A it is not possible to
solve eq. (2.17) for a. Thus, it is not possible to eliminate a from this system and give
a description in terms of A only. The reason that “integrating out a” gives the right
answer for the Hall current is that this procedure is valid locally and this is enough to
determine the Hall current. The system has more subtle properties (fractionally charged
quasiparticles and topological degeneracies) that can only be properly understood in the
description with a as well as A. An introduction to those properties will be given in
Lecture Three.

2.4. Relation to band topology . – Going back to a theory that can be described in terms
of A only, we have then an integer k in the macroscopic description. But there is also
an integer in the microscopic description of a band insulator, the TKNN invariant [11].
It arises as follows. We consider a crystal with N bands, of which n are filled. We
assume the system is completely gapped, for all values of the momentum. As we learned
yesterday, in a 2d system it is generic to have no band crossings.

(17) In the context of condensed matter physics, it is unphysical to assume that an emergent
gauge field a gauges a non-compact gauge group R rather than the compact gauge group U(1).
In that case, there would be an exactly conserved current ji = 1

2
εijkf jk and correspondingly,

the space integral q =
R

d2x j0 =
R

d2x f12 would be an exactly conserved quantity. There is
no exactly conserved quantity in condensed matter physics that is a candidate for q. If the
emergent gauge group is U(1) rather than R, then “monopole operators” can be added to the
Hamiltonian, breaking the conservation of q. Because the emergent gauge group is U(1), there
is a non-trivial Dirac flux quantum, and we normalize a so that this quantum is 2π. Accordingly,
the parameter r in eq. (2.16) must be an integer.
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We are in the same situation as in our discussion yesterday of Weyl semimetals,
except that there are no band-crossing points, so we work over the whole Brillouin zone
B, without removing anything. As we are in two-dimensions, B is a two-torus. At
momentum p, let Hp

∼= CN be the full space of all states, and H′
p the subspace of filled

levels. We can regard Hp as a rank (or dimension) N “trivial bundle” over B and H′
p as

a “subbundle” of rank n. The integer we want, which we will call k′, is the first Chern
class c1(H′

p), integrated over B. In terms of the Berry connection A on the filled bands
that we discussed yesterday, whose curvature we call F , this integer is

k′ = c1(H′
p) =

∫
B

TrF
2π

.

The basic claim of TKNN is that k′, the flux of the Berry connection, is the same as k,
the coefficient of the quantum Hall current. The original proof was based on literally just
calculating the current from first principles in terms of a matrix element in the fermion
ground state —which is written as an integral of single-particle matrix elements over the
Brillouin zone. I want to explain a different viewpoint that will emphasize that k′ is not
just a band concept but can be defined in the full many-body theory. (In Lecture Three,
I will describe another approach essentially due to Haldane to the relation k = k′.)

We consider a finite sample, say on an n1 × n2 lattice (fig. 23) for very large n1, n2,
where I will take lattice constants a1, a2 in the two directions. Thus the physical size of
the lattice is L1 × L2, with L1 = n1a1, L2 = n2a2. We assume periodic boundary con-
ditions, maintaining the lattice translation symmetries. However, for the finite system,
the momenta take discrete values

p1 =
2πs1

L1
, 0 ≤ s1 ≤ n1 − 1,

p2 =
2πs2

L2
, 0 ≤ s2 ≤ n2 − 1.

The ground state of the finite system is of course obtained by filling all of the states in
the first n bands with these values of the momenta.

Now, however, we turn on a background electromagnetic vector potential that is
chosen such that the magnetic field vanishes, but an electron going all the way around
the x1 direction or the x2 direction picks up a phase:

A1 =
α1

L1
, A2 =

α2

L2
.

The phase picked up by an electron going around the x1 (or x2) direction is exp(iα1) (or
exp(iα2)) and up to a gauge transformation the range of these parameters is

0 ≤ α1, α2 ≤ 2π.

From the point of view of band theory, the effect of turning on the parameters α1, α2

is just to shift the momenta of the electrons, which become

p1 =
2πs1 + α1

L1
, 0 ≤ s1 ≤ n1 − 1

p2 =
2πs2 + α2

L2
, 0 ≤ s2 ≤ n2 − 1.
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Fig. 23. – A periodic lattice of size n1 × n2, with lattice constants a1, a2 in the two directions.
The physical size of the lattice is L1 × L2 with L1 = n1a1, L2 = n2a2.

This actually shows that the spectrum is invariant under a 2π shift of α1 or of α2 (up to
an integer shift of s1 or s2). For any α1, α2, from the point of view of band theory, the
ground state is found by filling all states in the first n bands with these shifted values of
the momenta.

Now we think of the parameters α1, α2 as parameters that are going to vary adia-
batically. Since they are each defined mod 2π, they parametrize a torus that I will call
B̂. (B̂ can be viewed as a sort of rescaled version of the Brillouin zone B.) Since Berry’s
construction is universal for adiabatic variation of parameters, we can construct a Berry
connection Â over B̂, with curvature F̂ . Â is a connection that can be used to transport
the ground state as the parameters α1, α2 are varied. All we need to know to define
it is that the ground state is always non-degenerate as α1, α2 are varied. We do not
need to assume a single-particle picture (i.e. band theory). But I should say that for
the conclusions we draw to be useful, at least in the form I will state, we need the gap
from the ground state to be independent of L1, L2 as they become large. (Otherwise in
practice our measurements in the lab may not be adiabatic. The stated assumption is
not true for a fractional quantum Hall system, as we will discuss in Lecture Three.)

Using the Berry connection over B̂, we can define an integer:

k̂′ =
∫
bB

dα1 dα2
F̂
2π

.

But I claim that this is the same as the integer k′ defined in band theory:

k′ = k̂′.

The reason that this is useful is that the definition of k̂′ is more general. To define k′,
we assume band theory —that is, a single-particle description based on free electrons.
The definition of k̂′ assumes much less.

2.5. Proof of the equivalence. – To understand why k′ = k̂′, I have drawn in fig. 24
the discrete points in the Brillouin zone that obey the finite volume condition. The
parameters α1, α2 parametrize one of the little rectangles in the picture, say the one at
the lower left.
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Fig. 24. – The large rectangle (in which opposite sides should be identified) represents the mo-
mentum space Brillouin zone B that parametrizes the electron momentum. The small rectangle
in the lower left (with again opposite sides identified) represents the macroscopic Brillouin zone
bB that parametrizes the shift angles α1, α2. The black dots are the allowed values of the mo-
mentum for a finite lattice of size n1 × n2 (drawn here for n1 = 8, n2 = 7). Turning on α1 and
α2 shifts the allowed momenta as indicated by the arrows. In particular, the point at the lower

left of the picture may be moved anywhere in the small rectangle that represents bB.

To compute k′, we integrate over B, the full Brillouin zone. To compute k̂′, we
integrate over the little rectangle, but for each point in the little rectangle, we sum over
the corresponding shifted momenta. These are two different ways to organize the same
calculation, so k̂′ = k′.

So instead of proving the original TKNN formula k = k′, it is equivalent to prove
that k = k̂′. This has the following advantage: k̂′ is defined in terms of the response of
the system to a changing electromagnetic vector potential A, so we can determine k̂′ just
from a knowledge of the effective action for A.

As practice, before determining the Berry connection for A, I am going to determine
the Berry connection for an arbitrary dynamical system with dynamical variables xi(t).
You can think of xi(t), i = 1, . . . , 3 as representing the position coordinates of a particle,
but they really could be anything else (for example xi(t) could have 3N components
representing the positions of N particles). Regardless, we assume an action

I =
1
2

∫
dt gij(x)

dxi

dt

dxj

dt
+

∫
dtAi(x)

dxi

dt
−

∫
dtV (x) + . . . .(2.19)

(There might be higher order terms but it will be clear in a moment that they are not
important.) We shall compute the Berry connection in the space of semiclassical states
of zero energy, a condition that we satisfy by imposing the condition V (x) = 0. (This
semiclassical approximation is valid in our problem because we do not need to treat the
electromagnetic vector potential A quantum mechanically. We can view it as a given
external field.)

Setting V = 0 means that we will evaluate the Berry phase not for all values of x but
only for values of x that ensure V (x) = 0. So we drop the V (x) term from the action,
and only carry out transport in the subspace of the configuration space with V = 0. In
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Fig. 25. – Propagation of a quantum particle between two points p and p′ in the configuration
space. We assume that the propagation occurs within the subspace with V = 0, represented here
as a two-sphere. The propagating particle acquires a phase exp(iI/�), where I is the classical
action for the chosen trajectory.

adiabatic transport, we can also ignore the term

Ikin =
1
2

∫
dt gij(x)

dxi

dt

dxj

dt
(2.20)

in the action, and any other term with two or more time derivatives. That is because
if we transport from a starting point p to an ending point p′ in time T , the derivative
dxi/dt is of order 1/T , and Ikin ∼ 1/T . In the adiabatic limit, T → ∞ and this vanishes.

So the only term in the action that we need to keep is the term with precisely one
time derivative:

I ′ =
∫

dtAi(x)
dxi

dt
=

∫ p′

p

Ai(x)dxi.(2.21)

As I have indicated, this term depends only on the path followed from p to p′, and not on
how it is parametrized. Now remember that the phase that a quantum particle acquires
in propagating from p to p′ along a given trajectory is eiI/�, where I is the action for
that trajectory (fig. 25). For us, in units with � = 1, this phase is just exp(i

∫
γ
Aidxi).

But the connection which on parallel transport along a path γ gives a phase
exp(i

∫
γ
Aidxi) is just A. What we have learned, in other words, is that for a sys-

tem in which a quantum ground state can be considered to be equivalent to a classical
ground state, the Berry connection is just the classical connection A that can be read
off from the classical action.

For the electromagnetic field in our problem, the action is

I =
1

2e2

∫
R3,1

d3xdt
(

�E2 − �B2
)

+
k

4π

∫
W3

d2xdt εijkAi∂jAk + . . . .(2.22)

We assume, for example, periodic boundary conditions with very long periods L1, L2 in
the two directions that are filled by our quantum Hall sample. (It doesn’t matter if we
assume periodic boundary conditions in the third direction.) A classical state of zero
energy is labeled by the two angles α1, α2 that were introduced earlier. To compute
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the Berry phase, we are supposed to substitute this formula in the action and keep only
the part of the action that has precisely 1 time derivative. This comes only from the
Chern-Simons term.

After integration over x1 and x2, the relevant part of the action is just

I ′ = − k

2π

∫
dt α1

dα2

dt
.(2.23)

From this, we read off the Berry connection

∇ ≡
(

D

Dα1
,

D

Dα2

)
=

(
∂

∂α1
,

∂

∂α2
+ i

kα1

2π

)
,(2.24)

and hence the Berry curvature

F̂α1α2 = −i

[
D

Dα1
,

D

Dα2

]
=

k

2π
.(2.25)

(If we add to I ′ a total derivative term
∫

dt ∂tf(α1, α2), this will change the formula for
∇ but it will not change F̂ .)

We remember that the integer k̂′ is supposed to be the integral of F̂/2π over the
Brillouin zone. We can now compute

k̂′ =
∫ 2π

0

dα1dα2
F̂
2π

=
∫ 2π

0

dα1dα2
k

(2π)2
= k.(2.26)

Thus we arrive at a version of the famous TKNN formula: the coefficient k of the quantum
Hall current can be computed as a flux integral of the Berry connection.

2.6. Edge states and anomaly inflow . – Yesterday, we explained why a purely 1d
quantum electron gas cannot have an imbalance between left-moving and right-moving
electron excitations. As a reminder, the reason was that in a periodic orbit, “what
goes up must come down” (fig. 2). From a field theory point of view, this is needed
because right-moving gapless fermions without left-moving ones cannot be quantized in
a gauge-invariant fashion. There is a (1+1)-dimensional version of the Adler-Bell-Jackiw
anomaly [6, 7].

However, one of the hallmarks of a quantum Hall system is that on its boundary it
has precisely such an imbalance. The reason that this must happen is that when we
verified the invariance of the Chern-Simons action

kCS =
k

4π

∫
M2×R

d3xεijkAi∂jAk(2.27)

under a gauge transformation Ai → Ai + ∂iφ, we had to integrate by parts. This
integration by parts produces a surface term on the surface of our material — that is on
∂M2 × R. There is no way to cancel this failure of gauge invariance by adding to the
action a surface term supported on ∂M2 × R. You can try to replace CS by

CS +
∫

∂M2×R

dt dx(?????),(2.28)
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Fig. 26. – Sketched here is a quantum Hall system supported on the surface of an infinite
cylinder. By varying

H

γ
A · d�, where γ is the indicated contour, one can induce an electric field

that goes “around” the cylinder. In a quantum Hall system, this will in turn induce a current
“along” the cylinder, as indicated.

where ????? is some polynomial in A and its derivatives, but whatever you try will
not work. (I recommend this exercise.) It is precisely because the anomaly cannot
be eliminated by adding some local interaction on the boundary that the anomaly is
physically meaningful.

To cancel the anomaly, that is the failure of gauge invariance of CS along the boundary,
requires the existence on the boundary of modes that are (1) gapless, so they cannot be
integrated out to produce a local effective action for A only, and (2) “anomalous,” that is
they are not possible in a purely 1-dimensional system. What fills the bill is precisely what
we found does not exist in a purely 1-dimensional system: “chiral fermions,” that is right-
moving gapless modes not accompanied by left-moving ones. The fact that an anomaly
in the boundary theory can be canceled by the existence of a bulk interaction that is not
gauge-invariant in the presence of a boundary is an illustration of the phenomenon of
“anomaly inflow” [25].

Since the failure of kCS is proportional to k, the “chiral asymmetry” that is needed
to cancel it is also proportional to k. In fact, the hallmark of an integer quantum Hall
system with a Hall conductivity of k is precisely that

n+ − n− = k,

where n+ and n− are the numbers of “right-moving” and “left-moving” gapless edge
modes. Instead of giving a technical analysis of field theory anomalies to explain how
this works, I will give a couple of possibly more physical explanations —one today and
one in Lecture Three.

2.7. The charge pump. – Today’s explanation involves a version of the Thouless charge
pump [26]. Let us think of a quantum Hall system on the surface of a long cylinder. In
fact for starters, think of an infinite cylinder (fig. 26).

We introduce the same sort of “twist parameter” α as before. We can imagine that
there is a magnetic flux α through a solenoid inside the cylinder such that the magnetic
field is 0 (or at least(18) independent of α) in the cylinder itself but

∮
γ

A · d� = α. Just
as before, the parameter α is only gauge-invariant mod 2π.

(18) In a conventional quantum Hall system, there is a strong magnetic field in the sample
—that is in the cylinder— but we can assume it to be independent of α. In a topological band
insulator with k �= 0, the magnetic field can be assumed to vanish in the sample. The latter
case is actually particularly natural for the discussion that follows.
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Fig. 27. – A semi-infinite cylinder made from a two-dimensional material whose band structure
leads to an integer quantum Hall effect because of a non-zero TKNN invariant. The boundary
is at the left end. Varying the twist parameter α causes a flow of charge, as described in the
text.

We adiabatically increase α from 0 to 2π, with the scalar potential assumed to be 0.
Since the electric field is then

�E =
∂ �A

∂t
,(2.29)

increasing α turns on an electric field that goes “around” the cylinder. But in the case of
a quantum Hall system, this drives a current that is perpendicular to �E, in other words
the current flows “along” the cylinder. The electrons therefore are pushed to the left (or
right, depending on the sign of k).

An early explanation by Laughlin of the integer quantum Hall effect was the following.
We assume that when α = 2π, the system returns to the same state that it was in at
α = 0. (This assumption is not valid for fractional quantum Hall systems, as explained
in sect. 2.9.) However, in the process, each electron may move k steps to the left, for
some integer k. Notice that since the cylinder has a finite circumference S, the number
of electrons per unit length is finite and thus it makes sense to say that each one moves k
steps to the left, for some k. This was interpreted as the basic integrality of the integer
quantum Hall effect. It does lead to the value k/2π for the Hall conductivity.

Now let us consider a cylinder that is only semi -infinite, with a boundary at let us
say the left end (fig. 27). The same parameter α as before makes sense, and we can still
adiabatically increase it by 2π. Since a quantum Hall system is gapped, if we make a
measurement far from the boundary, we will still see the same flux of valence electrons
to the left as before, assuming that only valence bands (states below the fermi energy)
are filled.

But what happens to the electrons when they arrive at the left boundary? A partial
answer is that there are edge states, and electrons go from the valence bands to the
edge states. But this is not enough: since the boundary has finite length, only finitely
many electrons can go into edge states (of reasonable energy). What happens, at least
in a topological band insulator (with finitely many bands) in which there is an upper
bound on the possible energy of an electron, is that as electrons flow in to the left from
the valence bands (the bands below the usual εF in the bulk) they must eventually flow
back out to the right in the conduction bands (the bands above the usual εF ). Moreover,
all this is happening continuously in energy so it must be possible for an electron to
evolve continuously from the valence bands in the bulk, to the conduction bands in the
bulk, somehow passing through edge states.

2.8. Joining valence and conduction bands . – The spectrum must therefore look some-
thing like what is shown in fig. 28: there must be edge-localized states that can contin-
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Fig. 28. – Drawn here is the ε-p plane, where ε is the electron energy and p is the electron
momentum along the boundary of a quantum Hall region. The solid regions are projections of
the valence bands and conduction bands to the ε-p plane. (In these projections, the component
of electron momentum normal to the boundary is forgotten, as it is not a conserved quantity
near the boundary.) Each curve in the figure represents a right-moving edge mode that connects
the projection of the bulk valence bands to the projection of the bulk conduction bands. (In
the case shown, there are two such curves, corresponding to k = 2.) Such a curve represents the
energy-momentum relation of a family of edge-localized states; as in the discussion of Fermi arcs
in Lecture One, such a curve terminates at a point where edge-localization breaks down and
the edge-localized state becomes indistinguishable form a bulk state. The little beads represent,
for some value of the parameter α, allowed values of the boundary momentum of an edge state
when the circumference S of the boundary is finite.

uously leave the valence band, flow up through the Fermi energy, and eventually join
the conduction bands. In the limit that the circumference S of the cylinder becomes
infinite, the edge-localized states have a continuous spectrum, but for finite S, they have
a discrete spectrum, as shown in the figure. In the figure, each curve in the ε-p plane
that connects the valence bands to the conduction bands represents a right-moving edge
mode. The little beads on the curve represent the allowed points on the curve for some
large value of S. As we adiabatically increase α, each little bead moves up along the
curve and under α → α + 2π, each bead is shifted in position to the next one. So under
α → α + 2π, there is a net charge flow of 1 from the valence bands to the conduction
bands for each right-moving edge mode.

Recall that as we discussed in Lecture One, a 1d mode is rightmoving if dε/dp > 0
at ε = εF . A left-moving mode has dε/dp < 0 at ε = εF , and under α → α + 2π
produces a net charge flow of −1 from the valence band to the conduction band. Thus
with n+ and n− as the numbers of right- and left-moving modes, the net charge flow
under α → α + 2π is

k = n+ − n−.(2.30)

It remains to tie up some loose ends in this explanation. The 1d edge modes cannot
be defined on the whole 1d Brillouin zone of the boundary (which is a circle) because
then we would be stuck with the fact that in a periodic orbit “what goes up must come
down,” leading to n+ = n−. The asymmetry comes from branches of edge mode that
exist in only a finite range of momenta p− ≤ p ≤ p+. What happens at the endpoints?
The answer is the same as it was in the somewhat similar example of Fermi arcs that
we discussed yesterday. The way that a family of edge-localized states can cease to exist
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at some momentum is by ceasing to be normalizable. This happens when the edge state
becomes indistinguishable from a bulk state.

That is part of what makes it possible to have adiabatic transport from the valence
bands (the states normally filled) to the conduction bands (the states normally empty),
through the edge states. At the endpoint of the edge state spectrum, an edge state is
indistinguishable from a bulk state.

For all this to make sense, adiabatic transport must remove as many electrons from
the boundary in the conduction bands as approach the boundary in the valence bands.
In other words, the total Hall conductivity of the empty (conduction) bands must be
minus the Hall conductivity of the filled (valence) bands. That is actually a property of
the Berry connection. Let A be the usual Berry connection for the filled bands and F
the corresponding curvature; and similarly let A′ and F ′ be the Berry connection and
curvature of the empty bands. Then TrF + TrF ′ = 0, basically because for all bands
together there is no Berry curvature. (The sum (TrF + TrF ′)/2π would represent the
first Chern class of all bands together, and this vanishes because all the electron states
together form a trivial vector bundle over the Brillouin zone.)

Indeed, the Hall conductivities of filled and empty bands are respectively∫
B

TrF
2π

,

∫
B

TrF ′

2π
.(2.31)

So the relation TrF +TrF ′ = 0 means that conduction and valence bands have opposite
Hall conductivities, and in our thought experiment, the flow of “filled” states (i.e., states
that would be filled in the ground state on an infinite cylinder) to the left equals the flow
of “empty” states to the right.

2.9. More on the fractional quantum hall effect . – I would like to next explain the
assertion that a fractional quantum Hall system does not return to its previous state
under α → α + 2π. We will use the same macroscopic model of a fractional quantum
Hall system that we used before in terms of the electromagnetic vector potential A and
an emergent U(1) gauge field a that only exists inside the material:

Ieff =
1
2π

∫
M3

d3x εijkAi∂jak − r

4π

∫
M3

d3x εijkai∂jak.

As in fig. 26, we consider a cylindrical sample and define α =
∮

γ
A. First let us discuss

how to characterize the state of the system for a given α.
In principle, α =

∮
γ

A can be controlled by varying the magnetic flux threaded by
the cylinder. But there is an analogous parameter α̂ =

∮
γ

a that cannot be controlled in
that way. Just like α, α̂ is gauge-invariant mod 2π.

What can we say about α̂? Recalling that F = dA, f = da are the ordinary electro-
magnetic field strength and its analog for a, the classical field equation for this system is

rf = F.(2.32)

In the limit of an infinite cylinder, a can be treated classically. (We postpone the more
interesting case of a finite cylinder until Lecture Three.) In the gauge A0 = a0 = 0, the
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equation rf0i = F0i becomes

r
dai

dt
=

dAi

dt
,

and therefore

r
dα̂

dt
=

dα

dt
.

Hence when we adiabatically increase α by 2π, α̂ increases adiabatically by 2π/r.
Since α̂ is gauge-invariant mod 2π, the shift α̂ → α̂ + 2π/r does not return the system
to its original state. We need to take α → α + 2πr, and therefore the Hall conductivity
can be smaller than its usual “quantum” by a factor of r.

Figure 28 still has some sort of analog, but the edge states cannot be free electron
states: They have to be capable of transporting a fractional charge under α → α + 2π,
and returning to their original state only under α → α + 2πr.

2.10. More on Fermi arcs. – Finally, we will take another look at the Fermi arcs that
we discussed in Lecture One. In Lecture One, we considered a model Hamiltonian that
is valid near a generic band-crossing point and did an explicit computation to show the
appearance of edge-localized states. However, the original paper [15] predicting these
states did not proceed by solving a model Schrodinger equation. Rather the result was
deduced as follows from some of the things that we have explained today.

First we recall the basic setup. Weyl points arise at special points in the Brillouin zone
at which valence and conduction bands meet (fig. 10). Near a boundary of a finite sample,
only two of the three components of momentum are conserved. So it is useful (fig. 17) to
project the Brillouin zone and the bad points in it to two dimensions, “forgetting” the
component of momentum that is not conserved. It is important to remember that in a
crystal, the momentum components, including the component that is being “forgotten”,
are periodic, and in particular the horizontal direction in the picture represents a circle
U ∼= S1, though it is hard to draw this.

Now draw a little circle U ′ around the projection of one of the bad points, as in fig. 29.
The product U × U ′ is a two-torus. We define an integer k∗ as the Berry flux through
U × U ′:

k∗ =
∫

U×U ′
d2p

TrF
2π

.

It receives a contribution of 1 or −1 for each positive or negative Weyl point enclosed by
U × U ′. So in the example drawn, k∗ = 1, but we would get k∗ = 0 or k∗ = −1 if we
take U ′ to encircle one of the other two special points in the projection of fig. 29.

We have arranged so that the two-torus U × U ′ does not intersect any of the Weyl
points. So the restriction to U × U ′ of the original 3d band Hamiltonian on the 3d
Brillouin zone B is a gapped Hamiltonian H∗ parametrized by a two-torus U × U ′. We
can intepret H∗ as the band Hamiltonian of some 2d lattice system that has a Hall
conductivity of k∗. So as we have learned, H∗ has edge modes, equal in number to k∗,
that “bridge the gap” in energy between the filled and empty bands. This is sketched in
fig. 30.
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Fig. 29. – Projection of the bulk Brillouin zone to the boundary Brillouin zone that is appropriate
for edge states. In the projection, the component of electron momentum normal to the boundary
(here plotted horizontally) is forgotten. This component is parametrized by a circle U . In the
figure, we have drawn another circle U ′ around the projection of one of the band-crossing points
in the bulk. The product U × U ′ is a two-torus. This two-torus is used as the Brillouin zone of
an auxiliary quantum Hall system that can be used in analyzing the Fermi arcs.

So there have to be edge states that intersect U ′ (the edge states are not labeled by U
since U parametrizes the component of momentum that is not relevant to edge states).
Since we had a lot of freedom in the choice of U ′, the spectrum of edge-localized states
has to consist of arcs that join the projections of band-crossing points.

The auxiliary 2d quantum Hall system that was used in this argument does not have
any simple relation, as far as I know, to the 3d Weyl semi-metal that we are studying.

3. – Lecture Three

Today’s lecture will concern three topics: 1) more on the fractional quantum Hall
effect; 2) another explanation of the edge modes in the integer quantum Hall effect;
3) Haldane’s model [23] of quantum Hall physics without an applied magnetic field.

3.1. More on the fractional quantum Hall effect . – As yesterday, we describe a frac-
tional quantum Hall system macroscopically by an effective action for the electromagnetic

Fig. 30. – The band topology on U × U ′ is such that there must be edge states intersecting the
circle U ′ and connecting the points in the boundary Brillouin zone that are projections of bulk
band-crossing points with a non-zero net chirality.
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Fig. 31. – A flux tube of f in a two-dimensional surface. f vanishes except very near the point
x = x0, and has a non-zero integral.

vector potential A and an “emergent” U(1) vector potential a that only exists inside the
fractional Hall material. We can take the effective action to be the sum of the bulk
Maxwell action

1
2e2

∫
R3,1

d3xdt
(

�E2 − �B2
)

(3.1)

plus a term that “lives” in the material:

Ieff =
∫

M2×R

d2xdt

(
1
2π

εijkAi∂jak − r

4π
εijkai∂jak

)
.(3.2)

For a first orientation, let us consider the interpretation of a “quasiparticle” that has
a charge q under a. Here q must be an integer since a is a U(1) gauge field. If such a
quasiparticle is present at rest at a point x = x0 in M2, then the part of the action that
depends on a acquires an extra term and becomes∫

M2×R

d2xdt

(
1
2π

εijkAi∂jak − r

4π
εijkai∂jak

)
+ q

∫
dt a0(x0, t).(3.3)

The field equation for a0 becomes

F12(x)
2π

− rf12(x)
2π

+ qδ(x − x0) = 0.(3.4)

To solve this equation, we obviously need a delta function in F12 and/or f12. But
which? In condensed matter, a delta function in f or F is really an idealization of a
very tiny flux tube. Because a and f live only in two space dimensions, a delta function
in f makes sense. It represents a little flux tube supported near the point x0 in the
two-dimensional surface M2 (fig. 31). The coefficient of the delta function determines
the integral of f over M2.

Because A lives throughout all of (3+1)-dimensional spacetime, such a delta function
does not make sense for F = dA. Of course, we can imagine a thin solenoid generating
a flux tube of F , but this would extend into the third spatial dimension. It would not
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Fig. 32. – A spherical quantum Hall sample with a magnetic monopole inside. The Chern-
Simons effective action predicts that if no quasiparticles are present, then the induced electric
charge in the quantum Hall sample will equal k, the coefficient of the Hall conductivity. The
system can be everywhere near its ground state if k is an integer, but if k is a fraction, then
fractionally charged quasiparticles will inevitably be present.

represent a quasiparticle that lives in M2. Alternatively, we could consider a small electric
current loop in M2, say of small radius ρ. Such a current loop will create a magnetic
dipole field in 3 + 1 dimensions. The magnetic field lines of a dipole form closed loops
and there is no net flux through M2: if F is the dipolar magnetic field of a current
loop then

∫
M2

F = 0. (This is true whether or not the current loop is in M2.) So after
coarse-graining, a small current loop will give 0, not a delta function in F .

So we have to solve the equation

F12(x)
2π

− rf12(x)
2π

+ qδ(x − x0) = 0,(3.5)

with a delta function in f12 and not in F12, and hence near x = x0,

f12(x)
2π

=
q

r
δ(x − x0).(3.6)

Now if we go back to the action

Ieff =
1
2π

∫
M2×R

d2xdt εijkAi∂jak − r

4π

∫
M2×R

d3x εijkai∂jak,(3.7)

we see that the charge density J0 = δIeff/δA0 of A is

J0 =
f12

2π
=

q

r
δ(x − x0).(3.8)

Thus a quasiparticle with charge q for a has ordinary electric charge q/r (in units of the
charge of the electron).

It is actually not necessary to go into so much detail to see that a fractional quantum
Hall system must have fractionally charged quasiparticles. Return for a moment to
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an integer quantum Hall system:

Ieff =
k

4π

∫
d2xdt εijkAi∂jAk, k ∈ Z.(3.9)

The corresponding electric charge density is

J0 =
δIeff

δA0
=

kF12

2π
.(3.10)

If we place a magnetic monopole with one Dirac quantum∫
F12

2π
= 1(3.11)

inside a spherical sample (fig. 32), then the Chern-Simons effective action predicts that
this induces in the material a charge

Q =
∫

M2

J0 =
∫

M2

kF12

2π
= k,(3.12)

and all is well if k is an integer. But if the effective value of k is not an integer, as in the
case of the fractional quantum Hall effect, then there must be additional contributions
to the electric charge in the form of fractionally charged quasiparticles that will appear
somewhere on the surface of the material. Indeed, consider a thought experiment in
which we start with an isolated magnetic monopole in vacuum. Then we bring in from
infinity a large but finite collection of atoms and assemble them into a fractional quantum
Hall system in the form of a large sphere surrounding the magnetic monopole, as in
the figure. We can do this making sure that the atoms are always far away from the
monopole. As electric charge is conserved and the vacuum is an insulator, the charge of
the monopole does not change in this process. The total electric charge of the spherical
quantum Hall sample that surrounds the monopole will be an integer, since this system is
ultimately made from a finite number of electrons, protons, and neutrons, each of integer
charge. The total electric charge of the system, however, will be the sum of the “bulk”
contribution k of eq. (3.12) and a further contribution from any quasiparticles that may
be present. If k is not an integer, then the spherical quantum Hall system that surrounds
a magnetic monopole will have to contain fractionally charged quasiparticles.

A full understanding of the fractional quantum Hall system requires treating a quan-
tum mechanically. I will not attempt a complete explanation in this lecture, but will
explain a few basic points.

First of all, part of the reason that we have gotten as far as we have without treating
a quantum mechanically is that so far we considered a fractional quantum Hall system on
an infinite or semi-infinite cylinder such as that of fig. 27, in which case a full quantum
treatment is not necessary for many questions. For example, in sect. 2.9, we treated
α̂ =

∮
γ

a as an arbitrary constant, rather than a quantum variable. This is possible on
an infinite or semi-infinite cylinder, but in the case of a compact sample we do need to
treat a quantum mechanically.
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Fig. 33. – A two-torus is a basic example of a topologically interesting two-manifold.

In discussing the quantum mechanics of a, we will ignore A and just study the purely
(2 + 1)-dimensional problem:

Ieff = − r

4π

∫
M2×R

d3x εijkai∂jak.(3.13)

A noteworthy fact is that there is no metric tensor in sight, and therefore what we are
trying to describe is a “topological quantum field theory.” It will describe not particle
excitations, but only the “dynamics of the ground state(s)” and topological properties of
quasiparticles. At long distances, many or most gapped quantum systems simply become
trivial, and usually we take this for granted as the long distance behavior of a gapped
system. But more generally a gapped quantum system can lead at long distances to a
non-trivial topological quantum field theory, and that is what happens in the case of the
fractional quantum Hall effect.

A compact sample of non-trivial topology, such as the torus of fig. 33, is particularly
interesting. We want to find the quantum states of the field a quantized on such a
manifold.

The quantum states are supposed to make up a Hilbert space H. H is supposed
to provide a representation of an algebra of quantum operators that is obtained, in
some sense, by quantizing the space of classical observables. In a gauge theory, we
consider only the gauge-invariant classical observables. So we should ask, “What are the
gauge-invariant classical observables that we can make from a?” As soon as we ask this
question, we run into the following fact. A gauge-invariant local operator would have to
be a polynomial in f = da and its derivatives. But the classical field equation of a is

f = 0,(3.14)

and therefore there are no local, gauge-invariant classical observables.
However, there are gauge-invariant “Wilson loop” operators. We pick a closed curve

� ⊂ M and define the “Wilson loop operator”

Ws(�) = exp
(

is

∮
�

a

)
, s ∈ Z.(3.15)

This operator is invariant under continuous deformations of �. Here are two related
explanations of this fact: (a) This is true because f = 0 so Ws(�) can only see global
information like Aharonov-Bohm phases; (b) More generally, in any topological quantum
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Fig. 34. – Linking of two loops in R3.

field theory, diffeomorphisms are symmetries and any loop � is equivalent by diffeomor-
phism to any nearby loop to which � can be deformed.

The physical meaning of the Wilson loop operator Ws(�) is that the amplitude for a
process in which a quasiparticle of charge s propagates around a loop � is proportional
to a factor of Ws(�). If the loop � can be continuously shrunk to a point without any
singularity, then the operator Ws(�) is trivial since the quasiparticle is not going any-
where. “Trivial” means that in this case Ws(�) is equal to 1 as an operator. We are only
interested in the case that this is not so.

There are two possible sources of Aharonov-Bohm-like phases that a Wilson loop
operator Ws(�) might see. There may be another similar operator Ws′(�′), where �
and �′ are “linked” and cannot be disentangled (fig. 34). (There will be a singularity
if we try to pass � through �′.) This effect is associated to fractional statistics of the
quasiparticles: It means that the presence of one quasiparticle propagating around �′

modifies the amplitude for a second quasiparticle to propagate around � even if they are
very far apart. Alternatively, and more like the classical Aharonov-Bohm idea, the loop
� might be “non-contractible” for topological reasons unrelated to the existence of other
quasiparticles (fig. 35).

If two such loops � and �′ on the torus have a non-zero intersection number � ∩ �′

(fig. 36) then — as one can learn with the help of the classical Poisson brackets or
quantum canonical commutators — the corresponding Wilson operators do not commute.
They obey

Ws(�)Ws′(�′) = exp(2πiss′� ∩ �′/r)Ws′(�′)Ws(�).(3.16)

Fig. 35. – Non-contractible loops on a torus.
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Fig. 36. – Two non-contractible loops on a torus that have a non-zero intersection number �∩ �′.
In the example shown, the intersection number is 1.

The basic case – sketched in the figure – is that �∩ �′ = 1. Moreover, we may as well
just set s = s′ = 1 since Ws(�) is just the �th power of W1(�) and similarly for Ws′(�′).
If we set A = W1(�), B = W1(�′), then the algebra obeyed by A and B is

AB = exp(2πi/r)BA.(3.17)

An irreducible representation of this algebra has dimension r, because

B → ABA−1 = exp(2πi/r)B(3.18)

multiplies any eigenvalue of B by exp(2πi/r). So r states are needed to represent this
algebra and actually r states are enough. These are the r “ground states of Chern-Simons
theory on a torus,” for the case of the gauge group U(1) at “level” r.

So this is the basis for the claim that in the limit of a very large system, a quantum
Hall system on a topologically non-trivial manifold has a non-trivial vacuum degener-
acy. The condition “in the limit of a very large system” is necessary, because the vacuum
degeneracy is actually slightly lifted by exponentially small effects that result from quasi-
particle tunneling around a non-contractible loop. Tunneling of a charge s quasiparticle
around a non-contractible loop � such as that of fig. 35 contributes to the effective Hamil-
tonian a term Ws(�) with an exponentially small coefficient. (This coefficient is definitely
not a topological invariant. It depends on the energy of the quasiparticle and the length
of the loop � —or more precisely the shortest length of a loop in its homotopy class, as
this is the most likely tunneling path.)

3.2. More on edge states of the integer quantum Hall effect . – This completes our
rather modest introduction to the vast topic of the fractional quantum Hall effect. Now
we return to the integer quantum Hall effect. Largely following Haldane [23], we will
give a conceptual, non-computational proof of something of a fact that is familiar from
Lecture Two (another conceptual explanation was already given in sect. 2.7): a (2 + 1)-
dimensional system with a Chern-Simons coupling in bulk

Ieff =
k

4π

∫
d3x εijkAi∂jAk,(3.19)

and n+−n− = k chiral edge states on the boundary is completely consistent and anomaly-
free. To do this, we will simply describe a physical realization. First we do this in a
continuum language and then we do it via the Haldane model.
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Fig. 37. – The one-loop Feynman diagram associated to the parity anomaly.

We couple the field A to a massive (2 + 1)-dimensional Dirac fermion ψ of charge 1:

Iψ =
∫

d3xψ
(

/D − m
)
ψ.(3.20)

Since ψ is gapped, we can “integrate it out” and get a local effective action for A only.
The dominant term at low energies turns out to be

sign m

2
CS(A) =

sign m

2
1
4π

∫
d3xεijkAi∂jAk.(3.21)

The factor of 1/2 is worrisome as it contradicts gauge invariance. However, we will always
consider combinations in which it is absent. The factor signm follows from reflection
symmetry (under which m and CS(A) are both odd) and dimensional analysis.

The effective action (sign m/2)CS(A) was first found [27,28] from a Feynman diagram
(fig. 37), and this is not a difficult calculation. However, in the spirit of the present
lectures, it is more natural to get this result from the Berry flux.

We know that when any gapped system of charged fermions is “integrated out,”
the resulting coefficient of CS(A) equals the winding number of the momentum space
Hamiltonian. The massive Dirac Hamiltonian in 2 + 1 dimensions is

H = σxpx + σypy + mσz.(3.22)

Fig. 38. – The equator of the two-sphere.
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Fig. 39. – The upper hemisphere of the two-sphere.

For large |p|, the mapping is

(px, py) →

⎛⎝ px√
p2

x + p2
y

,
py√

p2
x + p2

y

, 0

⎞⎠ ,(3.23)

which winds around the equator of the sphere (fig. 38).
The full mapping

(px, py) →

⎛⎝ px√
p2

x + p2
y + m2

,
py√

p2
x + p2

y + m2
,

m√
p2

x + p2
y + m2

⎞⎠(3.24)

has for its image the upper hemisphere or the lower hemisphere, depending on the sign of
m (fig. 39). So the winding number is 1

2 sign m, and that is the Chern-Simons coefficient
that we get by integrating out ψ.

For the moment, we want to consider a theory that is gapped and trivial at low
energies, so along with ψ, we add a second fermion field ψ′ of mass −m. This combination
is trivial in the sense that the total Chern-Simons coefficient obtained by integrating out
ψ and ψ′ is

1
2

(sign m + sign(−m)) = 0.(3.25)

There is no induced Chern-Simons coupling, so there is no anomaly on a manifold with
boundary.

On a sample with boundary, we want a boundary condition such that the system
remains trivial even along the boundary —no edge excitations at all. This will certainly
be consistent and physically sensible! On a half-space x1 ≥ 0, what boundary condition
will ensure that nothing happens along the boundary?

A boundary condition that does the trick is

ψ′|x1=0 = γ1 ψ|x1=0 .(3.26)

Recall that ψ and ψ′ have equal and opposite masses(
/∂ − m

)
ψ = 0 =

(
/∂ + m

)
ψ′,(3.27)
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and that in 2+1 dimensions, the fermion mass is odd under reflection. So if we combine
ψ and ψ′ to a single fermion ψ̂ defined on all of R3 by

ψ̂(x1, x2; t) =

{
ψ(x1, x2; t), if x1 ≥ 0,

γ1ψ
′(−x1, x2; t), if x1 ≤ 0,

(3.28)

then ψ̂ just obeys (
/∂ − m

)
ψ̂ = 0,(3.29)

and certainly has no gapless mode.
Now, while keeping the fermion kinetic energy and the boundary conditions fixed, we

change the sign of the mass of ψ′ and take both ψ and ψ′ to have the same mass m > 0.
This cannot affect the consistency of the theory since the mass is a “soft” perturbation.
Of course, when the mass of ψ′ passes through zero, the theory becomes ungapped and
passes through a phase transition. What is there on the other side of this transition?
The Hall conductivity —that is the coefficient of CS(A) in the effective action— is now
1
2 (1 + 1) = 1. By itself this would be anomalous. But the Dirac equation for ψ̂ is now(

/∂ − m sign(x1)
)
ψ̂ = 0,(3.30)

and thus the mass of ψ̂ changes sign in passing through x1 = 0. As in a classic analysis
by Jackiw and Rebbi [29], this change in sign of the mass leads to the existence of a
gapless mode supported near x1 = 0. The relevant solution is quite similar to what we
have already seen in eq. (1.59):

ψ = exp(−m|x1|)ψ‖,(3.31)

with

γ1ψ‖ = −ψ‖, /∂
‖
ψ‖ = 0.(3.32)

The condition γ1ψ‖ = −ψ‖ determines ψ‖ to have definite chirality in the (1 + 1)-
dimensional sense, so what we get this way is a chiral edge mode that propagates along
the boundary at x1 = 0.

Thus we have a manifestly consistent construction of a (2 + 1)-dimensional system
that in bulk has an effective action CS(A) (plus terms of higher dimension) and along
the boundary has a chiral edge mode. Had we started with k pairs ψ, ψ′, we would
have arrived in the same way at a bulk action kCS(A) and k chiral edge modes. So we
have confirmed the consistency of this combined system without having to investigate
the “anomalies” of the chiral edge modes.

3.3. Haldane’s model of graphene. – It remains to describe how Haldane realized
this system in a condensed matter model —a small perturbation of the standard band
Hamiltonian of graphene. Graphene is an atomic monolayer of carbon atoms arranged in
a hexagonal (or honeycomb) lattice, sketched in fig. 40. We think of this as a lattice in
the x-y plane, with z as the normal direction. A carbon atom has 6 electrons; 2 of them
are in 1s states and 3 more go into forming covalent bonds with the 3 nearest neighbors
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Fig. 40. – A hexagonal or honeycomb lattice. This is a bipartite lattice; lattice sites can al-
ternately be labeled A or B in such a way that the nearest neighbors of A sites are B sites
and vice-versa. The A sites are all equivalent under lattice translations and the same is true of
the B sites. But there are no translation symmetries exchanging A and B sites. A unit cell,
accordingly, contains one A site and one B site.

of any given atom. (One can think of the electrons in these bonds as hybridized 2s, 2px,
and 2py electrons.) We are left with 1 electron per atom, which is going to go into the
2pz orbital —with spin up or down. Thus the two 2pz orbitals will be “half-filled.”

The honeycomb lattice has two atoms per unit cell. Each unit cell has an A atom and
a B atom, as explained in the figure. So the 2pz orbitals form two bands (not counting
spin) and we want to “half-fill” these bands.

What happens is dictated by symmetry up to a certain point, but the easiest way to
understand it is to first solve a simple model [30-32] in which the Hamiltonian describes
“nearest neighbor hopping” with amplitude t from the A-lattice to the B-lattice and
vice-versa. A shortcut to write the momentum space Hamiltonian is as follows. Pick a
point in the B lattice as shown in fig. 41, and let the momentum of an electron (and the
normalization of its wave function) be such that the amplitudes at the three neighboring
A points are 1, eiα, and eiβ . Here α and β are arbitrary angles; they give a convenient
parametrization of the Brillouin zone.

The total hopping amplitude to the indicated B site is then 1 + eiα + eiβ (times
the hopping constant t). The Hamiltonian is Hermitian, so the B → A hopping is the

Fig. 41. – Hopping to a B site from its nearest neighbors.
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Fig. 42. – Apart from translation symmetries, the honeycomb lattice has a symmetry group of
order 12. This can be identified as the group of all symmetries of the lattice that leave fixed
a point p at the center of one of the hexagons. (Up to conjugation by the translation group,
it does not matter which hexagon one picks.) The lattice has a symmetry group of order 6
consisting of rotations around p by an angle 2πn/6, n ∈ Z. Supplementing this with reflections
that leave fixed a line through p gives the group of order 12.

complex conjugate of this and the momentum space Hamiltonian is in the A, B basis

H = t

(
0 1 + e−iα + e−iβ

1 + eiα + eiβ 0

)
.(3.33)

H is traceless, so a band crossing occurs exactly when there is a zero-mode of H. To
find such a zero-mode, we have to solve

1 + eiα + eiβ = 0,(3.34)

with real α, β. The equation implies that eiα and eiβ are complex conjugates, and there
are precisely two solutions

eiα =
1
2

(
−1 ±

√
−3

)
= e−iβ .(3.35)

Expanding around either of these solutions, one finds a Dirac-like Hamiltonian, so we
have found two “Dirac points” in the Brillouin zone.

Fig. 43. – It is believed that the Fermi energy of an ideal graphene crystal in empty space, with
spin-orbit forces turned off, precisely equals the energy of the Dirac points.
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This was a crude model, but the graphene lattice has a lot of symmetries. Apart
from translation symmetries, the symmetries are as follows. As shown (fig. 42), let p
be the center of one of the hexagons. Then one can rotate around p by any multiple of
2π/6, and one can also reflect along various axes through p. For example, one can find
a reflection that maps a given Dirac point to itself —and therefore (recall the discussion
in sect. 1.9) ensures that the gapless Dirac modes that we found in the model remain
gapless after any perturbation that preserves the reflection in question. One can also see
that a 2π/6 rotation exchanges the two Dirac points, ensuring that they are at the same
energy.

Furthermore, because (in the idealized hopping model) the band Hamiltonian is trace-
less away from the Dirac points, at every momentum away from the Dirac points, pre-
cisely one state has energy below the Dirac points and one has energy above them. So at
half-filling, the Fermi energy is precisely the energy of the Dirac points. As discussed in
sect. 1.6, this conclusion remains valid after any sufficiently small symmetry-preserving
perturbations of the ideal Hamiltonian. It is believed to hold in the real world, for an
ideal graphene crystal in empty space, with spin-dependent forces turned off (fig. 43).

In particular, it is believed that an ideal graphene crystal in the absence of spin-
dependent forces has gapless Dirac-like excitations. Suitable perturbations involving
symmetry breaking and/or spin-dependent forces can give a variety of gapped models.
Haldane chose a perturbation that broke some symmetry and gave masses of the same
sign to all Dirac modes. Allowing for spin, this gives a quantum Hall coefficient of
2 × (1/2 + 1/2) = 2. Kane and Mele [14] analyzed the effects of spin-dependent forces
and arrived at the spin quantum Hall effect, the germ of a 2d topological insulator.
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