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Abstract

This thesis investigates the viability of the PROPOSAL lepton propagation tool

as an alternative to the commonly used GEANT4 simulation for muon propagation

within the NOvA experiment. The main objectives of this research were twofold: first,

to validate the accuracy of PROPOSAL data in simulating rock muons when compared

to GEANT4 data; second, to explore the practical application of transporting cosmic

muons through the NOvA rock region using PROPOSAL. Additionally, an 1D analysis

was conducted to determine the optimal altitude at which to hand over the simulation

task from PROPOSAL to GEANT4, should we choose to use PROPOSAL for rock

simulations and GEANT4 for detector simulations in the NOvA experiment. By thor-

oughly examining these aspects, this study aims to contribute to the advancement of

muon simulation techniques and their implementation in high-energy experiments such

as NOvA.
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Chapter 1

Introduction

Scientific discovery and understanding comprise the formulation of theories to explain

observed events, the planning and implementation of experiments to evaluate those

theories, and the incorporation of experimental outcomes to refine and advance the

theories. This process is the modern scientific method which is the bedrock of our

understanding of reality scientifically. Simulation or modeling comes in between the

theory and experiment in this process. A simulation tool (mainly numerous kinds of

software) implements the formulas of the concerned theory and execution of the tool,

which can be thought as a virtual experiment, provides results that can help us to

realize, visualize, predict, optimize and many more for the concerned phenomena. Par-

ticle physicists also employ complicated computer simulations to interpret the massive

amounts of data produced in particle collider experiments. Our comprehension of par-

ticle collisions, radiation patterns, decays, detector interactions, and sensor readings is

aided by these simulations.

One of the widely used simulation tool for particle and nuclear physics experiment

is GEANT4 [1] which is currently used in the simulation chain of Fermilab’s neutrino

experiment NOvA (NuMI Off-axis ν Appearance). It allows researchers to model par-

ticle passage through matter and investigate their interactions with various materials.

It is a powerful and highly versatile tool that has extensive capabilities of simulat-

ing particle collisions, electromagnetic interactions, hadronic processes, optical photon

transport, implementing effects of complex detector systems, visualizing, data analysis

and many more.
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However, despite of its robustness and accuracy, usage of GEANT4 can be a time

consuming and computationally expensive endeavour for simulating large volume of

particles over high energy range in dense mediums. Particularly, for the NOvA exper-

imental setup, simulating particles through the “NOvA Rock Region”, where particles

have to propagate through a region of rock and soil, can be a highly time consuming

process.

In addition, there are alternative simulation tools available that employ different

methodologies, enabling us to accelerate our simulation processes in NOvA while pre-

serving a substantial degree of precision and accuracy. One notable tool in this regard

is PROPOSAL [2]. Unlike GEANT4, PROPOSAL has been exclusively designed to

simulate the propagation of leptons within various mediums. Originally developed for

neutrino experiments such as IceCube and ANTARES, which involve the passage of

a large number of leptons (e.g., neutrinos) through a cubic kilometer of ice (for Ice-

Cube) and Water (for ANTARES) before reaching the detector, PROPOSAL stands

out for its ability to significantly reduce computational time while maintaining a note-

worthy level of accuracy. This appealing characteristic has motivated us to consider

implementing PROPOSAL for simulating the lepton propagation in the rock region of

NOvA experiment.

1.1 The NOvA Experiment

The NOvA (NuMI Off-axis νe Appearance) experiment is the flagship neutrino ex-

periment of Fermi National Accelerator Laboratory. This experiment is designed to

study the phenomena called Neutrino Oscillation. The standard picture for the case

of neutrino is that it has 3 different types (physicists call these types flavour), naming

electron-neutrino (νe), muon-neutrino (νµ) and tau-neutrino (ντ ), each of which is a

partner to its charged lepton, electron (e), muon (µ) and tau (τ) respectively. It turns

out that one flavour of neutrino can transform into another flavour [3]. This phenom-

ena of transformation is known as Neutrino Oscillation. The phenomena was proposed

by Bruno Pontecarvo in 1968 to explain the infamous “solar neutrino” problem [4],

where physicists had found that the amount of neutrinos that should come from the

sun is not being detected on earth. Building upon the pioneering work of Pontecorvo,
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it has been proposed that a fraction of neutrinos, such as νe, emanating from the Sun

may undergo flavor transformation during their journey through space. Consequently,

detection mechanisms designed to identify only νe particles might not capture these

transformed neutrinos. If that is the case that if one flavor can change into another

spontaneously, according to quantum mechanics it means that neither of the νe or νµ

is a stationary state of the system (meaning, neither of them are eigenfunction of the

Hamiltonian). Rather the true stationary states would be the orthogonal combinations

of them, which can be written as,

ν1 = cos θ νµ − sin θ νe and ν2 = sin θ νµ + cos θνe (1.1)

Using simple calculations from quantum mechanics it can be shown that the prob-

ability of transforming νe to νµ is following

Pνe→νµ =

[
sin(2θ) sin

(
E2 − E1

2ℏ
t

)]2
(1.2)

where t is time, E1,2 are the energy of the stationary states ν1,2, and θ is called a mix-

ing angle. This shows that the expression for probability is a sinusoidal function which

means, νe will transform to νµ and νµ to νe back and forth analogous to oscillation

from one state to another. Hence the name of the phenomena. For detailed discussion

on neutrino oscillations, consult [3].

The NOvA experiment is primarily designed to investigate the oscillation from

νµ → νe by shooting νµ from Fermilab site and comparing the number of νe present

at Fermilab site (near Illinois, Chicago) to the observed number of νe at a site near

U.S - Canada border called Ash River, Minnesota, 810 km away from Fermilab. A sec-

ondary goal of the experiment is to greatly improve measurements of νµ disappearance

parameters.

Components: The project consists of 3 main components, 1. a neutrino beam,

2. detector at Fermilab site called the Near Detector, and 3. detector at Ash River,

Minnesota called the Far Detector.

1. The NuMI Beam: The Neutrinos at the Main Injector (NuMI) neutrino

beam was built at Fermilab to provide neutrinos for MINOS, a long-baseline

neutrino oscillation search experiment which investigates disappearance of νµ

as they travel through earth. However, this beam facility was later used for

3



other experiments like MINOS+, MINERvA, and NOvA. The NuMI beam is

produced by 120 GeV protons hitting the 0.95 meter long graphite target which

is essentially a Nucleon-Proton interaction that eventually produces a secondary

beam of hadrons [5]. Two magnetic horns allow preferential selection of one or the

other kind of charged hadrons. Pions and Kaons constitutes the major portion

of the hadrons beam and predominantly decays to produce muons and neutrinos.

Upon separating the muons from the decay products, the NuMI facility produces

a nearly pure νµ beam. The reactions can be summarized as

N + P → π+ +K+ (1.3)

π+ → µ+ + νµ (1.4)

K+ → µ+ + νµ (1.5)

There is also a small anti muon-neutrino (ν̄µ) component coming from negative

hadrons (π−,K−) and a small contamination of electron-neutrinos (νe) due to

subdominant electronic decay mode of K+ hadrons, decays of K0 particles, and

decays of tertiary muons.

Figure 1.1: Schematic of the NuMI beam. All the important elements are shown

together with relevant dimensions, including the target, the horns, the decay pipe,

the hadron absorber, and the so-called muon shield which consists of the 240m long

dolomite rock preceding the Near Detector. [5]

2. The Near Detector: As illustrated in Figure 1.2, the NOvA Near Detector

(ND) is housed in an underground cavern off the existing MINOS access tunnel.

This Near Detector location is 1002 meters away from the NuMI Target Hall and

105 meters below ground. As seen in Figure 1.3, the cavern and Near Detector
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are placed off-axis at the same angle of 14.6 milliradians as the Far Detector in

Ash River. Most parts of the Near Detector’s design - PVC extrusions, modules,

planes, blocks, and fiber readout were created for the Far Detector. They are

utilized for the Near Detector as well to make it as comparable to the Far Detector

as possible. The Near Detector size is (3.9 × 3.9 × 12.8)m3 with mass 290 ton.

Image of Near Detector is shown in the figure 1.5 alongside with the Far Detector

image for comparison.

Figure 1.2: Plan and elevation view of the NuMI beam line. The NOvA Near Detector

is located in the underground tunnel in the location labeled “NOvA cavern”.[6]

Figure 1.3: A detailed plan view of the MINOS access tunnel depicting that the Near

Detector is off 14.6 milliradians from the NuMI beam axis.[6]
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3. Far Detector: The NOvA Far Detector is located in the vicinity of Ash River,

Minnesota, 810.5 kilometers away from Fermilab. The site is 11.8 kilometers west

of the NuMI beamline, shown in figure 1.4. The dimension of the active detector

is (15.5× 15.5× 60)m3 with mass 14000 tons. A schematic diagram for both the

Near and Far Detector is shown in figure 1.5.

Figure 1.4: The Ash River Far Detector location is depicted on a map. The NuMI beam

centerline (blue) passes past the MINOS detector (red star) underground at Soudan.

The NOvA Ash River location is located 11.8 km (14.6 mradians) off-axis on the red

line to the left (west) of the NuMI beam centerline. The location is located north of

Voyageurs National Park and the US-Canada border. [6]
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Figure 1.5: NOvA Near and Far Detectors shown with the dimension. The inset

pictures shows the constituting part of the detectors. The detectors are made up off

extruded PVC cell filled with liquid scintillator.[7]

Detector Elements:

• All NOvA Detectors are built around a simple rectangular rigid PVC plastic cell

housing a liquid scintillator and a wavelength-shifting fiber. Charged particles

travel mostly along the depth (D) of the cell and produce scintillator light. When

charged particles interact with scintillator material, it deposits energy by exciting

the scintillator atom. As these atoms comes to ground states from excited states,

they release photons excess energy in the form of scintillator light. The light

bounces about in the rectangular cell of width W, depth D, and length L until it

is trapped by a wavelength-shifting fiber or absorbed by PVC or scintillator. At

the top of the cell, both ends of the looping fiber are directed to one pixel on an

Avalanche Photodiode (APD) photodetector array, and the light is converted to

an electrical signal.
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Figure 1.6: A PVC cell (W, D, L) with a liquid scintillator and a wavelength-shifting

fiber (green). Light (blue line) is produced when a charged particle strikes the front

face and bounces off the cell walls until it is absorbed by the fiber. The light is sent

through the fiber to an APD.[6]

• The liquid scintillator stored inside the NOvA cells accounts for 70% (10.5 kilo-

tons) of the NOvA detector mass. The 3.9 million gallons of liquid scintil-

lator are mostly mineral oil with a scintillant of 4.1% pseudocumene [1,2,4-

Trimethybenzene].

• The NOvA detector has around 13,000 kilometers of wavelength shifting fiber,
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with each 15.6 m long cell carrying a 33.5-meter loop. The fiber absorbs blue

light in the 400-450 nm region from the scintillator and changes the wavelength

to green light in the 490-550 nm range.

For a detailed discussion on Detector elements, consult the NOvA Technical Design

Report [6].

1.2 Motivation

In our experiment, it is essential to ensure accuracy and minimize noise to focus solely

on neutrino interactions caused by the NuMI neutrinos inside the detectors. However,

we encounter a significant amount of background interactions detected by both detec-

tors consistently. Figure 1.7 illustrates a 5ms window of activity observed in the Far

Detector.

Figure 1.7: 5ms window of Far Detector data. Each pixel is one hit cell. [7]
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The neutrino flux per unit mass in the Near Detector is approximately one mil-

lion times higher than in the Far Detector. Consequently, the Near Detector exhibits

considerably more activity. Additionally, our detectors are constantly bombarded by

an extensive influx of cosmic muons. These muons are generated when cosmic rays

interact with air molecules, and they approach our detectors from all directions. While

we aim for an ideal situation with a pure neutrino beam from NuMI, the current muon

catcher and rock region setup is insufficient to completely eliminate charged particles

from the beam. Neutrinos produced from the decay of Pions and Kaons can interact

with the rock nucleus as they traverse through the rock region, generating additional

muons in the process.

νµ +N → µ− + p (1.6)

These are called rock muons. If this kind of interactions happen within few meter

depths of rock region, the probability for the muon to penetrate the detector at the

end of rock region is small, as it has to propagate a long distance of rock. However,

when the interactions happen near the end of the rock region, there’s a higher chance

that these muons will be captured by the detector. This scenario is illustrated in Figure

1.8.

Figure 1.8: Incoming beam neutrinos interacting with rock nucleus and generates

muons that can either get absorbed by the rock volume or penetrate detector region

depending on its initial energy and origin point inside rock region.

To obtain an accurate description of the beam energy, it is crucial to understand

how much of the beam energy is carried by muons before they reach the detector and

while they are within the detector. To simulate the real experimental conditions, we

10



need precise modeling of the propagation of these muons through the vast volume

of rock. Currently, NOvA is utilizing GEANT4 for this task, which is known for

its accuracy but is computationally time-consuming due to its step-by-step working

algorithm (as discussed in Chapters 3 and 5). The simulation of rock constitutes a

significant portion, accounting for 52% of the total simulation time per batch [8]. This

represents a substantial amount of time that could potentially be saved by using other

simulation programs. Hence, we are motivated to explore the usage of PROPOSAL,

a relatively new particle propagation tool that efficiently simulates lepton propagation

through various media. For detailed information, please refer to Chapters 3 and 5.
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Chapter 2

Charged Particle Interactions

with Matter

Our study requires the understanding of particle propagation through medium in great

detail. During their flight, particles come to interact with the constituent matter inten-

sively. The interactions depends on the nature of the incident particle such as its mass,

energy, momentum, direction as well as the mediums density, Z/A (Atomic number

to weight) ratio, etc. Since we are dealing with muons, a charged particle, we will be

discussing how charged particles interact with matter in this chapter.

Before we deep dive into the subject, it is important to disclose what we mean

by the term “medium”. A medium is the volume of matter through which the in-

cident particle is propagating. Consider the case of Atmospheric Muons where the

particles are being generated in the Earth’s upper atmosphere and being detected in

an underground detector. In this scenario, particles are moving through Air Medium

(consisting mostly O2 and N2 molecules) and Earth Medium (consisting soil, rock, wa-

ter, etc). Constituent matter of the medium influence the likelihood and characteristics

of the interactions with incident particle. Consequently, the selection of “medium” in

any particle physics experiment is a crucial subject.

In general, passage of charged particles through matter is characterized by three

key processes,
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1. Elastic Interaction: In elastic interactions, the total kinetic energy is con-

served. In the context of elastic scattering, the potential energy is negligible or

considered constant as the interaction forces or fields do not significantly change

during the scattering process. The incident particle exchange energy and momen-

tum with the target particle without altering either particle’s identity. Elastic

collisions between particles or elastic scattering of particles off atomic nuclei are

two examples of elastic interactions.

2. Inelastic Interaction: In inelastic interactions, the incident particle gives the

target particle energy and momentum, changing the target particle’s identity or

internal state. Excitations, ionizations, or particle generation are candidates of

inelastic process. The system as a whole or the target particle may get excited

as a result of the incident particle losing energy, resulting in further emissions

of photons or particles. Excitation, Ionization, Bremsstrahlung, Pair (e+e−)

Production, and nuclear reactions are examples of inelastic interactions.

3. Multiple Scattering: Multiple scattering is the result of several small-angle

scatterings that a particle encounters while moving through a material. The

Coulomb interactions between the charged incident particle and the charged par-

ticles in the medium cause these small-angle scatterings. The total distribution of

particles in a detector or medium can be impacted by multiple scattering, which

widens the particle’s trajectory.

One of our main analysis tool PROPOSAL does not incorporate all these inter-

actions in its current version. Therefore in the the subsequent sections, we will be

discussing only the prominent mode of interactions that are integrated in PROPOSAL.

2.1 Ionization

For passage of particles though matter, one of the most common and prominent in-

elastic collisions mode is ionization. When a moderately relativistic charged particle

propagates through a medium, it can transfer enough energy to knock off atomic elec-

trons from their shells, resulting an ion and free electrons. This process is called as

Ionization. The Feynman diagram in Figure 2.1 depicts the ionization process.
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Figure 2.1: Feynman diagram for Ionization caused by incident muons. Incident muon

comes to interact via electromagnetic force with the electron bound to atom and yields

the final state of the electron free from the atom.

These collisions are of course statistical in nature occurring with certain probability

predicted by quantum mechanics. However, it is possible to work effectively with the

average energy loss (of the incident particle) per unit length due to the fact that the

number of collisions per macroscopic path-length is large and their total energy loss

fluctuates rarely. This quantity is called stopping power or dE/dx, which was first

calculated by Bohr classically and later by Bethe, Bloch and others using Quantum

Mechanics. Bohr’s treatment parameterize the equation using impact parameter (b,

which is not a measurable quantity) whereas the Bethe-Bloch equation is parameterized

in terms of transferred momentum (a measurable quantity). The standard Bethe-Bloch

equation is given in [9] as

−dE

dx
= Kz2

Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Tmax

I2
− β2 − δ

2

]
(2.1)

where dx is thickness/length expressed in mass thickness unit.

mass thickness ≡ ρ.dx

where ρ is mass density and dx is thickness, which yields dimensions of mass per unit

area, i.e., g/cm−2. Other symbols are

• K = 4πNAr
2
emec

2: a constant

• re, NA: Classical electron radius, Avogadro’s Number
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• z, γ, β: charge of incoming particle, gamma factor, velocity β = v
c

• Z,A, ρ, I: charge and atomic number of medium atoms, density, average ioniza-

tion potential for the medium.

• Tmax, δ,me: Maximum Kinetic energy that can be imparted to a free electron in

a single collision, density correction term, and electron mass.

The energy-momentum conservation principles set a limit on the amount of maxi-

mum energy an incoming particle may impart to an electron. For an incoming particle

of mass M , velocity v, and gamma-factor γ:

Tmax =
2meβ

2γ2

1 + 2γ
(
me
M

)
+
(
me
M

)2 (2.2)

Key Points of Bethe-Bloch Formula:

• dE/dx depends on the charge of the incoming particle as z2. Therefore for particle

with greater value of charge, say, alpha particles, will lose more energy than, say,

muon (assuming they both had same initial energy).

• A plot of dE/dx vs energy is shown below. At low energies, the 1/β2 term

dominates dE/dx, which drops with increasing velocity until 0.96c, at which

point a minimum is obtained. Particles at this point are called minimum ionizing

particles (mip). For all particles with the same charge, the minimum of dE/dx

is roughly the same. Beyond this point, 1/β2 remains almost constant (∼ 1),

but dE/dx steadily increases again owing to the logarithmic dependency of β2 in

ln 2mec2β2γ2Tmax

I2
. This rise is cancelled however, by the density correction δ.
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Figure 2.2: Stopping power dE/dx of muon (µ), pion (π), kaon (K), proton (p), d-

meson (d), alpha particle (α) as a function of energy. [10]

Each particle has a unique dE/dx curve for energies below the minimum ionizing

point. Physicists exploit this property frequently to identify particles in this

energy range.

• Density Correction Term δ becomes significant at high energies. The original

Bethe-Bloch formula makes the assumption that the medium is made up of sep-

arate, individual atoms. But this is not the case in practice. The effective charge

that the incoming particle experiences can be decreased because the electron

cloud of an atom can shield the electric field of far lying neighboring atoms. As

a result, the particle’s energy loss is a little less than what the original Bethe-

Bloch formula predicts. This effect depends on the density of the material as the

induced polarization by the incoming particle will increase with density.
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Figure 2.3: Comparison of the dE/dx vs energy of electron with and without the

density correction consideration. [10]

• Dependence on Z/A ratio is crucial on the behavior of dE/dx since greater value

of the former indicates higher chances of collision. Since Z/A ratio is atomic

number relative to the atomic mass, a higher Z/A value implies greater density

of atomic electrons, hence greater chances of interactions. However for most

material Z/A is ∼ 1
2 , which makes this a less important factor in the comparative

analysis of Bethe-Bloch formula for those material. For NOvA rock region, the

calculated Z
A ration is 10.98

11.32 [11].

• The impact parameter b corresponds to the perpendicular distance from the tra-

jectory of the incident particle, defining the range within which it can exert influ-

ence on the surrounding atoms. This parameter is not directly measurable and

its exact value depends on several factors, including the charge and momentum
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of the particle, as well as the density of the medium and other contributing fac-

tors. While the Bethe-Bloch formula does not explicitly incorporate the impact

parameter b, its influence is indirectly embedded through the mean excitation

potential I and the maximum kinetic energy Tmax as following.

I = 2
z2α2

mev2
1

b2max

(2.3)

Tmax = 2
z2α2

mev2
1

b2min

(2.4)

where α = e2

2ϵ0hc
is the structure constant. Since the measurement of both I

and Tmax is performed using other methods, this makes the Bethe-Bloch formula

viable for experimental analysis.

• The most important parameter in the Bethe-Bloch formula is the Mean Excita-

tion Potential I, which represents average amount of energy required to ionize

an atom. It is a measurement of the ability of the medium to thwart the propaga-

tion of particles through it. Higher value of I signify that more energy is needed

to ionize the atoms or excite their state, which causes the incident particle to

lose energy more slowly. Theoretically, I can be understood from Bohr’s atomic

model. It is essentially the amount of energy required to free an electron from its

shell, which is hν̄, where h is Planck’s constant and ν̄ is average orbital frequency.

However, calculating this quantity in practice poses significant challenges due to

the complex electron configurations of atoms, the presence of energy bands rather

than distinct energy levels in solid materials, material heterogeneity, and other

experimental factors. Therefore, values of I have been deduced empirically from

measurements of dE/dx as a function of Z.

I

Z
= 12 +

7

Z
eV ; for Z < 13 (2.5)

I

Z
= 9.76 + 58.8Z−1.19eV ; for Z > 13 (2.6)

A comprehensive list of I values can be found in the articles authored by Stern-

heimer et al. [12].
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• The rate of energy loss increases as a particle slows down in matter because its

kinetic energy decreases. At the end of its path, more energy will be deposited

than at the beginning. This effect is seen in the following figure. This curve is

known as the Bragg Curve. Initially, the particle loses minimal energy. How-

ever, as it moves deeper into the material, its energy loss increases until it reaches

a peak value, known as the Bragg peak.

Figure 2.4: The Bragg curve showing the 5.49 MeV alpha particle energy deposition in

air. This graph gives insight into the ionization behavior of alpha particles in the air

medium by showing the distinctive peak where the energy deposition is highest. [13]

The energy deposition reaches its maximum when the particle’s energy matches

the optimal level for efficiently ionizing the atomic electrons, leading to the for-

mation of a peak. After the Bragg peak, the particle begins to pick up electrons,

which lowers the effective charge of the particle, resulting in a rapid decrease

in dE/dx. Also, due to the decrease in electromagnetic interactions due to the

particles lower momentum, the energy loss rapidly decreases. The position of the

Bragg peak depends on the characteristics of the particle, as well as the char-

acteristics of the material. The peak occurs at a specific depth, known as the
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Bragg peak depth, which can be controlled by adjusting the energy of the parti-

cle or the choice of material. This behavior has medical applications for radiation

treatment.

2.2 Bremsstrahlung

Relativistic charged particles, as they propagate through matter can undergo accelera-

tion or deceleration due to the electric field of the surrounding atom resulting a change

in trajectory from its initial path. This change will correspond to an emission of a

photon. This is called Bremsstrahlung radiation. The name came from German which

means braking radiation. The change in its momentum of the incoming particle can be

thought of as a braking or slowing down effect, and hence the name. The cross section

for this process depends on the particle mass as inverse square, σ ∝ r2e = (e2/mc2)2;

therefore in comparison to electron, radiation loss of this type by a muon is thus 40000

times smaller [10]. Since most sources and books provide the analysis taking into ac-

count electrons because radiation loss by electron is more significant than radiation loss

by other charged particles, we will regard electrons as the incoming particles in this

section for a general discussion of Bremsstrahlung.

Figure 2.5: Bremsstrahlung process is illustrated, in which an electron with energy E1

approaches the nucleus, loses energy as a photon of energy hν, and then passes with

energy E2. [14]

The degree of screening provided by the atomic electrons surrounding the nucleus is

crucial because the intensity of the electric field that an electron experiences determines
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how much Bremsstrahlung radiation occurs. This screening effect can be parameterized

by:

ζ =
100mec

2hν

E0EZ1/3
(2.7)

where, E0 : Initial energy of the incoming particle; E : Final energy of incoming

particle; hν : Eγ , Energy of emitted photon where ν is frequency from Plancks theory;

Z : Atomic number of medium. ζ is related to the atomic radius and small (ζ ≃ 0) for

complete screening and large (ζ ≫ 1) for no screening.

For E0 greater than a few MeV, Bremsstrahlung cross section can be found as

following [15]:

dσ = 4Z2r2eα
dν

ν

{
(1 + ϵ2)

[
ϕ1(ζ)

4
− 1

3
lnZ − f(Z)

]
− 2

3
ϵ

[
ϕ2(ζ)

4
− 1

3
lnZ − f(Z)

]}
(2.8)

where, ϵ : E
E0

; α : Fine structure constant = 1
137 ; f(Z) : Coulomb correction.

It’s a function that incorporates additional atomic effects; ϕ1, ϕ2 : Screening functions

depending on ζ. Specific expression depends on considered model and approximations.

For heavy atom (Z ≥ 5), ϕ1 and ϕ2 are calculated using the Thomas-Fermi atomic

model [16] which agrees with empirical formula with an accuracy of 0.5% [17]

ϕ1(ζ) = 20.863− 2 ln[1 + (0.55846ζ)2]− 4[1− 0.6 exp(−0.9ζ)− 0.4 exp(−1.5ζ)] (2.9)

ϕ2(ζ) = ϕ1(ζ)−
2

3
(1 + 6.5ζ + 6ζ2) (2.10)

The function f(Z) was calculated by Davies et al [18]. parameterized by a = Z
137 to be

f(Z) ≃ a2[(1 + a2)−1 + 0.20206− 0.0369a2 + 0.0083a4 − 0.002a6] (2.11)

For limiting cases of complete (ζ ≃ 0) and no screening (ζ ≫ 1), it is easy to

calculate the ϕ1, ϕ2 which ultimately equip us to calculate the Bremsstrahlung cross

section 2.8. Thereafter energy loss can be calculated by integrating cross section times

photon energy over the allowed energy range. (“rad” ≡ radiation)

−
(
dE

dx

)
rad

= N

∫ ν0

0
hν

dσ

dν
(E0, ν)dν (2.12)
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with N : number of atoms per volume ; ν : frequency of photon = Eγ/h. (To convince

you, we can perform dimension analysis to 2.12. The left hand side is: Energy
Length . Right

hand side is: Number
Length3

(N) × Energy(hν) × Length2(dσ), which yields the dimension of

left hand side.) We can rewrite 2.12 as

−
(
dE

dx

)
rad

= NE0Φrad (2.13)

where

Φrad =
1

E0

∫
hν

dσ

dν
(E0, ν)dν (2.14)

The reason behind this is, dσ/dν is approximately proportional to ν−1 (with the pro-

portionality constant depends on the medium specifics). Therefore, Φrad becomes in-

dependent of ν and becomes a function of material characteristics.

For mec
2 ≪ E0 ≪ 137mec

2Z−1/3, we have no screening (ζ ≫ 1), for which 2.14

yields,

Φrad = 4Z2r2eα

(
ln

2E0

mec2
− 1

3
− f(Z)

)
(2.15)

and for E0 ≫ 137mec
2Z−1/3, ζ ≃ 0 (complete screening)

Φrad = 4Z2r2eα

(
ln(183Z−1/3) +

1

18
− f(Z)

)
(2.16)

At intermediate values of ζ, 2.12 must be integrated numerically.
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Figure 2.6: Comparison of energy loss for electrons in copper reveals the distinction

between radiation loss and collision loss. The energy loss rate (dE/dx) for protons is

also included for reference. [10]

Key Points of Bremsstrahlung Radiation:

• The ionization loss, given by 2.1, is logarithmically dependent on energies at

high energy and linearly dependent on Z. One the other hand, Bremsstrahlung

or radiation loss increases almost linearly with energy and quadratically with Z.

[10]

• Unlike ionization, which is a quasicontinuous energy loss process, radiation energy

loss can be emitted in one or two photons taking all the lost energy of the incoming

particle. Therefore, a large energy fluctuation can be observed for mono energetic

beam of particles.

• Radiation energy loss depends strongly on the medium material. For each ma-

terial, it is useful to assign an energy value, defined as critical energy Ec of that
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medium, at which radiation loss equals to the collision loss of ionization.(
dE

dx

)
rad

=

(
dE

dx

)
coll

for E = Ec (2.17)

Above this energy range, radiation loss will dominate over the ionization loss and

vice-versa for below Ec. An approximate formula for Ec is given as:

Ec ≃
800MeV

Z + 1.2
(2.18)

The following table [10] gives a short list of Ec for different materials for incident

electrons.

Material Critical Energy EC (MeV)

Pb 9.51

Al 51.0

Fe 27.4

Cu 24.8

Air (STP) 102

Lucite 100

Polystyrene 109

NaI 17.4

Anthracene 105

H2O 92

• A quantity known as the radiation length is frequently used in energy loss by

radiation analysis. It is the distance over which the incoming particle losses

1/e-th of its initial energy. From 2.13,

−dE

E
= NΦraddx (2.19)

At high energies, Φrad is independent of E, therefore

E = E0 exp

(
−x

Lrad

)
(2.20)

where, x is the distance travelled and Lrad = 1
NΦrad

is the radiation length. Using

2.14, Lrad can be found as

1

Lrad
≃
[
4Z(Z + 1)

ρNa

A

]
r2eα[ln(183Z

−1/3)− f(Z)] (2.21)
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A useful approximation is given in [9] as:

Lrad =
716.4g/cm2A

Z(Z + 1) ln(287/
√
Z)

(2.22)

where, Z and A are the atomic number and weight of the medium material. Some

values of Lrad is given for in following table.

Material [gm/cm2] [cm]

Air 36.20 30050

H2O 36.08 36.1

NaI 9.49 2.59

Polystyrene 43.80 42.9

Pb 6.37 0.56

Cu 12.86 1.43

Al 24.01 8.9

Fe 13.84 1.76

2.3 Pair Production

One of the important interactions for high energetic muons is when a fast muons interact

with field of atomic nucleus to create a pair of electron and positron. When muon

energy Eµ is at TeV range, the pair production cross section exceeds those of other

muon interaction processes over a range of energy transfers between 100 MeV and 0.1Eµ

[19]. In TeV region, pair production accounts for more than half of the entire energy

loss rate, with the average energy loss increasing linearly with muon energy. Following

is the Feynman diagrams for two dominant mode of pair production interaction.
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Figure 2.7: Feynman diagrams for the electron pair production in the field of an atom.

µi,f , Pi,f are initial and final states for muon and target nucleus respectively. [20]

Key Points in Pair Production:

• This interaction is a dominant mode of energy loss in high energy. It is a stochastic

energy loss process, therefore energy loss must be greater than the total rest mass

of the produced pair particles in this interaction.

• The two dominant mode where incoming muons produce electron pair is shown

in the relevant Fyenman diagram figure 2.7. These are called electron mode of

pair production. However, muon mode and tau mode can also happen, but those

sub-dominant mode of this interaction.

• The produced pair particles can cause further interaction with surrounding atom

and lose energy through ionization, bremsstrahlung depending on its kinetic en-

ergy.

2.4 Photonuclear Interactions

The inelastic interaction of an atomic nucleus with a muon is described by the pho-

tonuclear interaction of muon where a virtual photon is exchanged between the incident

and target particle. This is a dominant mode of interaction for muon at high energies

(Eµ ≥ 10) GeV and at relative high energy transfer (ν/Eµ ≥ 10−2), where ν is the

energy of secondary particle. It is crucial for the study of detector response to high

energy muons, muon propagation, and muon-induced hadronic background, as well as

for the study of light materials. The average energy loss increases almost linearly with
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energy, and at TeV energy range of muons, this interaction constitutes 10% of the total

energy loss rate. Following is the 1st order Feynman diagram for this process. [21]

Figure 2.8: Feynman diagram for photonuclear interaction. µ−
i,f

and Ni,f are initial and final state for incident muon and target nucleons respectively.

Energy ν and four momentum transfer Q2 are being mediated by the virtual photon.

Key Points in Photonuclear Interaction:

• Like Pair Production, Photonuclear Interaction is also a stochastic energy loss

process. Meaning that the energy loss experienced by the muon during this inter-

action is not deterministic and cannot be precisely predicted for any individual

event.

• The average energy loss in photonuclear interactions may increase almost linearly

with the muon’s energy, but the specific energy loss for individual interactions

can vary stochastically.

• This process can cause the creation of protons, neutrons, pions, gammas as well as

different kinds of hadrons depending on the incident energy and type of nucleus.

In one of our analysis “Secondaries Analysis”, which is discussed in chapter 5, this

interaction plays a vital role to generate many secondary particles for high incident

energy. When we let a beam of muon pass through rock, We see a lot of secondary

particles such as protons, neutrons and other hadrons are being produced, especially

for Eµ ≥ 10 GeV.
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Chapter 3

GEANT4

Simulation plays a fundamental role in an experimental physics project’s design, evalu-

ation and definition of the project’s potential physics output, assessment of the exper-

iment’s performance, development, testing, optimization of reconstruction and physics

analysis software, contribution to the calculation and validation of physics results and

in many more domains. The GEANT4 object-oriented toolkit is a comprehensive col-

lection of C++ libraries that enable the user to simulate their own detector system [1].

The software system autonomously transports the particles fired into the detector by

specifying the detector shape and modeling particle interactions in matter using the

Monte Carlo method which makes use of statistical sampling and random numbers to

look for answers to mathematical problems.

GEANT4 is a free simulation toolbox which contains all facets of the simulation

process, including [22]:

• the geometry of the system,

• the materials involved,

• the fundamental particles of interest,

• the generation of primary events,

• the tracking of particles through materials and electromagnetic fields,

• the physics processes governing particle interactions,
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• the response of sensitive detector components,

• the generation of event data,

• the storage of events and tracks,

• the visualization of the detector and particle trajectories, and

• the capture and analysis of simulation data at different levels of detail and refine-

ment.

User’s own applications can be independent or built with the aid of another object-

oriented framework. Geant4 will help them in both situations, from formulating the

original problem through producing the data and graphics for publishing. For this

purpose, the toolkit contains:

• user interfaces,

• built-in steering routines, and

• command interpreters

which operate at every level of the simulation.

The heart of Geant4 is an extensive collection of physics models to manage particle

interactions with matter across a very broad energy range. It is developed in C++ and

achieves transparency by utilizing advanced software engineering methods and object-

oriented technologies. One of those spectacular features for example is, the way in

which cross sections are input or computed is separated from the way in which they

are used or accessed. The user can overload both of these features.

Similarly, depending on the energy range, the particle type, and the material, the

calculation of the final state can be split into alternate or complimentary models. The

user selects one of these options and inserts code into it’s user action classes to create

a particular application.

A major issue with earlier simulation programs was the difficulty of incorporat-

ing new or different physics models. Development was challenging because of the
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procedure-based code’s growing size, complexity, and interdependency. In contrast,

object oriented methods manages complexity and limit interdependency by defining a

uniform interface and common organizational principles for all physics models. Within

this framework the functionality of models can be more easily identified and under-

stood, and the creation and addition of new models is a well-defined procedure that

entails little or no modification to the existing code.

3.1 History of GEANT4

The name “GEANT” stand for GEometry ANd Tracking. Also the word Geant

came from the French word “géant”, which means “giant” in English. The choice

of this name reflects the large and ambitious nature of the Geant4 project, both in

terms of the size and scope of the code and the international collaboration involved.

The development of Geant4 began in 1993 with independent studies carried out at

CERN and KEK to investigate the use of contemporary computer methods to im-

prove the already-existing FORTRAN based Geant3 simulation tool. In 1994, these

initiatives came together to produce a formal proposal to create a new software based

on object-oriented technology. The project grew into a global partnership comprising

physicists, programmers, and software engineers from numerous universities and insti-

tutes throughout the world. The initiative, which was initially centered on subatomic

physics investigations, rapidly drew attention from other disciplines, including nuclear,

accelerator, space, and medical physics. The partnership was renamed as Geant4 once

the R&D phase was completed in 1998 and the first production release. In order to

oversee the management, upkeep, user assistance, and continued development of the

toolkit, a Memorandum of Understanding (MoU) was developed. Since then, Geant4

has developed into a massive undertaking, utilizing the knowledge of participants from

many areas of Monte Carlo simulation. Its hierarchical structure and decentralized

authority allow for effective user administration and assistance.

3.2 Overview of GEANT4 Functionality

The diagram for Geant4 class category is shown below:
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Figure 3.1: Geant4 Class Categories. Categories at the bottom of the diagram are used

by virtually all higher categories and provide the foundation of the toolkit.

The

• Global

category covers the system of units, constants, numerical aspects and random number

handling. Two categories
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• Materials

• Particles

implement the tools required to characterize the material and particle characteristics

needed to simulate particle-matter interactions.

• Geometry

describes a geometric structure and effectively transport particles across it using the

module. The categories needed to explain particle tracking and the physical processes

they go through are located above them. The

• Track

category includes classes for the tracks and stages that the

• Processes

category, in which the electromagnetic interactions of leptons, photons, hadrons and

ions, as well as hadronic interactions, are implemented.

All processes are invoked by the

• Tracking

category, which controls their contribution to the evolution of a track’s state and pro-

vides information in sensitive volumes for hits and digitization.

Above these, the

• Event

category manages events in terms of their tracks and the

• Run

category manages collections of events that share a common beam and detector imple-

mentation. And a

• Readout

category encompasses functionalities for simulating the response of detector elements

to particles passing through them. It includes sensitive detectors to track energy depo-

sitions, hit collections to store relevant data, and digitization to mimic the detector’s

response, enabling accurate modeling of real-world experimental setups.
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3.3 Units of Simulation

• A Run: As an analogy to the real experiment, a run of GEANT4 begins with

”Beam On”. Neither detector geometry nor physics process parameters may

be changed during a run. This indicates that configuration of the simulation

parameters for the detector is unavailable. A run is a collection of events that

have the same detector circumstances [23].

• An Event At the start of processing, an event consists of primary particles,

which are then placed into a stack. Processing continues until the stack is empty.

The event is represented by the G4Event class, which holds the following objects

after processing:

– A list of primary vertices and particles.

– Trajectory collection (optional).

– Hits collections.

– Digits collections (optional).

• A Track: A track in GEANT4 represents a snapshot of a particle, while a step

provides ’delta’ information to the track. The track is not a collection of steps,

and it is removed under various conditions, such as

– it goes out of the world volume,

– it disappears (e.g. decay),

– it goes down to zero kinetic energy and no “at rest” additional process is

required,

– the user decides to kill it.

In Geant4, a track is composed of three layers of class objects: G4Track and

G4DynamicParticle classes are unique for each track, while an object of G4ParticleDefinition

is shared among all tracks of the same type.

• A Step: The step (class G4Step) is the fundamental unit of simulation; it com-

prises two points (pre-step and post-step). see Figure 3.2 . It carries incremental

particle information (energy loss, elapsed time, and so on). Volume and material

information are contained at each point. If the step is constrained by a boundary,
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the end point stands exactly at the border but logically part of the next volume.

As a result, boundary processes such as refraction and transition radiation can

be simulated.

Figure 3.2: Step in Geant4. Here, color coded regions defines distinct volume. If the

step is constrained by a boundary, the end point stands exactly at the border but

logically part of the next volume. [24]

In our GEANT4 code, we exploited this “step” feature to collect data at some

particular distance to calculate scattering angle during the flight of the particles. The

step feature can be accessed by using TrajectoryPoints method in GEANT4 where i+1

refers to the post-step point if i refers to the pre-step point. For example, we asked for

each particle, if the “TrajectoryPoint(i+1)s distance from starting position” is greater

than 500 cm, and “TrajectoryPoint(i)s distance from starting position” is less than 500

cm, store the particle state information (to calculate scattering angle of the particles

at propagation distance 500 cm).
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Chapter 4

PROPOSAL

PROPOSAL (PRopagator with Optimal Precision and Optimal Speed for All

Leptons) is a powerful Monte Carlo simulation library written in C++ with conve-

nient Python bindings. Developed with the aim of providing both high performance

and accurate simulations, PROPOSAL specializes in modeling the behavior of high-

energy muons over long distances within different media. This capability is particularly

crucial for large volume detectors like neutrino telescopes and subsurface experiments,

as they often encounter a significant atmospheric muon background.

The versatility of PROPOSAL is demonstrated by its current usage in various

scientific endeavors. It is extensively employed in the simulation chains of IceCube,

ANTARES and RNO (Radio Neutrino Observatory), where it accurately simulates

muon propagation and decay as well as the behavior of Taus (heavy leptons). It is used

in the CORSIKA 8 air shower simulation software, specifically in calculating the elec-

tromagnetic component. This component encompasses the propagation of electrons,

positrons, and high-energy photons, offering valuable insights into the development and

characteristics of extensive air showers.

The robust combination of precision and efficiency provided by PROPOSAL makes

it an indispensable tool for researchers and scientists in the field of particle and as-

troparticle physics. Its accurate simulations enable the optimization of detector de-

signs, the analysis of lepton signals amidst background radiation, and the investigation

of lepton transport phenomena in a variety of experimental and astrophysical contexts.
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Moreover, the integration of PROPOSAL within simulation frameworks enhances the

understanding of cosmic ray showers, aids in modeling astrophysical sources, and assists

in studying phenomena like gamma-ray bursts and supernovae.

4.1 Energy Loss Calculation

The basis of particle propagation in PROPOSAL is the energy losses of particles.

Assuming a particle with initial energy Ei, energy loss is described by an absolute

value

ν = Ei.v (4.1)

where v describes the relative energy loss of the particle. Final energy of the particle

is then, Ef = Ei − ν. The implemented processes causing energy losses are

• Ionization

• Bremsstrahlung

• electron-positron Pair Production

• Photonuclear Interaction (as discussed in Chapter 2)

Quantitatively, the cross section σ is the interaction probability for a process. To

describe the interaction probability with respect to a specific variable in the final state,

for example lost energy ν, the cross section can be written in a differential form dσ/dν.

In principle, this information could be utilised right away to sample energy losses

from differential cross sections, which are treated as probability density functions, by

using inverse sampling. A probability distribution function (PDF) is a mathematical

function that explains the probability distribution of a random variable. In this case,

the differential cross section acts as a PDF for the individual variable of interest, i.e.

ν in the interaction’s final state.

dσ/dν can be thought of representing the probability of interaction per unit of the

variable ν. It describes how the probability of the interaction changes as a function of

ν. By integrating the differential cross section over a specific range of ν, we can obtain
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the total probability of the interaction occurring within that range.

To treat differential cross section as PDF, it must satisfy certain properties. First,

it must be non-negative, meaning that the probability for a given value of ν cannot be

negative. Second, the total probability over all possible values of ν must be unity.

By normalizing the dσ/dν appropriately, it can be transformed into a PDF. This

normalization involves dividing the differential cross section by the total cross section,

integrating it over all possible values of ν, and then multiplying it by a normalization

constant to ensure that the integral equals unity.

Once dσ/dν is treated as a PDF, techniques such as inverse sampling can be em-

ployed to generate random values that follow the observed distribution. These sampled

values can then be utilised to simulate the behavior of the particles during the inter-

action. The process can be summarized as following

1. Assume we have a differential cross section dσ/dν as a function of ν. The prob-

ability per unit of ν is represented by this differential cross section.

2. First, we must integrate the differential cross section to produce the cumulative

distribution function (CDF), which reflects the accumulated probability up to a

certain ν value. Let’s denote that CDF F (ν).

3. The inverse of the CDF is then calculated, denoted as F−1(p), where p is a

uniformly distributed random number between 0 to 1.

4. Then we pass a uniformly distributed random number p through the inverse of

the CDF, obtaining ν = F−1(p). This value of ν will follow the distribution

defined by the differential cross section.

Problem: However, this approach poses two immediate problems.

1. The propagation process would be extremely time-consuming due to small energy

losses, especially below the energy threshold of a detector, and would be sampled

individually
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2. Numerical issues will arise, due to the nature of bremsstrahlung interaction: since

photons are massless, bremsstrahlung cross section diverges for ν → 0; inverse

sampling throughout the whole parameter range is thus impossible.

Solution: PROPOSAL differentiates between continuous and stochastic losses.

The energy cut parameter is defined as

ν ′cut = min[ecut/E, νcut] (4.2)

with a relative energy cut νcut and an absolute energy cut ecut. Energy losses with

ν > ν ′cut are considered stochastic losses, which means that each interaction with a rel-

ative energy loss above the cut is addressed individually. However, energy losses with

ν < ν ′cut are handled as continuous losses, which means that an averaged energy loss per

distance is derived from all energy losses below the cut and applied to particles during

propagation. Both ecut and νcut parameters can be adjusted or deactivated separately.

The specification in 4.2 assures that losses beyond an absolute detector threshold ecut

are recognized as stochastic even if their relative value is less than νcut by activating

both parameters at the same time.

PROPOSAL’s propagation algorithm consists of several, consecutively executed

steps, each of which consists of continuous losses and stochastic loss. To perform one

propagation step, it is necessary to have a mathematical expression to sample the next

stochastic loss. Let, Ei be the initial energy of a particle and

P (Ef ≤ E ≤ Ei) = −
∫ Ef

Ei

p(E)dE (4.3)

is a cumulative distribution function describing the probability for a stochastic loss at

a particle energy E ≥ Ef [25]. This function can be used to find the Ef by utilising

inverse sampling method. But first we need to have a formula for P (E). Let the

distance between the initial particle position xi and the position of stochastic loss xf

is discretized into several ∆x sections. Then the probability for a stochastic loss after

a distance of xf − x1, without any stochastic losses in the interval (xi, xf ), can be

described as
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∆P (xf ) = P (xf +∆x)− P (xf )

= (1− σ(xi)∆xi) · (1− σ(xi+1)∆xi+1) · . . . · (1− σ(xf−1)∆xf−1) · σ(xf )∆xf

≈ exp

−
f−1∑
j=i

σ(xj)∆xj

 · σ(xf )∆xf (4.4)

Each factor (1− σ(xi)∆xi) represents the complementary probability of not having an

interaction at the specific value of xi, multiplied by the small increment ∆xi. Here,

σ(xi) represents the interaction probability (cross section) at the particular value xi.

Terms from j = i to j = f−1 are approximated to exponential multiplied by σ(xf )∆xf

where stochastic loss occur. In differential form, this can be written as

dP (xf ) = exp

(
−
∫ xf

xi

σ(x) dx

)
· σ(xf ) dxf (4.5)

To convert the dependency on location x to a dependency on energy E, the relation

f(E) = −dE

dx
= E

NA

A

∫ ν′cut

νmin

ν
dσ

dν
dν, (4.6)

with the Avogadro number NA and the mass number A of the current medium, is

introduced. Here f(E) is the continuous energy losses between two stochastic losses

and is derived by averaging the energy losses for all interactions below the energy cut

ν ′cut. Applying 4.6 in 4.5 yields

dP (Ef ) = exp

(∫ Ef

Ei

σ(E)

f(E)
dE

)
·
σ(Ef )

−f(Ef )
dEf . (4.7)

Now, the P (E) can be found by integrating over the probabilities in 4.7

P (Ef ≤ E ≤ Ei) =

∫ P (Ef )

P (Ei)=0
dP (Ef )

=

∫ Ef

Ei

exp

(∫ E′
f

Ei

σ(E′
f )

f(E)
dE

)
·
σ(E′

f )

−f(E′
f )

dE′
f . (4.8)

Above expression can be simplified by considering

u(E) =

∫ Ef

Ei

σ(E′)

f(E′)
dE′, du =

σ(E)

f(E)
dE (4.9)
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Therefore, P (E) becomes

P (Ef ≤ E ≤ Ei) = −
∫ Ef

Ei

exp(u(E′
f )) du

=
[
exp(u(E′

f ))
]Ei

Ef

= exp(u(Ef ))− exp(u(Ei)) but, exp(u(Ei)) = 0

= exp

(∫ Ef

Ei

σ(Ei)

f(E)
dE

)
(4.10)

By equating P (E) in 4.10 to a random number ξ ∈ (0, 1], the energy integral∫ Ef

Ei

σ(E)

−f(E)
dE = − log ξ (4.11)

is obtained. By sampling ξ, 4.11 can be used to calculate the final energy Ef .

4.2 Propagation Algorithm

PROPOSAL’s propagation algorithm simulates the properties of secondary particles

created in the interactions as well as the properties of primary particle after each in-

teractions. This includes data on the energy, position, direction, and timing of the

primary and secondary both particles.

The structure of the propagation process in PROPOSAL is dictated by the idea of

a “chain of responsibility”. The Sector objects and a Propagator object are the key

components of this chain.

Each Sector is characterized by its geometry, which describes the spatial extent of

the Sector. It also includes information about the medium present within the Sector,

such as its composition and density, energy cut settings. The cut settings itself distin-

guish between distinct particle locations relative to a preset Detector, which is an area

with higher propagation accuracy. By defining Sectors with varying characteristics,

users have the flexibility to appropriately model the simulation environment.

The Propagator object determines which Sector is in charge of the particle’s prop-

agation at its current location. The assigned Sector then propagates the particle,
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within its borders and returns the particle to the Propagator object. This procedure is

continued until either the original particle’s propagated distance exceeds a preset max-

imal propagation distance dmax or the initial particle’s energy falls below a predefined

threshold energy elow.

Following steps give simplified view of propagation within a sector.

4.2.1 Energy of The Next Interaction

The remaining particle energy Ef just before the next stochastic loss is sampled using

a random number ξ, according to equation 4.11. If

ξ > exp

(∫ elow

Ei

σ(E)

f(E)
dE

)
, (4.12)

then the sampled energy Ef would fall below the threshold energy elow. In this case,

there is now stochastic energy loss.

On the other hand, if the propagated particle is capable of decaying, an energy

value Eτ is sampled for the decay based on the particle’s lifetime τ . Both the sampled

energy values, Ef and Eτ , are compared, and the higher energy value, along with its

associated interaction type (stochastic loss or decay), is selected for the next step in

the propagation process.

4.2.2 Particle Displacement and Elapased Time

Given the initial energy Ei and the energy of the interaction Ef , the straight-lined

displacement is calculated with the tracking integral

xf = xi −
∫ Ef

Ei

dE

f(E)
(4.13)

where xf − xi is the propagated distance. If the calculated propagated distance of the

particle is such that it would exceed the distance to the sector border d, a recalcula-

tion of the remaining particle energy, Ef , is required. Recalculation is done be setting

xf = xi + d in 4.13 and solving the integral equation for Ef . No interaction will occur

at Ef in this case.
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Calculation for elapsed time is straightforward using time integral

tf = ti +

∫ xf

xi

dx

ν(x)
= ti −

∫ Ef

Ei

dE

f(E)ν(E)
(4.14)

where ν is particle velocity. Alternatively, the approximation ν = c can be used to get

tf ≈ ti +
xf − xi

c
(4.15)
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Chapter 5

Results

5.1 Why PROPOSAL is Faster Than GEANT4

PROPOSAL and GEANT4 are both Monte Carlo simulation tools for studying the

passage of particles through matter. However, their method of operation is different

which ultimately yields one of them more accurate but computationally expensive and

the other faster but less precise.

PROPOSAL is designed specifically for the study of lepton propagation, while

GEANT4 is a more general-purpose tool that can be used to simulate the passage

of a wide variety of particles through matter. PROPOSAL uses up-to-date cross sec-

tions for lepton interactions, while GEANT4 uses a variety of cross sections that may

or may not be up-to-date. PROPOSAL is designed to be fast and accurate, while

GEANT4 is designed to be flexible and extensible.

The basic principle of a Monte Carlo based propagation tool like GEANT4 can be

understood as following steps:

1. Geometry definition, particle generation and initialization: Define the

geometry of the material the particle will propagate through. This involves spec-

ifying volumes, materials, and their properties (e.g., density, atomic composi-

tion).Generate particles with their initial properties, such as energy, position,

direction, and type (electron, muon, etc.). Set up the event loop for multiple

particles or events.
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2. Event Loop: Start the simulation event loop to propagate particles through

matter.

3. Particle Tracking: For each event, initialize the particle’s position and direc-

tion based on the initial properties.

4. Step-by-step Propagation:

• A random number is generated: Use a random number generator to

produce a random value between 0 and 1.

• Interaction Selection: Based on the random number and physics models,

select the type of interaction that occurs during the current step. This could

include scattering, energy loss (ionization, Bremsstrahlung), decay, particle

creation, or other processes.

• Interaction Process: Implement the specific interaction process corre-

sponding to the selected type. Update the particle’s properties, such as

momentum, energy, and direction, according to the outcome of the interac-

tion.

• Repeat: Repeat the previous steps until the particle leaves the material

or interacts with another particle:

5. Multiple Particle Handling: If the event loop involves multiple particles,

propagate each particle independently in similar fashion, considering their re-

spective properties and interactions.

6. Importance Sampling (Optional): If necessary, use importance sampling

techniques to bias the random number generation and focus on rare events or

interactions.

7. End of Event Loop: After completing all events, analyze the accumulated

data to obtain statistical distributions and final simulation results.

However, PROPOSAL differs from the step-by-step method of Monte Carlo particle

propagation in several ways which allows it to be faster and more efficient for simulating

high energy leptons [25].

1. Continuous Energy Loss:
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• In GEANT4, the Monte Carlo method is commonly employed to simulate

continuous energy loss processes like ionization and Bremsstrahlung. How-

ever, this simulation technique breaks down these processes into small dis-

crete steps. This approach can be computationally demanding, particularly

for high-energy particles that undergo numerous interactions. As these in-

teractions create multiple secondary particles, each requiring the same step-

by-step treatment, simulation time grows exponentially, leading to increased

computational costs.

• PROPOSAL, on the other hand, uses continuous energy loss models based

on parameterizations and approximations, avoiding the need for a detailed

step-by-step simulation.

– PROPOSAL calculates the energy loss parametrizations through nu-

merical integrations of the energy loss distribution (see equation 4.11).

These integrations consider the characteristics of the particle and the

material it is traversing through.

– The results of these integrations are stored in interpolation tables, which

provide a faster and more efficient way to access the energy loss values

at different energies.

– When propagating the particle, PROPOSAL uses random number gen-

eration to sample the energy loss from the interpolation tables. Im-

portance sampling techniques may be employed to focus on regions of

the energy loss distribution that contribute significantly to the overall

energy loss.

Since the same numerical integration is performed for all energy range, these

simplification makes it computationally faster for high-energy leptons.

2. Stochastic Energy Loss Fluctuations:

• In the step-by-step approach, the energy loss of particles is sampled stochas-

tically at each step, which leads to fluctuations in the energy loss and requires

a significant number of steps for accuracy.

• PROPOSAL uses stochastic energy loss fluctuations efficiently through parametriza-

tions and statistical methods, energy-cut settings, resulting in faster simu-

lations while still capturing the essential energy loss distribution.
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3. Energy Loss Pre-Tabulation:

• PROPOSAL pre-tabulates energy loss and other relevant parameters to ef-

ficiently look up the required information during the simulation, reducing

the computational overburden.

• GEANT4, being a general-purpose toolkit, do not have pre-tabulated data

for specific particle types or scenarios, making it less optimized for certain

applications like high-energy lepton propagation.

Though it performs numerical integration to calculate energy loss, PROPOSAL is

still considered as a Monte Carlo based propagation tool, because

1. Random Number Generation : PROPOSAL, like other Monte Carlo simula-

tions, utilize random numbers to sample from probability distributions and make

probabilistic decisions during the particle propagation. For example, when simu-

lating energy loss processes or scattering angles, random numbers are generated

to determine the sample from those energy loss or scattering distributions.

2. Stochastic Energy Loss : Although PROPOSAL uses parameterizations and

approximations for continuous energy loss processes, it still incorporates stochas-

tic fluctuations in energy loss. This is crucial to capturing the statistical nature

of particle interactions.

3. Probabilistic Interaction Selection : PROPOSAL probabilistically selects

various interaction processes based on their cross-sections and interaction proba-

bilities, similar to the standard Monte Carlo method.

Figure 5.1 presents my result of running same experiment on GEANT4 and PRO-

POSAL. The plot shows real time taken for simulating 3000 muons of 3, 7, 10 and 40

GeV to pass through NOvA rock.
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Figure 5.1: Real execution time comparison between GEANT4 and PROPOSAL for 3,

7, 10, 40 GeV muon passing through NOvA rock. Y axis is shown in log scale. Blue

Bar represents GEANT4 time, Orange and Green bar represents PROPOSAL time

considering and not considering time required to create interpolation table, respectively.

The blue bar represents the GEANT4 time and the orange and green bar represents

PROPOSAL time “with” and “without” the time required to create interpolation table

respectively. It means that, when a PROPOSAL code run for the first time, it takes

almost a minute (depending on the desired accuracy) to set up the simulation. After

the interpolation table is created, every later run is performed in less than 10 seconds.

However, these values of PROPOSAL time of course depends on the specific values

of energy cut settings. For our current concern for NOvA rock, I found out that the

relative energy cut value of 0.0148 in PROPOSAL makes the best agreement with

GEANT4 results. From the plot we see that, execution time for GEANT4 is almost

2 order of magnitude longer for low energy case like 3 GeV and more than 3 order of

magnitude longer for high energy case like 40 GeV in comparison to PROPOSAL time

without the interpolation table.
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5.2 Comparison Between GEANT4 and PROPOSAL

The main focus of my thesis was to compare between GEANT4 and PROPOSAL for

NOvA rock region. The near detector (ND) in NOvA is situated underground of ≈109

m of rock and soil. This is called “Rock Overburden” region. Also downstream to the

NuMI beam, there’s a rock region of ≈240m, which shield the various kinds of hadrons

and charged particles. Since PROPOSAL is fast in execution and flexible for imple-

menting geometries, simulating particles through dense medium like rock can help us

to save NOvA simulation time. For that, we first need to validate whether the be-

haviour of simulation by PROPOSAL is similar enough to the current simulation tool

GEANT4. To this extent, I ran experiment on both GEANT4 and PROPOSAL, ensur-

ing same initial conditions and geometries, to investigate the nature of 2 characteristics

features.

1. Propagated distance: PROPOSAL offers the value of propagated distance

of each particle in its built-in function in “particle state” class. For GEANT4

experiment, I calculated propagated distance using Pythagoras law on initial and

final state coordinate values.

2. Scattering angle in position space: I am calculating only Y axis scattering

scattering angle = cos−1 Difference between initial and final state Y coordinate

Propagated distance
(5.1)

The initial motion of the particles is along negative Y axis.

By “position space”, I simply meant the angle between the initial state position vector

and final state position vector. We can conceptualize similar kind of angle between

initial state and final state momentum vector. That would be called as scattering

angle in momentum space.

5.2.1 Experiment Setup

Particle type: muons

Number of particles: 3000.

Energies: {3,7,10,40} GeV

Particle motion: Along negative Y axis, i.e. from the earth surface to Near Detec-

tor.
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Medium and density: Rock composition with Z
A ratio being 10.98

22.32 . Density 2.41

gm/cc.

Figure 5.2 and 5.3 represents a schematic diagram for respective code environment

for GEANT4 and PROPOSAL in this analysis. The only difference between two picture

is that, in PROPOSAL, I defined a geometry, “Test Volume”, submerged inside the

rock geometry 500cm away from the earth surface, with volume 10003 cc, with center at

(0,9000,500). For GEANT4, I simply considered imaginary lines for the “Test Volume”

boundaries along Y axis. The usage of this “Test Volume” is to compute the scattering

angle in mid flight of the particles.

Figure 5.2: GEANT4 environment. 3000 muons propagating through NOvA rock

region, starting from earth surface at coordinate (0, 10000, 500) toward ND. The

“Entry Point” and “Exit Point” is implemented to calculate the scattering angle on

flight.
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Figure 5.3: PROPOSAL environment. 3000 muons propagating through NOvA rock

region, starting from earth surface at coordinate (0, 10000, 500) toward ND. The

“Entry Point” and “Exit Point” is depicting the level of the upper and lower boundary

of a geometry to calculate the scattering angle on flight. PROPOSAL environment

is different from GEANT4 environment only by the implementation of a geometry

to calculate scattering angle in mid flight, instead of declaring some cut-off line in

GEANT4.

5.2.2 Error Calculation and Validation Test

The error on each data point is calculated with

error =
√
N where N is number of entries in each bin (5.2)

The percent difference is calculated for the individual distributions to measure the

difference between them using equation:

percent difference =
GEANT4 data− PROPOSAL data

GEANT4 data
(5.3)
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Error in percent difference is calculated using the division formula of error propagation

since percent difference is a ratio [26].

∆z

z
=

√(
∆x

x

)2

+

(
∆y

y

)2

(5.4)

where ∆z = Uncertainty in Percent Difference, z = percent difference = x
y ,

x = GEANT4 data − PROPOSAL data, and y = GEANT4 data. ∆x, ∆y are

error in x and y respectively.

5.2.3 Propagated Distance Validation:

The resulting Propagated Distance validation data are presented from figure 5.4 to 5.7.

Each figure shows the distribution comparison for each energy in {3,7,10,40} GeV.

Figure 5.4: Propagated distance distribution for 3GeV muons in GEANT4 (red curve)

and PROPOSAL (green curve). Error in distribution plot is calculated using equation

5.2. Percent difference in the bottom plot is calculated using equation 5.3 and uncer-

tainty is calculate by equation 5.4

.
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Figure 5.5: Propagated distance distribution for 7GeV muons in GEANT4 (brown

curve) and PROPOSAL (magenta curve). Error in distribution plot is calculated using

equation 5.2. Percent difference in the bottom plot is calculated using equation 5.3 and

uncertainty is calculate by equation 5.4

.
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Figure 5.6: Propagated distance distribution for 10GeV muons in GEANT4 (pink

curve) and PROPOSAL (blue curve). Error in distribution plot is calculated using

equation 5.2. Percent difference in the bottom plot is calculated using equation 5.3

and uncertainty is calculate by equation 5.4

.
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Figure 5.7: Propagated distance distribution for 40GeV muons in GEANT4 (cyan

curve) and PROPOSAL (purple curve). Error in distribution plot is calculated using

equation 5.2. Percent difference in the bottom plot is calculated using equation 5.3 and

uncertainty is calculate by equation 5.4

.

5.2.4 Scattering Angle Validation:

Similarly Scattering Angle validation data are presented in figure 5.8 to 5.11. Each

figure shows the scattering angle distribution comparison for each energy in {3,7,10,40}.
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Figure 5.8: Scattering angle distribution for 3GeV muons in GEANT4 (red curve) and

PROPOSAL (green curve). Error in distribution plot is calculated using equation 5.2.

Percent difference in the bottom plot is calculated using equation 5.3 and uncertainty

is calculate by equation 5.4

.
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Figure 5.9: Scattering angle distribution for 7GeV muons in GEANT4 (brown curve)

and PROPOSAL (magenta curve). Error in distribution plot is calculated using equa-

tion 5.2. Percent difference in the bottom plot is calculated using equation 5.3 and

uncertainty is calculate by equation 5.4

.
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Figure 5.10: Scattering angle distribution for 10GeV muons in GEANT4 (pink curve)

and PROPOSAL (blue curve). Error in distribution plot is calculated using equation

5.2. Percent difference in the bottom plot is calculated using equation 5.3 and uncer-

tainty is calculate by equation 5.4

.
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Figure 5.11: Scattering angle distribution for 3GeV muons in GEANT4 (cyan curve)

and PROPOSAL (purple curve). Error in distribution plot is calculated using equation

5.2. Percent difference in the bottom plot is calculated using equation 5.3 and uncer-

tainty is calculate by equation 5.4

.

5.2.5 Conclusion:

Percent difference plots show us the state of agreement between two distribution.

For Propagated Distance plots, we see the shape of both curve is approximately

same. For example, in 3 GeV case, all the data points are from both distribution is

superimposing each other. In the corresponding percent difference plot, for “Body

Region” ranging from ≈ [620, 690], percent difference values are clumped up near the

“Zero Line” (purple colored line). On the other hand, percent difference in Tail Re-

gion ranging from ≈ [0, 620] and ≈ [690, 720] are located relatively further away from

the Zero line with high uncertainty. But the uncertainty prongs are typically cross-

ing or almost touching the Zero Line. Therefore we conclude that the propagated

distance distributions for 3 GeV muons are in high agreement. Similar conclusions can

be drawn for other propagated distance distributions.

Both models, PROPOSAL and GEANT4, provide similar results when it comes to
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how muons propagate through rock medium. However there might be some subtle dif-

ferences between the results obtained from PROPOSAL and GEANT4 that we might

be unable to reliably detect, based on the limited statistical data we worked with. With

a larger sample size more significant difference may emerge. Therefore it is necessary

to conduct these validations with high statistics.

On the other hand, the scattering angle plots shows a lot of disagreement between

them. The 3 GeV case is most prominently disagreed plot among all four cases. In

our current understanding, we are unable to provide any valid reason for this high de-

gree of disagreement. But we speculate that PROPOSAL can be handling low energy

cases a bit differently than the high energy cases such that the difference in algorithm

affects more to scattering angle than the energy loss, i.e., propagated distance calcula-

tions. For 7, 10 and 40 GeV cases shows better agreement respectively. Tail Regions

show greater value for percent difference with long prongs of uncertainty that typi-

cally crossing or touching the Zero Line. The Body Regions have percent difference

values near to Zero Line with small uncertainty. We conclude that for high energy

scattering angle cases, both distributions agree which can be improved with higher

statistics. However for low energy scattering angle, we need to further investigate.

5.3 Transporting Cosmic Muons by Handling HEP EVT

Format File

I collaborated with another fellow NOvA graduate student Amit Pal from National

Institute of Science Education and Research, India. For his work on “Seasonal Variation

in Cosmic Muons”, he needs to perform cosmic muon simulation starting from the upper

atmosphere to the near detector. For this purpose, he uses CORSIKA [27] air shower

simulation toolkit to

1. propagate the muons from upper atmosphere to earth surface,

2. and then he could do either rock simulation using GEANT4 or simply calculate

the straight line trajectory from muon initial state (at earth surface) to final state

(at detector surface) considering the geometry, density and other relevant feature

of propagation media.
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Since the number of particle for Amit’s work is huge (≈ 50000), it would consume a

lot of computational time to simulate these particle using GEANT4. So, he trans-

ports the particles deterministically without considering any statistical nature of the

propagation. Since PROPOSAL can propagate particles with 2 order of magnitude

faster then GEANT4 and employ statistical features to the simulation, I helped him

by propagating those particles using PROPOSAL for rock simulation.

My objective is to take the CORSIKA generated output file as my simulations input

and then generate the output file for those particles which will go inside the ND cavern.

Instead of propagating till Near Detector (ND), we choose to stop at ND cavern, since

inside the ND cavern and ND, we need higher accuracy for simulation, which can be

taken care of by GEANT4.

CORSIKA generated files contains mostly muons, antimuons and some protons,

neutrons (roughly total 20 proton, neutron among 50000 particles that survives till the

earth surface). Since PROPOSAL is a lepton propagator, we want to simulate only

muons and antimuons. For that I had to filter out particles other then muons and an-

timuons and then propagate the leftovers to the ND cavern. Also muons and antimuons

are the only particles that are energetic enough to get through the rock to penetrate ND.

The file format for the input/output file is HEP EVT (High Energy Physics Event

data) format. HEP EVT file format is a common file format used in high energy physics

(HEP) experiments to store event data. Generally HEP experiments generate vast

amounts of data, and EVT files are used to store information about individual events,

including the particles produced, their properties (such as momentum and energy), and

the detector responses to those particles. Figure 5.12 is the image for the first few lines

of the HEP EVT input file that I worked on:
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Figure 5.12: First few lines of the input file for rock simulation. The file is in HEP

EVT format

The data structure for this format is following (first 2 lines are described):

Line 1:

0 ≡ Event Number,

1 ≡ Number of particles in this event

Line 2:

1 ≡ number of particle described in this line,

13 ≡ particle pdg number,

0, 0, 0, 0 ≡ 1st mother, 2nd mother, 1st daughter, 2nd daughter particles respectively,

−8.86403,−59.1406, 16.8625 ≡ x, y, z component of momentum respectively (in GeV/c),

62.1332 ≡ energy in GeV,

0.10566 ≡ rest mass in GeV/c2,

−2015.47, 11200,−2802.96 ≡ x, y, z position coordinate in cm,

21799.7 ≡ time stamp.

Geometry For this simulation, I created 3 geometries,
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1. World Geometry: This is the background geometry that will hold the simu-

lation. No particles can cross this geometry, otherwise the program will show

error. I chose a cubic box of X,Y,Z length (1018 × 1018 × 1018) cm3 and setting

the center of this geometry (0, 0, 0) as the origin of my experiment’s coordinate

system. Density is 1.0 for air.

world_geometry = pp.geometry.Box(pp.Cartesian3D(0,0,0), 1E18, 1E18, 1E18)

density_distr_world = pp.density_distribution.density_homogeneous(1.0)

2. Rock Geometry: The ND rock volume is described in this geometry. Volume

= (10900×10900×10900) cm3 with center at (0, 5000, 0). PROPOSAL considers

X as width, Y as height and Z as length. Density value 2.43 for accounting rock

density [28].

rock_geometry = pp.geometry.Box(pp.Cartesian3D(0,5000,0), 10900, 10900, 10900)

density_distr_rock = pp.density_distribution.density_homogeneous(2.43)

3. ND Cavern Enclosure: I am considering an imaginary enclosure volume for

ND cavern with dimension 900×900×900 cm3 with center at (0, 0, 0) and density

1.0 . Instead of taking the exact dimension of ND cavern, we chose to consider an

enclosure volume for ND cavern, so that the GEANT4 simulation can take over

starting from ND cavern.

ndce = pp.geometry.Box(pp.Cartesian3D(0,0,0), 900, 900, 900)

density_distr_ndce = pp.density_distribution.density_homogeneous(1.0)

The output file generated by PROPOSAL is shown below:
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Figure 5.13: Output file generated by PROPOSAL. This file describes the final states

for the particles at the ND cavern enclosure boundary.

The output file keeps the event number from the input file the same so that we can

know which particle state from the input is hitting the ND cavern enclosure boundary.

For example, the first line indicates that the antimuon (-13) state from event number

92 is penetrating through the ND cavern enclosure and the final state of that particle

is described in the subsequent line.

5.4 Analysis for Secondary Particles

As charged muons pass through rock, it creates secondary particles as a consequence

of interactions between them. These secondary particles can also enter into detector

region depending on their state. So they are crucial for NOvA ND studies such as

Detector Systematic. However, PROPOSAL does not simulate any particle that is not

lepton. And neutrons, protons, gammas and other hadronic particles are constituents

of these secondaries. This makes our goal to use PROPOSAL for rock simulation

(because its fast) and GEANT4 for ND cavern and ND simulation (because its more

accurate). Therefore, we will need to employ strategies to hand the muon simulation

from PROPOSAL to GEANT4 at some boundary within the rock but close to the

Near Detector. In this regard, we need to decide, at what distance from the ND
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cavern, PROPOSAL should hand over the simulation task to GEANT4. Now,

• if PROPOSAL propagates particles very close to the ND cavern boundary, then

we will be able to get the information about only those secondary particles that

are being generated after the hand over process. We will lose all the information

about the secondary particles that have originated at higher position in Y axis

and have the capability of entering into ND Cavern.

• On the other hand, if we choose a coordinate in Y axis comparatively higher

than the cut off boundary, then the number of generated secondary particles will

be huge (because there’s lot more volume of rock to generate secondaries) and

most of them will not be able to overcome the rest of the rock region to enter

ND cavern. Therefore it will render the simulation process slow since we have

to account all the primaries and secondaries which are not making till the ND

cavern.

Hence we need to decide at what distance from ND cavern we want to take the simu-

lation task from PROPOSAL to GEANT4. A schematic diagram for the simulation is

shown in figure 5.14:
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Figure 5.14: A schematic diagram for secondaries analysis. The origin of the coordinate

system is set at the center of the XY plane (YZ plane visible) of near detector (ND).Blue

and Red arrows depicts the primary muons and secondary particles respectively. File

is generated for the particles which passes the ND cavern barrier, i.e. cut-off distance,

depicted by the brown colored line. If we choose position “A”, we may lose secondary

particles originated above “A”. If we choose position “B”, we will be doing unnecessary

simulation for particles most of which will die inside the rock.

The black dots are depicting the rock nucleus inside the “Rock Overburden” region.

As the primary muons interacts with the rock nucleus by Bremsstrahlung and Photo

Nuclear interaction, it generates secondary gammas, neutrons, etc. We are interested

for those secondary particles which are capable of entering into ND cavern.

This experiment is performed in GEANT4. First we considered a mono-energetic

beam of primary muons starting from above of the cavern boundary. The experiment

is performed for mono energetic muons with energy (3, 5, 7, 10, 30) GeV.

Total number of primary muons is 3000.

Distances from which the primary muons were fired (I call this Primary Muon Location)

is following:
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• 3GeV: [690, 750, 850, 1000, 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450, 1500,

1550] cm

• 5GeV: [690, 750, 850, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1750, 1800,

1850, 1900, 1950] cm

• 7GeV: [690, 750, 850, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1850,

1900, 1950, 2000, 2050, 2100, 2200, 2300, 2400, 2500] cm

• 10GeV: [690, 750, 850, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900,

1950, 2000, 2050, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000] cm

• 30GeV: [690, 850, 1000, 2000, 3000, 4000, 5000, 5500, 5750, 6000, 6250, 6400,

6500, 6600, 6750, 7000, 7250, 7400, 7500, 7600, 7750, 8000] cm

Meaning, say, for 3 GeV muons, 3000 muons were fired from 690 cm, 750 cm, and so

on for each distances. And record all the secondary particles that enter ND cavern for

each run. Notice that the number of Primary Muon Location is not same for all type of

muon energy. This is because, the distance travelled by the primary muon is dependent

on its initial energy. For higher initial muon energy, the propagated distance will be

longer and hence the probability of producing secondary particles increases. For exam-

ple, a 3 GeV muon generally travels a track with length 600 cm inside rock. Therefore

in order to create secondary particles during 3GeV muons flight, and in order to pass

the barrier of cut-off distance (at 681 cm from ND), we placed the Primary Muon Lo-

cations starting from 690, 750, 850, .. to 1550 cm. For 30 GeV muon, obviously, this

track length is bigger then 600 cm (approximately 7000 cm). Therefore more Primary

Muon Locations for 30 GeV than 3 GeV.

After the primary muons are fired to the ND cavern, our program asks the question,

how many particles are entering into ND cavern. If they enter, make a file for those

secondary particles origin point and calculate its travelled distance to enter into ND

cavern. Figure 5.15 is the distribution plot for the secondary particles travelled distance

to ND cavern. The two plots shown here are for Gamma and Neutrons as they are the

main contributor in total number of secondary particles.
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Figure 5.15: Distribution plot for Gamma and Neutrons. The X axis plots the distance

in cm for the particle to enter in ND Cavern (NDC). Y axis plots the number of

respective particles.

These plots show the distribution for secondary particles generated from different

energy. The legend in the plot also tell us the number of particles and “Primary Muon

Location” for which the largest number of secondaries have succeeded to enter into ND

cavern. For example: “3 GeV, # = 906, PML = 1350cm” tell us that the red curve

in the plot is representing the secondary particles originated from the primary muons

with energy 3 GeV, and those primary muons were fired from 1350cm above the near

detector (the cut-off distance is situated above the near detector at 681 cm, see figure

5.14). The total number of secondary gamma that enters into ND cavern produced by

3 GeV primary muons are 906. Also, the error for all curves are shown by the filled

region along the curve. The error is calculated using

error =
√
N where N is number of entries in each bin (5.5)

From this plot, we can now decide at what distance the handover process from

PROPOSAL to GEANT4 can happen so that we don’t lose account for many sec-

ondary particles. What percentage of total secondary particles we can neglect, is a

question to be decided by the NOvA scientists (Detector Systematic group). Table

shows a percentile chart for gamma and neutron distances.
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Percentile Gamma Distance (cm)

3

GeV

5

GeV

7

GeV

10

GeV

30

GeV

99 37.93 38.99 48.64 42.04 52.64

95 23.09 25.79 29.56 22.67 35.14

90 16.63 19.78 23.01 15.73 28.32

Table 5.1: Chart for (99, 95, 90) th percentile distance value for secondary Gammas.

For example, all the 3 GeV gammas that are plotted in figure 5.15, 99% of those

particles traveled distance is within 37.93 cm.

Percentile Neutron Distance (cm)

3

GeV

5

GeV

7

GeV

10

GeV

30

GeV

99 30.18 30.12 38.36 41.19 30.36

95 19.81 26.62 33.30 20.28 25.72

90 16.41 21.62 31.61 12.78 11.8

Table 5.2: Chart for (99, 95, 90) th percentile distance value for secondary Neutrons.

For example, all the 3 GeV neutrons that are plotted in figure 5.15, 99% of those

particles traveled distance is within 30.18 cm.

For example, if we choose 52.64cm, which is the 99th percentile value for 30 GeV

from the chart, we will stop PROPOSAL simulation at ∼ (681 + 52.64 = 733.64) and

GEANT4 will take over at that position. We can also improve our analysis by filtering

out the low energy secondaries by imposing minimum threshold energy value. For ex-

ample, if the initial energy of the secondary particles are less than “x” MeV, we won’t

consider them. Because low energy secondaries won’t be able to enter into the detector

region.

Upon deciding at what distance from ND Cavern we are confident to handover from

PROPOSAL to GEANT4, we can define a 3D cut-off geometry in our PROPOSAL

code. The purpose of this cut-off geometry will be to tell us if a muon is hitting this
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geometry, then we want to consider that muon for our GEANT4 simulation, because

that muon and the secondary particles produced by that muon, have a greater chance

to enter into ND Cavern and ND. One of the advantage of PROPOSAL is that it can

handle defining geometries and particles passing through geometries very easily and

efficiently. For example, the following one line of code can provide the state of the

particles when they were entering into “PROPOSAL cut-off geometry”.

PROPOSAL_cut-off_geometry_entry_point_state = particles.

entry_point(PROPOSAL_cut-off_geometry)

Analysing the “entry point” states, we can know their energy, momentum (hence di-

rection, hence scattering angle) and deduce if they have greater chance of hitting the

detector or not. Figure 5.16 shows a schematic diagram of this process.

Figure 5.16: A schematic diagram for implementing PROPOSAL cut-off geometry.

Muons can from any direction and hit the detector. Therefore we implement PRO-

POSAL cut-off geometry to tell us which particles are hitting the geometry and which

will have greater chance to hit the detector.
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Chapter 6

Conclusion and Future Prospect

This thesis focused on validating the PROPOSAL lepton propagation tool by compar-

ing it with the well-established GEANT4 simulation for modeling rock muons in the

NOvA experiment. The main objective of this validation study was to evaluate the

accuracy and efficiency of PROPOSAL as an alternative simulation tool for simulat-

ing muon propagation through the extensive rock volume within the NOvA experiment.

Through a series of careful experiments, we assessed the performance of PRO-

POSAL by examining crucial parameters, such as the relative energy-cut value for

PROPOSAL rock. Our investigation revealed that a relative energy-cut value of 0.007

best aligned with GEANT4 data. We also calculated the Z
A ratio for PROPOSAL rock

to be 10.98
22.38 , from this ND rock composition code in NOvA GitHub page [11].

The validation experiments indicated good agreement in the propagated distance

distributions. However, there were discrepancies in the low energy scattering angle

distributions, with the high energy cases showing better agreement but still not as sat-

isfactory as the propagated distance distributions. As a result, we can conclude that

the Scattering Angle distributions between PROPOSAL and GEANT4 do not ex-

hibit satisfactory agreement. To gain a deeper understanding of the reason behind this

discrepancy, further investigation using additional data is required for a comprehensive

analysis.

In Chapter 1, we discussed how our neutrino beam is contaminated by charged
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particles like muons. Muons produced by beam neutrinos interacting with rock nucleus

can

νµ +N → µ− + p

can enter into detector regions. Understanding the beam energy and constituent pro-

file is crucial for our experiment and therefore the high necessity for muon simulation.

While the current simulation tool GEANT4 offers precision in this task, it comes with

significant computational overhead. Herein lies the importance of PROPOSAL. PRO-

POSAL promises to provide efficient and reliable muon simulation, complementing

GEANT4’s capabilities.

Within the NOvA simulation chain, various tools play pivotal roles. The neu-

trino event generator program GENIE [29], a Monte Carlo simulation tool, is tasked

with handling all aspects of neutrino generation, interactions, and secondary products.

Alongside GENIE, GEANT4 and CORSICA also contribute to the simulation pro-

cess. The ART Event Processing Framework [30] orchestrates these simulation tools,

facilitating seamless communication and efficient management. However, integrating

PROPOSAL into the ART framework presents technical challenges that are currently

being addressed. Overcoming these challenges is crucial for enabling the utilization of

GENIE data as input for PROPOSAL and obtaining meaningful output. Despite these

obstacles, the validation and analyses presented in this work remain important, as they

will inform and guide the implementation of PROPOSAL within NOvA’s simulation

chain, propelling our studies forward.

We implemented PROPOSAL right away to a more practical case of cosmic muon

transportation for NOvA Near Detector. Instead of deterministically calculate final

state of muons for rock transportation OR simulating them using GEANT4 with the

expense of huge amount of time, we can now use PROPOSAL to handle the problem

efficiently and quickly with more realistically by incorporating statistical nature of sim-

ulation. We conducted this experiment by taking HEP EVT format file as input and

output, which makes the code more universal to use.

Furthermore, we explored the analysis for determining the simulation task handover
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process. Since PROPOSAL is fast and GEANT4 is more accurate, we want to use PRO-

POSAL for rock simulation (sacrificing accuracy but gaining speed) and GEANT4 for

detector simulation (sacrificing speed but gaining accuracy). Therefore we need to de-

termine at which point the simulation task should be handover from PROPOSAL to

GEANT4. Our “Secondaries” analysis serves that purpose by analysing the secondary

particles generated by the transported muons inside the rock. We plotted the ’prop-

agated distance to enter detector region (specifically detector cavern)’ distribution for

those secondaries for different values of energy for parent muons starting from various

altitude. Necessary percentile table has also been prescribed to help make the decision

of at what distance handover process should happen.

However, several avenues can be explored to further enhance and refine the results

obtained in this thesis, focusing on all the above mentioned results and conclusions.

• Number of Validation: To validate PROPOSAL, we presented only two vali-

dation parameters (Propagation Distance, Scattering Angle) in this thesis. These

are important and essential parameters but we should explore and include new

validation parameters like scattering angle in momentum space (to see if both

type of scattering angle results is coherent or not), time distribution, etc.

• More Data: The validation experiments has been done for 3000 mono-energetic

muons of {3,7,10,40} GeV energy to propagate through rock volume. To make

the experiment more robust and conclusive, we need to consider more statistics

(# > 3000) and more energy-wise explorations.

• Statistical Methods: To validate and to measure the disagreement between

the distributions, I calculated the percent difference between the distributions.

Recently I have come to know about advanced statistical method for comparison

between multiple distributions, such as Chi Square test, Anderson-Darling test,

which can be applied to our distributions.

• 3D Secondaries Analysis: The preliminary “Secondaries” analysis has been

performed. However, we need to redo the analysis imposing a minimum threshold

energy value for the secondaries. This step is necessary because not all secondaries

that enter the cavern will be capable of entering the detector with enough energy

to generate detectable scintillation light. We will establish a minimum threshold
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energy for the initial energies of the secondaries, selecting only those that have

the potential to be detected by the detector. Subsequently, we will validate

the effectiveness of PROPOSAL’s 3D geometry implementation in determining

whether a particle will hit the detector cavern and the detector itself.
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Appendix

As a simulation package, PROPOSAL may need to set constraints in its description

of physical processes. For example, the energy transfer from primary to secondary is

needed to be considered as two different energy transfer process, called stochastic and

continuous energy loss depending on some energy cut value set by the user. To in-

corporate these settings, PROPOSAL’s description of physical process differs from the

equations discussed in chapter 2. Following is the equations that are being implement

in PROPOSAL library. See [20] for detail.

{µ is the mass of propagating particle (muon), me is mass of electron, E is energy of

incident particle (muon), ν = vE is the energy of secondary particle (knock-on electron

for Ionization, photon for Bremsstrahlung, electron pair for pair production, virtual

photon for Photonuclear process) where v is the fraction of energy of primary particle

that created the secondaries. All other quantities are same discussed in Chapter 2.}

.1 Ionization

−dE

dx
= Kz2

Z

Aβ2

[
1

2
ln

(
2meβ

2γ2νupper
I(Z)2

)
− β2

2

(
1 +

νupper
νmax

)
+

1

2

(
νupper

2E(1 + 1/γ)

)2

− δ

2

]
(1)

where,

• νmax = 2me(γ2−1)

1+2γme
µ

+
(

me
µ

)2 .

It is maximum energy that the secondary particle, in this case, the knock out

electron can have. This represents same thing as Tmax in energy loss for ionization
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equation 2.1 from our discussion in Chapter 2 Ionization section.

• νupper = min(νcut, νmax)

PROPOSAL implements an energy cut value νcut for secondary particles for every

simulation to distinguish between stochastic and continuous energy loss process.

Details about this cut setting is discussed on chapter 4. νupper is the minimum

value between νcut and νmax.

• δ =


δ010

2(X−X0), ifX < X0

c1X + c+ a(X1 −X)m, ifX0 ≤ X < X1

c1X + c else

δ is the density correction term, whereX = log10(βγ) and the constants δ0, X0, X1, c1, c, a

are specific to medium material whose values for different materials can be found

on the table A.6 from this paper [20]

.2 Bremsstrahlung

The Bremsstrahlung cross section can be expressed as the sum of three components:

an elastic component and two inelastic components, one associated with atomic inter-

actions and the other with nuclear interactions.

σ = σel +∆σin
a + σin

n

In PROPOSAL, a set of certain parametrization techniques, such as Kelner-Kokoulin-

Petrukhin (KKP), Andreev–Bezrukov–Bugaev (ABB), Petrukhin–Shestakov (PS) form

factor parametrization can be used for calculating elastic bremsstrahlung. Only KKP

is discussed here.

σel(E, ν) =
α

ν

(
2Z

me

µ
re

)2(4

3
− 4

3
ν + ν2

)[
ln

µ

δ
− 1

2
−∆el

a −∆el
n

]
(2)

where, E is energy of incident muon, ν is energy of radiated photon, δ is the

minimum momentum transfer, and ∆el
a,n are atomic and nuclear form factors with,
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∆el
a (δ) = ln

[
1 +

1

δ
√
eBZ−1/3/me

]
(3)

∆el
n (δ) = ln

[
Dn

1 + δ(Dn
√
e− 2)/µ

]
(4)

where, Dn = 1.54A0.27 and B is radiation log constant whose values are given for dif-

ferent materials in the table A.7 on this PROPOSAL paper [20].

The inelastic contribution in Bremsstrahlung cross section is discussed in this paper

[31],

.3 Pair Production

∆σin
a (E, ν) ≈ α

ν

(
2Z

me

µ
re

)2(4

3
− 4

3
ν + ν2

)
∆in

a (5)

with

∆in
a ≈ 1

Z
Φ̃in
a (δ) (6)

where

Φ̃in
a (δ) = ln

[
µ/δ

δµ/m2
e +

√
e

]
− ln

[
1 +

me

δ
√
eB′Z−2/3

]
(7)

where, B′ = 1429 for Z ≥ 2 and B′ = 446 for Z = 1.

The nuclear contribution can be found similarly by using ∆in
n = 1

Z∆
el
n .

The cross section formulae used in PROPOSAL are from the reference [32, 33, 34]

dσ(E, ν, ρ)

dνdρ
=

2

3π
Z(Z + ζ)(αre)

2 1− ν

ν

(
Φe +

m2

µ2
Φµ

)
(8)

with, ν = (ϵ+ + ϵ−)/E, ρ = (ϵ+ − ϵ−)/E where, ϵ+− is positron and electron energy.

Also,

Φe =

{
[(2 + ρ2)(1 + β)ξ(3 + ρ2)] ln

(
1 +

1

ξ

)
+

1− ρ2 − β

1 + ξ
− (3 + ρ2)

}
Le (9)

Φµ =

{[
(1 + ρ2)(1 +

3

2
β)− 1

ξ
(1 + 2β)(1− ρ2)

]
ln(1 + ξ) +

ξ(1− ρ2 − β)

1 + ξ
+ (1 + 2β)(1− ρ2)

}
Lµ

(10)
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Le = ln

 BZ−1/3
√
(1 + ξ)(1 + Ye)

1 + 2me
√
eBZ−1/3(1+ξ)(1+Ye)

Eν(1−ρ2)

− 1

2
ln

[
1 +

(
3me

2µ
Z1/3

)2

(1 + ξ)(1 + Ye)

]
(11)

Lµ = ln

 2
3

µ
me

BZ−2/3

1 + 2me
√
eBZ−1/3(1+ξ)(1+Ye)

Eν(1−ρ2)

 (12)

Ye =
5− ρ2 + 4β(1 + ρ2)

2(1 + 3β) ln(3 + 1
ξ )− ρ2 − 2β(2− ρ2)

(13)

Yµ =
4 + ρ2 + 3β(1 + ρ2)

(1 + ρ2)(3/2 + 2β) ln(3 + ξ) + 1− 3
2ρ

2
(14)

β =
ν2

2(1− ν)
(15)

ξ =

(
µν

2me

)2 1− ρ2

1− ν
(16)

ζpairloss (E,Z) ≈
0.073 ln

(
E/µ

1+γ1Z2/3E/µ

)
− 0.26

0.058 ln
(

E/µ

1+γ2Z1/3E/µ

)
− 0.14

(17)

γ1 = 1.95× 10−5 and γ2 = 5.3× 10−5 for Z ̸= 1, (18)

γ1 = 4.4× 10−5 and γ2 = 4.8× 10−5 for Z = 1 (19)

.4 Photonuclear Interaction

In PROPOSAL, the Bezrukov-Bugaev Parametrization is used for photonuclear inter-

action [35]. The underlined terms in the cross section equation are used to account for

tau propagation.
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dσ

dν
=

α

2π
AσγNν [Term1 +Term2 +Term3] (20)

with,

Term1 = 0.75G(x)

k ln(1 + m2
1

t

)
− km2

1

m2
1 + t

− 2µ2

t
+

4µ2

m2
1 ln

(
1 +

m2
1
t

)


Term2 = 0.25

[(
k +

2µ2

m2
2

)
ln

(
1 +

m2
2

t

)
− 2µ2

t

]

Term3 =
µ2

2t

[
0.75G(x)

m2
1 − 4t

m2
1 + t

+ 0.25
m2

2

t
ln

(
1 +

t

m2
2

)]
where,

t = Q2
max = µ2ν2

1−ν ; k = 1− 2
ν − 2

ν2
; m2

1 = 0.54GeV 2 and m2
2 = 1.8GeV 2

Nucleon shadowing effect is accounted with

σγA(ν) = AσγN (ν){0.75G(x) + 0.25}
with G(x) = 3

x3

(
x2

2 − 1 + e−x(1 + x)
)

for Z ̸= 1;

And G(x) = 1 for Z = 1, with x = 0.00282A1/3σγN (ν)

σγN refers to the photon nucleon cross section.

The Abramowicz–Levin–Levy–Maor (ALLM) parametrization is also implemented in

PROPOSAL for photonuclear cross section. Please see [20] for detailed discussion.
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