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§i. Introduction 

Recent development of the dual resonance model is reviewed I). 

First, the quantum mechanics of a relativistic free string is pre- 
• t 

sented by putting the emphasis on the gauge invariance and the Polncare 

invariance. The invariances are guaranteed only when the space-time 

dimension D is 26 (D=I0 in another model) and the Regge intercept s 0 

equals i. 

Second, the second quantized formalism of the string model is dem- 

onstrated. By this we mean the theory of many pieces of strings inter- 

acting each other, which is analogous to the Dyson's formalism in the 

local field theory. The basic interactions between (closed and/or open) 

strings are determined from the continuity condition of the world 

sheets swept out by the string motion. The five basic interactions are 

shown to be necessary. 

So far, the second quantized formalism is possible only in a 

special gauge, i.e., in the light cone gauge. 

Third, we show the equivalence of the string theory to the dual 

resonance model. The scattering amplitude corresponding to each Feynman 

diagram can be mapped onto the amplitude in the dual resonance model. 

The five basic interactions introduced from the geometrical reason are 

shown to be necessary and sufficient to reproduce the covariant dual 

resonance model. 

§2. Quantum Mechanics of a String 

Classical Theory: The motion of a classical string is governed by 

the action 

where X~(T, q) represents a point on a world sheet swept out by a 

string motion in a D-dimensional space-time (~=0, .-., D-l). The set 

of parameters (o, ~) is an arbitrary coordinate on the world sheet 4, 

and X~=~X~/~Y, X~'=~X~/~ and X 2 ~ - '  = Z X~ [Fig.l]. The integrand~dodT 

is the infinitesimal surface element of A. The action principle 

implies that the classical motion of string is determined in such a way 

that the area of world sheet is made minimum, a generalized Fermat's 

principle. 
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The action (2.1) has an invariance under 

the reparametriz ation 

{~ ~ k~"~,~'(~)} (2.2) 

where ~' and ~' are arbitrary continuous func- 

tions. In such a case, the velocities 

X~(o, ~) cannot he solved with respect to the 

canonical momenta 
• -~::~'~,...,: ~ -  "~-f 

= ~ ,  ( 2 . 3 )  

The momenta, however, satisfy a set of "gauge 

conditions" , 

/ o  "~. 

Fig.l. The world sheet. 

"~ % ~(~.~@ X,~.~)=O , p(~.~)~<'e~.~)~O (2.4) 

Owing to (2.4), the mechanical system cannot be solved unless we spec- 

ify a special gauge. The gauge we choose is the light cone gauge: 

~*- (~°+~")/~ = I , X*-(X°+XD")/d = ~ (25) 
which, when combined with (2.4), determine other components; 

, , 
p-, cp ~- p~")/~ =C ~'~ ~'~)~ , x-.(r-~°-'y~ - (2.6) 

Consequently, independent variables for string are the transverse 

components of coodinates ~(o, r)=(xi(o, r)[i=l,2,-'D-2), the zero fre- 
+ 

quency modes of light cone components x-, and their canonical conju- 

gates. The equation of motions, therefore, should be solved for X(o,T) 

under the boundary condition 

't~,T)}~ 0 (2.7) 
w ~  

for an open string, or the periodicity condition 

for a closed string. 

Quantum Theory: In going to the quantum mechanics, we first assume 
t 

that X- except for the zero-modes, are functions of other independent 

quantities due to (2.5) and (2.6). The state vector which describes 
+ 

the string motion must be a functional of ~, and x-, the zero-modes of 
+ + 

X-(o, ~) : ~[~, x , x-]. For later convenience we will introduce the 

following Fourier components of ¢ with respect to x : 

We have already imposed all the conditions (2.4)-(2.6) but the zero- 

mode condition of (2.6), which should be imposed as anequation of 

motion on @. In the Schodinger representation, the condition turns out 

to be * ] , 

where we have used 

I ='=: ~ I , ~ ' ,  ~,='> = - :  71m~-~ . ~ ~ ~ ~p,. 
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A great advantage of the approach presented above consists in the 

ghost elimination. The time component coordinate X°(0, T) has a nega- 

tive norm if it is quantized covariantly. The trouble has been over- 

come by taking advantage of gauge freedom, because X ° has been elimi- 

nated by (2.5), and (2.6). This method is analogous to the Coulomb 

gauge quantization in the usual quantum electrodynamics. 

Contrary to the ghost elimination, the Lorentz covariance, or the 
. i 

Polncare covariance is not manifest in the above treatment. GGRT 2) 

was the first who confirmed the covariance by the explicit construc- 
. ! 

tion of the Polncare generators. From the geometrical meaning of X ~' 

(0, T) and P~(o, T) one can guess that 

In constructing pU, and M Uv, the explicit solutions (2.5) and (2.6) 

has to be used with careful attention to the normal ordering for 

operators. Against expectation, GGRT found that the Poincarl invari- 

ance is possible only when D=26, and ~0=i, where ~0 is the intercept 

of the Regge trajectory. The mass spectrum is given by 

The reason why D=26 can be trace back to the normal ordering of opera- 

tors in (2.10) and (2.!I) when the system is quantized. The operators 
++ + 
a[ and a~ are quantized coefficients in normal mode expansions of 

X(~, T) and [(o, T). 

Finally, we note that a similar discussion is possible for a 

closed string with the cyclic boundary condition (2.8). 

§3. The Second Quantization 

In the previous section we discussed the quantum mechanics of a 

single string, and showed that the motion can be described in the 

Hilbert space spanned by x U, ~(o, T) and ~(o, T). 

In order to construct a theory of interacting strings, one has to 

consider an infinite direct products of these Hi!bert spaces: 

m{ = (3.1) 
[=! 

to each of which a string belongs. The purpose in this section is to 

formulate the perturbation theory for the many strings interacting 

each other. 

Free Strings: Let us begin with the second quantization of inter- 

action free strings. The wave function #p+ introduced in (2. q ) now 

should be quantized as a field operator. The Lagrangian which 

provides (2.16) is given by 
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The field @p+, then, has the following expansion: 

where the annihilation operator A~, p+, {n~}(creation operator A + ÷ p' 

p+ {n~)) destructs (creates) a whole string with excitation {n~}. 

The propagator for the string is, then, defined as 

The Fourier transformation of (3.4) turns out to be 

where ' m £  T. ~, ~ 

and the integration region A is 
P 

given in Fig.2. Note that £he 

propagator (3.4) is now expressed as 

a path integral on the two dimen- 

tiona! domain Ap, which can be 

interpreted as an image of the 

world sheet on a complex plane. 

D 

Id 

(3.5) 

(3.6) 

D 

Fig.2. The propagator. 

Interactions 

The string picture has another advantage in determining the 

interactions between strings. Following geometrical observations 

provide us with an intuitive method to obtain the five basic interac- 

tions, which turn out to be sufficient to reproduce DRM. 

(i) Suppose a piece of string XI(~I, T) flies in the space time, 

and splits into two pieces ~2(~2, T) and ~3(~, T) ix+=~. at The 

world sheet swept out by this process will be the one shown in Fig.3. 

In the classical picture, the continuity of the world sheet requires 

that, at ix+=~, 

Similary, the momentum density distributed on the string must flow 

smoothly along the world sheet; 

where the direction of momentum is taken to be positive for inward. 

In quantum mechanics, the above condition should be satisfied 

when the left hand sides of (3.7) and (3.8) are operated on the vertex 

function, provided ~'=-l~/~xi'z The relations are then considered to 

be a set of homogeneous differential equations to the vertex. The 
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solution is unique except for a normalization constant. The formal 

solution turns out to be 

~ (3.9) 
2 

~_ . ,~ -;,, ~ (3. i0) 

The last expression is the pat h integral formula and ~ in the exponent 

is given by (3.6). The domain ~V is shown in Fig.3. 

F i g . 3 .  L l - v e r t e x  

(ii) Another possible interaction will be the case when two pieces 

of strings collide at their intermediate points and undergo a rear- 

rangement [Fig.4]. The continuity condition of the world sheet again 

determines the interaction Lagrangian, whose explicit form will be 

found in Ref.3. 

' I ~ I' 

Fig.4. L2-vertex 

Assuming that the local structure of the string interactions is 

either the type of L 1 or L 2, we look for all other possibilities. 

Then, we have following three interactions. 

(iii) L3: The open-to-closed transition. Fig.5. 

(iv) L4: The open-to-an-open-and-a-closed transition. Fig.6. 

(v) L5: The closed-to-two-closed transition. Fig.7. 

A 

1 ~' B" 
2,. 

Fig.5. L3-vertex. On the light cone sheet, AB is identified 

with A'B'. The equi-potential line 1-2 in the right fig. is 

mapped onto the vertical line 1-2 in the middle. 
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A' 
A 8 

A' B' 

Fig.6. 

other. 

L4-vertex. The two lines AB(A'B') are identified each 

0 
6 

B 

Fig.7. L5-vertex. The two lines AB(CD and C'D') are identified 

so that any vertical line form5 a loop in the right top fig. 
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Corresponding interaction Lagrangians can be written down from the 

continuity condition. The explicit forms are found in Ref.3. 

Scattering matrix 

The Lagrangian for interacting strings is now given by 

h = t , ,  ", L~_ * ~ L~ (3.11) 
where L o and L o are the interaction free parts of the open and the 

closed strings, respectively. 

We introduce the interaction representation operators as 

-H.~ L~. e Ho~ (3.12) 

where H ° is the unperturbed Hamiltonian determined from Lo+L c in 

(3.11). It will be worthwhile to point out that the interaction 
+ 

Lagrangians L i in (3.11) are all local with respect to the time x , 

and with no derivative. This is the great advantage of the light cone 

gauge. In covariant gauges the interaction term becomes generally 

non-local, which destroys the possibility of using the canonical 

quantization method. 

The transition matrix is now given by 

' = ~,I 

where 
V~)= ~ V~l'~) 

As is well known in the usual local field theory the Dyson-Wick 

contraction automatically provides us with any matrix element. The 

results will be summerlized as follows. 

i) Each way of contractions of operators gives a light cone 

Feynman diagram. 

2) Associated with each internal line propagator, we obtain 

~'" [~''~'] = ] ~"~ 1 (3.14) 
where, by the rectangle, we mean the path integral over the domain ap 

defined in (3.5). 

3) Associated with each 3-vertex LI, we obtain 

U[I), .P*, Psi  T~_,, z (3.15) 

where the polygon again means the path integral over the domain AV. 

Similarly, associated with other interactions L2-L5, we obtain corre- 

sponding path integrals. 

4) Associated with each incoming external line, we obtain 

(for a lowest excited state) 

C~r[ P, ,%]e ~: e r'~'{°} ap 
(3.16) 

As for the outgoing external line, the Hermitian conjugate of 

(3.16) appears. 
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5) When each factor in 1)-4) are combined according to the Feynman 

diagram, we obtain a path integral over the region, say, 

3 
-- (3.17) 

where we used a new notation; P[=E. for incomming strings and P-=-E. 
3 3 3 3 

for outgoing strings. The second factor in (3.17) can be explicitly 

performed if the Newmann function for the given domain A is known. As 

for the first factor we use the following formula: 

{3.18) 
I 

where NA( p, p ) with p=T+id is the Neumann function on the domain A. 

6) Substituting these Neumann function expressions into (3.17), we 

will finally obtain a formally covariant expression for the scattering 

matrix element I~T~.." T,~ 
r.~','.=,rgi,~'; . . . .  ~" • e/~p f ,~j,,r9 1Dp i f . ) l~ (  p.~')E)~f~,),lp,l.~ ' } ( 3 . 1 9 )  

where NA, of course, depends on T i. Although we have not discussed 

the path integration measure factor, from which J(TI...T n) is deter- 

mined, the explicit forms are known for simple scattering diagrams. 

JA(Tl'-'mn) does depend on the space-time dimension D and the inter- 

cept ~o also, and the theory is consistent only when D=26, and ~o=I. 

§4. General Mapping 

One will notice that the formula (3.19) is quite similar to the 

analogue model representation of DRM. In fact, a DRM amplitude is 

given by (3.19), provided, however, that the integration region A is 

not the light cone world sheet but that A is a certain simply or mul- 

tiply connected compact domain in a complex z-plane. All the conform- 

ally equivalent domains are supposed to be equivalent. 

What we should prove are, first, the existence of mapping of DRM 

amplitudes to (3.19), and second, that all the DRM amplitudes are 

reproduced by the combination of the five basic interactions LI, L2, 

---, and L 5 introduced in §3. 

We shall outline the proof below. 

The mapping of the Neumann function defined above to the one in 
i 

(3.19) is rather well known in fluid dynamics. Let NR(Z, z ) be a 

Neumann function for a given (simply or multiply) connected domain R. 

For a given source of the light cone momentum p+= (p +pD-1 ): 

(4.3) 
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we can make an harmonic function 

tJ~ ~ = {'A~) ~ ~R ~'" ~P +c~'~' (4.4) 
Associated with UR(Z) , let us define a complex harmonic function on 

R by 

~R " ~(1) = ~R(i%* iV~(i] (4.5) 

where V R is a function determined by the Canchy-Riemann relations 

i US il)/~ ~ -- -~V,|i} /~ ~ (4.6) 

In the fuild dynamics U R and V R are known as the potential and the 

velocity potential, respectively. 

The mapping we are looking for is given by (4.5). In fact an 

equi-potential line in R is mapped by (4.5) onto a vertical line in 

the light cone diagram. A stream line in R is mapped onto a horizon- 

tal line in the light cone diagram. 

Finally, we show that DRM can be reproduced with the five basic 

interactions LI, ~.-L 5. The necessity can be easily understood by 

looking the diagrams Fig.3-Fig.7. Since the mapping (4.5) transforms 

an equipotential line to a vertical string line on the light cone 

Feynman diagram, one will see the necessity of the four string inter- 

action in Fig.5. 

Other interactions are explained in similar ways. The sufficien- 

cy is given as follows. Suppose, for example, a six string interac- 

tion existed. Owing to the conformal invariance, three out of six zls 
l 

(source position in (4.3)) can be fixed at any point. Therefore, the 

other threes z4, z5, and z 6 should be integration parameters in DRM 

amplitude. By the mapping the contact point P is mapped on the inter- 

action point T in the light cone diagram, which now is the new inte- 

gration parameter. Since this point m has only two degrees of freedom, 

the Jacobian for (z4, z5, z6)+T , must be zero on a non-zero measure. 

Since the mapping is conformal, (4.5) must be a constant. This is 

a contradiction. 

For other string interactions, a similar argument works. The 

five interactions LI'''L5, therefore, are sufficient to reproduce DRM. 
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Discussions 

Matsuda: You have discussed here the mesonic strings with your five 

fundamental string interactions. What about the baryonic strings? 

In particular, how many topological interactions do you have for 

the latter? And also, can you bring the classical topology of the 

baryonic strings directory into the quantized version consistent- 

ly? 

Kikkawa: For the first two questions, see X. Artru, Nucl. Phys. B85, 

442 (1975). As for the last, the answer is that the field theo- 

retical formulation is not simple, because we have an infinite 

number of strings which are topologically different. 

Takabayashi: Is your interaction theory Lorentz invariant? 

Kikkawa: Yes. See S. Mandelstam, Nucl. Phys. B83, 413 (1974). 


