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§1l. Introduction

Recent development of the dual resonance model is reviewedl).

First, the quantum mechanics of a relativistic free string is pre~
sented by putting the emphasis on the gauge invariance and the Poincare
invariance, The invariances are guaranteed only when the space-time
dimension D is 26 (D=10 in another model) and the Regge intercept a
equals 1.

Second, the second guantized formalism of the string model is dem-
onstrated. By this we mean the theory of many pieces of strings inter-
acting each other, which is analogous to the Dyson's formalism in the
local field theory. The basic interactions between {(closed and/or open)
strings are determined from the continuity condition of the world
sheets swept out by the string motion. The five basic interactions are
shown to be necessary.

So far, the second quantized formalism is possible only in a
special gauge, i.e., in the light cone gauge.

Third, we show the equivalence of the string theory to the dual
resonance model. The scattering amplitude corresponding to each Feynman
diagram can be mapped onto the amplitude in the dual resonance model.
The five basic interactions introduced from the geometrical reason are
shown to be necessary and sufficient to reproduce the covariant dual

resonance model.

82. Quantum Mechanics of a String
Classical Theory: The motion of a classical string is governed by

= § Lo =(e) T TR i o

where XU(T, 0) represents a point on a world sheet swept out by a

the action

string motion in a D-dimensional space~time {(u=0, +-+, D-1). The set
of parameters (0, T) is an arbitrary coordinate on the world sheet 4,
PR Wr o U 2 _»zt oy . .
and ¥ =9X /3T, X =3X /30 and X = % X X, [Fig.l]. The integrand £,dodt
‘J-D
is the infinitesimal surface element of 4. The action principle

implies that the classical motion of string is determined in such a way
that the area of world sheet is made minimum, a generalized Fermat's

principle.
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The action (2.1) has an invariance under
the reparametrization

for. T} —> o't 2y | 't'(cr'.'t)} (2.2) ct

where 0' and T' are arbitrary continuous func-
tions., In such a case, the velocities
%" (g, 1) cannot be solved with respect to the

canonical momenta

=L
Pl =3y . (2.3) ?;; hi e a
The momenta, however, satisfy a set of "gauge Fig.l. The wor sheet.
conditions”,
2
Proe.y+ X (mx)=0 , Pex)Xtexymo | (2.4)

Owing to (2.4), the mechanical system cannot be solved unless we spec-
ify a special gauge. The gauge we choose is the light cone gauge:

Pt (P°+P""Vz =1, X=(+X®)VE =< (2.5)

which, when combined with (2.4), determine other components;

P (P P =(F4 X4 | X (X=X Y5 = ?-5{'_ (2.6)
Consequently, independent variables for string are the transverse
components of coodinates ?(c, T)=(Xi(o, r)|i=l,2,--D-2), the zero fre-
quency modes of light cone components x~, and their canonical conju-
gates. The equation of motions, therefore, should be solved for §(0,1)
under the boundary condition
S("(o—.n];—io (2.7)
for an open string, or the periodicity condition
qfa—.“t)=)?to-+a-° T) (2.8)
for a closed string.

Quantum Theory: In going to the guantum mechanics, we first assume

that Xi except for the zero-modes, are functions of other independent
guantities due to (2.5) and (2.6). The state vector which describes
tge string mOthE must be a functional of X, and x , the zero-modes of
X (g, 1)t @[X, X , X T, For later conyenience we will introduce the
following Fourier components of ¢ with respect to x

BX , o, w7 ] =S:“P+[§P,E7,xﬂe""""—+ c.e.] (2.9)
We have already imposed all the conditions (2.4)-(2.6) but the zero-
mode condition of (2.6), which should be imposed as anequation of

motion on ¢&. In the Schgdinger representation, the condition turns out

to be *d 2 . .
[;. 3/31' _(%1S0d7:§- %’?(:) T ?,(’)}' —E;T ] §P"’ =0 ’ (2.10)
where we have used
PT= 12 Syt , §4a~)=-; ?/S;Z(a-) ,omd d=aph,
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A great advantage of the approach presented above consists in the
ghost elimination. The time component coordinate x°(o, 1) has a nega-
tive norm if it is quantized covariantly. The trouble has been over-
come by taking advantage of gauge freedom, because %% has been elimi-
nated by (2.5), and {2.6). This method is analogous to the Coulomb
gauge guantization in the usual guantum electrodynamics.

Contrary to the ghost elimination, the Lorentz covariance, or the
Poincare covariance is not manifest in the above treatment. GGRTZ)
was the first who confirmed the covariance by the explicit construc-
tion of the Poincaré generators. From the geometrical meaning of xH
{s, 1) and P"(y, 1) one can guess that

?“:[D;.S:q:Emw)dm

Mo 14 ST L, P} - 1XTn Py ] (2.11)
In constructing PM, and MMY, the explicit solutions (2.5) and (2.6)
has to be used with careful attention to the normal ordering for
operators., Against expectation, GGRT found that the Poincare invari-
ance is possible only when D=26, and a,=1, where o, is the intercept
of the Regge trajectory. The mass spectrum is given by

M EP:=§,‘13,§&’,L-| _ (2.12)
The reason why D=26 can be trace back to the normal ordering of opera-
tors in (2.10) and (2.11) when the system is guantized. The operators
3; and 32 are quantized coefficients in normal mode expansions of
¥(g, 1) and B(o, 1.

Finally, we note that a similar discussion is possible for a

closed string with the cyclic boundary condition (2.8).

§3., The Second Quantization

In the previous section we discussed the quantum mechanics of a
single string, and showed that the motion can be described in the
Hilbert space spanned by x", X(g, 1) and B(g, 1).

In order to construct a theory of interacting strings, one has to

consider an infinite direct products of these Hilbert spaces:

X = T X, (3.1)
to each of which a sté?ng belongs. The purpose in this section is to
formulate the perturbation theory for the many strings interacting
each other.

Free Strings: Let us begin with the second guantization of inter-
action free strings. The wave function ¢p+ introduced in (2.49) now
should be quantized as a field operator. The Lagrangian which
provides (2.16) is given by

L. =% S5e? 2tk i Ve +R)i- 213,00 (3.2)
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The field ¢ . then, has the following expansion:
®

Bl =@ CHI R T AR ety T g\ (3.3)

where the annihilation operator A—E; p+, {né}(creatlon operator A >,

. {n;}) destructs (creates) a whole string with excilalion {n }.

The propagator for the string is, then, defined as ¢
GpeIX. Y1 = &Ko Bpelx] §,.,:Y3;o>> {3.4)
The Fourier transformation of (3.4) turns out to be
G [R.Q1
S-n- 3}( (a-.‘r)mP{ S.fda'd'r -uS §(a~))(:v-.'t)ao‘~u§ QMX“‘ TzJJO‘} (3.5)
where T ™7, =T
£ =)L et = R T)] and xTE-AT , (3.6)
and the integration region Ap is ra
given in Fig.2. ©Note that the l j
propagator (3.4) is now expressed as 1o Ap
a path integral on the two dimen-
tional domain A_, which can be o i
P T! ~y T Tg

interpreted as an image of the Pig.2. The propagator.

world sheet on a complex plane.

Interactions

The string picture has another advantage in determining the
interactions between strings. Following geometrical observations
provide us with an intuitive method to obtain the five basic interac-
tions, which turn out to be sufficient to reproduce DRM.

{1} Suppose a piece of string il {6;, 1} flies in the space time,
and splits intoc two pieces iz(o?_, 1) and ?3(03, 1) at ix'=T. The
world sheet swept out by this process will be the one shown in Fig.3.
In the classical picture, the continuity of the world sheet requires
that, at ix+=r, - - )
Ly =K tmy=e , af 050, LW,
-‘Z;tﬁ)-;;(rs)’-“’ , A Wt o ETaady)
Similary, the momentum density distributed on the string must flow

(3.7}

smoothly along the world sheet;
'B,ter,)—t?,lr;)=0 ,
ﬁ (a-’)-ti”, (o) =0 , of el g oo $WA,) 0 (3.8)

where the direction of momentum is taken to be positive for inward.

i§ ot € Waly

In quantum mechanics, the above condition should be satisfied
when the left hand sides of (3.7) and (3.8) are operated on the vertex
function, provided §i=-ia/a§i. The relations are then considered to
be a set of homogeneous differential equations to the vertex. The
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solution is unique except for a normalization constant. The formal

solution turns ocut to be

= gsf[&*’ §;¢fw.3},.tx:3% ﬁf’ﬁ] FF. S.(RN Epg Pq;)

x T 5 [%.000) - Bl —wda )y tomy ) - BCTA=0) W €3 T abe,  (3.9)
= -

T SER-e%-6%] -_-.33?%&&5(‘...9,(, oxpi-§ e drdty :,E‘L[Slixw.-n) (AR . (3.10)
The last expression is the path integral formula and £ in the exponent
is given by (3.6). The domain Av is shown in Fig.3.

X, wd, iy
{ <[ "

7 é\f -adz
( T 3T,

Fig.3. Ll—vertex

(ii) Another possible interaction will be the case when two pieces
of strings collide at their intermediate points and undergo a rear-
rangement [Fig.4]. The continuity condition of the world sheet again
determines the interaction Lagrangian, whose explicit form will be

found in Ref.3.

'

o

Fig. 4 L —vertex

Assuming that the local structure of the string interactions is
either the type of Ll or L2, we look for all other possibilities.

Then, we have following three interactions.
{iii) Lj: The open-to-closed transition. Fig.5.
(iv}) Ly: The open-to-an-open-and-a-closed transition. Fig.6.
(v) LS: The closed-to-two-closed transition. Fig.7.

Fig.5. Ly-vertex. On the light cone sheet, AB is identified

with A'B'. fThe equi-potential line 1-2 in the right fig. is
mapped onto the vertical line 1~2 in the middle.
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Fig.6. L4—vertex. The two lines AB(A'B') are identified each

other.
A ]
O c’ ’,
PR = D
€. P
(34 v
A B8

Fig.7. Ls—vertex. The two lines AB{(CD and C'D') are identified
so that any vertical line formsa loop in the right top fig.
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Corresponding interaction Lagrangians can be written down from the
continuity condition. The explicit forms are found in Ref.3.

Scattering matrix

The Lagrangian for interacting strings is now given by
L=L,*Lc+§ﬁLa , (3.11)
where L, and L, are thélinteraction free parts of the open and the
closed strings, respectively.

We introduce the interaction representation operators as
Vitrvs ~e T L e e (3.12)
where HO is the unperturbed Hamiltonian determined from Lo+l in
(3.11). It will be worthwhile to point out that the interaction
Lagrangians Li in (3.11) are all local with respect to the time x+,
and with no derivative. This is the great advantage of the light cone
gauge. In covariant gauges the interaction term becomes generally
non~local, which destroys the possibility of using the canonical
quantization method.

The transition matrix is now given by

o Ty z, Tt n
Ul 1) = 2, 5y om, v A T oyerey (3.13)

T
where

V) = t%u Viro)

As is well known in the usual local field theory the Dyson-Wick
contraction automatically provides us with any matrix element. The
results will be summerlized as follows.

1) Each way of contractions of operators gives a light cone
Feynman diagram.
2) Associated with each internal line propagator, we obtain
Gp (B, BT = | Ap | (3.14)
where, by the rectangle, we mean the path integral over the domain Ap
defined in (3.5).
3) Associated with each 3-vertex Ll’ we obtain

PP, P BT = Gem | ="

T&"‘t x Ty

(3.15)

where the polygon again means the path integral over the domain fiep

Similarly, associated with other interactions L2—L , we obtain corre-

5
sponding path integrals.

4) Associated with each incoming external line, we cbtain
(for a lowest excited state)

'T;E X ° T:F?,’ {o}
GplP mle  Fatd = e

4

(3.16)
As for the outgoing external line, the Hermitian conjugate of

(3.16) appears.
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5) When each factor in 1)-4) are combined according to the Feynman
diagram, we obtain a path integral over the region, say,

e%F e 5
T 4 e 45
- = -
= eé-'r“‘P’ gwi‘&La‘w\r-*g}ij“?ﬁsﬂ’s""ﬂ“}}m"’"‘) (3.17)

where we used a new notation; P5=Ej for incomming strings and P5=-E.
for outgoing strings. The second factor in (3.17) can be explicitly
performed if the Newmann function for the given domain A& is known. As
for the first factor we use the following formula:
Ty = 1'{»51\1,5“7‘}.’% } oo, Ty )R dog
=2 &, Nap. g OB cpadp (-18)
where Nﬁ(p, p )} with p=1+ic is the Neumann function on the domain A.
6} Substituting these Neumann function expressions into (3.17), we
will finally obtain a formally covariant expression for the scattering
matrix element -, Tt
T-T *S:r. S:Tz"'_S"“ Tal T - .
contrackions " "o w,;%é;@ PoeINa(p.p3P Cpndpde’ L (3.19)

where N of course, depends on T Although we have not discussed

Al

the path integration measure factor, from which J{( °"Tn) is deter-

T
1
mined, the explicit forms are known for simple scattering diagrams.

JA(Tl"'Tn) does depend on the space-time dimension D and the inter-

cept o also, and the theory is consistent only when D=26, and ag=1l.

£4. General Mapping

One will notice that the formula (3.19) is guite similar to the
analogue model representation of DRM. In fact, a DRM amplitude is
given by (3.19), provided, however, that the integration region A is
not the light cone world sheet but that A is a certain simply or mul-
tiply connected compact domain in a complex z-plane. All the conform—
ally equivalent domains are supposed to be eguivalent.

What we should prove are, first, the existence of mapping of DRM
amplitudes to (3.19), and second, that all the DRM amplitudes are

reproduced by the combination of the five basic interactions L L

i T2

<.+, and LS introduced in §3.

We shall outline the proof below.

The mapping of the Neumann function defined above to the one in
(3.19) is rather well known in fluid dynamics. Let Ny(z, z ) be a
Neumann function for a given {simply or multiply) connected domain R.

For a given source of the light cone momentum +

P

%—(P°+PD_1 )
P'vy = Z p, Ste-2c) i
i (4.3)
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we can make an harmonic furction
Ugtzy={"2an) §.‘,R Ne (. 9P (')dz’ (4.4)

Associated with UR(z), let us define a complex harmonic function on
R by

$e= Zplo)= Ugtdr+;i V@ (4.5)
where VR is a function determined by the Canchy-Riemann relations

2Uet®y/2x =2 Vri) /3y

aUga)/ oy = ~2Vel®) /X
In the fuild dynamics UR and VR are known as the potential and the

(4.6) _

velocity potential, respectively.

The mapping we are looking for is given by (4.5). In fact an
equi-potential line in R is mapped by (4.5) onto a vertical line in
the light cone diagram. A stream line in R is mapped onto a horizon-
tal line in the light cone diagram.

Finally, we show that DRM can be reproduced with the five basic
interactions Ll’ ;"LS" The necessity can be easily understood by
looking the diagrams Fig.3-Fig.7. Since the mapping (4.5) transforms
an equipotential line to a vertical string line on the light cone
Feynman diagram, one will see the necessity of the four string inter-
action in Fig.5.

Other interactions are explained in similar ways. The sufficien-
cy is given as follows. Suppose, for example, a six string interac-
tion existed. Owing to the conformal invariance, three out of six zis
(source position in (4.3)) can be fixed at any point. Therefore, the
other threes Zyr Zgy and Zg should be integration parameters in DRM
amplitude. By the mapping the contact point P is mapped on the inter-
action point T in the light cone diagram, which now is the new inte-
gration parameter. Since this point T has only two degrees of freedom,
the Jacobian for (24, Zg, ZG)*T, must be zero on a non-zero measure.
Since the mapping is conformal, (4.5) must be a constant. This is
a contradiction.

For other string interactions, a similar argument works. The

five interactions Ll-'°L5, therefore, are sufficient to reproduce DRM.
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Discussions
Matsuda: You have discussed here the mesonic strings with your five

fundamental string interactions. What about the baryonic strings?
In particular, how many topological interactions do vyou have for
the latter? And also, can you bring the classical topology of the
baryonic strings directory into the gquantized version consistent-
ly?

Kikkawa: For the first two questions, see X. Artru, Nucl. Phys. B85,
442 (1975). As for the last, the answer is that the field theo-
retical formulation is not simple, because we have an infinite
number of strings which are topologically different.

Takabayashi: Is your interaction theory Lorentz invariant?

Kikkawa: Yes. See S. Mandelstam, Nucl. Phys. B83, 413 (1974).



