
2.738

High-Speed Variable Polynomial
Toeplitz Hash Algorithm Based on
FPGA

Si-Cheng Huang, Shan Huang, Hua-Lei Yin, Qing-Li Ma and Ze-Jie Yin

Special Issue
Quantum Communication and Quantum Key Distribution

Edited by

Prof. Dr. Ying Guo

Article

https://doi.org/10.3390/e25040642

https://www.mdpi.com/journal/entropy
https://www.ncbi.nlm.nih.gov/pubmed/?term=1099-4300
https://www.mdpi.com/journal/entropy/stats
https://www.mdpi.com/journal/entropy/special_issues/KU5FT191E9
https://www.mdpi.com
https://doi.org/10.3390/e25040642


Citation: Huang, S.-C.; Huang, S.;

Yin, H.-L.; Ma, Q-L.; Yin, Z.-J.

High-Speed Variable Polynomial

Toeplitz Hash Algorithm Based on

FPGA. Entropy 2023, 25, 642.

https://doi.org/10.3390/e25040642

Academic Editors: Giuliano Benenti

and Ying Guo

Received: 16 February 2023

Revised: 31 March 2023

Accepted: 9 April 2023

Published: 11 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

High-Speed Variable Polynomial Toeplitz Hash Algorithm
Based on FPGA

Si-Cheng Huang 1 , Shan Huang 2, Hua-Lei Yin 2,* , Qing-Li Ma 3,* and Ze-Jie Yin 4

1 National Synchrotron Radiation Laboratory, State Key Laboratory of Particle Detection and Electronics,

University of Science and Technology of China, Hefei 230029, China; hsc@mail.ustc.edu.cn
2 National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of

Advanced Microstructures, Nanjing University, Nanjing 210093, China; hs@smail.nju.edu.cn
3 College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China
4 State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China,

Hefei 230026, China; zjyin@ustc.edu.cn

* Correspondence: hlyin@nju.edu.cn (H.-L.Y.); maql@ustc.edu.cn (Q.-L.M.)

Abstract: In the Quantum Key Distribution (QKD) network, authentication protocols play a critical

role in safeguarding data interactions among users. To keep pace with the rapid advancement

of QKD technology, authentication protocols must be capable of processing data at faster speeds.

The Secure Hash Algorithm (SHA), which functions as a cryptographic hash function, is a key

technology in digital authentication. Irreducible polynomials can serve as characteristic functions of

the Linear Feedback Shift Register (LFSR) to rapidly generate pseudo-random sequences, which in

turn form the foundation of the hash algorithm. Currently, the most prevalent approach to hardware

implementation involves performing block computations and pipeline data processing of the Toeplitz

matrix in the Field-Programmable Gate Array (FPGA) to reach a maximum computing rate of 1 Gbps.

However, this approach employs a fixed irreducible polynomial as the characteristic polynomial of

the LFSR, which results in computational inefficiency as the highest bit of the polynomial restricts

the width of parallel processing. Moreover, an attacker could deduce the irreducible polynomials

utilized by an algorithm based on the output results, creating a serious concealed security risk. This

paper proposes a method to use FPGA to implement variational irreducible polynomials based on a

hashing algorithm. Our method achieves an operational rate of 6.8 Gbps by computing equivalent

polynomials and updating the Toeplitz matrix with pipeline operations in real-time, which accelerates

the authentication protocol while also significantly enhancing its security. Moreover, the optimization

of this algorithm can be extended to quantum randomness extraction, leading to a considerable

increase in the generation rate of random numbers.

Keywords: Secure Hash Algorithm; quantum digital authentication; variable irreducible polynomial;

Field-Programmable Gate Array; Fast Modular Composition Algorithm

1. Introduction

The flourishing development of computer networks has greatly increased the amount
of communication exchange, thereby resulting in various information security issues
including information loss, leakage, and tampering. These issues not only pose a risk
to personal privacy and corporate assets, but could also compromise national security
and economic stability. As a primary measure to ensure information security, encryption
and authentication technologies serve as critical barriers to protecting the confidentiality,
integrity, and availability of information for individuals, enterprises, and even countries.
Reliable and efficient information encryption systems are the goal of enterprises and the
nation’s tireless pursuit, offering promising market prospects and significant value for
economic and scientific research [1–4].

Entropy 2023, 25, 642. https://doi.org/10.3390/e25040642 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25040642
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-2191-5018
https://orcid.org/0000-0002-7718-0818
https://doi.org/10.3390/e25040642
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25040642?type=check_update&version=1


Entropy 2023, 25, 642 2 of 11

Secure hashing algorithms, also known as hashing algorithms, are characterized by
their non-directional nature and strong collision resistance. They operate by mapping a
given arbitrary-length keyword to a fixed-length hash value. These algorithms are com-
monly utilized in digital authentication, encryption, indexing, and quantum randomness
extraction applications in QKD systems [5–8]. For digital authentication, it is necessary to
compress an arbitrary-length input to a 128-bit hash value to facilitate the authentication
process, and developing the rapid hash operations is critical to managing large data streams.
Similarly, fast hashing operations are essential in quantum random extraction to extract the
quantum randomness in the original data. These algorithms can effectively block illegal
and spam messages and verify the integrity of data interactions, improving the overall
security of the system [9].

For cryptography and encryption algorithms, the irreducible polynomial serves as
the fundamental building block for constructing the hash algorithm, such as the widely
used Secure Hash Algorithm (SHA). It functions as a characteristic function of the Linear
Feedback Shift Register (LFSR) to generate pseudo-random sequences with high efficiency.
It is worth noting that the hash algorithm cryptosystem has been demonstrated to be
resistant to quantum attacks, as evidenced by [10–12].

Despite that the significance of irreducible polynomials and hash algorithms in the
realm of information security is indisputable, the previous systems capable of quickly
generating such entities can be further improved. Most of the current hash algorithm chips
utilized in information security rely on a single algorithmic logic or a fixed irreducible
polynomial. These approaches offer greater simplicity in constructing the algorithm and
facilitate parallel processing. However, using a fixed irreducible polynomial as the char-
acteristic polynomial of the LFSR can be vulnerable to being triggered by the irreducible
polynomial coefficients when subjected to large data volumes. This vulnerability increases
the risk of the algorithm being deciphered, presenting hidden dangers and failing to satisfy
the growing need for enhanced information security.

To enhance both security and computational efficiency, it is necessary to employ
variational irreducible polynomials for computations. Specifically, we can use the variable
irreducible polynomials as the characteristic polynomials of LFSR. This approach can reduce
the risk of decipherment through extensive computations, and the the algorithm’s security
can be further improved through random shifts of polynomial factors. However, parallel
processing of variable polynomials is challenging, and utilizing the previous algorithm as
the characteristic polynomial of the LFSR considerably reduces operational speed, making
parallel processing unfeasible. Therefore, it is crucial to develop variational and irreducible
polynomial algorithms that can be optimized with hash algorithms for ensuring improved
computational speed and enhanced security of the system.

2. Algorithm Optimization for FPGA Based Pipeline Generation of Toeplitz Matices

In the existing FPGA implementation scheme of the hashing algorithm, first, the FPGA
transforms the data to be computed via FIFO. At each clock cycle of the FPGA, 64-bit data
are read from the FIFO. At the same time, according to the set characteristic polynomial,
a 64 × 128 Toeplitz matrix is generated to calculate the 64-bit data. In the case where the
high 64-bit coefficients of the characteristic polynomial are all zero, all the computations
can be performed in a single cycle, and the data can be processed in parallel in the form of
a pipeline for real-time processing effects [13–17].

The algorithm flow chart is shown in Figure 1.
In this approach, pipelining can be performed in an FPGA, provided that the high-

level 64-bit characteristic polynomial of the LFSR is all zero. Therefore, we have to fix an
irreducible polynomial in the FPGA code as the characteristic polynomial of the LFSR.
Doing so ensures that we can compute a 64 × 128 Toeplitz matrix in one clock period.

For large-scale data computation, we need to update the Toeplitz matrix in real time.
One traditional method is to use an irreducible polynomial as the characteristic polynomial
of the LFSR to generate pseudorandom numbers, which are then used to extend the Toeplitz



Entropy 2023, 25, 642 3 of 11

matrix. However, as the amount of data increases, the pseudorandom numbers produced
may exhibit periodic behavior, which can be exploited by attackers for malicious activities.
This could pose significant security risks to the computation process. However, when the
characteristic polynomial is random, if the high 64-bits of the characteristic polynomial are
not zero, the traditional method will not be able to carry out parallel pipeline operation,
which greatly reduces the computation speed.

Figure 1. Algorithm flow chart of the original hash algorithm.

Our method aims to address the security risks associated with using the traditional
approach to update the Toeplitz matrix for large-scale data computation. To achieve this, we
utilized the Fast Modular Composition Algorithm (FMC) algorithm to constantly generate
new irreducible polynomials in FPGA. Then, we updated the characteristic polynomials of
the LFSR in real-time during each hash operation.

One critical aspect of our approach is ensuring that the irreducible polynomials are
quickly and efficiently computed in FPGA. By dynamically updating the LFSR polynomial,
we can prevent the pseudo-random numbers from exhibiting periodicity and improve the
overall security of the system. Another crucial area of focus is devising efficient strategies for
performing hash computations when the characteristic polynomials of LFSR are changing
continuously. This is necessary to ensure that the computation process remains fast and
accurate despite the constant updates.

3. The Generated Algorithm of Irreducible Polynomials

3.1. The Characteristics of the Irreducible Polynomials

Irreducible polynomials are polynomials that cannot be written as a product of two
polynomials of lower degree. That is, if p(x) is irreducible, then for any polynomial
F(x), (p(x), F(x)) = 1. With irreducible polynomials as the characteristic polynomials
of LFSR, the algorithm can generate uniform pseudorandom numbers that satisfy the
application requirements of hash algorithms. However, irreducible polynomials cannot
be computed directly. In order to be updated in real-time in the algorithm of irreducible
polynomials coefficient, we have to judge the polynomial, decide whether it is an irreducible
polynomial, whether it does not meet the irreducible polynomials judgment conditions
to update the polynomial, until there is a way to generate the irreducible polynomials
we need.

Thus, the speed at which irreducible polynomials are determined determines the
superiority of our algorithm.

3.2. Conditions for Judging Irreducible Polynomials

The GF(2) represents a finite field with two elements, denoted by 0 and 1, respectively.
In the GF(2) domain, addition follows the operation rules of XOR.



Entropy 2023, 25, 642 4 of 11

Equation (1) shows the necessary and sufficient conditions for the irreducibility of a
polynomial P(x) of order N in the codomain of GF(2) [18]:







(1)x2n = x mod p(x)

(2)GCD

(

x2
m
d − x, p(x)

)

= 1, disanypime f actoro f N
(1)

Condition (1) guarantees that p(x) is the product of irreducible polynomials of order n
or less than order n; condition (2) requires that the greatest common factor of p(x) and

x2
m
d − x be 1, which rules out that p(x) has irreducible polynomials of an order less than n

as factors.

Verification condition (2) can directly find the common factors of x2
m
d − x and p(x).

When N is a power of a prime number, only one calculation of the largest common factor
is needed. For example, n = 128 = 27 has only a prime factor of 2, and only the common

factors of x264 − x and p(x) need to be calculated.
However, for higher order terms in x, the computation of the modulus will be ex-

tremely complicated and difficult to implement fast for FPGA. In order to reduce the
amount of calculation and increase the speed of calculation, we used the Fast Modular
Composition (FMC) algorithm, through a tiny number of iterations that can be solved for
the value of x2n

mod p(x).

3.3. Fast Modular Composition Algorithm

The following is a quick way to calculate x2n
mod p(x) [19]:

First, calculate x2 = x220

mod p(x), then use the Fast Modular Composition (FMC)

algorithm for (x2)2 = x22
= x221

mod p(x); further use the FMC algorithm to calculate

(x22
)22

= x222

mod p(x). For n = 128 = 27, you can start from x2 and repeat FMC seven

times to get x2128
= x227

mod p(x). Similarly, for the 2n-bit hash algorithm, we can also
quickly calculate its corresponding irreducible polynomial by using the FMC algorithm
through n iterations. Since the 128-bit hash algorithm already has a sufficient level of
security, this article only discusses the processing flow at 128 bits.

FMC algorithm: input p(x), s(x) mod p(x), output s(s(x)) mod p(x):

1. Let m = ⌈√n⌉ (rounded up with respect to
√

n), and let s(x) = ∑
m−1
i=1 si(x)xmi (where

si(x)xmi is actually the degree of s(x) in the interval [mi, m(i + 1)− 1]);

2. For 2 ≤ i ≤ m, we compute s(x)i mod p(x);
3. Define an m × n matrix A on F2 whose rows are the coefficients of 1, s(x) mod

p(x), . . . , s(x)m−1 mod p(x). Define the m × m matrix B on F2, and the i + 1(0 ≤
i ≤ m − 1) row of B is the inverse of the coefficients of si(x). Calculate C = BA;

4. For 0 ≤ i ≤ m − 1, Ci(x) denotes the polynomials with the i − th row of C as

coefficients and computes b = ∑
m−1
i=0 Ci(x)s(x)mi mod p(x);

5. Output B, B is s(s(x)) mod p(x).

In this algorithm, input x2 and run it to get the result, then input the polynomials

obtained from the last run repeatedly to get x221

mod p(x), x222

mod p(x), . . . , x22n

mod
p(x) in turn, and n = 2log2 n. After log2 n iterations of the FMC algorithm, we will get

x2n = x22log2 n

. If n is a power of two, notice that n
2 = 2log2 n−1, running the FMC algorithm

for the log2 n − 1 time will give you x2
n
2 mod p(x) = x22log2 n−1

mod p(x). So there is no need
to perform any more calculations.

3.4. Generate Irreducible Polynomial in FPGA Based on Fast Modular Composition Algorithm

According to the FMC algorithm described above, the logic for generating irreducible
polynomials is divided into several parts.



Entropy 2023, 25, 642 5 of 11

1. Stochastic generation of polynomials: One can use a preset seed to randomly generate
a polynomial in the FPGA and import its coefficients into the next judgment module;

2. Determine the coefficients of the imported polynomial. According to the FMC algo-
rithm, the imported coefficients are passed through the square operation module, the
modulus computation module, the counting judgment module, the cyclic modulus
computation module, and the result judgment module. The square operation module
performs square operations on the input data, that is, calculates the value of x2n

; the
modulo computation module performs a modulo computation on the input square
operation module data and the input irreducible polynomial parameters and com-
putes x2n

mod p(x); the counting judgment module is used to record the times of
the square operation module and the modulus computation operation module, and
the data results for specific times are recorded based on the judgment results. In this
project, a 128-bit hashing algorithm was used, so the number of cycles here is n = 7;
the cyclic modulo computation module performs a cyclic modulo computation on the
input count judgment module data and the input irreducible polynomial parameters;
the module of the resulting judgment determines whether the irreducible polynomial
parameters satisfy the requirements. If the irreducible polynomial argument does
not satisfy the requirement, the operation of adding the number 2 to the irreducible
polynomial argument is performed, and the irreducible polynomial identity operation
is repeated until the irreducible polynomial argument satisfies the requirement.

The specific algorithm flow chart is shown in Figure 2.

Figure 2. Algorithm flow chart of FMC.

4. Implementation Flow of Hashing Algorithm Based on Variable Characteristic
Polynomial in FPGA

To improve the security, an irreducible polynomial will be randomly generated as
the characteristic polynomial in this study. If there is one entry in the higher 64 bits of the
generated characteristic polynomial, the Toeplitz matrix will not be able to complete all the
operations in a single cycle, which will considerably slow down the hash operation [20–23].

To address the above issues, the optimization of the hashing algorithm was carried out
in this study: before the pipeline started, the equivalent polynomials were computed and
derived from the randomly-generated characteristic polynomials. The effect is equivalent
to a process of forcing the expansion of the original LFSR formula in the presence of the
nonzero coefficients of the characteristic polynomial with 64 bits or more. The so-called
forced unfolding procedure means that, when the LFSR is used for computation, the LFSR
of the previous level is iterated to this level for computation if the result of the previous
level’s computation is needed. This is shown in the following Equation (2):

{

p[i + 1] = p[0]∧(p[i] ≪ 1), p[i][127] = 1

p[i + 1] = p[i] ≪ 1, p[i][127] = 0.
(2)

After computing 64 equivalent polynomials, real-time calculations can be performed follow-
ing the previous pipeline procedure. The treatment flow diagram of the system and the dia-
gram of the derivation procedure for equivalent polynomials are shown in Figures 3 and 4.



Entropy 2023, 25, 642 6 of 11

Figure 3. Flow chart of the optimized hash algorithm.

Figure 4. FPGA simulation test result.

Where “P_0” is the input irreducible polynomial, “P[0] - P[63]” is the calculated
equivalent polynomial, and “i” is the cyclic count. Through the judgment of the high-
est bit (P[i][127]) of the polynomial, the corresponding 64 equivalent polynomials are
calculated iteratively.

In this approach, irreducible polynomials are forced to be expanded in advance by
means of shift and XOR methods. Each newly generated irreducible polynomial needs only
one expansion to compute the corresponding 64 equivalent polynomials. Toeplitz matrices
can be generated in the FPGA pipeline in real time to process the input data:

1. First 64 clock cycles: forcibly expand the input polynomials and calculate their
64 equivalent polynomials;

2. Sixty-fifth clock cycle: read the first data to be processed, D1;
3. Sixty-sixth clock cycle: read the second pending data D2 and compute the hash value

T1 corresponding to the first 64-bit data;
4. Sixty-seventh clock cycle: reads the third data D3 to be processed, computes the hash

value T2 corresponding to the second 64-bit data, and accumulates the first hash value
T1 to the output register H;

5. Sixty-eighth clock cycle: read the fourth data D4 to be processed, compute the hash
value T3 corresponding to the third 64-bit data, and accumulate the second hash value
T2 to the output register H;

6. After all the data to be processed have been processed, the final hash value, H,
is output.

Since the equivalent polynomial is computed before the pipeline starts, the real-time
performance of the algorithm is unaffected.

Moreover, to further improve the speed, 128 equivalent polynomials can be pre-
computed to further improve the bit-width for parallel processing in the original method,
which can also satisfy real-time hash operations under any characteristic polynomial.



Entropy 2023, 25, 642 7 of 11

5. FPGA Algorithm Implementation Verification

Aiming at the algorithm we proposed, we developed the corresponding hardware
system to implement the algorithm. The algorithm implementation validation system block
diagram is shown in Figure 5.

Figure 5. The algorithm implementation validation system block diagram.

In the design, the power supply system supplies power to each module of the board.
The FPGA clock is provided by an external chip. FPGA is responsible for algorithm
implementation and data communication. Data input and output can be implemented
through the PCIE bus or the SFP interface. According to the requirements of different I/O
rates, the data to be hashed can be input to the FPGA through the PCIE bus or SFP interface.
The FPGA hashes the data and outputs the calculation result.

In the FPGA, we used the FMC algorithm to generate irreducible polynomials and
hash the generated irreducible polynomials as the characteristic polynomials of LFSR. The
program framework in FPGA is shown in Figure 6.

Figure 6. The program framework in FPGA.

As shown in the figure, the FPGA first obtains a random number seed through the
communication module, which is used as the initial condition for generating irreducible
polynomials. After the random number seeds are fed into the FMC algorithm module, the
module computes irreducible polynomials satisfying the requirements as the characteristic
polynomials of the subsequent LFSR. The characteristic polynomial coefficients are then fed
into the equivalent polynomial computation module to compute the corresponding equiva-
lent polynomials. Finally, these equivalent polynomials are used for pipeline computation
in the FPGA, and the computed results are output through the communication module.

In our design, there are many matrix operations and multiplication on the GF(2)
domain. When we carried out the RTL implementation, in order to meet the need of fast
parallel operation, we used many LUT resources in FPGA to carry out the XOR operation.
By splitting the matrix operations into parallel multiplication and addition operations, we
can greatly improve the speed of calculation.



Entropy 2023, 25, 642 8 of 11

After completing the design of the FPGA program, we used Vivado software to
evaluate the internal resource consumption of FPGA. The evaluation results are shown in
Figure 7.

Figure 7. The internal resource consumption of FPGA.

As can be seen, our chosen FPGA model can well meet our hardware resource re-
quirements. We set aside more resource margins so that the Vivado software could easily
complete the task of layout and wiring to meet the timing requirements.

At the same time, we also used Vivado software to analyze the power consumption.
The program we designed corresponds to a total on-chip power of 6.711 w, a junction
temperature of 36.9 ◦C , and a thermal margin of 48.1 ◦C .

6. FPGA Implementation Performance Test

6.1. FPGA Calculation Rate Simulation Test

The simulation program was developed using the verilog language, which is suitable
for FPGA, and Vivado2019.2 was used for compilation and simulation verification. Finally,
the tests were performed on a K7 series FPGA chip from Xilinx, xc7k325tffg900.

First, the FPGA logic was simulated and tested through the simulation capabilities of
the Vivado software. The simulation results are shown in Figure 8.

Figure 8. Algorithm flow chart of FMC.

In the figure, “data” is the input data to be authenticated, “input_polynomial” is the
variable polynomial of the input, “tag” is the hash value of the final output. Other signals
are control signals for the computational process.

As can be seen in the figure, the simulation results indicate that the FPGA can process
128 bits of input data in real-time in each clock cycle when the clock input period is 100 MHz.



Entropy 2023, 25, 642 9 of 11

In other words, this algorithm can compute a 128-bit hash value in 10 ns. The hardware
computation speed of the algorithm can be calculated as 12.8 Gbps.

The logic is then written into the FPGA and connected to the host computer via the
PCIE bus for rate testing.

Manually add a clock count to the logic, input a 128 MB file for the board to execute
the hash operation, start counting when the PCIE detects the command, and stop counting
when the FPGA completes the computation. Counting the total number of clock cycles
required for this operation yields the time required to process the 128 MB file. The measured
pure computation speed on the FPGA side is 10.88 Gbps.

6.2. PCIE Reading and Writing Test and Optimization

The actual pure computation speed on the FPGA side is 10.88 Gbps. Combined with
the input data write DDR time and the processing time of the outage response, and the
PCIE standard read and write speed of 22.4 Gbps, the theoretical speed of the entire hash
computation can be calculated to be about 7.2 Gbps after subtracting the time spent writing
DDR and processing the outage.

Connect the board card to the top computer, given a 134 MB file for the board to
process, from the host computer to send instructions to the board to start timing, statistics
from the host computer in the board to obtain the uploaded calculation results of the time
needed, and then test the processing speed of the board.

Optimizing the read/write logic of BRAM_A and the control logic of xdma. It has
been tested 8000 times and the results show that the operation is stable with a speed of
about 6.8 Gbps, which is consistent with the predicted value. The errors mainly come from
the instability of the PCIE read/write speed and the outage response speed.

By comparing the test results with reference [13,18], the existing methods only use
fixed irreducible polynomials as characteristic polynomials, and the calculation speed
reaches 1 Gbps. It can be seen that our algorithm greatly improves the speed of hash
operations while optimizing a fixed irreducible polynomial in the reference variable. Using
the same test data computed by the software, our algorithm is also ten times faster than the
software algorithm.

7. Conclusions

In this paper, we present an improved method for generating irreducible polynomials
and optimizing existing hashing algorithms through the use of variational polynomials. Our
approach utilizes field-programmable gate arrays (FPGAs) and proposes the Fast Modular
Composition algorithm to quickly compute the modulus of high degree polynomials.

We optimized the original hashing algorithm and proposed a parallel pipeline algo-
rithm by computing the characteristic polynomial. The FPGA’s large resources and parallel
operation increase the speed of hash operations and enhance system security by using
variable irreducible polynomials as the characteristic polynomials of the hash algorithm.

Our proposed algorithm achieves a hashing speed of 6.8 Gbps based on variational
irreducible polynomials on a single board while improving security compared to the
traditional approach that uses fixed irreducible polynomials. This not only improves
the speed of operation but also enhances security, resulting in a better performance of
authentication protocols in Quantum Key Distribution (QKD) networks.

The hashing algorithm used in this paper has a length of 128 bits, but it can be modified
to meet the requirements of other application scenarios by changing its length. However,
it is essential to ensure that the number of bits m satisfies the condition that m is equal to
2 raised to the power of n, since failure to meet this condition will result in a reduction
of the calculation speed of the Fast Modular Composition algorithm. It should be noted
that a clock frequency of 100 MHz was utilized in this study, but if higher processing
requirements are needed, the clock frequency can be increased to achieve faster hashing
operation rates.



Entropy 2023, 25, 642 10 of 11

Furthermore, when hashing algorithms with a greater number of digits are utilized,
the width of the data that is processed in parallel can be increased to further enhance
operation speed.

Author Contributions: Conceptualization, S.-C.H. and H.-L.Y.; Formal analysis, S.H.; Funding

acquisition, H.-L.Y., Q.-L.M. and Z.-J.Y.; Methodology, S.-C.H. and S.H.; Project administration,

S.-C.H. and Q.-L.M.; Supervision, H.-L.Y., Q.-L.M. and Z.-J.Y.; Writing—original draft, S.-C.H.;

Writing—review & editing, S.-C.H. All authors have read and agreed to the published version of the

manuscript.

Funding: H.-L.Yin acknowledges support by the National Natural Science Foundation of China

(No.12274223), the Natural Science Foundation of Jiangsu Province (No. BK20211145), the Fun-

damental Research Funds for the Central Universities (No. 020414380182), and the Key Research

and Development Program of Nanjing Jiangbei New Aera (No. ZDYD20210101). S.-C. Huang

acknowledges support by the National Natural Science Foundation of China (No. 11975307, No.

11575184).

Data Availability Statement: The data presented in this study are available on request from the

corresponding author. The data are not publicly available due to [raw data needing to be de-

encrypted].

Acknowledgments: We thank Da-Hai Dai and Nai-Rui Xu for valuable discussion and Yan-Lei Wang

and Shen Li for experimental assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gu, J.; Cao, X.Y.; Fu, Y.; He, Z.W.; Yin, Z.J.; Yin, H.L.; Chen, Z.B. Experimental measurement-device-independent type quantum

key distribution with flawed and correlated sources. Sci. Bull. 2022, 67, 2167–2175. [CrossRef] [PubMed]

2. Liu, B.; Xia, S.; Xiao, D.; Huang, W.; Xu, B.; Li, Y. Decoy-state method for quantum-key-distribution-based quantum private query.

Sci. China Phys. Mech. Astron. 2022, 65, 240312. [CrossRef]

3. Cui, W.; Song, Z.; Huang, G.; Jiao, R. Satellite-based phase-matching quantum key distribution. Quantum Inf. Process. 2022,

21, 313. [CrossRef]

4. Hu, L.W.; Zhang, C.M.; Li, H.W. Practical measurement-device-independent quantum key distribution with advantage distillation.

Quantum Inf. Process. 2023, 22, 77. [CrossRef]

5. Yin, H.L.; Fu, Y.; Li, C.L.; Weng, C.X.; Li, B.H.; Gu, J.; Lu, Y.S.; Huang, S.; Chen, Z.B. Experimental quantum secure network with

digital signatures and encryption. Natl. Sci. Rev. 2022. [CrossRef]

6. Lu, Y.; Bai, E.; Jiang, X.Q.; Wu, Y. High-Speed Privacy Amplification Algorithm Using Cellular Automate in Quantum Key

Distribution. Electronics 2022, 11, 2426. [CrossRef]

7. Xu, F.; Ma, X.; Zhang, Q.; Lo, H.K.; Pan, J.W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 2020,

92, 025002. [CrossRef]

8. Peev, M.; Pacher, C.; Alléaume, R.; Barreiro, C.; Bouda, J.; Boxleitner, W.; Debuisschert, T.; Diamanti, E.; Dianati, M.; Dynes, J.;

et al. The SECOQC quantum key distribution network in Vienna. New J. Phys. 2009, 11, 075001. [CrossRef]

9. Sasaki, M.; Fujiwara, M.; Ishizuka, H.; Klaus, W.; Wakui, K.; Takeoka, M.; Miki, S.; Yamashita, T.; Wang, Z.; Tanaka, A.; et al. Field

test of quantum key distribution in the Tokyo QKD Network. Opt. Express 2011, 19, 10387–10409. [CrossRef] [PubMed]

10. Krawczyk, H. LFSR-based hashing and authentication. In Proceedings of the 14th Annual International Cryptology Conference,

Santa Barbara, CA, USA, 21–25 August 1994; pp. 129–139.

11. Peng, Q.; Guo, Y.; Liao, Q.; Ruan, X. Satellite-to-submarine quantum communication based on measurement-device-independent

continuous-variable quantum key distribution. Quantum Inf. Process. 2022, 21, 61. [CrossRef]

12. Walker, L.P.; Buhler, D. Catalyzing Holistic Agriculture Innovation through Industrial Biotechnology. Ind. Biotechnol. 2020,

16, 189–208. [CrossRef]

13. Lei, Z.; Jie, C.; Shi-Biao, T. Research on authentication scheme based on Toeplitz matrix for high speed QKD system. Chin. J.

Quantum Electron. 2019, 36, 329.

14. Zhang, X.; Nie, Y.Q.; Liang, H.; Zhang, J. FPGA implementation of Toeplitz hashing extractor for real time post-processing of raw

random numbers. In Proceedings of the 2016 IEEE-NPSS Real Time Conference (RT), Padua, Italy, 6–10 June 2016; pp. 1–5.

15. Bai, E.; Jiang, X.Q.; Wu, Y. Memory-Saving and High-Speed Privacy Amplification Algorithm Using LFSR-Based Hash Function

for Key Generation. Electronics 2022, 11, 377. [CrossRef]

http://doi.org/10.1016/j.scib.2022.10.010
http://www.ncbi.nlm.nih.gov/pubmed/36545992
http://dx.doi.org/10.1007/s11433-021-1843-7
http://dx.doi.org/10.1007/s11128-022-03656-w
http://dx.doi.org/10.1007/s11128-022-03810-4
http://dx.doi.org/10.1093/nsr/nwac228
http://dx.doi.org/10.3390/electronics11152426
http://dx.doi.org/10.1103/RevModPhys.92.025002
http://dx.doi.org/10.1088/1367-2630/11/7/075001
http://dx.doi.org/10.1364/OE.19.010387
http://www.ncbi.nlm.nih.gov/pubmed/21643295
http://dx.doi.org/10.1007/s11128-022-03413-z
http://dx.doi.org/10.1089/ind.2020.29222.lpw
http://dx.doi.org/10.3390/electronics11030377


Entropy 2023, 25, 642 11 of 11

16. Choromanski, K.; Lin, H.; Chen, H.; Zhang, T.; Sehanobish, A.; Likhosherstov, V.; Parker-Holder, J.; Sarlos, T.; Weller, A.;

Weingarten, T. From block-Toeplitz matrices to differential equations on graphs: Towards a general theory for scalable masked

Transformers. In Proceedings of the International Conference on Machine Learning, PMLR, Padua, Italy, 6–10 June 2022;

pp. 3962–3983.

17. Huang, Y.; Zhang, X.; Ma, X. Stream privacy amplification for quantum cryptography. PRX Quantum 2022, 3, 020353. [CrossRef]

18. Ben-Or, M. Probabilistic algorithms in finite fields. In Proceedings of the 22nd Annual Symposium on Foundations of Computer

Science (SFCS 1981), Nashville, TN, USA, 28–30 October 1981; pp. 394–398.

19. Kedlaya, K.S.; Umans, C. Fast modular composition in any characteristic. In Proceedings of the 2008 49th Annual IEEE

Symposium on Foundations of Computer Science, Philadelphia, PA, USA, 25–28 October 2008; pp. 146–155.

20. Lin, X.; Wang, R.; Wang, S.; Yin, Z.Q.; Chen, W.; Guo, G.C.; Han, Z.F. Certified Randomness from Untrusted Sources and

Uncharacterized Measurements. Phys. Rev. Lett. 2022, 129, 050506. [CrossRef] [PubMed]

21. Loruenser, T.; Krenn, S.; Pacher, C.; Schrenk, B. On the Security of Offloading Post-Processing for Quantum Key Distribution.

arXiv 2022, arXiv:2210.08977.

22. Shanmugam, D.; Rangasamy, J. Robust message authentication in the context of quantum key distribution. Int. J. Inf. Comput.

Secur. 2022, 18, 365–382. [CrossRef]

23. Cheng, J.; Qin, J.; Liang, S.; Li, J.; Yan, Z.; Jia, X.; Peng, K. Mutually testing source-device-independent quantum random number

generator. Photonics Res. 2022, 10, 646–652. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PRXQuantum.3.020353
http://dx.doi.org/10.1103/PhysRevLett.129.050506
http://www.ncbi.nlm.nih.gov/pubmed/35960590
http://dx.doi.org/10.1504/IJICS.2022.125276
http://dx.doi.org/10.1364/PRJ.444853

	Introduction
	Algorithm Optimization for FPGA Based Pipeline Generation of Toeplitz Matices
	The Generated Algorithm of Irreducible Polynomials
	The Characteristics of the Irreducible Polynomials
	Conditions for Judging Irreducible Polynomials
	Fast Modular Composition Algorithm
	Generate Irreducible Polynomial in FPGA Based on Fast Modular Composition Algorithm

	Implementation Flow of Hashing Algorithm Based on Variable Characteristic Polynomial in FPGA
	FPGA Algorithm Implementation Verification
	FPGA Implementation Performance Test
	FPGA Calculation Rate Simulation Test
	PCIE Reading and Writing Test and Optimization

	Conclusions
	References

