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The advancement of Quantum Error-Correcting (QEC) Maximum Distance Separable (MDS) codes holds 
substantial importance in practical applications, substantially augmenting the reliability and efficiency 
of quantum communication and computing. This paper introduces two new classes of QEC MDS codes, 
which are devised through the utilization of generalized Reed–Solomon (GRS) codes and the Hermitian 
construction approach. The novelty of our QEC MDS codes lies in their parameters being distinct from 
all previously reported codes. Moreover, most of our codes possess a considerably greater minimum 
distance in comparison to existing codes of the same length.
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Quantum Error-Correcting (QEC) codes play a pivotal role in the fields of quantum information processing and 
quantum computation1,2. The construction of QEC codes with better parameters has always been an important 
research topic. Calderbank et al. were the trailblazers in constructing certain QEC codes by capitalizing on 
classical linear codes. In their work3, they forged a crucial connection between classical linear codes and QEC 
codes. Leveraging Calderbank’s method, researchers have developed a plethora of binary QEC codes4,5 with 
the aid of classical linear codes. Subsequently, the research on non-binary QEC codes has also captured the 
significant attention of the scientific community. References6–10 serve as evidence of this burgeoning interest.

For any [[n, k, d]]q  QEC code, its parameters have to meet the following quantum Singleton bound. When 
the equality k = n − 2d + 2 holds, the code is categorized as a Quantum Error-Correcting Maximum Distance 
Separable (QEC MDS) code.

Lemma 1  (6,7,9 Quantum Singleton Bound) Each [[n, k, d]]q  quantum code must satisfy

	 k ≤ n − 2d + 2.

Just like the classic error-correcting code, QEC MDS codes possess the optimal error-detecting and error-
correcting capabilities in the context of quantum communication and computation. Constructing QEC MDS 
codes with a larger minimum distance d has long been a significant challenge in the field. It is well-established 
that the construction problem of QEC MDS codes with a length n less than or equal to q + 1 has been 
comprehensively resolved in11–13. Nevertheless, when n exceeds q + 1 and d is greater than q+1

2 , the task of 
constructing QEC MDS codes remains formidable.

In recent years, notable progress has been made in the construction of QEC MDS codes for the range 
q + 1 < n ≤ q2 + 2. For instance, when n takes on values such as q2 ± 1, q2, q2±1

2  and the minimum distance 

d > q+1
2 , several QEC MDS codes have been successfully derived, as presented in12,14–18. Moreover, researchers 

have constructed QEC MDS codes with various flexible lengths through different methods. For example, graph 
theory has been employed in8, cyclic codes in19,20, pseudo-cyclic codes in21, constacyclic codes in15,22–24, and 
(extended) generalized Reed–Solomon (GRS) codes in25–39. In the work of Li et al.25 introduced an efficient 
approach for constructing QEC GRS codes. This method was further generalized by Jin et al. in the following 
years26. The papers13,16,27 demonstrated the construction of numerous new QEC MDS codes from GRS codes. 
These results strongly indicate that (extended) GRS codes are a rich and valuable resource for generating QEC 
MDS codes with d > q+1

2 . In28, Zhang and Ge also successfully constructed some QEC MDS codes using GRS 
codes. Subsequently, a substantial number of QEC MDS codes with d > q+1

2  were constructed based on GRS 
codes, as reported in29–36. More recently, in Guo et al.37 developed some QEC MDS codes with a larger d and 
fewer restrictions on the choice of n. Additionally, in Jin et al.38 obtained a plethora of new QEC MDS codes with 
d > q+1

2  by concatenating two existing QEC MDS codes. This concatenation approach represents an efficient 
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method for constructing new QEC codes. Building on this, Fang et al.39 also managed to obtain a significant 
number of new QEC MDS codes.

Prior to 2014, the majority of QEC MDS codes were constructed with a minimum distance d ≤ q+1
2 . Only 

in a few cases were codes with d > q+1
2  developed, and these were often for rather limited and specific lengths. 

However, nowadays, there has been a notable surge in the development of QEC MDS codes with a d > q+1
2  

and values approaching q. Inspired by this, in this work, we present two new classes of QEC MDS codes based 
on Hermitian self-orthogonal GRS codes, contributing to this growing body of research. Our main results are: 
(1)	 For q ≡ −1 (mod 4), γ | 2(q − 1) and γ ∤ (q − 1), we construct 

[[(µ + 1) q2−1
γ

, (µ + 1) q2−1
γ

− 2k, k + 1]]q  codes, where 0 ≤ µ ≤ γ
4 − 1 and 

1 ≤ k ≤ ( γ+4
8 + µ) 2(q−1)

γ ( Theorem 8).

(2)	 For even γ | (q − 1) and γ ≡ 2(mod 4), we derive [[(2µ + 1) q2−1
γ

, (2µ + 1) q2−1
γ

− 2k, k + 1]]q  

codes, where 0 ≤ µ ≤ γ−2
4  and 1 ≤ k ≤ q+1

2 + (µ + 1) q+1
γ

− 2( Theorem 12).
The rest of the paper is organized as follows. Section “Preliminaries” introduces the definitions of GRS codes, 
QEC codes, and related research achievements. Section “Constructions of new QEC MDS codes” constructs the 
two new classes of QEC MDS codes. Finally, Section “Conclusion” summarizes the entire paper.

Preliminaries
For an arbitrary linear code C, its Hermitian dual code C⊥H  is defined in the manner:

	 C⊥H = {x ∈ F n
q2 : ⟨x, y⟩H = 0, ∀ y ∈ C},

 where ⟨x, y⟩H =
∑n

i=1 xiy
q
i . Moreover, when the code C is a subset of C⊥H , the code C is termed a Hermitian 

self-orthogonal code. Hermitian self-orthogonality is crucial in coding theory, particularly for constructing 
QEC codes, as it ensures effective quantum error correction.

Let Fq2 [x]k  represent the set of all polynomials in Fq2 [x] whose degree does not exceed k − 1. For each i 
such that 1 ≤ i ≤ n, consider elements αi, υi ∈ Fq2 . Under the condition that αi ̸= αj  for i ̸= j and υi ̸= 0 
for all i, we define two vectors a = (α1, α2, ..., αn) and v = (υ1, υ2, ..., υn). Based on these vectors a and v, 
we can define a GRS code over Fq2  as shown below:

	 GRSk(a, v) = {(υ1f(α1), υ2f(α2), ..., υnf(αn)) : f(x) ∈ Fq2 [x]k}.

The code GRSk(a, v) is an [n, k, n − k + 1] linear MDS code over Fq2 . Its generator matrix G can be explicitly 
written as:

	

G =




υ1α0
1 υ2α0

2 · · · υnα0
n

υ1α1
1 υ2α1

2 · · · υnα1
n

...
...

. . .
...

υ1αk−1
1 υ2αk−1

2 · · · υnαk−1
n


 .

It is a well-established fact that the Hermitian dual of GRSk(a, v) is also a GRS code, and it has parameters 
[n, n − k, k + 1]. The subsequent lemma provides an efficient approach for constructing Hermitian self-
orthogonal GRS codes. This method will be frequently employed in the subsequent sections of this paper.

Lemma 2  (28) Let a and v represent the vectors as previously described. Then, we know that the code GRSk(a, v) 
is Hermitian self-orthogonal if and only if (iff) the Euclidean inner product of aqi1+i2  and vq+1 is equal to 0 for 
all 0 ≤ i1, i2 ≤ k − 1.

Furthermore, when αi ̸= 0 for all i, we can represent the linear code generated by the following matrix as Ck,k1 .

	

Gk,k1 (a, v) =




υ1αk1
1 υ2αk1

2 · · · υnαk1
n

υ1αk1+1
1 υ2αk1+1

2 · · · υnαk1+1
n

...
...

. . .
...

υ1αk1+k−1
1 υ2αk1+k−1

2 · · · υnαk1+k−1
n


 .

 Denote v′ = {υ1ak1
1 , υ2ak1

2 , . . . , υnak1
n }. Obviously, Ck,k1  is equivalent to the code GRSk(a, v′). Based on 

Lemma 2, the following lemma can be readily deduced.

Lemma 3  Hold the symbol as shown above. The code Ck,k1  is Hermitian self-orthogonal iff the Euclidean inner 
product of aqi1+i2  and vq+1 is equal to 0 for all k1 ≤ i1, i2 ≤ k1 + k − 1.

Now, let us embark on an in-depth exploration of the definition of QEC codes and some associated results. 
Initially, consider the Hilbert space Cqn , which can be expressed as the tensor product Cq ⊗ Cq ⊗ · · · ⊗ Cq  with 
a dimension of qn. Any subspace H within this Hilbert space Cqn

 can be designated as a QEC code. Specifically, 
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if H is a qk-dimensional subspace, it can be represented as an [[n, k, d]]q  QEC code. Here, the parameter d 
represents the code’s error-detection and error-correction capabilities and is known as the minimum distance. 
More precisely, a QEC code has the ability to detect any error pattern with a weight less than d − 1 and can 
correct up to ⌊ d−1

2 ⌋ errors. It is evident that the construction of QEC codes with a substantial d value is a pivotal 
aspect of quantum coding theory.

Next, we introduce a well-known construction method for QEC codes, namely the Hermitian construction.

Lemma 4  (7) If C is an [n, k, d]q2  classical linear code and C⊥H  is contained in C, then there necessarily exists an 
[[n, 2k − n, ≥ d]]q  QEC code.

Based on this construction method, when C is an MDS code and C ⊆ C⊥H , it is straightforward to deduce the 
following conclusion, which demonstrates the connection between QEC MDS codes and classical MDS codes.

Lemma 5  If C is an [n, k, d]q2  classical linear MDS code and is contained in C⊥h, then there must exist an 
[[n, n − 2k, k + 1]]q  QEC MDS code.

Constructions of new QEC MDS codes
We consistently assume that q represents an odd prime power and that γ is a positive integer serving as a divisor 
of q2 − 1. We define m such that m = q2−1

γ . Let the multiplicative group F ∗
q2  be generated by the element ω, 

that is, F ∗
q2 = ⟨ω⟩. Subsequently, we set θ = ωs. As a result, the subgroup ⟨θ⟩ is contained within F ∗

q2  and has an 
order of m. Moreover, it can be readily verified that the cosets ω⟨θ⟩, ω2⟨θ⟩, . . . , ωγ⟨θ⟩ constitute all the distinct 
cosets of the subgroup ⟨θ⟩ within the group F ∗

q2 .

Construction I
We posit the condition that q ≡ −1 (mod 4) and take into account an integer γ with the property that γ 
divides 2(q − 1) yet does not divide (q − 1). It is evident that since q ≡ −1 (mod 4), we have 4 ∤ (q − 1). 
These circumstances entail that 4 is a divisor of γ and that γ

4  is an odd integer. Moreover, we are able to infer 
that 8 | (γ − 4). In the subsequent discussion, we will expound upon the procedure for constructing QEC MDS 
codes with a length of n = µ q2−1

γ , where µ is constrained such that 1 ≤ µ ≤ γ
4 . To accomplish this, we will 

utilize the following lemmas.

Lemma 6  Assume q ≡ −1 (mod 4), and γ divides 2(q − 1) but not (q − 1). For integers 0 ≤ i1, i2 ≤ q − 1, 
the relation q2−1

γ
| (qi1 + i2 + q+1

4 ) holds iff

	

(i1, i2) =




(
t1

2(q−1)
γ

− 1, t1
2(q−1)

γ
+ 3q−1

4

)
or

(
t1

2(q−1)
γ

+ 3q−1
4 , t1

2(q−1)
γ

− 1

)
, 1 ≤ t1 ≤ γ−4

8 ,

(
t2

2(q−1)
γ

, t2
2(q−1)

γ
− q+1

4

)
or

(
t2

2(q−1)
γ

− q+1
4 , t2

2(q−1)
γ

)
, γ+4

8 ≤ t2 ≤ γ
2 .

Proof  Observe that 0 < qi1 + i2 + q+1
4 ≤ q2 − 1 + q+1

4  and γ q2−1
γ

< q2 − 1 + q+1
4 < (γ + 1) q2−1

γ . The 

relation q2−1
γ

| (qi1 + i2 + q+1
4 ) implies that qi1 + i2 + q+1

4 = t q2−1
γ , where 1 ≤ t ≤ γ. In the following, we 

analyze two cases based on the parity of t:

Case 1: t is even.
Let t = 2t1 with 1 ≤ t1 ≤ γ

2 . Then, qi1 + i2 = 2t1
q2−1

γ
− q+1

4 . Expanding q2 − 1 = (q − 1)(q + 1), we 
substitute γ | 2(q − 1):

	
qi1 + i2 = t1

2(q − 1)
γ

q + t1
2(q − 1)

γ
− q + 1

4 .

 Recombining the terms of q:

•	 For 1 ≤ t1 ≤ γ−4
8 , −q < t1

2(q−1)
γ

− q+1
4 < 0, so 
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qi1 + i2 =

(
t1

2(q − 1)
γ

− 1

)
q +

(
q + t1

2(q − 1)
γ

− q + 1
4

)

=

(
t1

2(q − 1)
γ

− 1

)
q +

(
t1

2(q − 1)
γ

+ 3q − 1
4

)
.

 Note that 0 < t1
2(q−1)

γ
− 1, t1

2(q−1)
γ

+ 3q−1
4 < q. This gives (i1, i2) =

(
t1

2(q−1)
γ

− 1, t1
2(q−1)

γ
+ 3q−1

4

)
.

•	 For γ+4
8 ≤ t1 ≤ γ

2 , 0 < t1
2(q−1)

γ
, t1

2(q−1)
γ

− q+1
4 < q, so 

	
qi1 + i2 =

(
t1

2(q − 1)
γ

)
q +

(
t1

2(q − 1)
γ

− q + 1
4

)
.

 This gives (i1, i2) =
(
t1

2(q−1)
γ

, t1
2(q−1)

γ
− q+1

4

)
.

Case 2: t is odd.
Let t = 2t1 + 1 with 0 ≤ t2 ≤ γ

2 − 1. Then:

	
qi1 + i2 = (2t2 + 1)q2 − 1

γ
− q + 1

4 .

 Expanding gives:

	

qi1 + i2 = 2t2
q2 − 1

γ
+ q2 − 1

γ
− q + 1

4

= t2
2(q − 1)

γ
(q + 1) + q2 − 1

γ
− q + 1

4

= t2
2(q − 1)

γ
q + t2

2(q − 1)
γ

+ 2(q − 1)
γ

q + 1
2 − q + 1

4 .

 Since γ | 2(q − 1) but γ ∤ (q − 1), we known that 2(q−1)
γ  is odd. Then, we have

	

2(q − 1)
γ

q + 1
2 = 1

2

(
2(q − 1)

γ
− 1

)
q + 1

2

(
2(q − 1)

γ
+ q

)
.

Furthermore, we get

	

qi1 + i2 = t2
2(q − 1)

γ
q + t2

2(q − 1)
γ

+ 1
2

(
2(q − 1)

γ
− 1

)
q + 1

2

(
2(q − 1)

γ
+ q

)
− q + 1

4

=

(
t2

2(q − 1)
γ

+ 1
2

(
2(q − 1)

γ
− 1

))
q +

(
t2

2(q − 1)
γ

+ 1
2

(
2(q − 1)

γ
+ q

)
− q + 1

4

)
.

 Recombining the terms of q:

•	 For 0 ≤ t2 ≤ 3(γ−4)
8 + 1, 0 < t2

2(q−1)
γ

+ 1
2

( 2(q−1)
γ

+ q
)

− q+1
4 < q, so 

	
qi1 + i2 =

(
t2

2(q − 1)
γ

+ 1
2

(
2(q − 1)

γ
− 1

))
q +

(
t2

2(q − 1)
γ

+ 1
2

(
2(q − 1)

γ
− 1

)
+ q + 1

4

)
.

 This gives (i1, i2) =
(
t2

2(q−1)
γ

+ 1
2

( 2(q−1)
γ

− 1
)
, t2

2(q−1)
γ

+ 1
2

( 2(q−1)
γ

− 1
)

+ q+1
4

)
. Now, we let 

t2 = t
′

− γ+4
8  with γ+4

8 ≤ t
′

≤ γ
2 . Substituting t2 into the expression of (i1, i2) and simplifying through 

algebraic operations, we obtain (i1, i2) = (t
′ 2(q−1)

γ
− q+1

4 , t
′ 2(q−1)

γ
).

•	 For 3(γ−4)
8 + 2 ≤ t2 ≤ γ

2 − 1, q < t2
2(q−1)

γ
+ 1

2

( 2(q−1)
γ

+ q
)

− q+1
4 < 2q, so 
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qi1 + i2 =

(
t2

2(q − 1)
γ

+ 1
2

(
2(q − 1)

γ
− 1

)
+ 1

)
q +

(
t2

2(q − 1)
γ

+ 1
2

(
2(q − 1)

γ
− 1

)
+ q + 1

4 − q

)

=

(
t2

2(q − 1)
γ

+ 1
2

(
2(q − 1)

γ
+ 1

))
q +

(
t2

2(q − 1)
γ

+ 1
2

(
2(q − 1)

γ
− 1

)
− 3q − 1

4

)
.

 This gives (i1, i2) =
(
t2

2(q−1)
γ

+ 1
2

( 2(q−1)
γ

+ 1
)
, t2

2(q−1)
γ

+ 1
2

( 2(q−1)
γ

− 1
)

− 3q−1
4

)
. Now, we let 

t2 = 3(γ−4)
8 + 1 + t

′
 with 1 ≤ t

′
≤ γ−4

8 . Similarly, we have (i1, i2) = (t
′ 2(q−1)

γ
+ 3q−1

4 , t
′ 2(q−1)

γ
− 1).

Thus, we have obtained the desired results for the pairs (i1, i2).�  □

Lemma 7  Keep the definitions of q and γ consistent with Lemma 6. Suppose µ is an integer satisfying 
1 ≤ µ ≤ γ

4 − 1 and 0 ≤ i1, i2 ≤ ( γ+4
8 + µ) 2(q−1)

γ
− 1. If q2−1

γ  divides (qi1 + i2 + q+1
4 ), then the following 

system of equations

	

µ+1∑
t=1

βqi1+i2
t ut = 0, � (1)

 admits a solution (u1, u2, . . . , uµ+1) ∈ (F ∗
q )µ+1, where βt = ω4t for all 1 ≤ t ≤ µ + 1.

Proof  Given that 1 ≤ µ ≤ γ
4 − 1, we can establish that ( γ+4

8 + µ) 2(q−1)
γ

− 1 < 3q−1
4 . For all pairs of integers 

i1 and i2 such that 0 ≤ i1, i2 ≤ ( γ+4
8 + µ) 2(q−1)

γ
− 1, we can leverage Lemma 6. This lemma enables us to show 

that q2−1
γ

| (qi1 + i2 + q+1
4 ) if and only if (i1, i2) takes one of the following forms: (t2

2(q−1)
γ

, t2
2(q−1)

γ
− q+1

4 ) 

or (t2
2(q−1)

γ
− q+1

4 , t2
2(q−1)

γ
), where γ+4

8 ≤ t2 ≤ γ+4
8 + µ − 1. In other words, we can express qi1 + i2 as 

either 2t2
(q2−1)

γ
− q+1

4  or 2t2
(q2−1)

γ
− q2−1

4 − q+1
4 . To simplify the notation, we let t2 = γ+4

8 + j, where 

0 ≤ j ≤ µ − 1. Then, qi1 + i2 can be rewritten as q2−1
4 + (2j + 1) (q2−1)

γ
− q+1

4  or (2j + 1) (q2−1)
γ

− q+1
4  

for 0 ≤ j ≤ µ − 1. We now define two matrices. Let

	

A =




β
q2−1

γ
− q+1

4
1 β

q2−1
γ

− q+1
4

2 · · · β
q2−1

γ
− q+1

4
µ+1

β
q2−1

4 + q2−1
γ

− q+1
4

1 β
q2−1

4 + q2−1
γ

− q+1
4

2 · · · β
q2−1

4 + q2−1
γ

− q+1
4

µ+1
...

...
. . .

...

β
(2µ−1) q2−1

γ
− q+1

4
1 β

(2µ−1) q2−1
γ

− q+1
4

2 · · · β
(2µ−1) q2−1

γ
− q+1

4
µ+1

β
q2−1

4 +(2µ−1) q2−1
γ

− q+1
4

1 β
q2−1

4 +(2µ−1) q2−1
γ

− q+1
4

2 · · · β
q2−1

4 +(2µ−1) q2−1
γ

− q+1
4

µ+1




,

 and

	

A
′

=




β
q2−1

γ

1 β
q2−1

γ

2 · · · β
q2−1

γ

µ+1

β
3 q2−1

γ

1 β
3 q2−1

γ

2 · · · β
3 q2−1

γ

µ+1
...

...
. . .

...

β
(2µ−1) (q2−1)

γ

1 β
(2µ−1) (q2−1)

γ

2 · · · β
(2µ−1) (q2−1)

γ

µ+1




.

 Evidently, the system of equations (1) can be written in matrix form as

	

A




x1
x2
...

xµ+1


 = 0.

 Recall that for any βt = ω4t, we have β
q2−1

4
t = 1 and β

q2−1
4 +(2j+1) (q2−1)

γ
− q+1

4
t = β

(2j+1) (q2−1)
γ

− q+1
4

t . 

Leveraging these equalities, we can further simplify the above system to
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A
′




β
− q+1

4
1 x1

β
− q+1

4
2 x2

...

β
− q+1

4
µ+1 xµ+1




= A
′




y1
y2
...

yµ+1


 = 0,� (2)

 where yt = β
− q+1

4
t xt for all 1 ≤ t ≤ µ + 1. Since βt = ω4t, we can show that β

q2−1
γ

t = ω
2t

2(q−1)
γ

(q+1) ∈ F ∗
q  

for all 1 ≤ t ≤ µ + 1. This property implies that every entry of A′  belongs to F ∗
q , which means A′q = A

′ . 
Moreover, it is clear that any µ columns of A′  are linearly independent. Notice that A′  is an µ × (µ + 1) matrix. 
According to [31, Lemma 2.3], the system of equations (2) has a non-zero solution (y1, y2, . . . , yµ+1) 
in (F ∗

q )µ+1. Let ut = ytβ
q+1

4
t  for all 1 ≤ t ≤ µ + 1. Since β

q+1
4

t = ωt(q+1) ∈ F ∗
q , it follows that 

(u1, u2, . . . , uµ+1) ∈ (F ∗
q )µ+1 is a non-zero solution of (1). � □

Let µ be an integer satisfying 0 ≤ µ ≤ γ
4 − 1. Define βt = ω4t for each t in the range 1 ≤ t ≤ µ + 1. Recall 

that the value of m is defined as m = q2−1
γ . At this point, consider the vectors a and v defined as follows:

	 a = (β1, β1θ, . . . , β1θm−1, . . . , βµ+1, βµ+1θ, . . . , βµ+1θm−1) ∈ F
m(µ+1)
q2 ,

	 v = (v1, v1ω
γ
4 , . . . , v1ω

γ
4 (m−1), . . . , vµ+1, vµ+1ω

γ
4 , . . . , vµ+1ω

γ
4 (m−1)) ∈ (F ∗

q2 )m(µ+1),

 where v1, v2, . . . , vµ+1 are elements of F ∗
q2 . By leveraging the code GRSk(a, v), we are in a position to derive 

the following theorem.

Theorem 8  We assume that q ≡ −1 (mod 4)and take into account an integer γ with the property that γ divides 
2(q − 1) yet does not divide (q − 1). Let µ be a fixed integer such that 0 ≤ µ ≤ γ

4 − 1. For every k in the range 
1 ≤ k ≤ ( γ+4

8 + µ) 2(q−1)
γ , a [[(µ + 1) q2−1

γ
, (µ + 1) q2−1

γ
− 2k, k + 1]]q  QEC MDS code can be constructed.

Proof  To begin with, we calculate the following expression:

	
⟨aqi1+i2 , vq+1⟩E =

µ+1∑
t=1

βqi1+i2
t vq+1

t

m−1∑
l=0

θ(qi1+i2+ q+1
4 )l.

It is important to note that the sum 
∑m−1

l=0 θ(qi1+i2+ q+1
4 )l has the following behavior:

	

m−1∑
l=0

θ(qi1+i2+ q+1
4 )l =

{
0, m ∤

(
qi1 + i2 + q+1

4

)
,

m, m |
(
qi1 + i2 + q+1

4

)
.

 Consequently, the value of ⟨aqi1+i2 , vq+1⟩E  can be expressed as:

	

⟨aqi1+i2 , vq+1⟩E =





0, m ∤
(
qi1 + i2 + q+1

4

)
,

m
µ+1∑
t=1

βqi1+i2
t vq+1

t , m |
(
qi1 + i2 + q+1

4

)
.

 When µ = 0, by referring to Lemma 6, we can conclude that m ∤ (qi1 + i2 + q+1
4 ) for any 

0 ≤ i1, i2 ≤ ( γ+4
8 + µ) 2(q−1)

γ
− 1, i.e.,

	 ⟨aqi1+i2 , vq+1⟩E = 0.

 When 1 ≤ µ ≤ γ
4 − 1, we can take vq+1

t = ut for all 1 ≤ t ≤ µ + 1, where ut ∈ F ∗
q  is obtained from Lemma 

7. According to Lemma 7, we have 
∑µ+1

t=1 βqi1+i2
t vq+1

t =
∑µ+1

t=1 βqi1+i2
t ut = 0, when m | (qi1 + i2 + q+1

4 ). 
In summary, for all pairs of integers i1 and i2 such that 0 ≤ i1, i2 ≤ k − 1, the value of ⟨aqi1+i2 , vq+1⟩E  is 
equal to 0. According to Lemma 2, the code GRSk(a, v) is a Hermitian self-orthogonal code. Additionally, it 
is straightforward to see that GRSk(a, v) is a [(µ + 1) q2−1

γ
, k, (µ + 1) q2−1

γ
− k + 1] MDS code. Finally, by 

applying Lemma 5, we can construct a [[(µ + 1) q2−1
γ

, (µ + 1) q2−1
γ

− 2k, k + 1]]q  QEC MDS code.�  □
When γ ̸= 4, by substituting µ = γ

4 − 1 into Theorem 8, the following QEC MDS code can be readily derived. 
This corollary further expands the scope of QEC MDS code construction, providing a specific case that can be 
directly applied under the given conditions.
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Corollary 9  Maintain the same definitions of q and γ as in Theorem 8. For all values of k such that 
1 ≤ k ≤ 3(q−1)

4 − q−1
γ , a [[ q2−1

4 , q2−1
4 − 2k, k + 1]]q  QEC MDS code can be constructed.

In Table 1, we display a collection of novel QEC MDS codes that have been derived from Theorem 8 and Corollary 
9. Notably, each of these codes is characterized by a parameter d that exceeds the value of q+1

2 . This particular 
feature endows these codes with enhanced error-correction capabilities, setting them apart and making them of 
significant interest within the domain of quantum error correction research and application.

Remark 1  Within the framework of Theorem 8, by specifying the range of the parameter µ such that 
γ−4

8 ≤ µ ≤ γ
4 − 1, the QEC MDS codes we have constructed possess a minimum distance d that exceeds 

q+1
2 . As the value of γ asymptotically approaches 2(q − 1) and µ approaches γ

4 , through verification, it can be 
demonstrated that the expression ( γ+4

8 + µ) 2(q−1)
γ

+ 1 approaches 3q
4 . This outcome indicates that our codes 

can attain a parameter d approaching 3q
4 , while the lengths of these codes only approach q2−1

4 . Such charac-
teristics endow our codes with potentially enhanced error-correcting capabilities and favorable length-distance 
trade-offs, which are of particular significance in the context of quantum error correction and quantum infor-
mation processing.

In the context of Theorem 8, a particular class of QEC MDS codes has been devised, characterized by the 
parameters [[(µ + 1) q2−1

γ
, (µ + 1) q2−1

γ
− 2k, k + 1]]q . Here, the parameters are constrained such that 

0 ≤ µ ≤ γ
4 − 1 and 1 ≤ k ≤ ( γ+4

8 + µ) 2(q−1)
γ .

In the case where µ + 1 is odd, the length of our codes can be formulated as

	
n = (µ + 1)2(q − 1)

γ

q + 1
2 .

 It is pertinent to note that 2(q−1)
γ  is an odd quantity. Consequently, the length n of our codes represents an odd 

multiple of q+1
2 . This implies that the length n is not divisible by either q + 1 or q − 1. In comparison to the 

previously known QEC MDS codes, our code exhibits a novel and distinct length characteristic, which sets it 
apart in the realm of quantum error correction.

When µ + 1 is an even integer, the length of our codes can be expressed as

	
n = (µ + 1)(q − 1)

γ
(q + 1).

 Generally, it can be observed that (µ+1)(q−1)
γ  does not act as a divisor of q − 1. Subsequently, we posit the 

condition λ ∤ (q − 1) and proceed to conduct a comparative analysis between our codes and the QEC MDS 
codes with parameters [[λ(q + 1), λ(q + 1) − 2k, k + 1]]q  that have been documented in the existing literature. 
This comparison aims to further elucidate the unique properties and potential advantages of our proposed codes 
within the broader landscape of QEC codes.

In the studies presented in Theorem 3.5 of17 by Shi et al. and Theorem 6 of37 by Guo et al., a specific 
class of QEC MDS codes has been constructed. These codes are characterized by the parameters 
[[λ(q + 1), λ(q + 1) − 2k, k + 1]]q , where the parameters are further constrained such that 1 ≤ λ ≤ q − 1 
and 1 ≤ k ≤ λ − 1. By setting λ = (µ+1)(q−1)

γ , it can be observed that these QEC MDS codes possess the same 

length as our codes, specifically (µ+1)(q−1)
γ

(q + 1). However, in terms of the minimum distances, the codes 

constructed by Shi et al. and Guo et al. have d ≤ λ, which in this case is equivalent to (µ+1)(q−1)
γ . It is worth 

highlighting that the inequality (µ+1)(q−1)
γ

< ( γ+4
8 + µ) 2(q−1)

γ
+ 1 holds. This clearly indicates that our codes 

are endowed with a significantly larger minimum distance.
In the research detailed in Theorem 3.2 of28 by Zhang et al., a particular class of QEC MDS codeshas been 

derived. These codes are defined by the parameters [[b q−1
2a

(q + 1), b q−1
2a

(q + 1) − 2k, k + 1]]q , with the 

q γ µ QEC code k

10 | (q − 1) 20 4 [[ q2−1
4 , q2−1

4 − 2k, k + 1]]q 1 ≤ k ≤ 7(q−1)
10

14 | (q − 1) 28 5 [[ 3(q2−1)
14 ,

3(q2−1)
14 − 2k, k + 1]]q 1 ≤ k ≤ 9(q−1)

14

18 | (q − 1) 36 7 [[ 2(q2−1)
9 ,

2(q2−1)
9 − 2k, k + 1]]q 1 ≤ k ≤ 2(q−1)

3

22 | (q − 1) 44 9 [[ 5(q2−1)
22 ,

5(q2−1)
22 − 2k, k + 1]]q 1 ≤ k ≤ 15(q−1)

22

26 | (q − 1) 52 11 [[ 3(q2−1)
13 ,

3(q2−1)
13 − 2k, k + 1]]q 1 ≤ k ≤ 9(q−1)

13

Table 1.  New QEC MDS codes derived from construction I.
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conditions that 2a divides (q − 1), 1 ≤ b ≤ 2a and 1 ≤ k ≤ q−1
2 + q−1

2a . By setting b = 2(µ + 1) and 2a = γ
2 , 

it is evident that the length of these QEC MDS codes is also (µ+1)(q−1)
γ

(q + 1). However, in terms of the minimum 

distance, these codes have d ≤ q−1
2 + 2(q−1)

γ
+ 1. It is important to note that when γ+4

8 ≤ µ ≤ γ
4 − 1, the 

inequality q−1
2 + 2(q−1)

γ
+ 1 ≤ ( γ+4

8 + µ) 2(q−1)
γ

+ 1 holds. This conclusively demonstrates that our codes 
possess a substantially larger minimum distance.

In the works of Theorem 4.12 of29 by Shi et al. and Corollary 3.4 of32 by Fang et al., a class of QEC MDS codes 
codes has been constructed. These codes are parameterized as [[ θ(q−1)

h
(q + 1), θ(q−1)

h
(q + 1) − 2k, k + 1]]q , 

under the conditions that h divides (q − 1), 1 ≤ θ ≤ h and 1 ≤ k ≤ θ(q−1)
h

− 1. By setting h = γ
2  and θ = µ+1

2 , 

it can be observed that their QEC MDS codes possess a length of θ q2−1
h

= (µ + 1) q2−1
γ , which coincides with 

the length of our codes described in Theorem 8. Nevertheless, in terms of the minimum distance, their codes 
have d ≤ θ(q−1)

h
= (µ+1)(q−1)

γ . It is noteworthy that the inequality (µ+1)(q−1)
γ

< ( γ+4
8 + µ) 2(q−1)

γ  holds. 
This clearly indicates that our codes exhibit a significantly larger minimum distance.

The above discussion theoretically indicates that the minimum distance of most of our codes is larger 
compared with the existing codes of the same length. Now, Table 2 provides specific parameter comparisons with 
prior literature (e.g.,17,28,32,37) in order to more intuitively quantify the claimed advantage of “larger minimum 
distance”.

Construction II
We consider the scenario where γ is an even divisor of q + 1 and γ ≡ 2(mod 4). Next, we will detail the 
procedure for constructing QEC MDS codes. These codes have a length of n = (2µ + 1) q2−1

γ , with the 
parameter µ satisfying the constraint 0 ≤ µ ≤ γ−2

4 . To achieve this construction, the following lemmas are 
indispensable.

Lemma 10  Assume γ is an even divisor of q + 1 with γ ≡ 2(mod 4). For integers 0 ≤ i1, i2 ≤ q − 1, the rela-
tion q2−1

γ
|
(
qi1 + i2 + q+1

2

)
 holds iff

	

(i1, i2) =




(
l1

q+1
γ

− 1, q+1
2 − l1

q+1
γ

− 1

)
or

(
q+1

2 − l1
q+1

γ
− 1, l1

q+1
γ

− 1

)
, 1 ≤ l1 ≤ γ−2

4 ,

(
l2

q+1
γ

− 2, 3(q+1)
2 − l2

q+1
γ

− 2

)
or

(
3(q+1)

2 − l2
q+1

γ
− 2, l2

q+1
γ

− 2

)
, γ

2 ≤ l2 ≤ 3γ−2
4 .

Proof  First, note that the inequality 0 < qi1 + i2 + q+1
2 ≤ q2 − 1 + q+1

2  holds, and we also 
have γ q2−1

γ
< q2 − 1 + q+1

2 < (γ + 1) q2−1
γ . The relation q2−1

γ
| (qi1 + i2 + q+1

4 ) implies: 

q γ µ n d in Construction I d in17,29,32,37 d in28

11 20 3 24 2 ≤ d ≤ 10 d = 2 2 ≤ d ≤ 7
23 44 7 96 2 ≤ d ≤ 14 2 ≤ d ≤ 4 2 ≤ d ≤ 13
23 44 9 108 2 ≤ d ≤ 16 2 ≤ d ≤ 5 2 ≤ d ≤ 13
31 20 3 192 2 ≤ d ≤ 19 2 ≤ d ≤ 6 2 ≤ d ≤ 19
43 28 5 396 2 ≤ d ≤ 28 2 ≤ d ≤ 9 2 ≤ d ≤ 25
51 20 3 520 2 ≤ d ≤ 31 2 ≤ d ≤ 10 2 ≤ d ≤ 31
63 124 17 576 2 ≤ d ≤ 34 2 ≤ d ≤ 9 2 ≤ d ≤ 33
63 124 19 640 2 ≤ d ≤ 36 2 ≤ d ≤ 10 2 ≤ d ≤ 33
63 124 25 832 2 ≤ d ≤ 42 2 ≤ d ≤ 13 2 ≤ d ≤ 33
63 124 29 960 2 ≤ d ≤ 46 2 ≤ d ≤ 15 2 ≤ d ≤ 33
67 44 7 816 2 ≤ d ≤ 40 2 ≤ d ≤ 12 2 ≤ d ≤ 37
67 44 9 1020 2 ≤ d ≤ 46 2 ≤ d ≤ 15 2 ≤ d ≤ 37

Table 2.  QEC MDS codes with parameters [[n, n − 2d + 2, d]]q .
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qi1 + i2 + q+1
2 = l q2−1

γ , where 1 ≤ l ≤ γ. Since γ ≡ 2(mod 4), we know that 4|(γ − 2). In the following, 
we analyze two intervals for l:

Case 1: 1 ≤ l ≤ γ
2 − 1.

In this case, we can express qi1 + i2 as:

	

qi1 + i2 = l
q + 1

γ
q − l

q + 1
γ

− q + 1
2

=

(
l
q + 1

γ
− 1

)
q +

(
q + 1

2 − l
q + 1

γ
− 1

)
.

 

•	 For 1 ≤ l ≤ γ−2
4 , it is clear that 0 < l q+1

γ
− 1,, q+1

2 − l q+1
γ

− 1 < q. Therefore, (i1, i2) = (
l q+1

γ
− 1, q+1

2 − l q+1
γ

− 1
)

.
•	 For γ−2

4 + 1 ≤ l ≤ γ
2 − 1, we let l = γ

2 − l1 with 1 ≤ l1 ≤ γ−2
4 . Then, we can rewrite qi1 + i2 as 

qi1 + i2 =
(

q+1
2 − l q+1

γ
− 1

)
q +

(
l q+1

γ
− 1

)
. Therefore, (i1, i2) =

(
q+1

2 − l1
q+1

γ
− 1, l1

q+1
γ

− 1
)

.Case 
2: γ

2 ≤ l ≤ γ.

Note that −q < q+1
2 − l q+1

γ
− 1 < 0. In this case, the expression for qi1 + i2 becomes:

	

qi1 + i2 =

(
l
q + 1

γ
− 2

)
q +

(
q + q + 1

2 − l
q + 1

γ
− 1

)

=

(
l
q + 1

γ
− 2

)
q +

(
3(q + 1)

2 − l
q + 1

γ
− 2

)
.

Given that , in this case, (i1, i2) = (l q+1
γ

− 2, 3(q+1)
2 − l q+1

γ
− 2) with γ

2 ≤ l ≤ γ. More precisely, when . 

Subsequently, when , let l = 3γ
2 − l2, where . Then, we obtain (i1, i2) = ( 3(q+1)

2 − l2
q+1

γ
− 2, l2

q+1
γ

− 2) with 

γ
2 ≤ l2 ≤ 3γ−2

4 .

•	 For γ
2 ≤ l ≤ 3γ−2

4 , it is clear that 0 < l q+1
γ

− 2, 3(q+1)
2 − l q+1

γ
− 2 < q. Therefore, (i1, i2) = 

(l q+1
γ

− 2, 3(q+1)
2 − l q+1

γ
− 2).

•	 For 3γ−2
4 + 1 ≤ l ≤ γ, let l = 3γ

2 − l2 with γ
2 ≤ l2 ≤ 3γ−2

4 . Then, we can rewrite qi1 + i2 =  ( 3(q+1)
2 − l2

q+1
γ

− 2
)
q +

(
l2

q+1
γ

− 2
)

. Therefore, (i1, i2) = 
( 3(q+1)

2 − l2
q+1

γ
− 2, l2

q+1
γ

− 2
)

.

Through the above-detailed analysis, we have successfully proven this lemma.�  □

Lemma 11  Keep the definitions of q and γ consistent with Lemma 10. Suppose that 1 ≤ µ ≤ γ−2
4 , and con-

sider integers i1 and i2 within the range γ−2
4

q+1
γ

≤ i1, i2 ≤ 3(q+1)
2 − ( 3γ−2

4 − µ) q+1
γ

− 3. If q2−1
γ  divides 

(qi1 + i2 + q+1
2 ), then the following system of equations

	

2µ+1∑
t=1

βqi1+i2
t ut = 0� (3)

 admits a solution (u1, u2, . . . , u2µ+1) ∈ (F ∗
q )2µ+1, where βt = ω2t for all 1 ≤ t ≤ 2µ + 1.

Proof  We start by observing the inequality γ−2
4

q+1
γ

≤ i1, i2 ≤ 3(q+1)
2 − ( 3γ−2

4 − µ)  q+1
γ

− 3. Relying on Lemma  

10, the condition q2−1
γ

| (qi1 + i2 − q+1
2 ) is satisfied if and only if (i1, i2) takes the form 

(l2
q+1

γ
− 2, 3(q+1)

2 − l2
q+1

γ
− 2) or ( 3(q+1)

2 − l2
q+1

γ
− 2, l2

q+1
γ

− 2), where 3γ−2
4 − µ + 1 ≤ l2 ≤ 3γ−2

4 .  

In other words, we can express qi1 + i2 as either l2
(q2−1)

γ
− q+1

2  or 3(q2−1)
2 − l2

(q2−1)
γ

− q+1
2 . We also 

note that 3(q2−1)
2 − l2

(q2−1)
γ

− q+1
2  =  ( 3γ

2 − l2) (q2−1)
γ

− q+1
2 . By denoting l

′
= 3γ

2 − l2, we obtain 

that 3γ+2
4 ≤ l

′
≤ 3γ+2

4 + µ − 1. Consequently, qi1 + i2 = l2
(q2−1)

γ
− q+1

2  or l
′ (q2−1)

γ
− q+1

2 , where 
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3γ−2
4 − µ + 1 ≤ l2 ≤ 3γ−2

4  and 3γ+2
4 ≤ l

′
≤ 3γ+2

4 + µ − 1. That is, qi1 + i2 = l (q2−1)
γ

− q+1
2  with 

3γ−2
4 − µ + 1 ≤ l ≤ 3γ+2

4 + µ − 1. For the sake of convenience, we define the following two matrices. Let

	

A =




β
( 3γ−2

4 −µ+1) (q2−1)
γ

− q+1
2

1 β
( 3γ−2

4 −µ+1) (q2−1)
γ

− q+1
2

2 · · · β
( 3γ−2

4 −µ+1) (q2−1)
γ

− q+1
2

2µ+1

β
( 3γ−2

4 −µ+2) (q2−1)
γ

− q+1
2

1 β
( 3γ−2

4 −µ+2) (q2−1)
γ

− q+1
2

2 · · · β
( 3γ−2

4 −µ+2) (q2−1)
γ

− q+1
2

2µ+1
...

...
. . .

...

β
( 3γ+2

4 +µ−1) (q2−1)
γ

− q+1
2

1 β
( 3γ+2

4 +µ−1) (q2−1)
γ

− q+1
2

2 · · · β
( 3γ+2

4 +µ−1) (q2−1)
γ

− q+1
2

2µ+1




 and

	

A
′

=




β
( 3γ−2

4 −µ+1) (q2−1)
γ

1 β
( 3γ−2

4 −µ+1) (q2−1)
γ

2 · · · β
( 3γ−2

4 −µ+1) (q2−1)
γ

2µ+1

β
( 3γ−2

4 −µ+2) (q2−1)
γ

1 β
( 3γ−2

4 −µ+2) (q2−1)
γ

2 · · · β
( 3γ−2

4 −µ+2) (q2−1)
γ

2µ+1
...

...
. . .

...

β
( 3γ+2

4 +µ−1) (q2−1)
γ

1 β
( 3γ+2

4 +µ−1) (q2−1)
γ

2 · · · β
( 3γ+2

4 +µ−1) (q2−1)
γ

2µ+1




.

 Evidently, the system of equations (3) can be represented in matrix form as

	

A




x1
x2
...

x2µ+1


 = 0.

 This system can be further simplified to

	

A
′




β
− q+1

2
1 x1

β
− q+1

2
2 x2

...

β
− q+1

2
2µ+1 x2µ+1




= A
′




y1
y2
...

y2µ+1


 = 0,� (4)

 where yt = β
− q+1

2
t xt for all 1 ≤ t ≤ 2µ + 1. Under the operation modulo q2 − 1, we derive that

	

l2
q2 − 1

γ
q =l2

q + 1
γ

q − l2
q + 1

γ
q

=

(
(l2

q + 1
γ

− 2)q + 3(q + 1)
2 − l2

q + 1
γ

− 2 + q + 1
2

)
q

=

(
3(q + 1)

2 − l2
q + 1

γ
− 2

)
q +

(
l2

q + 1
γ

− 2 + q + 1
2

)

=

(
3(q + 1)

2 q + q + 1
2 − 2(q + 1)

)
−

(
l2

q + 1
γ

q − l2
q + 1

γ

)

=

(
3q

2 + 1
2 − 2

)
(q + 1) − l2

q + 1
γ

(q − 1)

=3γ

2
q2 − 1

γ
− l2

q2 − 1
γ

=

(
3γ

2 − l2

)
q2 − 1

γ
.

 Recall that l
′

= 3γ
2 − l2, we obtain l2

q2−1
γ

q = l
′ q2−1

γ . That is, β
l2

q2−1
γ

q

t = β
l
′ q2−1

γ

t  with 3γ−2
4 − µ + 1 

≤ l2 ≤ 3γ−2
4   and 3γ+2

4 ≤ l
′

≤ 3γ+2
4 + µ − 1. This implies that A

′
 is row equivalent to A

′q , i.e., 

A
′q = A

′ . Moreover, it is evident that A
′
 is an 2µ × (2µ + 1) matrix and any 2µ columns are linearly 
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independent. According to [31, Lemma 2.3], the system of equations (4) has a non-zero solution 
(y1, y2, . . . , y2µ+1) in (F ∗

q )2µ+1. Letting ut = ytβ
q+1

2
t  for all 1 ≤ t ≤ 2µ + 1. Since β

q+1
2

t ∈ F ∗
q ( as βt ∈ Te), 

we conclude that (u1, u2, . . . , u2µ+1) ∈ (F ∗
q )2µ+1 is a non-zero solution of (3).�  □

Let µ be an integer such that 1 ≤ µ ≤ γ−2
4 . Define βt = ω2t for each t in the range 1 ≤ t ≤ 2µ + 1. And recall 

that m = q2−1
γ . Consider the vectors:

	 a = (β1, β1θ, . . . , β1θm−1, . . . , β2µ+1, β2µ+1θ, . . . , β2µ+1θm−1),

	 v = (v1, v1ω
γ
2 , . . . , v1ω

γ
2 (m−1), . . . , v2µ+1, v2µ+1ω

γ
2 , . . . , v2µ+1ω

γ
2 (m−1)),

where v1, v2, . . . , v2µ+1 are elements of F ∗
q2 . By leveraging the code Ck,k1 (a, v), we can derive the following 

theorem.

Theorem 12  Assume that γ is an even divisor of q + 1 and γ ≡ 2(mod 4). Fix µ, 0 ≤ µ ≤ γ−2
4 . For every inte-

ger k within the range 1 ≤ k ≤ q+1
2 + (µ + 1) q+1

γ
− 2, a [[(2µ + 1) q2−1

γ
, (2µ + 1) q2−1

γ
− 2k, k + 1]]q  QEC 

MDS code can be constructed.

Proof  Set k1 = γ−2
4

q+1
γ . Next, we consider the GRS code Ck,k1 . When µ = 0, we get

	
⟨aqi1+i2 , vq+1⟩E =βqi1+i2

1 vq+1
1

m−1∑
l=0

θ(qi1+i2+ q+1
2 )l.

 We note that the sum 
∑m−1

l=0 θ(qi1+i2+ q+1
2 )l has the following property:

	

m−1∑
l=0

θ(qi1+i2+ q+1
2 )l =

{
0, m ∤

(
qi1 + i2 + q+1

2

)
,

m, m |
(
qi1 + i2 + q+1

2

)
.

 From Lemma 10, we know that for all i1 and i2 in the range k1 ≤ i1, i2 ≤ k1 + q+1
2 + q+1

γ
− 2 − 1, the relation 

m ∤ (qi1 + i2 + q+1
2 ) holds. When 1 ≤ k ≤ q+1

2 + q+1
γ

− 2, for all i1 and i2 such that k1 ≤ i1, i2 ≤ k1 + k − 1, 
the value of ⟨aqi1+i2 , vq+1⟩E  is equal to 0. From Lemma 3, this implies that Ck,k1 (a, v) ⊆ Ck,k1 (a, v)⊥H  for 
all k in the range 1 ≤ k ≤ q+1

2 + q+1
γ

− 2. When 1 ≤ µ ≤ γ−2
4 , we get

	
⟨aqi1+i2 , vq+1⟩E =

2µ+1∑
t=1

βqi1+i2
t vq+1

t

m−1∑
l=0

θ(qi1+i2+ q+1
2 )l.

According to Lemma 11, for all i1 and i2 in the range γ−2
4

q+1
γ

≤ i1, i2 ≤ 3(q+1)
2 − ( 3γ−2

4 − µ) q+1
γ

− 3, which is 

equivalent to k1 ≤ i1, i2 ≤ k1  + q+1
2 + (µ + 1) q+1

γ
− 2 − 1, there exist a tuple (u1, u2, . . . , u2µ+1) ∈ (F ∗

q )2µ+1 
such that 

∑2µ+1
t=1 βqi1+i2

t ut = 0. For t = 1, 2, . . . , 2µ + 1, we choose vt ∈ F ∗
q2  such that vq+1

t = ut. Then, when 
1 ≤ k ≤ q+1

2 + (µ + 1) q+1
γ

− 2, for all i1 and i2 with k1 ≤ i1, i2 ≤ k1 + k − 1, the value of ⟨aqi1+i2 , vq+1⟩E  
is equal to 0. Once again, by Lemma 3, we can conclude that Ck,k1 (a, v) ⊆ Ck,k1 (a, v)⊥H  for all k in the range 
1 ≤ k ≤ q+1

2 + (µ + 1) q+1
γ

− 2.
Recall that Ck,k1 (a, v) is an [n, k, n − k + 1] MDS code. Therefore, by applying Lemma 5, we obtain the 

desired result.�  □
With µ = 0, the following QEC MDS code can be readily derived from Theorem 12.

Corollary 13  Keep the definitions of q and γ consistent with Theorem 12. For each value of k such that 
1 ≤ k ≤ q+1

2 + q+1
γ

− 2, a [[ q2−1
γ

, q2−1
γ

− 2k, k + 1]]q  QEC MDS codeis guaranteed to exist.

Moreover, when we consider the specific case of γ = 2 in Corollary 13, we can get the following QEC MDS code. 
This code is also one of the main results presented in22, although the methods employed in our work differ from 
those in the cited reference.

Corollary 14  Let k be an interge satisfing 1 ≤ k ≤ q − 1. Then, a [[ q2−1
2 , q2−1

2 + 1 − 2k, k + 1]]q  QEC MDS 
code is certain to exist.

In Table 3, we showcase a selection of novel QEC MDS codes that have been derived from Theorem 12. Notably, 
each of these codes is characterized by a parameter d that surpasses the value of q+1

2 , thereby highlighting 
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their potentially enhanced error-correcting capabilities and distinctiveness within the realm of quantum error 
correction.

Remark 2  Theorem 12 constructed a class of QEC MDS codes, which are parameterized as 
[[(2µ + 1) q+1

γ
(q − 1), (2µ + 1) q+1

γ
(q − 1) − 2k, k + 1]]q . Here, the parameters are constrained such that 

0 ≤ µ ≤ γ−2
4  and 1 ≤ k ≤ q+1

2 + (µ + 1) q+1
γ

− 2. It is evident that all QEC MDS codes constructed in Theo-
rem 12 have d that exceeds q+1

2 . Next, we will compare our codes with the QEC MDS codes documented in the 
literature. Subsequently, we will undertake a comparative analysis between our codes and those QEC MDS codes 
that have been previously documented in the existing body of literature, with the aim of elucidating the unique 
characteristics and potential advantages of our proposed codes.

In Theorem 3.8 of17, under the condition that q ≡ 1 (mod 4), a particular class of QEC MDS codes has been 
established. These codes are characterized by the parameters [[2(2δ + 1)(q − 1), 2(2δ + 1)(q − 1) − 2k, k + 1]]q  
with the constraints 0 ≤ δ ≤ q−1

4  and 1 ≤ k ≤ 4δ + 1. Given that q ≡ 1 (mod 4), it can be inferred that 
(2µ + 1) q+1

γ  is invariably odd. In contrast, it is evident that 2(2δ + 1) is an even quantity. Consequently, the 
length of the codes described in Theorem 3.8 of17 diverges from that of the codes presented in our Theorem 
12. Furthermore, within Theorem 4.8 of28, another class of QEC MDS codes has been constructed, possessing 
a length of (2t + 2) q2−1

h
= (2t + 2) q+1

h
(q − 1), where h represents an even divisor of q + 1. It is manifest 

that the length of these codes also differs from that of our Theorem 12, since 2µ + 1 is an odd integer. This 
disparity in code lengths serves to distinguish our proposed codes from those in the aforementioned references, 
highlighting their unique characteristics and potential advantages in the realm of quantum error correction.

In the studies presented in Theorem 4.2 of28 and Corollary 5.5 of32, under the assumption that 2a divides 
(q + 1), Zhang et al. and Fang et al. successfully derived a class of QEC MDS codes, which are characterized by 
the parameters [[b q+1

2a
(q − 1), b q+1

2a
(q − 1) − 2k, k + 1]]q . Here, the parameters are further constrained such 

that 1 ≤ b ≤ 2a and 1 ≤ k ≤ q+1
2 + q+1

2a
− 2. By setting b = 2µ + 1 and 2a = γ, it becomes evident that the 

aforementioned QEC MDS codes share the same length, namely (2µ+1)(q+1)
γ

(q − 1), as the codes under our 

investigation. Additionally, it is determined that their d ≤ q+1
2 + q+1

γ
− 1. It is noteworthy that when µ > 0, 

the inequality q+1
2 + q+1

γ
− 1 ≤ q+1

2 + (µ + 1) q+1
γ

− 1 holds. Therefore, our codes have much larger d. This 
clearly implies that our codes possess a significantly larger minimum distance.

In Theorem 6.3 of32, under the conditions where 2h divides (q + 1) and 1 ≤ k ≤ q+1
2 + τ(q+1)

2h
− 2 

with 1 ≤ τ ≤ h − 1, a certain class of QEC MDS codes, denoted by the parameters 
[[(2τ + 1) q2−1

2h
, (2τ + 1) q2−1

2h
− 2k, k + 1]]q , has been constructed. By setting τ = µ and 2h = γ, it becomes 

evident that these codes possess a length of (2τ + 1) q2−1
2h

= (2µ + 1) q2−1
γ , which coincides with the length 

of our codes as presented in Theorem 12. Nevertheless, through deduction, it can be ascertained that when 
τ = µ and 2h = γ, the inequality q+1

2 + τ(q+1)
2h

− 2 < q+1
2 + (µ + 1) q+1

γ
− 2 holds. This inequality clearly 

indicates that our codes are endowed with a substantially larger minimum distance.
In Theorem 5 of37, a particular class of QEC MDS codes, characterized by the parameters 

[[ν(q − 1), ν(q − 1) − 2k, k + 1]]q  is derived. Here, the parameters are constrained such that 1 ≤ ν ≤ q and 
1 ≤ k ≤ ⌊ νq−1

q+1 ⌋. By setting ν = (2µ+1)(q+1)
γ , it is observed that the codes in question possess the same length as 

the ones under our consideration. However, their d ≤ ⌊ 2µ+1
γ

q − 1
q+1 ⌋ + 1. Given the condition 0 ≤ µ ≤ γ−2

4 , 
it can be deduced that ⌊ 2µ+1

γ
q − 1

q+1 ⌋ + 1 ≤ q+1
2 + q+1

γ . This relationship conclusively demonstrates that the 
codes we have developed exhibit a significantly larger minimum distance.

In the following, Table 4 presents the specific parameter comparisons with previous literature (such as28,32,37), 
more intuitively demonstrating the claimed advantage of “greater minimum distance”.

Conclusion
In the present paper, two novel classes of QEC MDS codes are constructed leveraging GRS codes and the 
Hermitian construction methodology. For one of the newly devised code classes, the minimum distance d is 

q γ µ QEC code k

10 | (q + 1) 10 1 [[ 3(q2−1)
10 ,

3(q2−1)
10 − 2k, k + 1]]q 1 ≤ k ≤ 7(q+1)

10 − 2

14 | (q + 1) 14 2 [[ 5(q2−1)
14 ,

5(q2−1)
14 − 2k, k + 1]]q 1 ≤ k ≤ 5(q+1)

7 − 2

18 | (q + 1) 18 3 [[ 7(q2−1)
18 ,

7(q2−1)
18 − 2k, k + 1]]q 1 ≤ k ≤ 13(q+1)

18 − 2

22 | (q + 1) 22 4 [[ 9(q2−1)
22 ,

9(q2−1)
22 − 2k, k + 1]]q 1 ≤ k ≤ 8(q+1)

11 − 2

26 | (q + 1) 26 5 [[ 11(q2−1)
26 ,

11(q2−1)
26 − 2k, k + 1]]q 1 ≤ k ≤ 19(q+1)

26 − 2

Table 3.  New QEC MDS codes derived from construction II.
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capable of exceeding q+1
2 ( See Table 1), whereas for the other class, d invariably surpasses this value (See Table 3). 

These codes possess the characteristic of having d ≥ q+1
2  and asymptotically approach q. Such attributes are of 

particular significance as they augment the error correction proficiency of the codes. Moreover, a salient feature 
of our research endeavor is that the constructed QEC MDS codes possess parameters hitherto unreported in the 
extant literature (See Table 5). It has been further ascertained that the majority of the constructed codes display 
a substantially larger d in contrast to the known QEC MDS codes of equivalent length, thereby signifying their 
potential for enhanced error correction performance. Remarks 1 and 2 not only emphasize that the minimum 

q γ µ n d in Construction II d in28 d in32 d in35

11 6 1 60 2 ≤ d ≤ 9 2 ≤ d ≤ 7 2 ≤ d ≤ 7 2 ≤ d ≤ 6
17 6 1 144 2 ≤ d ≤ 14 2 ≤ d ≤ 11 2 ≤ d ≤ 11 2 ≤ d ≤ 9
19 10 1 108 2 ≤ d ≤ 13 2 ≤ d ≤ 11 2 ≤ d ≤ 11 2 ≤ d ≤ 6
19 10 2 180 2 ≤ d ≤ 15 2 ≤ d ≤ 11 2 ≤ d ≤ 13 2 ≤ d ≤ 10
23 6 1 264 2 ≤ d ≤ 19 2 ≤ d ≤ 15 2 ≤ d ≤ 15 2 ≤ d ≤ 12
27 14 1 156 2 ≤ d ≤ 17 2 ≤ d ≤ 15 2 ≤ d ≤ 15 2 ≤ d ≤ 6
27 14 2 260 2 ≤ d ≤ 19 2 ≤ d ≤ 15 2 ≤ d ≤ 17 2 ≤ d ≤ 10
27 14 3 364 2 ≤ d ≤ 21 2 ≤ d ≤ 15 2 ≤ d ≤ 19 2 ≤ d ≤ 14
41 14 1 360 2 ≤ d ≤ 26 2 ≤ d ≤ 23 2 ≤ d ≤ 23 2 ≤ d ≤ 9
41 14 2 600 2 ≤ d ≤ 29 2 ≤ d ≤ 23 2 ≤ d ≤ 26 2 ≤ d ≤ 15
41 14 3 840 2 ≤ d ≤ 32 2 ≤ d ≤ 23 2 ≤ d ≤ 29 2 ≤ d ≤ 21

Table 4.  QEC MDS codes with parameters [[n, n − 2d + 2, d]]q .

 

Code length Constraints Minimum distances References

q2−1
2

q odd 2 ≤ d ≤ q 22

λ(q + 1) λ odd, λ | (q − 1) 2 ≤ d ≤ q+1
2 + λ 22

2λ(q + 1) q ≡ 1(mod 4), λ odd, λ | (q − 1) 2 ≤ d ≤ q+1
2 + 2λ 22

λ(q − 1) λ = q+1
r  with even r 2 ≤ d ≤ q+1

2 + λ − 1 22,24

λ(q − 1) λ = q+1
r  with odd r 2 ≤ d ≤ q+1

2 + λ
2 − 1 24

q2−1
h

q odd, h | (q + 1), h ∈ 3, 5, 7 2 ≤ d ≤ (q+1)(h+1)
2h − 1 23

2t(q − 1) 8 | (q + 1), t | (q + 1) 2 ≤ d ≤ 6t + 1 23

3(q − 1) 32 | (q + 1) with odd q 2 ≤ d ≤ q+5
2

23

(2t + 1) q2−1
2s+1 (2s + 1) | (q + 1), 1 ≤ t ≤ s 2 ≤ d ≤ (s + t + 1) q−1

2s+1 − 1 27

2t q2−1
2s+1 (2s + 1) | (q + 1), 1 ≤ t ≤ s − 1 2 ≤ d ≤ (s + t + 1) q−1

2s+1 − 1 27,29

2t q2−1
2s

2s | (q + 1), 1 ≤ t ≤ s 2 ≤ d ≤ (s + t) q−1
2s − 1 28,29

r q2−1
2s

2s | (q + 1), 1 ≤ r ≤ 2s 2 ≤ d ≤ (s + 1) q−1
2s

28

r q2−1
s

s | (q − 1), 1 ≤ r ≤ s 2 ≤ d ≤ r q−1
s

29,32

(2t + 1) q2−1
2s

2s | (q − 1), 1 ≤ t ≤ 2s 2 ≤ d ≤ (s + t) q−1
2s − 1 32

q2−1
4 + q2−1

h

2(q−1)
h = 2τ + 1 2 ≤ d ≤ q−1

2 + τ 33

q2−1
4 + 2(q2−1)

h

2(q−1)
h = 2τ + 1, (h ̸= 4) 2 ≤ d ≤ q−1

2 + 2τ + 1 33

m(q − 1) 1 ≤ m ≤ q 2 ≤ d ≤ ⌊ mq−1
q+1 ⌋ + 1 37

2(r1+1)r2(q2−1)
h

q ≡ 3 (mod 4), h = h1h2 ≥ 9, h1 | q−1
2 , h2 | (q + 1), 

r1 ≤ h1 − 1, odd h2 > 2r2
2 ≤ d ≤ max{ (r1−1)(q−1)

2h1
,

2(r2−1)(q+1)
h2

} + 2 35

(5t+q−1)(q+1)
9 3 | (q + 1),t | (q + 1),3 | (t − 1) 2 ≤ d ≤ q+2t−1

3 + 1 36

(7t+q−1)(q+1)
9 3 | (q + 1),t | (q + 1),3 | (t + 1) 2 ≤ d ≤ q+1

3 + t 36

s(q + 1) 1 ≤ s ≤ q − 1 2 ≤ d ≤ s 37

(µ + 1) q2−1
γ

q ≡ −1 (mod 4), γ | 2(q − 1) and γ ∤ (q − 1), 
0 ≤ µ ≤ γ

4 − 1 2 ≤ d ≤ ( γ+4
8 + µ) 2(q−1)

γ + 1 Theorem 8

(2µ + 1) q2−1
γ

γ ≡ 2(mod 4), γ | (q + 1), 0 ≤ µ ≤ γ−2
4 2 ≤ d ≤ q+1

2 + (µ + 1) q+1
γ − 1 Theorem 

12

Table 5.  Some known QEC MDS codes with minimum distance d > q+1
2 .
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distance of our codes exceeds q+1
2 , but also provide theoretical analysis by comparing with the previous 

references17,28,32,37 to quantify the claimed advantage of “larger minimum distance”. Moreover, Tables 2 and 4 
presented the specific parameter comparisons with prior literature. In Table 5, we summarized the parameters of 
some known QEC MDS codes with minimum distance d > q+1

2 .
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