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Some new QEC MDS codes with
large minimum distance

Langiang Li*, Fuyin Tian*?, Ziwen Cao* & Li Liu?

The advancement of Quantum Error-Correcting (QEC) Maximum Distance Separable (MDS) codes holds
substantial importance in practical applications, substantially augmenting the reliability and efficiency
of quantum communication and computing. This paper introduces two new classes of QEC MDS codes,
which are devised through the utilization of generalized Reed-Solomon (GRS) codes and the Hermitian
construction approach. The novelty of our QEC MDS codes lies in their parameters being distinct from
all previously reported codes. Moreover, most of our codes possess a considerably greater minimum
distance in comparison to existing codes of the same length.
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Quantum Error-Correcting (QEC) codes play a pivotal role in the fields of quantum information processing and
quantum computation'?. The construction of QEC codes with better parameters has always been an important
research topic. Calderbank et al. were the trailblazers in constructing certain QEC codes by capitalizing on
classical linear codes. In their work?, they forged a crucial connection between classical linear codes and QEC
codes. Leveraging Calderbank’s method, researchers have developed a plethora of binary QEC codes*® with
the aid of classical linear codes. Subsequently, the research on non-binary QEC codes has also captured the
significant attention of the scientific community. References® !? serve as evidence of this burgeoning interest.

For any [[n, k, d]]q QEC code, its parameters have to meet the following quantum Singleton bound. When
the equality & = n — 2d + 2 holds, the code is categorized as a Quantum Error-Correcting Maximum Distance
Separable (QEC MDS) code.

Lemma 1 (%7 Quantum Singleton Bound) Each [[n, k, d]|q quantum code must satisfy

k<n-—2d+2.

Just like the classic error-correcting code, QEC MDS codes possess the optimal error-detecting and error-
correcting capabilities in the context of quantum communication and computation. Constructing QEC MDS
codes with a larger minimum distance d has long been a significant challenge in the field. It is well-established
that the construction problem of QEC MDS codes with a length n less than or equal to ¢ + 1 has been
comprehensively resolved in'!~13. Nevertheless, when n exceeds g + 1 and d is greater than ﬂl , the task of
constructing QEC MDS codes remains formidable.

In recent years, notable progress has been made in the constructlon of QEC MDS codes for the range

g+ 1 < n < ¢?+ 2. For instance, when 7 takes on values such as ¢> £ 1, ¢°, 2 il and the minimum distance

d> %1, several QEC MDS codes have been successfully derived, as presented in'>14-18, Moreover, researchers
have constructed QEC MDS codes with various flexible lengths through different methods. For example, graph
theory has been employed in®, cyclic codes in'*%, pseudo-cyclic codes in?!, constacyclic codes in!>?>-24, and
(extended) generalized Reed-Solomon (GRS) codes in?>~*. In the work of Li et al.?® introduced an efficient
approach for constructing QEC GRS codes. This method was further generalized by Jin et al. in the following
years?®. The papers!*'©?” demonstrated the construction of numerous new QEC MDS codes from GRS codes.
These results strongly indicate that (extended) GRS codes are a rich and valuable resource for generating QEC
MDS codes with d > ‘H'l . In?%, Zhang and Ge also successfully constructed some QEC MDS codes using GRS
codes. Subsequently, a substant1al number of QEC MDS codes with d > < 2+1 were constructed based on GRS
codes, as reported in?*-3. More recently, in Guo et al.*” developed some QEC MDS codes with a larger d and
fewer restrlctlons on the choice of n. Additionally, in Jin et al.*® obtained a plethora of new QEC MDS codes with
d> q by concatenating two existing QEC MDS codes. This concatenation approach represents an efficient

1School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei 230036, Anhui, China. 2School
of Mathematics, HeFei University of Technology, Hefei 230009, Anhui, China. *Jemail: tianfuyin0825@163.com

Scientific Reports|  (2025) 15:21401 | https://doi.org/10.1038/s41598-025-06092-9 nature portfolio


http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-06092-9&domain=pdf&date_stamp=2025-6-17

www.nature.com/scientificreports/

method for constructing new QEC codes. Building on this, Fang et al.>° also managed to obtain a significant
number of new QEC MDS codes.

Prior to 2014, the majority of QEC MDS codes were constructed with a minimum distance d < 2 Only
in a few cases were codes with d > (;%1 developed, and these were often for rather limited and specific lengths.
However, nowadays, there has been a notable surge in the development of QEC MDS codes with a d > (;%1
and values approaching q. Inspired by this, in this work, we present two new classes of QEC MDS codes based
on Hermitian self-orthogonal GRS codes, contributing to this growing body of research. Our main results are:
(1) Forg= -1 (mod4),v|2(q—1)and~y{ (g — 1), we construct

(p+ 1)#7 (1 + 1)«;7;1 — 2k, k + 1]]4 codes, where 0 < 1 < I — 1 and

1<k< (3 +u)@(Theorem 8).

(2) Foreven~y | (¢—1)and~y = 2(mod 4), we derive [[(2u + 1) q2;1 ,(2u + 1)‘1:—71 — 2k, k+1]]q

codes, where 0 < p < 'YT*? and1 <k < %1 + (p+ 1)%l — 2('Theorem 12).

The rest of the paper is organized as follows. Section “Preliminaries” introduces the definitions of GRS codes,
QEC codes, and related research achievements. Section “Constructions of new QEC MDS codes” constructs the
two new classes of QEC MDS codes. Finally, Section “Conclusion” summarizes the entire paper.

Preliminaries
For an arbitrary linear code C, its Hermitian dual code C' LH is defined in the manner:

CH ={x e F}: (x,y)n =0, y € C},

where (T, Y)u = Z?:l :Bzyf Moreover, when the code Cis a subset of O+, the code C is termed a Hermitian
self-orthogonal code. Hermitian self-orthogonality is crucial in coding theory, particularly for constructing
QEC codes, as it ensures effective quantum error correction.

Let F2[x]x represent the set of all polynomials in F;2 [x] whose degree does not exceed k — 1. For each i
such that 1 <4 < n, consider elements c;, v; € F,2. Under the condition that oi; # «a; for i # j and v; # 0
for all i, we define two vectors @ = (a1, @, ..., @) and v = (v1, Vg, ..., Uy ). Based on these vectors a and v,
we can define a GRS code over F;2 as shown below:

GRSk(a,v) = {(vif(oa),v2f(02),...,unf(an)) : f(x) € Fplz]t}.

The code GRSk (a, v) isan [n, k,n — k + 1] linear MDS code over F;2. Its generator matrix G can be explicitly
written as:

v1a(1) vgag Unag
vla% vgaé UnOé},,
G =
Ulo/ffl vzagfl Unaffl

It is a well-established fact that the Hermitian dual of GRSy (a, v) is also a GRS code, and it has parameters
[n,n — k,k + 1]. The subsequent lemma provides an efficient approach for constructing Hermitian self-
orthogonal GRS codes. This method will be frequently employed in the subsequent sections of this paper.

Lemma2 (*®) Let a and v represent the vectors as previously described. Then, we know that the code GRSy (a, v)
is Hermitian self-orthogonal if and only if (iff) the Euclidean inner product of a”* 2 and v97" is equal to 0 for
all0 < iy, iz < k — 1.

Furthermore, when a; # 0 for all i, we can represent the linear code generated by the following matrix as C,, .

k k
viag! Vay" Ul
vla’f”l vga’;lH vnaﬁl'*'l
Gy (@, v) =
ki+k—1 ki+k—1 —
U1a11+ U2a21+ Un()éle+k 1
Denote v’ = {viaj*,vaas®, ..., vnas' }. Obviously, Ck, i, is equivalent to the code GRSy (a, v’). Based on

Lemma 2, the following lemma can be readily deduced.

Lemma 3 Hold the symbol as shown above. The code Cy, 1, is Hermitian self-orthogonal iff the Euclidean inner
product of a2 and v is equal to 0 for all k1 < i1,42 < k1 +k — 1.

Now, let us embark on an in-depth exploration of the definition of QEC codes and some associated results.
Initially, consider the Hilbert space 4", which can be expressed as the tensor product C? ® C? ® - - - ® C? with
a dimension of ¢". Any subspace H within this Hilbert space C? can be designated as a QEC code. Specifically,

Scientific Reports |

(2025) 15:21401 | https://doi.org/10.1038/s41598-025-06092-9 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

if H is a ¢"-dimensional subspace, it can be represented as an [[n, k, d]], QEC code. Here, the parameter d
represents the code’s error-detection and error-correction capabilities and is known as the minimum distance.
More precisely, a QEC code has the ability to detect any error pattern with a weight less than d — 1 and can
correct up to L%J errors. It is evident that the construction of QEC codes with a substantial d value is a pivotal
aspect of quantum coding theory.

Next, we introduce a well-known construction method for QEC codes, namely the Hermitian construction.

Lemma4 (") IfCisan [n,k,d] 2 classical linear code and C +H s contained in C, then there necessarily exists an
[[n, 2k — n, > d]]q QEC code.

Based on this construction method, when Cis an MDS code and C' C C#, it is straightforward to deduce the
following conclusion, which demonstrates the connection between QEC MDS codes and classical MDS codes.

Lemma 5 If Cis an [n, k,d] 2 cassical linear MDS code and is contained in C*", then there must exist an
[[n,n — 2k, k + 1]]q QEC MDS code.

Constructions of new QEC MDS codes
We consistently assume that g represents an odd prime power and that -y is a positive integer serving as a divisor

of ¢> — 1. We define m such that m = <=2

- Let the multiplicative group F> be generated by the element w,

thatis, Fiz = (w). Subsequently, we set 0 = w*®. Asaresult, the subgroup () is contained within F; and has an
order of m. Moreover, it can be readily verified that the cosets w{0),w?(0), . .., w? () constitute all the distinct
cosets of the subgroup (0) within the group F ..

Construction |

We posit the condition that ¢ = —1 (mod 4) and take into account an integer -y with the property that
divides 2(q — 1) yet does not divide (¢ — 1). It is evident that since ¢ = —1 (mod 4), we have 4 { (¢ — 1).
These circumstances entail that 4 is a divisor of v and that % is an odd integer. Moreover, we are able to infer
that 8 | (v — 4). In the subsequent discussion, we will expound upon the procedure for constructing QEC MDS

-1
5

codes with a length of n = p , where 11 is constrained such that 1 <y < 7. To accomplish this, we will

utilize the following lemmas.

Lemma 6 Assume g = —1 (mod 4), and ~y divides 2(q — 1) but not (g — 1). For integers 0 < i1,i2 < g — 1,
2
the relation £ ;1 | (gi1 + i2 + L) holds iff

2D gy 20 e ) o
t 2(g—1) + 3g—1 t 2(g—1) —1 1<t < =4
1=t T ) <t < &5,
(i1,42) =
D 1200 o o
£ 2 — L 2L <t <}

Proof Observe that0<qi1+i2+%1§q2—l+% and'yqzw—71<q2—l—|—%1 <(7+1)#.The

relation qg;l | (g1 + i2 + L) implies that giy + 42 + 42 = tqi;l, where 1 < ¢ < . In the following, we

analyze two cases based on the parity of #:

Case 1: tis even.
2
Let t = 2t; with 1 < ¢; < Z. Then, gi1 + 42 = 2t1qw—71 — %1. Expanding ¢ —1=(q— 1)(g+ 1), we
substitute v | 2(¢ — 1):

. . 2(g—1 2(g—1 +1
gir s =t 20D, 2a-D g+l
¥ 4
Recombining the terms of g:
e« For1<t; < %,—q<t1@—% < 0, s0
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s (tlﬂqn_1>q+ <q+t12<ql>_q+1>
Y v 4
<t12(q1) _1>q+ <t12(q1) +3q—1>.
¥ ¥ 4

1 2(q—1 3g—1 B B .
Note that 0 < t1 (q L 1,4 <q7 L+ 4 <q.Thisgives(i1,i2):(h@fl,tl@Jrﬂ).

4

0<t 2(q 1)t (q 1) q+1 < q, 50

. . 2(g—1 2(g—1 1
girtin = [ 22D ) [ 2e=D gt
ol vy 4

(5578 0 B - o),

. For”'*'4 <t; < 2,

This gives (i1,42) =
Case 2: t is odd.
Lett = 2t; + 1 with0 < ¢ < T — 1. Then:

L 21 1
gis + iz = (2t + 1) 2 _LI
Expanding gives:
2.1 ¢$# -1 1
qi1+i2=2t2q +q _at
Y Y 4
2(q—1 21 1
—p 20Dy o atd
Y v 4
2(q — 20¢—1)  2(q—1)g+1 1
_ 2 )qut2 (@-1  2¢-Dgt+l g+l
v 0 2 4

@ is odd. Then, we have

Sincey | 2(¢ — 1) but~y { (¢ — 1), we known that

2(g—1)qg+1 1(2(q—1) 1{2(q—1)
o)

Furthermore, we get

2(g—1 20¢—1) 1{2(¢g-1 1{2(qg-1 1
gir +is = t (q )q+t2 (g )+7 -1 g+ L (g )+q g+
¥ ¥ 2 2 4

v

_ <t22(q1)+1<2(q1)_1>>q+<t22(‘11)+1<2(‘11)+q> _‘1+1>,
Y 2 ¥ ¥ 2 ¥ 4

Recombining the terms of g:

« For0 <t <2050 41,0 <20 4 1(2 4 g) — 2 < g0

qi1 + iz = (tQQ(q_l) +1<2(q_1) —1>>q+ <t22(q—1)+1<2(q—1) >+q+1>.
v 2 Y Y 2 v

.o 2(q—1 2(q—1 2(qg—1 2(qg—1 1
This gives (i1,42) = (t (q : + %(% - 1>’t (q ) +3 ( @l ) + %). Now, we let
to = t - M with V+4 < t < Substituting to into the expression of (41,42) and simplifying through

’2(qg—1 ’2(q—1
(t (q’y )—%,t (qw ))

algebraic operations, we obtain (21, ig) =

. FOI‘%‘FQSIE_i*l q<t22<q 1)+%(@+q)7‘14i<2q,50
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gir + iz = <t22(q_1) +1<2(q_1) —1) +1>q+ (hz(q—n +1<2(q_1) _1) +q+1—q)
v Y y 2 ¥ 4
_ (tzz(q1)+1<2(q1) +1>>q+ <t22(q1) +1(2(111) 1) _3q_1>.
v Y 0% 2 ~y 4

. 2(q—1 2(q—1 2(q—1 - _
This gives (Zlal2):(t2¥+%(¥+l)’t2¥+ ( v ) d(141). Now, we let

to =202 11 4 ¢ with1 <t < 252, Similarly, we have (i1, i2) = ( (qw D2t 4720l g

Thus, we have obtained the desired results for the pairs (41, 92). O

[\

Lemma 7 Keep the definitions of q and ~y consistent wzth Lemma 6. Suppose ju is an integer satisfying
1<p<T —1and0 <iy,ia < (”+4 + u) <q b _q, If a?=1 divides (qi1 + i2 + ‘”1) then the following

system of equatzons

utl

> Bt =0, (1)
t=1

admits a solution (u1,uz2, ..., uut1) € (Fy )T where B, = w™ forall1 <t < p+ 1.

Proof Giventhat 1 < p < T — 1, we can establish that (1% + 1) 2(‘1;1) 1 < 24=L For all pairs of integers

i1 and g such that 0 < 41,142 < (A’—*'4 + ) M — 1, we canleverage Lemma 6. This lemma enables us to show

(q 2(q—1) Lo 2(q 1) q+1)
1

—1

that ©- | (gi1 + 42 + “*) ifand onlyif (i1, 22) takes one of the following forms: (2

or (tzy — q%[l,tgy), where ”’TH <t < L‘H + p — 1. In other words, we can express gi1 + i2 as

2 2 2
either thw _atl Gpop, et gt ol m To 51mp11fy the notation, we let to = “/+4 + 4, where

4 ~y 4
(2 + 1) O ot o (25 4 1)7@ 1) _ gl

0 < j < p— 1. Then, gi1 + i2 can be rewritten a
for 0 < j < p — 1. We now define two matrices. Let

-1 g+1 -1 g+l 21 g4l
4 4 4
ﬂl K ﬂQ " ﬁuﬁl
®-1,4°-1_g41 @-1,4°-1 g1 1, 4>°-1_ qt1
/8 4 ¥ 4 B 4 ~ 4 . ﬂ 4 ¥ 4
1 2 u+1
A = N . . . ,
2
(2 1)“ oot (2 1>“ Soloai @u—1) =t ‘1——711
B o fwl
+1 —1 +1 +1
B T - T_[IT BT+(2“_1)QT_QT .. B ==
1 2 1
and
-1 -1 a?-1
v Y Y
51 62 B,H-l
341 3a’=1 3L 1
vy vy Y
A = By By Bt
S
(2u— 1><" Do eu- 1><‘* D @eu-n{e=D
B, 8 B
Evidently, the system of equations (1) can be written in matrix form as
1
T2
A =0
Tu+1
2 —1) +1 (a2 71) _g+1
£t Lol @ gl ) @D
Recall that for any 3; = w*’, we have 3, * =1 and ,Bt =5, *

Leveraging these equalities, we can further simplify the above system to
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@

ﬁ_a;rlxl h

4 x y2
A | P =4 . =0, @)

_atl Yu+1
Bu+14 Tp+1

= — 202D (g1) s
wherey; = 8, * a;foralll <t < p+ 1.Since B; = w, we can show that ﬂt =w € F,

forall 1 <¢ < p+ 1. This property implies that every entry of A’ belongs to F, ;, which means Ala=A'
Moreover, it is clear that any 1z columns of A" are linearly independent. Notice that A isan zz X (u + 1) matrix.
According to [31, Lemma 2. 3l,1 the system of equations (2) has a Eon zero solution (y1,¥2,.-.,Yu+1)

in (F7)"*. Let ws =B, * for all 1<t<pu+1 Since B, * =w'? € Fr, it follows that

(u1,uz, ..., uut1) € (Fy)**! is a non-zero solution of (1). O

Let  be an integer satisfying 0 < yz < I — 1. Define 3; = w™" for each ¢ in the range 1 < ¢ <y + 1. Recall
2

that the value of m is defined as m = 2 Jl

. At this point, consider the vectors a and v defined as follows:

a = (/817/8107 cee 7516””’71’ cee 75#4’175#4’107 o 7/3”“‘»197”*1) € F;Z(”+l>7

3 I(m—1 el A L
ot Y v venwd v M) € (FR) Y,

v = (v, V1w
where v1, vz, ..., V.41 are elements of F5. By leveraging the code GRSk (a, v), we are in a position to derive
the following theorem

Theorem 8 We assume that ¢ = —1 (mod 4)and take into account an integer -y with the property that y divides
2(q — 1) yet does not divide (q — 1). Let p be a fixed mteger such that 0 < p < F — 1. For every k in the range

1<k < (3 +p) 2(q'y Doal[(n+ 14 = S(p+ 1= | — 2k, k+1]]q QECMDS code can be constructed.

Proof To begin with, we calculate the following expression:

pt1

) atl)
<aq11+z2 q+1 E ﬁq7«1+22 q+1§ 9(q11+22+

It is important to note that the sum ) " Lplain+ia+

m—1
E e(qi1+i2+7qzl o
=0

aq21+127vq+1>

has the following behavior:
0, mt(gir+is+ L),
m, m|(qi1+i2+%).

Consequently, the value of ( E can be expressed as:

0, m i (gir +iz + T)

<aqi1+i2 , ,Uq+1>E

pt1 o
m2ﬁ311+12v3+1, m‘ (q711+712+%>

When =0, by referring to Lemma 6, we can conclude that m{ (gi1 +i2+ <t%) for any
0<i1,ia < (’Y+4 + ) 2(q D _1ie,

<aqi1+i2 vq+1>E —0.
When1 <0< § —1 wecantakevf ™' =w, forall1 <¢ < p+ 1, whereu; € F is obtained from Lemma
7. According to Lemma 7, we have Z“H aitizgatl — f+11 2”“2 =0, when m | (qix +i2 + ).

In summary, for all pairs of integers 71 and iz such that 0 < 41,42 < k — 1, the value of <a‘1i1+"2 , vq“)E is
equal to 0. According to Lemma 2, the code GRSk (a, v ) is a Hermitian self orthogonal code. Additionally, it

is straightforward to see that GRS (a, v) is a [(M + 1) = ok (p+ 1) S 1] MDS code. Finally, by
applying Lemma 5, we can construct a [[(u + 1) , (p +1) % — 2k, k + 1]]4 QEC MDS code. O

When v # 4, by substituting ;1 = 7 — 1 into Theorem 8, the following QEC MDS code can be readily derived.
This corollary further expands the scope of QEC MDS code construction, providing a specific case that can be
directly applied under the given conditions.
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Corollary 9 Maintain the same deﬁmtzons of q and ~y as in Theorem 8. For all values of k such that

1<k< q 3a=1) q,yl,a [ 4_1, £ 2k, k + 1]]q QEC MDS code can be constructed.

In Table 1, we display a collection of novel QEC MDS codes that have been derived from Theorem 8and Corollary
9. Notably, each of these codes is characterized by a parameter d that exceeds the value of 3= This particular
feature endows these codes with enhanced error-correction capabilities, setting them apart and making them of
significant interest within the domain of quantum error correction research and application.

Remark 1 W1th1n the framework of Theorem 8, by specifying the range of the parameter ;v such that
. 5&4 <u <2 -1, the QEC MDS codes we have constructed possess a minimum distance d that exceeds
9L Asthe value of y asymptotically approaches 2(¢ — 1) and p approaches , through verification, it can be

demonstrated that the expression (7+4 +p) 2(q b approaches . This outcome 1nd1cates that our codes

can attain a parameter d approaching 4 I wh11e the lengths of these codes only approac

teristics endow our codes with potentially enhanced error-correcting capabilities and favorable length—distance
trade-offs, which are of particular significance in the context of quantum error correction and quantum infor-
mation processing.

In the context of Th;orem 8 a [;aﬁtlclular class of (ﬁEC MDS codes has been devised, characterized by the
parameters ([(p+1)1 Here, the parameters are constrained such that

ogyg}—1and1gkg(”§4+u)2%”.

In the case where 1+ + 1 is odd, the length of our codes can be formulated as

n=(u+ 1)@M,

2

It is pertinent to note that

multiple of ‘%’1. This implies that the length 7 is not divisible by either ¢ + 1 or ¢ — 1. In comparison to the

previously known QEC MDS codes, our code exhibits a novel and distinct length characteristic, which sets it
apart in the realm of quantum error correction.
When g + 1 is an even integer, the length of our codes can be expressed as

_ (u+1)(q—1)(
B!

@ is an odd quantity. Consequently, the length 7 of our codes represents an odd

qg+1).

Generally, it can be observed that (“HL& does not act as a divisor of ¢ — 1. Subsequently, we posit the

condition A { (¢ — 1) and proceed to conduct a comparative analysis between our codes and the QEC MDS
codes with parameters [[A(¢ + 1), A(q + 1) — 2k, k + 1]], that have been documented in the existing literature.
This comparison aims to further elucidate the unique properties and potential advantages of our proposed codes
within the broader landscape of QEC codes.

In the studies presented in Theorem 3.5 of!” by Shi et al. and Theorem 6 of” by Guo et al., a specific
class of QEC MDS codes has been constructed. These codes are characterized by the parameters
[[Mg+ 1), (g + 1) — 2k, k + 1]]4, where the parameters are further constrained such that 1 <A < g —1
and1 <k < X — 1.Bysetting A = %, it can be observed that these QEC MDS codes possess the same

length as our codes, specifically %(q + 1). However, in terms of the minimum distances, the codes
constructed by Shi et al. and Guo et al. have d < A, which in this case is equivalent to wfﬁ It is worth

highlighting that the inequality % < (HE+p) @ + 1 holds. This clearly indicates that our codes

are endowed with a significantly larger minimum distance.
In the research detailed in Theorem 3.2 of*® by Zhang et all a part1cular class of QEC MDS codeshas been
derived. These codes are defined by the parameters ﬁb(r (@4 1),b% 2 (g + 1) — 2k, k + 1]]4, with the

q ~ | n | QECcode k

10](g-1) |20 |4 (L2, L2 _op k41, |1<k< T4
Mg 1) 285 | (€ Al ok k1) 1S kS MY
18] (q—1) |36 |7 |[[22=D 26221 _op gy, 1< k< 207D
22 (g—1) |44 |9 |[[Be2-D 52D o gy, |1< k< B
26| (¢ —1) |52 |11 ll%:%*W%kJrl]]q 1§k§9<“lg”
Table 1. New QEC MDS codes derived from construction I.
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conditions that 2a divides (¢ — 1),1 < b <2aand1 <k < oty q2;al. By settingb = 2(p + 1) and 2a = 3,

itis evident that the length of these QEC MDS codesis also w (g + 1). However, in terms of the minimum
distance, these codes have d < q%l —+ @ + 1. It is important to note that when Ws# <p< 3 -1, the
inequality % + @ +1<( WTH + u)@ + 1 holds. This conclusively demonstrates that our codes

possess a substantially larger minimum distance.

In the works of Theorem 4.12 of?° by Shi et al. and Corollary 3. 4 of*2 by Fang et ;?l a class of QEC MDS codes
codes has been constructed. These codes are parameterized as [=4— fla—1) q+1), q +1) — 2k, k+1]]q,
under the conditions that A divides (¢ — 1),1 < 6 < hand1 < k < 9(‘1 1) 1.Bysett1ngh = Zandf = MTH’

. - 2 —
it can be observed that their QEC MDS codes possess a length of 6 g h =p+1)4

the length of our codes described in Theorem 8. Nevertheless, in terms of the minimum distance, their codes
have d < g(q};l) = (“H)W(q*l). It is noteworthy that the inequality % < (X + u)@ holds.

This clearly indicates that our codes exhibit a significantly larger minimum distance.

The above discussion theoretically indicates that the minimum distance of most of our codes is larger
compared with the existing codes of the same length. Now, Table 2 provides specific parameter comparisons with
prior literature (e.g.,'”?3>%) in order to more intuitively quantify the claimed advantage of “larger minimum
distance”.

L which coincides with

Construction Il
We consider the scenario where v is an even divisor of ¢ + 1 and v = 2(mod 4). Next, we will detail the

procedure for constructing QEC MDS codes. These codes have a length of n = (2u + 1) q2_1, with the

parameter /. satisfying the constraint 0 < 1 < 272, To achieve this construction, the following lemmas are
indispensable.

Lemma 10 Assume -y is an even divisor of ¢ + 1 with v = 2(mod 4). For integers 0 < 41,1 < q — 1, the rela-
(gir + iz + 252 holds iff

llﬂ—l,%j—llq+l—1 or
il e N R i B 1<l <22,
(i1’i2):
4 — 2, 3k 24l 9 ) or
Mt et —g et ), I<l <82
Proof First, note that the inequality O < qi1 +i2 + ‘”1 < q —|— # holds, and we also
—1

have ’y# <@ -1+ <(v+ )= =1 The relatlon (gi1 +1i2 + <L) implies:

q |~v |p|n d in ConstructionI | d in!72%3237 din?®

11{20 |3 |24 |2<d<10 d=2 2<d<7
23 (44 |7 |96 |2<d<14 2<d<4 |2<d<13
2344 |9 |108 [2<d< 16 2<d<5 |2<d<13
3120 [3 192 [2<d<19 2<d<6 |2<d<19
43128 |5 |39 |2<d<28 2<d<9 2<d<25
51120 |3 |520 |2<d<31 2<d<10 [2<d<3l
63124 |17 |576 |2 <d < 34 2<d<9 |2<d<33
63124 |19 |640 |2 < d <36 2<d<10 |2<d<33
63 | 124 |25 (832 |2<d<42 2<d<13 [2<d<33
63124 |29 |960 |2 <d < 46 2<d<15 |2<d<33
67 |44 |7 |816 |2<d<40 2<d<12 |2<d<37
67 |44 |9 |1020 |2 < d < 46 2<d<15 |2<d<37

Table 2. QEC MDS codes with parameters [[n,n — 2d 4 2, d]],.
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qir +i2 + 1 =14 _1, where 1 <1 < . Since v = 2(mod 4), we know that 4|(y — 2). In the following,

we analyze two intervals for [:

Casel: 1 <1< 2 -1,
In this case, we can express gi1 + @2 as:

. . 1 1 1
(1214r12=lq+ qflq;: 7q—2k

N OTES S AN KSR ES SR
v 2 v

e« For 1 <1< 74;2, it is clear that 0<l%1 -1, %l—l%—l<q. Therefore, (i1,i2) =
(l@,1 M,lﬁfl)
bl 72 v :
« For 'YT_Q—Fl <i<Z—-Lweletl=72—10 with 1< < 2=2 Then, we can rewrite gi1 + iz as
i1 +iz = (G — 192 —1)g + (142 — 1). Therefore, (i1,42) = (442 — L — 1,1, 2L — 1) .Case

2:3 <1<

‘ -

+1 . . . .
qu — 1 <0, In this case, the expression for i1 + ¢2 becomes:

LR ) PR PR e L
Y 2 Y

B OVES S N VR VRS )
v 2 v

Given that , in this case, (i1,42) = (lqvi1 -2, w — l% —2) with 2 <1 <. More precisely, when .

Subsequently, when, let/ = 2 — I, where . Then, we obtain (i1,42) = (w — lg%l -2, lz% — 2) with

11
Note that —¢ < 45~ —

qi1 + 2

ol 3y—2
I<ly <2

<I< 374_2, it is clear that 0 < lq'f;—l -2, S(qH lq'*'1 2 < q. Therefore, (i1,i2) =

(1t — 2, 3t ot )

e For

[N]8]

« For 3”4—*2+1§l§7, let lZS%—ZQ with <l2_ 72. Then, we can rewrite qii1 +i2 =

(% — lngLl — 2)q + (lg%l — 2). Therefore, (21, i2) = (3@“ — s q+1 — 2,12 qj;l 2).
Through the above-detailed analysis, we have successfully proven this lemma. O

Lemma 11 Keep the definitions of q and -y consistent with Lemma 10. Suppose that 1 < p < X 4 , and con-

sider integers i1 and iz within the range 1= 2 q“ < g1,i0 < 3(‘12“) — (3“’4 2 _ ) q:1 3. If ‘1 1 divides

(qi1 + iz + LE1), then the following system of equations

2pu+1

> A =0 ®)
t=1

admits a solution (U1, u2, ..., Uzut1) € (F;)Q““, where By = w2tfor all <t <2u+1.

Proof Westart by observing the inequality 232 X% <4y, i» < Mot (=2 ) Z£L — 3. Relying on Lemma

10, the condition q2;1 | (gi1 +1i2 — L) is satisfied if and only if (11,12) takes the form

(et — 2, 3ED — ol — 9) o (M4ED —JpatL — 9 1, L — 9), where 22 — 1< 1 < 222,

2 2
In other words, we can express qii -+ 42 as either lz% —afl o AL D lz% L We also

2 2 2 ’
note that M — lz(q%l) — ”"%1 = (37“’ — lz)(qW;I) — ‘5’%1. By denoting | = 377 — [, we obtain

2 2
that % < ! < %j + pu— 1. Consequently, qi1 +i2 = lg@ — % or Z/Q - q;—l, where
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3v—2
4
3y—2
4
3y—2 (¢2-1) q41
ﬁi e ) A -
(31=2 (2=1) q+1
g e U e
A=| M
3v+2 (¢2-1)  g+1
6(%-‘!—#—1)%—%
1
and
2
5 374 2 +1>(q -1
1
5 3'y 2_pu4o)lat=l) (q
’
A=|"

—pt 1<l < P2 and TR < < B2 4y

2
3“{ 2 H+1)(q *1)7

By |

3'\(2

By !

—pt2) L

3 2
32 4

B

) (32

8, !

—1) 372

By !

n+2) “‘

q —1)

T2
1)(<1 ’v_l)_

2
ut1) (q -1

with

1. That is, qi1 +i2:l@f%1

—p+1<i< % + p — 1. For the sake of convenience, we define the following two matrices. Let

qurl (37 2 u+1>(<1 —1) q+1
62#4—1
q+1 (3"74 u«+2)(q -1 q+1
’82M+1
qurl (3w+2+# 1)(q -1 qurl
52u+1
) (31=2_ 41D
Bops 7
2p+1 5
(a*=1) 3v—2 (@*-1)
(B2 o) (2D

ﬂ2u+1

: .
(¥+H,1>Q

Ba

2_ 2_
3w+2+u IPFCEERS <3w+2+u =y

’82u+1

By

Evidently, the system of equations (3) can be represented in matrix form as

1
X2
A =0
T2u+1
This system can be further simplified to
'Bl,mxl b
’ 2 x ’ Y2
A ST B =0, (4)
_at1 Y2u+1
Boust T2p41
+
where y; = 8, 2 a¢foralll <t < 2u+ 1. Under the operation modulo ¢> — 1, we derive that
2 - 1 1 1
12" —l q“L It
3(g+1 +1 +1
( + (QQ ) 1,4 —2+ 15— )
1 1 1
(3 N —2>q+<12‘1+ —9 q*)
¥ 2
+1) 1 1 1
( 1 +Q+—2(+1)>—<lq+ 2t )
Y
3¢ 1 q+
5 t3~ (@+1)—1l2 (¢—1)
3W ¢ -1
20 1,2
2 v
3y ¢ -1
20y, )
2 v
, , 21 / 21
Recall that | = %X — I, we obtain l»< ;lq ! T =1 That is, ,Bt =4, 7 with 222 41

’
<l < 374—_2 and # <l < 374i +p—1. ThlS implies that A is row equivalent to A'd, e,

A'? = A, Moreover, it is evident that A" is an 2p X (2p0 + 1) matrix and any 24 columns are linearly
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independent. According to [31, Lemma 2.3], t}qlilsystem of equations (4) hasq & non-zero solution

(Y1, Y2, -+ s Yous1) in (Fy)*# T Lettingue = 3, 2 foralll <t <2u+ 1.Since 3, > € Fy(as B € Te),
we conclude that (u1,u2,. .., u2ut1) € F;)Q“+1 is a non-zero solution of (3). O
Let pu be an integer such that 1 < p < 2=, Define 8; = w?! for each tin the range 1 <t < 2y + 1. And recall

2
thatm = =1
5

. Consider the vectors:

a= (Blvﬂlgv s 7/810”1717 .. '762u+17/82y.+19, .. -,52y+19m71),

X Y (m—1 2 X(m—1
1):(’1)1,’1)1(/.)2,...,1)1&)2( ),...,U2#+1,’U2u+1w2,...,1)2#_5_1(,«)2( )),

where v1,v2, ..., V2,41 are elements of F, 2. By leveraging the code Ci i, (a, v), we can derive the following
theorem.

Theorem 12 Assume that -y is an even divisor of ¢ + 1 and v = 2(mod 4). Fix 41,0 < p < 74;2. For every inte-

ger k within therange 1 < k < £ + (u + 1)% —2a[[(2u+1) q27_1,(2u+ 1)‘1277_1 — 2k, k4 1]]q QEC

MDS code can be constructed.

—2 g+1
Proof Set ki =13 %. Next, we consider the GRS code Ck x,. When p = 0, we get

m—1
L L L g+l
<aql1+b27vq+1>E :Bizz1+121}g+1 E plair+is+i57)0

=0

We note that the sum Z;’;Bl glairtiz+ 551 hag the following property:

m—1 0, mt(qis+i2+ 222,
Z Q(Qi1+i2+%)l = { ’T (q ' ’ 2 )
—o m, m| (qi1+i2+%1)-

From Lemma 10, we know that for all 41 and iz in therange k1 < 41,42 < k1 + % + %1 — 2 — 1, therelation
mt (qi1 +i2 + %)holds.Whenl <k< q—;l + %1 — 2,foralli; andissuchthatky < dq,i2 < k1 +k — 1,

the value of (@91 T2 v9T1)  is equal to 0. From Lemma 3, this implies that Ci x, (a, v) C Ck k, (a, v)J‘H for
allkintherange1 < k < % + %1 —2.Whenl < pu< A’T_Q,weget

2p+1 m—1
i1+ 1 2: i1 i 1}: i1 +io+TEL )1
<aq21+12’,vq+ >E — ﬁ311+1zv;1+ 6(q11+u+ ) )
t=1 =0

Accordingto Lemma 11, forall; and 2 in the range 74;2 %1 <i1,12< w — (# — ) q:—l — 3,whichis

equivalenttoky < 1,42 < k1 +Z + (u+ 1)% — 2 — 1,thereexistatuple (u1, uz, . . ., uzut1) € (Fy)*+
suchthathZ;rl B T2y, = 0.Fort = 1,2,...,2u + 1,wechoosev; € Fr suchthatv?™" = w;. Then, when
1<k< 24+ (u+ 1)%1 — 2,foralliy andig withky < 4,42 < k1 4+ k — 1,thevalue of (@91 T2 49T 1) g
is equal to 0. Once again, by Lemma 3, we can conclude that Cy, 1, (@, v) C Cj 1, (@, v)># forall k in the range
1<k< 4 (u+1)2E -2

Recall that Cy i, (a,v) is an [n, k,n — k + 1] MDS code. Therefore, by applying Lemma 5, we obtain the
desired result. O
With g = 0, the following QEC MDS code can be readily derived from Theorem 12.

Corollary 13 Keep the definitions of q and v consistent with Theorem 12. For each value of k such that
2 2
1<k< %1 + %1 —2,a [[%, qw—*l — 2k, k + 1]]q QEC MDS codeis guaranteed to exist.

Moreover, when we consider the specific case of ¥ = 2 in Corollary 13, we can get the following QEC MDS code.
This code is also one of the main results presented in?2, although the methods employed in our work differ from
those in the cited reference.

2 2
Corollary 14 Let k be an interge satisfing 1 < k < q — 1. Then, a [[“5, £+ + 1 — 2k, k + 1]]; QEC MDS

code is certain to exist.

In Table 3, we showcase a selection of novel QEC MDS codes that have been derived frOI}l Theorem 12. Notably,
each of these codes is characterized by a parameter d that surpasses the value of ol thereby highlighting
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their potentially enhanced error-correcting capabilities and distinctiveness within the realm of quantum error
correction.

2 It J;lih m 12 constrjgfted a_class of QEC MDS codes, which are parameterized as
[[(QN + 1) ), (20 +1)=(q — 1) = 2k, k + 1]]q. Here, the parameters are constrained such that
0<pu< 2= andl <k< ‘ZH —|— (w+ 1)M — 2. Itis evident that all QEC MDS codes constructed in Theo-

rem 12 have d that exceeds 1+ L Next, we will compare our codes with the QEC MDS codes documented in the
literature. Subsequently, we will undertake a comparative analysis between our codes and those QEC MDS codes
that have been previously documented in the existing body of literature, with the aim of elucidating the unique
characteristics and potential advantages of our proposed codes.

In Theorem 3.8 of'7, under the condition that ¢ = 1 (mod 4), a particular class of QEC MDS codes has been
established. Thesecodesarecharacterizedbytheparameters[[2(26 + 1)(q — 1),2(26 + 1)(q — 1) — 2k, k + 1]]4
with the constraints 0 < § < £ 41 and 1 < k <46 + 1. Given that ¢ = 1 (mod 4), it can be inferred that
(2p+1)% 9+L js jnvariably odd. In contrast, it is evident that 2(25 + 1) is an even quantity. Consequently, the

length of the codes described in Theorem 3.8 of!” diverges from that of the codes presented in our Theorem
12. Furthermore, w1th1n Theorem 4.8 of?%, another class of QEC MDS codes has been constructed, possessing

a length of (2t + 2)4 71 = (2t + 2) 21 (q — 1), where h represents an even divisor of ¢ + 1. It is manifest

that the length of these codes also differs from that of our Theorem 12, since 2p1 + 1 is an odd integer. This
disparity in code lengths serves to distinguish our proposed codes from those in the aforementioned references,
highlighting their unique characteristics and potential advantages in the realm of quantum error correction.

In the studies presented in Theorem 4.2 of?® and Corollary 5.5 of*?, under the assumption that 2a divides
(¢ + 1), Zhang et al. and Fang et al. successfully derived a class of QEC MDS codes, which are characterized by
the parameters [[bLE (¢ — 1), bq;lr 1 (q ) 2k, k + 1]]4. Here, the parameters are further constrained such
that1 < b < 2a and 1<k< e — 2. By setting b = 2u + 1 and 2a = v, it becomes evident that the
aforementioned QEC MDS codes share the same length, namely w(q 1), as the codes under our

investigation. Additionally, it is determined that their d < %1 + “Wi — 1. Tt is noteworthy that when p > 0,
the inequality 71 + qwi 1< 4 (p+ N 4+l _ 1 holds. Therefore, our codes have much larger d. This
clearly implies that our codes possess a srgmﬁcantly larger minimum distance.

In Theorem 6.3 of*2, under the conditions where 2h divides (¢ + 1) and 1 <k < ‘5’%1 + % -2
with 1 <7<h—1, a certain class of QEC MDS codes, denoted by the parameters
[[(2T + 1)‘122—;17 @2r+1)%G q271 — 2k, k + 1]]4, has been constructed. By setting 7 = 12 and 2h = +, it becomes

evident that these codes possess a length of (27 4 1) %5 71 =(2u+1) ©°~1 \which coincides with the length

of our codes as presented in Theorem 12. Nevertheless, through deduction, it can be ascertained that when
7 = p and 2h = ~, the inequality 3+ 7(321) —2< Sy (u+ 1)L 4+l _ 2 holds. This inequality clearly
indicates that our codes are endowed with a substantially larger minimum drstance.

In Theorem 5 of”, a particular class of QEC MDS codes, characterized by the parameters
[[v(g —1),v(q — 1) — 2k, k + 1]]4 is derived. Here, the parameters are constrained such that 1 < v < g and
1<k< L vg_1 — |. By setting = w, itis observed that the codes in question possess the same length as

the ones under our consideration. However, their d < LMQ - qﬁj + 1. Given the condition 0 < p < =2

it can be deduced that LQ“ tlg— ﬁj +1< 4 ‘H'l . This relationship conclusively demonstrates that the

codes we have developed exhibit a significantly larger minimum distance.
In the following, Table 4 presents the specific parameter comparisons with previous literature (such as
more intuitively demonstrating the claimed advantage of “greater minimum distance”

28,32,37))

Conclusion
In the present paper, two novel classes of QEC MDS codes are constructed leveraging GRS codes and the
Hermitian construction methodology. For one of the newly devised code classes, the minimum distance d is

q ~ | n | QEC code k

10 (g+1) [10 |1 |[[BL=D 362 g g 4q]], |1<k< ZLED 9
Ll R L TR L et
18| (g+1) |18 |3 | (I T@21) _gp gy, 1<k < BUED o
22 (q+1) |22 |4 |[[AL=D Neo g piq]], 1< k< D o
26| (q+1) |26 |5 | (2D 12D o pyq)), |1< k< 2UEED o

Table 3. New QEC MDS codes derived from construction II.
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q |~ |wm|n |dinConstructionII | din® din® din*

116 |1 60 [2<d<9 2<d<7 |2<d<7 |2<d<6

1716 |1 [144 |[2<d< 14 2<d<11|2<d<11[2<d<9

1910 |1 [108 |[2<d <13 2<d<11|2<d<11(2<d<6

1910 |2 [180 [2<d< 15 2<d<11|2<d<13[2<d<10

236 |1 |264|2<d<19 2<d<15|2<d<15[2<d<12

27 |14 |1 |156 |2 < d <17 2<d<15|2<d<15(2<d<6

27 |14 |2 |260 [2<d <19 2<d<15|2<d<17[2<d<10

27 |14 |3 364 |2<d <21 2<d<15|2<d<19|2<d<14

4114 |1 [360 |2 < d <26 2<d<23|2<d<23(2<d<9

4114 |2 600 |2 < d <29 2<d<23|2<d<26[2<d<15

41 |14 |3 |840 |2 < d < 32 2<d<23|2<d<29|2<d<?21

Table 4. QEC MDS codes with parameters [[n,n — 2d + 2, d]],.
Code length Constraints Minimum distances References
LQ—l qodd 2<d<gq 2
AMg+1) Xodd, A | (¢ — 1) 2<d< e 4 2
2X(qg + 1) q¢ = 1(mod 4), Aodd, A | (¢ — 1) 2<d< 2t 4on 2
Ag—1) >\—"+1w1thevenr 2§d§%+k—l 22,24
Ag—1) :q+1wlthoddr 2Sd§“—§1+%71 24
a?-1 qodd,h | (¢g+1),h €3,5,7 QSdSW—l »
2t(q71) 8| (qg+1)t](g+1) 2<d<6t+1 =
3(g—1) 32| (¢ + 1) with odd g 2<d< el =

2
t+ 1) (2s+1) | (g+1),1<t<s 2<d< (s+t+1)h —1 27
zt’;sli (2s+1) | (¢g+1),1<t<s—1 2<d< (s+t+ )55 — 1 2729
2t<12:1 25| (q+1),1<t<s 2<d<(s+t)Lt 1 .29
2_
a1 25| (g+1),1 <r<2s 2<d< (s+1)%2 8
pa2=t sl(g—1,1<r<s 2<d<rit 2
@t+ 1St |25 (@-1),1<t<2s 2<d< (s+8) %5
el e i 2<d< ot g 5
=1 | 2021 | 20D gy (b £ 4) 2<d< 2 por 41 33
m(g—1) 1<m<gq 2<d< | B 41 7
—1
2(r1+1)ra(q®—1) | ¢ =3 (mod 4),h = hihy > 9,h1 | 5=, ha | (¢ + 1), (r1—1)(qg—1) 2(r9—1)(q+1) 35
S < hi — Lodd hy > 2rs 22 d < max{ g, = b+2
Gtta=bla+l) 3] (g+ 1)t | (g+1),3]| (t—1) 2<dg 2L 4 *
e D@t |3 (g4 1)t | (g+1)3] (t+1) 2<d< T 4t N
s(g+1) 1<s<q—1 2<d<s ¥
(#Jrl)qzw—l gi;z(?cf‘l)’7‘2(‘1*1)?“151“/)(@1*1) dig('v;r‘l +H)2(q;1)+1 Theorem 8
2 Th

(2;;—}-1)'7771 ~ =2(mod 4),7 | (g+1),0 < p < 272 QSdS%l+(u+l)%—l lzeorem

Table 5. Some known QEC MDS codes with minimum distance d > %1.

capable of exceeding 43

q+1

(See Table 1), whereas for the other class, d invariably surpasses this value (See Table 3).

These codes possess the characteristic of having d > ﬂ and asymptotically approach g. Such attributes are of
particular significance as they augment the error correctlon proficiency of the codes. Moreover, a salient feature
of our research endeavor is that the constructed QEC MDS codes possess parameters hitherto unreported in the
extant literature (See Table 5). It has been further ascertained that the majority of the constructed codes display
a substantially larger d in contrast to the known QEC MDS codes of equivalent length, thereby signifying their
potential for enhanced error correction performance. Remarks 1 and 2 not only emphasize that the minimum

Scientific Reports |

(2025) 15:21401

| https://doi.org/10.1038/s41598-025-06092-9

nature portfolio



http://www.nature.com/scientificreports

www.nature.com/scientificreports/

distance of our codes exceeds %, but also provide theoretical analysis by comparing with the previous

references!”?%3237 to quantify the claimed advantage of “larger minimum distance”. Moreover, Tables 2 and 4
presented the specific parameter comparisons with prior literature. In Table 5, we summarized the parameters of
some known QEC MDS codes with minimum distance d > %.
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