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ABSTRACT

We examine, using current algebras, the ultraviolet divergences occurring
in the calculation of electromagnetic radiative corrections to any lowest order
weak process at arbitrary momentum transfer. We consider all orders in per-
turbation theory in the fine structure constant @. The divergent parts of the radi-
ative corrections are expressed in terms of matrix elements of equal-time current
commutators by using the Bjorken expansion of time-ordered products of currents
at large momenta. We assume the validity of this expansion and of the use of "naive"
current commutation relations in discussing various current algebra models. We
impose the condition that the divergences contribute only to an unobservable, uni-
versal weak coupling constant renormalization. It is shown that, in models with
operator Schwinger terms in the current commutators, this condition cannot be
satisfied for non-zero momentum transfer. Also, it is not satisfied for a weak
interaction theory mediated by a vector boson. Two current algebra models are
exhibited which are satiéfactory if the weak Hamiltonian has a local current-current
form. For these models, the weak and electromagnetic currents of both the hadrons
and the leptons obey the same commutation relations, and the Schwinger terms are
c-numbers. One, a quark model of hadrons with integrally charged quarks together
with the conventional lepton currents, gives finite radiative corrections. The
second, the algebra of fields model for the total electromagnetic and weak currents,
including leptons, contains only a universal divergent factor. These two results
are shown to hold to all orders in @. In obtaining these results, divergent contri-
butions to electromagnetic mass shifts and to electromagnetic renormalization
effects in strong interaction processes are isolated and removed by adding a counter
term to the interaction Hamiltonian. These divergences may thus be treated as a

separate problem, which we do not discuss in detail,



I. INTRODUCTION

Our current experimental knowledge of leptonic and semileptonic weak
interactions is well described by the familiar universal current-current forml’ 2
of the phenomenological interaction Lagrangian. One of the most remarkable
features of this Lagrangian is that it predicts, for p~-decay and neutron B-decay,
the approximate equality of the respective vector coupling constants, which is
consistent with experimental observations. Specifically, by using the conserved
vector current hypothesis, 1 one may infer from the equality of the appropriate
bare coupling constants that the renormalized coupling constants are equal even
after the inclusion of strong interaction effects. The fact that the bare coupling
constants may be chosen to be equal leads us to believe that the effective
Lagrangian may have a more fundamental significance.

To test this "universality'' of the weak interactions we must also include
the electromagnetic radiative correctionzs. We expect these to be small corrections
at least of the order of a, where a = -Ze;- ~—1§7- is the fine structure constant.
However, for semileptonic proceSses a serious problem arises in their calculation
since divergent momentum integrals occur. It is these divergences we wish to
study, to all orders in perturbation theory in the fine structure constant.

The most straightforward resolution of this problem would be to construct
a theory in which all these divergences cancelled out so that the amplitude for any
weak process would be finite to all orders in a. A less stringent condition would
nevertheless be satisfactory since all that is required of a consistent theory is
that measurable quantities, such as ratios of coupling constants, masses, or
form factors, be finite. Hence, it is enough to impose the condition that any
divergences arising in the calculation of electromagnetic radiative corrections

to weak processes contribute only to an overall (possibly cut-off dependent)



constant factor times a finitc matrix element. Of course, this factor must be
universal, i.e., it must be the same for all weak processes so that ratios of

any measurable parameters will be finite, The divergent factor can then be
absorbed into the definition of the weak coupling constant, since its overall

scale is undetermined. Note that it is not sufficient merely to require that ratios
of the coupling constants defined at zero momentum transfer be finite. The
ratios of various form factors occurring for non-zero momentum transfe‘rs are
measurable and therefore must also be finite and calculable, .

We are interested here in the implications of current algebra3 for the
problem of divergences in radiative corrections to weak interactions. It is our
purpose in this paper to develop a technique for discussing these divergences
which does not depend upon the particular weak process considered and which is
valid for arbitrary momentum transfers., Furthermore, we wish to examine the
corrections to all orders in ez, not merely to second order, as in all previous
investigations,

Since this topic has received considerable attention in the past by various
authors, 4-12 let us first briefly review the previous work before detailing our
contribution to the subject. The status of the radiative corrections problem
before the advent of current algebra was summarized by Berman and Sirlin, 13
They observed that the radiative corrections to u~decay could be shown to be
finite to all orders in a by performing a Fierz transformation14 on the weak
Hamiltonian. However, for decays involving bare hadrons, the corrections
were in general logarithmically divergent. It was generally conjectured that
when strong interactions were taken into account, they would provide the con-

vergence factors necessary to make the semileptonic amplitudes finite, although

Berman and Sirlin provided some qualitative arguments to the contrary.



Bjorken4 pointed out that the assumption of Gell-Mann's current algebré
postulate3 implied that matrix elements of the exact hadronic currents behaved
at large momenta like those of point particles, thus nullifying the above conjecture,
Specifically, he showed that in the simple quark model with fractionally charged
quarks, the second order (in €) radiative corrections to the vector part of the
neutron f-decay amplitude at zero momentum transfer are logarithmically
divergent, treating the strong interactions exactly., Abers, Norton, Dicus, and
Qu.inn5 generalized Bjorken's result and emphasized that certain contributions to
the divergence depended only on the relatively model-independent commutators
of the time components of the electromagnetic and weak currents. However, the
divergent corrections as a whole were model-dependent, and several models for
the commutators of the space components of the hadronic currents were con-
structed6’ 7 so that the radiative corrections to neutron f-decay would be finite
in second order.

Using basically thé same techniques as Bjorken and Abers et al., Callan9
and Preparata and Weisberger10 generalized their work to include any semi-
leptonic process. These authors did not restrict the discussion to only zero
momentum transfer. Both papers considered only models constructed from re-
normalizable theories of strong interactions. They concluded that the models
mentioned above, involving hadronic currents constructed from integrally charged
quarks, gave finite second order radiative corrections to a general semileptonic
process. Preparata and Weisberger further noted that currents containing bilinear
products of spin zero fields yielded additional divergent corrections for non-zero
momentum transfer,

Sirl.in8 and Abers et al., 5 studied the second order radiative corrections

to the vector part of u~-decay and neutron 8- decay in a weak interaction theory



mediated by a veci:or boson. They showed that, at zero momentum transfer,
only a universal divergence occurred. That is, the divergent part was merely |
a constant factor times the uncorrected matrix element, and this factor was the
same for both u~decay and neutron f-decay. Furthermore, this result depended
only on model independent current commutators involving time components of
currents. For the weak boson theory, the order -e2 corrections to G A/G , the
ratio of the axial vector and vector coupling constants in neutron f-decay, were
shown by Sirl'in11 to be finite in the algebra of fields model, although this was not
true in general, He used a technique which is very similar to ours although thére
are some differe:ices in detail. In particulax:, our interpretation of electromagnetic
mass shift contributions is somewhat different from his.

The tool which we shall use to discuss divergent radiative corrections is
the expansion of time-ordered products of operators at large momenta in terms
of equal-time commutators. The relevance of this technique to current algebra

15 All of the above

was first pointed out by Bjorken4 and Johnson and Low.
mentioned papers at some point used this device. Many also employed Ward
identities to handle external line wave function renormalization and to exhibit
cancellations of certain divergent contributions, Since the end result is that the
divergences involve highly model-dependent current commutators, we shall make
this explicit by applying the Bjorken expansion in a straightforward manner. We
shall assume the expansion is justified for time-ordered products containing an
arbitrary number of currents.‘l) For point particles there is no problem, but
for the exact hadronic currents it is by no means obvious that this is a valid

assumption. Nevertheless, we shall take it as our starting point without further

ado, since it is certainly impossible to justify it rigorously.



A related assumption we shall make is that we may use the ""naive' current
commutation relations obtained from the canonical commutators and the equations
of motion for any particular model of the hadronic currents., Our point of view
here is that these models should not necessarily be taken seriously, but that
perhaps the current algebra should be. For, if we assume that Bjorken expansion
is valid, then the requirement that no divérgences occur in the calculation of
physically measurable quantities restricts the form that the current commutators

may take. Several recent investigations”_ 19

have shown that, when simple strong
interaction models are treated in perturbation theory, the naive commutators no
longer hold. We shall comment on this point in the conclusion.

In extending the results on second order radiative corrections to all orders
in e2, we shall see that our method allows us to isolate only those divergences due
to momentum loops containing virtual photons. Thus, we ignore any divergences
arising from momentum loop integrations in the hadron or lepton '"blobs' which
the photon lines enter. In fact, we must neglect any such divergences to be con-
sistent with our use of naive commutation relations, as we discuss in the conclusion.
The underlying physical assumption is that the basic hadronic and leptonic theory
of matter, whatever it is, must be sufficiently convergent at high momenta that
such divergences, if they occur at all, do not affect the current commutators.

Lest it be misunderstood, we should state that throughout this paper we
shall use the manipulations of "naive quantum field theory". Thus, we ignore
any singularities of local products of quantum field operators except those which
are explicit in the use of equations of motion and canonical commutation relations.
These ambiguities in local products of operators provide a possible escape
from the divergence difficulties, but we are interested in the more conventional

solutions to the problem.



In Section II we begin our discussion by considering second ofdér electro-
magnetic radiative corrections. We first illustrate the Bjorken expansion for the
time-ordered product of three operators which occurs there. We treat the hadron
and lepton currents on the same footing so that no special weak process is singled
out. An important part of the discussion of the divergent corrections to the weak
coupling constant is the removal of divergent contributions to electromagnetic
mass shifts and to radiative corrections to strong interaction parameters. We
.identify these terms and argue that they are removed by an appropriate counter
term in the interaction Hamiltonian. Because of this, these divergences may be
considered as a separate problem, which we shall not study here since it has been
examined considerably by others.zo In removing these contributions some care
is required in making the covariant generalization of the Bjorken hrﬁit, an
explicitly non-covariant procedure. This is illustrated for several models.

Next we discuss the possibility that the remaining divergences contribute
only to a universal constant factor times the uncorrected matrix element. We
show that this is not possible if there are operator (q-number) Schwinger terms
in the current commutators by considering, as an example, currents constructed
from a bilinear product of spin-zero fields. These terms produce, for non-zero
momentum transfer, contributions which are manifestly not proportional to the
lowest order matrix element. 10 If g-number Schwinger terms are absent, the
current commutators involving time components of currents are the same for
hadrons and leptohs, independent of specific models. We point out that the
divergent radiative corrections will then be universal if the commutators of the
space components of the currents are also the same for hadr.ons as for leptons.
Two models where this condition is satisfied are exhibited. These are the

integrally charged quark modelss’ 7 mentioned above for hadrons together with



the conventional lepton currents, and the algebra of fields model21 for total electro-

magnetic and weak currents, including leptons,as proposed by T. D, Lee.22 In

the former model the radiative corrections are finite and in the latter a non-

vanishing, but universal, divergence is found. 11,23
‘We conclude Section II with a discussion of second order radiative cor-

rections in a weak interaction theory mediated by a vector boson. We show that

’

the positive result of Sirlin 1 and Abers et al. ,5 is not maintained for non-zero
momentum transfer. Non-universal divergent terms are found,-and a counter
term having a local current-current form would have to be added to the interaction
Hamiltonian to make the radiative corrections finite,

We consider the generalization to these second order results to all orders in
e2 in Section III. After discussing the additional assumptions, we take up the two
models which were satisfactory in second order with respect to universality. For
the algebra of fields model we consider the fourth order calculation in some detail
as an illustrative exampie, Here an important point to be mentioned is that in order
to avoid ambiguities in making the covariant generalization of the Bjorken limit,
we must let only one photon loop momentum go to infinity at a time holding all
others fixed, This offers no problem since we are dealing with only logarithmically
divergent integrals.

Then we show that, for the algebra of fields model,to any given order in e2
the amplitude for any weak process may be expressed, once the divergent mass
renormalization terms are removed, as a divergent constant factor times the
finite part of the matrix element to the next lower order. This is precisely the
condition for the divergences not to have any observable effects. It contributes

simply to an overall rescaling of the weak coupling constant. In summing the

series for all orders in e~ the divergent coefficient in second order exponentiates,



Next we consider the quark model which led to finite radiative correctiohs
in second order and show, examining the fourth order case in detail, that the
corrections are finite to all orders. It is pointed out that this result could have
been anticipated, knowing the same is true for u-decay, since our technique is
independent of any particular weak process.

In conclusion we present a critical discussion of our assumptions, in
particular the use of naive commutation relations. We also point out the diffi-
culties encountered in attempting to apply the Bjorken expansion to discuss
divergences in non-renormalizable field theories. In the light of our results,
we summarize the current status of the problem of radiative corrections to weak
interactions,

An appendix examines certain details concerning divergent contributions

to external line wave function renormalization,



II. SECOND ORDER ELECTROMAGNETIC

RADIATIVE CORRECTIONS

We wish to show that the ultraviolet divergent part of the second order
electromagnetic radiative corrections to leptonic and semileptonic weak processes
may be expressed in terms of matrix elements of equal-time commutators of the
weak Hamiltonian density Hwk(x) and the electromagnetic current (7: ) m‘(x), and
of the electromagnetic current with its first time derivative. The method we
use was first proposed by Bjorken4 and by Johnson and Low. 157 The specific
technique we describe heré was applied recently by Sirlin11 to discuss diver-
gences in radiative corrections to G A/ Gy,» the ratio of the axial vector and
vector coupling constants in neutron Sf-decay. We show here that it can be used
to analyze divergences in any weak process at arbitrary momentum transfer.
Although a direct test of universality of thé weak coupling constant can only be
made through measurements of leptonic and semileptonic weak processes, the
discussion of divergences applies equally well to non-leptonic weak decays.

In the calculation of electromagnetic radiative corrections, infrared diver-
gences also occur due to the massless nature of the photon. This difficulty is
not serious and its resolution is well known, 24 so we shall not consider it here.

We shall throughout this paper work in the interaction representation with
respect to electromagnetic and weak interactions. Weak interactions will be
treated only in lowest order. In the absence of electromagnetic corrections,

the amplitude for a leptonic or semileptonic weak process A—B{v g is
My = (B!Zvllek(O)lA) .

We assume that the weak Hamiltonian density has the usual local current-current
form in the following discussion. Later we shall treat the case where the weak
interaction is mediated by a vector boson.

-10 -



The second order electromagnetic radiative corrections are given by

.2 |
oty = G [t faty o v [0, @), H, 0 H(0) ]8>

where

H _ (x)= eﬂ:‘m'(x).xl“(x) .

e. m.

Here -e denotes the bare electron charge (e >0) and wl'u(x) is the electromagnetic
field. The total electromagnetic current 4 S' m. (x) consists of a hadron piece,
denoted by J°° ™"

1]
for W-bosons, etc. The lepton current in conventional quantum electrodynamics

(x), a lepton part, denoted by j:‘ m. (x), and perhaps other terms

is

-e. m.

J

) = = [e(x)y, ex) + H(x) v, ux)

where e(x) and K(x) are the electron and muon fields, respectively. We do not
want to restrict ourselves to only this form of the lepton current since we wish to
consider, among others, a model in which the total electromagnetic current obeys
algebra of fields commutation relations.22 The electromagnetic Hamiltonian
density may, in general, also contain contact terms which will affect the second
order radiative corrections. For the moment we shall ignore this possibility,
although we shall come back to it later when we consider a model of hadron
currents constructed from a bilinear product of spin-zero fields. [Our notation
for Dirac matrices and Lorentz four-vectors and scalar products follows that

of Bjorken and Drell. 24]

Properly, we should consider, rather than./lll, the appropriate expression
obtained from the reduction formula. The added complications arising from this
do not affect the discussion of divergences in second order, as we show in an
appendix. All matrix elements we write down will, of course, be understood

to mean the connected part only.

- 11 -



A, The Bjorken Expansion

We may rewrite ./ll above as

——efdk D‘“’(k)T (k)

(2”)

' 1
D (k)=(g -2
g <“V k2 k2+ie

is the photon propagator in an arbitrary gauge, and

T, &) =fd4x dty e ik(x-y) (BﬂvﬂlT:oZZ’m'(x), I ™ (), Hwk(O)} ’ A.

where

In order to find the logarithmically divergent contribution to ‘/”1 we need to know
the part of T (k) which goes as 1/k2 for large k. To extract this part we take

the limit as k % with K fixed, since in this limit the behavior of time-ordered
products (as opposed to covariant T* products) is particularly simple. Consider

the following object X :

x = [y di { 1kx‘/'d4ye1ky(Bﬂ IT](ye.m.( X Z5™ ), B k(O)HA>}

Our basic assumption is that, in the limit as ko——oo with & fixed, the above
matrix element is sufficiently well behaved that the surface terms at x0 = o0
may be ignored and hence that X = 0, If one inserts complete sets of states in
the time-ordered product, one sees that this means that the high mass interme-
diate states must be unimportant so that the oscillations of the factor e“ikx will
dominate,

By taking the time derivatives d/dx and setting X = 0, we obtain an

expression for T‘w (k):

(0 =S [Lﬁ) + L(z)(k) + L(3)(k)]
k —x k

- 12 -



where

o o0 y)“” v |7 ™00, 5™ oty - v B 0] [
L,Szv)(k)= f aix j‘d4ye-ik(x-y)<Bz vﬂlT l[ P

L(S)(k) fd - d ye -ik(x- y)<mv2|T{aoje m.(X) (/e *(y), Hwk(o); 'A>

(0, Hoy (0)] 3, A3 '(y)}lA)

The equal-time commutators come, of course, from differentiating the §-functions
in the time-ordered product. Note that L‘(‘? is independent of 1;0. Hence it is
the leading term in the expansion of Tyv (k).

We shall further assume that the above procedure can be continued with
L’izv)(k) and L;(st) (k) to obtain sufficient terms in the expansion of T,uv (k) in powers
of l/k0 to isolate the divergent contribution to ‘/”1' It should perhaps be mentioned
that such manipulations are manifestly juétiﬁed in renormalizable perturbation theory
calculations for point particles. To assume that it is true for matrix elements
of the exact currents is, needless to say, a very strong assumption,which we
discuss further in the conclusion. However, by making this assumption we shall
see that we can make some very general statements concerning the divergences.

Here it suffices to consider the 1/(k0)2 terms. We insert a derivative d/dy0
in L(:J (k) and L‘(‘?(k) to obtain the following result for Tuv(k):

i@, f
Tw(k)ko_’w k° L)+ (k0)2 (M, +N ) +T, (k)

where

M, =ﬁi4xfd4yeiﬁ. (X-9) < By, 'T; [{75 My, aojs' m. (x)] 5(x’-y%), Hwk(O)f |a>

- 13 -



and
N =f d4’ffd4y K- G‘Lm@%][iﬁ' ), [/;’ ™ (x), Hwk(O)]] 8 (x()5(¥,) i'A>

are mdependent of k since the equal-time & -functions have eliminated the factors
-lk %0, The term T (k) is still dependent on k S0 we assume it goes as 1/(k0 2 +€
€ >0, as k0—~oo and hence leads to finite contributions to ulll. uv (k) contains

three terms which are

f _ 1 f4 4 -ik(x-y)
Tl.tv(k)_ 2 ﬁ x fdye (Bﬂvl

[T{aoj;“ T (x), 3 A T (¥), Hoy (0)
+T (3o ™ 09, [, 0, By 0) 5]

T3 78 ™ 0, [ 25 ™ ), Hwkw)]s(x")}]'w.

Clearly a sufficient condition for T‘fw(k) to go faster than (l/kO)2 is for an additional
partial integration of a derivative to be justified, in which case it goes at least
as (1/k ) as k0—

The expansion above is, of course, explicitly not covariant. After taking
the various time derivatives inside the time-ordered product so that they are
acting on current operators, we may, by then expressing the currents as functions
of field operators, use the equations of motion of these fields (in the interaction
representation) to write 80,7: ‘ m'(x) and higher time derivatives in terms of
spatial derivatives d/d X (i=1,2,3) of fields. If we then continue the expansion
in powers of 1/k0 we will thus obtain equal-time commutators which contain
Schwinger terms, 25 i.e., spatial derivatives of four dimensional &-functions,
After partial integration these derivatives will give rise to factors of ki. We
implicitly assume that such Schwinger terms in higher terms in the expansion

will yield the powers of kl/k0 necessary to maintain the covariance of Tl_w(k).

- 14 -



We extract the covariant amplitudes by the following procedure. After
evaluating the equal-time commutators, all the terms in Tyv(k) will have a tensor

structure

ijooo
%Vooocooijoto ‘

In the limit as ko——ooo withTffixed, we have

'S ! kY 020
—— e ’ — g ’
K2 KK

and

v K k v
g“"kz -—’gugk.

Hence we see that by reversing this limit we can construct the appropriate covariant

tensor; e. g.,

00 ije..
Kk e 00,005
o 4 o 7,0
KK '];-wpa...aﬁyd... (gaﬁ- _l%ﬂ)(gyé_ k—klz{——)

Note that any terms containing a factor K will thus be eliminated since

s v
klg’.——»(g’“’- @2‘-—-) kK # =0

B. "Mass! Renormalization Effects

We next wish to argue that when the proper covariant contributions to the
terms L‘(;)‘ and Muv have been constructed, they will be cancelled by appropriate
counter terms added to the interaction Hamiltonian to remove the divergent part
of lepton mass renormalization and of electromagnetic renqrmalization effects
(i.e., mass and coupling constant shifts) in strong interaction processes of the

hadrons. In fact, the second order electromagnetic correction to any hadronic

- 15 -



amplitude {f out li in ) is given by the expression

?ief(dk D‘“’(k)t L&)

21r)

where

t, ) = / a*x [dye K (g out | T {Jﬁ'm'(x), Jj'm'(y)} |1in> .

Making an expansion of t (k) in powers of 1/ k analogous to the one for T (k),

we find

() ofd fd e1k (R-¥ _')<f ut'[em.( x), 3% m‘(y)]a(x —y)

+ (i-ﬁ)fd‘ixfd‘lyeiﬁ. (i"y)(f out l [J:' m (), BoJﬁ' m. (x)] 8(x0-y0) |i in)+ t‘fw(k)

where tf (k) contains the finite part of the radiative corrections. The first two

iin)

terms we see will give divergent contributions to these processes. These diver-
gences must be cancelled by adding counter terms to the interaction Hamiltonian.

Since the operators
[76™ e, 3™ )]s’y and [35™ ), 3g 35 ™ 1] 8-y

are completely determined by their matrix elements between arbitrary hadronic
states, we may choose the counter terms to contain precisely these operators.
These divergent counter terms are not directly relevant to universality
of the weak interactions; however, for the theory of radiative corrections to be
completely consistent we would have to show that they did not contribute diver-
gences to the calculation of any observable hadronic parameters, such as electro-
magnetic mass differences. This is a difficult problem in itself, but since it has
been discussed considerably by others20 we shall not consider it here.
This same argument can obviously be applied to the lepton part of the
electromagnetic current. In the case where the leptons are just free fields in

the interaction representation, the necessary counter term is just the divergent

- 16 -



part of the electromagnetic mass shift of the leptons. For a model where the
total electromagnetic current obeys a field-current identity the counter term
will,in general, contain other contributions. In discussing such models, we
shall for simplicity refer to these additional contributions as "strong interaction"
effects.

One should note that the counter terms we are adding remove only certain
divergent terms. We do not make all the subtractions necessary to carr& out
the renormalization program, i.e., to express everything in terms of physical
masses and coupling constants. In fact, using our teqhnique this would be very
unwieldy. We specifically do not want to add 'wave function renormalization
counter terms, since this would make the question of using the equations of motion
to evaluate time derivatives of operators a very delicate one. We shall need to
use equations of motion in the interaction repreSentation to calculate certain
commutators.

There is a difficulty with the above argument which is related to the non-
covariance of our procedure. This is best illustrated by considering lepton cur-
rents in conventional quantum electrodynamics, where the fields satisfy free
field equations of motion.(z) First, however,observe that the photon propagator

in an arbitrary gauge

becomes, in the limit as ko——oo with-l::’fixed,

1

k
(1-M)g g - +¢g g]————

D
P«Vk_,w

0

-17 -



Referring to e/lll, we see that we need consider only the combinations

C@-and)+ Lgl)i and \\(1—7\) M, + Mii ,

Since the electromagnetic current commutes with itself, Lglo) = L(il) 1o 0 in the
general case, so we may henceforth ignore Lﬁ}) .

The usual lepton electromagnetic current is

jﬁ'm' (®) = - By, e(x) - Fx) 7, H(x)

where the electron and muon fields e(x) and U(x) respectively olaey equations of

motion

(i‘yubn - me) e(x) = 0 and ('i'y" b“ - m“) ux) =10
and the canonical anticommutation relations,

84(x-x')

fefix), et)] 50’20 = farlexn, wea) o0 )

0.

fetxn, et} o’ x) = e, me foe"-x)

By using current conservation

i Mm=o

we see that
., m.

.e.m. 0 0
provided we use the naive commutation relations and ignore the well-known

ambiguity25 of the Schwinger term in []'3' ), j?'m'(x)] 8(x0 - yo). We shall

make the conventional assumption that it is a c-number and therefore does not

contribute to connected amplitudes. Thus M, = 0, so there are no gauge depend-

00

ent contributions to the divergent mass shift, as must be the case.

- 18 -



Using the above anticommutation relations and the equations of motion, it
is easily verified, after a short calculation, that

..M,

[ji.m. ¥): 3 (x)] s(x*-y") = 12i m_w(x)e(x) 5*(x-y)

4 [20) Ve - S0 7 o] 2p 8-+ o,
X

We note that the first term already has the form of a mass counter term; however,
~we must construct the covariant generalization of the second term, which requires

some care. The leptonic part of M: we denote by M(Il) o may now be written as
M1 f a*x f dtyel®” (x‘y)<m;;2 l[lZime o¥(x- y)T:"e'(x) e(x), H wk(O)}

» 'gaT o x-NT{Em)Y e - B0 Ve, By (0| + e—m]|4> .
X

The covariant generalization of the second term in M(lz) s

v e
-4 (glw'-g:—(lz{—-)./;l‘led‘lye tk(x-y) -a-?? 64(x-y)

x (Bl | T[S0, %, o), Hoy (O] - T{ B, v, e 1,y (0 ][4

which reduces to the original expression when ko——oo . We now perform a partial
intergration with 9/ dx” to put the derivative on e(x) and €(x). Differentiating the

exponential gives a term proportional to kv , wWhich vanishes since
v
k (g‘“’- —kﬁ‘%—) = 0.
v K
Also, realize that under symmetrical k-integration we may make the replacement

e
gw'.kz —’ZBW°

- 19 -



We are thus led to the covariant generalization of M(iﬂ) i, which is
M ¥ f P ﬁ4y s*x-y) ¢ Bly, l[lzi m T ;'é(x) e(x), H_,(0) }
2 (gls e tor
w2 (r[ew. Few, my0f -T{Em, Ve, B w0} )+ (e ] [4>.

In taking the derivative o/ 3" inside the time-ordered product we pick up
additional equal-time commutators from differentiating the §-functions. The

terms involving the anticommutator
0 O
leT ), en)] 86’57 ~

actually cancel, but in any case they do not contribute to the connected amplitude

since they are c-numbers. One thus obtains

M(/z) Ko o +-M=(z)u
where .
SM(I)“H = 6i /:f*x CBly, IT | m & (x) e(x) + m H(x) pu(x), H,(0)]]|A>

and

) # _ 4 5(x°
M Al _3ﬁ x 6(x )(B!Zvﬂ

[eT(x), Hwk(O)] e(x) + ! (x) [Hwk(O), e(x§l+ (e——u): IA)
after using the equations of motion.

The careful reader will have noticed that the above manipulations were
somewhat of a swindle. If we had performed the partial integration with a/axi
before making the covariant generalization, we would not have obtained the term
TVI_(E)“”. 1t is easily verified that if we combine M(ﬂ)“p with the contribution of
Nuv to M 1 e obtain a result in agreement with a manifestly covariant Feynman
diagram calculation only if the term -ﬁ(ﬂ)y” is included. We shall therefore
assume this method of handling these terms is also valid in the general case

when strong interactions are present. This seems very reasonable as time
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ordered products not containing operator derivatives are presumably less
singular objects.

The contribution of M(R)"L H o ./ll is

4
i 2 fd% 1 () B, () ¥
> € M + M .
2 /(21r)4 (k2+ie)2 [ kr K ]

We recognize SM(R)”" as simply the divergent part of the lepton electromagnetic
mass shift. It is removed by the appropriate counter term. However, _M'(R)/.l”
contributes to weak coupling constant renormalization. We note that whenever

the commutator

.. M.

(36, m. 0 3015 ™ 0] 6 - )

contains g-number Schwinger terms, 'l—VI—(l)” H will in general be non-vanishing.

Turning now to the hadron part of the electromagnetic current, we may
perform a completely analogous calculation if the currents are constructed from
spin-1/2 fields. In the éimplest quark model26 the hadronic electromagnetic
current is

Io ) = V) + 7 Vi) = 309 Q7,4

where the octet of vector currents is given by
a — 1l1,a
V,x) =a(x) 52y, ax) a=(1,..., 8)
in terms of the quark fields g(x). Here the A matrices and the indices (a) use
the conventional SU(3) notation (in Adler and Dashen, 21 for example). We have

denoted the hadronic charge matrix by Qh. If the quark fields obey an equation

of motion

i3, ax) = Fx) a(x)
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for some unspecified(3) hadronic operator F(x), we may repeat the above calculation

for leptons, to obtain the hadronic contributions to SM(h)p_” and 'I\_/I(h)“ K which are

SM(hL" - 6i fa*x (BﬁvﬂlT

e 3 {9 Feoja, B[4
and

w04 = - [ a0’y <oy | [[ao0, 11,,00] @ o +aT @] [1,,0) ]|

-To make the analogy more explicit, we may define lepton fields

ve(x)) )
Vel “\e(x) Y™ =\ )

_fo o _fo o
Qe‘(o-l) Qy“(o -1)'

Then the lepton expression for l\—/I(RL ¥ takes the form

and charge matrices

W F = s fitand) < may [{[4 60, 1,00] @F w0
L,
+ 90 (0 Q; [H,,00), y 0] + (e —m|[4>

It is very instructive to consider as a further example currents constructed
from spin- zero bosons, as occurs in a perturbation theory calculation of radiative
corrections to pion decays. It provides an example where g-number Schwinger
terms appear. Suppose then that the octet of vector currents VZ(x) is constructed
from a bilinear product of scalar fields ¢a(x), a=(, ..., 8)s They have the form

Vi) = £°9,03, 6.0 -
The scalar fields obey the canonical commutation relations

(3022, 6,5] 86~ 5% = -8, 8%<- 1)

6.x), &, ]6x"-yY = [3,6.), 3, 8] 6’-y°) = o.
a b 07a 0"b
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The electromagnetic current is, as usual,

em

M (X)—V(X)+\/—V()

As is well known, 24 the electromagnetic interaction Hamiltonian of spin-zero

fields contains a contact term. If we assume a model hadronic Lagrangian density
1 a a 1 a b
2y = 3§, ¢ - § Fypx) 6700 ¢ ()

where F ab(x) is free of operator derivatives but otherwise unspecified, then the

minimal electromagnetic substitution
a a 3ab 1 8ab
%¢mk»%¢mr+% t 5 f }me(m

* yields, in the usual fashion, the interaction representation Hamiltonian density

H= HO + He. m.’ where

m. (0 = €35 ™) M) - 3 6 PPy 09 1o ) a2 (x)

Here d“(x) is the electromagnetic potential, Jﬁ‘ m'(x) is defined above, and

(f3ac 1 8ac) (fBbc 71= f8bc) .

3

Note that if we write

e. m.

® = 16°0 a3, 6%,

where the hadronic charge matrix Q is

Qh _ (f3ab 715 fSab) ’

then C_. is simply

ab
¢, = (@)
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In discussing second order radiative corrections we must in this case

consider

4
i 2fdk 4 c
e ———————— k
./ll 5 eﬁzﬂ)4 D” (k) [TW( )+T‘w]

where the additional term Tﬁv is given by

c _ k 4 ab ,
Tuv = "kgv fd X (BQVRIT %C ¢a(x)¢b(x), Hwk(O)} lA).
T:v will give a quadratically divergent contribution to ulll. However, we
immediately note that it will be cancelled by the mass counter term  since it
is only a ''tadpole’ contribution. Of course, in higher orders this will no longer
be the case.

We are now ready to calculate the commutators in Muv . Using current

conservation and the canonical commutation relations one finds

b 3 3

.m, 0 .
o™ ] sex-y% = i c® o o 6,006 8'x-] .

el m.
[56 ™ o 335
The commutator [Jl, 3 OJi] may be calculated without using the equations of
motion, simply from the canonical commutation relations. After a brief cal-
culation we find that it may be written as

i .m, . 4
[0 m. @) 367 ™ ] 86~y = 1™ —a_?? ;37 [#a0) €4 8(x-9)]

4
+ 2iCab<‘a—i-—§'i"> [¢a(x) ¢b(Y) "é‘l‘ 8 (x-y)
dx dy ox

: 2
- 4iCab¢a(x) b ——?—— s (x-y) .
dx Bxi
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By combining these two commutators we obtain for (1 - 1) Mg:)) + M(h)ii‘,

h) hi_  [fA4 [4iK-@-D). . - '
a-nm) + mt), _/&yx/& e 1Cab(Bﬁv2|Xab|A),
where

X, = A _a% Saﬂ [0y 7 {6,006 o0, 10

3 _ 9 ) 4 f
+2 (axi ayi> [axi d(x-y)T | ¢a(x) ¢b(Y)’ Hwk(o)ﬂ

PR
Bxlaxi

8(x - ) T| 9,09 9v), By (O

In the first two of these terms we find, after partial integrations, that they are

respectively proportional to klki and k', In making the covariant generalization
they do not contribute since

ki___.kv <gﬂv _ ]J'tlz(v> - 0.

k
Note that this eliminates the gauge dependent term, as expected.

The Schwinger term in the third expression gives rise to the same ambiguity
that we noted in the spin-1/2 field example when we make the covariant generaliza-
tion. Again, by referring to the Feynman diagram calculation in the free field
case when F ab(x) = aab m2 , we find that we must use the same prescription for
handling this term in order to get the correct answer for the divergent part of
the radiative corrections. Realizing this, it is straightforward to show that the

covariant generalization of (1-A)M is

NN VR v L
B M K

where

aM(h)uV' = 3ifd4x (Bﬂv£ IT %Cab P(X)F (%) & (x), H 1 (0) ; lA)
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and
ab

LA 3if d*x8(x") < By, {[¢a(x), Hwk(O)] @F) 3o,

+ o,0x) (@ )ab (1,0, 350, m]][a> .

In writing these expressions we have used the equations of motion
a ab b
3#3, 6" = - F )¢ )

and have dropped a term involving the c-number commutator

0 0 B
[0, 3g 4, 80x"- ¥
since it contributes only to the disconnected piece.
The expression for 'ﬁ(h:}“ has a famijliar structure. To make this even
more explicit we note that in both the spin-1/2 and spin-zero field examples, the

charge density operator had the form

£ ) = ~I(x) Q(x)

where the ¢(x)'s were the canonical fields, the II(x)'s the canonically conjugate
momenta, and Q the appropriate charge matrix. For this type of current, we

found

M“M = -3i f d*xs(x?) (Bly, H[H(x), Hwk(O)] Q2¢(x)+ n(x)Q° [Hwk(O),¢(x)]§lA) .

A final type of model we shall consider is the algebra of fields.21 This is

obtained by constructing a model Lagrangian which yields a field-current
identity, 28 i.e.,

2
m

a _ _0 .a -
VI»‘ (x) = g ¢u(x) a=(1, ..., 8).

The massive vector fields ¢:(x) have a bare mass m_ and a Yang-M.ills29 type

0

self-interaction with a bare coupling constant 8o Such a field-current identity
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can hold for the total electromagnetic and weak currents, as proposed by
T. D. Lee.22 In this model, the commutation relations relevant to the cal-

culation of M(:Z} are
[Jg'm'(y), ang'm'(x)] 5(x°-y% = 5 —2- 1 5 8 (x-Y)

and

[Jl.m.(y), aOJie'm'(x)] 5x0-y%) = -i g <g_i- 1 _ai _8__> s4x-y)

2
g .

+ i —92- ca‘bvjl (x) V(%) stx-y) .
My

Here, as usual, the hadronic electromagnetic current is

em., ., 3 1 .8
B = Ve eV,

and also
Cc . = f3ac+i f8ac f3bc+ 1 f8bc .
ab /3 /3
The c-~number parts of these commutators do not contribute to connected ampli-

tudes. The remaining term does not contain spatial derivatives of operators, so

T\'I-(h)y” = 0. The covariant contribution to M(h)““ is thus simply
2

g
(hyp _3.°0 ab 4 {a _
sm = 1172 c® [d x(B!ZVﬂlT V) Vi(x), Hwk(O)} A
and is completely cancelled by the mass counter term.

C. Divergent Corrections and Universality

We have just seen how to consistently remove the divergent part of mass

renormalization and of electromagnetic renormalization effects in strong inter-

~

action processes. The remaining contribution to ./, which we denote by ./ 1’

1,
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still contains divergent terms. We wish to inquire in which current algebra
models does the divergent part of ./171 give only a universal weak coupling

constant renormalization. This divergent part (/izclhv. is

. . 4 v
./17‘1’1"°=-21-e2/dk4 - 2[’1\71”+<g”"- Ak”g>N].
@r) (k“+ig° L H K ald

Here ﬁﬂu are the model-dependent contributions from Muv which we found above,

and

- M [itooiE E-T)
le —-_/;1 xfd ye (B!ZV2

The condition for universal divergences in second order is

[fv‘ g™ e, Hwk(OS]] 5" s(y") ’ A> .

4
div. _ d’k
M =y f —3 2%
(k™ +ie)
where ¥ is some constant independent of the particular process and u/lo is the

uncorrected matrix element.

We first consider the case of a local current-current Hamiltonian density

'

G wk -
fa) = = A Poo goi oo

with

t
wk(+), . _ o+ + wk(~) . _ [ WK(+)
gy D = T+ m g = (£ )

+
Here J: (x) and jp(x) are the hadronic and leptonic weak currents, respectively.

We assume the hadronic current has the usual Cab.ibbo2 form
J;(x) = [J;(x) +1i Jﬁ (x)] cos 0 + [Js(x) + iJz(x)] sin 6

where @ is the Cabibbo angle and the SU(3) indices (1, 2, 4, 5) use the conventional

notation. The weak currents J;’(x) all have a V-A structure

J;‘(x) = v§<x) - Ag(x) a=(1,2,4,5).
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Following Gell-Mann, 3 we assume that the normalization of the octets of hadronic
vector and axial vector currents is fixed by requiring the space integrals of their

time components
a 3_.,a a 3 .a
F =fde0(x) F5=fdxA0(x) a=(1,...,8)

to generate, at equal times, an SU(3) x SU(3) algebra. This implies, apart from

Schwinger terms (which we abbreviate as S. T.), the current algebra

-

[a500. A2 ] 86~

[vom, ven] 86~

i 2P vﬁ(x) 8% (x-y) +8.T.

a5, V] s6-5") = [vom, apm]su®-5)

i #P° A:(x) stx-y) + s.T.

The appropriate commutators of the electromagnetic and weak hadronic currents

are thus

e.m. + 0 0 f[.e.m, * 0 0
[36™ @, B sec”- ¥ = [35™ e, Tgw] o= ¥
J:t 4
= u(x) 8 (x-y) +S.T.
The leptonic weak current j;(x) consists of electron and muon pieces
5,00 = 5500 + ;%00

Throughout we shall assume (4-—-e) symmetry, which, of course, guarantees

(U~—e€) universality. With the usual point interaction the lepton currents
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are

5 = Ty (1 - vy)ew)

) =
X) = X 1- e(x).

Iy X)) = n )y, (1 - vp) ex)

As mentioned before, we do not restrict ourselves to this model, although we
shall assume that the leptonic electromagnetic and weak currents obey the usual

commutation relations

[35™ e, m]oe- vy = [15™

T, g | 8x” -y

=2 j:(x) stx-y) + S.T.

With these preliminaries out of the way, we may now begin our discussion
of the divergent corrections, contained in M clliv. . We start with a treatment of
the case where the hadronic currents are constructed from a bilinear product of
spin-zero fields. This example illustrates the difficulty with theories with g-
number Schwinger terms. We must now include both scalar fields s a(x) and

pseudoscalar fields pa(x), with vector and axial vector currents respectively

given by
Vo) = £ [5,003, 5,00 + B x)3, p ()]

and

a abc
acx) = @ [5,003, P00 - p)3, 5,9)] -
The non-vanishing canonical commutators are

[305400, sy]86-5%) = [34p,00, )] 80"y = -1 8, sex -,
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Using these one easily obtains

[567™ 60, 3q9)] 8- 5% = = 30 8°x-y)

[Jg' M (x), J:;(y)] 6(x0 - yo) * Jf (x) 84(x -y)+i 5-31- Ef(X) 54(X - Y)]

[ye-m. _ 4 . 4
[ ™ e s =+ e ston -1 2r o -

where,cf(bx) = [gﬁx) + i‘Jz(x)] cos 6 + [J %x) + idix)] sin @ and

Lo - £ + 75 0[50 5 + pc(x)-pd(x)]

abc(IBbd \/§ bed) [sc(x) pd(x) - pc(x) sd(x):l.

Note also that the commutators of the spatial components of the currents vanish;

in particular

[55™ e, Fw]se’-5") = o.

We wish to show for this model that the presence of q-number Schwinger
terms in the current commutators destroys any possibility that the divergences
give simply a universal constant factor. For this purpose, let us consider a
semileptonic process, i.e., choose IA) and |B) to be hadronic states. —1\71"“
clearly does not involve Schwinger terms so we need not consider it further in
this model. In the remaining term Nuv’ we need to calculate (1- A) NOO + Nii
in the limit as ko—-oo . It easily verified that the gauge dependent term N

00

actually vanishes, For a semileptonic process Ni1 is given by either

77, 2.2
= %ﬁ4xﬁ4yelk (x Y)(B!Zvﬂ

or the corresponding form with the Hermitean conjugate piece of the weak

[Zf'm'(w,[/;.m_ x), JZ(O)f_‘(O)]]a(x°)a(y°),A>

Hamiltonian. For the moment let us suppose the lepton current commutators

contain no Schwinger terms. Then the only part of Ni1 yielding a Schwinger
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term is
quﬁ4xﬁ4y ot R. (;{.-y)a(xo)S(yo) {( B El; m, ) J'E(O)] ’ 0)
[357™ 5, 350] | 4> <oy | [15, . 01 5500] | o>}

%*‘_7G__2_j‘d4x S(XO)(ei'k'-SZ L ik i’) ¢B I[J;a.m-(x), J'E(O)]'A)(ﬂvzlji(O),O).

i

o5 e, 0] [4> <0,

+{B

To evaluate the contribution of the Schwinger term we translate the hadronic

q-x _ :
. whereq—pA— pB1s the

matrix element through -x, yielding a factor e
lepton momentum transfer. After performing a partial integration, this part of

the above matrix element gives
G A
* % 2qi(BIJi0)|A)(IV1|J*(O), 0> .
The covariant generalization is made in the standard way

14
qiji<0)~<g"”- “'—}) q, 30—z &' 570 ,

the last replacement being made under symmetrical k-integration. The resulting
term is manifestly not proportional to the lowest order matrix element

M = \-/% (BIJ:(O)IA > (|00
Thus we conclude that the divergent part of the radiative corrections in this
model is not universal in the sense that we have used it.

If the lepton currents contained similar Schwinger terms they would, of
course, have to be included. However, for them to cancel with the hadronic terms
would be virtually impossible as it would imply precise equality of certain hadronic
and leptonic matrix elements. Thus, spin-zero boson models seem to be unsatis-
factory. This has been noted by Preparata and Weisberger, 10 who used a per-
turbation calculation of pion B-decay as an illustrative example. A popular

model which is ruled out on this basis is the o-m.odel.so Here the currents
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contain both spin-1/2 and spin-zero parts, so the above Schwinger terms will
occur, It is difficult to draw any general conclusions about Schwinger terms

for models with higher spin fields since the commutator

[Ji, .00 [0, 7 (0)]] 5x%) 8(v")

could conceivably cancel the type of terms found above, although this does not
occur in the simi)lest examples of currents bilinear in spin-1/2 or spin-one
fields. On the other hand, for the algebra of fields model the Schwinger terms
are c-numbers, so they do not contribute to connected amplitudés.

Let us now turn to models where the currents are constructed from spin-
1/2 fields. We use the naive commutators, assuming any Schwinger terms are

c-numbers. In the quark model the vector and axial vector currents are

Vix) = T Ay e and AX)= G AT a0 2= (0,1, ..., 8),

respectively. The canonical anticommutation relations
o o] 8- v%) = -y, {a), a]oe’-y%) = [T, aTloe®- 5% = o

yield the current algebra postulated above and, in addition, the space-space

commutators
0
Vi, vewa- 5= [af e, a7w)] 8-

=i [—gij fabe vg(x) * € a@be Al(:(x)] s*x-y)

and

[vie, alwe’s") = [afe, Vo] sta”-5)

abe Vlé(x)J st x-y).

. be :
i [-gij i Ag(x) + eijk d
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2
In the simplest quark model 6 the electromagnetic current is given by

e.m, - 3 1 8 -
X =V 7 V() = ax) Quy, ax)
where
2/3 0 0
Q, = -21-(x3+‘71§ As) = o -1/3 o
0 0 -1/3

The space-space commutators of the electromagnetic and weak currents are thus

o™ e, Fin] - v = =g, 35 8'x-5) - JkJ‘;(xw (x-3).

We shall assume in this example that the lepton weak and electromagnetic currents

have the conventional form given by
+ - -
Jyx) = vo(x) 7, (1-v5)e(x) + ¥, (x)7, (1-75) u(x)

e. m.

x)= - e(X)Y e(x) - u(xw H(x)
with
= g
j‘,( = J“( .

The appropriate space-space commutators are easily verified to be

£.m, & 4 . k 4
[ (x), Jj(Y)] 8(x -y ) -jJO(x) 8 (x-y) +~1€ijk]:t(x)6 (x-y).
To discuss the divergences in the radiative corrections for this model we
need to know -I\TI““ and, in the limit as ko—-oo, (1-2) NOO + Nil. As usual, itis

easily checked that N_ . vanishes. NJ.‘1 contains a term involving the double

00
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commutator

e.

[J‘ m O 5™, 3 <0)]] sx) 8(y))
=-3g,09x) [Qh, [Qh, %ha]]vo(l-vs) a®) 8%(x) 5()
- 1a a )\, o4 4
-8, Q(X)([Qh, [Q 3 ]]+ Z{Qh.} Q. 3 ,}) P(1-v) a0 80 8.

The covariant generalization of this expression is constructed by the replacements

k%P 3 )
g“’j')’il_’g“a <g - —l'{_>7ﬁ 'Yu
0 k%P

1

where, once again, we have used the fact that a symmetrical k-integration is to

be performed. We thus obtain for the right-hand side of the above expression
3 _ 1.,a) 4 4

= -390 @2, $2%] %, - vao e 8.

A considerable simplification ensues if we note that the contribution of this
double commutator is exactly cancelled by the corresponding term in -ﬁuu .
Indeed, one finds there
4 0 2 2
- 3 fdxox) { [, 5000 ] Qe + e [0, q(x)]}

2_1_a}

= 3 q(0) !Q 7, (1-75) 4(0).

Clearly, a similar cancellation also occurs for the lepton commutators.
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Thus, the only remaining divergent contributions are the terms in Nii of

the form

\_/__g_ ﬁ4x fd4yei1‘£.(>?-§)5(xo) 3" <oy, {[J::m ), j:k(ﬂ(o):“_: ) J‘;‘;E)wﬂ
78 . 0 £ [ 0, )(0)]}, AS.

Except for possible Schwinger terms, the commutators

e. m. i -
[ #8™ 00, 78500 50y
are model independent. However, the above expression also involves the com-

mutators
27 w0, £ O0]56,

which are highly model dependent. We i'mmediately see that for the simple quark
model the divergent radiative corrections cannot be universal since the antisym-
metric part of the space-space hadronic current commutator differs by a factor
of -1/3 from the of the leptonic commutator. This is the result originally obtained
by Bjorken.4

Clearly a sufficient condition for the divergent corrections to be universal
is for the space-space commutators of the hadron and lepton currents to be the

5,6,7

same. It was noted by several authors™ that the hadron currents could be

made to satisfy

(357 0, a0 ]oec") = 78,5000 80 + 16y 7101 o'

in agreement with the usual lepton commutators, by adding an SU(3) singlet

piece to the hadronic electromagnetic current. In fact, a quark modelG’ 7 with
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integrally charged quarks having a charge matrix

1] 0 0 -1
Qh = o -1 0 or Qh =
o -1 0 0

does the trick. A special feature of this model is that the divergences actually
cancel so the second order radiative corrections are finite., One easily verifies

that

(75 ™ e £7%0) 865 [, m, 01 gt (0] 565°)

- [#2h0) 250y - 3,755 7% st st

The covariant generalization has the form

( » k"k”) M) g s %}’_ /wk(+) P wk(-)

which vanishes after symmetrical mtegratmn.

A final model we shall consider is the algebra of fields. Since in this case
the space-space current commutators vanish, universality can clearly only be
satisfied if the total electromagnetic and weak currents obey the field-current

ident:ity.22 The commutators relevant to our discussion are then
7o ™ . 2 s -5 = [0, 7 06”5 = 24 - )

W

5™ e, £ )] 5~y =

As mentioned before, —I\Z““ = 0 in this model. N 00 also vanishes, so we need

consider only

[f o [ ™ e, Hwk(O)]]8<x°)a(y°)

A

f 20,75 0) 8 8%y)
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as is easily verified. By making the covariant generalization
wk(+) i(-) v _ WK\ wk(+) wk(-) ___3 wk(+) u(-)
SO gL — (¢ e 2 M ¥ MR S
we find for the divergent part of the second order radiative corrections

. 4
give _ 3 2fd% _ 1
N e s B i O

a result previously obtained by Sirlin11 and, for a slightly different model, by
Schwinger.2 3 )

We conclude this section with a brief discussion of second order radiative
corrections in a weak interaction theory which is mediated by a vector boson31
rather than a local current-current Hamiltonian, We shall show that the diver-

gent part of the corrections does not satisfy the universality requirement except

at g = 0, The weak Hamiltonian density in such a theory is

Hop0) = B[ 7y ) Wit o + £y W]

2
+ _g-é- (ng(-‘-)(X) g k( )(X)
w

where the vector fields W‘(:E) (x) are free fields of mass m_. The coupling

constant g is related to the Fermi constant G by

The lowest order weak interaction matrix element is given by

e 230 <o . ¥ o

./Il-—gfdz(Bﬁv

,70k‘+’( 12y ] [a>.

W
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The manifestly covariant expression is obtained by observing that the non-covariant

part of
Cofz{wy@. Wiyol]o>

cancels the contact term. However, for our purposes the above form is more
useful since it is the time-ordered products which are well behaved in the limit
a.S kO—"w .

The second order electromagnetic radiative corrections32 to '/”0 are

My = Lo /dk d"’(k)[ (k)+T ]

where Duv(k) is the photon propagator and

T, &) = g [ d*x /:14y f dtz e 1Kx-Y)

x<Bﬂw[ 1™ ), 22 (), A w2, £35 o) wh (0]

g T ™, 2™ A 2O S }] »>.

c
le

which we need not consider since radiative corrections to the W-boson propagator

is an additional contact term in the electromagnetic interaction of the W-bosons

are necessarily universal, Here the total electromagnetic current /ﬁ m"(x) is

) - W ) W )(x>]

js.m.(x) _ J:.m.( - Je.m.(x) o4 e[w(+)(x) ’

where

Wl = 3, Wi - 3, Wi,

The divergent contribution to e/lll is obtained as before by isolating the

part of (1-2) T00 + Ti1 which goes as l/k%) as ko——oo . The contact term in the
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weak interaction will yield the following commutator in Tii:

2 i i
-1 k_lz_ r_ngz_ f d*x ﬁl4y8(x0)8(y0) <Bwy, [fe.m.(y), [, o), ﬂ‘gk(+)(0)(igk(")(0)J]’A>
0

2 .
0 m .

2
w
Since this contact term contains spatial components of the weak current, it will
no longer be cancelled by the non-covariant term in the W-boson time-ordered
products. Furthermore, it is easily verified that the remaining contributions
to T‘w (k) will not have this form. Clearly, non-minimal electromagnetic inter-
actions of the W-boson will not change this result.

Thus, we conclude that in a W-boson theory we connot satisfy the univer-
sality requirement

Mot

for arbitrary momentum transfers q, although as was first shown by Sirlin, 8,11

it is satisfied at q = 0. In fact, it is interesting to note that in order to make the
radiative corrections finite we would have to cancel the above contribution by
adding a counter term to the interaction Hamiltonian having a local current-
current form. Hence we should have included such a term in the Hamiltonian
from the start. However, in doing that we lose the original motivation for

introducing a W-boson interaction.
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II. GENERALIZATION TO HIGHER ORDERS IN e

Most of the results of the previous section are not new, although they were
originally obtained by slightly different techniques. The method we have illustrated
above for second order radiative corrections can be used to discuss divergences
occuring in higher orders in ez. We wish to investigate, using current algebras,
whether the divergences in radiative corrections to leptonic and semileptonic
weak processes to any given order in e2 can be absorbed into only a universal
coupling constant renormalization, )

Our method allows us to isolate only those divergences due to momentum
loop integrations containing at least one virtual photon line, Thus, in diagrams
such as Fig. 1 we ignoi'e all divergences due to closed loops inside the "blobs"
containing only hadrons or leptons (or perhaps other types of particles), but no
photons,

A few remarks are in order concerning this assumption. In conventional
quantum elecl;rodynamics24 of leptons the only such divergence arises in the
second order correction to the photon propagator, i.e., the diagram of Fig, 2,
and through its insertion in higher order graphs. However, corrections to the
photon propagator even in the general case can only give divergences which are
universal, since they contribute alike to all processes. A more serious difficulty
was first noted by Adler,33 concerning the triangle graph involving an axial
vector vertex, illustrated in the diagram of Fig., 3. Adler studied this
diagram in great detail and showed that it gives rise to divergences in higher
order electromagnetic radiative corrections that cannot be removed by simply
an overall rescaling of the coupling constants. We shall sweep such problems

under the rug by taking the point of view that a proper discussion of divergences
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Fig. 1--Examples of contributions to higher order radiative ‘corrections.
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Fig. 2--The second order leptonic correction to the phofon propagator.
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Fig. 3--The triangle graph in lepton electrodynamics involving an axial vector vertex.



in closed lepton loops requires a satisfactory theory of higher order weak inter-
actions. As for hadrons, a treatment of similar diagrams involves a more
detailed commitment to a strong interaction theory than is contained in the state-
ment of current commutation relations. We expressly wish to avoid this, so we
shall treat the blobs as black boxes and use only their general expression in terms

of currents as matrix elements of
.., .m,
T{;ﬁl Gyl e ™ )

for the case where n photons are attached.

We defer until the conclusion a discussion of whether it is physically reason-
able to neglect any divergences inside the blobs. Note, however, that to do so
is consistent with our use of naive commutation relations for the various models
we shall consider. In fact, these two problems are intimately related, as we
shall see later,

In the previous section we found that only two of the commonly discussed
current algebra models gave satisfactory results in second order,in the sense
that the divergences Wem universal (or zero). We shall restrict our attention
in analyzing higher order radiative corrections to these two models, namely,
algebra of fields commutation relations for the total (hadron + lepton) electro-
magnetic and weak currents, and the quark models with integrally charged quarks

for hadrons together with the conventional point interaction for leptons.,

First, we shall consider the case of the algebra of fields, since it is less
compﬁcated. The electromagnetic radiative corrections in order (e2)n toa

lowest order weak process are given by

2n 2n
= D 4
n (2n)! iI=71 d'x; < Bly ,T ;He.m. (Xp)s ooy By . (op) Hwk(o); ’A>
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plus additional terms if there are contact terms in the electromagnetic interaction,

Here

Hy, . (0 = e T (ar() = el ™ Gt () + e ™ (0 ()

where the notation is as before,

As in second order, we should properly consider the appropriate vacuum
expectation value obtained from the reduction formula. This introduces only
inessential complications which obscure the basic argument so we have relegated
a discussion of this point to an appendix. We defer the questior of contact terms
momentarily.

The above expression for "”n leads to -

. (2 . V.
= i€l " (-1)"@n)! ﬁ fd4k Dﬂlvl(k) T e, eees k)
n (2n)! nt 20 i=1 i i BV qee BV, 1 > “n
where the B vy
TR 1.y, ki
p ik, = s (g1 i-aLd
o ki + i€ ki

are the n photon propagators and

n -ik.(x.-y.)
T (kps eeer k)= 1T ﬁ4x.ﬁ4y.e e
Biviee b Vn n =1 i i

T{rf g ) e ST ), HWk(O)} [
n

x { Bw
“1 n

1

Here the fadtor

IR PR
£8) @n): P an-1). (2n-3)...3-1

n!2n

comes from contracting

7’ v [z 4
<0 T{ﬂ gl (s o eesed DK ), A “(yn>} 'o>

to form n photon propagators.
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In order to isolate the ultraviolet divergent contribution of .74, we need to
find the part of T“l”l. oo “nvn(kl, cens kn) which goes as (1:?:)32_- for large k? in
each of the integration variables ki' These terms will give logarithmic divergences
when, after constructihg the covariant generalization, the appropriate integration
is performed.

We shall assume that the various partial integrations necessary to express
these terms as matrix elements of equal-time commutators are justified for the
(2n + 1)-point function as we did in second order for the 3-pointfunction. We
shall also assume that the prescription for constructing the covariant amplitude,
illustrated in second order, generalizes for each of the n momentum variables.
Such assumptions are clearly justified for quantum electrodynamics, so it is not
unreasonable to assume them here. Our purpose is not to justify these assumptions

but, having made them, to see how much current algebras can tell us about ultra-

violet divergences,

R - . : . 2.
Before considering radiative corrections in an arbitrary order (e”) , we

illustrate in order e4 the new features not occuring in order e2. We begin by

observing that

2

K ko T (k,, k,))————R ky, k),

172 "pyvibgry 1 %2 L0 10 Hivikovy 1 52
1 kg

where

-k, (% -y,) - 1K, (%, - ¥,)
_fa4 4 4 4 THE T m Y,
Rulvluzvz(kl’k2)_fd xl/d ylﬁXZﬁ Yo ©

X aa 9 —Qﬁ 9 (B,
dx4 Byla sz Byzp.

‘( .M, «M, s M, .M,
T?/Zl (xl),(iffl (yl),jﬁz (x2),j52 (%), Hwk(O)f A),
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after four partial integrations, The integrations on the time variables are, by
assumption, valid in the limit as k_(l), kg—*oo and those on the space variables

true in any case. To isolate the divergent contribution to .#_, we need the part

2,

of R which behaves as a constant in either or both of the variables k0
HiviHavs 1

0 0 ,0
and k2 as kl’ kz-»oo.
We may simplify matters slightly by using the Landau gauge for the photons

0 —
so that in the limit as kl’ kg —o0 With kl’ l_(’z fixed we need consider only
i, i )
Ri li (where sums from 1 to 3 are implied over i1 and 12). " Actually, it is
1 2
easily verified that gauge dependent terms donot contribute to divergences anyway

because as k? — o0 With 'l_{; fixed

y k’:k;} k v 0 vo
¢ -7\—1;2——’811 gk+(l—7\)g”g )
i
and also

[Xﬁ' m. (%), Xﬁm (Y)] 8(XO - yo) = ¢-number

.m, 0 0
76 ™ e, mm]se’ - v = o,
since
_ G wk(+) (-)
Hy®) = 75 L) gha )
i1 i2 3 3
Considering now Ri i o we first take the derivatives Y T inside

1 "2 ox 1 Vg

the time-ordered product and use the commutation relations

e. m, €. m,

75 ™, 25 ™ )] 6t - 5% = 0

7™ 60, 2 ) 66c” - ¥0) = # g, A x - )
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of the algebra of fields model.21 One obtains

i i
L] . 1 . . 2
_L ay—L< B!ZVRIT{ 0T, S ) ,Zfzm (%5)s Fo. . o) Hwkw)”A)
la

= -(Buy, |T{[a(f m‘(xl)fe o (yl]a(x1 ypf" m’(xz),ﬂz ), HWk(O)§ 4>
+< B‘”le{ zm'(xz)' f7e m (yz)’l:jilm (1), [ f ") Hwk(o)]]s(x(l))s(y (1))} Il A2
¥ (Bl IT { aoﬂfl Ty, Je i), «7;2 m.2) [J:al m. 1) H;vk(o)] 8(”(1))} ‘A >
+ By | { aoﬂil. m.<y1),(zfz' m'(xz),ﬂ m (yz),[f' Mx)) H k(O)] } [ A>

+(BRVE‘T{8 ;(e m. &) 3 gf'm'(yl),fz' (%) fi m.Va) wk(O)}’A>.

The first two of the five terms in this expression will give contributions to
i, i
R, li 2 which are independent of k since the &-functions in Xy
) 1k1(x1 yl)
eliminate the factor e . The last three terms will still contain a kl—

and ¥y will

dependence after the & -functions are integrated out, so we shall assume they
give only finite contributions to the kl momentum integration. In the spirit of

our technique, we could make further partial integrations of derivatives with

i, i
respect to x; ory, to show that these terms give contributions to Ti i going
1 2
at least as fast as 1/(k(1))3 as kg —», Of course, this would be a sufficient,

but not necessary, condition for these terms to be finite.

The term containing

i
P o1
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we recognize from the second order calculation will be cancelled by an appropriate
counter term added to the interaction Hamiltonian to remove the divergent part of
mass renormalizatiop corrections and of electromagnetic renormalization effects
in strong interaction processes, Thus, only the second term will give a divergent

contribution to the k1 integration. The double commutator
i _
1 - T, k(+)
|;7)9.m.(y1)’ [Jfl (xl)’ Hwk( ]] ( )6<y1) =-2—F f (0) £, k (O) ) (Xl) ) (yl)

as in second order has the covariant generalization

Ky vy
g (P11 K Ky

k(+) wk(-)
-2-—= (g (0) (0)5 (x)6(y)
ﬁ k jw ‘Z 1 1

-

1

Under symmetrical k1 integration we may replace

Hi1.%1
v kK 3 H1"1
g -—32 18 ’
ky
h &
so this term effectively contributes to T, ~. ~ (k,, k2) a term
ip iy 1

=ik, (x%5~¥,) i
3y 1 4 4 2V°2 Y2
t3) "k'ifd xzﬁ Ya® (B, ITV; CANTARAN SNC) | 4>
1
This matrix element now has the same structure as the second order radiative

correction. To isolate the divergent contribution to the k2 integration we therefore

repeat that calculatlon a.nd find that the above term's contribution to the covariant
1 1

generalization of T (k k2) is
I ,
3 1 3y 1 [ Ha¥a kgzkzz £
(3) == < fr @8>+ (-3) F (e2%- 252 ) T, , &y
2/l g7 wk % K2 Hovg ' 2
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where

ky(%p=Yg) F& M. B e.m, .
#21’(1{2)— fd fd y2 [B%‘T{aﬁ iy (%5), 9 JVz (yz),Hwk(O);lM

+< B, T {aogﬁém' (%), [(752 ™ (7g)s _HWk(O)] a(yg);

T aogj?:m'(yz), [yj;m'(xz), k(O)] }IA)]

-

We recognize Tf
KoV
order result after the divergent terms were isolated. We have, of course,

(k2) as simply the finite contribution obtained in the second

removed the divergent mass renormalization term in obtaining the above expres-
sion.

We now return to the three terms which gave finite contributions to the k1
integration. We must extract the part of these terms which gives a divergent

contribution to the k2 integration. To do this we take the remaining derivatives

9 and aa in
ot Yop

2 Hy V.
1.1 )
Ky KKy 1y
g - 2 Ry v, i
k1 1712

inside the time-ordered product., In the algebra of fields model
i
.m. 2 .m, 0 0 0 _0\ _
[<7f2 (y2) [je. m. %3 30751 (xl)]] 8 (xz ! ) 5(3’2 - xl) =0

and, using the Jacobi identity twice,

i

J fz ™), [/ez. m. %2); l}/"ﬁ 'lm' (x1), Hwk(o)] ] S(th))‘s(xg )8(y 2 )
A

/: m. (x 1): [{7192. e (yz)’ [‘7;2. m., (x?.)’ Hwk( 0): ] d (Xg) 8<xg>5(yg) ¢
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Using these relations we see that the only terms which lead to a divergent k2

3 ' o8 e. mo i
integration, except the usual one containing [60,7 i x), 4 .. m.(y)] 8(xg - yo),
which is cancelled by the mass renormalization counter term, are those involving

a double commutator

[ 00 [ 021 1] | 315
The remaining terms, which are too numerous to write out explicitly, will still
be dependent on both k1 and k2 after any 0 - functions have been integrated over.
Thus, by assumption, they are the finite contributions to .#,, th;e fourth order
((e2)2) matrix element.
Evaluating the double commutator and replacing it by the covariant form

as before, we may combine the divergent pieces from the last three terms to give

i, i
a contribution to T, 1. 2(1«: , kz) which is
i, i 1
b, v
1,71
(3) = e B N P
2 kg ki Hivq 1

where, again, T‘fl ’ (kl) is the finite part of the second order radiative correction
1”1
given above,

At last, we may put everything together. We define the fourth order radiative

corrected matrix element with the mass renormalization terms removed to be /7..

2
L =3 / d’k 1
2 (27r)4 (k2 +ie )2

the divergent momenftum integral. Then the above calculation yields

~ e4 2 e2 f f
M = L e/{lo+—2-Lu/(1+¢//lz

Also, denote by
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where

M, =  Bly, IHwk(O),A)

is the lowest order matrix element,

. s’
£ je2 atk K2 £
- / ( ¥ &)

1 2 27r)4 k2 + i€ g

is the finite part of the second order matrix element (with T‘fw(k) given above),
and ./ll?f is the finite part of the fourth order matrix element, which we have not

-

exhibited explicitly. Hence we may write

_ .1 2 1 4.2 f o f 6
./tt—./lto+./l7i+ul72+... = <1+2 e L+ ——---—-2,22 e L >(’”0+‘/”1 +./lt2)+ O(e").

We see that through order e4 the matrix element 4 for any semileptonic
or leptonic weak process can be written as a divergent constant factor times a
finite part. The divergent factor can be absorbed into a rescaling of the weak
coupling constant G by defining

12 4

_ 1
GR—G[1+§.G L+-2—'2—2-e

124 O(es)] :

Since the divergent term is the same for all processes, the ratio of the rates for

any two processes, which is a measurable quantity, is finite. Thus, the divergences
are universal and have no observable effects.

A comment concerning our technique is necessary. In order to obtain the
correct covariant amplitude, note that, after extracting Fhe divergent part of the k1
integration, we were careful to construct the covariant generalization with respect
to the indices pu 1 and Y before examining the k2 integration. If we vary only one of

the momenta ki at a time this removes any ambiguities concerning the proper

covariant form.
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It is now clear how to proceed in the case of radiative corrections in an
n

arbitrary order (ez) . Using the Landau gauge for each photon we consider suc-
cessxvely each of the integration variables kl’ ves, k and extract the part of

Hh by I
T : so 0 (k,t-.,
i i i1

to a divergent km sub-integration. As before we remove all terms containing

[,zfm“" 3, 4M >] o - )

since they are cancelled by the mass renormalization counter term. The only

kn) which goes as l/km for each km and thus contributes

terms which will lead to a divergent km integral must contain

[ j;e.m. X, [glmm (ym)’ Hwk(O)]] 8(x3n> 8(ygn> R

which we obtain either directly or by repeated use of the Jacobi identity if Hwk(O)
is contained inside some other commutator. All other terms will still be km—
dependent after any & - functions from equal-time commutators are integrated
out, so by assumption they give only finite contributions to this integration. After
isolating the divergent part in km and evaluating the double commutator, we construct
the covariant generalization with respect to the indices B Ve

We do this for each km from m =1 ton. Consider then a term in which the

above double commutator with Hwk(O) was taken r times, This will contain a factor

4 Ir
[_ 3, / dk __1 _1F
2 (27r)4 (k2+ie)2 _

from the r divergent subintegrations. The matrix element of the object remaining

in the time-ordered product is proportional to

(n - I') u/lf
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2
where ./llfl_r is the finite part of the amplitude to order (¢ ) . Such a term

()= e

different ways. Thus, we have on combining all these terms

can occur in

S N A f
M=y e Lt (.//zos./ﬂ)

n =0 (n—-r)12n_r n-r 0

Therefore, we may write

0 2 2n. n
3 _ e'L e“'L , f 2(n+1))
.//1_.//10+ n_}_:l ,,¢7n_ <1+---—2 Fouo o ><‘/”0+‘/”1+"“ +,//fn)+o(e .

Since this is true for any n,

- 1 2
M = exp(2 e L)..//(f
where
M f: ullf
f n=0 n

is finite. Thus, the weak amplitude containing radiative corrections to all orders
in e2, here denoted by 4 , is simply a divergent constant factor times a finite
matrix element, which is precisely what we need to maintain finite corrections to
universality of the weak coupling constant. We are, of course, working only to
lowest order in the weak coupling constant. |

This concludes the discussion of divergent radiative corrections in the algebra
of fields model except for the question of contact terms in the electromagnetic
interaction Hamiltonian, In the model of Lee and Zumino28 in which the algebra
of fields commutation relations are obtained by imposing a field-current identity,

the Lagrangian density is

=2
e.m.

laa Auy 1 2 a pu Aa
"7 %, G’; *Z Mo ¢a+$m(‘p’ Duq” GMV)
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where

-1 v K
Le.m., -~ "2 avdua“l

is the free electromagnetic field Lagrangian density with .,vl“ (x) as the electro-
magnetic potential, the

¢z(x) a= (1, e 8)

form an octet of fundamental vector fields, éZ‘V is given by
Aa _ Al X bc Ab . Ac;
G, (0 =3, 65(x) - 3, 6, - gof " B,(x)8,(x),

and Qm is the matter field Lagrangian density depending on the hadron and lepton

fields Y(x) and their covariant derivatives
D ¢(x) =3 Y(x)-g,T $a(x) PY(x)
B (N €0 “a 13 _

where Ta is the appropriate internal symmetry matrix for the ¥(x). The indices

a, b, ¢, ... use the conventional SU(3) notation. The electromagnetic interaction

Aaa_ a, e (a3 1 qa
¢u_¢u+g0 (8 +\/§88)ﬂ“(x).

We have for simplicity ignored axial vector field terms as these do not change the

is introduced through

basic argument,
The interaction representation is easily obtained if we choose $?, ,,d“, and
Y as the vasic field variables. Performing a canonical transformation on these

variables

¢ —u"lt) $20 et)
o () —U(8) ot (%) TV

x)— UL () wix) U(E)
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and their canonically conjugate momenta, it is easily verified that the equatiohs

of motion in the interaction representation, which are those obtained from Z(e =0),

are obeyed if we choose 9
-1 (3 [ ™0\(3., .1 .8 "
K, m. = iaOU€t)U (t) = Jd xé-é;> (¢u(x)+ Ve ¢”(X))a¢ (x).

In other words, the Hamiltonian density is

.m,
He. m. (x) = e j: (x)ﬂ“(x)

so there are no contact terms, Note that this result is independent of the specific
nature of the matter Lagrangian density & 'm"

We have just shown that universality of the divergent radiative corrections
in the algebra of fields model is maintained to all orders in ez. We now wish to
consider the model which gave finite g‘esults in second order and extend the dis-

cussion to all orders. Recall that the electromagnetic current in this model is
S = T0) Qa0 - B, etx) - Fx), M)

where q(x), e(x), and 4(x) and the quark, electron and muon fields, respectively,

and the quark charge matrix Qh is

0 0 o -1
Qh = 0 -1 0 or Qh =
0 0 -1 0 0 0 .
- T
The weak current is, with j:’k( ) = (ﬂ: k(+)) )

j“:’k(*)(x) = T A: YL = 75) A +TX) ¥, (L= vg) ex) + % (x) v, (L - ) Ux)
where

+ . : .
Ac = (A +iAy) cos b + (Ay +ir;) sin 6.
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Here 6 is the Cabibbo angle and the A% matrices follow the standard SU(3)
notation, ve(x) and VM(X) are the electron neutrino and muon neutrino fields,
respectively.

These currents satisfy the naive commutation relations

[je ( )’ J"k( )(Y)] S(XO- yo)':[je m.( )’ gok( )(Y)] 5(X - yo)

=+ 2" Sx - y)

[/f M (x), J}Vk(*)(ﬁ]&(xo'y R A L e W s CLICE S

which guaranteed the finiteness of the electromagnetic radiative corrections to
order e2. In considering higher orders we shall also need the commutators

el m.

[gﬁ‘ @), g, (y_)] 5x’ - y')= 0

[/e'm‘< x), ;" m‘(y)] 3" - y°) = -2e 00 8%x - ),

where the axial vector current au(x) is
A, (x) = Tx) QY Y5 AR - TR}, ¥5 e(x) = A=) ¥, V5 M) -

Of course, we are assuming, as before, that the naive commutators are correct
except for possible c-number Schwinger terms which do not contribute to connected
amplitudes.

For spin-1/2 fields with minimal electromagnetic interactions the interaction
Hamiltonian density is simply

ge x) = ejs. m, (x)wlﬂ(x),

i.e., there are no contact terms. Thus, in discussing radiative corrections to
order (e2)n we need to consider the amplitude ulln defined above for the algebra

of fields case. To illustrate we begin with the fourth order corrections as an
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example. The appropriate amplitude ./Il is

[ [t 0 )5 g n, L O -

In the limit as kg, kg——wa we may write, as before,

1k2 PR (ks Ky)— CTRSY,

“1”1“2 2

1' k2’°°

where

-ik.(x,-y,)~ 1k2(x -Y,)
11 Y1 2 Y2
”1 oy 2(kl,kz) ﬁl X ﬁl ylﬁ xzﬁ

af“ Wiq bxg 53%5032" AT SO s CA Y ), B ad0][4>

Again, we use the Landau gauge for the photon propagators so we only need
i, i
consider R 1. 2. First, we take the derivatives with respect to X
h b
the time-ordered product. As this generates a considerable number of terms, we

and ¥y inside

introduce here an abbreviated notation. We suppress the space-time dependence
of the operators inside the time-ordered product and also the equal-time &~
functions multiplying the various commutators. In addition we drop the superscript

(e.m.) on the electromagnetic current. One then has

i i
Py T{(z,fl,g., 2 g }
% V1o 1 i &0 Buk

i i i i1
=T{[g l’a“]il]"zi?-’gz' HWk}+T{7’iz’g2'[J ’[gil' HWk]]}
2l 2, [l 1}
! 11’ i, | & 7 Twk 11’ ip wk

I brh

+ 27T

e e,

. i1 _ i2

) i i o 11 i
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from a straightforward calculation. In obtaining this expression we have used
i, iz

1 %2

to ./llz, so we may symmetrize with respect to X~y and Xy~ Yg¢

the fact that only the part of Ri even under kl-—~ —k1 or kz—-—--k2 contributes

We note that eight types of terms are found. Of these, only the first three
i

contain equal-time commutators involving both of. the currents jl (xl) and 4 l(yl).
Since the & - functions will cancel the factor -1k1(x1—y1)’ these terms will be
independent of k1 and hence lead to divergent k1 subintegrations. These are the
only terms which could give rise to leading divergences, i.e., ones where both
the k1 and k2 integrations diverged, since we could continue to expand the remaining
terms in powers of l/k(l) to show that they lead to a finite k1 integration.

What follows now is a necessarily lengthy argument which shows that, in
fact, all of the divergent contributions cancel in fourth order as they did in second

order. We proceed by considering each of the eight terms in turn. The equal time

commutator in the first term may be evaluated by using the equations of motion

iy 3, (%) = F(x) gx)

i}/‘a“ e(x) = m_ e(x)

19, #(x) = m pex) .
One finds
il .m, 6 0 4 K
[]e.m.(yl)’ aojflm (xl)] 5(x1-y1> = A(X1)5 (X~ ¥;) + B(x)5 yl)a 84(x1-y1)

where

1_ 2 - —
-i—;i— A(xl) = -iq(xl) {Qh, F(xl)} q(xl) + me e(xl)e(xl)+m“ y(xl)/_l(xl)

IR0, ) = W)y () - Ty vy gD + By )y ely) - Blyy) vy, efx,)

+ ﬁ(xl) Y HY1) - H(yq) vy xy)
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As in second order, A(xl) and akBk(xl, yl),when expressed in covariant form,

are cancelled by the counter term which removes the divergent part of lepton

mass renormalization and of all electromagnetic renormalization effects in strong
interaction processes. However, as in that example, the factor 8k84(x1 - yl)

must be taken outside the time-ordered product before the covariant replacement
is made. The added time derivative will produce additional equal-time commutator
terms when it is taken back inside. A straightforward calculation shows that the

resulting contribution to the first term above is

i
. 18 84(}(1) 84(y1) T}Zez (x2)9 Je m. (y2)s Wk(o)}

The commutator in the second term is

[ m s, mco )

L)
12 /wk(+)(0) 7, Do) - 4%‘”“‘*’(0)% o (0): 8%(x) 8°(y,)

-

Bl

We must construct the covariant generalization of this in the usual manner. One

has ey
k
#o M gy O— 2L g g4
k1 ;
i, (-) KK _
lek‘*)( 0FL " ® ¢ - 21 2 iy £ )
1
and, under symmetrical k-integration,
k“k” i
gl.tv g;tv__ 121__._‘31guv.
1 ky
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Thus, the generalization of the right-hand side of the above commutator is

G

The second term therefore contributes

n

i

4 4
The third term requires some care. Since we have not yet let kg—» 0, We

should properly consider

HoVy k:zkvg i e.m e.m 0 _0\/0 0\ _e.m
g - kg T{[f m.U1) [f 1 ), #, '(xzﬂ:,ﬁ(xl-xz)5(y 1"‘2)' 17;;2. °(y2),Hw140)}°

Now the double commutator is easily verified to be

i
[ 0 ™ e ™ )]st

_ k 4. A
= -8 guzkfe.m.(xz) o (x4 x2) 0 (¥4 xz) .

The covariant replacement yields

k 3 e. m.
gpzkfe.m.(XZ 4fy. x2
h o
Thus, the third term's contribution to Ri1 i, is

e.m,

- 12 84(x1 2) 8 (i yo) T /1 (xz), .(yz), Hwk(o)

We now see that the first three terms, after integration over d4x1 and d4y1,
exactly cancel one another so that there are no léading divergences in fourth order,
We now proceed to the non-leading divergences contained in the remaining five

terms.
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The fourth term is easily handled. Using the commutator
.m, .m, 0 0\ _ . k 4
[ffl (%), ﬂfz ("2)]8("1 y xz) =Rk A (x5) 5°(x; - X))
this term may be written as

16 T ;a k(Xg)s a“<y2>, Hwk(O)} 84(x1 - X,) 84(3'1 - Yo+

We note that this time-ordered product has the same structure as the expression
for the second order radiative correction except that electromagnetic current
jﬁ‘ M- s replaced by an axial current of the same form. It is easily verified
that this makes no difference in extracting the divergent part of the kz-integration.
This is apparent from the V-A nature of the weak Hamiltonian. Thus, the divergent
contributions in this expression cancel.

The fifth and sixth terms are best considered together. To extract the
contribution which leads to a divergent momentum subintegration we must now

take the derivatives with respect to X, and Yo in the original expression for
i, i

Ri i 2 inside the time-ordered product. Thus, we must consider
1 "2

0 o 12 1 0
g?g §2—p' [T {Egi]_(xl)’ (le(:xz)]a(xl - xz)’j (yz)’ [j (yl)’ Hwk(o)] 8()’1)}

i

¢ .
| 1
+T aod’gl(xl), [ﬂ l(yl), & 2(y2)]8(y(1) - yg), jiz(yz), Hwk(o)ﬂ.

Taking these derivatives leads to numerous terms, eight of which contribute to

divergent momentum integrations. Using again the abbreviated notation, these
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[[jil’ /iz],[’giz, [ b Hwk]]]+ T{[[ i ] ot ] [/ » Wk”

T{BO(;{ [, 4] ];m;[[; YALY, ][;2, Hwk]}

¥ T:[[Yll 7} aoji 1], aoﬂi 2 oH g e } aojil, [[gil, A [,Ziz, Hwk]]}

+ T{aojil’ [[(Zil’ (712]’ ao(iiz]’ : ' {[[{711’ giz]’ Ejiz; aojil]], HWk} .

It should perhaps be pointed out that in taking the first derivative 3/ ayz 8 inside

the time-ordered product, the terms involving the equal-time commutator

[giz‘y 2)» [Jil(xl)’ /iz(xz)]] () - % Alvz - x3)

i, i
1 %2
Such a term vanishes under symmetrical integration and hence may be dropped.

2

give a contribution to R which goes as a constant times kg as kg——-oo .

By noting that the commutator
e.m, e.m, 0o 0
[f iy, A (xz)]s(’ﬁ - xp)

is antisymmetric under ij~— i, we observe that all of the eight terms cancel in

pairs except the first and the last. These two may be rewritten as
i i
1 1 2
- 5[[41, %) [[f 77 Hwk]] -3 T {[[/ AR H wik

by using the above mentioned antisymmetry and the Jacobi identity. By evaluating

the commutator []1 , (71 ]we obtain the form
1 2

- 4[ak<y2>, [ak<x2), Hwkw)]] (xp vz )
[ak(yz), 3 ak(x2>] 5(x; - y‘z’).Hwk(O)} :
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Once again we note that, except for the axial vector nature of the curfent, these
two terms have the same structure as the divergent contribution found in second
order. Hence, after removal of the mass renormalization contribution, it is
easily verified that they cancel.

Next, consider the seventh term, By noting that
[f‘“" X)), le,gO)]a(x‘l’v)= -2 75—[_7""“*’((»,7‘”“‘ ho)- 7 k‘*’(omw“( ’(0] o4,

we see that the covariant generalization of this term is proportional to

i
m, 2 + +
{aj o ) 2 o) #4500 20)0) - g2 ’(O)y*jv(k’w)} :
i1
1
inside this time-ordered product. The terms which lead to divergent k2 integrations

T'{[fiz» [fiz’ ), fv]]y‘i 7 - fii‘f}
+T{8ufv’[fi2’ [fiz’ﬂ% -‘ﬂf‘i]]}

i

3 I [/2

i
As usual, we must now take the derivatives with respect to x, and Yo in Ri 2

are

AL AT

The appropriate equal-time commutators in the first two terms, and their

respective covariant generalizations,are easily verified to be (using the
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abbreviated notation)
i

sl o sl

- 6(6# 59 fu)
[fiz. [fizs FY A /‘]] =-4(A 7 -7 )
4027 - A7) - - Ao

—-8(A - AL A

where the arrows indicate the covariant generalization. The third term contains

the commutator

[fiz, 3 ,;gz]

which we handle in the usual fashion. After removing the covariant mass renormali-
zation term we recognize that the remaining contribution cancels that of the first
two terms.

Finally, we have the eighth term, whose covariant form with respect to .il is

3 gt 2
T aa/y’ 4 ’fiz’ £ Hwk )

Extracting once again the divergent contribution fo the k2 integration, .we obtain
commutators of the same form as those considered above, It is straightforward
to show that the resulting terms cancel after removal of mass renormalization
contributions,

This concludes the demonstration of the finiteness of the fourth order
radiative corrections in this model. Note that this was done by showing that,

after all the commutators were evaluated, the various terms cancelled precisely
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as they did in the second order calculation. Thus, it becomes obvious that the
result must hold to all orders in e2. The commutators occuring in any higher
order have already been encountered in fourth order. By suitable manipulations
we can reduce them to terms which cancel as in the second order case.

‘This result is hardly surprising. Itisa well-known13 fact that for
M- decay the radiative corrections may be shown to be finite to all orders in ez
by performing a Fierz transformation on the current-current Hamiltonian. What
we have shown is that, with the stated assumptions, the divergent part of the
radiative corrections depepds only on the commutation relations of the currents,
and not on the detailed nature of the particles in the initial and final states or
their strong interactions, if any. Thus, the -decay result must hold for any
leptonic or semileptonic (or non-leptonic, for that matter) weak process in this

model.
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IV, CONCLUSION

The purpose of this work has been to attempt to find models for the hadron
and lepton weak and electromagnetic currents which yield a consistent theory of
radiative corrections to lowest order weak processes. We mean, by consistent,
that divergent momentum integrals do not enter in the calculation of physically
measurable quantities. In the previous section we exhibited two models which
were consistent in this sense, to all orders in e2. One, a quark model with
integrally charged quarks?’ 7 gave finite radiative corrections and another, the
algebra of fields model, contained only an unobservable, universally divergent
factor. We also observed that in theories with g-number Schwinger terms in
the current commutators this consistency condition could not be satisfied. Since
currents constructed from spin-1/2 fields and the algebra of fields model are the
only two simple cases we know of where the Schwinger terms are c-numbers, the
two models mentioned above thus seem to have a special position.

As we mentioned previously, we have not completely solved the consistency
problem with these two examples. We removed divergent contributions to electro-
magnetic mass shifts and to strong coupling constant renormalization by adding a
counter term to the Hamiltonian, It remains to be shown that these terms do not
lead to divergences in the calculation of mass ratios, strong coupling constant
ratios, and, ultimately, the ratio of the strong and electromagnetic coupling
constants to the weak interaction constant G. The simplest way for this to happen

would be for the commutator

[y;m' W), 37 ™ <x)] 5(x° - y))

to be a c-number so that it would not contribute to connected amplitudes, although

34
this is clearly not a necessary condition. It has been noted that in the algebra
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of fields model the above commutator can be made a c-number by taking an appro—
priate limit on the underlying Yang-Mills field theory. In general, however, it

is far from obvious that the commutator could not give rise to unwanted divergences.
Hence, this problem, which is outside the scope of our paper, remains an open
question.

To get as far as we did, it was necessary to make several strong assumptions,
which we must now discuss. We made three assumptions which are all closely
related. These are that the Bjorken expansion was justified, that naive commutators
could be used, and that any divergences in closed loops in the hadron or lepton

""blobs'" could be ignored. Recent invest:igationslrz"19 have shown that if the last

assumption is unjustified, then the first two break down also. Adler and Tung”
considered the "'gluon" model of strong interactions, a renormalizable model with
an SU(3) triplet of spin-1/2 particles bound by the exchange of an SU(3)-singlet
massive vector particle. They considered the current-fermion scattering amplitude
to second order in the giuon—fermion coupling constant g. They showed that as the

current momentum k_—-, the coefficient of 1/k0 was not that obtained by cal-

0
culating the naive commutator in the Bjorken expansion, but that it contained a
correction term of order gz. Furthermore the amplitude contained a term going
as (In k'z)/kﬁ, so that the expansion would not be valid to order 1/k?).

Both of these effects have their origin in primitively divergent subgraphs
which 'appear in the perturbation expansion of the iﬁteraction, as was emphazised
more recently by Tung. 19 The divergent integrals are made finite by the usual
regulator technique, but as the regulator masses are let to approach infinity,
additional contributions are picked up which imply that naive use of equations of

motion and canonical commutators is no longer justified. Also, whenever therc

2
are logarithmic divergences, fn k0 terms will always occur. Since there are
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divergent graphs in almost any non-trivial strong interaction model, it appears
that all three of the above assumptions break down in perturbation theory.

Thus, if we are to maintain the assumptions, we must suppose that the
perturbation calculations are misleading and that the exact theory must somehow
be more convergent than individual terms in the series expansion. It turns out
in all of these examples that the commutators of the time components of the currents
are unchanged simply because of current conservation. This suggests that what
is needed to make the naive commutation relations also hold for ‘the space-space
commutators is some analogous smoothness condition involving time derivatives
of the spatial components of currents.

One might speculate that perhaps the Bjorken expansion is justified but the
use of naive commutators is not. However, if this were the case, it is very dif-
ficult to see how universality of the divergent radiative corrections could be main-
tained because we do not expect the commutators of the lepton currents to be
modified, except perhaps by higher order weak interactions, which is a whole new
subject.

Most of the above comments have been made with reference to the current
model with spin-1/2 fields. However, for the algebra of fields model things are
no better., Behind the facade of simple current commutation relations lurks a
non-renormalizable theory of matter. We do not know how to interpret a pertur-
bation expansion of such a theory so the question of the validity of the naive com-
mutators is completely open in this case.

This brings us naturally to a discussion of the use of the Bjorken expansion
in analyzing divergences in non-renormalizable field theories. A concrete
example would be higher order weak corrections. Having seen our partial success

in handling divergences in electromagnetic radiative corrections, one might suppose
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that at least the leading divergences to each order in the weak couphﬁg constant
could be shown to contribute only to an overall coupling constant renormalization
plus mass shift terms. Unfortunately, there is a serious question of principle in
applying the non-covariant expansion procedure. In order to avoid possible
ambiguities in making the covariant generalization, we must let only one loop
momentum approach infinity at a time, holding all others fixed. For this to be
justified, free translations of the origin of the momentum integrais must be
permitted. However, it is well kn‘own35 that this is true only if-the integrals

are no worse than logarithmically divergent.

The attendant difficulties may be illustrated by considering second order
weak corrections to the electromagnetic vertex of a particle in a W-boson theory
of weak interactions. A naive application of the technique used in this paper seems
to give quadratically divergent corrections. However, a Feynman diagram cal-
culation shows that the quadratically divergent terms cancel, as they must because
of the Ward ideni:il:y.36 bThe discrepancy is due to an unjustified translation of the
momentum loop integration variable, Thus, greater care must be exercised in
using the Bjorken expansion when higher than logarithmic divergences occur, to
insure that the Ward identity holds. This problem is as yet unresolved. Hence,
the divergences in higher order weak interactions are another open question. Of
course, this is hardly a new state of affairs,

Our main concern here has been with the divergences occurring in the
calculation of radiative corrections. Ultimately, having shown that divergences
are either universal or are not present at all, we would like to calculate the finite
parts of the corrections to test quantitatively the hypothesis of universality1 of the
weak interaction coupling. Unfortunately, in the absence of a more detailed theory

of strong interactions than we now have, only crude estimates can be made. The
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fact that such est;imatess’ 20 of finite contributions are in rough agreement with
experiment is the main motivation for attempting to show that divergences are
absent order by order in ez. Of course, it is also possible that the divergences
are only a property of the perturbation expansion and do not occur in the exact
theory. Another way out is to assume the existence of negative metric si:a.taes,37
We have shown here that a more conventional solution to the problem of divergences
can be found consistent with the restrictions of current algebra. However, the
justification of our various assumptions awaits, on the one hand, further develop-
ments in the theory of strong interactions, and, on the other, a\:'satisfactory

theory of higher order weak interactions. These two problems may well be

related.
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APPENDIX

In the main text we considered various matrix elements between particle
states of a time-ordered product of the weak Hamiltonian density and several
electromagnetic currents, We wish here to give a discussion of external line
wave function renormalization contributions to divergent radiative corrections.
To do this we must start with the usual perturbation expansion24 obtained from
. the reduction formula, In the weak process A—Bfv 9 let all particles be spinless,
for simplicity, since this does not affect the argument., The matrix element 0
for this process, to lowest order in G and zeroth ordef in e2, is
~-1/2 fd 4u e. -ip A% + 1pBuz + ipllu3 + ipvlu 4

i

4
7
i=1

_ AB!VI)
./to-(z z2 % Z

% Du Du2 Du Du ‘90(“1’ Yo» Ugs u4)

1 3 4
where
3 2
D E ————— +m etc.
A’ ]
ol 31.{'1‘ aulu
and

Bty Uy, g, 1) = <OJT{ oA wy), 6By, o, ¢ Ky, B |0
Here the ¢'s are the fields of the respective particles, which for the case of
hadrons obey the exact strong interaction equations of motion., The Z's are the
appropriate wave _function renormalization constants. The matrix element Jln
which gives the order (e2)n radiative corrections to .//lo is given by a similar

expression with 90 replaced by

. 2n 2n :
~ie 4
Qn(ul, u,, Ug, u4) = L@)l-)'_ 11=,71 fd X (0|T{He. m.(xl)’ cees He.m.(x2n)’

14
4wy, 6By, g, o Auy, 1 (0)]]0>
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where
e‘ m'

m 0 = e T )

since, again for simplicity, we ignore possible contact terms in He m (x).
The wave function renormalization constants Z are determined from the
exact particle propagators by going to the mass shell, For example, if SF (p A)

is the exact propagator for particle A, then

A
(pA) 2 2 Zz — -
Pa—T, Dy-mytie

1
SFA(p A) has the perturbation expansion

2n 2n -ip
‘A & "le f A 1
S = d d
F a) Eo (Zn)t 117 Jo S

x<olT{H, k), e B G0, 68, 640 [0

To calculate the divergent contributions to ZA we first contract the d“(x)'s in

He m (x) to form n photon propagators. We then extract the part of the remaining
o . 2

time-ordered product which goes as (l/k?) as k?—- « for each loop momentum ki'

The divergent contributions come from double commutators of the form

[fj’m' ) [/‘;.m. (x), ¢A<u>]] s(x° - u’) a(y” - u,

or in constructing the covariant generalization of

€. m,

[]e L) 3y 7 (x)] 5(x’ - y)

if it contains operator Schwinger terms.
Since for the propagator we are interested only in the divergent contributions

to ZA , we may assume that the double commutator is proportional to qSA(u), i.e.,

[/e ™ ), [/’é.m.@% ¢A<u)]] s’ -u")5(y%-u") = @ 64w Sx-w Sy - w)
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for some constant a. Furthermore, in calculating ./Iln , any other terms in the
double commutator will not give a pole in the external line momentum and hence
will not contribute to the on-mass-shell amplitude. It is also easily verified

that, in any of the models we have considered, any additional equal-time com-
mutators which arise in making the mass shift term covariant are also proportional
to ¢A.

The divergent contribution to ZA we denote by Zg.iv.’ It may now be expressed
as a power series in e2 with divergent coefficients. These terms come from
equal-time commutators with both ¢A(u1) and ¢A(O) in the time-ordered product.
By considering all possible combinations of such commutators it is easily seen
that we may write Zgiv. as(‘/iji;.)z, where the power series for \/Z_‘(?l_'v. has
coefficients which are obtained by including the commutators with only one of the
two ¢A, say ¢A(u1).

A similar argument holds when we consider ./fln. There will now be additional
divergent contributions to the various photon loop momenta involving equal-time
commutators with the fields for the external particles. As in the single particle
propagator example, when we sum over all orders these additional terms will
factor out to give a contribution of \/Zj‘; _ for each particle. These terms are
then cancelled by the divergent part of the 1/ \/7 appearing in the reduc;:ion
formula.

Having removed these divergent contributions, it is now presumably safe
to reverse the procedure for obtaining the reduction formula and put the external
particles into in~ and out-states. We thus obtain an expression which is the same
as that used in the main text except for certain finite electrpmagnetic corrections
to the wave function renormalization constants. These clearly do not affect any

of our arguments since we are not interested in the details of the finite parts.

- 175 -



FOOTNOTES

(1) The use of the Bjorken expansion for time-ordered products of an arbitrary
number of currents has been studied in a different context by P. Olesen (Ref. 16).
(2) This example was discussed briefly by A. Sirlin (Ref. 11).

(3) An implicit assumption of the model is that F(x) is free of operator derivatives.
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