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Abstract: The thermodynamics of black holes (BHs) and their corrections have become a hot topic in
the study of gravitational physics, with significant progress made in recent decades. In this paper, we
study the thermodynamics and corrections of spherically symmetric BHs in models f(R) = R + aR?
and f(R) = R +27v/R + 8A under the f(R) theory, which includes the electrodynamic field and the
cosmological constant. Considering thermal fluctuations around equilibrium states, we find that,
for both f(R) models, the corrected entropy is meaningful in the case of a negative cosmological
constant (anti-de Sitter-RN spacetime) with A = —1. It is shown that when the BHs’ horizon radius
is small, thermal fluctuations have a more significant effect on the corrected entropy. Using the
corrected entropy, we derive expressions for the relevant corrected thermodynamic quantities (such
as Helmholtz free energy, internal energy, Gibbs free energy, and specific heat) and calculate the effects
of the correction terms. The results indicate that the corrections to Helmholtz free energy and Gibbs
free energy, caused by thermal fluctuations, are remarkable for small BHs. In addition, we explore the
stability of BHs using specific heat. The study reveals that the corrected BH thermodynamics exhibit
locally stable for both models, and corrected systems undergo a Hawking—Page phase transition.
Considering the requirement on the non-negative volume of BHs, we also investigate the constraint
on the EH radius of BHs.

Keywords: f(R) theory; corrected entropy; corrected black hole thermodynamics; stability

1. Introduction

The essence of general relativity (GR) is a theory of gravity in the framework of
relativity. It is an inevitable result of the development of Newton's gravity theory and
special relativity (SR). In 1687, Newton proposed the first complete theory of gravity,
the law of universal gravitation, based on the research of Kepler, Galileo, and others.
This is a successful theory that applied to the motion of low-speed objects in a weak
gravitational field. In subsequent research, it was found that Newton's theory of gravity
has some problems [1,2], e.g., the equivalent problem between the gravitational mass
and the inertial mass, the Neumann—Zeiliger paradox, and the theoretical explanation for
the precession of Mercury’s perihelion. In addition, in special relativity, the covariance
of physical laws needs to be limited in the inertial reference frame, i.e., the principle
of relativity, reflecting the special status of the inertial reference frame. To address the
aforementioned issues, in 1915, Einstein established the theory of general relativity based
on the equivalence principle and the general covariance principle. Since its proposal,

GR has received widespread attention and has been supported by many experimental
observations, such as the precession of Mercury’s perihelion [3,4], gravitational lensing [5],
test for equivalence principle [6], gravitational deflection of light [7], direct images of the
BH shadows from the Event Horizon Telescope group [8,9]. Especially in recent years,
gravitational waves, predicted by GR, were also confirmed by the LIGO-Virgo collaborative
experiment [10,11].

Furthermore, GR also faces some challenges, e.g., issues on the inflation in the early
40/). universe [12], accelerated expansion or dark energy in the late universe [13,14], dark matter
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problem [15], and quantization of gravity [16]. Therefore, there are some alternative and
extended theories on GR, such as the f(R) theory (R is the Ricci scalar) [16-18], f(R, T)
theory, (where T is the trace of the energy-momentum tensor) [19-22], f(G) theory (G is
the Gauss—Bonnet invariant) [23,24]. In particular, the f(R)-modified gravity theory has
received much attention from researchers in recent decades. Within the framework of this
theory, scholars have explored issues such as early universe inflation [25,26], gravitational
wave physics [27,28], the stability of BHs [29,30], and others.

Regarding the study of f(R) gravity, a large number of theoretical models have been
established [31-34]. Here, we focus on two representative models. One is the first feasible
cosmological inflation model f(R) = R + aR?, established by Starobinsky in 1980, which
explains the early inflation of the universe from a phenomenological perspective [26].
Extensive research has been conducted within the framework of this theoretical model,
such as the properties of the universe in the Palatini formalism [35,36], black bounce
solution [37] and the astronomical observation constraints [38]. Another model is denoted
as f(R) = R+ 27V R + 8A (A is the cosmological constant) [39]. Reference [39] explored
the thermodynamic properties of BHs under these two f(R) models and the equivalence of
thermodynamic quantities in Jordan and Einstein frames.

Since the pioneering work of Bekenstein and Hawking, the study of the thermo-
dynamics of BHs has flourished as an important area of research in modern physics.
The thermodynamic properties of BHs are usually manifested through the behavior of en-
tropy, temperature, and other thermodynamic variables. The thermodynamics of different
types of BHs have been considered and extensively studied by researchers from different
perspectives, such as three-dimensional charged BHs [40,41], anti-de Sitter BHs [42,43],
spherically symmetric charged BHs [44], and others [45-52].

According to quantum mechanics, Hawking radiation (HR) can occur for BHs [53,54]. Be-
cause of HR, BHs shrink in size, which may lead to evaporation [55,56]. Further, the evapo-
ration of BHs may leave observational signatures [57,58], and the study on the experimental
observations of HR are available in the literature [59]. Considering quantum effects, a good
way to investigate BHs is to explore their thermal fluctuations [60-63], which can help us
understand the microscopic origin of entropy [64]. In general, entropy correction is impor-
tant when the size of a BH is reduced by HR and its temperature is increased [56], which is
useful for solving questions on the quantum fluctuations associated with the study of BH
thermodynamics [65]. The logarithmic correction is a widely accepted correction form of
BH entropy [66—71], which could be interpreted as a quantum effect [72,73], coming from
thermal fluctuations and yielding to the modification of the holographic principle [74,75].
In particular, the logarithmic correction of entropy is indeed important when the BH is
small; for large BHs, the correction can be ignored, as the thermal fluctuations may not
occur in it [65]. As a perturbation correction, it is thought that it can be used to test quantum
gravity [76-80], so it makes sense to explore the correction entropy of BHs under different
theoretical models. In recent years, more and more attention has been paid to the study of
corrected BH thermodynamics. The study of thermodynamics in the presence of correction
terms can provide important information about the relevant properties of BHs. Corrections
to BH thermodynamics have been widely explored, including rotating and charged BTZ
BHs [81], massive BHs in AdS space [82,83], Godel BHs [84], and expanding BHs [85].

In this paper, we consider relevant issues to corrected thermodynamics of static
spherically symmetric BHs under the f(R) gravity theory, in the presence of small thermal
fluctuations around the equilibrium point. This paper is organized as follows. In Section 2,
in the framework of the f(R)-modified theory containing the electrodynamic field and the
cosmological constant, we briefly summarize two representative gravitational models and
present the fundamental thermodynamic quantities of their static spherically symmetric
BH solutions. The corrected entropy and corrected thermodynamics of BHs under both f(R)
models are studied in Section 3. Section 4 outlines the conclusion. In this paper, the Planck
units (fundamental constants) i = kg = G = ¢ = 1 are used.
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2. Thermodynamics of Spherically Symmetric BHs in f(R) Gravity Theory with
Electrodynamic Field and Cosmological Constant

In this section, we begin with a brief description of the basic equations in the framework
of the f(R) gravity theory containing the cosmological constant and the electrodynamic field.
In absence of ordinary matter, the action of a system is written as [16,39,44,86,87]:

Here, S, is the four-dimensional gravitational action in the f(R) theory:

5= 5 [ dxy/glf(R) - A, @

where A is the cosmological constant [86,87], and it realizes the accelerated expansion of
universe, which is required by the cosmic observations. R is the Ricci scalar, ¥ = 871G (G is
Newton'’s gravitational constant), g is the determinant of the metric tensor g, and f(R) is
an arbitrarily differentiable function of R. The electrodynamic action S, ;. is [39,44]:

1 1
Se.m. = **Fz = 5

5 ZFWF”V, 3)

where F,, = 2A[, ) is the anti-symmetric electromagnetic tensor and Ay, is the 1-form gauge

potential [88,89]. The square bracket denotes anti-symmetrization, i.e., A[y,v] = %(A w — Ay,y),
and the comma stands for the ordinary differentiation. The variation of action (1) relative to
guv and the electromagnetic field strength F, respectively, provide the following [39,44,90]:

1
R;u/fR - Egyvf<R) - 28;11//\ +g‘uv|:|fR - v‘uvv R — KT;W =0, 4)

o (v/—gF") =0, 5)

where fr = %. T,y defines the traceless energy—-momentum tensor of the electrodynamic
field, as follows:

1 0 1 5
Tyw = §(2gngv FZ - Egyvl: )- (6)
The trace of Equation (4) is
Rfr —2f(R) —8A +30fg = 0. (7)

Next, we study the relevant thermodynamic quantities in their corresponding BH systems
under two specific f(R) theoretical models.

2.1. Model I: f(R) = R + aR?

The spacetime line element of the static spherical symmetry can be written as

dr?
Ny (r)

ds*> = —Ny(r)dt* + + 12 (d92 + sin? 9d¢2> . 8)
One should notice that, in many solutions to gravitational field equations, the form of
the metric is highly constrained by symmetry and the energy—-momentum content of
spacetime [1]. As stated in [44], the reason to consider the form of metric (8) is to be able to
find an exact solution for the model in the framework of the f(R) theory, since other forms
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of metric make the field equations very complicated and not easy to solve. Consider the
f(R) gravity model as [26]

f(R) = R+ aR? ©9)

with model parameter a. Equations (4)-(8) can be solved to provide the following [39,91]:

2M;  2Ar? 2
1 i q

r 3 022’ (19

where M is the mass of BH, g is the charge, and (2 = /1 — 16aA. This solution corresponds
to a constant Ricci scalar: R = —8A. For A > 0 (de Sitter—Reissner-Nordstrdm spacetime),
to ensure that the theoretical model (9) satisfies the stability and the ghost-free constraints,
the range of « is limited to 0 < & < 16% ; for A < 0 (anti-de Sitter—Reissner—-Nordstrém
spacetime), we have & < 0 [39].

With this model (9), applying N;(r;) = 0 yields the BH event horizon (EH) radius
as a function of the total mass contained within the EH (or called the geometrical mass),
as follows:

_ (3+ 2Ari)02ri + 342

= 11
my 6QZT’+ ( )

Next, we introduce the relevant thermodynamic quantities in this model, such as the
Bekenstein-Hawking entropy and the Hawking temperature. In f(R) gravity, the Bekenstein—
Hawking entropy is defined as [92]

S = % frA, (12)

where A is the area of the event horizon of a BH. For obtaining a solution (10), the entropy
of a BH is

S; = (1 —16aA)mr?. (13)

It can be seen that when « = 0, the above equation degenerates to the corresponding form
in GR. At the EH, the Hawking temperature of a BH Ty is expressed as [93]

1
Ty = HN{ (r+), (14)

where "/" denotes the derivative with respect to the radial coordinate. Substituting the
solution (10) into Equation (14), the Hawking temperature of the BH for this f(R) model is
obtained [39],

(14 2Ar%) %% — ¢?
470273, '

T = (15)

The specific heat of a BH at the EH is one of the physical quantities that responds to
its thermodynamic stability. Using the entropy (13) and the Hawking temperature (15),
the specific heat can be given as

dSy 2l O (g? 4+ 173 (1421 A)O?)
ATy 32 +7r2(=1+2r3A) Q2

(16)
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U, = H; — PV

As a state function, free energy describes the possible amount of energy present for doing
work [94]. Based on the entropy (13) and Hawking temperature (15), the specific form of
the Helmholtz free energy can be found as [81]

— _ 3¢ 1 2\ 2
F = —/sldTHl vl (—3+2Ar+)0 . 17)
In addition, enthalpy energy can also be written in terms of entropy and the Hawking
temperature:

7 1 2\ 2
Hy = /TH1d51 = gt (3+2Ar+>0 . (18)
In the study of BH thermodynamics, the variation of the cosmological constant A was
considered [95]. Reference [96] provides the physical interpretation of A as pressure and
defines the pressure as

A
P= ~ar (19)

The enthalpy (18) can be rewritten according to the pressure (19) as follows:

¢ 1
o (3 - 16Pnri) (1+128Pma). (20)

Hy = -
Y72 e

The conjugate quantity to the pressure is the volume [97]; the volume of this thermodynamic
system can be calculated as

dH,

Vi="ap

= 6477 o — gnri(l 4 256P7ta). (21)
From the thermodynamic quantities derived above, we can calculate the internal energy
and Gibbs free energy of the BH. According to Equations (18)—(21), we can obtain the
expression for internal energy as follows:

2

1
— T eaPrra+ SPr (14 256Pma) — r(3423A) (<14 16an). (22)
27‘+ 3 6

In thermodynamics, Gibbs free energy measures the maximum value of mechanical work [94].
With the help of the Helmholtz free energy (17), pressure (19) and volume (21) given above,
we can carry out a calculation to obtain Gibbs free energy as follows:

2
1
Gi=F +PV; = iri + % —dryal - 2r. (16P7 4 A)(1+256P7a — 16aA).  (23)
+

2.2. Model II: f(R) = R+2yV/R+8A

In this subsection, we consider the static spherically symmetric metric and the f(R)
model, respectively, as follows [39]:

2

N (r)

ds? = —Ny(r)df + + 7267 + sin? 0d¢? ), (24)

F(R) = R+2yVR + 8A, (25)
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where 7 is a nonzero constant in the model, and A is the cosmological constant [39,44].
Under the line element (24), reference [39] was used to calculate and provide the solution
in the following form:

1 2M, 2Ar* g2
Nz(T)IE*T+ 3 (sz

(26)

where the mass of a BH M, = — ¢ with a constant parameter ¢;. To be consistent with
the description in [39], one can take c; = 1 for simplicity. Thus, the parameter 7y will be
restricted to negative value. Following reference [38], in contrast to the earlier study [39],
the charge g associated with the current solution does not depend on the model parameter
7. Based on the stability conditions, the range of the parameter v is given as follows [39]:
¥ < 0. Since the parameter vy # 0, the solution cannot be returned to the corresponding
form in GR. Additionally, in this spacetime geometry, the Ricci scalar is not constant:
R=-8A+ %2 The application of this model in cosmology can be found in reference [98].
For the relevant studies on BHs in this kind of f(R) model, one can see [99-101], where
exact black hole solutions were provided along with methods to probe the physics of the
non-linearity of f(R).

In this model, we also calculate the horizon mass, Bekenstein-Hawking entropy,
Hawking temperature, specific heat, Helmholtz free energy, enthalpy, volume, internal
energy, and Gibbs free energy of the horizon, as follows:

607+ 33 +4Art

my or, , (27)
Sy =i (147ry), (28)
2 4 2
AN 2
Ty = £ 20 =20 (29)

3
87ra.

c nrk (24 3r.y) (—29% + 15 + 4r4A) 30)
2T 6q7 — 12 +4rt A /

1{ 642 r2 4r3 A
B2, ¢ —rtyA —6g>ylog(ry) |, 31)
8 r4 2 3
1( 402 3y | 8riA
Hy— = 21 fop, 4207 O 3rt YA — 692y log(ry) |, (32)
8 r4+ 2 3
1 6477.'7"3_ 4
Vo==|— —24nriy |, (33)
8 3
1 (847 2
U, = 6l + 74 (44 3r1y) — 124%ylog(ry) ), (34)

1
Gy = 57+ (6 +3r47 — 1847 (24 147) + 85 A+ 12717/\)' (35)
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3. Corrected Thermodynamics of Spherically Symmetric BHs in the Framework of
f(R)-Modified Theory
3.1. Corrected Entropy of Black Holes

In this section, we explore entropy correction caused by small thermal fluctuations
around the equilibrium state. To calculate the corrected entropy, the partition function of
the canonical ensemble is usually defined as

2(8) = [ p(E)ePEaE, (36)

where f = % for a given partition function. The density of states p(E) can be calculated
through the inverse Laplace transform of (36):

where
S(B) =InZ(B) + BE, (38)

is the exact entropy of a BH. This exact entropy, associated with temperature, is the sum of
the entropies of all individual subsystems. To study the effect of thermal fluctuations on
entropy, we perform a Taylor expansion of S(B) around the equilibrium point 8 = Bo:

2
S(B) = So + ;(ﬁ—ﬁo)zgﬁg +.. (39)

B=Po

where Sy is the Bekenstein-Hawking entropy. Substituting Equation (39) into Equation (37),
we get

2
50 rBotico [%(ﬁ—ﬁo)zgﬁ% }
= — B=B
o(E) = o /ﬁo_m e o) dp. (40)
A further derivation of Equation (40) yields
50
p(E) = ————=, (41)
225
9B 1 p=po

and the corrected entropy caused by thermal fluctuations is expressed as

2
S$(B) = Inp(E) = So — ;lngﬁi - o (42)

Here, we consider neglecting higher-order correction terms. Equation (42) can play a
significant role for thermodynamic systems (e.g., BH systems) [94]. To further simplify the
above formula, following the method shown in refs. [94,102-105], with which we can obtain

028
35 = ST (43)

B=Po

with a parameterized form of the entropy function [102,103]:

S(B) =ap™ +bp™", (44)
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— a=0, A=0
— a=0.01, A=1
— a=0.03, A=1

a=0.05, A=1

where all the constants satisfy m,n,a4,b > 0, and m = 1, n = 1 can be taken as a special
example. Thus, the corrected entropy of a BH in this case is expressed as

Se =Sy — %m SoTH>. (45)
For the two classes of f(R) models considered in this paper, f(R) = R + aR? and

f(R) = R+ 2yV/R + 8A, the specific forms of the corresponding BH corrected entropies
are written, respectively, as follows:

1. (O =2 (1422 A)0?)?
Se1 = Q*rr? — 2 ln< + + , (46)
2 167tQ4rd
2
1, ((A+rey) (29> 472 + 44 A)
Sop = (14riy)mry? — = ln< ) (47)
2 64mrt

Based on Equations (13), (28), (46) and (47), we plot entropy as a function of the
horizon radius for the two f(R) models in Figure 1, where A > 0, A < 0 are considered
to plot pictures, respectively. As an example, the values of model parameters are taken
as A =1 (or —1) and g = 0.5. As can be seen from Figure 1 (upper), for the case of A =1,
in order to ensure that the logarithmic function is meaningful, it is clearly necessary to

2_42 1+2r2 A)O? 2 14r ) 2+}’2 +4r4 A 2
e - itd) >0forModeIIand( +1) (=29 AL )
16TQ2*r% st

Model 1I, which result in the localized divergence of the corrected entropy. In addition,
consider that the corrected entropy is given based on a series expansion and associated
with small thermal fluctuations, which leads to the corrected entropy only applying to a
specific r; range. This further puts a tight restriction on 7, and BHs. For the case A = —1,
we see from the figure that the corrected entropy reflects a correction that is small relative to
the Bekenstein-Hawking entropy and does not diverge. It seems that for both f(R) models,
the corrected entropy is meaningful for case of negative cosmological constant (anti-de
Sitter-RN spacetime) with A = —1. Moreover, it is shown that when the BHs” horizon
radius is small, thermal fluctuations have a more significant effect on the corrected entropy.
Also, from Figure 1 (lower), we can observe that compared to the Bekenstein-Hawking
entropy, the corrected entropy for two models with parameter A = —1 contains richer
physical information, where, at the location of the small r, the negative corrected entropy
can be emerged, which corresponds to a repulsive effect of gravity via the negative effective
Newtonian gravitational constant.

> 0 for

02
require that the

f(R)=R+2y /(R +8 /)

f(R)=R+aR?

T

Sc2
N

0.6 0.8 1.0 1.2

Figure 1. Cont.
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f(R)=R+aR? f(R)=R+2y /(R +8 1)

10

— =0, A=0
— =0.01, A=—1
— =003, A=—1 |  2F

a=0.05, A=-1 |

0.5

Iy I+

Figure 1. Variation of entropy with the horizon radius for two classes of spherically symmetric BH
solutions in the f(R) theory. The dashed line represents the Bekenstein-Hawking entropy, and the
solid line represents the corrected entropy. In the upper pictures, A = 1; in the lower pictures,
A = —1. For both models, we set g = 0.5. The blue curve in the left panel represents the result for the
RN BH in GR.

3.2. Corrected Thermodynamics of Black Holes

In this section, we explore the corrected thermodynamics of BHs under the two classes
of f(R) models considered above. We investigate the effect of small thermal fluctuations
on the correction of thermodynamic quantities such as internal energy, entropy, enthalpy,
Helmbholtz free energy, pressure, specific heat, and Gibbs free energy by comparing the
behavior of the original and corrected thermodynamic quantities. As shown in the figure
above, considering that it is more meaningful for the corrected entropy of the two f(R)
models in the case of A = —1, we plot the pictures of the corrected thermodynamic
quantities by choosing A = —1 for discussion in the following section.

3.2.1. Model I: f(R) = R + aR?

First, we calculate the corrected enthalpy, Helmholtz free energy, volume, and internal en-
ergy. By substituting the Hawking temperature (15) and the corrected Bekenstein entropy (46)
into Equations (17) and (18), we obtain the corrected enthalpy and the corrected Helmholtz
free energy as follows:

2 2
1
—5r +2r+A—3r§‘zW—§m+(3+2Ar%r)Qz
Hy = — 7o , (48)
Fq =————— |4¢* — 45 AO* + 187192 O — 6r O (4A — mQ? ) —
cl 24m3+02{‘7 + 77y + ( ) )
2 2 2 4
2 _ 2 2\ 2 >+ 75 (1+2A75)0
3(q —r+(1 +2Ar+>Q )ln< Torrd (2 .

Using Equations (17), (18), (48) and (49), we plot the variation of enthalpy and
Helmholtz free energy with the horizon radius for the BH in this model in Figure 2.
From Figure 2 (left), we find that when the BH'’s radius is larger, the corrected enthalpy
decreases, which corresponds to an exothermic reaction. According to Figure 2 (right), it
can be seen that as the value of parameter & decreases, the value of F,; decreases, which
means that the system under consideration changes towards equilibrium. Thus, we cannot
extract more work from it.
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0.5

1.0

1.5 2.0 25 3.0 0.0 0.5 1.0 1.5 2.0 25 3.0

Iy Iy

Figure 2. The variation of enthalpy and Helmholtz free energy with the BH’s horizon radius r for
the solution of a BH (10) in the f(R) theory. The dashed line represents the thermodynamic quantities
without correction terms, and the solid line represents the corrected thermodynamic quantities.
The parameter is taken as g4 = 0.5. The blue curve represents the results for the RN BHs in GR.

Combining Equations (19) and (48), we obtain the corrected volume as

Vo = 8ry (1+87a) — 647’ ~ 803 (1 4 256P 7). (50)
‘ 33 (1+128Pma)2 3

Internal energy, as a state function, has a profound significance in thermodynamics. It
represents the total energy of the basic structure of a thermodynamic system, which is the
sum of the kinetic energy generated by the motion of the particles and the potential energy
generated due to the specific structure of these particles [81]. Combining the corrected
enthalpy (48) and the corrected volume (50), we can obtain the corrected internal energy as

_1 _ 2 _ 2 22  OA 2 2
uc1_6r+<1ep( 3+ 7( —24a) ) +4096P 72— 2 + (3423 A)0 3
7> 128Pa 1 (1)
+ (3 + :
6r>\" " (1+128Pma)?  m—16maA

According to Equations (21), (22), (50) and (51), the variation of volume and internal
energy with 7, are shown in Figure 3. From Figure 3 (right), it can be observed that the
uncorrected internal energy is negative, whereas the corrected internal energy shows ranges
of positive values, indicating that BHs absorb heat from the surrounding environment.
Based on the thermodynamic quantities plotted in Figure 3, it is easy to see that for the
corrected volume and internal energy, the correction effect caused by thermal fluctuations
is more significant for case of the small horizon radius. Considering that the volume needs
to be non-negative, it is shown in Figure 3 that this further gives more stringent constraint
for the type of black hole, e.g., the requirement on the size of EH'’s radius. For our chosen
parameter values, « = 0.01,4 = 0.5, and A = —1, a non-negative volume corresponds to
0.256 < ry < 0.949.

Based on thermodynamic stability, we can know how a system in thermodynamic
equilibrium responds to fluctuations in energy, temperature, and other thermodynamic
quantities. Stability can be categorized into global stability and local stability. In global
stability, we allow the system, which is in equilibrium with a thermodynamic reservoir,
to exchange energy with the reservoir. The minimum stage of Gibbs free energy represents
the preferred stage of the system [97,106-109]. By substituting the corrected Helmholtz free
energy (49) and the corrected volume (50) into Equation (23), we obtain the corrected Gibbs
free energy as follows:
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4 2
G = P<8r+(1 +87a) — 64qw - 8nri(1+256pmx)>

+ | (49 — 4§ AQH+
373 (1+128Pmtw) 3 24707302 [( i *

(52)

2 2 2 2\2
187972 02 — 6r4 02 (48 — 70?) = 3(% = 72 (1423 0) O?) ln< (@ r*f;;f;gl\)ﬂ ) N .
+

Based on the above equation, we plot the variation of the Gibbs free energy of the
BH’s horizon radius in Figure 4. Positive Gibbs free energy indicates that non-spontaneous
reactions are occurring inside the BH. This means that the system requires more energy to
reach an equilibrium position [110]. In Figure 4, it can be observed that the uncorrected
Gibbs free energy is always positive, while the corrected Gibbs free energy can be negative
for the small BH.

101 . 4 T

[ — a=0, A\=0
— @=0.01, A=—1
— @=0.03, A=—1 |
—— =0.05, A=—1

3.0

Figure 3. The variation of volume and internal energy with the BH’s horizon radius r for the
solution of a BH (10) in the f(R) theory. The dashed line represents the thermodynamic quantities
without correction terms, and the solid line represents the corrected thermodynamic quantities.
The parameter is taken as g4 = 0.5. The blue curve represents the result for the RN BH in GR.
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Figure 4. The variation of the Gibbs free energy with the BH'’s horizon radius r for the solution of
a BH (10) in the f(R) theory. The dashed line represents the Gibbs free energy without correction
terms, and the solid line represents the corrected Gibbs free energy. The parameter is taken as g = 0.5.
The blue curve represents the result for the RN BH in GR.

In the canonical ensemble, the local stability of a thermodynamic system can be
studied through specific heat. Specific heat contains critical information about the thermal
structure of a BH. Its sign determines whether the system is thermally stable or not; in
other words, positive values correspond to thermal stability, while negative values indicate
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instability. By substituting the Hawking temperature (15) and the corrected entropy (50)
into Equation (16), we obtain the corrected specific heat as

2(q? (=1 — r20%) — r O (2A — (14 2r.2A) Q)
Ca = 342 27 _ 2 2 . (53)
g2 +r12(—=1+2r12A)Q

Based on Equation (53), we plot the variation of the specific heat of a BH with the
horizon radius ry in Figure 5. In the case of considering thermal fluctuations, it can
be observed that for small r, the specific heat of a BH is negative, while for large 7,
the specific heat is positive, indicating that large BHs are locally thermodynamical stable.
It is evident from the figure that both the uncorrected and corrected specific heat show
local divergence, indicating that BHs undergo second-order phase transitions [111]. We can
further give the range of local stability for the corrected thermodynamics, e.g., for « = 0.01,
with the BH being locally stable when r > 0.691.

4 T

T T 7T
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Y 420.01,A=-1 . ]
20— =0.03,A=-1 ‘ ]
. =0.05,\=-1 ]

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5. The variation of the specific heat of the BH's solution (10) in the f(R) theory with the
horizon radius r. The dashed line represents the specific heat without the correction term, and the
solid line represents the corrected specific heat. The parameter is taken as 4 = 0.5. The blue curve
represents the result for the RN BH in GR.

3.2.2. Model II: f(R) = R+ 29v/R + 8A

Following the method in the previous subsection, we can calculate the relevant cor-
rected thermodynamic quantities for Model II as follows:

1 2 2 2,2
Hy :m [q 7<8+247rr+ —3rpy+orycy )

FC2:

N (=7*+2¢°7* —4A) In(1 + roy

8
T [ —27tr — mi'y +20r A+ gnriA + Zm’iyA +

7*(8 4+ 367r%. — 3ryy + 6r. 29> + 61In(647))

Tty (—60A + n(12 L9,y +16r2A + 18r+3'yA)> (54)

+3r392 (—1 —127¢* + Zqu)/z) In(r) +3r,° (fyz — 2% + 4A) In(1+ ryy)} ,

ln(fm) + 47, Aln(647)

+r(1+ 127147 = 297 In(r4 )

i (55)
02442 1 ard A)?
) (=247 + 1% +4riA) ln((”’”)( zzzjfﬁ%/\) )
v - r ]
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According to Equations (30)-(35) and (54)—(59), the thermodynamic quantities of a
BH under f(R) = R + 27/ R + 8A are plotted as a function of the event horizon radius in
Figure 6. We observe that the correction term has a smaller effect on internal energy and
enthalpy, but a larger effect on free energy, with the impact of the correction term being
significant when the event horizon radius is small. According to Figure 6f, we find that the
corrected specific heat exhibits local divergence, representing the occurrence of a Hawking-
Page phase transition [112]. This second-order phase transition defines the regions of local
stability and instability for the BH. From Figure 6¢, we can obtain non-negative volume for
the corrected quantity when the size of the BH is small, e.g., v+ < 1.035 for v = —0.1 and
ry+ < 1.999 for v = —0.5 in this f(R) model, which is different from the uncorrected result.
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Figure 6. The thermodynamic quantities of the BH's solution (26) in the f(R) theory as a function
of the horizon radius r: (a) enthalpy; (b) Helmholtz free energy; (c) volume; (d) internal energy;
(e) Gibbs free energy; (f) specific heat. The dashed lines represent the thermodynamic quantities
without the correction term, while the solid lines represent the corrected thermodynamic quantities.
The parameter value is taken as g = 0.5.
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4. Conclusions

This paper considers two classes of BHs within the framework of the f(R)-modified
gravity theory, including the electrodynamic field and the cosmological constant, with a
focus on their corrected thermodynamics. Starting from the Hawking temperature and
entropy, for two f(R) models, we derived the enthalpy, Helmholtz free energy, volume,
internal energy, Gibbs free energy, and specific heat of the BH systems at equilibrium.

The logarithmic entropy correction applicable to small black holes can provide an
explanation for the microscopic origin of entropy, which could also help us to solve quan-
tum fluctuation problems related to BH thermodynamic research. Next, considering the
presence of small thermal fluctuations around the equilibrium state, we corrected the BH
entropy in the framework of the f(R) theory. To study the effect of this correction on
entropy, we plotted the entropy of BHs as a function of the event horizon radius for both
models. It was found that for the two types of f(R) models we considered, corrected
entropy is meaningful for the cases of a negative cosmological constant (anti-de Sitter-RN
spacetime) with A = —1. Moreover, it was shown that when the BHs’ horizon radii are
small, thermal fluctuations have a more significant effect on corrected entropy.

Based on the Hawking temperature and corrected entropy, this paper derived various
corrected thermodynamic quantities (e.g., Helmholtz free energy, internal energy, Gibbs free
energy, and specific heat) of BHs in the f(R) gravity theory to study the effects of thermal
fluctuations. The results indicate that the corrections to Helmholtz free energy and Gibbs
free energy caused by thermal fluctuations significantly affect small black holes. In addition,
we explored the stability of BHs using specific heat. This study reveals that the corrected
BH thermodynamics exhibit local stability for both models and that corrected systems
undergo a Hawking—Page phase transition. Considering the requirement concerning the
non-negative volume of BHs, we also investigated the constraint on the EH'’s radius of BHs.
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