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Resumen

Esta tesis tiene dos objetivos bien diferenciados, uno avanzar en el estudio ha-
cia una descripcion fenomenoldgica de la supermembrana, y el otro determinar la
teoria de supergravedad a bajas energias que se acopla con ésta. Para alcanzar el
primer objetivo se utiliza un sector topoldgico de la supermembrana, llamado la
supermembrana con cargas centrales [1, 2, 3, 4] que tiene dos propiedades relevan-
tes para este estudio: (1) se ha demostrado que es un objeto cudntico bien definido
5,6, 7,8,9, 10, 11, 12, 13]; y (2), posee simetria de calibre definida en el volumen
del mundo. Esta ultima propiedad es de gran importancia a la hora de pensar en
obtener grupos de calibre no abelianos que reproduzcan el modelo estandar. En esta
tesis se construye la accién de la supermembrana 11D con cargas centrales no tri-
viales minimalmente inmersa sobre una variedad toroidal 7D (MIM2). Los grados de
libertad de esta teoria vienen dados por siete campos escalares, un campo de calibre y
ocho grados de libertad fermiénicos. Las coordenadas transversas a la supermembrana
son mapas a un espacio-tiempo de Minkowski 4. Esta accién contiene al grupo de
simplectomorfismos como simetrias de calibre. La accién es invariante bajo simetrias

globales adicionales en comparacion a la supermembrana sobre un espacio target de
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Minkowski 11D . El hamiltoniano en el calibre del cono de luz es invariante bajo
transformaciones conformes sobre una superficie de Riemann como variedad de ba-
se. El espectro del hamiltoniano regularizado es discreto con multiplicidad finita. La
supersimetria se rompe espontaneamente a N = 1 en 4D. Para el caso de la compac-
tificacion sobre un 7-toro isétropo, el potencial no contiene ninguna direccién plana,

es estable sobre el espacio de méduli de los pardmetros.

Para la consecuciéon del segundo objetivo mostramos la formulacién explicita de la
supermembrana 11D como un fibrado toroidal simpléctico con monodromia no trivial
en SL(2,7). Esta construccién permite una clasificacién de todas las supermembranas
mostrando explicitamente las simetrias SL(2, Z) asociadas a dualidades. Se encuentra
que el origen en teoria M de las supergravedades calibradas IIB en nueve dimensio-
nes, clasificadas segun las clases inequivalentes de monodromia, corresponden a la
descripcién global de la supermembrana con cargas centrales en un target My x T2,
La descripciéon global es una realizacion del 'mecanismo de esculpido’ para calibrar
una teoria [14] y estd asociado a una deformacién particular de las fibraciones. Esta
formulacién global corresponde al calibrado de los subgrupos abelianos de SL(2,7Z)
asociados a las monodromias que actiian en el toro del target. Mostramos la existen-
cia de la simetria tromboén formulada como una realizacién no lineal de la simetria
SL(2,Z) y se construye su calibrado en términos de la supermembrana formulada

sobre una clase inequivalente de fibracién toroidal simpléctica.

La supermembrana, ademdas muestra invariancia bajo T-dualidad. Se encuentra
la tranformacién explicita realizada en la teoria de la supermembrana. Esta tiene
una interpretacién natural en términos de la cohomologia de la variedad base y la
homologia del toro target. Esta construccién global es una realizacion explicita de

las transformaciones de dualidad como simetrias de la misma. Como consecuencia de




ello, se conjetura que esta construccién es también valida para explicar el origen de
las supergravedades ITA calibradas en 9D tal que la supermembrana se convertiria
en el origen de todas las supergravedades del tipo II en 9D. Las supergravedades
maximales estaran asociadas a la supermembrana compactificada sin carga central y

las supergravedades calibradas al sector de la supermembrana con carga central.

La estructura geométrica del fibrado toroidal simpléctico va mas alla de la clasi-
ficacién sobre las clases conjugadas de SL(2,7Z). Esta depende de los elementos del
grupo coinvariante asociados al grupo de monodromia que restringen los posibles va-
lores de las cargas (p, ¢). Nosotros interpretamos que las clases de equivalencia de los
grupos coinvariantes estan asociados a la clasificacién de las soluciones de supergra-
vedades calibradas tipo II en 9D. Los resultados de esta tesis se han reportado en las

siguientes publicaciones:
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Abstract

This thesis has two objectives well differentiated, one is to advance in the study
towards a phenomenological description of the supermembrane, and the other is to
determine the supergravity theory at low energies that is coupled with this one. In
order to reach our first goal, we used a topological sector of the supermembrane,
called the supermembrane with central charges [1, 2, 3, 4], that has two excellent
properties for this study: one, it has been demonstrated that is a quantum object
well defined [5, 6, 7, 8, 9, 10, 11, 12, 13]. Another important property, is that it
has a gauge symmetry defined on its worldvolume. This last property is of great
relevance when thinking in obtaining eventually non abelian gauge groups that will
reproduce the standard model. In this thesis we construct the action of the super-
membrane 11D with non-trivial central charges minimally immersed on a toroidal
manifold 7D (MIM2). The degrees of freedom of this theory are seven scalars fields,
a gauge field and eight fermionics degrees of freedom. The transverse coordinates to
the supermembrane are maps to a 4D Minkowski space-time. This action contains to
the group of simplectomorphims as gauge symmetries. The action is invariant under

additional global symmetries in comparison to the supermembrane on 11D Minkows-
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ki target space. The hamiltonian in the light cone gauge is invariant under conformal
transformations on a Riemann surface as base manifold. The regularized hamiltonian
spectrum is discrete with finite multiplicity. The supersymmetry is broken sponta-
neously to N = 1 in 4D. For the case of the compactification on an isotropic 7-torus,
the potential does not contain any flat direction, it is stable on the moduli space of
the parameters. To achieve the second goal we showed the explicit formulation of the
11D supermembrane interms of a toroidal symplectic fiber bundle with non trivial

monodromy in SL(2,Z).

As a result of this thesis we find that the theory M origin of IIB gauged super-
gravities in 9D, classified according to the monodromy inequivalents classes, corres-
pond to the global description of the supermembrane with central charges in a target
My x T?. The global description is done through the ”sculpting mechanism” [14], that
involves the gauging of a theory associated to a particular deformation of fibrations.
This corresponds to gauging one of the abelian sub-groups of SL(2,7Z) associated to
the monodromies that act in the target torus. We also showed to the existence of the
trombone symmetry formulated like a nonlinear realization of SL(2,Z) symmetry and
constructed its gauging in terms of the supermembrane formulated on an inequivalent

class of toroidal symplectic fibration.

The supermembrane, in addition, shows invariance under T-duality. We find the
explicit transformation realized in the supermembrane theory. It has a natural inter-
pretation in terms of the cohomology of the base manifold and the homology of the
torus target. This global construction is an explicit realization of the duality transfor-
mations as symmetries of it. As a result of it, we conjecture that this construction is
also valid to explain the origin of ITA gauged supergravities in 9D, so that the super-

membrane would become the origin of all type II supergravities in 9D. The picture
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that emerges is that the maximal supergravities are associated to the compactified
supermembrane without central charges and the gauged supergravities to the sector
of the supermembrane with central charge. The geometric structure of symplectic
fiber bundle goes beyond the classification on the conjugated classes of SL(2,7Z) and
depends on the elements of the coinvariant group associated the monodromy group
that restrict the possible values of the charges (p, ¢). We interpret that the equivalence
classes of the coinvariant groups are associated to the classification of the solutions

of type Il gauged supergravities in 9D.
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Introduccion

En la actualidad todavia sigue siendo un problema no resuelto la cuantizacion
del campo gravitacional en las cuatro dimensiones espacio-temporales asi como su
unificacién con las demds fuerzas fundamentales de la naturaleza. En la literatura
pueden encontrarse distintos enfoques que pretenden formular una teoria de unifica-
cién relativista y cudnticamente consistente, que ademés sea capaz de reproducir los
datos experimentales a escalas desde 107 '%cm del Modelo Estdndar (ME) hasta esca-
la cosmoldgica. Algunas de estas teorias combinan elementos como: gran unificacion,
utilizacién de dimensiones espaciales extras, supersimetria. A pesar de los relevantes

avances en la materia quedan atin importantes cuestiones por resolver.

Un camino prometedor tanto en la cuantizacion de la gravedad como en la uni-
ficacién, han sido las teorias de cuerdas. La formulacion de una teoria cuantica de
cuerdas contiene a la gravedad y es una teoria consistente al menos perturbativamen-
te, que permite obtener modelos semirealistas en cuatro dimensiones restringiendo
parametros libres del Modelo Estandar: quiralidad, grupos y ntimeros cuanticos del

ME, acoplos de Yukawa, gran unificacién, etc.



La teoria de cuerdas es una teoria donde el objeto fundamental es un objeto exten-
dido unidimensional denominado cuerda. En un principio, la formulacion de la teoria
se hizo considerando solo los grados de libertad bosonicos, pero resulté inestable. Pos-
teriormente, se incluyeron los fermiones en la construccion requiriendo supersimetria.
A estas teorias supersimétricas se les denomina supercuerdas. Para que las teorias de
cuerdas sean cuanticamente consistentes se necesita que la bosonica se formule en
D = 26 y la supersimétrica en D = 10 [20, 21]. Existen cinco teorias consistentes
de supercuerdas [22]. A continuacién se mencionardn brevemente las caracteristicas
mas relevantes de cada una. La teoria Tipo I, incluye cuerdas cerradas y abiertas,
con superficies mundo sin orientacién determinada, grupo de simetria SO(32). Tiene
supersimetria N = 1 que en 10D, significa 16 supercargas. La Tipo IIA, contiene s6lo
cuerdas cerradas, con superficies mundo sin orientacién determinada, fermiones sin
masa, no quiral (conserva paridad). Tiene supersimetria N = 2 que en D = 10 signi-
fica 32 supercargas. Tipo IIB, contiene solo cuerdas cerradas, con superficies mundo
sin orientacién determinada, fermiones sin masa, quiral (el espin tiene una direccién
violando paridad), supersimetria con 32 supercargas. Tipo Heterdtica, sélo se tienen
cuerdas cerradas, con superficies mundo sin orientacion determinada, y con un alge-
bra de vinculos que actia de manera distinta sobre los campos que se mueven hacia
la derecha y sobre aquellos que se mueven a la izquierda. Cuando el grupo de simetria

es SO(32) se llama HO, y cuando el grupo de simetria Fg x Eg se denomina HE.

Todas las teorias de supercuerdas estan relacionadas a través de transformaciones
de dualidad, ver figura (0.1). Las teorfas ITA y la IIB estdn conectadas por la llamada
dualidad T, en la cual la teoria ITA compactificada en un circulo de radio R describe

la misma fisica que la teoria IIB pero compactificada en un circulo de radio (%)1

LEl pardmetro o/ es el pardmetro de Regge (Regge slope), relacionado con la tensién de la cuerda

fundamental por 1/(27a’).




Teoria M (11D)

S—c?al\idad S/ \51/22 SW/{&td
Tipo IIB Tipo ITA EsxEg SO32) Tipo I
\/ Heteweterética

T-dualidad
T-dualidad

Figura 0.1: Dualidades entre las teorias de supercuerdas.

cuando ademds se intercambian los modos de KK con los modos de enrollamiento.
Asimismo las teorias heteréticas SO(32) y Eg x Eg también estan relacionadas entre
si por una dualidad T. Las teorias Tipo I y la heterdtica SO(32) estan relacionadas
por la llamada dualidad S, la cual significa que la descripcién de particulas débilmente
interactuantes en la teoria Tipo I pueden ser vistas como la descripcion de particulas

que interactian fuertemente en la teorfa heterdtica SO(32).

Desde hace dos décadas, se considera que existe una teoria mas fundamental que
se formula en 11D denominada Teoria M, cuyo limite en 10D son las cinco teorias
de supercuerdas [23]. En 1994, Witten planteé que la teoria de supergravedad Tipo
ITA podia ser obtenida por la reduccion dimensional de una teoria de supergravedad
tnica en D = 11 [24, 25]. Conjeturé que deberfa haber una teoria en D = 11 que en
el limite bajas energias fuese la supergravedad 11D y que bajo reduccién dimensional
a 10D a través de un circulo generase la teoria de supercuerdas ITA y bajo reduccion
dimensional sobre S'/Z,, produjese la teorfa heterética SO(32). A esta teorfa del
'todo’ es a la que se le denomina teorfa M [26]. Las cinco teorias de supercuerdas,

definidas en 10D son todas ellas supersimétricas [22]. La supersimetria garantiza que




se tengan teorias consistentes cuyos espectros no contienen taquiones (particulas de

masa imaginaria).

Inicialmente la teoria de supergravedad fue propuesta en D = 4 en [27, 28], como
modelo de una teoria de campo supersimétrica para la gravedad. Asi como es posible la
definicion supersimétrica consistente de supergravedades puras en otras dimensiones
menores de 11D, es posible la existencia de otros objetos tipo p-branas también en
otras dimensiones D < 11, ver la clasificaciéon que retine todas las posibilidades en
[29]. Esta teorfa contiene un campo de espin 2 (gravitén) con su respectivo companero
supersimétrico, un campo de espin % (gravitino). Desafortunadamente la cuantizacién
de esta teoria muestra infinitos ultravioleta que no pueden cancelarse: la teoria es no
renormalizable. Se pueden formular supergravedades en dimensiones D > 4 las cuales
siguen teniendo los mismos problemas en el limite ultravioleta cuando se les intenta
cuantizar. Sin embargo, a partir de 2007 Bern et all han presentado resultados donde
hay evidencia que la teoria de supergravedad D = 4y N igual a 8, es finita ultravioleta

al menos hasta cuatro lazos® [30, 31, 32].

La cuantizacién no perturbativa de la teoria de cuerdas continia siendo un pro-
blema abierto que ha recibido mucha atencion a lo largo de décadas. Este problema
puede ser reformulado en términos de la cuantizacién de la teoria M en 11D. A pesar
de los avances hacia la cuantizaciéon de la Teoria M [2, 3, 4, 5, 6, 7, 8, 9, 10, 33, 34,
35, 36, 37, 38], ella es una teoria atin no muy bien entendida. De forma similar a lo
que ocurre en teoria de cuerdas, donde la supercuerda es el objeto fundamental de la
teorfa, se esperaba que la supermembrana [39, 40, 41], fuese el objeto extendido fun-

damental de la teoria M, es decir, que describiera los grados de libertad microscépicos

2Traduccién al espafol de la palabra inglesa loops. Debido al amplio uso del inglés en este campo,
a lo largo de la tesis se haran este tipo de observaciones cuando, a nuestro criterio, la traducciéon de

la palabra al espanol no sea de uso frecuente o que no sea posible hacer una traduccién efectiva.




de la teorfa. La interpretacion de la supermembrana como objeto fundamental en el
contexto de la teoria M fue inicialmente descartada debido a que el espectro de la
teoria es continuo. Posteriormente, se reinterpreté como una teoria de interaccion de
DO0-branas, es decir, como una teoria de segunda cuantizacién [35]. Para analizar el
comportamiento cuantico de la supermembrana se utilizaron los modelos matriciales

SU(N) supersimétricos en el limite N — oo [33].

Sin embargo, se puede hacer una interpretacién de la supermembrana como objeto
fundamental, al restringirse a un sector de la teoria M: a la supermembrana con cargas
centrales no triviales [2, 3, 4], dado que su espectro es discreto [5, 6, 7, 8, 9, 10, 11].
Este sector de la teoria posee una carga central no trivial en el dlgebra supersimétrica.
Dicha supermembrana con cargas centrales estd minimalmente inmersa en la variedad
target® y por eso la denominamos MIM2. Su estudio podria brindar herramientas para

abordar el problema mas general de la cuantizacion de otros sectores de la teoria M.

En esta tesis restringiremos el estudio a este sector sobre un 7-toro sector compacto
de la variedad target (MIM2) [3, 4, 5, 6, 7, 8, 9, 10]. La MIM2 en 9D es dual a un
fibrado construido con un sistema ligado de D2 — DO branas. Ademds, la MIM2
contiene en su espectro los estados de cuerdas no perturbativos, por ejemplo las
(F, Dp)-branas [13], y por tanto es el origen en 11D de los multipletes SL(2,Z) de la
teoria IIB y podria ser el origen de los estados diénicos no perturbativos de tipo ITA
que no pueden ser vistos a nivel perturbativo [13]. Esto es de interés ya que se ha visto
que las configuraciones de este tipo desempenan un papel importante en el estudio de
efectos no perturbativos. Los efectos no perturbativos en teoria de cuerdas han sido
objeto de un estudio intensivo dado que potencialmente podrian explicar de manera

natural los valores muy pequenos de parametros dentro de MSSM, por ejemplo, las

3Sin traduccién.




masas muy pequenas de los neutrinos o los acoplamientos de Yukawa. Los resultados
de Bern en [30, 31, 32] agregan interés en el andlisis de la supermembrana 4D ya
que el primer nivel fundamental del espectro de la supermembrana se espera que

corresponda con el supermultiplete de supergravedad.

La teoria M/cuerdas necesita la introduccién de dimensiones extras. Esas dimen-
siones extras se creen que forman una variedad de compactificacién tales que cuando
la teoria M /cuerdas se compactifican a 4D podria dotar a la teoria efectiva de las pro-
piedades necesarias para reproducir la fisica esperada. Lo que se busca es una teoria
cuantica consistente en 4D con supersimetrias N =1 o N = 0, libre de moduli, acorde
a la fisica observada en 4D. En la naturaleza hasta el momento no se han observado
evidencias de dimensiones extras. La idea es que las dimensiones se enrollan de tal
manera que son tan pequenas que los experimentos realizados no han podido detec-
tarlas. Actualmente sin embargo en el acelerador de particulas LHC, en el CERN,
hay experimentos disenados para detectar posibles violaciones de la conservacién de

energia debidos a la existencia de una quinta dimension.

Cualquiera de las teorias formuladas hasta ahora cuando es compactificada a 4D
contiene muchos vacios debido a la presencia de los campos moduli que deben ser
estabilizados. Son muchas las posibles variedades de compactificacién que se pueden
generar al hacer estos enrollamientos. A falta de uno o mas principios fisicos de se-
leccién de vacios (problema del Landscape) el criterio que se sigue para encontrar las
mejores variedades de compactificacién es ir verificando que la teoria fisica obtenida
reproduce el modelo estandar. En el contexto de las supercuerdas 10D, las variedades
mas estudiadas para la compactificacién de las seis dimensiones espaciales extras para
obtener D = 4, son las llamadas variedades de Calabi-Yau. En un principio se consi-

derd el 6-toro T como la 6-variedad de compactificacién de estas dimensiones extras




por ser la extension natural de la compactificacién en un circulo a més dimensiones.
Esta variedad tiene curvatura nula, y es el caso mas sencillo del proceso de compacti-
ficacion. Debido a que las compactificaciones toroidales tienen holonomia trivial todas
las supersimetrias de la teoria en D dimensiones se preservan también al reducir a
D = 4, y se obtiene una teoria N = 8 lo que no genera modelos realistas. Ademas el
6-toro T no incorpora en la teoria los aspectos quirales del modelo estandar. Existen
teorias efectivas de cuerdas que cuando son compactificadas sobre orbifolds toroidales
reproducen muchas de las caracteristicas del modelo estandar. Un orbifold toroidal

es el cociente entre una variedad suave y una grupo discreto, por ejemplo, T°/Zy.

Esta tesis tiene dos objetivos fundamentales: (1) obtener la formulacién de la su-
permembrana con cargas centrales N = 1 en 4D por sus potencial fenomenolégico. La
formulacién de la supermembrana con cargas centrales compactificada en un 7-toro
genera una teoria N igual a 1 en cuatro dimensiones, que tiene ademas monopolos
magnéticos en el volumen del mundo, y que por lo tanto incorpora aspectos quirales
deseables que pueden ser de utilidad a futuro en una formulacién més realista. Y (2)
encontrar la teoria de supergravedad que se obtiene como limite a bajas energias de
la supermembrana con cargas centrales no triviales en 9D . La supermembrana con
cargas centrales veremos que estd naturalmente asociada a las supergravedades del
tipo calibrada®. Las teorfas de supergravedades calibradas pueden construirse tando
a partir de reducciones de supergravedades maximales (no calibradas/no masivas) co-
mo de supergravedades masivas [42, 43, 44]. Hay esencialmente tres maneras en que
pueden construirse teorfas calibradas/masivas de supergravedad a partir de reduccio-
nes de supergravedades maximales: (1) A través de compactificaciones en variedades

internas no-triviales [42, 43, 44], (2) haciendo reducciones dimensionales generalizadas

4Estas dimensiones se refieren a las dimensiones no compactas del target.

5Del inglés gauged.




llamadas de Scherk-Schwarz (SS), con las cuales se introducen pardametros de masa
en las compactificaciones de las teorias de supergravedad y supercuerdas. Finalmente,
(3) se obtienen las supergravedades calibradas/masivas a través de compactificaciones

hechas con flujos no triviales [45].

Desde el punto de vista de la teoria M, el origen de las supergravedades calibradas
es un problema interesante abierto y al que pretende dar respuesta esta tesis. Es bien
conocido que las ecuaciones de movimiento de la supergravedad 11D son obtenidas de
la invariancia bajo simetria kappa de la accién de la supermembrana D = 11 formula-
da sobre un background® general [41]. Esto apoya la conjetura de que la descripcién a
baja energia de la supermembrana es la supergravedad 11D (esta conjetura significa
que el estado base de la supermembrana 11D corresponde al supermultiplete asociado
a la supergravedad 11D, pero aun no se tiene una prueba rigurosa sobre este pro-
blema que sigue abierto). La dimensién méxima para supergravedades calibradas es
9D. Hay cuatro clases diferentes de calibrados’ que aparecen en 9D. Este resultado se
establecid inicialmente por [42, 46]. Si incluimos ademés, las deformaciones que pro-
vienen del sector de la teoria de tipo ITA, existen cuatro més, pero solo siete de ellas
son deformaciones independientes y ellas constituyen la supergavedad calibrada del
tipo IT en 9D [46], donde estd incluida el calibrado de las simetrias de escala [47, 48].
Recientemente en [49] se han analizado de forma mas general los calibrados en 9D a
través del formalismo del tensor de embedding® y se ha visto que corresponden a los

resultados obtenidos en [46].

Para alcanzar el segundo objetivo de esta tesis se procede a analizar los aspectos

globales de la supermembrana con cargas centrales. Los efectos no perturbativos,

6Sin taduccién.
"Traduccién usada para gauging.

8Sin traduccién.




tales como monopolos e instantones en las teorias de calibre convencionales, o las
dualidades en el contexto de las teorfas M/cuerdas, descansan en aspectos globales
de dichas teorias que las describimos en términos de fibrados. Propiedades como
el confinamiento también podrian ser debidas a aspectos topoldgicos no triviales.
Las fibraciones no triviales han sido usadas también en el contexto de las teorias no
conmutativas, como es el caso de la formulacién no conmutativa del toro [50], asi como
para caracterizar espacios de compactificacion tutiles para fenomenologia de cuerdas,

por ejemplo [51].

Hay evidencia que la teoria de cuerdas puede ser consistentemente definida en
backgrounds no geométricos en los cuales las funciones de transicién entre parches
de coordenadas incluye no solo los difeomorfismos y transformaciones de calibre, sino
también transformaciones de dualidad [52, 53, 54, 55]. Una forma de obtener estos
backgrounds no geométricos es a través de compactificaciones denominadas com-
pactificaciones con twist dual® [45], las cuales generalizan las compactificaciones a
la Scherk-Schwarz usadas con las teorias de supergravedad. En casos especiales, las
compactificaciones con twists duales son equivalentes a orbifolds asimétricos los cuales
pueden dar backgrounds de cuerdas consistentes [56]. Otro tipo de backgrounds no
geométricos son las denominadas T-variedades'?, en las cuales las funciones de transi-
cién incluyen T-dualidades. Estas T-variedades [54, 57| estan construidas usando las
cuerdas formuladas sobre una variedad cuya fibra es un toro doble 7" con n coorde-
nadas conjugadas al momento y las otras n coordenadas conjugadas a los modos de
enrollamiento [53]. Ejemplos de T-variedades generalizadas pueden ser obtenidas con-
truyendo fibraciones de toro sobre variedades base con ciclos que no pueden contraerse

58],

9En inglés *duality twist’
10Traduccién de T-folds.
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En [53] fue argumentado que una formulacién fundamental de la teoria M /cuerda
deberia existir, en la cual las simetrias de dualidad (T, S, U) son manifiestas desde el
comienzo. Ver también [59]. En particular, se argument6 que muchas supergravidades
masivas y calibradas no pueden naturalmente ser incluidas!! en la teorfa de cuerdas
sin este esquema o marco [52, 55, 58]. Sin embargo, hasta lo que sabemos previo a
esta tesis, no existe un desarrollo de la realizacion de estas ideas en términos de la

supermembrana para teoria M.

En esta tesis se prueba que la accién de la Supermembrana con cargas centrales
no triviales en 9D, cuyas estructura local fue dada en [2, 3, 13], puede ser globalmente

definida en términos de secciones de un fibrado toroidal simpléctico con monodromia

en SL(2,7Z).

El contenido de la tesis esta estructurado como sigue. En los primeros tres capitu-
los se hace un repaso a los temas necesarios para poner el contexto adecuado a nuestra
investigacién. En el capitulo 1 se hace una recopilacion de resultados de la literatu-
ra respecto a la supergravedad y a la supermembrana en once dimensiones. Se dan
sus definiciones y caracteristicas. Se explica la conexién entre ambas. En el capitulo
2, se presentan las consideraciones matematicas que describen los elementos de la
metodologia empleada para conseguir los resultados de esta tesis. Entre ellas estan
un repaso a los métodos de compactificacion empleados en supergravedad, la discu-
sion sobre la relacion entre estas reducciones y los conceptos geométricos como los
fibrados y monodromias, y la descripcién de un nuevo método de calibrado a nivel
de la supermembrana, denominado mecanismo de esculpido de [14]. Intentos ante-
riores para establecer la conexién entre el calibrado de la supermembrana y el de

las supergravedades calibradas 9D se pueden encontrar en [60, 61]. En el capitulo

HTraduccién de embedded.
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3, repasamos tanto las supergravedades maximales como las supergravedades cali-
bradas en 9D, 10D. También describimos el objeto fundamental de nuestra teoria: la

supermembrana con cargas centrales no triviales.

En los siguientes capitulos mostramos los nuevos resultados obtenidos en esta tesis.
En el capitulo 4, se construye la accién para la supermembrana con cargas centrales
no triviales compactificada sobre un 77 y se analizaron sus propiedades fisicas en
el calibre del cono de luz. La accion describe una supermembrana que evoluciona
en un espacio de Minkowski 4D. En el capitulo 5, probaremos que la accién de la
supermembrana con cargas centrales no triviales en 9D, cuya estructura local fue
dada en [2, 3, 13], puede ser definida globalmente en términos de secciones de un

fibrado toroidal simpléctico con monodromia no trivial en SL(2,Z).

En el capitulo 6, se clasifican los fibrados simplécticos toroidales que describen a
la supermembrana con cargas centrales de acuerdo a las monodromias y se establece
la relacion con las supergravedades calibradas IIB. En las supergravedades tipo II
en 9D, hay cuatro calibrados inequivalentes de la simetria global GL(2,R), tres de
ellos estéan asociados al calibrado de la simetria global SL(2,R) correspondiendo a las
llamadas clases inequivalentes parabdlicas, elipticas e hiperbdlicas. En este capitulo
se encuentran los fibrados toroidales simplécticos asociados a cada clase. El cuarto
calibrado corresponde al calibrado de la simetria trombdn [47] asociado a los escala-
mientos R*. A nivel cudntico la realizacién de estos calibrados es mds compleja ya que
no es suficiente describirlos en términos de fibrados cuya monodromia esté contenida
en el subgrupo aritmético GL(2,7Z). La razén es que la simetria de escalamiento no
esta incluida en ese subgrupo. Esta simetria trombon se realiza mediante una trans-
formacién no lineal SL(2,Z) que los autores [62] denominaron simetria activa. En

este capitulo se encuentra el calibrado de dicha simetria a nivel de la teoria de la
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supermembrana. Ademads se analizan las simetrias residuales de la teoria calibrada y
se clasifican los fibrados toroidales equivalentes de acuerdo al grupo de coinvariantes

para una monodromia dada.

En el capitulo 7, consideraremos las transformaciones de dualidad en el contexto
del objeto fundamental de nuestro modelo: la supermembrana con cargas centrales.
Mostramos la existencia de una simetria nueva Z, que juega el papel de T-dualidad en
la supermembrana intercambiando las cargas de enrollamiento y las KK pero dejando
el hamiltoniano invariante, tal que el grupo de simetria completo en la supermembrana
no calibrada corresponde a: (SL(2,Z)x x SL(2,Z)72)/Zs. La T-dualidad se convierte
en una simetria exacta de la descripcion de la supermembrana a en términos del
fibrado toroidal simpléctico. Las monodromias con el origen tipo ITA son inferidas a
partir de la invariancia bajo T-dualidad del operador de masa de la supermembrana

con cargas centrales.

Aunque en cada capitulo hemos presentado conclusiones parciales, en el capitulo 8
damos una vision general de todos los resultados obtenidos ademas que presentamos
algunos aspectos que quedan abiertos para trabajos posteriores. Finalmente, se anexan
varios apéndices donde se explican mas detalles de algunos calculos explicitos, ademas

de las convenciones y notacién usadas en la tesis.
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Capituro 1

Supergravedad y Supermembrana

en 11D

En este capitulo se hard una revisiéon de resultados descritos en la literatura para
la teoria de supergravedad no-calibrada en 11D asi como para la supermembrana en
11D, y la relacién entre ambas los cuales son parte del marco tedrico adecuado para

cumplir los objetivos y para la discusién de los resultados de esta tesis.
1.1. Supergravedad Maximal en 11D

En esta seccién haremos una breve descripcion de una de las supergravedades
llamadas maximales o no calibradas [27, 28, 63]. En general, las supergravedades ma-
ximales son teorias invariantes bajo super-Poincaré. Esta denominacién incluye los
generadores de Lorentz, los generadores de las traslaciones, y los generadores de la
supersimetria. El algebra de super-Poincaré puede extenderse agregandole generado-

res de calibre, bosénicos denominados p-formas [64].

A las teorias con exactamente 32 supercargas se les llama supergravedades maxi-

males. D = 11 es la maxima dimension permitida para las teorias de supergravedad
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que solamente contienen campos con espin maximo igual a dos, el gravitén (particula
conjeturada como mediadora de la interaccién gravitatoria). En esta dimensién solo
existe una tnica teoria de supergravedad. Dependiendo del ntimero de supercargas
N, se pueden tener diferentes teorias maximales en diferentes dimensiones. En esta

tesis nos referiremos a las teorfas formuladas en D = 11,10, 9. Los campos de super-

Dimensién | Supergravedad (N)

11 1
10 1, TIA, TIB
9 p

Cuadro 1.1: Supergravedad en diversas dimensiones D, etiquetadas por el nimero de

sus generadores de supersimetria.

gravedad forman multipletes sin masa bajo supersimetria, llamados supermultipletes.
Por ejemplo, el multiplete gravitén lo contienen todas las teorias de supergravedad,
incluye los siguientes campos: el gravitén (espin 2), uno o més gravitinos (espin 3/2)
y campos de espin mas pequeno. Las supergravedades maximales solo contienen este

supermultiplete.

Para que la supersimetria sea una simetria consistente, todos los supermultipletes
deben tener igual nimero on-shell de grados de libertad bosénicos y fermiénicos. En
la tabla 1.2 se distinguen dos tipos de escalares posibles: dilatones ¢ (en teoria de
cuerdas el campo dilatén estd determinado por la intensidad de acoplo de la cuerda

e? = g,) y axiones .

El potencial d-forma, C?, tiene la misma cantidad de grados de libertad que un
potencial dual d-forma con d = D — 2 — d. Lo que corresponde a una carga eléctrica

en un potencial es una carga magnética en su potencial dual y viceversa. Esta equi-
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valencia entre dos potenciales es llamada dualidad de Hodge y es una generalizacion,
a mayores rangos de d y d y dimension D, de la dualidad eléctrica-magnética bien
conocida en 4D por Montonen-Olive [65]. En el caso d = (D —2)/2 se puede imponer
una restriccion de autodualidad sobre la (d+ 1)-forma de intensidad de campo. Todos

los campos del supermultiplete de gravedad pueden agruparse de la siguiente manera:

Nombre Simbolo | Espin | Grados de libertad On-shell
Gravitén Gon 2 (D—-2)(D—-1)/2—1
Gravitino U, 3/2 (D—3)-q/2
Potencial de Rango-d potential C,%)...m y 1 ( D; 2 )
Dilatino A 1/2 q/2
Escalar XY 0 1

Cuadro 1.2: Grados de libertad on-shell de los campos de supergravedad de D dimen-
siones. Tabla original de [66]

En esta seccion describimos brevemente las caracteristicas fundamentales de la
tnica teorfa de supergravedad en D = 11 que fue obtenida en [25] con N' =1y 32
supercargas. Es una teoria maximal. La accion es

w+w 1
‘1’ o anrSanTS
TR *

1 _
S = / dllx{—ﬁeR(w) — 2eW,, ™D, (

1
mima....Mmi1
(12)48 Fm1m2m3m4Fm5m6m7msCmgmmmu+

1 - _ _ R
a %e(q’nrmlmmm“"l‘l’l + 12U D™ (g mamgma + Fmymamgma) 1

DO

(1.1)
donde como mencionamos antes, encontramos un tnico supermultiplete formado por

los campos sin masa: el graviton (tensor simétrico de segundo orden) construido con el
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vielbein e;,,(x) en 11D, el gravitino (espinor de Majorana) W4, () y un tensor de tres
indices totalmente antisimétrico llamado la 3-forma de potencial de calibre C,,(2),
con la intensidad de campo Fy = dC5 (para mayor detalle en la notacién e identifica-
cién de variables, ver apéndices A y B). El multiplete graviton {e,,*, Cyuni; ¥, } tiene

256 grados de libertad on-shell
D=11: (44 + 84)p + (128)F. (1.2)

La parte bosénica de la accién tiene un término de Einstein-Hilbert, un término
cinético para el potencial de rango-3 y un término de Chern-Simons llamado también
término topologico. La teoria de supergravedad 11D contiene una simetria global de

escalamiento que se conoce como RT que actia como
Gom = NGrmn . Cot = NChmi s Wy — N0, (1.3)

con A € RT. Esta simetria actia covariantemente sobre las ecuaciones de campo
pero no deja el Lagrangiano invariante: éste transforma como L — M\°L. Todos los
términos en L escalan con el mismo peso: por esta razén a esta simetria se le conoce
como simetria trombon. La existencia de esta simetria tromboén es una caracteristica
en las supergravedades sin masa o no calibradas. En general, un lagrangiano en D
dimensiones escalard como L — AP72L bajo dicha simetria [62]. Alternativamente,
tales simetrias trombdn se pueden ver como un escalamiento de la tnica longitud de
escala de la teoria, ver por ejemplo [62, 67]. La acciéon de supergravedad 11D tiene
una relevancia fundamental en el contexto de la teoria M, ya que se le considera la

teoria efectiva de la misma, por ser la tnica maximal en D = 11 [20, 34, 68].
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1.1.1. Supergravedad en el Formalismo del Superespacio 11D

En esta seccion queremos referirnos a la descripcion de la supergravedad maximal
11D en el formalismo del superespacio !, resultados obtenidos por Cremmer y Ferrara
en [24]. Este formalismo es importante debido a la conexién de la supergravedad 11D
con la supermembrana 11D. Sobre esta conexién nos referiremos en la seccién (1.3). En
[24], demuestran que las ecuaciones de movimiento de la supergravedad 11D pueden

resumirse en la ecuacion:

donde Wysps(x,0) es un supercampo tensorial completamente antisimétrico definido
tal que

Wa{)w:@(l’, 9 = O) = Fa{)u;j;(l’) = 65626%6; UVWE * (15)

Luego, es posible escribir todos los supercampos que definen al superespacio de la

supergravedad 11D en términos de este campo W. Esto es,

(1) La supertorsién, T¢. . definida en (A.7),

AB’
. s s N 1 N
t o _ ot a 4 alU sl AR
Tis =T33 =Ta:=0, Tg5= §Z(F ) as (1.6)
R 1 o I
70, = == (T DaWiss, (1.7)
42
¢ 1 powa B
Tia = 5 Wioaa (T3 ) (1.8)
(2) La supercurvatura, RABéﬁ, definida en (A.8) y (A.9),
R, b _ (FOSﬁﬁw”EQE)a@Wm@gg, (1.9)

'En el apéndice A se explica la convencién y notacién usada aqui, tanto para los indices como

para la definicién de la estructura del superespacio.
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ad 1. HTDET0 F a GTDET0 F 9 i E 0 T ad
U= —Ez[(ror I TOD) Wi — (DT T™ T D) s Wi, + (LT T TOD) s WL,
(1.10)
3 A Wi 7y \B WiHz Anipdf
aoh = =57 (T D;s DaWasa o—2(T3; ™ D) Waags—[T3 ™, Ty M Woaag:Wnaga,
(1.11)
donde SY#* = %(Ffiyz + 2451%@52F92]). El resto de las componentes para la supercur-

vatura estan definidas por (A.9).

(3) La intensidad de campo Fynrp, definida en (A.18) y (A.19),

Foowi(2,0) = Wasws (2, 0), (1.12)
1

Fﬁwﬁ”(% o) + §(F0Fﬁé)d5 =0, (1.13)
F@f)ﬁ)j(x, 9) = Faﬁ”;f(l’, ‘9) = Fdﬁi&((aj’ 9) = 0. (114)

La supertorsién TAéé y la supercurvatura R verifican las identidades de Bianchi

(A.12). Mientras que Fyyrp cumple la identidad de Bianchi (A.17).

1.2. Supermembrana 11D

En 1962 Dirac [69] introdujo la idea de que las particulas elementales podrian co-
rresponder a los diferentes modos de vibraciéon de una membrana. No fue hasta 1986
que Hughes, Liu y Polchinski [70] combinaron exitosamente la idea de la membrana
con supersimetria, dando origen a la supermembrana. Luego, se extendio esta idea a
objetos de més de dos dimensiones, denominados p-branas. Asi, tal y como la mem-
brana al moverse en el espacio-tiempo describe un volumen-mundo 2+ 1-dimensional,
la p-brana describe uno (d = p + 1)-dimensional. Sin embargo, la consistencia de la
teorias de objetos extendidos, p-branas tiene restricciones debidas a las dimensiones

del espacio-tiempo y a la supersimetria [71, 72]. La supermembrana de Bergshoeft,
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Sezgin y Townsend [41, 73] estd formulada en D = 11, que como se mencioné an-
tes, es la maxima dimension del espacio-tiempo permitida por supersimetria en una
teoria que admita campos con espin maximo 2. Hay dos caracteristicas importantes
de esta supermembrana 11D que mostraban que esta teoria podria ser una teoria fun-
damental en el contexto de la teoria M. Una, es que ella se acopla a la tinica teoria de
supergravedad D = 11 [25, 74, 75]. Y la otra, es que a partir de ella puede obtenerse la
teorfa de supercuerdas Tipo ITA [76]. Al descubrirse en 1988 que la supermembrana
tiene espectro continuo [35], su estudio como objeto microscépico fue practicamente
abandonado, sobre todo desde que se vio cualitativamente que la supermembrana en-
rollada tiene también estas mismas propiedades espectrales [37]. Sin embargo, como
hemos mencionado en la Introduccién, a partir de 1997 se han obtenido avances en
la teoria de la supermembrana como objeto cuantico bien definido. Ver por ejemplo,

2,3, 6,7, 8.

1.2.1. Super p-branas

En esta seccién se presentan algunos de los principales resultados que han sido
obtenidos en la literatura en la formulacién de una teoria de la supermembrana D =
11. Consideremos en primer lugar de forma mas general, un objeto extendido p-
brana con dimensiones d = p + 1, donde 1 es la coordenada temporal y (d — 1)
coordenadas espaciales, que se mueve en un espacio-tiempo de D dimensiones. Se
define su dinamica, por medio de la accién que describe el volumen del mundo de la

p — brana al evolucionar en el tiempo, esto es,
S = —Td/dd§ {—det(D;x™ 0,2 Ny )}/, (1.15)

donde &7, con (i = 0,...,d — 1), son las coordenadas del volumen-mundo, mientras

que ™, con (m = 0,...,D — 1) son las coordenadas del espacio-tiempo D. En esta
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accion se supone el espacio-tiempo plano con métrica de Minkowski 7,,, y signatura
(—,+,...,4). Ty es una constante llamada tensién del objeto con dimensién tal que
deja a S adimensional. Esta accién fue introducida por primera vez por Dirac para
la membrana (d = 3) [69] y luego por Nambu y Goto para la cuerda (d = 2) [77, 78].
La variacién de la accién (1.15) produce las ecuaciones cldsicas de movimiento, las

cuales son equivalentes a las que se pueden obtener de la accién de Polyakov:
d 1 ij m n 1
S =T, [ d% —5\/—993&-17 O nmn+§(d—2)\/:g . (1.16)

En dicha accién se introduce el campo auxiliar g;;(€), con g, su determinante y g%
su inversa [79, 80]. La accién (1.16) puede hacerse més general suponiendo que la
membrana estd en un espacio curvo, es decir, sustituir 7,,, por G,,(z). También
puede incorporarse un tensor de campo antisimétrico C,,,. ;(z) de rango d que se
acopla a través de un término de tipo Wess-Zumino. Con estos nuevos elementos

(1.16) queda:
S = Td/ddf [—%\/—ggijﬁixmﬁjx"Gmn(x) + %(d —2)v/—yg

+56“22“2d8i1xm1 5™ .. 03,2 Crnyimg . my () | (1.17)

la cual da como ecuaciones de movimiento:

9 (V=997 0;2"Gpn) + Gl s 0 g

1 g
= aant...pEZ]...k8i$n8jxt SN 8k.§(,’p, (118)
y
9ij = 07" 05" G (),  F =dC, (1.19)

donde F es la intensidad de campo? que obedece la identidad de Bianchi dF = 0.

2Traduccién de field-strength.
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A partir de estas generalizaciones se formula la version supersimétrica de la mem-
brana, la supermembrana. La introduccién de la supersimetria a la teoria de la mem-
brana bosénica puede hacerse de dos maneras. La primera es formular una super-
membrana con supersimetria del espacio-tiempo manifiesta pero sin supersimetria
en el volumen-mundo barrido por la membrana. La segunda es formular una mem-
brana con supersimetria del volumen-mundo manifiesta pero sin supersimetria en el
espacio-tiempo, a esta supermembrana se le denomina membrana spinning®. En esta
membrana spinning se presenta el problema [80] de que el término cosmolégico del
volumen-mundo no permite la supersimetrizaciéon con las reglas usuales del céalculo
tensorial sin la introduccién de un término de Einstein-Hilbert [81]. Este impedimento
se tradujo en un teorema de no-go para este tipo de membranas [82]. Posteriormente
se consigui6 formular la supermembrana con ambas supersimetrias [83]. El enfoque en
esta tesis serd el de considerar a la supermembrana descrita por una accién del tipo
Green-Schwarz que tiene supersimetria en el espacio-tiempo y tiene simetria kappa en
el volumen-mundo. Para formular la accién de la super p-brana a la Green-Schwarz
es necesario usar el formalismo del superespacio (ver apéndice A). Se introducen las
super-coordenadas (A.1) ZM = (2™, 6%) de un superespacio curvo y los supervielbeins
(A.3), EMA(Z ) donde los indices definidos por la convencién (A.1). Con el pull-back
definido:

BA = 0,2yt (1.20)

con i la coordenada del volumen-mundo. Es necesario definir una super-d-forma

Ca,. 4,(Z), ya que para poder definir la accién de la super p — brana tiene que

3Sin traduccién.
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existir una (p + 2)-forma cerrada en el superespacio. Su accién es:

1 e 1
S:Td/ddf[ . 5 /—gg”Eﬂ jbn&8+§(d—2)\/—g

1 . . A A
+ Ee““'“EilAl...EidAdCAdmAl}, (1.21)

Para el caso d = 3 esta accion se corresponde con la de la supermembrana. Esta

accion es equivalente a:
3 1 ijrmap b 1 1 ijk mA B C
S:Tg d 5 —5\/—99 E,' j n&5+§\/—g+65 EZ- Ej Ek CC’BA . (1.22)
donde, g;; = EﬁEji’n&l;.

La accién (1.21) al igual que (1.17) tiene un término cinético, un término cos-
moldgico y un término de Wess-Zumino. Esta accién (1.21) se reduce a la accién de

la supercuerdas Green-Schwarz cuando d = 2.

Las simetrias del espacio target son los superdifeomorfismos, la invariancia de
Lorentz y la invariancia de calibre de la d-forma. Mientras que las simetrias del
volumen-mundo son los difeomorfismos usuales y la invariancia kappa. Las leyes de

transformacién bajo simetria kappa [70] son:
SZMEty =0, 6ZMEY =&’ (1+1)%, (1.23)

donde mﬁ(g ) es un espinor que anticonmuta del espacio-tiempo pero un escalar en el
volumen-mundo, con:
ro, - CV" i mp g e
5 d'\/:g 11 22 2d

Allf las matrices I, son las matrices de Dirac en el espacio-tiempo que verifican (B.3)

(1.24)

a1..a,

y (B.4). Sobre la invariancia bajo simetria kappa de la accién (1.22) se pueden hacer

las siguientes observaciones. En primer lugar, la invariancia se verifica si y solo si se
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satisfacen ciertas restricciones sobre el tensor de intensidad de campo antisimétrico
Frnpo(Z) y sobre la supertorsiéon T Jéj ~ (en el caso d = 3). En particular, la identidad

de Bianchi dF' = 0 requiere que I' verifique la matriz identidad:
(dAT ,dA) (dOT*rPa-240) =0, (1.25)

para un espinor que conmuta df. Esta restriccién solo se satisface para ciertos valores
de dy D [72]. En el caso de la supercuerda y la supermembrana los valores permitidos
son:

d=2: D=23,4,610; d=3: D=4,5711. (1.26)

Se tiene entonces el resultado ya conocido para la existencia clasica de las supercuerdas
Green-Schwarz y el limite superior para D, D = 11. En segundo lugar, la matriz I'
(1.24) tiene traza nula y satisface:

=1 (1.27)

cuando se satisfacen las ecuaciones de movimiento, por lo que las matrices (1 £1")/2
acttian como operadores proyectores. Entonces la ley de transformacién (1.23) elimina
la mitad de los grados de libertad fermidnicos, con lo cual el niimero de grados de
libertad fermidénicos y bosénicos coinciden sobre el volumen-mundo. Finalmente, una
propiedad importante para el caso de la supermembrana D = 11 es que la invariancia
kappa de la acciéon impone vinculos sobre los campos del background, F MA y Cunp,
que coinciden con las ecuaciones de movimiento de la tnica teoria de supergravedad

en D =11 [41, 73].

1.2.2. La Supermembrana en el Superespacio

Se puede obtener una expresion de la supermembrana en el superespacio en térmi-

nos de las componentes de los supercampos en un espacio-tiempo curvo. Para ello,
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usaremos los resultados obtenidos por B. de Wit, K. Peeters, J. Plefka en [84], donde
se usa el método denominado gauge completion®, el cual fue usado para la supergra-
vedad en un principio por Cremmer y Ferrara en [24]. Se puede ver también [85, 86.
Con dicho método es posible obtener las expresiones explicitas en términos de las
coordenadas fermiénicas de dichos supercampos y obtener toda la descripcion de di-
cho superespacio. En [84] se obtienen los supercampos solamente a segundo orden en
la variable fermionica 6 debido a la complejidad de estas expansiones. Por ejemplo,

para la expansién del superveilbein E4; se obtiene:

; . . 1- . - . A
Ej = € +20T°0,, — 6 DOQIT;,0 + 0T T Ey o6 + O(6%),
A A 1 .. . A
B = U, — G0 (Tu0)® + (TH™0) Fygyn + O(6),
By =—(0T%)a +0(8),
EY =62+ M2 +0(6%), MS x F6?, (1.28)
de igual manera consiguen expresiones para los campos Cy/np, EZ-A y para todos los

campos que aparecen en la accion y los que definen la estructura del superespacio

correspondiente.

Luego, sustituyen estos resultados en la accién de la supermembrana (1.22) en su

version Nambu-Goto,

5= [ #el-(v=9) + §(*EAEPEC Cop ) (129

4Sin traduccién.
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y obtienen:
1 .. _ _ .
5= [ @el—v=)+ [ Pelpe0.X"0,X"0XP Cony — Oy + 3003, T2+
1 .. _ N _ _
+ / d3§[ée’Jk&XmannakXp{—BQFWT;“WHFMW — 1207, W,,00 0, ]+
+ / d3£[—e"j‘“ermnéke{%aiXman" + %aixmer"aje + %ermaieer"ajem

+ / d3§[%aijkéixmajxn{4§rpmakee‘rpxyn — 20T70,00T,,, ¥, } + O(6%)]. (1.30)

La expresiéon (1.30) es consistente con la simetria kappa cuya expresién estd en
(1.23). Esto garantiza, en principio, que los vinculos derivados coincidan con las ecua-
ciones de movimiento de la supergravedad D = 11 como se vio en [41]. Debido a lo
complicado de la expresion a este orden o a érdenes superiores en 6, los autores en [84]
hacen un analisis restringiéndose a la membrana bosénica en un background curvo,
donde aparece un elemento importante en la caracterizacion del background que es la
3-forma. Hablaremos mds de ella en la subseccién 1.2.3. La accién (1.22) es comple-
tamente general. En particular, se incluye la posibilidad de que el espacio-tiempo sea
plano lo cual simplifica la acciéon enormemente. La métrica del espacio-tiempo es la
métrica de Minkowski, y la representacion en componentes de los supercampos F MA

y Cynp en el formalismo del superespacio plano se reduce a:

Efn(xve) = 5fn(x)7 Eﬁ(%e) = 07

Eq(w,0) = —(00)a, Ej(x,0) =0, (1.31)

Ys

Cmnp = 07 Cmna = (H_an)au Cmaﬁ = (H_an)(a(el“”)g),

Capy = (0T ) (™) (7)., (1.32)
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Con las condiciones (1.31) y (1.32), la accién (1.29) se reduce a:

S = / d*e{—/—g — 70T ,,,0,0 [%aiXm(éjX” +01"0,0) + ée‘ 9,00 1"0,0]}.
(1.33)

En un primer anélisis, nosotros analizamos a primer orden en # en el formalismo
del superespacio a la supermembrana enrollada en un 7 siguiendo a [41]. Se impuso

la simetria kappa:

OxSpexT2 = —/d355(\/—_9)+
- / d?’géaﬁ[gij’fE;"Ef’Ek”Bé,B, 4+ 3¢ ENEP EC B gt
+ 3¢ BN BP B B g + €V EMEF B Be, g, 4., (1.34)
y determinamos los vinculos para los supercampos T]@N y Cywp, asociados a las

ecuaciones de movimiento de la supergravedad D = 9, N = 2 (para mayor detalle ver

apéndice C donde encontramos los siguientes resultados):

T o (T),5 T35 0 (T%) 5 (1.35)
y
5xCria = 0xCjyar = 0,
6/i0f§1/ = (R—FT’S)I/a 5RC7:B/@ X "%—Fm’& (136)

Obtenidos estos resultados, se siguié esta metodologia aplicada al caso de la su-
permembrana con cargas centrales para encontrar los supervinculos correspondientes.
Iniciamente se considero el caso a primer orden en 6. Se calcularon parcialmente estos
vinculos asociados con la intencién de obtener la supergravedad calibrada en el for-

malismo del superespacio. Resultados parciales fueron presentados en el VII Congreso
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de la Sociedad Venezolana de Fisica, Diciembre 7-11, Caracas, Venezuela, 2009 (ver

apéndice C).

Debido a la complejidad de las expresiones obtenidas usando este método que
dificultaban la clasificacién de las supergravedades calibradas asociadas, finalmente
se prefirié utilizar un método diferente basado en el analisis global de la supermem-
brana tal y como explicaremos a partir del capitulo 2. Con este método se obtuvieron
los resultados que se presentaran en los capitulos 5, 6 y 7. Sin embargo, esperamos
en un trabajo posterior completar y publicar los resultados del apéndice C, con los
supervinculos de la supermembrana con cargas centrales correspondientes con las
ecuaciones de movimiento de la supergravedad calibrada asociada en D = 9 en el

formalismo del superespacio.

1.2.3. La Supermembrana en el Calibre del Cono de Luz

En esta seccion, en primer lugar comentaremos los resultados de [84] referente a la
teoria de la membrana formulada en un background no trivial en el calibre del cono de
luz (CCL). Aunque en nuestro caso se parte de un background plano, es interesante el
resultado discutido en [84] porque el enrollamiento con la condicién de carga central
podria reinterpretarse en términos de flujos sobre el background de la parte compacta

generando un background curvo.

En primer lugar se formula a la membrana en el calibre del cono de luz en el
background definido por la métrica G,,, y el tensor de campo de calibre C,,,;. La

densidad lagrangeana de la membrana bosénica es:

1 ..
L=—V=g— " 0X" ;X" X' Clun (1.37)
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donde la métrica inducida es g;; = 0;X™ 0; X" Ny

En la formulacién del cono de luz, las coordenadas se descomponen en (X1, X~ X )
con a=1,...,9. Por otra parte se usan los difeomorfismos en el espacio target para

escribir la métrica en una forma conveniente [87],
G__ =G, =0. (1.38)

A continuacién se identifica la coordenada temporal del espacio target con el tiem-
po del volumen-mundo, imponiendo la condiciéon X+ = 7. Ademés, denotamos las
coordenadas de la parte espacial del volumen-mundo de la membrana ¢”, r = 1, 2.
Siguiendo los pasos descritos en [33] para la membrana en espacio plano, se obtiene
el hamiltoniano de la teoria en términos de las coordenadas y momento, sometido al

vinculo

¢, =P, X"+ P_0,X =0, (1.39)

que es igual al de la teorfa en espacio plano. El hamiltoniano obtenido en [84] es:

G,_ 1 P —C_ 2 1
- 2 U= | _ - Lors a b2
H = /d O’{P_ — {2 (Pa c, G Ga+> + 4(5 0, X0, X°)

P.—C.
2G,_

Gip —CL—Ci_ + cr¢r} . (1.40)
donde se han hecho las siguientes definiciones:
Co= —€"0,X 0, X"C_op + %H’S&Xb@sXc Clabe »
Oy = %étrs@rXaﬁst Ciap s
Cio=e"0,X0,X°Cy_,. (1.41)
En (1.40) se incluye un multiplicador de Lagrange ¢" acopldndose al vinculo (1.39). Los

indices son contraidos con la métrica G, o su inversa. La seleccién del calibre X = 7

permite reparametrizaciones dependientes de 7 de las coordenadas del espacio de
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mundo® ¢”, que a su vez induce transformaciones sobre el multiplicador de Lagrange ¢”
a través de las ecuaciones de movimiento de Hamilton. Mediante posteriores fijaciones
de calibre y resolucion del vinculo se llega a otras expresiones del hamiltoniano. En
los casos en los que la matriz constante antisimétrica C_,, es distinta de cero se ha
conjeturado, que ésta tiene un papel importante dentro de los modelos matriciales
en la compactificacién sobre un toro no-conmutativo [88, 89, 90]. Si en cambio se
considera C_,, = 0, el hamiltoniano correspondiente fue reformulado en términos
del lagrangiano de la teoria de calibre de los difeormorfismos que preservan el area
del volumen-mundo de la supermembrana. En dicho caso el espacio-tiempo 11D es
Minkowski, se toma el volumen-mundo como una foliacion ¥ x R, con ¥ una superficie
de Riemann de genus g, las coordenadas locales espaciales sobre ¥, 0% (a = 1,2), y
T € R representa el tiempo en el volumen-mundo. Si ahora se descomponen los X* y
P, de acuerdo al ansatz estandar del calibre del cono de luz y se resuelven los vinculos

[33], el hamiltoniano canénico reducido de la supermembrana D = 11 estd dado por:

2 2
H= T—2/3/ v % (P—M) + TZ{XM,XN}Q +VWOL_T,,{X™ 0}|, (1.42)
b

VW

sometido al vinculo local

¢ = d(PydX™ + 60T _0) =0, (1.43)
y al vinculo global
Po = /C PudX™ + 0T _do = 0, (1.44)
)
donde C, es una base de homologia sobre ¥, con M = 1,...,9,y Py son los momentos

conjugados a X™. v/ es la densidad escalar introducida en el CCL, ¥ es la variedad

base que es una superficie de Riemann, # representa los espinores de Majorana 11D y

STraduccién de world-space.
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I',,, son las matrices de Dirac correspondientes. 1" es la tensién de la supermembrana. ¢
y ¢g son los generadores de los difeomorfismos que preservan el area. ¢ se corresponde
con los generadores de los difeormorfismos homotépicos a la identidad, y es el tnico
presente en el target no-compacto. Ambos tipos de generadores preservan el elemento
de drea vVWegdo® A do®, una 2-forma simpléctica. La ecuacién

Eab

(X" X"} = \/_Waaxmabxn, (1.45)

es el corchete simpléctico asociado.

1.2.4. Propiedades Espectrales: Espectro Continuo

En esta seccién se comentard sobre el resultado obtenido en [35] acerca del hecho
de que la supermembrana 11D tiene espectro continuo. Una primera observacién sobre
el hamiltoniano en el cono de luz es que los modos cero se desacoplan del operador de
masa que describe los modos de oscilacién de la supermembrana que se corresponde
con el hamiltoniano que usaremos en lo sucesivo. La cinematica del movimiento del
centro de masas es descrito por la cinematica de una particula relativista libre. Cuando

nos restringimos a la membrana bosénica se observa que la densidad de potencial es:

V = (€40, X70,X")°. (1.46)

Esta expresion es cero cuando los campos X dependen de una combinacion lineal de
las coordenadas espaciales que parametrizan el volumen mundo ¢"’s. En estos casos,
se dice que la superficie degenera, esto es, cuando la membrana tiene ’brotes’ infinitos
muy delgados en su superficie, llamadas configuraciones tipo cuerdas. Este hecho
muestra que membrana clasicamente es inestable, dado que estas configuraciones

tienen energia cero (energia proporcional al area), por lo que cldsicamente el sistema
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accede a todos los estados posibles, con o sin cuerdas. La membrana clasicamente no

preserva ni el nimero de particulas ni la topologia [92].

Para estudiar el espectro de la supermembrana como objeto cuantico se introduce
el modelo matricial SU(N) con N grande pero finito, con el hamiltoniano descrito
por:

1

1 |
H = SPMPoa+ Z(FABOXIXP) = 2 fane X 10P576C (1.47)

con el vinculo de Gauss,

1
¢a = fapo(X]PL — 59595) ~ 0. (1.48)

Con este modelo matricial se encuentra que el espectro del hamiltoniano es continuo
[35], y ello llevé a interpretar a esta teoria como una teoria de segunda cuantizacién

92, 93].

Para explicar este resultado se usa un modelo de juguete® que incluye todos los
aspectos cualitativos de la supermembrana. Este modelo es un sistema cuantico su-
persimétrico de dos dimensiones con valles planos. El hamiltoniano supersimétrico del
modelo de juguete es:

-A+2%y* oz +iy

H= . (1.49)
T — 1y —A + 2%y?

La estructura de este hamiltoniano supersimétrico H muestra la parte bosénica en
la diagonal y la parte fermionica fuera de ella. Consideraremos una funciéon de onda

definida por,

o [V (1.50)

P2(z,y)

STraduccién de toy model.
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El potencial V(x,y) = 2%y?* tiene dos direcciones planas que se corresponden con las
direcciones x = 0y y = 0, el potencial se anula. Es importante conocer como se

comporta la parte bosénica del hamiltoniano. Esto es,

1 1 1
Hp =i +p.) + =03+ 2°y°) + = (p, + 2°y*) >

1 1
2 2
— - 1.51
5 5 5 (px+py)+2|y|+2\x|, (1.51)

N —

donde esta desigualdad es una desigualdad entre operadores, donde esta acotado
inferiormente por la suma de los osciladores armoénicos con frecuencia variable dadas
respectivamente por y y por . Por un teorema de Barry Simon [91], un hamiltoniano
acotado inferiormente por otro hamiltoniano con espectro discreto, tiene espectro
discreto. Esto es sorprendente teniendo en cuenta el comportamiento clasico. Cuando
se incluye la contribucion fermidnica en el hamiltoniano supersimétrico, lo que de
Wit, Liischer y Nicolai probaron en [35] es que el espectro es continuo. Esto significa
que no existe potencial que permita el confinamiento de la funcién de onda, lo cual
implica que el espectro serd un continuo. Para la demostracion, ellos usaron el método
de reduccién al absurdo. Aplicdndolo al modelo de juguete, se prueba que existe al

menos una familia de funciones de onda que eligieron especificamente:

T 1 2 1
Wi (e y) =yl — Ay et | (1.52)
—1

donde,

X(2) = ™ xo(x), (1.53)
con k = VE, A € Ry yo es una funcién real que varfa suavemente de soporte

compacto en R que es normalizada

Hﬂﬁz/&%sz (1.54)

Demostraron que dado cualquier € > 0, existe un A tal que

[(H — E)U,[ <e. (1.55)
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Lo cual prueba que el espectro de H lo forman un continuo de niimeros positivos.

Este resultado fue totalmente inesperado y contrario al comportamiento de la
supercuerda, cuyas excitaciones discretas se interpretan como excitaciones de tipo
particula de una teoria cuyo espacio target esta en mas dimensiones. Posteriormente
este resultado fue reinterpretado en términos de una teoria en segunda cuantizacién
en la que las membranas se entienden como una teoria de interaccion de muchas
particulas (D0-branas), y en donde ahora por consistencia es necesario que el espectro
sea continuo, ya que los estados de scattering” de la supermembrana conectados por
configuraciones de tipo cuerdas deberian tener un espectro continuo de energia [92,

93].

1.3. Conexion entre Supermembrana y Supergra-

vedad en 11D

Como se menciond antes, a la supergravedad D = 11 se le considera como la teoria
efectiva del limite a bajas energias de la teoria-M. Por otro lado, esta bien establecido
que las ecuaciones de movimiento de la supergravedad en 11D surgen como una con-
secuencia de imponer la simetria kappa a la accion de la supermembrana formulada
sobre un background general [41]. Esto respalda la conjetura de que la descripcién a
baja energia de la teoria de la supermembrana es la teoria de supergravedad en 11D.
Mas especificamente, esta conjetura significa que el estado fundamental de la super-
membrana en 11D se corresponde al supermultiplete asociado a la supergravedad en

11D. Una prueba rigurosa sobre este punto ain no existe, aunque se esta trabajando

7Sin traduccién.
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en ello [94]. En esta secciéon mencionaremos los resultados mas generales encontrados

en [41]. Sea la variacién de la accién de la supermembrana (1.22) bajo simetria kappa
08 = /d3€{x/—gg”(—énEﬁE?T,?g)Eja + V=997 (=0, E° E{T) Ejat}
1 T Iy ij A 2B 1-C &
—5V=90xg(T = 59" T = 59") + B} EP B 0B Facpal (1.56)

donde las transformaciones bajo simetria kappa (1.23) se pueden escribir de manera

mas compacta:

5B = (14+T)8",

5. E" =0, (1.57)

y gi; = Tij. Finalmente, los vinculos que se obtienen imponiendo la invariancia de la

accion bajo esta simetria 0,5 = 0 son:

Faﬁwé = Faﬁfyd T 07 (158)
1

Faﬁab = _B(Fab)aﬁy (159)

T2, = (). (1.60)

que coinciden con las ecuaciones de movimiento de la supergravedad 11D en el for-

malismo del superespacio, mostradas en (1.6) y (1.12).
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CAPITULO 2

Metodologia: Compactificacion y

Calibrados

En este capitulo resumiremos la metodologia usada en esta tesis para alcanzar los
objetivos planteados. Discutiremos algunos de los métodos de compactificacion usa-
dos en supergravedad y en la teoria de la supermembrana. Se repasard el concepto
de fibrado y el papel desempenado por la monodromia en los métodos de calibrado.
Se describiran dos métodos para obtener la descripcion efectiva de la supermembrana
con cargas centrales. En particular, se describe el método de esculpido que explica a
nivel global el calibrado de la supermembrana con cargas centrales y que posterior-
mente a lo largo de esta tesis va a permitir establecer la correspondencia entre las

supergravedades calibradas, la teoria-M y las relaciones de dualidad.

2.1. Métodos de Compactificacion usados en Su-

pergravedad

En esta seccion describimos algunos métodos de compactificacién usados en su-

pergravedad. Estos procedimientos son importantes para obtener las descripciones
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efectivas de las supergravedades en menor dimensién. En particular, las teorias de
supergravedad en cuatro dimensiones pueden ser obtenidas mediante estos métodos

a partir de esas teorias de supergravedad en mayor dimension.

2.1.1. Compactificacién Toroidal: Reduccion Dimensional

En esta seccién describimos la compactificacién toroidal resumiendo los resultados
expuestos en [66]. El procedimiento esencialmente consiste en expresar un campo de
dimensién mayor en una torre infinita de campos de menor dimensiéon expandiendo la
dependencia sobre las coordenadas internas en armonicos. En el caso de la reduccién
sobre un circulo de un campo escalar complejo QAS en D dimensiones, dependiente de

las coordenadas ™ = (2™, y), se hace la expansién de Fourier:
S y) = S IR, (), (2.1)

donde la direccion y se toma como direccion compacta de longitud 27 R, con el mo-

mento k definido por k£ = n/R en dicha direccién, y se impone la condicién de borde:

~

o(x™,0) = d(2™, 27 R). (2.2)

Supondremos, ademas, que el campo escalar qg verifica la ecuacién de Klein-Gordon
DQAS = 0 donde OO0 = 9,0" 4 9,0". Si se descompone el D’Alambertiano en términos de

las coordenadas, la ecuacién queda:
D¢ — k*¢r = D¢, — (n/R)*¢p = 0, (2.3)

donde O = 9,0". Esta es la ecuacién para un escalar complejo de (masa)? = k*. Por
lo tanto, un escalar sin masa en D dimensiones se convierte en un numero infinito

de campos escalares en D = D — 1 dimensiones. Estos campos son los estados de
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Kaluza-Klein (KK). El espectro de los estados KK es continuo para las direcciones
internas no-compactas mientras que es discreto cuando estas son compactas. Solo la
componente ¢y (n = 0) no tiene masa. El caso en que el proceso de compactificacion

solo considera estos modos no masivos, se le denomina reduccion dimensional [66].

Luego, en el limite R — 0, los modos masivos se convierten en infinitamente ma-
sivos por lo cual pueden ser descartados consistentemente. Al despreciar los estados
masivos, esta compactificacion se reduce a una reduccién dimensional. Para obtener
la descripcién a bajas energias se debe truncar de manera consistente a un nimero
finito de campos. En este caso, la consistencia se refiere a que cada solucion de menor
dimensién corresponda a una solucién en dimension mayor. En la reduccién dimen-
sional toroidal ésto queda automaticamente satisfecho, si bien no es necesariamente

cierto para compactificaciones més generales [95].

En la reduccién dimensional las masas son inversamente proporcionales al tamano
de la variedad interna. Esto significa que las masas asociadas a los estados con mo-
mentos distintos de cero son muy grandes y no se observan a bajas energias. En este
tipo de reduccién el nimero de grados de libertad no cambia, dado que se preserva
solo el modo mas ligero. Esos campos de menor dimension forman multipletes del gru-
po de isometrias de la variedad interna, ver por ejemplo [96]. Los grados de libertad
de la teoria formulada en menor dimensién, no son siempre no-masivos. Los grados
de libertad masivos aparecen cuando la expansion de Fourier de un campo sobre la

variedad interna no contiene ningiin campo sin masa.

En la teoria de la supermembrana con cargas centrales partimos de un espacio-
tiempo plano compactificado toroidalmente. Desde ese punto de vista también resulta

interesante considerar la reduccién toroidal de la métrica a fin de poder establecer
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la relacion con la teoria efectiva asociada. En la préactica, se construye un ansatz de

reduccion, que se sustituye en las ecuaciones de campo o en el lagrangiano.

Lo ilustramos con el ejemplo mas sencillo descrito por [66]. Se considera la reduc-
cién de la métrica en D dimensiones sobre un circulo a D = D — 1 dimensiones. El

ansatz estandar para la descomposicion de la métrica es:
.2
ds = e**ds® + *?(dy + A,,dz™)?, (2.4)

donde se muestra que g;; en D-dimensiones se descompone en ¢,,, D-dimensional
mas un vector A,, y un escalar ¢. Las constantes « y  son, en principio, arbitrarias,
pero pueden ser seleccionadas de modo que la teoria formulada en menor dimensién

esté descrita con el lagrangiano en su forma estdndar! :

L=/—gRk=V=g[R~ 5(09)* - g F?], (2.5)

con ' = dA. Las simetrias del Lagrangiano en menor dimensién (2.5) se pueden

entender considerando su origen en dimensiones maés altas.

En D dimensiones, la transformacion general de coordenadas no preserva la forma
del ansatz de reduccién (2.4), sin embargo puede definirse un ansatz con parame-
tros especificos o y [ que preservan la transformacién general de coordenadas D-
dimensional, las transformaciones de calibre U(1) y una simetria de escalamiento
global en D. En el caso de la simetria tromboén o de escalamiento en D-dimensiones
G — NG, 6sta se reduce a una simetria de escalamiento en dimensién D. Por
tanto, en la teoria formulada en D dimensiones se pueden construir combinaciones

lineales de estas dos simetrias globales para obtener las siguientes transformaciones

Ver, por ejemplo, los lagrangianos efectivos provenientes de teorias de cuerdas descritos por

Stelle en [29].
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rigidas [66]:
Gmn — )\12gmn7 Am — )\1Am ; Am — >\2Q—5Am7 6¢ — )\26¢, (26)

donde \;, Ay € RT. La simetria tromboén parametrizada por \; en dimensién D, escala
todos los términos en el lagrangiano con el mismo factor, y es solamente una simetria
de las ecuaciones de campo. La simetria de escala parametrizada por Ay es la tnica
simetria que deja invariante el lagrangiano. Las dos simetrias R™ de la supergravedad

ITA en D dimensiones aparecen de esta manera.

Si se hace la reduccién de la métrica sobre un toro 7™, tal y como se explica en
[66], el ansatz de reduccién de la métrica D-dimensional a D = D —n dimensiones es

(con una descomposicién de coordenadas 2™ = (z™,y") donde r = 1,...,n):
ds’ = % ds? + P J (dy" + AT da™)(dy® + ASdz™). (2.7)

Los campos en menor dimensién son: gy,,, n vectores A7 ., un dilatén ¢ y una matriz
escalar J.s que parametriza un coset SL(n,R)/SO(r). Este ultimo corresponde a
(n—1) dilatones y $n(n — 1) axiones. El lagrangiano en dimensién D viene dado por

una reduccion del término Einstein Hilbert:
Lp=+/-gR=v=g[R~ L(06)* + 1Tr(0J0J ") — 2= ] F" "] | (2.8)

con F" = dA". Los valores convenientes para « y [ producen el lagrangiano en
la forma convencional (2.8). La métrica (2.7) es invariante bajo transformaciones
de coordenadas generales D-dimensional, transformaciones de calibre U(1)" y una
simetria global GL(n,R) = SL(n,R) x RT Las transformaciones globales vienen

descritas por consiguiente por SL(n,R) y RT.

Consideremos ahora la reduccién de un potencial de calibre de rango d, C@,

sobre un circulo [66]. La dindmica del potencial de mayor dimensién C (@) acoplada a
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gravedad y a un dilatén ¢, es determinada por:

£ = V/Ta-4(09) — et Gl Gl (2.9)

con G = dC@ | donde se ha incluido el término cinético dilaténico. El pardmetro
a caracteriza el acoplamiento de dilatén. El ansatz de reduccién para la forma de

calibre es:

CD =CWD 4 (dz+ AACED s =0. (2.10)

donde A es el campo vectorial KK del ansatz (2.4). El lagrangiano resultante esta des-

crito por:
»CD _ \/—[ %(&p) 1 P 2da¢G(d+l G(d+l) . %6ago+2(D—d—1)a¢G(d) . G(d)] ’ (211)

con intensidades de campo G = dC@ + F A CU-D y G = dCd-1),

Se puede ver que la reduccién de una d-forma sobre un n-toro produce la cantidad

n - -
de | formas de rango d (donde d —n < d < d). Por ejemplo, la reduc-

d—d
cién de una 2-forma (que es el caso que nos interesa) sobre un 2-toro da lugar a una
2-forma, dos vectores y un escalar. Al reducir sobre un toro, la simetria de calibre
§C@ = g\ se divide en diferentes transformaciones de calibre de menor dimen-

sion, correspondiente a los diferentes potenciales d-formas. Los potenciales d-formas,

forman representaciones lineales de la simetria global SL(n,R).

Finalmente, nos referiremos al sector fermiénico de la teoria de supergravedad [96].
En la reduccién dimensional fermionica los espinores en dimension lA), se expresan
como un producto tensorial de espinores en el espacio de dimensién D y el espacio
interno. Para la reduccién toroidal, los espinores ’internos’ se toman como constantes.

Por ejemplo, el ansatz de reducciéon para el dilatino es:

A=) Nary, (2.12)
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donde A\’ son los espinores de menor dimensién y n° los espinores internos. El rango de i
es igual al niimero de componentes de espin-1/2 independientes de la variedad interna
por lo que depende de (15 — D). Por ejemplo, al reducir sobre un siete-toro, el espinor
minimal de 32-componentes A se divide en espinores minimales de 4-componentes
X', por lo que i va desde 1 a 8. En el caso de fermiones de espin-3/2, es decir, si
los fermiones tienen ademas un indice del espacio-tiempo, el procedimiento es una
combinacion de los ansatze bosonico y fermiénico. Ambos indices, espinorial y del

espacio-tiempo, se separan en rangos de menor dimension:
Um =Y 00, =Y Nan, (2.13)
i J

donde 7' y 77 son fermiones constantes en el espacio interno de espin 1/2 y 3/2,

respectivamente. Asi, los fermiones resultantes son el gravitini ¢!, vy el dilatini M.

Este tipo de reducciones genera todas las supergravedades maximales en D < 11.

2.1.2. Reduccién con un Twist: Compactificaciones Scherk-

Schwarz (SS)

En esta seccion se hace un repaso de un método de reduccién dimensional que
es una generalizacién de la reduccion de Kaluza-Klein (KK) con un twist la cual es
posible siempre que la teoria de mayor dimension contenga una simetria global [97].
Las compactificaciones SS aparecieron como una generalizacién de las reducciones KK
en las cuales los campos pueden tener una dependencia no-trivial sobre las variables
compactificadas, pero de tal modo que el truncamiento del lagrangiano en menor
dimensién sigue siendo consistente. Este método consiste en imponer una condicion

de borde, denominada twisted.
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Supongamos que tenemos inicialmente una teoria invariante bajo un grupo de
simetria global G. Consideremos los campos escalares qg transformando linealmente
bajo una transformacion global: ngS — gngS con g € (. Esto permite imponer una

condicién de borde twisted més general [97]:
d(x,2mR) = M(g)o(x,0) . (2.14)

donde al compactificar en el circulo los campos tienen una condicién de periodicidad
modulo una transformaciéon de simetria. A esta transformacion de simetria se le llama

monodromia.

Para grupos generales G, el elemento g(y) tiene que satisfacer el siguiente criterio

de consistencia:
M = g(y)~'0,9(y), (2.15)

debe ser constante. Esta condicion se impone para asegurar que se anula la dependen-
cia de las coordenadas compactas y asi garantizar la consistencia del truncamiento

en menor dimension. Esta condicién puede satisfacerse si:
g(y) = M) | con M = emRM) (2.16)
Por lo tanto, las constantes M constituyen un elemento del algebra de Lie de g.

Este ansatz de reduccion lleva desde las ecuaciones Klein-Gordon sin masa en

mayor dimension a las ecuaciones de Klein-Gordon masivas de menor dimensién:
O¢ =0 = O¢p + M?*¢ =0. (2.17)

Por esta razon, la matriz M es usualmente llamada la matriz de masa. Los autovalores
de M? estéan relacionados a la (masa)? de los campos ¢: los autovalores negativos
corresponden a las (masas)? positivas y viceversa, dependiendo si los subgrupos de

G generados por M son o no compactos respectivamente.
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La simetria G es rota en la reduccion twisted: elementos de G no preservan las

ecuaciones de campo sino que transforman la matriz de masa por:
M — g 'Mg. (2.18)

Solamente las transformaciones para las cuales las dos matrices de masa M y g~ Mg
son iguales preservan las ecuaciones de campo de menor dimensién [66]. Esto, en
general, solo lo cumplen los elementos de grupo. Si G es el grupo trivial G = [
entonces M = 0 y se recupera la reduccion toroidal. Si por otra parte, G no es una
simetria de la teoria, la reduccion no sera consistente: en general, no se encontrara la
cancelacién de todas las dependencias en las coordenadas internas al obtener las

ecuaciones de campo de menor dimensién [97].

Aplicando este método en el contexto de la teoria de supergravedad, el lagrangiano
en D-dimensiones es:

L=+\/-g[R+1Tr(0]J0]), (2.19)
donde J es la matriz definida por el conjunto de escalares de la teoria de supergravedad
maximal que parametriza el coset G/H [66]. Hemos visto que para este lagrangiano,
la reduccién sobre un circulo tiene el ansatz (2.4), con J = J. Ademés tiene una

simetria global ya que J — QJQT con Q € G.

Consideremos el ansatz de reduccién twisted definido por:
ds’ = e2°9ds? + P (dy + A,nda™)?, J=U(y)JU(y)", (2.20)

para un elemento U(y) = exp(My) € G, donde M es la matriz de masa del dlgebra
de Lie de GG. Notemos que el ansatz es el mismo empleado de la reduccion KK, pero
el conjunto de escalares J tiene una relacién no trivial (definida a través de la matriz

de monodromia (2.16)) con el conjunto de escalares J, a diferencia del caso toroidal

enel que U(y)=Ty J=.J.
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La descomposicién de las transformaciones de coordenadas en dimension D a
menor dimensién (D = D —n), 62 = —£™, es andloga a la reduccion KK. Esta
se descompone en una transformacién de coordenadas, U(1)"™ simetrias de calibre y
una transformacién global. La transformacién de calibre U(1) viene parametrizada
por &¥ = A(z). La transformacién de coordenadas en D dimensiones mantiene la
invariancia bajo difeomorfismos. Las otras dos transformaciones quedan modificadas

debido al twist.

En el caso de la reduccién twisted sobre un circulo [66], el ansatz de reduccién

(2.20) no es invariante bajo la siguiente transformacién de coordenadas:

J=U@W)JUW)" =  J=Uly-NJU®y-N". (2.21)

Usando U(y) = exp(My) € G, la transformacién de coordenada interna corresponde

a la transformacion de J en D dimensiones:
J = exp(—MN)Jexp(—=MTN), A, — Ay + O (2.22)

De hecho, la intensidad de campo escalar transforma covariantemente bajo esta trans-
formacion local. Por lo tanto puede decirse que el subgrupo unidimensional de G
generado por M esté calibrado. Esto significa que el parametro global de esta trans-
formacion A es promovido a local. Por esta razén se dice que la reduccién twisted

lleva a un calibramiento no-trivial en la teoria de menor dimensién [66].

La transformacién global viene parametrizada por un parametro constante c y

bajo este parametro, J transforma como
J=U(y)JU(y)" — J=Uly—ey)JU(y —ey)T . (2.23)

Sin embargo, a diferencia de lo que ocurre con la transformacién de calibre (2.21),

ésta no puede ser interpretada como una transformacién de simetria en dimensién D
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dado que no es independiente de las coordenadas internas sobre J. Ademés los térmi-
nos cinéticos no escalan igual que el potencial escalar. Esto hace que la simetria de
escalamiento se rompa debido a los parametros de masa M. Esta es una caracteristica
general de la mayor parte de las teorias masivas: La masa rompe la invariancia de

escala.

Se pueden construir ansatze de reducciones twisted para un lagrangiano mas ge-
neral que incluya a los potenciales de calibre y fermiones. Para ello, se debe estudiar
cémo modificar los ansitze toroidales mediante la introduccion de la transforma-
cién U(y) de manera conveniente. Sin embargo, la consistencia de tales reducciones

estd garantizada por la simetria global G' en D [66].

En casos especiales, la existencia de potenciales de calibre extra en las reducciones
twisted da origen a un ’aumento o mejoramiento’ del calibrado. En esos casos, adi-
cionalmente al calibrado por simetria twisted, se encuentran otras simetrias que han
sido promovidas a locales en la teoria calibrada. Para que esto sea posible, se nece-
sita que la parte global de esas simetrias estén presentes en la teoria no-calibrada, y
adicionalmente deben existir los vectores de calibre correspondientes, necesarios para

calibrar las simetrias extras.

Por ejemplo, tal y como se explica en [66], supongamos que se incluye un vector de
calibre V en el lagrangiano en D dimensiones. V tiene una simetria global V = Qv
con 2 € R, con un peso especifico a. Ademés se tiene la transformacién de calibre

SV = d. Entonces, el ansatz de reduccion twisted para 1% y ) se escribe:

A ~

V=UV+x(dy+A4), A=U")\ (2.24)

donde V' se descompone en un vector V' y el axion y. A es el vector que proviene de

la métrica y el elemento del grupo R* es U = exp™, con un pardmetro de masa m.
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Consideremos a A4 y Ay, los parametros de calibre de A y V| respectivamente.

Su accién sobre el axién y es:
daX = mAaX, oy x = mAy . (2.25)

Por lo tanto, cuando un parametro de masa es generado por dos transformaciones
locales independientes: se encuentra un ’aumento o mejoramiento’ en la simetria de

calibre. De hecho, en este caso los dos calibres son no-abelianos, ya que:
[64,00] = m*Aa)y . (2.26)

Estas transformaciones forman el grupo no-Abeliano bidimensional 1inico, que se de-
nota por A(1) [46]. Este aparece en nueve dimensiones y tiene su origen en el calibrado

de la teoria de supergravedad 1A en diez dimensiones.

Ahora analicemos como afectan las reducciones twisted al sector fermiénico. Para
una teoria de supergravedad con una simetria global G' y simetria local K, los fer-
miones son inertes bajo G pero transforman bajo K. Se puede primero seleccionar
un calibre fisico eliminando la simetria local K, y por consiguiente se reduce con
un twist en G (el cual solo actiia sobre los fermiones mediante la transformacién

compensadora) y una seleccion de la estructura de espin para cada representacion K.

Para una reduccion twisted sobre un toro, las simetrias incluyen una simetria rigida
SL(2,R) C G yunalocal U(1) C K en D+ 1 dimensiones. En este caso, si fijamos la
simetria K completamente, seleccionando un calibre fisico, la transformacién SL(2, R)

representada por la matriz

a b
A= , (2.27)

c d
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actia mediante un fermién A\ de carga U(1), ¢ por la transformacién compensadora

U()
Ao (C% il d)q/4 A (2.28)

ct+d
Las reducciones twisted de supergravedad dan lugar a supergravedades calibradas en

menor dimension.

2.1.3. Otros Calibrados

(1) Calibrados C'SO de Supergravedades Mazimales

En esta seccion se mencionan otras posibilidades de supergravedades maximales
calibradas. Un importante papel en la supergravedad maximal calibrada lo juegan
los grupos llamados C'SO, ver por ejemplo [66]. Estos grupos pueden ser vistos como
continuaciones analiticas y contracciones de grupos SO. Por ejemplo este es el caso
que se obtuvo al reducir la supergravedad D = 11 en una 7-esfera con flujo asociado

al calibrado SO(8) en cuatro dimensiones [98].

Los calibrados C'SO generalizan los calibrados de subgrupos de SL(2,R) en nueve
dimensiones. Un ejemplo es el calibrado del subgrupo SO(n) de teorias de supergra-
vedad con simetria global SL(n,R). Ademéds de SO(n), existen otros subgrupos de el
grupo de SL(n,R) que pueden ser calibrados. Estos calibrados pueden obtenerse por
continuacién analitica o contraccién de grupo del grupo de calibre [99], y se conocen
como el grupo CSO(p,q,r) con p+ g+ r = n, donde p,q,r € Z. En esta tesis nos
restringiremos a reducciones a nueve dimensiones (n = 2). Un caso especial de esta
reduccion es dada por p+¢g =1 o 2. En esos casos, H” corresponde a una variedad

uno-dimensional, sobre los cuales se hace una reduccion twisted.
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La diferencia entre (p,q,r) = (2,0,0), (1,1,0) y (1,0, 1) es el flujo de los escalares:
los diferentes valores corresponden a twisting con los subgrupos SO(2), SO(1,1) y R

de un grupo de simetria global SL(2,R), respectivamente.
(2) Tensor de Embbeding

Motivados por el descubrimiento de nuevos calibrados, asociados a la correspon-
dencia AdS/CFT y al estudio de compactificaciones con flujo, se propuso un nuevo
método: El método del tensor de embedding, que pretende clasificar de la forma mas
general posible todos los calibrados asociados a una teoria de supergravedad en una
dimensién dada [99, 100]. Esta clasificacién se hace atendiendo a los subgrupos de
simetrias globales residuales en la teoria calibrada via un tensor de embedding. Una
condicion que se le impone a este método de calibrado es que se preserve la supersi-

metria del lagrangiano original.

Una caracteristica fundamental de las supergravedades maximales es que los esca-
lares parametrizan un espacio simétrico G/H. Con, G denominado el grupo dualidad
y H el grupo de la simetria R (R-symmetry)?. Los campos escalares son descritos en
términos de un elemento de G, V(x), que depende de las coordenadas del espacio-
tiempo, y transforma bajo transformaciones globales por la izquierda. Las tranforma-
ciones locales H actiian por la derecha [52]. Si se selecciona un calibre, el elemento
de grupo V es el coset de G/H. Para calibrar la teoria de la supergravedad se utiliza
el embedding de este grupo de calibre en G mediante un tensor ©,;%, denominado
tensor de embedding:

O = On0a, (2.29)

donde d,; son los generadores del grupo H y d,, los generadores de G.

2Simetria que acttia notrivialmente sobre las supercorrientes.
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Al calibrar las derivadas se sustituyen por derivadas covariantes preservando la

forma del lagrangiano. Estas derivadas covariantes tienen la siguiente forma:
Dy, = 0y — eAM O3, (2.30)

donde AY son campos de calibre abelianos que transforman en G con los generadores
(to)hy, tal que 64, = —A%(t,)y™ AN,y € es la constante de acoplamiento de la
teoria que en ocasiones es absorbida en la definicion ©,,%. El tensor de embedding

O es real y satisface la condicion de cierre del algebra:
@Ma @NB fa57 = fMNP @p7 , (231)

donde f,5” son las constantes de estructura de G,y fun', las constantes de estructura
del grupo de calibre. Esta condicion implica que © es invariante bajo el grupo de

calibre. La ec (2.31) se puede escribir en términos de los generadores t,,
fgfya @Mﬁ @N’Y — (tg)NP @Mﬁ @pa =0. (232)

A esta condicion se le denomina el vinculo cuadratico en el tensor de embedding.

Ademds O verifica también la condicion:
PO =0 (2.33)

donde Py es un proyector que proyecta en la representacion en © que son prohibidas.

A esta condicion se le denomina vinculo lineal en el tensor de embedding [101].

Por consiguiente, calibrados consistentes estan caracterizados a través de tensores
de embedding que satisfacen dos vinculos, uno cuadrético y uno lineal en el tensor
de embedding. El vinculo cuadratico asegura que el tensor de embedding define un
subgrupo propio del grupo de dualidad. El vinculo lineal implica que el tensor de
embedding pertenece a una representacion especifica del grupo de dualidad. Recien-
temente en [49] han usado el método del tensor de embedding para construir en 9D

las supergravedades calibrada/masivas més generales a partir de la maximal en 9D.
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2.1.4. El grupo GL(2,R)

Para el caso de interés aqui, las supergravedades calibradas tipo I1 en 9D, las
monodromias estdn asociadas al grupo de simetria global GL(2,R) = SL(2,R) x R*.
Los primeros trabajos en relacionar las teorias de supergravedad tipo II en 9D con
la clasificacién de la simetria SL(2,R) y su subgrupo aritmético SL(2,Z) fueron

realizados por [42, 43]. En esta seccién nosotros repasaremos las clases inequivalentes.

En el sector SL(2,R), existen tres clases inequivalentes de teorias correspondientes
a las clases conjugadas SL(2,R) denominadas hiperbdlicas, elipticas y parabdlicas,

que estan representadas de la forma [102]:

1 k e’ 0 cosf sind
M, = , M, = , M, = , (2.34)

0 1 0 e —sinf cos6

donde cada clase se especifica por la constante de acoplamiento (k, v o 6). Ademas,
en 9D la teoria puede ser descrita en términos de la matriz de masa M con tres
pardmetros [42, 43]:

mq mo + ms

N —

(2.35)

Mgy — Mg —my
Esta matriz de masa, como se explic en [42, 43|, pertenece al élgebra de Lie
sl(2,R) y transforma en la representacién adjunta irreducible. Esto se caracteriza
por el vector de masa m= (mq,ma, m3). A bajas energias la supergravedad calibrada

estd determinada por la matriz de masa M para una monodromia dada M.

Existen tres casos distintos dependiendo del valor de mi? = i(mf + mo? — my?)
[102, 105] caracterizando un conjunto de tres clases conjugadas mostradas en (2.34):

R, SO(1,1)",SO(2). Como haremos uso de los mismos se describen a continuacién.
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Cada uno de los subgrupos es generado por un elemento del grupo SL(2,R), A

con det A = 1. Ellos se clasifican de acuerdo a su traza:

= La supergravedad parabdlica calibrada estd asociada al calibrado del subgrupo
R con pardmetro ¢ generada por una A, de la forma M,,. La clase conjugada

corresponde a las matrices con |TrA,| = 2.

s La supergravedad calibrada hiperbdlica esta asociada al calibrado del subgrupo
SO(1,1)" con pardmetro v generada por una Aj; de la forma M,. La clase

conjugada la forman las matrices cuyos |TrAy| > 2.

= La supergravedad calibrada eliptica estd asociada al calibrado del subgrupo
SO(2) generada por elementos A, de SL(2,R) de la forma M, con pardmetro

0. La clase conjugada eliptica corresponde a las matrices con |TrA.| < 2.

El grupo R* es una clase conjugada uniparamétrica. Esto corresponde a los esca-
lamientos que dejan invariante las ecuaciones de campo pero escalan globalmente el
lagrangiano. Estas simetrias fueron llamadas trombén por [62]. Su calibrado fue estu-
diado en [47, 48]. Esto corresponde a la reduccién con un nuevo pardmetro my # 0.

Siguiendo a [46], la simetria RT se calibra con pardmetro Ag+ = ™.

Como se explicé en [46] el conjunto completo de deformaciones {m;, m4} con un
grupo de simetria GL(2,R) para las reducciones de supergravedad tipo I1B corres-

ponden a:

Acrir) = Asper)Ar+ (2.36)
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2.2. Compactificaciones en términos de Fibrados

En esta seccién describimos teorias de supercuerdas/supergravedad/teoria-M en
términos de fibrados, para ello se hace una breve revision del concepto de fibrado y

se estudian la reducciones analizadas anteriormente.

2.2.1. Fibrados

A continuacién daremos un resumen sobre nociones de fibrados que nos seran de
utilidad. La motivacién para introducir el formalismo de fibrados es considerar las

compactificaciones del espacio space como un tipo particular de fibrados [14, 106].

Se define a un fibrado (E, 7, M, F,G) como una construccién matemadtica que
estd formada por los siguientes elementos: tres variedades diferenciables, llamadas el
espacio total E, la base M, y la fibra [F’; una funcién sobreyectiva m denominada
proyeccién tal que 7 : E — M, y con la imagen inversa 7' (p) = F,, & F donde F es
denominada la fibra en p € M; un grupo de Lie G denominado el grupo de estructura,
el cual actia sobre F por la izquierda; un difeomorfismo ¢, ¢; : U; x F — 7= 1(U;)
tal que wo;(p, f) = p, donde {U;} es un conjunto de cubrimiento abierto de M. A ¢;
se le llama trivializacion local; y finalmente, un conjunto de funciones denominadas
funciones de transicién t;;, tal que t;; : U;NU; = Gy ¢i(p, f) = ¢i(p, tij(p)f),

relacionando ¢; y ¢; con U; NU; # .

En general, a un fibrado como el descrito antes (E,m, M, F,{U;},{¢:},G) se le
denomina, fibrado coordenado. Con lo cual, el término fibrado representa una clase de
equivalencia de fibrado coordenado. Existen generalizaciones del concepto de fibrados

llamadas fibraciones, en donde no se admiten siempre trivializaciones locales. Esto es,
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en el que no necesariamente todas las fibras son iguales. Las diferentes fibraciones para

una base B y una fibra F' se clasifican por las clases caracteristicas correspondientes.

Se denomina seccion de un fibrado s , a un mapa suave s : M — E, que satisface
7s = idy. Con s(p) = s, es un elemento de F, = 7 !(p). El conjunto de secciones
sobre M se denota por I'(M, E). Si U C M, se puede definir una seccién local solo
sobre U. Por lo tanto, I'(U, E) denota el conjunto de secciones locales sobre U. Los
campos fisicos de una teoria son secciones de un fibrado, mientras que la accién S
de una teoria es el funcional invariante de calibre de las secciones. Dada un fibracion
determinada se pueden construir varias acciones (y lagrangianos) compatibles con las

mismas secciones para un fibrado dado.

El fibrado E sera trivial si todas las funciones de transicién t;; son la identidad,
en tal caso se puede describir como el producto directo del espacio base y la fibra,
E = M x F. Una variedad fibrada no trivialmente no se puede ser escrita de esta
manera, lo cual significa que se necesitan varias cartas o cubrimientos {U;} para

cubrirla tal que las funciones de transicion existan.

Un Fibrado Principal se define como un fibrado cuya fibra F' es idéntica al grupo de
estructura G®. Un fibrado principal P = M se denota como P(M, G), G-fibrado sobre
M. Los fibrados principales pueden ser triviales o no. Un fibrado principal es trivial si
y solo si, éste admite una seccién global. Dado un fibrado principal P(M, G), se define
un fibrado asociado: Supongamos que G actiia sobre una variedad F' por la izquierda.
Define una accién de g € G sobre Px F por (u, f) — (ug, g f) dondeu € Py f € F.
Luego, el fibrado asociado (E, 7, M, G, F, P) es una clase de equivalencia P x F'\ G

en los cuales dos puntos (u, f) y (ug, g~'f) estan identificados.

3Un ejemplo del mismo es un fibrado toroidal principal en el que la fibra es un toro y el grupo

de estructura es el mismo toro U(1) x U(1).
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Un fibrado wectorial E = M es un fibrado cuya fibra es un espacio vectorial. Si F
es R¥ y M una variedad de m dimensiones. A k se le denomina dimensién de la fibra,
mientras que la dimensién del espacio total £ es m + k. Para este tipo de fibrado,
las funciones de transiciéon forman parte del grupo GL(k,R), ya que son funciones
que mapean un espacio vectorial en otro espacio vectorial de la misma dimension
isomérficamente. Si F es es un espacio vectorial complejo CF, el grupo de estructura
es GL(k,C). Un fibrado vectorial V' es trivial si y solo si su fibrado principal también
lo es. Un fibrado vectorial asociado P x V', con V = F un espacio vectorial de k
dimensiones y es la representacién k-dimensional de G, se define identificando los
puntos (u,v) y (ug, (g9)"*v) de P x V, donde u € P, g € Gy v € V. En fisica los

campos son secciones de un fibrado vectorial.

La Conezion en un fibrado permite la comparacién entre diferentes fibras asociadas
a diferentes puntos de la variedad. Son conocidas como potenciales de calibre. Se
define globalmente sobre E, aunque también puede llevar informacién local. Sea A;

la conexién sobre una trivializacién que satisface la siguiente condicion:

Debido a que un fibrado principal no trivial no admite una seccién global, el pull
back A; = sfw existe localmente pero no necesariamente globalmente. La uno-forma
de conexion sobre el fibrado principal permite definir 'subespacios horizontales’. Las
uno-formas de conexion A; estan asociadas al fibrado trivial y no tienen informacion
global de E, por consiguiente se necesitan un conjunto completo {A;} para definirla

globalmente sobre E.
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2.2.2. Compactificaciones, Fibrados y Monodromias

En esta subseccion queremos interpretar las compactificaciones que antes hemos
descrito (KK y Scherk-Schwarz(SS)) y otras més generales, en términos de fibra-
dos. En el contexto de supergravedad las reducciones toroidales en un 7¢ producen
backgrounds del tipo X;,_q x 7. Estos backgrounds pueden ser interpretados como

fibrados triviales con fibra 7% y base X11_4.

Si por ejemplo se considera una reduccién de la teoria de supergravedad en una
variedad tridimensional M3 = S' x T2, con T2 una variedad twisted. La variedad
tridimensional M3 es un fibrado toroidal principal no trivial de base el circulo y fibra
T2. Las reducciones de supergravedad a la KK estdn asociadas a supregravedades
maximales en menor dimension y las de SS estan asociadas a las calibradas. En am-
bos sectores las distintas teorias estan conectadas entre si mediante transformaciones
de dualidad (dualidad S, dualidad U y dualidad T"). La teoria M como teoria de unifi-
cacion en once dimensiones, se espera que realice estas transformaciones de dualidad

como simetrias de la teoria [107].

C. Hull propuso que estas dualidades se podrian observar de forma explicita co-
mo simetrias de un fibrado que describa globalmente la teoria de cuerdas o la teoria
M [107]. Las funciones de transicién de dicho fibrado, deben transformar no solo
bajo difeomorfismos sino también bajo transformaciones de dualidad. La teoria del
campo doble intenta realizar estas ideas a partir de teorias efectivas de supercuer-

das/supergravedad usando las nociones de geometria generalizada.

Estos fibrados asociados a la teoria del campo doble son fibrados toroidales no
triviales. El hecho de que la fibra sea una variedad toroidal tiene su origen en la T-

dualidad, la cual es llamada asi porque en su realizaciéon més sencilla, conecta teorias
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de cuerdas compactificadas en un circulo (I/A/IIB y Het(SO(32))/(E8 x EB8)) o
a nivel de teoria M compactificada en un toro, transforma una teoria en su dual
conservando la fisica del sistema. Por ejemplo, analicemos ahora las compactificaciones
SS de los backgrounds de supergravedad desde el punto de vista de fibrados. Las
reducciones SS pueden ser expresadas en términos de los fibrados principales sobre
circulos con un twisting dado por la monodromia [102, 103, 104]. El background
posee un grupo de isometrias globales G asociadas a la variedad de compactificacién
sobre la cual es fibrada. Los mapas que describen las variables compactificadas g(y)
no son periodicos, sino que tienen una monodromia g(y) = exp(My) [102]. ¢g(y) es
una seccién local de un fibrado principal sobre el circulo con fibra G y monodromia
M(G) en g. El funcional invariante que describe la accién se expresa en términos de

las secciones locales de este fibrado (los campos).

La monodromia M(g), como hemos visto antes, viene expresada en términos de
una matriz de masa M, como M(g) = exp M. Monodromias relacionadas por una
conjugacion G definen teorias con acciones equivalentes pero cambiando la carga
de la reticula. La compactificacién twisted induce un potencial Scherk-Schwarz (SS)
en el espacio méduli. Para ciertos valores de ese espacio méduli hacer un twist es
equivalente a introducir flujos junto a un corrimiento* en las coordenadas internas del

toro compactificado.

La descripciéon global necesaria para encontrar la relacién entre supermembrana
con cargas centrales y la teoria de supergravedad se hace en términos de fibraciones

toroidales mas complejas como se vera en la subseccién 2.3.2.

4Traduccién de shift.
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2.2.3. Condiciones de Cuantizacion

En esta seccion se considera la realizacion de las compactificaciones twisted a nivel
de la teoria de cuerdas. Es decir, se pasa de una descripcion clasica de la supergravedad
a una cudntica de teorfa de cuerdas. De acuerdo a [107] esto implica que la simetria
global clasica G se rompe a su subgrupo arimético G(Z) y por tanto la matriz de
monodromia debe ser un elemento de este subgrupo. Para el caso de la teoria de
cuerdas I1B el grupo de monodromia debe pertenecer a SL(2,7Z), donde la matriz de
masa estd evaluada en los nimeros enteros. Las clases conjugadas SL(2,Z) han sido

analizadas en [108]. Dada una monodrom{a, +M y £+ M~! son clases conjugadas.

En el caso de las monodromias elipticas existen cuatro clases conjugadas, aparte

de la clase trivial M =1 [45]:

-1 0 0 1 0 1 1 1

M2 - ) M3 = ) M4 - ) M6 = )
0 -1 -1 -1 -1 0 -1 0

(2.38)

que generan respectivamente Zs,Zs, Z4, Ze que son subgrupos de orden finito de

SL(2,7).

Las monodromias en las clases parabdlicas e hiperbédlicas conjugadas generan gru-

pos de twist de orden infinito.

Hay un nimero infinito de clases conjugadas parabdlicas SL(2,Z) con Tr(M) = 2,

representada por T":

My, = , (2.39)
0 1

con una clase conjugada distinta para cada entero n.
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Hay un nimero infinito de clases conjugadas hiperbélicas SL(2,Z) con |T'r(M)| >

2, representado por:

n 1
Mpy, = : (2.40)
-1 0
para enteros n con |n| > 3, junto con monodromias puntuales M(t) de traza t (clases

esporadicas). Para mas detalles ver [45].

Siguiendo a [66], los pardmetros de masa son parametrizados por m = m (p, q, 7).
Entonces, dado el radio de compactificaciéon R y los coeficientes relativos (p, ¢, r) de
los parametros de masa, se selecciona el coeficiente global m tal que la monodromia
esté en SL(2,7). Esto no siempre es posible: un requerimiento necesario estudiado en
[108] es que (p, q,r) sean enteros y satisfagan la llamada ecuacién diofantica, esto es,
una ecuacién para numeros enteros. Asimismo, se deber exigir que ¢ y 7 sean ambos
pares o ambos impares. Por tanto, se obtienen todas las monodromias que pueden ser

expresadas como productos de los elementos:

0 1 11
S = . T= , (2.41)
-1 0 0 1

y sus inversas. Las clases de conjugacién de SL(2,Z) fueron recopiladas en [108].

A nivel cuantico la realizacion de estas simetrias G se propone que esté asocia-
da a sus subgrupos aritméticos G(Z) [107]. La realizacién cudntica de la simetria
trombén R* es méds complicada. El problema a nivel cudntico es el siguiente: El
grupo GL(2,R) deberfa romperse a sus subgrupo aritmético para garantizar la cuan-
tizacion de la reticula de carga BPS, sin embargo el conjunto de matrices Mat(2,7Z)
cuyos determinantes son un entero, no forman un grupo ya que la inversa de un en-
tero no necesariamente es un entero (el subgrupo aritmético de GL(2,R) es el grupo

GL(2,7Z) = SL(2,7Z) x Zs, pero falla en incorporar los escalamientos).
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Class | o | Tr(A) | p* +¢* —1? (p,q,7) A
1 n
I =0 2 0 (0,m,n) T = nez
0 1
FT
0 1
II >0 n n* —4 (£n,0,42) | (ST )* = ( ) 3<neZ
-1 n
T
0 1
Inr | <o 0 —4 (0,0,+£2) SEL =
-1 0
+1
1 1
1 -3 (£1,0,42) | (T719)* =
-1 0
2 —4

Cuadro 2.1: La tabla original de [108] que clasifica las diferentes monodromias SL(2,Z).

2.2.3.1.

Simetria Trombdén a Nivel Cuantico

La simetria de escalamiento R* aparece cuando consideramos escalamientos que

dejan invariante las ecuaciones de campo, pero que pueden escalar globalmente el la-

grangiano. Estas simetrias fueron llamada trombén por [62]. En [62] ellos encuentran

una manera propia para modelar los escalamientos a nivel cuantico introduciendo re-

presentaciones no lineales de SL(2,Z) que ellos denominan activas, para distinguirlas

de aquellas asociadas a la U-dualidad. Esta simetria esta caracterizada por el hecho

que ésta actia sobre la carga reticular transformando cargas de enteros en cargas de

enteros mediante la transformacion SL(2,7Z) pero dejando el méduli fijo. Esto se al-

canza a través del uso de una transformaciéon compensadora, que es aplicada una vez,

la U-dualidad transforma cargas y méduli por un SL(2,7Z) lineal. La transformacin

compensadora actta sobre el méduli transformado para retornar a su valor original.
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A nivel cudntico la realizacién fue estudiada por [62] mientras que su calibrado por

[48]. Hacemos un breve resumen de los procedimientos seguidos en [62].

Dado un mapping arbitrario SL(2,Z) entre Q)1 y Q2, con ()1 la reticula elemental
de carga, notamos que la descomposicién de Iwasawa para SL(2,7Z) nos permite

factorizar un elemento del grupo A € SL(2,7Z) como
A=BH, (2.42)

donde B es un elemento del grupo de Borel que deja invariante Qs bajo escalamiento
y H es un elemento del grupo de estabilidad H = SO(2) para un valor dado del
parametro de Teichmiiller, 7, = 7. Este grupo de estabilidad es al mismo tiempo, el
subgrupo linealmente realizado del grupo de simetria estandar clasico G = SL(2,R),
con los campos escalares tomando sus valores en GG/H. Claramente, solo la trans-
formacion B es la que realmente provoca que 7y se transforme, asi que la parte de
transformacién de Borel del compensador debe ser B = B!, En consecuencia, parte
de la tranformacién de Borel del compesador y de A se anulan, quedando simplemente

con

BtA=tH, (2.43)

i.e. la transformacién compensadora SL(2,Z) puede ser realizada como una transfor-
macién especifica SO(2), de H por el rescalamiento trombén t. Debe notarse que la

matriz H (y ademads el producto ¢t H) no es, en general, una matriz de valores enteros.

Se llamard a las transformaciones compensadoras SL(2, Z), transformaciones SL(2, Z)
activas, para distinguirlas de las transformaciones de dualidad SL(2,7Z) de teoria de

cuerdas, que transforman simultdaneamente el médulo 7y y las cargas.
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2.3. Metodologia usada para Calibrar la Super-

membrana

En esta seccion revisaremos las herramientas tanto conceptuales como de calculo
que han sido usadas en esta tesis para encontrar, interpretar y discutir los resultados
obtenidos que mostraremos a partir del capitulo 4 que se refieren al calibrado de la

supermembrana con cargas centrales.

2.3.1. Meétodo de la Simetria Kappa

En esta tesis hemos denominado Método de la Simetria Kappa al método mediante
el cual usamos la exigencia de invariancia de la accién de la supermembrana D = 11y
de la supermembrana con cargas centrales bajo la simetria kappa en el modo en que lo
hace Bergshoeff, Sezgin y Townsend en [41]. Este procedimiento es llevado a cabo para
encontrar los vinculos que conectan a la teoria a altas energias en dimensién D con la
teoria efectiva de supergravedad a la cual se acopla. En esta tesis uno de los objetivos
es encontrar cudl supergravedad es la teoria efectiva de la supermembrana con cargas
centrales en 9D. En el caso 11D, fue probado en [41] que las ecuaciones de movimiento
de la supergravedad 11D se obtienen a partir de la teoria de la supermembrana 11D.
Esto lo verificamos a primer orden en la coordenada fermidnica en la seccién (C.1)

del apéndice C.

Nosotros extendimos el resultado de [41] cuando se hace una compactificacién
toroidal de la supermembrana en un background X? x T2. Usando este método ob-

tuvimos los vinculos de la tnica teoria de supergravedad maximal en D = 9. Estos
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resultados los reportamos en la seccién (C.2) del apéndice C y esperamos que formen

parte de una futura publicacion.

Para usar este método se parte del formalismo del superespacio en el que se ex-
panden los supercampos del background en términos de la variable fermionica 6. Para
obtener las expresiones de los supercampos de la supergravedad en el formalismo del
superespacio como expansiones en la variable € es necesario hacer la identificacion, de
un modo compatible, de todos esos supercampos y superparametros de las supertrans-
formaciones en el superespacio, considerandolos como expansiones en la coordenada

6, con los campos y parametros de la teoria de la supergravedad usual.

El procedimiento se denomina método de ”gauge completion”, ver [24, 84, 85|,
y consiste en: (1) Se escoge un calibre en el que se identifican las componentes de
todos los supercampos y superparametros en ¢ = 0 con los campos y parametros
de las transformaciones de la supergravedad usual. Y, (2) se comparan las reglas de
transformacién de los supercampos y las algebras de dichas transformaciones con las

correspondientes a los campos en la teoria de la supergravedad D = 11.

Una vez formulada la supermembrana compactificada en el toro 72 en el forma-
lismo del superespacio se impone la invariancia de la simetria kappa de la accion
y se obtienen un conjunto de supervinculos. Posteriormente se compararon con los

vinculos de [41] compactificados en el T? (seccién C.2) .

Luego, se aplicé el mismo método para la supermembrana con cargas centrales,
pero las expresiones obtenidas, atin a primer orden en 6, son bastante complejas para
efectuar calculos y llegar a resultados definitivos. Por otra parte en la literatura no

existen una clasificacién de las supergravedades calibradas en 9D en el formalismo
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del superespacio. Por esta razon se propuso un método alternativo que explicamos a

continuacion.

Los resultados de la seccién C.3 esperamos completarlos y que formen parte de

una publicacion a futuro.

2.3.2. El Mecanismo de Esculpido para Calibrar Teorias

En esta seccién se resumen los resultados de [14]. El mecanismo propuesto alli es
un mecanismo nuevo de calibrado que consiste en extraer la teoria deformada utili-
zando y modificando la estructura global de la misma en términos de fibrados. A esto
se le llama mecanismo de esculpido®. Este consiste en una deformacién del tipo de
homotopia de la fibracion completa E preservando el tipo de homotopia de la base y
de la fibra. Nos restringiremos en esta tesis a la aplicacion de este mecanismo a la su-
permembrana. Se toma como teoria no-calibrada a la supermembrana compactificada
sobre un 2-toro. Esta corresponde a un funcional invariante (accién) sobre una va-
riedad base de Riemann cuya fibra, por simplicidad, es el espacio tangente T2 x M.
La parte topoldgicamente no-trivial de la fibra corresponde a la variedad toroidal
asociada al espacio tangente. La formulacién global de la teoria no-calibrada es un
fibrado toroidal trivial sobre una variedad base que, por simplicidad, seleccionaremos

que sea homotopicamente un toro.

La deformacién en el fibrado total puede ser vista al imponer dos tipos de res-
tricciones: la primera, debida a la introducciéon de una condicién topoldgica que se
explicard mas adelante (la carga central) mediante la cual el fibrado toroidal trivial se

deforma a un fibrado principal. Fisicamente, esto puede verse como restricciones sobre

®Denominado en inglés sculpting mechanism.
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los mapas permitidos en el espacio target compactificado. En segundo lugar, el proce-
so de extraccion del campo de calibre de una manera consistente a partir de la forma
cerrada implica la modificacion del fibrado toroidal principal en un fibrado toroidal
simpléctico con monodromia no trivial. El fibrado total puede ser o no simpléctico
de acuerdo a si la monodromia es dada por la clase de torsion asociada al ”Mapping
Class Group” (MCG) de la variedad base I1;(2). La supermembrana resultante es, por
lo tanto, calibrada en este nuevo sentido de esculpido y corresponde geométricamente
a una supermembrana minimamente inmersa en el espacio target. Como resultado de
este procedimiento, la simetria global (discreta) de la teoria no-calibrada estd par-
cialmente rota a un subgrupo H € G. El grupo de calibre de los simplectomorfismos
de la variedad de la base se deforma a aquellos dados por las clases de isotopia aso-
ciados a la monodromia p. Ademas esta deformacion dota al nuevo fibrado de una
conexién A en el fibrado toroidal simpléctico conectado con el fibrado principal. Este
tipo de deformaciones de acuerdo a [14] pueden entenderse como restricciones que se
le imponen al fibrado y a la conexién y en ese sentido se denomina de esculpido. El

cambio en la cohomologia del fibrado toroidal es de la siguiente manera:
I~ H*(X,Z) ~ H*(%,Z,), (2.44)

siendo p una representacion contenida en el grupo de isotopia asociado al grupo de
difeomorfismos de la variedad base. Para el caso de la supermembrana dicho grupo

esel SL(2,7Z).

Notar que las flechas no implican una secuencia espectral. Siguiendo [14], enfatiza-
mos que los tres principales pasos necesarios para producir la deformacién sculpting/de
esculpido del fibrado, esto es: el primer paso es imponer la condicion de carga cen-
tral que representa un impedimento a la trivialidad supuesta produciendo un twist

en la fibracién, generandose un fibrado principal cuya cohomologia en H?(3,Z) es
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no trivial. El lagrangiano de la fibra sin deformar tiene las siguientes simetrias: una
simetria de calibre DPAy(3?), el espacio target supersimétrico N = 2, una simetria
global discreta G = Sp(2, Z) asociada a la condicién de enrollamiento de los mapas
embebidos Y7 — T?: Existe un conjunto infinito de conexiones que pueden fijarse
al fibrado principal. La condiciéon de enrollamiento define 1-formas cerradas d.X, que
admiten una descomposicion de Hodge en términos de uno-formas armonicas d)A(T y

una uno-forma exacta dA,:
dX, = P*dX, + dA,, (2.45)

la matriz P’ describe los 4 grados de libertad globales asociados a la condicién de
enrollamiento, cuyos coeficientes dependen del tiempo. En presencia de la condicién
de carga central, dicha matriz P; es constante y no-degenerada, estamos ”congelando”

el enrollamiento.

Las uno-formas arménicas, gracias a la condiciéon de carga central, tienen una
simetria global extra Sp(2,Z) = SL(2,Z). Como consecuencia de ello, la matriz P?

se puede expresar de la siguiente manera:
P’ =M;=2rR"S; con S;e€SL(2Z). (2.46)

Una vez elegida la base de formas armonicas {dX 1, la descomposicién de Hodge es
tnica, y la matriz P’ queda fijada (por ejemplo a 67). Como consecuencia de ello
hay una fijacion parcial de la simetria global que se rompe a una simetria residual

asociada dada por las monodromias del fibrado calibrado.

El préximo paso es extraer una uno-forma de conexién al fibrado no-trivial. Defini-
mos una conexiéon simpléctica A preservando la estructura de la fibra bajo holonomias.

Para ello, primero definimos una derivada rotada asociada al fibrado Weyl [8]:

6ab

D,e = (2nR'I")0] ———08,X'(0)0ye, (2.47)

VW(o)
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haciendo explicita la dependencia en 6 € SL(2,7Z), la cual depende de la monodromia

p.

En 2-dim los difeomorfismos que preservan el area son también los simplectomor-
fismos. La tercera seleccién relevante es la eleccion para W en el modelo geométrico

que hemos definido. A continuacién, se define:
1 PN
VW = §emaaXTabXSeab, (2.48)

ésta es una densidad regular globalmente definida sobre Y. Es invariante bajo un

cambio de la base canénica de homologia.

La matriz 6 lleva la informacién de la simetria global residual discreta asociada a
las funciones de transicion del ”patching” de las diferentes cartas en la variedad base
compacta para una base fijada de las formas armoénicas. Esto juega un rol andlogo
al tensor de embbeding en el calibrado de Noether de las teorias de supergravedad.
Senalaremos aqui que el lugar donde las simetrias globales discretas surgen junto con
el operador derivada en lugar de aparecer ademas el campo de calibre ya que su origen

es topoldgicamente asociado a la superficie compacta de la variedad base p-brana.

La definicién de esta derivada rotada (estamos haciendo una extension de la defi-
nicion de la derivada covariante), en la cual el fibrado asociado tiene una monodromia
no-trivial de la 7;(X) sobre la homologfa de la fibra H;(T?). La derivada asociada
fija una escala en la teoria y rompe la primera teoria H = Sp(2,Z) a un subgrupo

I' € Sp(2, Z) especificando los enteros de S?.

La derivada covariante simpléctica [8], es entonces:

D,e=D,e+{A,, o} (2.49)
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y entonces la conexién transforma con el simplectomorfismo como:
d.A = D,e. (2.50)

Se concluye que el fibrado esculpido es un fibrado toroidal simpléctico con cohomologia

H2(%,7,) [14].
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CAPITULO 3

Supergravedad y Supermembrana

en 9D

En este capitulo se hara un repaso de las principales caracteristicas de las super-
gravedades tanto maximales como las calibradas en nueve dimensiones 9D, ya que
serd muy importante al analizar nuestros resultados. Ademads, incluiremos una muy
breve descripcién de las teorfas de supergravedad maximal y calibrada en 10D. Se
describird asimismo el elemento fundamental de nuestro trabajo, la supermembrana

con cargas centrales formulada en 9D no compactas.
3.1. Supergravedades Maximales en 10D y 9D

Antes de pasar directamente a referirnos al caso 9D, se hard en esta seccién una
muy breve descripcion de las teorias de supergravedad no-calibradas en 9D y 10D,
destacando los aspectos que tienen que ver con las simetrias globales de las teorias,
pues éstas juegan el rol principal para obtener las supergravedades masivas/calibradas

en las cuales estos grupos se calibran.
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3.1.1. Supergravedades Maximales en 10D

En esta seccion se da un vistazo a las supergravedades no calibradas en 10D. En
diez dimensiones se puede tener supersimetria N =1 o N = 2, correspondiendo a 16
0 32 supercargas, respectivamente. A la teoria con N = 1 se le denomina supergrave-
dad minimal y para N = 2 se tienen dos supergravedades maximales inequivalentes,
por lo que D = 10 es la inica dimensién en que sucede esto, en todas las otras dimen-
siones hay solo una supergravedad maximal. La estructura de las supergravedades
maximales en diez dimensiones corresponde a las posibles teorias de cuerdas con su-
persimetria maximal. De hecho, en esta dimensién, se tienen las teorias de cuerdas
ITA y IIB, cuyas acciones efectivas a bajas energias estan dadas por las supergraveda-
des correspondientes. En 10D el espinor minimal es un espinor Majorana-Weyl de 16

componentes. Entonces, supersimetria minimal N = 1 en 10D tiene 16 supercargas.

En cuanto a la supersimetria maximal N = 2 en 10D, se tienen dos posibilidades:
se pueden seleccionar espinores Majorana-Weyl de opuesta o igual quiralidad, para
obtener las teorias de supergravedad no-quiral ITA o la quiral IIB con supersimetria

(1,1) y (2,0), respectivamente.

La superélgebra ITA y IIB puede ser extendida con simetrias de calibre. La su-
perélgebra IIB tiene una simetria adicional llamada R-simetria SO(2), que rota los

dos espinores de supersimetria de igual quiralidad.

Hay un subsector bosénico, llamado subsector NeveuSchwarz (NS)-NeveuSchwarz
(NS), que contiene la gravedad, un potencial de rango 2 y un dilatén. La parte boséni-
ca restante es llamada subsector Ramond-Ramond (RR) y solo contienen potenciales
R-R de rango-d donde d es impar en ITA y par en IIB. En el caso IIA, los fermiones

son reales y contiene dos espinores minimales de ambas quiralidades, mientras en el
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caso IIB los espinores son complejos y contiene dos espinores minimales de la misma
quiralidad. El contenido en campos estandar de estas teorias tienen d = 1,3 para ITA

y d=0,2,4 para I[IB:

IIA {gmn> ana ¢a Cm(l)a Cr(ri:’ila 'l/)ma )\} )

IB:  {guns Buun 6, CO,C2L CO i A} (3.1)

Para ver las acciones bosénicas maximales ITA y IIB [109, 110]. Existe una formulacién
especial de la supergravedad ITA y IIB, equivalente a la estdandar, que enfatiza la
equivalencia de los potenciales R-R duales. En esa formulacion no aparecen términos

de Chern-Simons explicitos en la accién.

Las teorias de supergravedad maximales en 11D y 10D estan conectadas a través
de una reduccion dimensional. Estas relaciones pueden ser entendidas por las dife-
rentes dualidades entre las diferentes teorias de cuerdas y la teorfa M. Cuando se
reduce dimensionalmente la supergravedad 11D sobre un circulo, manteniendo solo
los modos sin masa, se obtiene la supergravedad IIA en 10D. Cuando se compactifica
sobre un orbifold S'/Z, se obtiene la teorfa de supergravedad heterética SO(32). El
Lagrangiano completo 11D y las transformaciones supersimétricas al ser reducidas
dan lugar a sus contrapartes de la teoria ITA, asi como los grados de libertad on shell.
Se pueden obtener relaciones entre entre los parametros de ITA y 11D reducida sobre

un circulo:

1, RN3/2
Ber e=() (3:2)

donde [, es lalongitud de Planck y R el radio del circulo interno. Dadas estas relaciones
puede interpretarse que el acoplamiento fuerte en la teoria de cuerda IIA corresponde
a formularla en un radio grande, lo que equivale a descompactificar la coordenada
undécima y surge la teorfa M en 11D [20, 34, 68]. Por otro lado, la teoria ITA sobre

un circulo con radio R es equivalente a la IIB sobre un circulo con radio R con
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la relacién R = o/ /R mediante el intercambio de los modos de enrollamiento y los
modos de KK [114, 115]. Esta relacién entre las teorfas sobre diferentes variedades de

compactificacién es llamada T-dualidad [113, 116].

3.1.2. Supergravedad Maximal 9D

Para D < 9 las supergravedades maximales son tinicas, por ello todas pueden ser
obtenidas, por reduccién dimensional de cualquiera de las teorias de mayor dimen-
sion, del mismo modo que la supergravedad ITA puede ser obtenida desde 11D. El
contenido en campos asi como los lagrangianos y férmulas generales de cualquiera de
las supergravedades maximales D < 9-dimensional se pueden obtener por reduccién
dimensional, [111]. La reduccién toroidal de las supergravedades sin masa IIA y IIB
sobre un circulo produce la tinica supergravedad N = 2 sin masa D = 9. Su contenido

en campo esta dado por:

D=9: {em&,gb,gp,x,Am,Ain,Bi Crnt; Um, A, 5\}, (3.3)

mn?

con los indices i = 1,2 de SL(2,R). En [66] se muestra que el sector escalar de la
teoria 9D es, por construccion, invariante bajo el grupo semi-simple correspondiente
a determinadas transformaciones globales. Sin embargo, este grupo resulta ser una
simetria no solo del subsector escalar sino de toda la teoria en la que se incluyen los

potenciales de mayor rango y fermiones.

En la dimension D = 9 las supergravedades ITA y IIB se reducen a la super-
gravedad maximal de nueve dimensiones. Se reducen tanto las transformaciones de
supersimetria ITA y IIB y las ecuaciones de campo a sus equivalentes en 9D. Ademas,

los dos lagrangianos ITA y IIB pueden ser reducidos a la accién correcta en 9D. En
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términos de los grados de libertad on-shell, las descomposiciones de las representa-

ciones IIA y IIB de SO(8) bajo SO(7), coinciden [112].

Por tanto, los modos sin masa de las supergravedades ITA y IIB sobre S' son
equivalentes: estan descritas por la misma teoria efectiva, la teoria de supergravedad
maximal tnica D = 9. Sin embargo, los modos masivos de las supergravedades ITA
y IIB sobre S*, algunas veces llamados modos de momentos, son distintos. Por esta
razon, estas dos supergravedades son equivalentes solamente sobre pequenos circulos,
donde estos modos se transforman en infinitamente masivos [112]. Esto no sucede
en la teoria de cuerdas donde se obtiene que la combinacién de estados de momento
masivos y estados masivos de enrollamiento producen el mismo resultado para las
teorias de cuerdas ITA y IIB. Por tanto, como se mencioné antes, estas dos teorias

son equivalentes en el contexto de la T-dualidad.

3.1.3. Simetrias Globales de Supergravedades Maximales

En esta seccion se resumirdn las simetrias globales de las supergravedades maxi-
males en D = 9,10 [67]. Si G son los grupos de simetrias de la supergravedad 11D
reducida sobre un toro, se espera que éstos se rompan a un subgrupo aritmético G(Z)
a nivel cudntico, para la teorfa M completa sobre un toro [107]. El grupo de simetria
SL(11—D,R) es el grupo esperado para las supergravedades maximales sobre circulos
teniendo en cuenta su origen en 11D. Sin embargo el grupo de simetria global G en D
dimensiones es usualmente mas grande, por esta razon el grupo G es conocido como
una simetria oculta [117]. Los sectores escalares de las supergravedades maximales
estan definidos sobre el espacio simétrico determinado por G/H, denominado coset

escalar. H es el subgrupo maximal compacto de GG, y corresponde al grupo de la si-
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metria R de la superalgebra. La dimension del coset escalar G/H es igual al niimero

de escalares.

El nimero de axiones es dado por el nimero de raices positivas del algebra co-
rrespondiente a G mientras el nimero de dilatones iguala a 11 — D (uno para cada
dimension reducida). Al reducir a menor dimensién aparecen potenciales bosénicos de
mayor rango que transforman bajo los grupos G. Los potenciales forman representa-
ciones lineales de G mientras son invariantes bajo H. A diferencia de los bosones, los
fermiones son invariantes bajo G pero transforman bajo H. Ver [66] donde se muestra
una tabla con un resumen de todos los grupos G, H y la dimensién G/H para las

supergravedades maximales D < 11.

3.1.3.1. Simetrias Globales: Supergravedad Maximal 10D

En la seccion 3.1.1 se mostréd el contenido de campos para las supergravedades

maximales en 10D (3.1). A continuacién nos referimos a sus simetrias globales.

La teorfa de supergravedad ITA en 10D, tiene dos simetrias R™. La primera es

una simetria del Lagrangiano y esta dada por

¢ 5 Ae?, By — AN?Bp,, CU o A3ACh 0B \S1AcB) (3 )

nl

con A € Rt y otros campos invariantes. La segunda simetria es la andloga en 10D de

la simetria trombon en 11D (1.3):
Gmn — )\2Gmn7 C'mnl — )\3Cmnl ) \I]m — )\1/2\I]m .

La teorfa de supergravedad IIB tiene una simetria global SL(2,R) [119], con elemento

. a b
A = € SL(2,R), (3.5)
c d
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que actia sobre los campos de la teoria:

ar +b

T — B — (A, "B, cW — oW,
ct+d
ct* +d 1/4 cT 4+ d 8/4
m my A A, 3.6
v _)(CT—FCZ) v _)(CT—Fd) (3.6)

donde B = (=B, C®) y el escalar complejo 7 = +ie~® con el axién y = C©.

La simetria SL(2,R) de la supergravedad IIB es rota a SL(2,Z) en la teoria
de cuerdas IIB [107]. Una transformacién particular es, por ejemplo, el elemento
(a,b;c,d) = (0,1; —1,0) que corresponde a la transformacion ¢ — —¢ (con un back-
ground sin axién), que relaciona los acoplamientos de cuerdas fuerte y débil. Por esta
razon esta transformacion es llamada dualidad S [120]. Adicionalmente, la teoria IIB

también tiene una simetria trombon.

3.1.3.2. Simetrias Globales: Supergravedad Maximal 9D

El contenido en campos de la supergravedad tipo Il en 9D se mostré en (3.3). En
dicha ecuacién se tiene para el sector bosénico: un supervielbein e,,?, tres escalares
(0, ¢, X), tres campos de calibre (A,,, {A,(ll), Ag)} = ff), dos 2-formas antisimétricas
({B%%, Br(s,)@} = B), y una 3-forma C,,,,;. Para el sector fermidnico, la contribucién es
un espinor ¢, y dos dilatinos \, A [42, 46]. La simetrfa global D = 9 (3.5) acttia en la

teoria no-calibrada de la siguiente manera:

at +b

_ A= A\A, B — AB, (3.7)
ct+d

mas las transformaciones fermidnicas:

ct+d 1/4 ct*+d 8/4 ~ ct+d —l
Q/)m_><07+0l) Ym s )\_>(c7'+d) As )\_)<07+d) A (38)
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mientras el escalar ¢ y la 3-forma C' permanecen invariantes. Esta simetria global
SL(2,R) en 9D proviene de la simetria andloga en supergravedad IIB en 10D. Las
transformaciones de simetria de escalares y fermiones no cambian si se reemplazan A
por —A; por lo tanto, esos campos transforman bajo PSL(2,R). Usualmente solo se

consideran elementos de grupo A que estan continuamente conectados a la identidad.

Ademsés de la simetria global SL(2,R) veamos otras simetrias! de la teorfa de
supergravedad en 9D [66]: Esta hereda dos simetrias de escalamiento a y [ pro-
cedentes de la ITA y, una simetria de escalamiento 7 incluida en SL(2,R), y una
simetria trombén &, procedentes de la IIB. Pero, solo tres de las cuatro simetrias de

escalamiento son linealmente independientes [46]:
8a — 488 = 187 + 9. (3.9)

Por lo tanto, cada uno de los tres campos de calibre A,,, Al A2 tienen peso cero
bajo las dos combinaciones lineales de esas tres simetrias: una es una simetria de la
accion, y la otra es una simetria de las ecuaciones de movimiento solamente. Como
se encontré en 10D, las simetrias que dejan al vector de calibre invariante pueden
hacerse locales. Los pesos de escalamiento de los campos de supergravedad 9D y la

accion bajo las simetrias de escalamiento a, 8,7 y § se muestran en [66].

3.2. Supergravedades Calibradas

Las supergravedades calibradas fueron descubiertas por [121, 122] al compactificar
la supergravedad 11D sobre un S”, una variedad compacta con holonomia no-trivial.

Prontamente después de este resultado, el mecanismo de calibrado se aplicé a teorias

L Aqui estamos usando la nomenclatura usada en [66] para su designacién.
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con grupos de simetrias no-compactos [123]. Desde entonces, este campo de investiga-
cién ha sido muy activo, encontrandose diferentes maneras de obtener una deforma-
cién consistente de una determinada supergravedad maximal formulada en un espacio
target con D < 11. Una de estas posibilidades es a través de compactificaciones del
tipo S\S (ver seccién 2.1.2), y otra, haciendo compactificaciones sobre variedades con

flujos. Para profundizar, ver por ejemplo, [52, 66].

En esta seccién se hace un resumen de cémo algunos de los métodos de reduccion
dimensional mencionados en el capitulo anterior producen, cuando son aplicados a
la teorias de supergravedades maximales, una teoria calibrada resultante en menor
dimensién, esto es, se calibra una simetria global de la teoria sin masa. También se
pueden deformar estas teorias agregando masa a estos campos sin producir calibrado.
De esta manera se tendran supergravedades masivas. Ademds, se puede producir un

aumento? de la simetria de calibre lo cual es de interés a nivel de teorfas efectivas.

Una propiedad importante de las deformaciones que se estan considerando es que
ellas no rompen supersimetria. Entonces, las supergravedades calibradas o masivas
tienen el mismo numero de supercargas (i.e. 32) tal y como las correspondientes
supergravedad sin calibrar o sin masa. Este hecho puede ser contrastado con, por
ejemplo, las compactificaciones Calabi-Yau, las cuales rompen una fraccién de la

supersimetria [124].

En esta seccién incluiremos una breve referencia a la supergravedad masiva ITA
[125], que es la unica deformacién masiva de la supergravedad de la que actualmente
no se conoce ni su formulaciéon covariante en 11D ni de su origen a partir de teoria
M/cuerdas. En [102, 128] fueron discutidos los fundamentos de su formulaciéon no

covariante. Usualmente, la reduccion dimensional se hace sobre las transformaciones

2Traduccién de enhancement.
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supersimétricas de los campos y sobre las ecuaciones de campo en lugar de reducir
los lagrangianos (ver apéndices en [66]). Esto debido a que hay simetrias rigidas que
se emplean para la reduccién, las cuales escalan a los lagrangianos, es decir, no los
dejan invariantes. En general, las transformaciones supersimétricas y las ecuaciones de
campo tendran términos de masa implicitos que aparecen a través de las intensidades
de campo covariantes, y términos de masa explicitos. Un ejemplo de supergravedades

sin lagrangiano son las calibradas trombon.

En esta seccién solo se revisaran aspectos - todos ellos encontrados previamente en
la literatura-, que son relevantes para nuestras construcciones: aquellos en los cuales

la monodromia tiene un rol importante.

3.2.1. Supergravedad Masiva y Calibrada en 10D

En esta seccién se consideran dos deformaciones de la supergravedad ITA, una de

las cuales lleva a una versién masiva de ITA mientras que la otra da origen a la teoria

ITA calibrada.

La reduccién toroidal de la teoria 11D en un circulo produce la teoria no calibrada
y sin masa IIA en 10D. El contenido en campos de la teoria de supergravedad IIA

D = 10 esta dado por:
D=10 IIA: {em®, Bim, &, Con W, Cront® 00, AV (3.10)

Como se mencioné en la seccion 3.1.3.1, la teoria ITA tiene dos simetrias de escala-
miento: una, la simetria o que escala el lagrangiano y tiene su origen en 11D; y la otra,
la simetria 3, que deja el lagrangiano invariante y que proviene de las coordenadas

internas de la supergravedad de 11D.
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El vector Ramond-Ramond CV) en (3.10) es invariante bajo o mientras que escala
bajo . Solamente la simetria o puede ser calibrada mientras que es imposible para

la simetria (3 [126].

La teorfa supergravedad ITA masiva fue construida por Romans [125] y resulta de
hacer una deformacion masiva, con parametro de masa mg. El lagrangiano contiene

términos lineales y cuadraticos en mg. El potencial escalar de Romans es:

1
Vinr, = 565"5/277112{. (3.11)

El parametro my rompe ambas simetrias . y 5 de la teoria IIA. No obstante, hay una
combinacién lineal que no es rota por los términos masivos: la combinacion 128 — 5a.
El parametro de masa mg debe ser visto como una cero-forma Ramond-Ramond de
intensidad de campo. La correspondiente D-brana es la D8-brana, la cual esta cargada
magnéticamente con respecto a mg [127]. La supergravedad masiva ITA, no es una
supergravedad calibrada, dado que ninguna simetria global de la teoria sin masa se

ha promovido a local. Las transformaciones de supersimetria, d,,,, son [66]:

1
5mR¢m - _3_2WFm€a 5mR)\ == 5¢W€, W = 65¢/4mR, (312)

donde W' es un superpotencial, ¢ el dilatén, y 64W = §W/0¢. Las intensidades de

campo quedan modificadas de la manera siguiente:

1
G =dCW + mgB, H=dB, GYW=d0® +CcW A H + §mRB AB. (3.13)

La supergravedad calibrada IIA puede obtenerse a través de dos procedimientos:
(1) por una deformacién con un pardmetro my, donde la simetria « ha sido calibrada;
y (2) una reduccién twisted de la supergravedad D = 11 usando la simetria trombén
(1.3) con pardmetro mg [104, 129, 103]. También es posible hacer una combinacién

de las dos deformaciones consideradas, ver [46].
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El ansatz correspondiente a la reduccion twisted con mq; produce la teoria redu-
cida la cual es una supergravedad calibrada, dado que la simetria de escalamiento «
ha sido calibrada. En particular, el parametro de calibre y la transformaciéon de los

potenciales Ramond-Ramond son:

A = eWamiiA

7 c® oM _qx, C® & SmNCB —dAB),  (3.14)

donde w, son los pesos bajo «. Para la supergravedad calibrada D = 10 no se pue-
de definir un lagrangiano ya que la simetria que es calibrada no es una simetria
del lagrangiano. Sin embargo, las ecuaciones de campo correspondientes si pueden
obtenerse pero no pueden ser interpretadas como ecuaciones de Euler-Lagrange. La
simetria que es calibrada es simetria de las ecuaciones de movimiento, debido a que al
hacer una reducciéon desde una teoria de mayor dimension, hay un twisting con una

simetria de las ecuaciones de campo solamente.

El método (2) para construir la teoria de supergravedad calibrada D = 10 se
llevé a cabo en [129]. Allf se consideran una soluciéon mas general de las identidades
de Bianchi del superespacio D = 11 para un espacio-tiempo no-trivial de la forma

Mo x St v luego se reduce sobre un circulo.

3.2.2. Supergravedades Calibradas en 9D

En esta seccion se muestran los resultados de varias deformaciones masivas de la
supergravedad maximal en D = 9, las cuales dan origen a supergravedades calibradas
y tienen un origen de mayor dimensién, ver [46, 66]. Pueden obtenerse supergraveda-
des calibradas en nueve dimensiones haciendo reducciones twisted de la supergrave-
dad IIB en D = 10 usando la simetria SL(2,R). Esto ha sido tratado con creciente

generalidad en [42, 43, 103, 104, 130].
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Para el caso de interés aqui, esto es, las supergravedades calibradas del tipo II
en 9D, las monodromias estdn asociadas al grupo de simetria global GL(2,R) =
SL(2,R) x R*. En el sector SL(2,R), hay tres clases inequivalentes de teorias, corres-
pondientes a las clases de conjugacién de SL(2,R) hiperbdlica, eliptica y parabdlica,
representadas por las matrices de monodromias de la forma (2.34) donde cada clase
estd determinada por la constante de acoplamiento (¢, v o #) [102]. En 9D la teoria
puede ademas ser descrita en términos de la matriz de masa M, la cual esta caracte-

rizada por tres pardmetros que definen el vector de masa m= (mq, mg, m3) [42]:

1 m ms +m
M= ' T (3.15)
Mo — M3 —Tmy
Esta matriz de masa, como se explicé en [42], pertenece al dlgebra de Lie sl(2,R) y

transforma en la representacion irreducible adjunta. A bajas energias la supergravedad

calibrada esta determinada por la matriz de masa M para una monodromia dada M.

Como se explicé en [42, 46] las simetrias locales previamente a ser calibradas,

corresponden a:
A= A—d\,  B— B—Adx (3.16)

Las deformaciones masivas a partir del sector tipo IIB estan etiquetadas por cuatro
pardmetros m = (m;,my) con i = 1,...,3. Tres de ellas, caracterizadas por m =
(mq, mg, m3), pertenecen a las deformaciones SL(2,R) y la restante my tiene su origen
en el calibrado de la simetria de escalamiento R*. Los parametros de m calibran
un subgrupo de la simetria global SL(2,R) y RT respectivamente, con pardmetro

A = M y las transformaciones de calibre de campo se convierten en:

—

A= A—d\,  B— AB—Ad)), (3.17)

donde definimos M = (M, my), para agrupar los dos tipos de deformaciones.




Capitulo — 3. Supergravedad y Supermembrana en 9D 81

Siguiendo [42, 46], consideremos en primer lugar las deformaciones masivas aso-
ciadas a Agr2r) para el calibrado del subgrupo de S L(2,R) con generador la matriz
de masa M empleada en la reduccién. Hay tres casos distintos dependiendo del valor

1

de m?* = $(my* +my® —ms?) caracterizando el conjunto de tres clases de conjugacion

ya mostrada en (2.34) [102, 105]: R, SO(1,1)",S0(2). Ya que se hara uso de ellas, se
describirdn brevemente (para simplificar la notacién se mantiene la usada en [46] y se
hace un resumen de sus resultados enfocados solo en el andlisis de la monodromia).
Cada uno de los subgrupos esta generado por un elemento A del grupo SL(2,R) con

det A = 1. Ellos se clasifican de acuerdo a sus trazas como se vio en la seccién 2.1.4:

= La teoria de supergravedad calibrada parabdlica esta asociada al calibrado del

subgrupo R con parametro ¢ generada por A,,.

= La teoria de supergravedad calibrada hiperbdlica esta asociada al calibrado del

subgrupo SO(1,1)" con pardmetro v generada por Ay.

s La teoria de supergravedad calibrada eliptica estd asociada al calibrado del

subgrupo SO(2) generada por los elementos A, de SL(2,R) con parametro 6.

El grupo R es una clase de conjugaciéon de 1 pardmetro. Corresponde a los es-
calamientos que dejan invariantes las ecuaciones de campo pero que escalan al la-
grangiano globalmente. Estas simetrias fueron llamadas trombén por [62]. Su cali-
brado fue estudiado por ejemplo en [47, 48]. Esto corresponde a la reduccién con
my # 0;my; = mg = mz = 0. Siguiendo a [46], la simetria RT ha sido calibrada con
pardmetro Ag+ = e™*. Como se explicé en [46], el conjunto completo de deformacio-

nes {m;, my} para las reducciones IIB corresponde a

Acrer) = Asper) Ar+ (3.18)
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Ademas de las reducciones twisted para obtener teorias calibradas de supergra-
vedad en 9D, se pueden generar términos masivos en nueve dimensiones haciendo la
reduccién toroidal de la supergravedad masiva IIA, con un ansatz de reduccién que
lleva a la supergravedad calibrada 9D [42, 130]. Por consiguiente, la reduccién de la
supergravedad IIA masiva corresponde a una reduccién twisted de la supergravedad
IIB, empleando el subgrupo de R de SL(2,R). Esta equivalencia en nueve dimensio-
nes es llamada T-dualidad masiva y puede considerarse como una deformacién de la

dualidad T sin masa.

Una caracteristica interesante de la T-dualidad masiva es que la teoria ITA masiva
se transforma en una teoria calibrada después de la reduccién. El surgimiento de este
calibrado puede ser visto como una generalizacién de los calibrados ’aumentados o
mejorados’ mencionados antes, en los cuales el vector de calibre extra proviene de un
vector de mayor dimensién. En el caso de la teorfa masiva IIA; sin embargo, el vector

de calibre es A, proveniente de la 2-forma Neveu-Schwarz B en IIA.

Ademas de la reduccién twisted SL(2,R) de IIB, se puede también hacer reduc-
ciones twisted de ambas ITA y IIB usando las simetrias de escalamiento o, By 67,
con los parametros de masa correspondientes denotadas por mya, ms v mug, res-
pectivamente. Por ejemplo, se puede obtener un calibrado de la supergravedad ITA
en 9D por reduccién en un circulo a la KK de la teoria masiva ITA en diez dimen-
siones. Las diferentes posibilidades estan ilustradas en la figura 3.1 [66]. En total,
esto equivale a siete deformaciones de la supergravedad tnica D = 9, con parametros
my, Ma, M3, Mg, Mua, M ¥ Mi1. El pardmetro de Romans mg no es independiente

sino que esta relacionado a un subconjunto de los pardametros .

Los autores de [46] analizan en 9D todas las combinaciones con las 7 deformaciones

3Aqui estamos siguiendo la notacién de Roest en [66].
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---» SS-reduction|
11D — KK-reduction|
C) No action
a,
S
10D |IIA mR| (IIA mlp
1 6 \\\ Z,y,e

9D (Mg mya) Iﬂ, Im_=0,

Gauged Symmetry a a B o) ¢y,0
Gauge Group R R R R R R, SO(l,f), SO(2)
Gauge Vector A A2 Al Al A A

Figura 3.1: Grdfico original de [66] donde se resume todas las reducciones twisted. Los
pardmetros de masa en la misma caja forman un multiplete bajo el grupo SL(2,R).

También se dan la simetria calibrada y el vector de calibre en 9D.
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masivas existentes en 9D. Ellos consiguen las siguientes posibles combinaciones (con

los otros pardmetros de masa cero) que recopilamos por completitud:

» (1) Combinacion con las deformaciones {mya,ms}: Puede obtenerse ademds
por una reduccién twisted de ITA usando una combinacion lineal de las simetrias
a y (. Hay un calibrado de ambas simetrias y (para m4 # 0) el subgrupo

parabdlico de SL(2,R) en 9D, resultando un grupo de calibre no-abeliano.

» (2) Combinacion con las deformaciones {mi, myp}: Esta combinacién contiene
tres casos diferentes inequivalentes dependiendo de 72 (dependiendo de manera
crucial del hecho que myp es un singlete bajo SL(2,R)): (a) con {m,mup} y
m? = 0; (b) con {m, mus} y m?* > 0;y, (¢) con {m,mus} y m? < 0. Todas
esas combinaciones pueden ademas ser obtenidas por reduccién twisted de I1B,
empleando una combinacién lineal de las simetrias ¢ y uno de los subgrupos
de SL(2,R). Todos los casos (con myp # 0) corresponde al calibrado de una

simetria de escalamiento abeliana en 9D.

» (8) Combinaciones con {dmy = —12mya, ms = ms}: Este caso puede enten-
derse como la reduccién twisted de la teoria masiva ITA de Romans, usando la
simetria de escalamiento que no es rota por las deformaciones mg: Esto es dado
por la combinacién 125 — 5a. Esta deformacion calibra tanto la combinacion
lineal de simetrias de escalamiento como el subgrupo parabdlico de SL(2,R) en

9D, formando ambos un grupo de calibre no-abeliano.

Por lo tanto las deformaciones méas generales son los cinco casos dados arriba,
conteniendo todos dos parametros de masa. Todos ellos son teorias calibradas y tienen
un origen de mayor dimensién. Los casos (1) y (3) tienen un grupo de calibre no-

abeliano contemplando my4 # 0. Solo las simetrias que se preservan cuando se incluyen
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en la teoria de supergravedad correcciones a orden arbol cuyo origen es teoria de
cuerdas, van a ser a su vez simetrias de teorias de cuerdas. Se tienen dos de tales

simetrias [46]:

» La simetria SL(2,R) de IIB (o mejor su subgrupo SL(2,7Z)). De este modo las
deformaciones m = (my, mg, m3) corresponden a los limites a bajas energias de
tres sectores diferentes de la teoria de cuerdas IIB compactificada (dependiendo

1

de ’fﬁ2 = Z(—m12 — m22 + m32)).

= La combinaciéon lineal a + 123 de simetrias de escalamiento de la teoria ITA.
Por lo tanto se puede definir una deformacién masiva m, dentro del caso 1 con
{mua = ms, my = 12m,} que corresponde al limite a baja energia de un sector

de la teoria de cuerdas ITA compactificada.

Todas las correcciones ', a mayor orden en 11D son invariantes bajo transforma-
ciones de coordenadas generales '* — A z'! y en caso de reduccién, deben transfor-
mar covariantemente bajo las transformaciones de coordenadas reducidas, entre las
cuales esta la simetria de escalamiento o+ 125. Por consiguiente, esa combinacion es

simetria de escalamiento de la teorfa ITA debido a su origen en 11D [66].

Un ejemplo de como se relacionan los diferentes métodos de reduccion dimensional
es el siguiente: la reduccion twisted desde la teoria ITA a 9D usando la transformacién
de coordenadas generales de arriba es equivalente a la reduccion tnica del grupo de la
variedad de 11D a 9D. Las deformaciones my corresponden a un calibrado del grupo

2D no-abeliano y no solo el de la simetria o + 120.
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3.3. La Supermembrana con Cargas Centrales no

Triviales en 9D

En la seccién 1.2 se hizo un resumen de los resultados hasta ahora presentes en la
literatura en la descripcién de la supermembrana en 11D. Se incluyé su formulacion
en el superespacio (seccién 1.2.2) y la seleccién del calibre del cono de luz (CCL)

(seccién 1.2.3) para obtener su hamiltoniano y sus propiedades espectrales (seccién

1.2.4).

En esta seccion describiremos un sector de la Supermembrana compactificada
sobre un espacio target My x T?. T? es un toro plano definido en términos de una

reticula® £ sobre el plano complejo C por C'/L:
L:z— z+2rR(l+mT), (3.19)

donde m, [ son enteros, R es un moéduli real, R > 0, y 7 un méduli complejo 7 =
Rer +ilm7, Imt > 0. 7 es la coordenada compleja del espacio de Teichmiiller para
g = 1, que es la parte superior del plano. El espacio de Teichmiiller es un cubrimiento
del espacio de moduli de las superficies de Riemann, es una variedad 2g — 1 compleja,
analitica, simplemente conexa, para superficies de Riemann de genus g. Los toros
conformalmente equivalentes estan identificados por el parametro 7 médulo el grupo
modular de Teichmiiller, el cual en el caso g =1 es SL(2,7Z). Este grupo actia sobre
el espacio de Teichmiiller mediante una transformacién de Mdébius y tiene una accién

natural sobre el grupo de homologia H;(T?).

Para definir una supermembrana con cargas centrales no triviales, consideraremos

mapas X", X" desde una superficie de Riemann ¥ con g = 1 al espacio target, donde

4Traduccién de lattice.
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X™ son mapas univaluados hasta el sector Minkowski del espacio target mientras que
los mapas X" van hasta el sector compacto T del espacio target con los indices m =
3,...,9;7=1,2. Recordemos que partimos de la supermembrana 11D que esta en el
CCL con coordenadas del espacio target (X, X~ X% cona=1,...,9. VW es una
densidad independiente del tiempo introducida para preservar el comportamiento de
densidad de P- [33]. Eliminamos X, Py de los vinculos y se resuelven los vinculos

fermiénicos de segunda clase de la manera usual [4].

Las condiciones necesarias de enrollamiento que deben cumplir los mapas X™, X":3 —

T2, (con r = 1,2) son:

f{ dX™ =0, (3.20)

j{ dX =2nR(ls +msT), (3.21)

s

ls,ms,s = 1,2, son enteros, y Cs, la base de homologia de una superficie de Riemann
3} de genus g = 1. Las uno-formas dX™ son exactas, sin embargo las uno-formas
asociadas al sector compacto dX” son cerradas. Podemos por consiguiente, hacer
la descomposiciéon de Hodge de dichas uno-formas en términos de las uno-formas
armoénicas mas uno-formas exactas. Sin perder generalidad, podemos descomponer

las uno-formas cerradas dX" en
dX" = MIdX®+dA", r=1,2, (3.22)

donde dX*,s = 1,2 es la base de uno-formas armodnicas, denotaremos por dX", con
) ) ) )

r = 1,2, la base normalizada de uno-formas armdnicas sobre X:

]{ dX" =62, (3.23)

dA" son las uno-formas exactas y M. son los coeficientes constantes.
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Ademas, podemos definir dichas formas en coordenadas complejas:
dX =dX' +idX?  dA=dA' +idA% (3.24)
La condicién de enrollamiento (3.21) implica:
M} +iM? = 27 R(l, + m,T). (3.25)
En consecuencia, la expresion mas general para los mapas X", es:
dX = 27 R(l, + mer)dX® + dA, (3.26)
ls,mg, s = 1,2, enteros arbitrarios.

Se impone a continuacion la restriccion topoldgica sobre los mapas de enrolla-
miento: el vinculo de enrollamiento irreducible, también llamado condicion de carga

central’:
/ dX" AN dX* = ne Area(T?), r,s=1,2, (3.27)
2

donde el nimero de enrrollamiento n se toma como distinto de cero. € es el tensor
antisimétrico simpléctico asociado a la 2-forma simpléctica sobre el toro plano 72%. En

el caso que estamos considerando €"® es el simbolo antisimétrico de Levi Civita.

La densidad escalar natural W en el modelo geométrico que estamos conside-
rando se obtiene del pullback® de la 2-forma simpléctica por el mapa X "r=1,2,

sobre T?:

w = €, dX" N dX* = VWenydo® A do®, (3.28)

°La ecuacién (3.25) describe la carga central de del dlgebra supersimétrica en 11D asociada a
una M2.

6Sin traduccién.
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donde VIV = %emaa)? T’ab)A( e Los simplectomorfismos que preservan la estructura
candnica simpléctica sobre T2 son entonces el pull-back a los simplectomorfismos que
preservan W sobre .. Esto es relevante en la construccion de la supermembrana
con cargas centrales como secciones de un fibrado toroidal simpléctico. Usando que

Area(T?) = (2rR)*ImT, la condicién (3.27) implica que la matriz de enrollamiento

L 2 )
W = satisface:
my Mg

n = detW, (3.29)

(no confundir con W). Esto es, todos los enteros ls, mg con s = 1,2 son admitidos

con tal que ellos satisfagan la restriccion (3.29).

La supermembrana con cargas centrales no triviales es invariante bajo los di-
feomorfismos que preservan el drea homotopicos a la identidad. En particular, bajo
mapas conformes que dejan invariante la base de homologia sobre Y. De hecho, dxr
permanece invariante y por lo tanto la 2-forma simpléctica en Y. También, la teoria
es invariante bajo los difeomorfismos no homotdpicos a la identidad actuando sobre

la base de homologia en ¥ como transformaciones SL(2,Z).

El hamiltoniano fisico para la supermembrana con cargas centrales en el CCL

estd dado por [2, 3, 4],

1, P, 1, P T2 T2
— —-2/3 T \2 - r m 2 - r s12
Hoow = [ TV [ (TP 4 (P 4 T 00 X2+ L X
+ / T2B3VW [I{Xm,xnp —OT_T,{X™ 0} —ér_rr{XT,e}] : (3.30)
b
sujeto a los nuevos vinculos:

d(P,dX" + PpdX™ —0I'_df) = 0, (3.31)

]{ (P, dX" + PpdX™ — T_d6) = 0, (3.32)
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y la condicién de carga central (3.27). Notemos que, comparando con el hamilto-
niano (1.42), ambos son muy similares en su forma, pero en este tltimo hay términos

adicionales que incluyen las coordenadas compactificadas.

3.3.1. Simetrias SL(2,7Z)

La supermembrana con cargas centrales tiene dos simetrias SL(2,Z). Una esta aso-
ciada a la invariancia conforme sobre la variedad base . Esto se debe a que los
simplectomorfismos que preservan la estructura canénica simpléctica sobre T2 son
entonces pull-back a los simplectomorfismos que preservan W sobre ¥ y esto nos per-
mite identificar los modos de enrollamiento. La otra simetria SL(2,Z) acttia sobre el
moduli del espacio target en particular sobre la coordenada de Teichmiiler 7 y ademas
sobre el radio R, por lo que las clases de equivalencia del toro bajo esta transformacion
no son clases conformalmente equivalentes. Usando ambas transformaciones SL(2,Z),
se vio en [13] que la contribucién al operador de masa de los estados de cuerdas con-
tenidos en la supermembrana con cargas centrales, concuerdan exactamente con el
espectro de masa perturbativo de las supercuerdas (p,q) [IBy ITA. A continuacién

veremos con méas detalle estas simetrias.

3.3.1.1. SL(2,Z) de la superficie de Riemann

La supermembrana con cargas centrales es invariante bajo mapas conformes ho-
motépicos a la identidad (mapas biholomérficos). Ellos son difeomorfismos que preser-
van dX",r = 1,2, las uno-formas armoénicas. Entonces, el area de la métrica espacial

del volumen de mundo de la supermembrana W es invariante:

W' (o) = W(0). (3.33)




Capitulo — 3. Supergravedad y Supermembrana en 9D 91

Ademas, la supermembrana con cargas centrales es invariante bajo difeomorfismos
cambiando la base de homologia, y en consecuencia cambiando las uno-formas arméni-
cas normalizadas por una transformacién modular sobre el espacio de Teichmiiller de

la base del toro . De hecho, si
dX" (o) = STdX" (o), (3.34)
satisface:
€rsiSt Sy = €tuy (3.35)

esto es, S € Sp(2,7Z) = SL(2,Z), y por consiguiente la 2-forma simpléctica w perma-

nece invariante.

Entonces se concluye que la supermembrana con cargas centrales tiene una si-
metria adicional con respecto a la supermembrana D = 11 y a la supermembrana
compactificada del sector sin cargas centrales o n = 0. Todas las transformacio-
nes conformes sobre ¥ son simetrias de la la supermembrana con cargas centrales

(7,9, 10, 38]. Notemos que bajo (5.7)
dX — 27 R(ly + my7)S2dX" + dA, (3.36)

donde A(o) transforma como un campo escalar. Esto es,

-1

St 5
St 53

W =W (3.37)

Sp(2,7) actia desde la derecha.
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3.3.1.2. Invariancia bajo U-dualidad

La supermembrana con cargas centrales es ademds invariante bajo la siguiente

transformacion SL(2,Z) sobre el toro del target 7% también conocida por U-dualidad:

at +b : a —b
T — , R— Rler+d|, A— Ae¥r, W — W,  (3.38)
cr +d ¢ d
, a b
donde c7+d = |er+d|e ™y A = € Sp(2,Z). Notar que la transformacién de
c d

U-dualidad para la supermembrana con cargas centrales no solo transforma los modu-
li sino también la fase del campo de calibre. En esta tesis hemos constatado que esta
transformacién del campo de calibre ha sido requisito indispensable para poder esta-
blecer la relacion entre la supermembrana con cargas centrales y la supergravedades

calibradas como veremos en capitulo 6.

Como se muestra en [13] la densidad hamiltoniana de la a supermembrana con
cargas centrales es entonces invariante bajo (3.38). La matriz Sp(2,7Z) actta, ahora,

desde la izquierda de la matriz W.

La accién de la matrices Sp(2,Z) por la izquierda y la correspondiende por la de-
recha no son equivalentes, sino son complementarias. Es decir, son simetrias distintas
bien definidas que actian simultaneamente sobre el hamiltoniano de la supermem-
brana con cargas centrales. Las siguientes observaciones son validas. La expresion

general para los mapas d.X es:
dX = dXy, + dA, (3.39)
donde la parte armonica de d.X, se puede expresar como:

dX), = 2rR(ndX" + 7dX?), (3.40)
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es una inmersién minima de Y a T sobre el target, ademds estd directamente rela-

cionado con una inmersién holomérfica de 3 en T72.

La extensién de la teoria de supermembranas con el vinculo topolégico asociado
a enrollamiento irreducible, a sectores compactos mas generales en el espacio target
estd directamente relacionado con la existencia de inmersiones holomérficas [38]. Por
eso a la supermembrana con cargas centrales también se le denominé supermembrana

mainimalmente inmersa MIM?2.

3.3.2. Propiedades Espectrales: Espectro Discreto

En esta seccién nos referimos a la discretitud del espectro de la supermembrana
con cargas centrales. Haremos un breve resumen de sus propiedades mas significativas,
para un andlisis detallado ver trabajos originales [5, 9, 6, 7, 11, 12]. El andlisis del
espectro se hace a nivel del operador de Schrodinger regularizado asociado al modelo
matricial de la supermembrana con cargas centrales H , (ver [5]): En primer lugar,
a diferencia de lo que ocurre para el caso de la supermembrana D = 11, o con
la supermembrana compactificada en My x T sin la condicién de cargas centrales,
el potencial del operador de Schrodinger se anula solo en el origen del espacio de
configuracion:

V=0—=|[(X" A" =0, (3.41)

donde ||.|| representa la norma euclidea en R%. Es decir, H no tiene configuraciones
singulares asociadas a direcciones planas del potencial [5]. Por consiguiente, no hay
configuraciones tipo cuerdas y la teoria a nivel clésico es estable. Esto es debido a que
la condicion de carga central implica la cancelacién de un término del hamiltoniano

que es una derivada total que es el responsable de la presencia de estas configuraciones.
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En segundo lugar, usando un teorema de B. Simons [91], se demostrd en [9] que

existe una constante M > 0 tal que,
V(X™ A" > M[|(X™, AN)]%. (3.42)

Denotando (X™, A") = (X, A) y escribiendo en coordenadas polares X = Rr A =
Ra donde 6§ = (z,a) se define sobre la esfera unitaria, ||(z,a)|| = 1, el potencial

satisface que:

V(X,A) > MR*. (3.43)

El operador de Schrodinger esta acotado inferiormente por un oscilador arménico pe-
ro va a infinito en todas las direcciones del espacio de configuracion, por consiguiente
tiene espectro discreto. Este resultado es analogo al que se obtiene al probar la dis-
cretitud del espectro de la membrana bosénica regularizada sin la condicion de carga

central, aunque la cota, al tratarse de hamiltonianos diferentes, no es la misma.

Ademas, en [10] se probd la discretitud de la parte bosénica de la supermembrana
con cargas centrales a nivel exacto de la teoria, es decir sin regularizar. Este resultado
implicé trabajar con infinitos grados de libertad en el que los teoremas usuales de

mecanica cuantica para espacios de Hilbert finitos en general no se cumplen.

En [6, 7, 133], se demostré que el hamiltoniano supersimétrico de la supermem-
brana con cargas centrales es discreto. Este es un resultado notable que ha permitido
a los autores interpretar este sector de la supermembrana como una teoria de primera
cuantizacion. La demostracion se basa en lo siguiente: Los autores probaron que la
contribucion fermidnica al potencial es una perturbacién de la contribuciéon bosénica,

algo que no ocurre en general.

Para ello en [6] desarrollaron el Lemma.l : Sean vg(x) los autovalores de V' (z). Si

todos vi(z) — 400 cuando || — oo, entonces el espectro de H es discreto. Con el
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operador hamiltoniano: H = —d?/dz* + V = —A + V. Para la demostracién, en [6]

se considera la resolvente de un operador u:

definido en el espacio total de configuraciones sin vinculos, con V3, el potencial bosoni-
coy Vg el potencial fermidnico. Los autovalores estan determinados por las soluciones

de la ecuacion caracteristica, entonces A debe satisfacer:

det A= Vs

I—M(z,a)| =0, R > 0. (3.45)
con M homogéneo. Luego, si X son los autovalores de M (z,a), entonces
\ = Vg(Rz, Ra) + RX. (3.46)

En consecuencia, A — +o00 cuando R — oco. V = Vi 4+ Vg es un potencial continuo,
por lo que estd automaticamente acotado por debajo. Esto también es cierto para
el operador p con su dominio en el espacio de configuracién completo sin tener en
cuenta los vinculos, y por lo tanto también se cumple para la teoria con vinculos.
Entonces, el hamiltoniano supersimétrico mantiene las propiedades de discretitud de
la parte bosénica del mismo. La contribucion supersimétrica cancela el punto de cero
energia de los osciladores bosénicos atn en la teorfa exacta [10, 81]. El operador
de Schroedinger es acotado por el oscilador arménico y por tanto tiene resolvente
compacta. Los autores de [6] lo generalizaron a otras teorfas de mecédnica cudntica
matricial y obtuvieron una condicién de suficiencia para asegurar que el espectro
de esta teoria es discreto, resultado que utilizaron posteriormente para analizar la

Mb5-brana y teorias tipo ABJM [132], modelos BMN y D2 — D0 [11, 12].
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CapriTuro 4

La Supermembrana 4D N =1 desde
11D

En lo que sigue nos enfocaremos en el sector de la supermembrana con cargas centrales
de la cual se ha hablado en preliminares. Recordemos que la condicién de carga central
es una condicion topoldgica que aparece al imponer una condicién irreducible sobre el
sector compacto de la variedad target. La importancia de este sector es que hasta el
momento presente es el inico sector que puede ser definido a nivel cuantico de forma

consistente y por lo tanto tiene un claro potencial interés para la fenomenologial.

El propodsito de este capitulo es mostrar la construccion de la accién de la super-
membrana con cargas centrales no triviales compactificada sobre un 77 y una vez
obtenida analizar sus propiedades fisicas. Este proceso lo haremos en dos pasos, un
primero en el que compactificaremos la MIM2 en cinco dimensiones, generalizando
la condicién de carga central, y un segundo paso, en el que compactificaremos en el

circulo restante.

IPosteriormente a la realizacién de este trabajo se demostré en [11] que la supermembrana en
una pp-wave a nivel regularizado tiene espectro discreto y no solo su aproximacion semicléasica. Sin

embargo sus propiedades espectrales en el limite con N grande no quedan claras.
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La acciéon describe una supermembrana que evoluciona en un espacio de Minkowski
4D. Esta es invariante bajo supersimetria (SUSY) con un pardmetro espinorial de
Majorana de 32 componentes. Sin embargo, lo que observamos es que en el caso de la
supermembrana con cargas centrales esta supersimetria se rompe espontaneamente
a una teorfa N = 1 en 4 dimensiones cuando la configuracion minimal es fijada.
Cuando la variedad de compactificacion es una variedad isotrépica, como es el caso
particular del toro T7 que estamos asumiendo, es decir, cuando todos los radios son
iguales, demostramos que el potencial no tiene direcciones planas. Esto implica que
dicho potencial es estable en el espacio moduli de pardametros. Los resultados de este

capitulo fueron reportados en [18, 19].

4.1. Supermembrana 11D con cargas centrales so-

bre una variedad target M; x T°

En lo que sigue vamos a generalizar la accién de la supermembrana con cargas
centrales que se introdujo en la seccién preliminares a una espacio target Mz x T°. Es-
tamos interesados en reducir la teoria al modelo 4-dimensional, por lo que tomaremos
una variedad target M, x T7. Separamos el 77 en T° x S' porque vamos a imponer
la condicién generalizada de cargas centrales a la subvariedad de mayor dimension
contenida en T7, ésta se corresponde con un Tg. Los mapas de configuracién X en T
satisfacen las siguientes condiciones de enrollamiento:

% dX"=2nS;R" r,s=1,...,6. (4.1)

Cs

]{ dX" = 2nL,R, (4.2)
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f dX™ =0, m=S8,9, (4.3)

donde S7, L, son enteros y R",r = 1,...,6 son los radios de T¢ = S* x --- x S1,
mientras que R es el radio del S! restante sobre el target. Estas condiciones aseguran
que estamos haciendo el mapa de ¥ sobre un sector II7_, S} de la variedad target. En
lo que sigue consideraremos solamente la compactificacién sobre el toro T para ello
necesitamos generalizar la condicion de carga central, que la definimos de la siguiente
manera:

[ = / dXT A dX® = (20 R R)w™, (4.4)

b

donde w" es una matriz simpléctica sobre el sector T° del target. Por simplicidad

tomaremos que w”® sea la matriz simpléctica canodnica:

0 1
-1 0

-1 0
0 1

-1 0
Esta matriz corresponde a la interseccion ortogonal de tres supermembranas toroida-
les T?%. La direcciéon temporal es el espacio de interseccién. La condicién topolégica
(4.4) no cambia las ecuaciones de campo del hamiltoniano (1.42) restringidos por los
vinculos (1.43) y (1.44). De hecho, cualquier variaciéon de I bajo un cambio §X7,
univaluada sobre X, es idénticamente cero. Ademas de las ecuaciones de campo obte-
nidas de (1.42), las configuraciones clésicas deben satisfacer la condicién (4.4). Esta es
solamente una restriccién topoldgica sobre el conjunto original de soluciones clasicas
de las ecuaciones de campo. En la teoria cuantica, el espacio de las configuraciones
fisicas estd ademads restringida por la condicién (4.4). La interpretaciéon geométrica

de esta condicién fue discutida en trabajos anteriores [2, 3.
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Observemos que (4.4) solo restringe los valores de S%, los cuales son ya niimeros

enteros por (4.1).

Consideraremos a continuacion el mapa mas general que satisface la condicion
(4.4). Para ello hacemos una descomposiciéon de Hodge de una uno-forma cerrada

dX" en una parte arménica y una parte exacta, como en casos anteriores:
dX" = MIdX® + dA", (4.6)

donde dX s =1,...,2g es una base de uno-formas arménicas sobre ¥. Se puede

normalizar esta base seleccionando una base candnica de homologia e imponiendo:

]{ dX" =6 (4.7)

Ahora, consideraremos una superficie de Riemann con una clase de base canodnica

equivalente. La condicién (4.1) determina:
M’ =2rR'L". (4.8)

Con dA" una uno-forma exacta. A continuacién se impone la condicién (4.4) y se

obtiene:

SIS = W', (4.9)

esto es, S € Sp(6,7Z). Este es el mapa mas general que satisface (4.4). Notar que
el grupo de simplectomorfismos ya no coincide con el grupo de difeomorfismos que

preserva la base que es SL(2,7).

La eleccién natural para /W (o) en este marco geométrico es considerarla como
la densidad obtenida del pull-back de la 2-forma de Khiler sobre 7° en términos de

la forma simpléctica anteriormente introducida. Entonces definimos:

(o) = %aa)?rab)?swm. (4.10)
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La /W (o) es entonces invariante bajo el cambio:
dX" — STdX*, S e Sp(29,7), (4.11)

Pero, éste es justo el cambio sobre la base candnica de uno-formas arménicas cuan-
do un mapa biholomérfico en ¥ es hecho cambiando la base candnica de homologia.
Entonces, concluimos que la teoria es invariante no solo bajo los difeomorfismos ge-
nerados por ¢1 y ¢9, sino ademas bajo los difeomorfismos, mapas biholomorficos, que

cambian la base candnica de homologia por una transformacién modular.

La teoria de supermembranas con cargas centrales en el CCL que hemos construi-
do, depende entonces del espacio de méduli de las superficies de Riemann compactas
M, solamente. Ella puede ser definida sobre las clases equivalentes conformes de su-

perficies de Riemann compactas.

Comparte esta propiedad con la teoria de cuerdas, aunque al estar la teoria de la
supermembrana restringida por los vinculos que preservan el drea, hay difeomorfis-
mos que preservan el area que no son mapas conformes. Ademads, la supermembrana
depende del méduli identificando la inmersion holomérfica desde el M, a la variedad
target. Este es un espacio de méduli interesante que ya ha sido considerado en un

contexto diferente en [134].

Identificada la invariancia modular de la teoria, se puede regresar a la expresion

general de dX", y podemos siempre considerar una base canonica de tal modo que:
dX" = R'dX" + dA", (4.12)

haciendo explicita la dependencia de los radios. Debido a que estamos en dimension
impar no haremos uso de las definiciones estandar de la formulacién compleja de los
moduli geométricos para caracterizar la variedad de compactificacion. Los correspon-

dientes grados de libertad son descritos exactamente por los campos univaluados A”.
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Después de reemplazar esta expresién en el hamiltoniano (1.42) y siguiendo todo el
proceso indicado en [3], obtenemos:

Py o, 1 I
H = /\/_daAda[(\/_)+(\/_
/]-"+ (2m)' (R R®) /\/_DX +A(D(

1 2
Z(]—",,S) +

1 1
)2_|_ —{Xm,Xn}2—|— §(Der)2—|—

—) +{X™, )

P,
VRN
+ / VW[—0I_T,D,0] + 0T _T,,{X™ 0} + A{OT_, 0}],
) (4.13)
donde D, X™ = D, X"+{A,, X"}, Fs = D,A;—D A +{A,, A}, D, = 2rR" 5 a X,0p.
P,, y 11, son los momentos conjugados a X™ y A, respectivamente. D, y F,, son la

derivada covariante y curvatura de una teoria simpléctica no conmutativa [3, 9], cons-

truida a partir de la estructura simpléctica f/t% introducida por la carga central. Esta
es la estructura de la supermembrana con cargas centrales donde se ha generalizado
el nimero de componentes. Tomaremos la integral de la curvatura como cero y el
término de volumen corresponde al valor del hamiltoniano en su estado fundamental.
El dltimo término representa su extension supersimétrica en términos de los espinores
de Majorana. Los grados de libertad fisicos de la teoria son los X™, A,, ¥,, que son

campos univaluados sobre .

En [38] un sector de la supermembrana con cargas centrales compactificado sobre
T* fue analizado. Su hamiltoniano fue expresado en términos de un marco diferente
para el sector compactificado sobre el toro 7. En ese caso el pull-back se hizo di-
rectamente con los modos arménicos dX ", mientras que en la presente formulacion
la métrica sobre ese sector es 6, v el pullback deberfa ser hecho con G 24X , G es
la matriz constante introducida en [38]. En ambos casos la misma densidad escalar

W (o) es obtenida.
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4.2. Compactificacién sobre el S! restante

El andlisis de la compactificaciéon sobre el S! restante puede ser realizado direc-
tamente en el formalismo descrito antes o bien considerando su formulacién dual en

términos de los campos de calibre U(1). Se discutirdn ambas aproximaciones.

En el primer caso, caso directo, podemos resolver la condicién de enrollamiento
(4.2), y obtener:
dX" = RL,dX® + do, (4.14)

donde d¢ es una uno-forma exacta y dX?, como antes son la base de 1-formas armoni-
cas sobre Y. Para el andlisis sobre la discretitud es mas conveniente expresar dX’ en

términos de la solucién del laplaciano covariante sobre X:
D,D,X =0, (4.15)

donde D,, r = 1,...,6 fueron definidos en la seccién previa. Hay 6 soluciones inde-
pendientes de (4.15). De hecho, dX es necesariamente una combinacién lineal de la
base de 1-formas armoénicas mas las uno-formas exactas. Para cada dX*® existe un

unico ¢°, univaluado sobre X tal que se satisface:

D,D,X®+ D,D,¢* = 0. (4.16)
La solucion mas general para X 1 que satisface DTDT,)? 1 = 0 es entonces,

dX; = Ly(dX*® + d¢®), (4.17)

puesto que la tnica solucion en términos de las formas puramente exactas es la trivial.
Notemos ademas que dX® + d¢® con s = 1,...,6 son linealmente independientes. La

soluciéon mas general para DTD,JA& = 0, es de la misma forma (4.17), ya que todas
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las contribuciones nuevas a la solucién son exactas. Podemos reescribir (4.14) en la

forma:
dXT = RL,dX* + dg, (4.18)
Notemos que Lg son iguales a los introducidos en (4.8). El tnico cambio esta en las

1-formas exactas.

Podemos ahora analizar la contribucién de los campos dX7 al hamiltoniano. Adi-
cionalmente a sus momentos conjugados, los cuales aparecen cuadraticamente, tene-

mos una contribucion extra al potencial:
Vo= (DX + (X7, XTP) = (LD, X°P + (Do + (X" XTP), (419)
donde hemos usado explicitamente (4.15). Entonces, obtenemos el limite inferior:
Vi > ((Dy¢)* + {X™, X"}*) > (D), (4.20)

el cual directamente muestra que el enrollamiento correspondiente a dX 7 no afecta las
propiedades cualitativas del espectro de (4.13) dado que se pueden usar los teoremas

de discretitud previamente explicados.

Ahora, construiremos por completitud la formulacién dual a (4.13), cuando dX’
estd restringida por la condicién (4.2) asegurando que X' toma valores sobre St (ver

apéndice C), obteniéndose:
L=p X" +pX —H(pr, X', p, X), (4.21)

donde
% dX = RL,, (4.22)

y la dependencia sobre X es solamente a través de sus derivadas 0, X con A = 0,a, y

a = 1,2 a estd etiquetando las coordenadas espaciales construimos,

<£ + WyF,e “”> , (4.23)
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donde
E:pIXI+pW0_H(p17XI7p7 Wa)7 (424)

la eliminacién de Wy, a través de su ecuacion de campo o directamente de la integral

gausiana en la integracion funcional, produce la accién dual:
~ . . 1
L=p X" +11°A, + Ag0.m® — H(pr, X', Fpe®, —iebanb). (4.25)

Esta es ya una formulaciéon canénica del hamiltoniano. El nuevo hamiltoniano es
obtenido del original haciendo las sustituciones antes mencionadas. Nétese que no
hay suposiciones sobre la estructura de H, la cual no es necesariamente cuadratica.
En nuestro caso particular la dependencia de p y W, es cuadratica. La condicién

(4.22) se transforma en

1 1
% (—§€baHb)dOﬂ = —=Mg, (426)

donde mg son enteros.

Notemos que el campo A, asociado a la compactificacién de la supermembrana z”

no es una conexion en un fibrado lineal sobre Y. De hecho, la condicién:
/ Fodo® A do® = 27n, (4.27)
b

no necesariamente es satisfecha. Para tener una conexién en el fibrado lineal sobre
Y. se debe requerir un tiempo euclideo periédico sobre la formulacién de la inte-
gral funcional. En ese caso la condicién (4.2), donde ahora la base de la homologia
uno-dimensional incluye el S* adicional, asegurando que F),, es la curvatura de una
uno-forma de conexion sobre la variedad base de tres dimensiones. Bajo esta supo-
sicién la condicién (4.2) para cualquier L, implica la suma sobre todos los fibrados
principales U(1). La contribucién de esta suma de la funcién de particién es una fun-
cién 0 generalizada [134] que surge de la evaluacién de la accién abeliana sobre las

configuraciones minimas, esto es, soluciones tipo monopolos [135].
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La expresién final de la formulacién dual de (4.13) cuando X7 es enrollada sobre

un S*, condicién (4.2), es

E@—:/\/_mrAda[(vhJ 1(5%ﬁ2+%{xm,v@2+%aszV+
1, ., 1 e 2 LI o ]
_'_Z(fTS) +§(Fab\/—) 8<\/_8X ) )
11 11¢ ab

Pm m
A({ﬁvX }_,DT(\/W) 2\/— ( flb\/—
+ / VW[—0T_T,D,0 + T_T', {X™ 0} + 1/200;11°0,0) + A{AT_,0}.  (4.28)

[°0.(X, + A,)]?)+

) + AT+

El término:

1 Pm moyme eab ,, 1 I
ab
At xmy —H%( — ) + AQIT, (4.29)

vils YW

describe la densidad canoénica de una teoria de tipo Dirac-Born-Infeld en términos

X

de Gop = 0, Xm0, X™ v F,. En la teoria completa con el hamiltoniano Hy, hay
términos adicionales de interaccion que describen el acoplamiento al sector enrrollado
sobre un 7%. Consideramos la M2 con todas las configuraciones fisicas enrolladas de
un modo irreducible sobre un espacio target 7% x S!. Si a continuacién se toma el
sector compactificado del target como T7 = (S')7, se deberfan entonces considerar
todas las posibles descomposiciones de la forma T° x S!. Entonces, el espacio de
Hilbert de las configuraciones fisicas es ampliado al tomar en cuenta todas las posibles
inmersiones holomorficas y sus correspondientes estados fisicos en términos de campos
univaluados sobre la variedad base, como se explicé en la seccién 2. El rompimiento

de la supersimetria inducido por el estado base se sigue de la misma manera.




Capitulo — 4. La Supermembrana 4D N =1 desde 11D 107

4.3. N =1 supersimetria

La condicién topoldgica asociada a la carga central determina una inmersiéon ho-
lomorfica minimal desde la g-superficie de Riemann a la variedad target 2g-toro. Esta
inmersiéon minimal esta directamente relacionada al estado BPS que minimiza el ha-
miltoniano. Cuando comenzamos con el g = 1 y T2 sobre el espacio target, el estado
base preserva % de la supersimetria original con el parametro espinorial un espinor de
Majorana de 32 componentes. Cuando consideramos nuestra construccién para toros
sobre el target T, T con g = 2, 3, el analisis de la preservacién de la supersimetria es
exactamente el mismo a cuando consideramos intersecciones ortogonales de 2-branas

con la direccion temporal como la direccion de interseccién. La supersimetria del esta-

11

1> 5 de la supersimetria original. El estado base en todos esos casos

do base preserva
corresponde a:
=0, X"=0, X =X (4.30)
La preservacion del estado base implica el rompimiento de la supersimetria. En el
CCL, terminamos cuando g = 3 con é de la supersimetria original, esto es un pardame-
tro de Grassmann complejo correspondiente a un multiplete N = 1 de supersimetria

en el cono de luz.

La accién es invariante bajo supersimetria en el cono de luz. Hay una clase com-

pleta de minimos para el hamiltoniano, correspondiente a:
0= € + €9,
X" = )/ET + iEgFEl,
XM = iEQFmEL (431)

Sin embargo, cuando el vacio es fijado espontdneamente a uno de ellos, la supersi-

metria se rompe a N = 1 a nivel cuantico cuando el target es Ms x T°. Posteriormente,
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no hay rompimiento de susy cuando se compactifica el S* adicional para obtener un
target My x T7 dado que no hay modificaciones de la condicién de carga central

generalizada.

4.4. Discretitud del espectro

Consideraremos un procedimiento de fijacion de calibre sobre una formulacion
BFV de la teoria. Varias condiciones de calibre son apropiadas para analizar cualita-
tivamente las propiedades del espectro. Podemos imponer como en ([6, 9]) una selec-
cién de calibre una vez que una base normal de funciones sobre X se introduce en la
teoria. Podriamos también considerar la condicion de calibre de Coulomb D, A, = 0.
Podemos resolverla en términos de modos longitudinales y transversos de la manera
usual, junto con la resolucion de los vinculos de primera clase, el vinculo de Gauss. En
este caso, una vez que todo el hamiltoniano candnico es expresado en términos de los
modos candnicos transversos, uno de ellos tiene una expresion complicada asociada
al cuadrado del momento después de desacoplar el término longitudinal. Este es de

la forma:

D,IT*D, 11", (4.32)

donde IT* es la parte longitudinal del momento II,, y IT* tiene que ser reemplazado por
la solucién de los vinculos. En lo que sigue podemos eliminar este término positivo,
ya que la discretitud del operador de limite inferior asegura la misma propiedad del

hamiltoniano original. Este argumento fue usado en [9].

Podriamos ademas considerar una condicion de fijacion de calibre:

x = aD, A, + B, (4.33)
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donde B es el transformado BRST del campo antighost mientras que a es un ntimero
real que puede ser seleccionado de modo de cancelar la contribucién (D, A,)? del
término F? en el hamiltoniano. Después de la redefinicién de B, éste se desacopla de la
integral funcional, finalizamos con una formulacién candnica en términos del cuadrado
de todos los momentos junto con los términos cuadraticos de masa para cada modo
en la formulacién. Un importante aspecto para mencionar es que en todos esos casos
los campos ghost no se desacoplan de la accion, sin embargo las contribuciones son
siempre lineales en las variables de la configuracién. El teorema 2 en [7] asegura que
esta contribucién ghost no cambia las propiedades de discretitud de la formulacion
canoénica. La discusion de las propiedades espectrales del hamiltoniano es bastante
simplificada por estas consideraciones. Podemos reducir los grados de libertad fisicos
o podemos ampliar el espacio de fase como en el formalismo canénico BFV, en ambos
casos el andlisis se reduce a un operador Schroendiger con términos cuadraticos de

masa y potencial positivo. Podemos considerar, por ejemplo, usando (4.20):

s - / VIVIG() + () + o (X X7
HX XY DX 4 (D) + (B (DAY (434)

donde P es el momento conjugado de ¢, la contribucién de la compactificacién sobre
S'. Este hamiltoniano es exactamente de la forma considerada en [6, 7, 9]. Entonces,
para poder aplicar los resultados alli desarrollados y estudiar en detalle sus propie-

dades espectrales, obtenemos una versién matricial (regularizada) del hamiltoniano

[5]-

Consideramos, del modo usual, una descomposicion de todos los campos escalares

sobre ¥ en términos de una base discreta ortonormal Y4 (o', 0?). Es relevante en esta
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linea de trabajo considerar una superficie de Riemann compacta y cerrada >:
Xm(ala U2> 7-) :XmA(T)YA(Ul> 02)?
Au(oh, 0%, 1) =AX(T)Ya(oh, 0?),
p(ot, 0%, 7) =p(T)Yu (0!, 0?). (4.35)

El corchete simpléctico es ademaés un escalar sobre X, por consiguiente éste debe ser

reescrito en términos de la base:

{Y4, Y} = f$zYe, (4.36)
después de definir:
/ YaYp = nas. (4.37)
b
Obtenemos:
/{YA> Yp}Ye = fanc, (4.38)
b

fapc son en consecuencia completamente antisimétricas. f§p son las constantes de
estructura de los difeomorfismos que preservan el area. Entonces, se reemplazan esas
expresiones en la densidad hamiltoniana y se integra la dependencia o', 0. Se obtiene
una formulacién del operador en términos de los modos dependientes de 7 solamente.
Consideramos el truncamiento del operador, esto es restringimos el rango de los indices

C

A, B,C a un conjunto finito N e introduce constantes f}.° tal que:

l’émN—>oof,£xVBC - ng (439)

En [35, 36], f47F son las constantes de estructura de SU(N), esto es la teorfa truncada
tiene ademads simetria de calibre. En [6] para la supermembrana con cargas centrales
compactificada sobre un 72 la teoria truncada en términos de las constantes de es-
tructura de SU(N) tiene ademds una simetria de calibre. El algebra de los vinculos de

primera clase en ambos casos es la misma. Sin embargo, en la prueba de discretitud
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del espectro en [6] las propiedades algebraicas de f{.C no juegan ningtin papel. Enton-
ces, continuamos con el andlisis del espectro del operador de Schréedinger truncado

asociado a H sin otros requerimientos sobre las constantes fV:

i) El potencial del operador de Schréedinger solamente se anula en el origen del

espacio de configuracion:
V=0-=[[(X,4,9) =0, (4.40)

donde ||.|| denotando la norma euclidea en R*. Nétese que el hamiltoniano original

ast como H p estan definidos sobre los campos salvo constantes.
ii) Existe una constante M > 0 tal que:
V(X, A ¢) > M||(X, A, ). (4.41)

Otra vez, este limite surge de consideraciones muy generales. De hecho, escribiendo

(X, A, ¢) en coordenadas polares:

X =Rx, A= Ra, ¢= Ry, (4.42)
donde 0 = (x,a, p) estd definida en la esfera unidad, ||(x,a, )|| = 1, obtenemos:
V(X, A ¢) = R*Py(R), (4.43)
donde:
Py(R) = R*k1(0) + Rko(0) + k3(0) > 0, (4.44)

con k3(0) >0, k1(0) > 0y k1(0) = 0 = ko(0) = 0. Entonces, definimos:
w(0) = mingPy(R), (4.45)
que es continuo en 0y p(6) > 0. Usando que la esfera unidad es compacta se obtiene:

V(X, A, ¢) = R*Py(R*) > R*minPy = MR (4.46)
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Entonces, el operador de Schroedinger esta limitado por un oscilador arménico. En
consecuencia tiene una resolvente compacta. Usamos el teorema 2 [7] para mostrar
que: i) las contribuciones ghost y antighost a la accién efectiva, ii) la contribucién
fermiénica al hamiltoniano supersimétrico, no cambian las propiedades cualitativas
del espectro del hamiltoniano. De hecho, ambas contribuciones son lineales en las

variables de configuracién.

Adicionalmente, la contribucién supersimétrica cancela la energia del punto cero
de los osciladores bosénicos ain en la teorfa exacta [10, 81]. Se ha mostrado entonces,
que el hamiltoniano regularizado compactificado sobre el espacio target M, x T x S*
tiene una resolvente compacta y por consiguiente tiene un espectro discreto con mul-

tiplicidad finita. Esperamos que el mismo resultado sea valido para la teoria exacta.

4.5. Otras Propiedades Fisicas

Hasta ahora hemos visto que la accién de la supermembrana N = 1 en 4 dimen-
siones tiene un espectro discreto regularizado. Una de las caracteristicas de la teoria
es que debido a la condicién topoldgica los campos adquieren masa. Estos hechos
representan una alternativa al mecanismo de Higgs como mecanismo para generar
masa, ya que no hay ninguna particula de Higgs involucrada? sino que la masa se
genera dinamicamente por efecto de la condicién de carga central. Existen varios
mecanismos en la literatura generadores de masa [136, 137]. Debido a que nuestro
mecanismo no corresponde estrictamente hablando a ninguno de ellos, aunque tienen

algunos aspectos parecidos, explicaremos el nuestro brevemente para mayor claridad.

2Recientemente se ha encontrado en el LHC una resonancia de 125GeV cuyas propiedades parecen

corresponder a la esperada para la particula de Higgs [138].
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En el mecanismo nuestro, los campos de la teoria X™, A, ¢,6 adquieren masa
via los campos vectoriales )?T definidos sobre la supermembrana. Puesto que esos
campos no viven en el espacio target no hay violacion de la invariancia de Lorentz.
Esto se asemeja al mecanismo de Scherk-Schwarz que induce una monodromia sobre

los campos que hacen que éstos se vuelvan masivos.

Una posible pregunta extra es el andlisis de la estabilizacion de los moéduli. Estos
son los campos escalares sin masa que pueden parametrizar la geometria compacti-
ficada asi como a diferentes sectores de materia. Pueden ser distinguidos dos tipos
de moduli: el cuantico y el clasico. El méduli cuantico de la teoria, en general no es
conocido aunque existen algunas aproximaciones para sistemas en los cuales un grupo
diferente de esos mdduli muestran la interpolacion entre diferentes vacios con dife-
rentes grupos de calibre [139]. Como hemos enfatizado a lo largo del texto, la teoria
de supermembranas cudnticas con cargas centrales que hemos construido depende
entonces del espacio méduli de superficies de Riemann compactas M, solamente. La
teoria esta definida sobre las clases equivalentes conformes de superficies de Riemann
compactas, y ademas depende del méduli identificando la inmersion holomérfica desde

M, ala variedad de target.

Generalmente, el analisis de los campos moduli se hace a nivel clasico desde el pun-
to de vista de supergravedad, donde estos méduli son supercampos y no parametros.
Esto ha sido hecho en potenciales 4D efectivos en aproximaciones de supergrave-
dad de acciones inspiradas en la teoria M. El potencial de Kahler esta expresado en
términos de ellos [140]. Puesto que nuestro estudio es a nivel de la supermembrana,
esos términos no aparecen, sin embargo la accién posee escalares y parametros de la
variedad compacta que pueden generar direcciones planas en el potencial. Podemos

distinguir entre dos tipos de campos escalares, aquellos asociados a la posicién de la
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supermembrana en las dimensiones transversas, -analogo a lo que en teoria de cuer-
das representa el méduli de cuerda abierta- y los escalares cuyos vevs parametrizan
la variedad compacta - andlogo a lo que en teoria de cuerdas representa el méduli de

la cuerda cerrada-.

Vamos a analizar de manera separada los dos tipos de moduli clasicos. Este analisis
desacoplado es solo justificado si y solo si las escalas de estabilizacién (las masas del
moduli) son claramente diferentes, de otro modo la minimizacién con respecto al
conjunto completo de méduli (origen geométrico y de materia) deben ser realizados.
Un andlisis exhaustivo de este hecho va mas alla del alcance de este articulo. Sin

embargo, algunas consideraciones pueden hacerse:

A nivel clasico el comportamiento de la teoria es conocido. La teoria no contiene
ninguna configuracion tipo cuerda. Supondremos por el momento una variedad com-
pacta cuyos radios Ry, ..., Ry estan fijos. Los X que parametrizan la posicién en las
dimensiones transversas de la supermembrana adquieren masa debido a la condicién
de carga central asi que no hay direcciones planas en la pieza escalar del potencial.
La componente ntimero 7 tiene un efecto inducido debido a la condicién de carga
central a través del acoplamiento cuadratico con los campos de calibre simplécticos
A, y ademas gana una masa efectiva. Todos esos tipos de moduli se convierten en

estables.

Hasta ahora, hemos considerado que el 7-toro es rigido, de tal modo que los
Ry ..., R; son dejados fijos y ellos no aparecen en la métrica y corresponderian al
moéduli de la cuerda cerrada. Si ahora se relaja esta condicion y se dejan que ellos
varien muy suavemente, nos podemos preguntar si, en principio es posible obtener
un minimo. Un argumento heuristico para apoyar la estabilizacién del moduli es la

siguiente: Tratamos en nuestra construccién con fibrados de calibre no triviales cuyas
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intensidades de campo asociados pueden ser representados como flujos del volumen-
mundo [12]. Ya que para la construcciéon el mapa representa una inmersién minimal
sobre el espacio target, ellos inducen un efecto similar al producido por una calibra-
cion generalizada. Las calibraciones minimales ademas toman en cuenta la dependen-
cia sobre la variedad base, la superficie de Riemann seleccionada ¥. La condicién de
la calibracién generalizada - la cual muestra la deformacién de los ciclos que son en-
rollados por la supermembrana- representa una condicion para minimizar la energia
[141]. Sucede igual con las inmersiones minimales. Para un flujo inducido dado, se
puede esperar que el volumen sea fijado. La supermembrana con cargas centrales
estd enrollada en el 7-toro con las maxima cantidad de monopolos inducidos sobre él,

asi que, es logico esperar que el el méduli geométrico total seré estabilizado.

[lustraremos ésto, con el caso particular de un toro isotrépico, esto es, Ry = -+ - =

R; = Ry. Entonces, obtenemos en H B, la siguiente expresion:
V =A+ BRy+ CR; + DRy, (4.47)
donde A >0, C >0y D > 0, con las siguientes expresiones:
A= VI [0 0P 4 0P A X LU 0P {4 A
B = /E Vv E{X’“, LXTHX™, 6} + D X" { A, X} + Do {Ar, as}] +
+ [ VT (0.4. = DAY A A

C = % /E v [(DTX’”)Q + (Dy¢)* + (D, A,)? +{XW,)?SLS}2} .

D= E/EJW{)?T,)?S}% (4.48)
donde hemos extraido el factor Ry de las expresiones de la derivada D,..

Los términos de masa cuadraticos constribuyen a la expresion de C. C' es cero si

y solo si (X™, ¢, As) son constantes, en la clase de equivalencia de cero. Obtenemos




Capitulo — 4. La Supermembrana 4D N =1 desde 11D 116

el potencial:

d*V 9
——5 = 2C +12DR5 > 0, (4.49)
dRg
asi el problema es siempre estable con respecto a las variaciones de R. Podemos tener
dos posibles minimos: un minimo centrado en Ry = 0, o un minimo para Ry # 0. El

potencial es globalmente estable con respecto al modulo Rj.

El analisis de los casos de compactificaciones toroidales con radios todos diferentes,
que claramente es el indicado para obtener un modelo mas realista, es mucho mas
complejo. Es necesario un estudio més exhaustivo que esta fuera del objetivo de esta

tesis.

4.6. Conclusion

Hemos obtenido la accién de la supermembrana D = 11 compactificada sobre 177
con cargas centrales no triviales inducidas por una condicion topoldgica invariante
bajo transformaciones supersimétricas y de simetria kappa. Para poder imponer la
condicién de carga central se descompuso la variedad del 7-toro en un 7° x St y se
obtuvo la formulacién de la MIM2 en dicho T y posteriormente se compactificé en
un circulo extra. Ademds, también se obtuvo la formulacién dual sobre este tltimo

circulo.

El hamiltoniano de la MIM2 en el CCL es invariante bajo las transformaciones
conformes sobre la variedad base que es una superficie de Riemann. La susy es rota
espontaneamente por el vacio a 1/8 de la original. Este corresponde en 4D a tener
N = 1. Clasicamente el hamiltoniano no contiene configuraciones singulares y a nivel

cuantico el hamiltoniano regularizado tiene un espectro discreto, con multiplicidad
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finita. Su resolvente es compacto. El potencial no contiene ninguna direccién plana
en el espacio de configuracion ni en el espacio de pardmetros de moduli (para el caso

de un 7-toro is6tropo). El hamiltoniano es estable en ambos espacios.
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CAPITULO O

La Supermembrana como un

Fibrado Toroidal Simpléctico

En este capitulo se formula globalmente la supermembrana con cargas centrales
compactificada en un espacio target My x T?. La estructura local de esta supermem-
brana ya ha sido estudiada y dichos resultados los hemos descrito brevemente en la

seccion 3.3 de esta tesis. Los resultados de este capitulo fueron reportados en [17].

A continuacién se mostrara que globalmente la supermembrana con cargas cen-
trales se corresponde a secciones de un fibrado toroidal simpléctico con monodromia
no trivial en SL(2,Z). Esta construccién nos va a permitir en el capitulo 6 obtener
una clasificacion de todas las supermembranas mostrando en términos de fibrados las
simetrias discretas asociadas a las monodromias en SL(2,7Z). Luego, este resultado
junto con los del capitulo 7 conducen, de forma natural, a interpretar la teoria de la
supermembrana con cargas centrales como el origen en teoria M del calibrado de las

teorias efectivas de cuerdas de tipo II.
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5.1. Introducciéon

Los efectos no perturbativos, tales como monopolos e instantones en las teorias
de calibre convencionales, o las dualidades en el contexto de las teorias M/cuerdas,
descansan en aspectos globales de dichas teorias. Propiedades tales como el confina-
miento también podrian ser debidas a aspectos topoldgicos no triviales. En el pasado,
las fibraciones no triviales han sido usadas también en el contexto de las teorias no
conmutativas, como es el caso de la formulacién no conmutativa del toro [50], asi co-
mo para caracterizar espacios de compactificacién interesantes para fenomenologia de
cuerdas, por ejemplo [51]. Por esta razén estudiaremos la formulacion global de la

supermembrana con cargas centrales.

A la hora de encontrar una teoria globalmente definida sobre un fibrado es necesa-
rio obtener una accién que sea un funcional invariante compatible con dicho fibrado.
Para lo cual es preciso satisfacer ciertas condiciones. En este capitulo encontramos una
descripcién de la supermembrana compactificada en términos de fibrados toroidales.
Probamos un paso no-trivial como es el demostrar que la accién de la supermembrana

con cargas centrales es globalmente definida.

La supermembrana con cargas centrales no triviales es una supermembrana com-
pactificada y podemos describir esta compactificacion en términos de fibrados en don-
de la base del fibrado viene descrita por el volumen del mundo de la supermembrana
y la fibra estd asociada al espacio target en el que se compactifica. La supermem-
brana con cargas centrales no triviales, como hemos visto introduce una restriccion
topoldgica sobre las configuraciones fisicas. Esta restriccion topolégica globalmente
estd asociada a la existencia de la primera clase de Chern no trivial. Desde un punto

de vista algebraico, ésto puede ser interpretado como una carga central no trivial en
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el algebra supersimétrica. Desde el punto de vista geométrico ella asegura la exis-
tencia de un fibrado principal no trivial U(1) y una conexién monopolo sobre ¢l [1],
cuya curvatura esta en la clase de Chern asociada a la restriccién topoldgica. En este
sentido, se tiene una manera natural de introducir configuraciones tipo monopolo que
estabilizan la supermembrana. Asi, el hamiltoniano regularizado resultante tiene un

espectro discreto [6, 7, 10, 11].

La estructura global adicional que consideraremos, conlleva de un modo manifiesto
el grupo de dualidad S de la teoria de cuerdas, el grupo SL(2,7) y como veremos en
el capitulo 7 también realiza la T-dualidad. El origen de la dualidad S desde el punto
de vista de la supermembrana fue destacado en [118] en relacién con las soluciones
de cuerdas (p, q) (ver ademds [13]). El grupo SL(2,Z), que ya ha sido caracterizado
en la seccién 3.3.1, veremos cémo actua sobre la estructura del fibrado y probaremos
cémo la accion de la supermembrana con cargas centrales queda formulada en el
mismo. La consistencia de esta construccion se verifica al probar que la estructura
global del fibrado SL(2,7Z) es compatible con la restriccién topolégica tipo monopolo
(o carga central). Este fibrado es un fibrado toroidal simpléctico con monodromia
en SL(2,7Z). Esto permite una clasificacién de todas las supermembranas con cargas
centrales y que como se verd en el capitulo 6, es el origen en teoria M de las teorias
de supergravedades calibradas tipo II en 9D. Ellas son teorias efectivas asociadas a

las teorias de cuerdas tipo Il compactificadas sobre un circulo.

5.2. Fibrados Toroidales Simplécticos

Consideraremos en este sector la estructura global de la supermembrana en el

CCL cuando los campos X, ¥ son secciones y A es una conexién simpléctica sobre un
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fibrado toroidal simpléctico no trivial. Un fibrado toroidal simpléctico F es un fibrado
suave F' — E 5 ¥ cuyo grupo de estructura G es el grupo de simplectomorfismos que
preserva una dos-forma simpléctica w sobre la fibra F'. 3 es la variedad de base, que
consideraremos una superficie de Riemann compacta y cerrada que modela la parte
espacial de la foliacion del volumen-mundo de la supermembrana, y E es el espacio
total. Tomaremos la fibra como la variedad del espacio target I = My x T? como en
[14]. La parte topolégicamente no-trivial corresponde al T2, y es la tinica relevante
en el andlisis a continuacién, asi que en lo que sigue nos referiremos a esta parte que
es la que caracteriza el fibrado. En particular, consideraremos X, una superficie de

genus ¢ = 1 con una métrica inducida no-plana:

o, 1 2 2
d*s = coshZ o (o + d*¢)] . (5.1)

Cuando g > 1, el primer grupo de homotopia m1(X) es no-abeliano permitiendo la
construccion de fibrados toroidales simplécticos con monodromias no-abelianas. En
esta tesis nos restringimos solo al caso abeliano. Sobre 72, un toro plano, conside-
raremos la 2-forma canodnica simpléctica. Su pullback, usando los mapas armoénicos
desde la variedad base a T2,define la 2-forma simpléctica w sobre ¥. En términos de

una base arménica de uno-formas dX " r=1,2, la 2-forma simpléctica asociada es:
w = [(27R)*nIm7)e,d X" A dX°. (5.2)

Esto induce la métrica asociada (5.1), cuya curvatura es no nula, con tensor de Ricci

diferente de cero

Ray = _ M (5.3)
(¢? + e9)”

Los simplectomorfismos sobre una superficie bidimensional, y la simetria residual de
la supermembrana, que son los difeomorfismos que preservan el drea, corresponden
al mismo grupo. Por tanto, los simplectomorfismos sobre > homotépicos a la identi-

dad estan generados por los vinculos de primera clase de la supermembrana (1.43),
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(1.44). En la supermembrana con cargas centrales no triviales [2] los simplectomor-
fismos corresponden al pull-back de los simplectomorfismos sobre la fibra, y no son
los mismos que aparecen si no se impone la condicién de cargas centrales. Para des-
cribir los aspectos globales de la supermembrana se introduce una monodromia y el
Z-modulo asociado. Por otro lado, los simplectomorfismos que preservan w definen
clases isotdpicas. Estas clases forman el grupo my(G). En el caso que estamos consi-
derando, donde la fibra es T2, my(G) es isomorfo a SL(2,7Z). La accién de G sobre
la fibra T produce una accién sobre la homologia y cohomologia de T2. Esta accién
se reduce a una accién de my(G), ya que sobre una clase de isotopia dada, dos sim-
plectomorfismos estan conectados por un camino continuo dentro de la clase, y por
lo tanto no se puede cambiar el elemento del grupo de homologia o cohomologia. La
accién de G sobre la fibra definida sobre un punto de la base x(o1, 02) cuando se va

alrededor del mismo mediante un elemento de 7;(X) define un homomorfismo
m(X) = m(G) = SL(2,7Z), (5.4)

tal que p : m(X) — SL(2,Z), se define como la monodromia del fibrado toroidal. Esta
definicion de monodromia es la extensiéon natural de la monodromia en un fibrado
toroidal sobre un circulo, que fue considerado previamente por Thurston [142]. En
esta tesis hemos seguido la linea de accién de [143]. Otros trabajos relacionados son
(144, 145, 146]. La monodromia puede ser trivial o no, pero atin cuando sea trivial,
el fibrado toroidal simpléctico puede ser no-trivial. De hecho, se podria tener una
transicién no-trivial dentro de los simplectomorfismos sobre una clase de isotopia. Si
la monodromia es trivial, el fibrado toroidal simpléctico es trivial si y solo si existe
una seccién global. Este es el caso de la supermembrana sobre un espacio target de
Minkowski en once dimensiones [33], asi como el caso de la supermembrana en el

CCL sobre un espacio compactificado del tipo! Rg_4 x T en [37]. Por consiguiente,

1d es el nimero de coordenadas transversas de enrollamiento sobre el toro de d dimensiones.
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también es el caso de una supermembrana enrollada sin carga central en un My x T2.

Para el caso de fibrados no triviales con monodromia, p actia naturalmente sobre
el primer grupo de homologia H,(T?) sobre T?, y le da a H,(T?) la estructura de un
Z[m (%)]-médulo el cual puede denotarse como Z2. Dado p, existe una corresponden-
cia biyectiva entre las clases de equivalencia de los fibrados toroidales simplécticos con
base X y los médulos Zg ((m,n)), con los elementos del segundo grupo de cohomologia
de ¥ cuyas coeficientes Z7, H*(X, Z7) [143]. Segtin [143], el elemento de H*(X, Z7)
es denominado la clase de cohomologia del fibrado toroidal simplécticoy es denotado
por C(E). C(E) = 0 si y solo si existe una seccién global sobre E. Si p es trivial,

C(E) =0siy solosi F es trivial.

La teorfa de la supermembrana con cargas centrales no-triviales tiene C'(E) # 0
y por lo tanto E siempre es no-trivial. La condicién C(E) # 0 es una condicién
relevante que asegura un espectro discreto de la supermembrana con cargas centrales
no-triviales [5, 6, 7, 8, 9, 10, 11]. En el caso de un fibrado toroidal simpléctico trivial

el espectro de la supermembrana es continuo desde [0, +00) [35].

El segundo grupo de cohomologia H?(3, Zg) puede ser igual al conjunto de los

enteros Z, como ocurre en el caso donde la monodromia viene dada por:

1 « 1B
pla, B) = o pla,p)= : (5.5)
0 1 0 1

donde («, ) denotan los elementos de 7 (X). Pero también puede ocurrir que solo
contenga un nimero finito de elementos como en el caso de [143],

(a+B)
—2mn+1 2mn®+n
p(Oé, 5) = 5 (56)

—-m mn + 1
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donde los enteros m, n > 0. Estos fibrados son fibrados con torsién ya que H?(, Zg) =
Zm@® Z,. El nimero de fibrados toroidales inequivalentes simplécticos es, en este caso,
mn. Por lo tanto, dado p el nimero de fibrados simplécticos toroidales inequivalentes,
en general, no estd necesariamente en correspondencia con los enteros como en un
principio se podria pensar, sino que depende de si el fibrado tiene o no torsién. Esta
es una afirmacién importante en el andlisis de los grupos de simetria asociados a la

teoria a nivel cudntico.

5.3. Mapas de la Supermembrana como Secciones

de un Fibrado Toroidal Simpléctico

Para formular la supermembrana con cargas centrales en términos de secciones de
un fibrado toroidal simpléctico con monodromia p induciendo un Z[m (3)]-mdédulo, te-
nemos que considerar la transformacién de su hamiltoniano bajo la accién de SL(2,7Z)
sobre la base de homologia puesto que el méduli del 2-toro 7% aparece explicitamente
en el hamiltoniano. En esta seccién se probara la invariancia del hamiltoniano de la
supermembrana con cargas centrales bajo el Z[mr;(X)]-mddulo. Dicho hamiltoniano

que habiamos visto en la seccién 3.3, estd dado por la ecuacién (3.30):

1 P 1, P T2 T2
H = T‘2/3\/W[— — ) 4 S (=) + XX 4+ —{XT, X 2}
/ () 5 X XY+ XX
2
+ / T23VW [TZ{X”L,X"}Q —0r_T,,{X™ 60} —§F_FT{XT,«9}} :
P
Con los vinculos (3.31) y (3.32):

d(P.dX" + P,dX™ — 0I'_df) = 0,

% (PodX" + PpdX™ — 0I'_df) = 0,

S
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y la condicién de carga central (3.27), donde X" son las secciones sobre el fibrado
toroidal simpléctico E con grupo de estructura G, los simplectomorfismos preservando
la 2-forma simpléctica sobre la fibra T? definida previamente. P, son los momentos

conjugados a la parte exacta en la descomposicion de X".

Para hacer mas explicita la dependencia del hamiltoniano en términos del moduli
del toro del target space se introducen variables complejas. El integrando dependiente

de X", con r = 1,2, puede ser reescrito de la siguiente manera:
dX = dX* +idX?, (5.7)
y el potencial asociado se puede reescribir como:
1 m\ v m 1 YU v
donde
dX = 21 R(l; + m,7)dX® + dA, (5.9)

con Ry 7 el méduli de T2, d)A(S, s = 1,2 como antes, la base armonica de X y dA es
la uno-forma exacta en la descomposicién de Hodge. A = A; + iA, lleva los grados
de libertad del sector compacto. La accién de mo(G) = SL(2,Z) en H{(T?) es el
modo méas natural de inducir una transformacion de Mobius en el plano superior con

coordenada compleja 7.

A continuacién probaremos que el hamiltoniano (3.30) es un funcional bien defi-
nido sobre el fibrado toroidal simpléctico con monodromia p, donde p es una repre-
sentacion de () en SL(2,7Z). Como vimos en la seccién 3.3.1.2, es invariante bajo

las transformaciones sobre T2 dadas por la ecuaciones (3.38):

b . a —b
T R Rler+d, A— AT, W W,
cT+d
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, a
con ct+d = |er+dle”¥" y A= € Sp(2,Z). Esta invariancia fue encontrada
c d

en [13]. El hamiltoniano (3.30) as{ como (3.27), y el drea Area(T?), son invariantes

bajo la transformacién anterior.

Podemos darnos cuenta que el grupo SL(2,Z) (3.38) actia desde la izquierda
sobre W, mientras que la invariancia SL(2,7Z) sobre la base ¥, actia a la derecha.

Bajo esas transformaciones el detW permanece invariante.

Dada W con determinante # 0 siempre existen elementos de SL(2,7Z) cuya accién
desde la izquierda y desde la derecha produce
a b Stosl A0
w7 2 1

- , (5.10)
c d S2 52 0 A

donde A\ Ay = n. Ademas, si A\; y Ag son primos relativos siempre existen elementos de
SL(2,7Z) cuya accién desde la izquierda y desde la derecha produce \y =ny Ay = 1.
Si A1 y A no son primos relativos, se puede redefinir el parametro R y nuevamente
reducirse al caso donde A\; y Ay son primos relativos. Aunque podemos tener nimeros
de enrollamiento [q, [y, m, my las simetrias de la teoria permiten reducir todo a que
la carga central sea un entero n. Ahora queremos determinar qué representaciones p :

m(X) = m(G) = SL(2,7Z) dejan invariante la forma de la densidad del hamiltoniano:

e[ n= [ TG S

+/T‘2/3\/W[T§2{X,Y}{Y,X}+T{{X”‘,X”}z] +

)2+ %{X, X"HX, X™Y] +

— / T*3/WIL_T,,{X™, 0} +1/200 _T{X,0} +1/200 _T'{X,6}, (5.11)

donde dX = 27 R(dX' + nrdX?).
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Las representaciones p,, : m(X) — SL(2,Z),, donde SL(2,7Z),, es el subgrupo de

SL(2,7) cuyos elementos son de la forma:
, (5.12)

dejan invariante la densidad hamiltoniana en (5.11). p, caracteriza las representa-
ciones compatibles con la restriccién topolégica (3.27). Por ejemplo, si tomamos las

representacion p : m(X) — SL(2,Z), definida de la siguiente manera:

M 1 nM
m(2) 2 — ) (5.13)
N 0 1

py\ . -
El elemento de H,(T?) puede ser dado siendo p, g enteros. Entonces, la accion

q
natural de SL(2,7Z) es dada por
1 nM P p+nhq
= : (5.14)
0 1 q q

El grupo de cohomologia H*(%, Zﬁ) = 7, ademas de la condicion de la carga central
(3.27) establece que estamos en la clase caracteristica C(E) = n # 0, en consecuencia,
existe una supermembrana D = 11 con cargas centrales no triviales formulada en
términos de secciones de un fibrado de toro simpléctico E con representacién (5.13)
produciendo un Z[m (X)]-médulo. En el caso (5.6) todos los elementos son de torsién
mientras que en el caso (5.5) solo cuando C'(E) = 0, lo cual esté excluido en el anlisis

presente ya que consideramos una supermembrana con carga central no-trivial.

Ahora, consideraremos la ley de transformacién de los campos describiendo la su-
permembrana con carga central no trivial. Consideremos una supermembrana sobre

un fibrado toroidal simpléctico con monodromia p(c, ). Bajo una simetria rigida
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SL(2,7) sobre el target la conexién simpléctica A(z) transforma con un factor global

¢'? donde e = \Z:;?q , A € SL(2,7) actia sobre el méduli y la matriz de enrollamien-

to W como ya se ha presentado. Sobre el fibrado toroidal simpléctico con monodromia
p(a, B), A(x) transforma ademds con un factor de fase "¢ con p, = ¢(p(a, §)) pero
ahora A = p(a, B). Esto es, a, b, ¢,d son enteros, que dependen de («, ). Por ejemplo,
si consideramos a = = 0 correspondiendo a un elemento trivial de m (%), enton-
ces @ = 0, mientras que si (o, ) # (0,0) entonces ¢ puede ser diferente de cero,
por ejemplo en el caso (5.6). Si escribimos A(z) = |A(x)|e**®) entonces asociado a

(o, ) € I} (X) tenemos A(z) = |A(x)|e*@)+#r . Asi, se obtiene

d (|A(g;)|eM<~’v>+e“"P) — dA(z)eir, (5.15)

Para tomar en cuenta el factor de fase e?¢, se puede multiplicar la derivada co-
variante simpléctica en la formulacién por este factor de fase y dejar A(x) como una
1-forma de conexién univaluada. En el hamiltoniano de la seccién 3, el factor de
fase e'#(P(@P) es cancelado por la contribucién de su complejo conjugado, en conse-
cuencia, el hamiltoniano esta bien definido sobre un fibrado toroidal simpléctico con

monodromia no-trivial.

Otro aspecto importante de la supermembrana formulada sobre un fibrado toroidal
simpléctico con monodromia es que las cargas Kaluza-Klein (p, q) que aparecen en
el operador de masa no son cualesquiera sino que dependen del tipo de fibrados que

consideremos ya que toman su valor sobre el médulo Zg.

De hecho, las cargas (p, q) estdn asociados naturalmente al elemento de Hy(7?). Se
tiene entonces una bonita interpretacién geométrica: Las cargas KK estan asociadas
a la homologia de T? sobre el target, mientras el enrollamiento estd asociado a la

cohomologia sobre la base Y. Probamos que el hamiltoniano junto con los vinculos
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son invariantes bajo la accién de SL(2,Z) sobre el grupo de homologia H;(T?) de la

fibra del 2-Toro T2.

Las clases de calibrados permitidas vienen parametrizadas por A, por lo que corres-
ponden a las clases inequivalentes (elipticas, parabdlicas e hiperbdlicas) de SL(2,7Z).

Esto sera analizado en detalle en el capitulo 6.

Sin embargo, como ya se explico, la clasificacién de los calibrados del tipo I1IB a
nivel global es mas fina ya que depende de la clase de cohomologia de la fibracién.
Esto es, hay mas clases inequivalentes de fibrados toroidales simplécticos que no son
visibles a bajas energias para una monodromia dada. Como veremos en el capitulo 7,
para el caso menos directo de las monodromias de origen tipo ITA, estas se inferiran

del hecho de que el hamiltoniano es invariante bajo T-dualidad.

5.4. Conclusion

Mostramos que la Supermembrana con cargas centrales no triviales puede ser
formulada en términos de secciones de fibrados toroidales simplécticos con una mono-
dromia dada por una representacién p : m (¥X) — SL(2,Z) induciendo un Z[m (X)]-
mdédulo en términos del grupo de homologfa de la fibra H,(T?). El punto no trivial
en la construccién fue probar que el hamiltoniano junto con los vinculos son invarian-
tes bajo la accién de SL(2,7Z) sobre el grupo de homologia H;(T?) de la fibra T2
Un aspecto interesante de esta estructura geométrica es la posible existencia de una
extensién de la 2-forma simpléctica sobre la fibra al espacio total del fibrado toroidal

simpléctico.
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Un teorema de Khan [143] establece que la extensién existe si y solo si la clase
caracteristica es una clase de torsién en H?(Y, Zg). En el caso del ejemplo consi-
derado, concluimos que alli no existe dicha extensiéon ya que C(F) = n no es una
clase de torsién. Solo hay una, C'(E) = 0, la cual no es compatible con la restricciéon
topoldgica (3.27) de la supermembrana con cargas centrales. Localmente, tenemos
la interpretacién de la supermembrana en términos de mapas desde > hasta el tar-
get. Globalmente tenemos ahora una estructura geométrica mas interesante ya que el
hamiltoniano esta definido sobre un fibrado toroidal simpléctico no trivial con mono-

dromia.

Localmente, el target es un producto de My x T? pero globalmente no podemos
descomponer el target desde la base X puesto que 72 es la fibra en el fibrado toroidal
simpléctico no trivial 72 — ¥. La formulacién de la supermembrana en términos de
secciones del fibrado toroidal simpléctico con una monodromia es una bonita estruc-
tura geométrica para analizar aspectos globales de procesos de calibrado de teorias
efectivas provenientes de la teoria M. Notamos el caso particular en el cual la repre-

sentacion p es dada por la matriz:

M+N

0 1
(5.16)

-1 0

El subgrupo se reduce a Zy x Z,. Esta asociado a bajas energias a la supergravedad

calibrada eliptica. Este caso fue considerado en [3, 5, 147].
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CapiTuro 6

La Supermembrana como Origen

de Supergravedades tipo II en 9D

6.1. Introducciéon

El origen en teoria-M de las supergravedades calibradas es un problema abierto de
gran interés. En este capitulo se demuestra que la supermembrana en 11D compac-
tificada sobre un toro es el origen en teoria-M de todas las supergravedades en 9D:
no solo la asociada a la supergravedad maximal [25] sino ademas las que provienen
del sector calibrado (Ver [42, 43, 44, 45, 46, 47, 48, 49]). Se propone que hay dos
sectores bien diferenciados: El primero esta asociado a compactificaciones triviales de
la supermembrana sobre un 2-toro, con su limite a baja energia correspondiente a
la supergravedad maximal N = 2 en 9D, y globalmente asociado a la formulaciéon
de la supermembrana en un fibrado toroidal simpléctico trivial. El segundo sector
corresponde a la supermembrana formulada globalmente como un fibrado toroidal
simpléctico no-trivial. Esta condicién de no trivialidad puede estar asociada a una

monodromia no trivial o ain en el caso de una monodromia trivial (la identidad)
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debido a la existencia de una clase de cohomologia no-trivial en la variedad de ba-
se. Imponer la condicién de carga central sobre la supermembrana se corresponde
exactamente a imponer una condicién de cohomologia no-trivial sobre el fibrado. La
supermembrana con cargas centrales no triviales corresponde a este sector. A conti-
nuacién clasificaremos la teorfa de la supermembrana con cargas centrales de acuerdo
a las clases de fibrados toroidales con monodromia no trivial. Fisicamente, como recor-
daremos, la consecuencia de imponer esta condiciéon es muy importante. El espectro
del hamiltoniano de la supermembrana con carga central se convierte en un espectro
discreto con multiplicidad finita. Al hacer esta afirmacién, nos referimos al espectro

del hamiltoniano exacto, y no solo a su aproximacion semi-clasica.

Esta bien establecido que las ecuaciones de movimiento de la supergravedad en
11D surgen como una consecuencia de la invariancia bajo simetria kappa de la ac-
cién de la supermembrana formulada sobre un background general. Esto respalda la
conjetura de que la descripcién a baja energia de la teoria de la supermembrana es la
teoria de supergravedad en 11D. Mas especificamente, esta conjetura significa que el
estado fundamental de la supermembrana en 11D se corresponde al supermultiplete
asociado a la supergravedad en 11D. Una prueba rigurosa completa sobre este punto
aun no existe. Sin embargo, es natural esperar que sea la supermembrana compactifi-
cada en un toro la teoria asociada a todas las supergravedades en 9D, no solamente a
las maximales. Para ello es necesario considerar los dos sectores de la supermembrana
compactificada, tanto el que tiene carga central trivial como el de carga central no

trivial.

La dimensién maxima para supergravedades calibradas es 9D. Existen cuatro
clases diferentes de deformaciones que aparecen en la supergravedad calibrada I1B

en 9D, establecidas incialmente por [42, 43]. Si se incluyen ademds las deformaciones




Capitulo — 6. La Supermembrana como Origen de Supergravedades tipo Il en 9D 133

que provienen del sector de supergravedad de tipo ITA, hay cuatro deformaciones
mas, pero solamente siete de ellas son deformaciones independientes y constituyen las
supergravedades calibradas de tipo II en 9D [46]. En estas se incluye el calibrado de

las simetrias de escalamiento [47, 48].

El objetivo de este capitulo es caracterizar la supermembrana con cargas centra-
les en términos de los fibrados toroidales simplécticos con monodromia no-trivial en
SL(2,7Z) y su correspondencia a bajas energias con los calibrados de las supergrave-

dades tipo II en 9D. Estos resultados de fueron reportados en [15].

Esta descripcién global corresponde a una supermembrana calibrada en el sentido
del 'mecanismo de esculpido’ explicado en la seccion 2.3.2. Intentos preliminares para
establecer la relacién entre el calibrado de la supermembrana y las supergravedades

calibradas en 9D se consideraron en [60, 61].

De acuerdo a las clases inequivalentes de monodromias, nosotros encontramos una
clasificacion de los fibrados toroidales simplécticos que describen globalmente la su-
permembrana. La monodromia es la representacién del grupo fundamental IT; (%) en
SL(2,7Z), donde ¥ es la variedad de base de la supermembrana, y SL(2,7Z) es el gru-
po de isotopia de las clases homotdpicas de simplectomorfismos (simetria local de la
supermembrana en el CCL). El grupo SL(2,7Z) actia naturalmente sobre el primer
grupo de homologia de la fibra, lo cual en nuestro caso corresponde a un toro en el es-
pacio target. La monodromia define un automorfismo sobre las fibras, proporcionando
la estructura global de la configuracién geométrica. Recientemente, se ha encontrado
en [49] una manera mds general de calibrar en 9D expresada en el formalismo del
tensor embedding [100, 149]. En las supergravedades IIB en nueve dimensiones, hay
cuatro calibrados inequivalentes posibles de la simetria global GL(2,R), tres de ellos

estan asociados al calibrado de la simetria global SL(2,R), con las clases inequiva-
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lentes parabdlicas, elipticas e hiperbdlicas y se encuentran sus respectivos fibrados
toroidales simplécticos. El cuarto calibrado corresponde al calibrado de la simetria
trombén asociada a los escalamientos R™. A nivel cudntico, la realizacién de este tlti-
mo calibrado es mas complejo ya que el escalamiento no estd incluido en el subgrupo
aritmético GL(2,Z). En [62] se brinda un modo de realizar esta simetria antes de
calibrarla estudiando una realizacién de ella que se llamé simetria SL(2,7Z) activa.
Un modo de realizar esta simetria de escalamiento es mediante una representacion
no-lineal del grupo SL(2,7Z). A nivel de supergravedad, el calibrado de las simetrias
trombon produce supergravedades sin lagrangiano, debido al hecho que la simetria
trombdn es simetria de las ecuaciones de movimiento y no del lagrangiano. Mostramos
que esta ’simetria’ esta presente en la teoria de la supermembrana con cargas cen-
trales no-calibrada. Construimos el fibrado toroidal simpléctico asociado al calibrado
de esta simetria de escalamiento, el cual corresponde, desde el punto de vista de la
fibracién, a una cuarta clase inequivalente de fibras. Esto prueba el origen a partir de
la supermembrana de todas las supergravedades calibradas del tipo IIB en 9D. Las
monodromias de origen de tipo ITA son inferidas del hecho de que el hamiltoniano
es invariante bajo T-dualidad como veremos en el capitulo 7. En la seccién 6.2, mos-
tramos las clases inequivalentes de fibrados toroidales calibrados (en el sentido del
mecanismo de esculpido) asociados a las clases inequivalentes de monodromias. Es
importante puntualizar que para monodromias que incluyen las clases eliptica, pa-
rabodlica e hiperbodlica, hay elementos de torsién en el segundo grupo de cohomologia
de la variedad base con coeficientes enteros dados por la monodromia que brindan
una restriccién sobre los posibles valores de las cargas de la teorfa. En la seccién
6.3, se discute la construccién del fibrado para la supermembrana con la simetria
trombon calibrada. El efecto de la representacién no-lineal de la monodromia produ-

ce cambios en los coeficientes de homologia del toro de la fibra llevando a fibraciones
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inequivalentes.

6.2. Clasificacion del Fibrado Toroidal Simpléctico

En esta seccion vamos a clasificar todos los fibrados toroidales simplécticos compa-
tibles con la supermembrana con cargas centrales. Para ello, estableceremos primero

la nocion de fibrados equivalentes.

Dos representaciones conjugadas py UpU~!, con U € SL(2,Z), definen respecti-
vamente los médulos Z7 y leij,l con grupos de cohomologfa isomorfos H*(3, Z7) ~
H?(%, Z?] prl)- Ellos definen fibrados toroidales simplécticos equivalentes. Esta equi-
valencia la podemos ver estudiando los grupos de coinvariantes respectivos. Es decir,
consideramos el grupo de coinvariantes asociados a p y a UpU~!. Hay, entonces, un
isomorfismo entre el grupo de los coinvariantes asociados a p y los asociados a UpU ™!,
ellos definen los fibrados toroidales simplécticos equivalentes. Para clasificarlos, se de-
be determinar primero las clases de conjugacion de SL(2,7Z) y luego los coinvariantes
asociados. Una vez hecho esto, la correspondencia con las supergravedades calibradas

en nueve dimensiones se sigue directamente.

Cada clase de conjugacién de SL(2,7Z) puede ser representada por uno de los

siguientes coinvariantes:

Caso Eliptico : £S5, con Traza=0.

Caso Eliptico : #7715, +(T7'S)?, con |Traza|=1. 61)
6.1
Caso Parabdlico : £7",n € Z, con |Traza| = 2.

Caso Hiperbdlico : 2T ST™S ... T™S, r; < —-2,r0<—2,i=1,...,k, y |Traza| > 2.
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donde

0 1 11
S = y T = . (6.2)
-1 0 01

A continuacién se explican cada una de estas clases de conjugacion.

6.2.1. Clase de Conjugacién Eliptica

El caso de la clase de conjugacion eliptica estd asociado a matrices de SL(2,7Z)
con traza cero o uno. Las monodromias asociadas a la clase de conjugacién eliptica

son, por tanto:

pla, B) = (=1)**7,
pla, B) = (+(T718))*+7,
(6.3)
pla, B) = (£5)**7,
pla, B) = (+T715)**7,

los cuales definen subgrupos finitos isomorfos a Zs, Z3, Z4, Z, respectivamente. Como
se explica en [45], estos subgrupos estan asociados a su vez, respectivamente, a las
monodromias My, M3, My y Mg para una compactificacién con un twist SL(2, R).
Entonces, existe una relacion entre esta descripcion global con los twists asociados a
los calibrados elipticos correspondientes a las supergravedades calibradas elipticas tipo
IIB en 9D. Luego, la supermembrana globalmente descrita como fibrados toroidales
simplécticos que tienen las monodromias anteriormente presentadas (6.3) son el origen

en teoria M de estas supergravedades calibradas elipticas.

Las representaciones de las monodromias:

pla, ) = (=T718)*7 y  pla,f) = (~(T718)*)**7, (6.4)
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definen subgrupos isomorfos a Z3 y Zg respectivamente, sin embargo los grupos coin-
variantes asociados son el trivial y Zg, respectivamente. En términos de la represen-

tacién:
a+3
—2mn+1 2mn®>+n

Pmn(%ﬁ) = y (65)
-m 1+ mn

con m,n > 0 [143], [(T719)2]*"8 es conjugada a psi(a, ), S®*P es conjugada a

par(c, B) y [T715]*F a pyy (e, B).

Los fibrados toroidales simplécticos inequivalentes asociados a p.,(«, 5) son mn
y todos ellos corresponden a las clases de torsién en H?(B, Zg) = Z, ® Z,, equiva-
lentemente al grupo coinvariante Z, & Z,,. Es interesante que més alla de los casos
de grupos finitos (May, M3, My, M) asociados al caso eliptico, hay monodromias

definiendo subgrupos no-finitos asociados a un nimero finito de fibrados toroidales
a+f

-1 1
simplécticos. Por ejemplo, pyi(c, B) es conjugado a (—=T~1)*HF = , que
0 -1

genera un subgrupo no-finito, el nimero asociado de fibrados toroidales simplécticos
es finito, en concreto cuatro, y en este caso el grupo de coinvariantes es isomorfo a

Zy. Un ejemplo de grupo Zs X Zs es (5.16).

6.2.2. Clase de Conjugacién Parabdlica

Para la clase de conjugacién parabdlica |Traza| = 2, hay dos casos, el primero
estd asociado a las monodromias con traza positiva, generando infinito fibrados toroi-
dales simplécticos en correspondencia a Z, mientras que en el segundo caso, con traza
negativa, se genera un numero finito de fibrados toroidales simplécticos inequivalen-
tes. El grupo de coinvariantes es siempre Z4. En ambos casos, los subgrupos generados

por la representaciéon de monodromia son no finitos. Si mn > 4, Trazap,., (o, f) < —2,
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con pp, dado por (6.5). El caso parabdlico con torsién no habia sido analizado pre-

viamente en [46].

6.2.3. Clase de Conjugaciéon Hiperbdlica

Hay representaciones hiperbdlicas de SL(2,7Z). En este caso hay un niimero finito
de fibrados toroidales simplécticos inequivalentes generados por subgrupos no finitos.
En este caso, mn > 4, la matriz M = p,n(a, 8) (6.5) con oo+ 5 = 1 es conjugada, de
acuerdo a (6.3), a £77°ST™S ... TS, r; < =219 < 2, yi=1,... k. Esta clasifi-
cacién de monodromias hiperbélicas SL(2,7Z) generaliza la considerada en [108]. En
particular, obtenemos para n = 1,m > 5 que M es conjugado a —T3S(T~28)™5,
El grupo de coinvariantes asociados a la monodromia correspondiente es Z,,, m > 5.
Hay m fibrados toroidales simplécticos inequivalentes correspondientes a esta mono-
dromfia. El signo es muy importante. Por ejemplo, param = 5, ps1(a, 3) = (=T38)>+#
tiene un grupo coinvariante Z5 mientras que (+735)**# tiene un grupo coinvariante
trivial, con solo el elemento identidad. Este ultimo caso no esta contenido en (6.5),
puesto que corresponde a traza positiva, aunque es otro ejemplo valido de calibrado

hiperbdlico.

6.3. Simetrias Residuales de la Supermembrana

Calibrada

En esta seccion queremos caracterizar las simetrias globales residuales de la su-
permembrana una vez que la teoria se ha calibrado via el mecanismo de esculpido.

Sabemos que a nivel de las teorias de supergravedad el calibrado implica una ruptura
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de las simetrias globales de la teoria no calibrada a un subgrupo que genéricamente
viene dado por la monodromia. Para ello podemos ahora considerar la libertad de
calibre asociada al calibrado de los subgrupos abelianos de SL(2,Z). Esto correspon-
de a fibrados toroidales simplécticos equivalentes que surgen de las representaciones
conjugadas Up(a, B) U™, U € SL(2, 7). Podemos seleccionar U para dejar congela-
da la matriz de enrollamiento bajo la accion de la transformacion de monodromia.

La fijacién de calibre es como sigue: Se re-arregla la matriz de enrollamiento como

mq ll
W = , con detW = n. Bajo la simetria de la seccion 3, ésta transforma
my o
como:
S1 82 my
AT (6.6)
83 54 my o

La simetria SL(2,Z) asociada a la variedad base del fibrado ¥ puede ser inter-
pretada como la simetria que garantiza la independencia de eleccién de la base de
homologia de dicha variedad . De hecho, la matriz de enrollamiento esté asociada a
una base particular de homologia. Por lo tanto, ya que el cambio de la base de homo-
logia corresponde a una transformacién SL(2,7), la teoria solo deberia depender de
las clases de equivalencia construidas desde la aplicacion desde la izquierda por una
matriz SL(2,Z):

S1 S m; U 6.7)
S3 S mo s
Bajo esta transformacion, la matriz de enrollamiento puede ser siempre reducida a la

forma candnica:

A0
B A

con \jAy = n, la carga central definida en la seccién 2, y |5] < % En particular, si

A1 =n, Ay = 1 entonces |3 < 5. Notemos que ademds de la carga central entera n,
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hay grados de libertad adicionales representados por el entero .

Podemos ahora considerar la supermembrana formulada como un fibrado toroidal
simpléctico con monodromia Up(a, 8)U~!. La accién sobre la matriz de enrollamiento

estd dada por:
A1

B A

Podemos, ademds, actuar desde la izquierda por una matriz SL(2,7Z), la cual toma-

Up tUu™ (6.9)

remos de la forma V~!'p*V. Se puede tomar U y V ambas matrices SL(2,7Z) para
re-escribir la matriz de enrollamiento en forma tal que es invariante por la izquierda
bajo la accién de p* y p~L. Por ejemplo, si se toma la monodromia asociada a la

supermembrana con cargas centrales n como:

a+
a nby
p(Oé, 5) = S SL(2> Z)> (610)
c d
se puede tomar:
. a bl
pla, B)" = , (6.11)
nc d
y V, U tal que:
A0 10
1% U= . (6.12)
5 )\2 0 n
Luego,
. 1oy | 10
P (. B) Y (a,B) = . (6.13)
0 n 0 n
Se tiene entonces:
A0 A0
vV [T vprlut= | . (6.14)
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Esto es, la matriz de enrollamiento es dejada invariante bajo la monodromia
p(a, B) propuesta que consideramos una representacién abeliana asociada de SL(2,Z)
actuando sobre la homologia de la variedad base. Establecido el procedimiento de fi-
jacién de calibre que surge de las representaciones conjugadas Up(a, 8)U ™!, podemos
preguntar cual es la simetria residual de la supermembrana en el fibrado toroidal
simpléctico con monodromia Up(c, 3)U~L. Esta simetria residual debe dejar inva-
riante los elementos del grupo coinvariante asociado a la monodromia, es decir, debe
actuar como la identidad sobre dicho grupo de coinvariantes. En consecuencia, éste
es el mismo grupo abeliano que define a la monodromia. Esto es diferente al anélisis
realizado por Hull en [105] donde la simetria residual asociada a la teorfa de supergra-
vedad calibrada viene descrita por el subgrupo de simetria global que conmuta con el
grupo de simetria asociado a la monodromia, el cual no tiene que ser necesariamente
la identidad. Este 1ltimo caso a nivel de la supermembrana se corresponde con la
simetria residual de la teoria siempre y cuando consideremos un conjunto de fibrados
asociados a una monodromia dada y no un tnico fibrado. Cuando construimos las
supergravedades calibradas en 9D a partir de la teoria de la supermembrana compac-
tificada en el toro con la condicién de carga central, tomamos fibrados inequivalentes
(como fibrados) todos ellos con una monodromia dada, los cuales dan origen a bajas

energias a una misma clase de supergravedades calibradas.

6.4. Calibrando la Simetria Trombdén de la Super-

membrana

En esta seccién mostraremos que ademés hay una teoria de supermembrana con

cargas centrales formulada sobre un fibrado toroidal simpléctico con una monodromia
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que corresponde al calibrado de la simetria trombon introducido en el contexto de
supergravedad en la seccién (3.2.2), ver [62]. El primer paso serd considerar la super-
membrana formulada sobre un fibrado toroidal simpléctico con monodromia trivial (la
teorfa sin calibrar) y obtener la ley de transformacién bajo simetria de escalamiento

del operador de masa presentada en el capitulo 3.

Se seguird, en primer lugar, la aproximacién de [62] y se calculard el compensador
general en el contexto de la teoria de la supermembrana. El segundo paso, sera calibrar
la simetria trombon en teoria-M. La simetria trombdén a nivel de la supergravedad

escala el lagrangiano y las cargas KK sin variar el méduli de la teoria.

6.4.1. La Simetria Trombodn

A continuacién generalizamos explicitamente la ley de transformacion compensa-
dora bajo la simetria de escalamiento [62], para valores arbitrarios del méduli 7, y no

solo para el caso 7 = 1.

6.4.1.1. La Forma General de la Transformacién Compensadora

. , . p
Consideramos una reticula entera de cargas KK parametrizada por ) =

q
La interpretacion geométrica de () esta en términos de los elementos del grupo de

homologia H;(T?) de la fibra, el cual es un 2-toro. Bajo la transformaciéon de U-
dualidad (3.38), las cargas transforman como @ — AQ, con A € SL(2,7Z), donde la
transformacién correspondiente de los pardametros del méduli es como se presenté en

el capitulo 5. Estamos interesados en la transformacion mas general que mapea (Q; —

Q; : Q; = A;;Q;. Para un @); dado, definimos A; € SL(2,Z) : A;Qy = Q; donde
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1 . L 1k
Qo = . A; no es unica, su expresion mas general es A;g, donde g =

0 0 1
para cualquier entero k # 0,y g € H es el grupo de Borel de las matrices parabdlicas

SL(2,Z). Entonces, tenemos Aj; = Angi_l para cualquier g € H. Bajo composicion
se tiene que:

Para Aj; € SL(2,Z) actuando sobre (); hay una transformacién asociada de los
pardmetros de méduli. La férmula de la masa es invariante bajo una transforma-
cion general de este tipo. Consideramos las clases de equivalencia de matrices Aj;: dos
elementos de la clase difieren en un elemento g € H. Denotamos la clase Ku Ahora,

se puede introducir el compensador siguiendo [62].

El siguiente resultado es valido: para cada clase de equivalencia Kji existe una
matriz dnica H;; € GL(2,R), H;; = M;;A;; y un ntimero complejo tnico h;; € C tal

que:
. .. T T
1 1

Hj; depende solo de la clase de equivalencia, es independiente de g € H. En cambio,

el compensador Mj; depende explicitamente de g € H. La relacidn ii) es equivalente

a hacer la siguiente secuencia de transformaciones:

T /ﬁ) T J\gz T, (6.17)

donde 7 — T es la transformacion de Mobius asociada a Aj; € SL(2,Z). La expresién

general de la matriz Hj; es:

—Zut+ e B4 Ty — B
H.. = j J g 14] 7 (618)
— 4 4 Pi
u qi + Qiu
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con:

y— (P — pig;) C— det M. — p — 47| )\”:pj_Qj?
pi — @T]? ’ lpi — @it T opi— T

y T es el complejo conjugado de 7. Entonces, se sigue que el compensador M;; depende
explicitamente de g € H ya que Mj; = Hj,-Aj_il. Aunque Hj;; € GL(2,R), la transfor-
macion no lineal transforma cargas enteras (); en cargas enteras (); para satisfacer la

condicién de cuantizacién de carga.

Es directo mostrar que Hj; define una realizacién no-lineal del grupo SL(2,Z). De
hecho, si

Aoy — Ho, Asg — Hasg, A31 — Hay, (6-19)

entonces Hy Q)1 = @Qo, H32Qo = Q3 v por lo tanto, HysHy1(Q)1 = (3. De manera

analoga,

T T T
Hgo Hyy = AszA21 = A31 : (6.20)
1 1 1

La unicidad de la transformacién implica entonces que Hs; = HgspHoyi. Hj; realiza
una representacién no lineal de SL(2,7Z) y representa la simetria trombén en el nivel

cuantico.

6.4.1.2. La Transformacién del Operador de Masa bajo Simetria Tromboén

Determinada la ley de transformacion para las cargas KK y el méduli complejo 7,
podemos considerar la transformacién del otro moduli R, y la matriz de enrollamiento.
De (3.38) sabemos sus leyes de transformacién bajo Aj; € SL(2,Z), se puede entonces

determinar la accién compensadora sobre ellos. Se hara esto imponiendo la condicion
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de que el hamiltoniano permanezca invariante bajo su accion. La transformacion para

el moéduli complejo 7 puede ser re-escrito como:

A.. ’ l
Tii Ryt T

-
= — : (6.21)
1 1 1

T

donde lj; = et + d cuando A € SL(2,Z) mientras ‘h—iZ'Mﬂ € SL(2,R) y hj; se

define como en la seccion previa. El sector armoénico de la supermembrana puede ser

expresado como:

S1 So mq ll T
orR(dX!,dX?) . (6.22)
mo l2 1
|—1

Bajo la primera transformacién en la composicién (6.21), el factor |1;;|~" es cancelado

por la transformacion de R:

R R = Rl (6.23)
Debemos considerar:
. (6.24)
|Lji]

para compensar el factor |/;;| en la segunda transformacién en (6.21). Se tiene enton-

ces,
R— R —R. (6.25)

Finalmente, bajo Aj; la matriz de enrollamiento transforma como:

/

my m, 1
b A (6.26)

En consecuencia, la accion compensadora debe ser

by (e ) (6.27)
i i Jts ’
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de modo de tener un hamiltoniano invariante bajo esa acciéon. Notemos que el sector
armonico no es invariante pero su contribucién junto con la de su complejo conjugado
produce un hamiltoniano invariante. El término de enrollamiento en la férmula de
masa, ademds permanece invariante mientras los términos KK varian de acuerdo a:

\pi — @7 - ‘pj - qj7'|.

RImt RImt (6.28)

6.4.2. Calibrando la Simetria Trombdn

Finalmente, podemos considerar el calibrado de la simetria tromboén. El principal
punto en la construccién es la descripcién geométrica de las cargas KK (p,q) en
términos de los elementos del grupo de homologia H;(T?) de la fibra T?. Si denotamos
pla, B) € SL(2,7Z), el elemento de SL(2,7Z) asociado a («, 5) € m(X), su accién sobre
H,(T?) produce:

Qj = pla, B)Qi. (6.29)

De la seccién (6.3) se concluye que p(a, 8) = Aj; y que existe una representacién
asociada no-lineal realizada en términos de la matriz H;;. La monodromia estd cons-
truida con esta representacién no-lineal de SL(2,7Z). Nétese que el médulo Z|I1,(0)]
es el mismo que el que surge de la representacion lineal p, sin embargo su accién sobre
7, R y la matriz de enrollamiento es diferente ya que su transformacion esta hecha
en términos de las matrices Hj;. De este modo, se obtiene una estructura global di-
ferente para la supermembrana sobre este fibrado toroidal simpléctico. Siguiendo el
andlisis del capitulo 5, el hamiltoniano de la supermembrana esta bien definido sobre
este fibrado toroidal simpléctico. Notamos que las cargas (p, ¢q) en el término KK de
la férmula de la masa al cuadrado no tiene valores arbitrarios. De hecho, los valores

permitidos son aquellos determinados del médulo Zg. Para obtener la invariancia de
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la formula de la masa al cuadrado se puede considerar la suma sobre todos los va-
lores (p, q) permitida por el médulo Zg. Se llega a la familia de fibrados toroidales

simplécticos cuyas monodromias realizan el calibrado de la simetria trombon.

6.5. Conclusion

Hemos encontrado que la supermembrana con cargas centrales formulada en térmi-
nos de secciones del fibrado toroidal simpléctico con monodromia, es el modo natural
de entender el origen en teoria M de las teorias de supergravedad calibradas tipo I1B
en 9D. La descripcién global es una realizacion del mecanismo de esculpido encon-
trado en [14] y que estd asociado a las clases inequivalentes de fibrados toroidales
simplécticos con monodromias en SL(2,7Z). La supermembrana compactificada sobre
un 7" sin ninguna ninguna condicién topolégica extra, es una teoria de calibre sobre
un fibrado principal trivial con grupo de estructura el grupo simpléctico homotopico
a la identidad. La supermembrana con carga central no trivial es también invarian-
te bajo el grupo de isotopia de simplectomorfismos, que en el caso considerado es
SL(2,7Z). Se analizé la supermembrana calibrada que se genera del calibrado de los
subgrupos abelianos de este grupo SL(2,7Z) el cual tiene un significado intrinseco en
la teoria. El calibrado se realiza automéaticamente formulando la supermembrana con
cargas centrales como secciones de un fibrado toroidal simpléctico con monodromia.
El subgrupo abeliano de SL(2,7Z) actia naturalmente sobre la homologia del toro
target (la fibra del fibrado H;(7?)). Identificamos, en nuestra formulacién de la su-
permembrana, los elementos de H;(T?) con (p,q), cargas KK. Ademés, los niimeros
de enrollamiento estan directamente relacionados a la cohomologia de la variedad ba-
se Y. Para una monodromia dada hay una correspondencia uno a uno entre el fibrado

toroidal simpléctico con esa monodromia y los elementos del grupo de coinvariantes de
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la monodromia [143]. Esos elementos son clases equivalentes de las cargas KK (p, q),
las cuales describimos explicitamente para las monodromias elipticas, parabdlicas e
hiperbdlicas. Clasificamos los fibrados toroidales simplécticos en términos del grupo
de coinvariantes de la monodromia. Esto muestra que a nivel de la supermembra-
na lo que es relevante son los elementos del grupo de coinvariantes de un grupo de
monodromia dada. Los posibles valores de las cargas (p,q) sobre un fibrado toroi-
dal simpléctico con esa monodromia estan restringidos a la correspondiente clase de
equivalencia que define el elemento del grupo de coinvariantes asociados al fibrado.
Ademas, analizamos la presencia de elementos de torsién en la cohomologia de la
base de la variedad o de forma equivalente los grupos Z,, & Z,como grupo de coin-
variantes de la monodromia. Obtuvimos, usando el mismo escenario geométrico, el
calibrado de la simetria trombén. Esta se construyé de una representacién no lineal
de SL(2,7Z), dando origen a un fibrado toroidal simpléctico diferente en compara-
cion a las construcciones anteriores en términos de representaciones lineales. De esta
construccion de la supermembrana sobre un fibrado toroidal simpléctico, podemos
identificar directamente las supergravedades calibradas IIB en 9D correspondientes.
Por otro lado, una supergravedad calibrada dada solamente puede interactuar con la
supermembrana correspondiente sobre un fibrado toroidal simpléctico asociado a un
elemento coinvariante de la misma monodromia, porque en caso contrario ocurre una
inconsistencia con las funciones de transicion sobre el fibrado. Ademas, se obtienen
los grados de libertad de calibre explicitos de la teoria, y la simetria global residual

de la teoria para una monodromia dada.
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CapiTuro 7

T-Dualidad en la Supermembrana

con Cargas Centrales

En este capitulo mostramos que la T-dualidad es una simetria de la supermembra-
na con cargas centrales, resultado reportado en [16]. En teoria de cuerdas existen
diferentes transformaciones de dualidad que relacionan las distintas teorias de cuer-
das entre si, que muestran que son diferentes aproximaciones de una tnica teoria, la
teoria M. Asi, se tienen las dualidades S, T'y U. La dualidad S es una simetria bajo
la cual la constante de acoplamiento de una teoria cuantica cambia no-trivialmente,

ésta incluye el caso de la dualidad fuerte-débil [120, 127].

Por ejemplo, la teoria de cuerdas de tipo [IB es autodual bajo la simetria de
SL(2,7Z). Otros ejemplos de dualidad S son: la dualidad entre la ITA y la teorfa-M
(sobre un circulo), la dualidad Tipo I y la heterdtica SO(32), y la dualidad entre la Ejg
y la teorfa-M (sobre un intervalo). En el caso de teorfas de cuerdas compactificadas,
la transformaciones de dualidad S se refiere a aquellas dualidades que dejan el radio

invariante, y varian el acoplamiento global de la teoria.

Por su parte la T-dualidad en teoria de cuerdas se refiere a una simetria que deja

la constante de acoplamiento invariante a cualquier orden de perturbacién y varian el
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radio de compactificacion. En el nivel mas sencillo se presenta, por ejemplo en la teoria
de cuerdas ITA o IIB, compactificada sobre un circulo, o mas general, toroidalmente.
Para el caso del circulo es la dualidad R — o /R, que relaciona teorfas de cuerdas
compactificadas sobre un circulo pequeno con las compactificadas sobre uno grande
intercambiando a su vez los modos de enrollamiento y los modos de Kaluza-Klein.
En un sentido m4s general, incluye traslaciones! en el tensor antisimétrico y transfor-
maciones de coordenadas méds generales en el espacio-tiempo. La T-dualidad ha sido
generalizada a backgrounds arbitrarios y también se ha explorado la T-dualidad no

abeliana y T-dualidad fermionica, tépicos que no comentamos en esta tesis.

Finalmente, la U-dualidad [22, 151] en teoria de cuerdas se postula como la uni-
ficacién de dualidades, e incluye tanto la S-dualidad y T-dualidad, y adicionalmente

incluyen transformaciones que mezclan los radios y los acoplamientos.

Actualmente, la teoria de campo doble es un escenario interesante para tratar de
comprender algunas de las propiedades de dualidad de la teorfa de cuerdas. Esta es
una teoria efectiva que de forma global describe modelos sigma en donde se introducen
2d variables (d asociadas a las coordenadas —modos de enrollamiento— y d asociadas a
sus momentos respectivos —-modos de Kaluza-Klein—), sobre fibraciones toroidales 72¢,
mas un vinculo necesario para garantizar el nimero correcto de grados de libertad. Las
funciones de transicién entre las diferentes cartas de coordenadas del fibrado incluyen
no solo difeomorfismos y tranformaciones de calibre sino ademads transformaciones
de dualidad [53]. El grupo de T-dualidad, genéricamente es igual a O(d,d,Z). A
este tipo de compactificaciones se le conoce como T-variedades [54]. Ejemplos de
T-variedades generalizados pueden ser obtenidos construyendo fibraciones toroidales

sobre variedades de base con ciclos no-contraibles, por ejemplo el toro. La teoria de

ITraduccién de shifts.
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cuerdas puede ser definida consistentemente en estos backgrounds no-geométricos.
Tales backgrounds pueden obtenerse a partir de compactificaciones con twists a los
que se les hace porteriormente una tranformacion de dualidad [45] o bien si se actia

sobre backgrounds geométricos con flujos, y realizando luego una transformacién con

T-dualidad [53, 55].

En casos especiales, dichas compactificaciones con twists de dualidad corresponden
a compactificaciones en orbifolds asimétricos los cuales pueden generar backgrounds

de cuerdas consistentes [56, 59].

La realizacién de estas ideas en términos de la accion efectiva de cuerdas de tipo 11
ha sido obtenida recientemente en [152, 153|. Dicha accién efectiva propuesta es por
consiguiente invariante bajo transformaciones de dualidad. En 9D las transformacio-
nes de dualidad corresponden a la simetria SL(2,7Z) x Zy [107]. Algunos aspectos de
la T-dualidad en teorfa de cuerdas fueron analizados con anterioridad en [113, 154] y
mds recientemente por [54]. La relacién de la dualidad y teorfa M también fue analiza-
da en [112]. En [53] se argument6 que debe existir una formulacién fundamental de la
teoria de cuerda/teoria M en la cual las simetrias de dualidad sean manifiestas desde
el comienzo. Las simetrias de dualidad de la teoria M y la teoria de cuerdas deberian
ser simetrias geométricas discretas de este espacio generalizado. Con especial impor-
tancia, se argumenté que muchas supergravedades masivas o calibradas no pueden
ser embebidas naturalmente en la teoria de cuerdas sin este esquema [52, 55, 58]. Sin
embargo, a pesar de estos importantes avances, hasta donde sabemos, una realizacion
concreta de estas ideas en términos de teorias del volumen-mundo de la teoria M, atin
no se tiene, y es lo que hemos intentado resolver en esta tesis. Nuestro enfoque ha
sido partir directamente de un objeto bien definido en teoria M: la supermembrana

con cargas centrales compactificada en un toro. Hemos generalizado la nocién de T-
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dualidad a este objeto cuyo volumen del mundo es tridimensional. Hemos utilizado
la descripcion global de la supermembrana en términos de fibrados para asi obtener

las transformaciones globales y locales de T-dualidad.

7.1. Transformacion de T-dualidad

En esta seccion, introducimos las transformaciones de T-dualidad para la teoria de
la supermembrana. Esto va mas alla de la T-dualidad de la teoria de supercuerdas.
De hecho, ésta tltima puede ser obtenida directamente a partir de la teoria de la
membrana si se restringe la teoria a imponer que los campos dependan de una tnica
coordenada espacial [13]. En esta seccién generalizamos dichos resultados y obtenemos
la transformacién de T-dualidad asociada a la totalidad de los grados de libertad de la
supermembrana. Veremos que esta es una simetria de la teoria cuando ésta se formula
sobre un fibrado toroidal simpléctico dual (es decir, un fibrado toroidal simpléctico
definido bajo la transformacién de T-dualidad). Esta transformacién actia sobre el
moéduli asi como sobre los campos bosénicos y fermiénicos. Veremos que la T-dualidad
es una simetria natural de la teoria que fija la escala de energia de la tension de la
supermembrana 7. La transformacién de T-dualidad es una transformacion no-lineal
la cual intercambia los modos de enrollamiento W, - definidos previamente como
aquellos asociados a la cohomologia de la variedad de base-, con las cargas KK,
Q@ = (p, q) -asociadas a la homologia del toro del target- junto con la transformacién
del moduli real R — 1—1% y méduli complejo 7 — 7, ambos de un modo no trivial. En
lo que sigue todas las cantidades transformadas bajo T-dualidad estan denotadas con

una tilde, para diferenciarlas de otras simetrias anteriormente consideradas.

Dada una matriz de enrollamiento W y los modos KK, siempre existe una matriz
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’ ’

, l
de enrollamiento equivalente W = | 2 |, bajo la simetria SL(2,7Z) (3.37) v
mym,
p
para las cargas KK, que transforma a Q = , COMO:
q
ll
L] = A ", (7.1)
my q
a B
donde Ag = € SL(2,Z) con o = § (ver apéndice E). Esta es una relacién
v oo

intrinseca entre las clases de equivalencia de matrices de enrollamiento W y los modos
KK. De hecho, es preservada bajo una transformacién de U-dualidad que denotamos

mediante variables con gorrito, ver (3.22):

— —
my my —c d my
(7.2)
P P a b\ (p
— —
q q c d) \q
Por lo tanto
7 IR
owm (T (7.3)
my q
donde
a —b a b
—c d c d

La matriz M € SL(2,7Z) tiene términos en la diagonal iguales, dado que A tiene @ =
0. Para definir la transformacion de T-dualidad introducimos las siguientes variables

adimensionales (ec. 47) en [13]:

Z:=TAY ,Z:=TAY, (7.5)
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donde T es la tensién de la supermembrana, A = (27 R)?ImT es el drea del toro target

yY = f;ﬁ”;. Las variables con tilde AV, Y son las cantidades transformadas bajo la

T-dualidad. La transformacion de T-dualidad se introduce por:

at + 3

Tt (7.6)
Las cargas : é =M\ Q, W = Aglwl.

Elméduli: Z2Z=1, 7=

Notemos que las transformaciones de T-dualidad para la matriz de enrollamiento,
teniendo Ay términos iguales en la diagonal, se convierte en una matriz que tiene
la misma forma que (3.22). La expresién explicita para Ay esta en el apéndice E.
La principal diferencia es que Ay estd determinada en términos de los modos de
enrollamiento y los modos KK, definiendo una transformacién no-lineal sobre las
cargas de la supermembrana, mientras que (3.22) es una transformacion lineal sobre

ellos. Con la definicién anterior de la transformacién de T-dualidad se tiene:

[ [ I
— :1, 1—>1:p. (7.7)

!
my my my q

=

p

=N

q

Esto es, los modos KK son transformados en los modos de enrollamiento y vicever-
sa. Esta propiedad junto con la condiciéon Z =1, Z=1 asegura que (T-dualidad)? =
I, la principal caracteristica de la T-dualidad. Las transformaciones explicitas del

modulus real, obtenido de la transformacién de la T-dualidad es:

~ |yT + allgr — p|*/? . ar+p 2 TR3(Imt)?

i T23(Im7)Y3(2m)43R con T T+ « Y lgT — p|  (78)

Los modos de enrollamiento y la contribucion de las cargas KK en la formula de masa
al cuadrado transforma de la siguiente manera:
n2
Tn2A2 = ~_22’
V2
2

M= 9 979592
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Para ver cémo transforma bajo T-dualidad la cantidad [13, 118]

1 _
Masa® = T*((2n R)*nImr)? + = ((m? + (%) + T2, (7.10)
con el hamiltoniano H definido como:
T2
H = Hcer, — T_2/3/Z V WI{X£, X}, (7.11)

y X}, la parte arménica de X* dada por (3.39). Las reglas de transformacion para los
campos Son:
AX™ = udX™, dX =ue¥dX, A=ueA,
o _ (7.12)
v =420, 0=u*%.
Donde u = 22 = w, ¢ fue definido en (3.38) y dX = dX' + idX?. El dual de
dx, dX es:

dX = 2w R[( 7 + 1)dX" + (a7 + lp)dX?). (7.13)

La fase € se cancela con el hermitico conjugado (h.c.) de la transformacién del
hamiltoniano. La relaciéon entre el hamiltoniano a través de una transformacién T-

dual es

1~ ~ 1
M H =, (7.14)

Por lo tanto, obtenemos para el operador de masa expresado en las variables originales

y las variables duales la siguiente identidad:

2 2/3

2 1 T
M? = T2 A% + % LT = ZT(T— PR + (7.15)

2 y2
Entonces como veremos méas adelante, cuando Z = Z = 1, la expresién para M? es

invariante bajo las transformaciones antes mencionadas.
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7.2. 'T-Dualidad sobre Fibrados Simplécticos

En esta seccién vamos a definir la nociéon de fibrado simpléctico dual.

Dos representaciones conjugadas py UpU~!, con U € SL(2,7Z), define los médulos
72y Z} - con los grupos de cohomologia isomérficos H*(X, Z7) ~ H*(3, Z ;1)
Estos definen fibrados toroidales simplécticos equivalentes. Una manera equivalente
es considerar el grupo de coinvariantes asociadas a p y UpU~t. De hecho, el grupo

H?(%, Zg) es isomorfico, mediante la dualidad de Poincaré, al grupo de coinvariantes

asociados a p. Entonces, hay un isomorfismo entre el grupo de coinvariantes asociados

P
apyaUpU™! ellos definen fibrados equivalentes simplécticos. Dado Q = €

q
H\(T?), el grupo de coinvariantes de monodromia p es el grupo abeliano de clases de

equivalencia

{Q—AQ - O}, (7.16)

)

para cualquier A € p y cualquier Q = € H,(T?). De esto se sigue que esta clase
q
es transformada a la clase asociada a UQ bajo la representacién UpU~*:

{UQ - UAU'Q — O}, (7.17)

donde O = U @, pero cualquier Q€ H, (T?) puede ser expresado siempre como U 8)
para algin otro Q € H,(T?), ya que U es invertible. Entonces, hay un isomorfis-
mo entre el grupo de coinvariantes asociados a p y a UpU~!, ellos definen fibrados

toroidales simplécticos equivalentes.

Hay una relacién biyectiva entre los fibrados toroidales simplécticos con mono-

dromia p(c, B) y los elementos del grupo de cohomologia Hy (%, Z,) de la variedad
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de base X con coeficientes sobre el médulo Zg, y por lo tanto con los elementos del
grupo de coinvariantes asociado al grupo de monodromia GG. Es decir, cada clase de

equivalencia

{Q+90 - 0}, (7.18)

para cualquiera g € G'y Q € H,(T?), caracteriza un fibrado toroidal simpléctico. En
la formulacién de la supermembrana sobre esta estructura geométrica, Q estan iden-
tificadas con las cargas KK. La accién de G, el grupo de monodromia, deja invariante
a la clase de equivalencia. G acttia como la identidad sobre el grupo coinvariante.
Consideremos la transformacién de dualidad introducida antes. Esta intercambia los
modos de KK Q en componentes de la matriz de enrollamiento a través de la relacién

(7.1):

I
Y oa [T (7.19)

mi q

Bajo la transformacion de dualidad la clase de equivalencia transforma como:
{A0Q + (AoghAgH)AeQ — Ao Q}. (7.20)

Por lo tanto, para el fibrado dual ésto se cumple,

L (& L
o ) ey [ )= ) (7.21)

mq ma mq
Esto es, como un elemento del grupo coinvariante de AgGA;'. Entonces, conclui-
mos que la transformacién de dualidad, adicionalmente a la transformacién sobre el
méduli R, 7, también transforma la estructura geométrica sobre un fibrado toroidal
simpléctico con monodromia AgGA;'. Notamos que la transformacién depende cru-

cialmente de la clase de equivalencia original del grupo coinvariante. Asi, para un

fibrado toroidal simpléctico no-equivalente, la transformacion dual es realizada con
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una matriz SL(2,7Z) diferente, Ag. En consecuencia, esta transformaciéon dual entre
la supermembrana sobre fibrados toroidales simplécticos no puede ser vista a el nivel
de la teoria de supergravedad en la cual solo se distingue el grupo de monodromia
pero no a su estructura coinvariante. Es posible que esta informacion quede codificada
en los distintos tipos de soluciones que presentan un mismo tipo de supergravedad
calibrada, por ejemplo, las diferentes soluciones tipo domain wall? en 9D que llevan
a soluciones tipo (p, ¢q) 7-branas en 10D [131]. Un estudio detallado sobre ésto queda

para un futuro trabajo.

7.3. T-Dualidad como una Simetria

A continuacién se puede determinar la T-dualidad como una simetria natural para

la familia de supermembranas con cargas centrales. Tomamos:

~ lgT — p|

Z=Z=1=Ty= /. 7.22
0 R3(ImT)? (722)

Esto impone una relacién entre la escala de energia de la tension de la supermembrana
y el méduli de la fibra toroidal y la de su dual. De hecho, podemos pensar en dos
maneras diferentes: dados los valores del moduli y cargas Kaluza-Klein, éstos fijan la
tensién permitida Ty o la manera a la inversa, en la cual para una tension fija Ty,
el radio, el pardmetro de Teichmuller del 2-toro, y las cargas KK satisfacen (7.22).
Cuando esta T-dualidad extendida a teoria M actiia inicamente sobre los estados tipo
cuerda?® de la supermembrana con cargas centrales sobre un T2 (congelando los demaés

modos), se recuperan las relaciones de T-dualidad estdndar en teorfa de cuerdas [13].

2Sin traduccion.
3Estas son configuraciones fisicas de la supermembrana con cargas centrales en las cuales se

considera X™ = X™(7, 1 X' + 2 X2) y A" = A"(1, 1. X' + ¢2.X?2) donde ¢1, q1 son ntimeros enteros

primos relativos [13].




Capitulo — 7. T-Dualidad en la Supermembrana con Cargas Centrales 159

La restriccion de los estados tipo cuerda de la supermembrana con cargas centrales

sobre un toro dual T2 fue encontrada en [13].

En el nivel de la supergravedad la simetria de la variedad de base de la super-
membrana es invisible y ella aparece indirectamente como las componentes no nulas
de la 3-forma, la cual para la supermembrana en el CCL corresponde a C'_,., ver [84].
En el trabajo [155] sobre toros no-conmutativos, el anélisis estd hecho fundamental-
mente en espacio plano con un producto estrella de Moyal en el cual el parametro

no-conmutativo es constante y esta dado por la 2-forma.

Sin embargo como se expresé en [155], esta descripcién se puede generalizar a
variedades curvas, para las cuales el producto estrella (no conmutativo) se modifica
a una deformacion por cuantizacién a la Kontsevich [156] y entonces, es necesario
seleccionar adicionalmente una estructura de Poisson para caracterizar la teoria. En
nuestro caso se corresponde a un producto estrella tipo Fedosov [157], por lo que
podemos interpretar a C'_,.;, = F,; como la 2-forma no-degenerada asociada a la

condicién de carga central, entonces fz F.. =n.

La formulaciéon de la supermembrana en la presencia de la 3-forma no nula ha sido
analizada en [84]. En nuestra formulaciéon hay una particularidad ya que el campo
magnético sobre el volumen de mundo de la supermembrana inducido por la contri-
bucién de monopolo no es constante, en consecuencia pensamos que ésto debe estar
asociado a la existencia de una 4-forma de flujo no nula G = dC' en 11D. En teoria de
cuerdas la doble T-dualidad se puede ver como la existencia de una 3-forma no-nula
asociada a un 2-toro no-conmutativo que aparece debido a la presencia del campo no
nulo B;; en el sector de cuerda cerrado. Seria interesante ver si existe alguna conexién

con nuestros resultados.
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7.4. Conclusion

En este capitulo mostramos la existencia de una nueva simetria Z, que juega
el papel de T-dualidad en la teoria M intercambiando las cargas de enrollamiento
y las cargas KK pero dejando el hamiltoniano invariante. Localmente obtenemos la
realizacion de la transformacién de la T-dualidad a nivel de la supermembrana y
globalmente estudiamos cémo se transforman dichos fibrados simplécticos. Encontra-
mos que dicha transformacién de dualidad es en realidad una simetria de la teoria.
Por consiguiente, las monodromias cuyo origen estd en la teoria de supergravedad
ITA conjeturamos que se generan del fibrado toroidal simpléctico dual obtenido de
esta nueva simetria de T-dualidad. En consecuencia, esperamos que la formulacion
geométrica global de las supermembranas que proponemos dé un origen unificado de
todas las teorias de supergravedad calibradas del tipo II en 9D. Entonces, podemos
conjeturar que la supermembrana se convierte en el origen en teoria M de todas las

teorias de supergravedades del tipo II en nueve dimensiones.

Este resultado es relevante tambén desde el punto de vista de teoria M dado que
hemos conseguido realizar una formulacién invariante bajo dualidades en términos de
un objeto cudntico de la misma bien definido: la supermembrana con cargas centrales.
Esta es una caracteristica exigida a cualquier teoria que pretenda describir grados de

libertad microscopicos de la teoria M.
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CAPITULO &

Conclusiones

En esta tesis hemos obtenido en el calibre del cono de luz (CCL), la accién de la
supermembrana con cargas centrales no triviales sobre un 7-toro. En vista de las
propiedades espectrales de la supermembrana en 9D y 7D no compactas respecti-
vamente era natural hacer lo mismo para formulaciones de la teoria en 4D. A nivel
clasico se obtuvo que el hamiltoniano no contiene tampoco configuraciones tipo cuer-
da que puedan producir inestabilidades. Este resultado no era directo dado que la
generalizacion de la condicion de carga central es natural en dimensiones pares, y la
variedad de compactificacién es impar (7-toro), por lo que el andlisis se hizo en dos
pasos: primero compactificando en un 7% sobre el cual se imponen una condicién de

carga central generalizada y porteriormente en un S*.

A nivel cuantico haciendo el analisis supersimétrico de la teoria se ve que el ha-
miltoniano cudntico regularizado tiene espectro discreto con multiplicidad finita. Esto
prueba que la supermembrana con cargas centrales es un objeto bien definido a nivel
cuantico en 4D y por tanto describe (al menos) una parte de los grados de libertad

microscépicos de la Teoria M.

A nivel de simetrias la teorfa tiene una simetria global Sp(6,Z) x U(1) y una

simetria de calibre asociada al grupo de simplectomorfismos sobre el volumen del
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mundo de la supermembrana. Este grado de libertad esta asociado a la presencia
de monopolos sobre el volumen de mundo de la misma. Esos monopolos magnéticos
sugieren propiedades de quiralidad de manera similar a lo que ocurre en la descripciéon

de D-branas magnetizadas, aunque este punto necesita de un estudio mas profundo.

En principio se podria pensar que una compactificaciéon en un 7-toro careceria de
interés fenomenolégico. Sin embargo la imposicién de la condicion de cargas centrales
afecta a los mapas de la variedad base en el espacio target produciendo una ruptura
espontanea de la supersimetria a una teoria con N = 1. Los grados de libertad de la
teoria se preservan, ademas debido a la compactificacién y a la carga central, todos
los campos escalares adquieren masa. Luego, se hizo el andlisis con la variedad de
compactificacién restringiéndose al caso de un 7-toro isotropico. Para ello, se hizo
explicita la dependencia en el méduli geométrico del 7-toro, esto es, en términos de
los radios y éstos se consideraron iguales. Se encontrd que no hay direcciones planas.

Este es un resultado prometedor cara a un estudio realista de estabilizacién de méduli.

En resumen, la supermembrana con cargas centrales compactificada en un 7-toro
isotropico es un objeto cuantico bien definido que captura grados de libertad no
perturbativos de la teoria M, con N = 1 formulada en 4D y quiral con simetria de

calibre, realizando el grupo de simplectomorfismos.

Este un comienzo prometedor cara a obtener en un estudio a futuro una descrip-
cién fenomenolégica del modelo estandar en términos de la supermembrana. Puntos
abiertos es encontrar la formulacion lagrangiana de la supermembrana que contenga
al grupo de calibre del modelo estandar a bajas energias. Esfuerzos en esta direccion
posteriores a este trabajo fueron hechos en: [148] la formulacién no abeliana de la

supermembrana, [147] la formulacién de la supermembrana en una variedad G2.
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La segunda parte de esta tesis se centrd en encontrar la descripcién a bajas energias
del sector topoldgico de la supermembrana con cargas centrales dada por las teorias
de supergravedad en el caso mas sencillo, 9D. A este respecto se trabajo en dos di-
recciones diferentes. En un principio, se intenté obtener los (super) vinculos' en el
formalismo del superespacio usando el método de la simetria kappa explicado en la sec-
cién 2.3.1. La complejidad de ciertas expresiones para ir mas alla de la aproximacién
a primer orden, entre otras cosas, hizo que se abandonase esa linea de investigacion
por otra centrada en fibrados con especial énfasis en la relaciéon dada por los calibra-
dos y las monodromias asociadas a dichos fibrados. En particular se estudiaron las
simetrias globales de la supermembrana con cargas centrales, los grupos SL(2,7Z), y
se interpretan a la luz de los conceptos de fibrados y monodromias. Como ya se ha
dicho, estos conceptos son importantes porque ellos sirven de factor de clasificacion
de las teorias de supergravedad calibradas. Ya sabemos que localmente, tenemos la
interpretacion de la supermembrana en términos de mapas desde X hasta el target, el
cual es un producto de My x T?. En el desarrollo del capitulo 5, se mostré que global-
mente se puede describir nuestra teoria con una estructura geométrica mas compleja
e interesante. Como sabemos, la supermembrana compactificada sobre un 72 sin nin-
guna ninguna condicién topoldgica extra, es una teoria de calibre sobre un fibrado

principal trivial cuya fibra es el toro.

Para el caso de la supermembrana con cargas centrales se probd que el hamilto-
niano junto con los vinculos son invariantes bajo la accién de SL(2,Z), x SL(2,Z)r.
El grupo SL(2,Z)7 actta sobre el grupo de homologia H;(T?) de la fibra T?. Con
este resultado se pudo entonces formular la supermembrana con cargas centrales no
triviales en términos de secciones de fibrados toroidales simplécticos con una represen-

tacién p : m(X) — SL(2,7Z) induciendo un Z[m (3)]-mddulo en términos del grupo de

ITraduccién de superconstraints.
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homologfa de la fibra H;(T?). La representacién p es la monodromfa sobre el fibrado.

Entonces, el hamiltoniano de la supermembrana con cargas centrales no triviales
estd definido sobre un fibrado toroidal simpléctico no trivial, por lo tanto global-
mente, no podemos descomponer el target de la base . Un aspecto interesante de
esta estructura geométrica es la posible existencia de una extensién de la 2-forma

simpléctica sobre la fibra al espacio total del fibrado toroidal simpléctico.

En el capitulo 6 se demuestra que a través de esta nueva interpretacion geométrica
de la supermembrana con cargas centrales no triviales podemos conectar con las su-
pergravedades calibradas en 9D tipo IIB. Estas supergravedades son las que aparecen
al calibrar el grupo GL(2,R): la eliptica, parabdlica e hiperbélica y una supergrave-
dad calibrada de tipo trombon. La supermembrana con carga central no trivial es
también invariante bajo el grupo de isotopia de simplectomorfismos, que en el caso
considerado es SL(2,7Z). Se analiz6 la supermembrana calibrada asociada a las distin-
tas clases de monodromias dadas por los subgrupos abelianos del grupo SL(2,7Z). El
calibrado se realiza automaticamente formulando la supermembrana con cargas cen-
trales como secciones de un fibrado toroidal simpléctico con monodromia. Ademaés,
la monodromia se define intrinsecamente considerando representaciones de II; (),
el grupo fundamental de la variedad de base de Riemann de genus uno (X), sobre
ITy(G), el grupo de isotopia de los simplectomorfismos de la fibra G que en este ca-
so corresponden al grupo SL(2,7Z). Los simplectomorfismos en dos dimensiones son
equivalente a los difeomorfismos que preservan el area. Los subgrupos abelianos de
SL(2,7Z) acttian naturalmente sobre la homologia del toro target H;(7T?). La fibra
completa corresponde en este caso al espacio target, que en el caso considerado es
My x T? pero las propiedades topoldgicas no triviales estdn solo asociadas al sector

compacto. Identificamos, en nuestra formulacion de la supermembrana, los elementos
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de H,(T?) con (p,q), cargas KK. Ademads, los ntimeros de enrollamiento estan direc-
tamente relacionados a la cohomologia de la variedad base . Para una monodromia
dada hay una correspondencia uno a uno entre el fibrado toroidal simpléctico con esa
monodromia y los elementos del grupo de coinvariantes de la monodromia [143]. Los
elementos del grupo de coinvariantes clasifican las clases de fibrados inequivalentes.
Ellos estan asociados a las clases equivalentes de las cargas KK (p, ¢), las cuales des-
cribimos explicitamente para las monodromias elipticas, parabdlicas e hiperbdlicas.
Clasificamos los fibrados toroidales simplécticos en términos del grupo de coinvarian-
tes para una monodromia dada. Los posibles valores de las cargas (p,q) sobre un
fibrado toroidal simpléctico con una monodromia dada estan restringidos a los va-
lores dados por la correspondiente clase de equivalencia que define el elemento del
grupo de coinvariantes asociados al fibrado. Nosotros interpretamos que las distintas
clases de coinvariantes para una monodromia dada pueden etiquetar a bajas energias
las diferentes soluciones de supergravedad con esa monodromia. Pensamos que puede
ser interesante estudiar con mas profundidad esta relacion para un trabajo a futuro
y ver si los coinvariantes pueden ser de utilidad para encontrar nuevas soluciones de

supergravedad.

Ademas, analizamos la presencia de elementos de torsién en la cohomologia de
la variedad de base o de forma equivalente los grupos Z,, & Z, como grupo de coin-
variantes de la monodromia. Obtuvimos, usando el mismo escenario geométrico, el
calibrado de la simetria trombon. Esta se contruyo de una representacion no lineal de
SL(2,7Z),dando origen a un fibrado toroidal simpléctico inequivalente en comparacién
a las construcciones anteriores hechas en términos de representaciones lineales. De es-
ta construccién de la supermembrana sobre un fibrado toroidal simpléctico, podemos
identificar directamente las supergravedades calibradas en 9D correspondientes. Por

otro lado, una supergravedad calibrada dada, solamente puede interactuar con la su-
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permembrana correspondiente sobre un fibrado toroidal simpléctico asociado a un
elemento coinvariante de la misma monodromia, porque en caso contrario ocurre una
inconsistencia con las funciones de transicién sobre el fibrado. Ademas obtenemos los
grados de libertad de calibre explicitos de la teoria, y obtenemos la simetria residual
una vez que la monodromia ha sido fijada. Para un fibrado particular esta coincide

exactamente con el subgrupo dado por la monodromia.

Hemos mostrado explicitamente la relacion con las teorias de supergravedad ca-
libradas del tipo IIB en 9D. En el capitulo 7 mostramos la existencia de una nueva
simetria Zy que juega el papel de T-dualidad en la teoria M intercambiando las car-
gas de enrollamiento y las cargas KK pero dejando el hamiltoniano invariante. Esta
transformacién de T-dualidad es una simetria de la teoria que transforma supermem-
branas descritas por un fibrado toroidal en supermembranas formuladas en el fibrado
toroidal dual que esta en la misma clase de equivalencia. La transformacion de T-
dualidad de la cuerda cerrada en 9D entre el operador de masa ITA y IIB se obtiene
como un limite de la transformacién de T-dualidad para la supermembrana cuando
el toro degenera en un circulo y consideramos tnicamente las configuraciones de tipo

cuerda contenida en la supermembrana.

Por esta razén, pensamos que todas las monodromias asociadas a la teoria ITA
se generen del fibrado toroidal simpléctico dual obtenido de esta nueva simetria de
T-dualidad. En consecuencia, esperamos que la formulacion geométrica global de
las supermembranas que proponemos dé un origen unificado de todas las teorfas de
supergravedad calibradas del tipo II en 9D. Entonces, podemos conjeturar que la
supermembrana se convierte en el origen en teoria M de todas las teorias de super-
gravedades del tipo II en nueve dimensiones. Como se ha conjeturado en [14] se puede

afirmar que se verifica el diagrama 8.1: Esto es, se conjetura que la formulacion de
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"Esculpido’
M2 Compactificada(n = 0) en Xg x T2 M2 con cargas centrales (n # 0) en Xg x T2

Baja Energia Baja Energia

Supergravedad Maximal Tipoll 9D _ Nocther Supergravedades Calibradas Tipoll 9D

Figura 8.1: Relaciones entre la supermembrana con cargas centrales y la supergravedades tipo I1.

la supermembrana en términos de secciones del fibrado toroidal simpléctico con una
monodromia, es el modo natural de entender el origen en teoria M de las supergrave-
dades calibradas. La descripcion global es una realizacién del mecanismo de esculpido
encontrado en [14] y que estd asociado a las clases inequivalentes de fibrados toroidales

simplécticos con monodromias en SL(2,7Z).

Este estudio demuestra que considerar solamente la supermembrana compactifi-
cada sin cargas centrales es incompleto y es totalmente necesario incluir como parte
fundamental de la teoria M el sector de la supermembrana con cargas centrales atin

a nivel clasico.

Una vez vista la conexién con las supergravedad calibradas en 9D, una via posi-
ble de extender este estudio es ver si podemos utilizar la clasificacion en términos de
fibrados de las supermembranas con cargas centrales para obtener las posibles super-
gravedades calibradas en dimensiones de mayor interés como son 5D y 4D. Asimismo
el estudio y clasificacion de las clases de coinvariantes nos puede servir para prede-
cir, en principio soluciones nuevas de una teoria de supergravedad calibrada con una

monodromia dada.

Otra posible via a explorar es el origen de la supergravedad de Romans, hasta
ahora desconocido a nivel de teoria M. La idea seria explorar esta deformacién en

términos de esta descripcion global de la supermembrana con cargas centrales. Una
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dificultad es que la condiciéon de cargas centrales estd definida para dimensién no
compacta 9D, y en 10D habria que encontrar el equivalente a la condiciéon de carga
central sobre un circulo. El que ésta sea una deformacion masiva y no calibrada desde
este punto de vista es normal porque no hay campos de calibre que aparezcan via
compactificacién sobre un circulo. En la fenomenologia de cuerdas tipo II, el papel
de las M2-branas enrolladas sobre 2-ciclos homolégicos con torsién han sido usadas
recientemente como una realizacion de la M-teoria de las llamadas simetrias de calibre
discreta Zy. Estas simetrias pueden tener un potencial ntimero de cualidades desde el
punto de vista fenomenologico. Por ejemplo, que sean simetrias discretas que pueden
ayudar a realizar la estabilidad del protén o ayudar a eliminar algunos operadores
peligrosos. Se ha conjeturado que estas M2-branas a bajas energias podrian producir
particulas Aharonov-Bohm [150]. En nuestras construcciones muchos de los fibrados
M2-branas naturalmente son enrolladas sobre 2-ciclos homolégicos con torsion. Seria
interesante ver si en compactificaciones a 4D, podria ser una posible conexién con

nuestra construccion.

Es de particular interés el que se haya encontrado que la formulacién global de
la supermembrana con cargas centrales tiene como simetrias las transformaciones de
dualidad S y T, algo que esta predicho para teoria M y hasta ahora buscado en el
contexto de las acciones efectivas via la teoria de campo doble. Esto representa una
realizacién de esta propuesta directamente en teoria M, a partir de una teoria cons-

truida con un objeto cuantico bien definido: la supermembrana con cargas centrales.
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ApPENDICE A

Notacion y Convenciones

A.1. Notacion

A menos que se indique otra cosa, los indices de los campos en esta tesis significaran
lo siguiente: Los indices explicitos que aparecen en la acciéon son indices bosénicos
del espacio target. Asi que en nuestra convencién se escribiran los indices bosénicos
del espacio-tiempo como las letras del alfabeto latino a,b,c,... = 0, ..., 10, mientras
que los fermidnicos seran los del alfabeto griego «, 3, x,... = 1,...,32. Cuando los
indices tengan gorrito, (G, &) entonces estos seran del espacio-tangente, bosénicos y

fermionicos, respectivamente.

A.2. Superespacio

En esta seccion se describe el formalismo del superespacio [158] en el contexto de

la supergravedad. Las coordenadas del superespacio son designadas por:

ZM = (X™ ") (A1)
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donde X™ son las coordenadas bosénicas y 6#, las fermiénicas. La geometria del su-
perespacio queda establecida por el supervielbein, E4}, v el campo de la superconexién

de espin, Qﬁé. El supervielbein verifica
M B B
En el lenguaje de las formas, se tiene, respectivamente,

EA = dzME} (A.3)

A _ 3 MOA
QO =dz QMC" (A.4)

Esta ultima satisface la condicién de Lorentz:

0l = 20(r,)!, (A5)
yOL =0l =0
A partir de EM y 04 V¢ se define la supertorsién (en componentes) TEB, esto es:
TS, = (~)MEP EMER Dy ES — (-1)MD,Ef), (A.6)
0
Tihy = O En + OnEjy + (—1)"CHIERQA 1 (1t EGQA L (AT)

Se puede definir también, la supercurvatura, R ; ,“", de la manera siguiente:

R0 = (~1)MEBLER (9,080 — (—1)P79,08° + [Q1Q)7 — (=1)P Q20! g
(A.8)
Ademas de la estructura del grupo del espacio-tangente (el grupo de Lorentz) se puede

extender y definirse, ademés de R i BM’ las otras componentes de R iB o

N 1 0 N
RAEXS = ERAB (Fa{))%{,

R, =R " =0 (A.9)
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En el lenguaje de las formas, las super identidades de Bianchi, son:
DT+ = E°RZ, (A.10)
A _
DR¢, = 0. (A.11)

En componentes, estas identidades se escriben como:

D _op 7D ¢ D b _
Bige = 2Dl ey + 415500y + Blag ey =0, (A.12)
DiaRpey + 2T 55 Rpey =0, (A.13)

donde las derivadas covariantes, estan definidas por:

DLE} = OB} + Q. E}

Lo ~p>
DLES = 0,E% + 2, (T g
L D L D 4 Lab B p>

D4 = ELDy, (A.14)

(D4 D}y = —2T§;De+ Ry,
(X, Y} =XY — (-)*YX, (A.15)

(D4, D}, D} = 0. (A.16)

En la representacion en el formalismo del superespacio, la teoria de supergrave-
dad D = 11 tiene una super 3-forma de calibre, Cy;nz que define a una 4-forma

denominada intensidad de campo Fy;npp, verificando:

dC' = F, dF = 0. (A.17)
En componentes, se tiene:

Fyunep = 40 Chnipy- (A.18)
La 4-forma, F', se puede escribir en el espacio tangente usando los supervielbein, esto

es,

Fipep = (_)M(N+B+L+O+P+D)+N(L+O+P+f))+L(P+f))Ei\{’ EgEéEgFMNLP- (A.19)
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ArENDICE B

Supergravedad 11D

Por completitud, en este apéndice vamos a escribir la accion y simetrias de la super-

gravedad 11D [24, 25]. Seguimos la notacién para los indices definidas en (A.1).

La accién de la supergravedad 11D es:

w+w 1
\I] . anrsanT’S
3 )V 56¢ *

1 _
SOt = / dllx{—§eR(w) — 2e0,, ™D, (

1
2(12)48 112 T Fony mgmama Fmsmemrms Cmomigmay

1 - _ _ .
a %e(q’nrmlmzmgm“"l‘l’l + 12U ) (Foymgmgmy + Frnymamama) }

(B.1)

En esta accién se tienen tres campos fundamentales: Un tensor de segundo orden
simétrico, 11-bein, gravitén, e;,, (); un vector-espinor de Majorana, gravitino, W4, (),

y un potencial de calibre de tres indices completamente antisimétricos C, ().
Identificamos los objetos que aparecen en la accion:
e =det ez, diag(n,;) = (+,—, —,....,—), k= V8nG, (B.2)

donde k es la constante gravitacional, y 7,; es la métrica Minkowski del espacio-

tangente.
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Las matrices T, (Fd)%, obedecen

{1, 1%} = 25,5 (B.3)

Luego, '@+ est4 definido por:
[awan = plan | pan] (B.4)
donde los corchetes |...] indican la suma antisimetrizada de los indices sobre todas

las permutaciones. Los indices fermiénicos de las matrices (Fd)éé, son bajados por I'’:
(M)ag = (1) 45(T)5. (B.5)
La accién (B.1) tiene k = 1, con lo cual quedan definidas las siguientes cantidades

de la manera siguiente:

(1) El escalar de curvatura:

(2) El tensor de curvatura:

(3) El tensor de torsién:

l

T = 5[0, W = 20, 00, ] (B.8)

(4) La conexién de espin supercovariante:

1 - _ _
(,:)m,ag = wmfg(e) -+ §Z<\I/mrg\lff — \I!mF;\Ilg + \Ilgrm\lff), (Bg)
con
w. di) = —¢" da[men]l; + el den 3Em 68[l€n]é + e Bﬁ[men] d—l—
_ N _ N _ N 1-
+(0,,, T, 0 + U1, 0% — 0, T90;) — ~F, T, " P, (B.10)

2
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(5) La derivada covariante:
1 ab
Dy (w)¥,, = 0,V,, + Ewn&BF U,,. (B.11)
(6) El campo supercovariante:
Frstl = Frsu — 3\Il[rrst\lll]7 (B12)
con la intensidad del campo F"
Frsu = 48[7’Cstl}- (Bl?))
La accién (B.1) es invariante bajo las siguientes transformaciones:
(1) Transformaciones supersimétricas:
Ses€l = 28T,
588\11771 - Dm(@)g + T%Stugprstua
585Aklm = _65F[kl\11m}a (B14)
donde
1
Trstu = __ Frstu _ 86[r1—\stu} ) B.15
(2) Transformaciones de coordenadas generales:
5g€0 = E"0pel + Opel.
5,08 = €m0, W8 + 0,," V2,
5gAmnl = gpapAmnl + 38[m€kA\k|nl]
5900311; = fnﬁnwfju; + O nwzlg. (B.16)

(3) Transformaciones de Calibre:

5chnl = 38[m£nl} .

(B.17)
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(4) Transformaciones Locales de Lorentz:

a _ ya,a
di€m, = Afen,-

& 1 ab\a 3
oy, = {1)‘@8@ b)g} \1’51
51%%; = 8m)\§” + Agwfng — wfnckg (B.18)

El algebra completa de estas transformaciones son:
[01, 2] = 04(&3) + Iss(€3) + 01 (A3) + 0c(Eamn ), (B.19)

0 = 0g(&) + 0ss(€) + 01(A) + 0c(&mn), (B.20)

donde,

£ = E0D,ET + 1™y — (1 4 2),

1 i
ZAdgrabaEl — (1 2),

§3mn - _ngkglAkmn - 8721—‘777,n51 - gfak€2mn - 2€f8[m€2n}k - (]- e 2)

€3 = —ggfmaEl\I/n — g?anfg +

. ~ . F, 1 . A A
N = —5,1"eyw, — PO + AN + ——2, [rg’“st“Frstu + 24FTSFI;“’"8] e — (145 2).

144
(B.21)
Las ecuaciones de movimiento a partir de 0L = 0 [24] son:
%D, W, = 0,
7. frtalz 1 sapgenss £ 7
Dth ! + (24)25 Pq yFmﬁﬁqF@wig = 0. (B22)

donde la cantidad D indica superderivada covariante.

Las identidades de Bianchi para las tres intensidades de campo supercovariantes
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SO1:

Ao 1 A 1 - P AmAp
B} g = 5B = 5 iy (Faiog)” = 8F ™ g,

DD Wiy + Ty "™ DV iy = 0,

Rimagg = 0,

DiyEnipa = 0. (B.23)
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Arinpice C

Calculo de Supervinculos Usando

Simetria Kappa

En este apéndice vamos a reportar los resultados preliminares obtenidos cuando se
aplica el método basado en la simetria kappa para determinar la supergravedad ca-
librada asociada a la supermembrana con cargas centrales. Este método se basa en
el conocimiento que se tiene que la supergravedad consistente acoplada a esta super-
membrana D = 11 es la tUnica supergravedad D = 11. Esto se determina cuando
al exigir que la accién (1.29) sea invariante kappa, se consiguen restricciones sobre
la super-3-forma By n(x,0) y la supertorsion TgB(x, 0). Este procedimiento es rea-
lizado por [41] para el caso general. En nuestro caso tenemos una accién que tiene
una expresién explicita en términos de las supercoordenadas del superespacio. Por
esta razén una posibilidad a seguir es verificar a cada orden en 6 si realmente hay
invariancia bajo la simetria kappa y cudles son los vinculos sobre la geometria del
superespacio. En el caso de la supermembrana D = 11 o enrollada sobre un 772 el
resultado deberfa ser una extensién del encontrado por [41]. Sin embargo, a nuestra

teoria, la extensién no es directa.
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C.1. Supermembrana y Supergravedad D = 11. Su-

perespacio Plano a Primer Orden en (6, 0;0)

En esta seccion se explica el método a aplicar usando el ejemplo de la supermem-
brana D = 11 en el superespacio plano a primer orden en 6 para verificar el resultado

ya conocido para el caso espacio-tiempo de Minkowski.

Para el superespacio plano se tienen las expresiones (1.31) y (1.32) para Ejé[ y
Cnp respectivamente. Si consideramos la aproximacion O(62, 0,62, ), estas expresio-

nes quedan:

B (r,0)=0%, E%=0, E*=—-(01%, E*=04°,
Crmp = 0+ (0%, Crina = 0T 1) a + (02),  Chuas = 0+ (%),

Copy = 0+ (6%). (C.1)
Con estas expresiones la ecuacién (1.33) resulta:
1 ...-
Sp = /d3§{—\/—g - §alfkermnak9 X" X"} + O(6°,(0:0)°). (C.2)

A continuacién se hace 9,5y = 0 considerando la transformacién kappa (1.23) en su

version en componentes a primer orden en 6, esto es:

SX™ = (1-T)R[™O 4+ O(0*) = &_T™0 + O(6?),

60 = (1 =T)r +00™(1 — )k + O(6?) = k_ + O(6?), (C.3)

donde se toma también la aproximacién O(62, (9;0)?) y adicionalmente O(9;%, ¥ = 0).

Con k el parametro fermiénico de la transformacién kappa.
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Entonces, se hace 6,.Sy = 0 obteniéndose:

0:S = /d?’f{_(f?&_ F)[(+1)5ijkaiX68jXBFab]8k9+

+ %(R_ T)el%9, X0, X Tl + O(62, (9 6)°, 0i7)} = 0, (C.4)

Expresion que puede probarse se verifica al usar ¢“g;; = 0! = +1, k.I' = —k_.
La segunda parte del método consiste en hacer:

: (C.5)

| S
008 = [ d¢[~6(v/=g) + =0(c " ELEPES By 4
/ {[—0(v—g) + 6 (V"B Ej By Bep,)) 0(62,(:6)2,0; 7, W=0)

para luego comparar con (C.4). Luego de hacer explicitamente (C.5) e imponer la

aproximacién O(6?, (82-9)2, 0;k, U = 0), en la que estamos trabajando, se obtiene:
(SHS _ /d3£ |: /_gglj{aZX&ané —+ 82X&§F68]0 + aJXéH_F‘iaZH}éHEBTSBU&B-l—
+ /79978, BP0, X 0,07 it
1 i a b é 3 (p

+ 530X O, X 0 XV BT (0T y,)5 +

_ gk, Bp [&X&@]-Xi)ak@ﬁ]ng(é I e

— 35’7’“[0,-9&0jXBakXd]5nEBT§3(éraé)d+

+ Eijkaieéanl;akXéaﬁ{(Q_Féi))&} — 0’ (C6)
donde 6, E° = K5 Entonces, si se comparan (C.6) y (C.4) se obtiene:

b A _ -
Th =0, T =0, T);,=0. (C.7)

El resultado (C.7) conduce a:

5,5 = / dE[+v/=99"7 0, BP0, X 0,07 T 11,4+

+0,6%0; X 0, X6, (BT )a}] = 0, (C8)
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donde ya sabemos que
Bina = (0T mn)a + O(0%), 6B = 6:(0 Tn)a + O(67). (C.9)
Al comparar (C.8) con (C.4), se tiene:
TP, o ()55 OuBuna o Bl (C.10)

Estos resultados (C.7) y (C.10) es el que podria esperarse de acuerdo al resultado

general en [41].

C.2. Supermembrana en My x 7% a Primer Orden

en (6,0,0)

A continuacién consideraremos un enrollamiento de las coordenadas del target en
un 72, e intentaremos hacer el mismo procedimiento descrito en la seccién C.1 de este
apéndice. Se supone que el espacio-tiempo se podra considerar como Mgy xT?. Para ello
partiendo de (C.2) se hace una descomposicién en las coordenadas X™ = (X™ X")
donde m’ = 0,---,8 y r = 9,10 corresponden a las no-compactas y compactas

respectivamente. Entonces, la accion se puede escribir como:

S = /d3§{_ vV —3g + Sno—compacta + Scompacta + Smixta}7 (Cll)

con
S = _Lokgr, 000X 9, X"
no—compacta — _55 m/n'Vk () 7 )
1 ...
Scompacta = —§€Z]k9T5r8k9 &XSGJ-XT’,

1 .= /
Smixta = _525”kerm’sak9 asz anS‘ (012)
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A continuacion se hace 0,5, esto es, 0, no—compactas OxScompactas OxOmixta Y 0/ =g, ¥

seguimos el mismo procedimiento de antes. Se obtiene
5/@SM9><T2 = /d?’ﬁ{—Qv —ggij [&-X&'R_ F@@jﬁ + 8¢X7A1I_i_ Ff8]9]+
1 1 ’ ’ 1 -
— §€ijl_€_rm/n/ak¢9 82Xm 8JX" — iawkﬁ_ﬂsakﬁ 8in8sz+
| ,

— 5252JkR_Fm/88k9 X", X+ O(0%, (0x0)?, 0ik) 1, (C.13)
donde hemos supuesto las transformaciones bajo simetria kappa en la aproximacion
considerada para nuestros calculos:

OX™ = (1-D)RI™O+ 0(0%) = k_T™0 + 0(6%),

X" = (1 =T)RI"0 4+ O(6?) = R_T"0 4+ O(6?),

60 = (1 —T)x +00™(1 — )k + O(6?) = k_ + O(6?). (C.14)
Se puede verificar que efectivamente (C.13) se anula. Este cdlculo no lo mostrare-
mos aqui pero era un resultado esperado. A continuacién hacemos J, de la accién
en su forma supercovariante, pero esta vez hay que introducir el hecho que hay dos
coordenadas compactificadas. Se hace la descomposicion usando la siguiente nota-
cién: las coordenadas primadas corresponden a las coordenadas no compactificadas,
y las coordenadas cos asteriscos las coordenadas compactificadas (todos indices del
superespacio):

5I€SM9><T2 = _/d?’ga(\/ _g)+
1 : Al R/ ol : A’ >/ A

- / d?’fééﬁ[e”kEzA EP E{ Bevgoa + 36" EN EV B Bey g i+

+ 3¢ EN BP B B poa + € B EP BC Bopal). (C.15)
Esta expresion puede re-escribirse:

OuSutgers = [ E0S, 5+ DS, + 005,40+

5"{ SBC’*B*A’

+ 0,58

CxBxAx }7

(C.16)




Capitulo — C.  Célculo de Supervinculos Usando Simetria Kappa 183

donde:

1 ijo 3 12Crpb
0xS=5 = 5V =997 2E] 0. BV EF T gy, (C.17)

Se ha supuesto que la parte no-compacta cumple las condiciones de superespacio

plano. Luego,

1 . ~1 77 ~ DY ~ - 3
8Senp i = —635”’@3 EY[—-26E’EY Tg,ﬁ - 25EPE,?*Tg*ﬁ]BXB,a,+

— NEY B 26 EPEL' TS, — 20E° EP* TS, 1B+

D'p
]_ . ~ 7 Py
1 - Al % A R/ )/ A » Y/ A
0SB, 1y = —695”’@;‘ EP[0x(0E“) = SEP BTG, — 0B B T s |Beyprart

]_ .. Al Y % > A > > A
— 9 EN EP [—6EY B TS s, — OB E* TS, |Ba,gart

6 DB’ DxBx
]_ - . Al P/ A
— 635“’%;‘ EP E{*6Be, gy (C.19)
1 .. Al > A~ S/ ~/ A D ~/ A
0SB, 40 = —695”’ij‘ EP*0,(6EC*) — SEP EPTS, — 0EP*EY TS 1B it
1 . A/ > A/ = ~ > = A
— 695-:”’*@;4 EP[-6EP ED* TS, — SEP*EX* TS, 1Be, gt
| T VP
— 635“’%;‘ EP*E*0Beypir), (C.20)
1 iy A > A R/ Y A > Y A
0SB, , . = —6(35”]“E;4*Ef* [O(6E“*) — 6EP E} Tg,*é, — SEP*ED Tg,}*]Bé* Bedet

— 3B B 0BT BTy, — 0BT BT |Bo.paant

1 .., o+ A
— égw’fE;‘*EjB*E,f*aBé*é* e (C.21)

Cuando se compara (C.13) con las expresiones (C.17), (C.18), (C.19), (C.20) y
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(C.21), se obtiene:

é, 5\ 5\ 1e% é/
Tgﬁ = 0, Tgﬁ = O, Tcz’f) = O’ TS,; = O’ Td’f) — 0’
Po= r = P — T 8/ B/ R
TJ/B =0, TCZ*E =0, TJ*B =0, T(]B =0, Tﬁﬁ X (F )f)ﬁ’
T35 o (F)55: (C.22)
6Bf’lj& = 07 5B7:(jd’ = 07 Béi)’d’ = 0, 6Bf’i)’d’ = 07

0Bgya =0, Bigg=0, Biga =0, 0B =0,

Wa

ng =0 By =0; 0Bis, = (R-T'1s)w,

0B,ya o & Lps. (C.23)

C.3. Supermembrana con Condicién de Carga Cen-

tral a Primer Orden en (6, 0;0)

A continuacién se aplica el mismo procedimiento, pero ahora se impone la condi-

cién de carga central,

XS(SZ) = XS(O'LQ) —I—AVT(T, 0'172), (024)

imponiendo que las transformaciones kappa quedan:

5. X" =0,  §,A" =Rk["0, (C.25)

obteniéndose los resultados parciales en la aproximacién O(62, (9;0)*, 0;r, ¥ = 0),:

& _ ey . 5 __ (T8 . 5 oo oo

5 H A P X
Té’é_o’ TSB#O, TSB_(]’ Tfé—O, TCZ'E_O’

e A A & &
Téﬁ - 07 Té[) - 07 TCZ//; - 07 TS;} - 0, TCZ’/B = 0, (C26>
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Bf,éq = 0, 6Bf,jd X 6§qu, Bf’ljd’ = 07 ,

OByirar = 0. (C.27)

xb'al
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ApENDICE D

Hamiltoniano Supermembrana con

Cargas Centrales 4D

El hamiltoniano bosénico de Bellorin-Restuccia en [38] describe una supermembrana

en un M; x T*
1 2 1 2 r2 2 ab m
H = - [ dovw |— (Pm + P ) — — P, "0, XA | +
2 w w
1 2 [ 2 ab ra A
+§ dovw | ——P,e"0,A"O,A | +
w

1 1 -~ - .
+§/d20\/ﬁ —F? —i—gmémnDTXmDsX"} +

2 rSs
1 2 1 m n\ 2 2

—1—5 d*ov/w i{X X"+ 0, (D.1)

con el vinculo,
/ FdX" A dX®* =0, (D.2)

y donde
. oL oL o OH om  OH B 9
P = A P, = S A" = 5P = Spm’ H—/Ud oH,

(D.3)

Eab

N

Frs :DrAs_DsAr+{Ar7As}a Dr :Dr+{Ar7 }7 Dr = aa)/(:raba (D4)
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con el corchete:
{¢,x} = w"D,pDgx. (D.5)

En lo que sigue describiremos a la supermembrana en un Ms x T con el hamiltoniano

de Bellorin-Restuccia con los indices m =1,2,3,+,—. yr =4,5,6,7,8,9.

D.1. Accién S en M; x T°

Calculando explicitamente (D.3), se tiene:

. pm 1 . P 1
Xy = —=— —c%9, XA, A" =
ViV b ViV

Sustituyendo (D.6) y la expresion para H de (D.1) en:

%9, A" O\ (D.6)

S = / o [Pme + P.A" - H] = / oL (D.7)
\% \%
Para obtener:
1 - - -
Shsxrs = / d*ov/w { (P2 +P"2)} / d*ov/w [—5F35—g”5mnDTXmDSX" +
1
+5 /d%—ﬁ {—5 {X™ X™* — n2] : (D.8)

D.2. Accién S, 76 compactificada en S

Se considera la siguiente descomposicion en los indices m:
X = (X" g) = (X 0). (D.9)

A continuacién se reescribe la accién (D.8) en términos de estas nuevas variables.
Para ello, P,,P™, con
= VX, + P9, X"O,A, (D.10)
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se reescribe:

PpP™ = Py P™ + PyP? = P P™ + [Vwdoo + vw {¢, A}] [Vwded + vw {6, A}]

(D.11)
donde se ha definido
Eab

A} = —0,00,A\, D.12
{¢7 } \/@ ¢ b ( )

! / 2 ! 2 / 2
(X™ X"} = {Xm X" } n {Xm ,¢} n {¢,X" } . (D.13)
La accién con la descomposicion de los indices propuesta S’ = Sy,xrexst, se

escribe:

1 1 / 1~ ~ ’ ~ /
S/:/d?)o_g\/a{a (Pm2+Pr2)_§ng_gr55m/n/DerDan}+

[P - - e}

+ / d30§\/E {—gTSDrgz)Dsqs — 0o D, X Doy — "0 Dy p DX } . (D.14)

g
Pero,

gr’s(sm/(bDer’Dsgb + gr86¢n/DT¢Danl = gsrén/¢DSXn/DT¢ -+ gr86¢n/DT¢Danl =

= 29" 04w DD X" (D.15)

Finalmente, la acciéon S’ se puede escribir como S” = Sy «rex st = Sp+ S1, donde:

S = / dSUl\/E[l(Pm?_‘_P?Q) _ 1#2 _gT85 , /D Xm’D Xn’ - 1 {Xm’ Xn’}2 _n2]
0 . 9 w 9 s m/n' r s 9 y y
(D.16)
1 2 L o
S, = / do v/ uwl(06 + {6, A})° - {qb, X" } — ¢ D, Dy — 2976, D, X™ D).
>
(D.17)
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D.3. Hamiltoniano Dual H); 76,1

En esta seccién se construye el hamiltoniano dual en 4D. Cada paso relevante en

dicha construccion se trabajara como una subseccion.

D.3.1. Caélculo de la Accién Dual S

Se define S de la siguiente manera:

donde
L= 0,0 — Ly = 0y, L, = 0,0. (D.19)
Entonces,
~ y 1 .
S=9— / d}oe*0; Ay Ly = S — 3 / 3o L Fyy.. (D.20)

Se escribe la accién S explicitamente en términos de Ly y L;. La parte de S que
depende de ¢ es (D.17). Asi que analizamos cada término de S;:

ab

8 £
{o.A} = NG DapOp\ = \/EL WO,
o Eab o gab o
Dy¢Dyp = 0XL+€ab0A AL
(s S - b \/@ a 7” \/— \/@ c{islid |
N _ o Eab . Eab
DT¢D8X - {ﬁaaXrLb ‘l‘ \/Ea A Lb:| X (D21)
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Sustituyendo en (D.17) y haciendo la sustitucién A, = X, + A,., para simplificar la

notacién, tenemos que S puede escribirse como:

S =5+
P il + LA — [ L0, X — g0, Ay L] [ AL} +
9 0 \/@ aYb \/@ aYb g \/@ avAriip \/@ c/tstid
1 rs gab ~ n!
+/d305\/ﬁ{—2g 5¢n/[ﬁ0aArLb]DsX }. (D.22)
Luego, S tiene la expresion:
S=5 +
+/d3alﬁ{[L + E—GbL OpA]? — [g—abL HX"2— g = 5—Cda A0 ALy Lg+
9 Oﬁab \/@ab g\/@\/@arcsbd
g ~ 1
—2g"35¢n/ﬁ8aATDsX” Ly} + 3 / o (e LoFy — 26 Lo Fyy). (D.23)

D.3.2. Variacién de S con respecto a Ly y L,

Se hace la variacién de (D.20) como se muestra a continuacién:

55 =08 — / dPoe* 0, Ao L; =

08 08 1 . )
= a—[/OéLO -+ a—[/a(sLa -+ 5 /d30- (5 b(sLOFab o 26 b(SLaFOb) . (D24)

Explicitamente, la variacién con respecto a Lg:

1
/ o {\/wLo + e L Oy + §E“bFab} 6Ly =0, (D.25)
implica
1 1
Lo = NG [—aabLaabA — §5abFab] : (D.26)

Luego, variando (D.20) con respecto a L.,

95, ]

oL, 3 / dPo (—2e°6 L Fy,) =0, (D.27)
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y usando la expresién para (D.22) y (D.26), se tiene:

1 1 2 /
05 = d3a—\/w ——é’:‘abé’:‘edFabﬁdA — —Eab€6d85Xn 8anfLa—|— <D28)
oL, 2 w w
— —g" e avrYc sL —2g"% n' — —Ua rDan ) D.2
=g e 0 A O ALy gd,ﬁ&A } (D.29)

para obtener:

11 1 /
d3 -~ _ab edFa A - — ab _ec Xn an’La
/ a{ 2\/@6 e Fop04 \/@g 0} 19) +

1 - /
—ﬁgmabaaceabArﬁcAsLa "0 0 A, DX — 56bF0b} §L.=0.  (D.30)

D.3.3. Calculo de L,

De (D.30) se obtiene:

1 Eabged Eabgec
S Y, W
2 Jw Jw

(0.X7 0 X, + 70 A00A,| L +
— G 0y, A, D X — ey, = 0. (D.31)
Se hacen las siguientes definiciones,
BX" 0. X = Ve, GO0 Ar0eAs = Boe Vbe + Bre = The- (D.32)

Entonces, (D.31) queda:

——1 —“b edF Oq\ — —“b ecT L,— g% 0, A, D, X" — Fy =0 (D 33)
a clia g O¢pn’€ avirdt/s € 0b . .
2 A/ W bed v/ w b

Se despeja L,, usando que %Y, = TY%,

= 1 gfbeed
<gT85¢n,6f68fArDan + g€ F()b + §WFfb8dA) . <D34)

Simplificando la expresién de (D.23) con ayuda de Lo y L,, se obtiene:

Tae

La==vuw=-

I 11 1
SuyxToxst = So + /d30' {__—€ab€6fFefFab + m

ryer,r.b . (D
S Vi } (D-35)
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con Sy determinado por (D.16). Por lo tanto el lagrangiano es:
1 ~ ~ /-~ /
LtyxToxs1 = —\/7[ (P™2+ P — §Fr2s — "0 D, X™ DX ]+

1 11 r 1
m n 2 2 ab _e . ae »
——\/w{X X — —yVwn® — ——_ws e FopF b+_’I"I‘ LoLo+

D.3.4. Calculo del Hamiltoniano Dual H;, 76y

Finalmente, se obtiene la expresion para el hamiltoniano dual H y, «76x g1 partien-

do de la expresion usual para el calculo del hamiltoniano, esto es,
Hosyroxst (P, X, A) = Py X™ + PLA" + P, A — Lo, wroxst (D.37)

donde los momentos conjugados son:

p,= L p 0L p 9L (D.38)
X S Ar 5 Aa

Para determinar las velocidades generalizadas se usan las ecuaciones resultantes del

célculo de los momentos conjugados (D.38), obteniéndose:

Pl : -
9, XA, AT =

1 ab ra A
\/@ - ﬁg 8[114 8bA,

FfbﬁhA g 5¢n/8hA D Xn (D39)

Xy =

oA = Ay + Yh P —

Vo 2w

A continuacion, se sustituyen las expresiones (D.39) en (D.37), para obtener el ha-

miltoniano:
p™“p., PP 1 1
H (P, X, A) = o L Y..P°Pf+ —7,.P*P°
MaxToxs1 ) =57 Tasm ave PP *
L1 ey f Vw Vw 2
Dl B pFuy + L B2 4 Y2 G DX DX 4 L2 X X
8\/_8 € flap + 1 - 5 g 1 + n’*+

~ ’ 1 g‘fb P ’ ’ P ~
P9, Ag — P q"* 04 0 A, D X" — ———PF 0, A — —Z2c9, X™ A — —=£%9, AT, A.
+ 0 g "0g A > o fb \/@8 b \/Eﬁ 3

(D.40)
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ApinDICE B

Calculo de la Matriz Ay de

Transformaciones de T-dualidad

En este apéndice determinaremos Ag. Sin pérdida de generalidad podemos suponer [y

y my sean enteros primos relativos. Tenemos det(W) = n. Es importante notar que

b1 . . . . .
( ) son también enteros primos relativos. Siempre existe Ag € SL(2,Z) tal que

a1
(h) — A (pl) . (E.1)
my q1

Entonces tenemos de (5.5):

Se introduce

() ()
=A"! : (E.3)
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. . p1oT2 , LR b
A continuacién se define A = en consecuencia A = A , con
q T my My
1 ) .,
detA = n. Notemos que det = A. Se tiene entonces una transformacion
my Mo

intercambiando los modos KK y los modos de enrollamiento. La expresién para Ag

puede ser obtenida de la siguiente manera: Existen enteros (by, by, dy, c1) tal que hay

b Iy d
B= b ,y C= o , con:
q1 bl my C1
1 [ 1
"l ), [ =c| ], (E.4)
q1 0 ma 0

donde B, C € SL(2,Z). Finalmente podemos determinar la matriz de transformacién

Aq . Esto corresponde a,

-1

L d b
A = 1 1 P1 b2 . (E.5)

m; G @ b

y junto con la condicién (7.6), implica que la transformacién T-dualidad satisface,

(T-dualidad)? = T y por tanto es una transformacién de tipo Zs.




195

ApENDICE F

Clases de Equivalencia entre

Fibrados Toroidales Simplécticos

Una manera equivalente de verlo es considerar el grupo de coinvariantes asociados a
py UpU~. De hecho, el grupo H*(X, Z?) es isomérfico, a través de la dualidad de

Poincaré, al grupo de coinvariantes asociadas a p. Dado Q € H,(T?) definido como,

p . . , .
Q= , el grupo de coinvariantes de la monodromia p es el grupo abeliano de las

q
clases de equivalencia:

{Q-A0- 0}, (F.1)

para cualquier A € p y cualquier QcH 1(T?). Se sigue que esta clase es transformada

a la clase asociada a UQ bajo la representaciéon UpU '
{Q-UAUTQ - @}, (F.2)

donde O = U @, pero cualquier Q€ H, (T?) puede siempre ser expresada como U 8)
para algin otro @ € H,(T?), ya que U es invertible. Entonces, hay un isomorfismo
entre el grupo de coinvariantes asociados a p y a UpU~!, ellos definenun fibrado

toroidal simpléctico equivalente.
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