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Resumen

Esta tesis tiene dos objetivos bien diferenciados, uno avanzar en el estudio ha-

cia una descripción fenomenológica de la supermembrana, y el otro determinar la

teoŕıa de supergravedad a bajas enerǵıas que se acopla con ésta. Para alcanzar el

primer objetivo se utiliza un sector topológico de la supermembrana, llamado la

supermembrana con cargas centrales [1, 2, 3, 4] que tiene dos propiedades relevan-

tes para este estudio: (1) se ha demostrado que es un objeto cuántico bien definido

[5, 6, 7, 8, 9, 10, 11, 12, 13]; y (2), posee simetŕıa de calibre definida en el volumen

del mundo. Esta última propiedad es de gran importancia a la hora de pensar en

obtener grupos de calibre no abelianos que reproduzcan el modelo estándar. En esta

tesis se construye la acción de la supermembrana 11D con cargas centrales no tri-

viales minimalmente inmersa sobre una variedad toroidal 7D (MIM2). Los grados de

libertad de esta teoŕıa vienen dados por siete campos escalares, un campo de calibre y

ocho grados de libertad fermiónicos. Las coordenadas transversas a la supermembrana

son mapas a un espacio-tiempo de Minkowski 4D. Esta acción contiene al grupo de

simplectomorfismos como simetŕıas de calibre. La acción es invariante bajo simetŕıas

globales adicionales en comparación a la supermembrana sobre un espacio target de
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Minkowski 11D . El hamiltoniano en el calibre del cono de luz es invariante bajo

transformaciones conformes sobre una superficie de Riemann como variedad de ba-

se. El espectro del hamiltoniano regularizado es discreto con multiplicidad finita. La

supersimetŕıa se rompe espontáneamente a N = 1 en 4D. Para el caso de la compac-

tificación sobre un 7-toro isótropo, el potencial no contiene ninguna dirección plana,

es estable sobre el espacio de móduli de los parámetros.

Para la consecución del segundo objetivo mostramos la formulación expĺıcita de la

supermembrana 11D como un fibrado toroidal simpléctico con monodromı́a no trivial

en SL(2,Z). Esta construcción permite una clasificación de todas las supermembranas

mostrando expĺıcitamente las simetŕıas SL(2,Z) asociadas a dualidades. Se encuentra

que el origen en teoŕıa M de las supergravedades calibradas IIB en nueve dimensio-

nes, clasificadas según las clases inequivalentes de monodromı́a, corresponden a la

descripción global de la supermembrana con cargas centrales en un target M9 × T 2.

La descripción global es una realización del ’mecanismo de esculpido’ para calibrar

una teoŕıa [14] y está asociado a una deformación particular de las fibraciones. Esta

formulación global corresponde al calibrado de los subgrupos abelianos de SL(2,Z)

asociados a las monodromı́as que actúan en el toro del target. Mostramos la existen-

cia de la simetŕıa trombón formulada como una realización no lineal de la simetŕıa

SL(2,Z) y se construye su calibrado en términos de la supermembrana formulada

sobre una clase inequivalente de fibración toroidal simpléctica.

La supermembrana, además muestra invariancia bajo T-dualidad. Se encuentra

la tranformación expĺıcita realizada en la teoŕıa de la supermembrana. Ésta tiene

una interpretación natural en términos de la cohomoloǵıa de la variedad base y la

homoloǵıa del toro target. Esta construcción global es una realización expĺıcita de

las transformaciones de dualidad como simetŕıas de la misma. Como consecuencia de
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ello, se conjetura que esta construcción es también válida para explicar el origen de

las supergravedades IIA calibradas en 9D tal que la supermembrana se convertiŕıa

en el origen de todas las supergravedades del tipo II en 9D. Las supergravedades

maximales estarán asociadas a la supermembrana compactificada sin carga central y

las supergravedades calibradas al sector de la supermembrana con carga central.

La estructura geométrica del fibrado toroidal simpléctico va más allá de la clasi-

ficación sobre las clases conjugadas de SL(2,Z). Esta depende de los elementos del

grupo coinvariante asociados al grupo de monodromı́a que restringen los posibles va-

lores de las cargas (p, q). Nosotros interpretamos que las clases de equivalencia de los

grupos coinvariantes están asociados a la clasificación de las soluciones de supergra-

vedades calibradas tipo II en 9D. Los resultados de esta tesis se han reportado en las

siguientes publicaciones:

1. Supermembrane origin of type II gauged supergravities in 9D. M.P. Garćıa del Moral,

J.M. Peña, A. Restuccia, JHEP 1209 (2012) 063, hep-th/1203.2767 [15] (Cap. 6).

2. T-duality Invariance of the Supermembrane, M.P. Garćıa del Moral, J.M. Peña, A.

Restuccia, Int. J. Geom. Meth. Mod. Phys. 10 (2013) 1360010, hep-th/1211.2434 [16] (Cap.

7). Proceedings del XXI International Workshop on Geometry and Physics, U.Burgos, Spain.

3. SL(2,Z) symmetries, Supermembranes and Symplectic Torus Bundles. M.P. Garćıa

del Moral, I. Mart́ın, J.M. Peña, A. Restuccia, JHEP 1109 (2011) 068, hep-th/1105.3181

[17] (Cap. 5).

4. N=1 4D Supermembrane from 11D. Maŕıa Pilar Garćıa del Moral, J.M. Peña, A.

Restuccia, JHEP 0807 (2008) 039, hep-th/0709.4632 [18] (Cap. 4).

5. The Minimally Immersed 4D Supermembrane, M.P. Garćıa del Moral, J.M. Peña, A.

Restuccia, Fortsch. Phys. 56 (2008) 915-921. Realizado para 3rd RTN Workshop: Consti-
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tuents, Fundamental Forces and Symmetries of the Universe,1-5/Oct/2007. Valencia, Spain,

hep-th/0803.3385 [19] (Cap. 4).
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Abstract

This thesis has two objectives well differentiated, one is to advance in the study

towards a phenomenological description of the supermembrane, and the other is to

determine the supergravity theory at low energies that is coupled with this one. In

order to reach our first goal, we used a topological sector of the supermembrane,

called the supermembrane with central charges [1, 2, 3, 4], that has two excellent

properties for this study: one, it has been demonstrated that is a quantum object

well defined [5, 6, 7, 8, 9, 10, 11, 12, 13]. Another important property, is that it

has a gauge symmetry defined on its worldvolume. This last property is of great

relevance when thinking in obtaining eventually non abelian gauge groups that will

reproduce the standard model. In this thesis we construct the action of the super-

membrane 11D with non-trivial central charges minimally immersed on a toroidal

manifold 7D (MIM2). The degrees of freedom of this theory are seven scalars fields,

a gauge field and eight fermionics degrees of freedom. The transverse coordinates to

the supermembrane are maps to a 4D Minkowski space-time. This action contains to

the group of simplectomorphims as gauge symmetries. The action is invariant under

additional global symmetries in comparison to the supermembrane on 11D Minkows-
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ki target space. The hamiltonian in the light cone gauge is invariant under conformal

transformations on a Riemann surface as base manifold. The regularized hamiltonian

spectrum is discrete with finite multiplicity. The supersymmetry is broken sponta-

neously to N = 1 in 4D. For the case of the compactification on an isotropic 7-torus,

the potential does not contain any flat direction, it is stable on the moduli space of

the parameters. To achieve the second goal we showed the explicit formulation of the

11D supermembrane interms of a toroidal symplectic fiber bundle with non trivial

monodromy in SL(2,Z).

As a result of this thesis we find that the theory M origin of IIB gauged super-

gravities in 9D, classified according to the monodromy inequivalents classes, corres-

pond to the global description of the supermembrane with central charges in a target

M9×T 2. The global description is done through the ”sculpting mechanism”[14], that

involves the gauging of a theory associated to a particular deformation of fibrations.

This corresponds to gauging one of the abelian sub-groups of SL(2,Z) associated to

the monodromies that act in the target torus. We also showed to the existence of the

trombone symmetry formulated like a nonlinear realization of SL(2,Z) symmetry and

constructed its gauging in terms of the supermembrane formulated on an inequivalent

class of toroidal symplectic fibration.

The supermembrane, in addition, shows invariance under T-duality. We find the

explicit transformation realized in the supermembrane theory. It has a natural inter-

pretation in terms of the cohomology of the base manifold and the homology of the

torus target. This global construction is an explicit realization of the duality transfor-

mations as symmetries of it. As a result of it, we conjecture that this construction is

also valid to explain the origin of IIA gauged supergravities in 9D, so that the super-

membrane would become the origin of all type II supergravities in 9D. The picture
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that emerges is that the maximal supergravities are associated to the compactified

supermembrane without central charges and the gauged supergravities to the sector

of the supermembrane with central charge. The geometric structure of symplectic

fiber bundle goes beyond the classification on the conjugated classes of SL(2,Z) and

depends on the elements of the coinvariant group associated the monodromy group

that restrict the possible values of the charges (p, q). We interpret that the equivalence

classes of the coinvariant groups are associated to the classification of the solutions

of type II gauged supergravities in 9D.

The results of this thesis have been reported in following papers:

1. Supermembrane origin of type II gauged supergravities in 9D. M.P. Garćıa del Moral,

J.M. Peña, A. Restuccia, JHEP 1209 (2012) 063, hep-th/1203.2767 [15] (Chap. 6).

2. T-duality Invariance of the Supermembrane, M.P. Garćıa del Moral, J.M. Peña, A.

Restuccia, Int. J. Geom. Meth. Mod. Phys. 10 (2013) 1360010, hep-th/1211.2434 [16] (Cap.

7). Proceedings del XXI International Workshop on Geometry and Physics, U.Burgos, Spain.

3. SL(2,Z) symmetries, Supermembranes and Symplectic Torus Bundles. M.P. Garćıa

del Moral, I. Mart́ın, J.M. Peña, A. Restuccia, JHEP 1109 (2011) 068, hep-th/1105.3181

[17] (Chap. 5).

4. N=1 4D Supermembrane from 11D. Maŕıa Pilar Garćıa del Moral, J.M. Peña, A.

Restuccia, JHEP 0807 (2008) 039, hep-th/0709.4632 [18] (Chap. 4).

5. The Minimally Immersed 4D Supermembrane, M.P. Garćıa del Moral, J.M. Peña, A.

Restuccia, Fortsch. Phys. 56 (2008) 915-921. Prepared for 3rd RTNWorkshop: Constituents,

Fundamental Forces and Symmetries of the Universe,1-5/Oct/2007. Valencia, Spain, hep-

th/0803.3385 [19] (Chap. 4).
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porque mi madre era antipática o mi padre era cruel. No voy a odiar a los rusos, no voy a odiar a los jud́ıos, no voy

a odiar a los negros. Voy a reconocer mi odio como mı́o; y voy a amar”✮✮ Helen Caldicott



xi

Agradecimientos

En lo académico, infinito agradecimiento a la prof. Maŕıa del Pilar Garćıa del
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Índice de cuadros XX

Introducción 1

1. Supergravedad y Supermembrana en 11D 13

1.1. Supergravedad Maximal en 11D . . . . . . . . . . . . . . . . . . . . . 13

1.1.1. Supergravedad en el Formalismo del Superespacio 11D . . . . 17

1.2. Supermembrana 11D . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.1. Super p-branas . . . . . . . . . . . . . . . . . . . . . . . . . . 19



xiv

1.2.2. La Supermembrana en el Superespacio . . . . . . . . . . . . . 23

1.2.3. La Supermembrana en el Calibre del Cono de Luz . . . . . . . 27

1.2.4. Propiedades Espectrales: Espectro Continuo . . . . . . . . . . 30

1.3. Conexión entre Supermembrana y Supergravedad en 11D . . . . . . . 33
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6.2.1. Clase de Conjugación Eĺıptica . . . . . . . . . . . . . . . . . . 136
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1

Introducción

En la actualidad todav́ıa sigue siendo un problema no resuelto la cuantización

del campo gravitacional en las cuatro dimensiones espacio-temporales aśı como su

unificación con las demás fuerzas fundamentales de la naturaleza. En la literatura

pueden encontrarse distintos enfoques que pretenden formular una teoŕıa de unifica-

ción relativista y cuánticamente consistente, que además sea capaz de reproducir los

datos experimentales a escalas desde 10−16cm del Modelo Estándar (ME) hasta esca-

la cosmológica. Algunas de estas teoŕıas combinan elementos como: gran unificación,

utilización de dimensiones espaciales extras, supersimetŕıa. A pesar de los relevantes

avances en la materia quedan aún importantes cuestiones por resolver.

Un camino prometedor tanto en la cuantización de la gravedad como en la uni-

ficación, han sido las teoŕıas de cuerdas. La formulación de una teoŕıa cuántica de

cuerdas contiene a la gravedad y es una teoŕıa consistente al menos perturbativamen-

te, que permite obtener modelos semirealistas en cuatro dimensiones restringiendo

parámetros libres del Modelo Estándar: quiralidad, grupos y números cuánticos del

ME, acoplos de Yukawa, gran unificación, etc.
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La teoŕıa de cuerdas es una teoŕıa donde el objeto fundamental es un objeto exten-

dido unidimensional denominado cuerda. En un principio, la formulación de la teoŕıa

se hizo considerando solo los grados de libertad bosónicos, pero resultó inestable. Pos-

teriormente, se incluyeron los fermiones en la construcción requiriendo supersimetŕıa.

A estas teoŕıas supersimétricas se les denomina supercuerdas. Para que las teoŕıas de

cuerdas sean cuánticamente consistentes se necesita que la bosónica se formule en

D = 26 y la supersimétrica en D = 10 [20, 21]. Existen cinco teoŕıas consistentes

de supercuerdas [22]. A continuación se mencionarán brevemente las caracteŕısticas

más relevantes de cada una. La teoŕıa Tipo I, incluye cuerdas cerradas y abiertas,

con superficies mundo sin orientación determinada, grupo de simetŕıa SO(32). Tiene

supersimetŕıa N = 1 que en 10D, significa 16 supercargas. La Tipo IIA, contiene sólo

cuerdas cerradas, con superficies mundo sin orientación determinada, fermiones sin

masa, no quiral (conserva paridad). Tiene supersimetŕıa N = 2 que en D = 10 signi-

fica 32 supercargas. Tipo IIB, contiene sólo cuerdas cerradas, con superficies mundo

sin orientación determinada, fermiones sin masa, quiral (el esṕın tiene una dirección

violando paridad), supersimetŕıa con 32 supercargas. Tipo Heterótica, sólo se tienen

cuerdas cerradas, con superficies mundo sin orientación determinada, y con un álge-

bra de v́ınculos que actúa de manera distinta sobre los campos que se mueven hacia

la derecha y sobre aquellos que se mueven a la izquierda. Cuando el grupo de simetŕıa

es SO(32) se llama HO, y cuando el grupo de simetŕıa E8 × E8 se denomina HE.

Todas las teoŕıas de supercuerdas están relacionadas a través de transformaciones

de dualidad, ver figura (0.1). Las teoŕıas IIA y la IIB están conectadas por la llamada

dualidad T, en la cual la teoŕıa IIA compactificada en un ćırculo de radio R describe

la misma f́ısica que la teoŕıa IIB pero compactificada en un ćırculo de radio (α
′

R
)1

1El parámetro α′ es el parámetro de Regge (Regge slope), relacionado con la tensión de la cuerda

fundamental por 1/(2πα′).
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Figura 0.1: Dualidades entre las teoŕıas de supercuerdas.

cuando además se intercambian los modos de KK con los modos de enrollamiento.

Aśımismo las teoŕıas heteróticas SO(32) y E8 ×E8 también están relacionadas entre

śı por una dualidad T. Las teoŕıas Tipo I y la heterótica SO(32) están relacionadas

por la llamada dualidad S, la cual significa que la descripción de part́ıculas débilmente

interactuantes en la teoŕıa Tipo I pueden ser vistas como la descripción de part́ıculas

que interactúan fuertemente en la teoŕıa heterótica SO(32).

Desde hace dos décadas, se considera que existe una teoŕıa más fundamental que

se formula en 11D denominada Teoŕıa M, cuyo ĺımite en 10D son las cinco teoŕıas

de supercuerdas [23]. En 1994, Witten planteó que la teoŕıa de supergravedad Tipo

IIA pod́ıa ser obtenida por la reducción dimensional de una teoŕıa de supergravedad

única en D = 11 [24, 25]. Conjeturó que debeŕıa haber una teoŕıa en D = 11 que en

el ĺımite bajas enerǵıas fuese la supergravedad 11D y que bajo reducción dimensional

a 10D a través de un ćırculo generase la teoŕıa de supercuerdas IIA y bajo reducción

dimensional sobre S1/Z2, produjese la teoŕıa heterótica SO(32). A esta teoŕıa del

’todo’ es a la que se le denomina teoŕıa M [26]. Las cinco teoŕıas de supercuerdas,

definidas en 10D son todas ellas supersimétricas [22]. La supersimetŕıa garantiza que
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se tengan teoŕıas consistentes cuyos espectros no contienen taquiones (part́ıculas de

masa imaginaria).

Inicialmente la teoŕıa de supergravedad fue propuesta en D = 4 en [27, 28], como

modelo de una teoŕıa de campo supersimétrica para la gravedad. Aśı como es posible la

definición supersimétrica consistente de supergravedades puras en otras dimensiones

menores de 11D, es posible la existencia de otros objetos tipo p-branas también en

otras dimensiones D < 11, ver la clasificación que reúne todas las posibilidades en

[29]. Esta teoŕıa contiene un campo de esṕın 2 (gravitón) con su respectivo compañero

supersimétrico, un campo de esṕın 3
2
(gravitino). Desafortunadamente la cuantización

de esta teoŕıa muestra infinitos ultravioleta que no pueden cancelarse: la teoŕıa es no

renormalizable. Se pueden formular supergravedades en dimensiones D > 4 las cuales

siguen teniendo los mismos problemas en el ĺımite ultravioleta cuando se les intenta

cuantizar. Sin embargo, a partir de 2007 Bern et all han presentado resultados donde

hay evidencia que la teoŕıa de supergravedad D = 4 y N igual a 8, es finita ultravioleta

al menos hasta cuatro lazos2 [30, 31, 32].

La cuantización no perturbativa de la teoŕıa de cuerdas continúa siendo un pro-

blema abierto que ha recibido mucha atención a lo largo de décadas. Este problema

puede ser reformulado en términos de la cuantización de la teoŕıa M en 11D. A pesar

de los avances hacia la cuantización de la Teoŕıa M [2, 3, 4, 5, 6, 7, 8, 9, 10, 33, 34,

35, 36, 37, 38], ella es una teoŕıa aún no muy bien entendida. De forma similar a lo

que ocurre en teoŕıa de cuerdas, donde la supercuerda es el objeto fundamental de la

teoŕıa, se esperaba que la supermembrana [39, 40, 41], fuese el objeto extendido fun-

damental de la teoŕıa M, es decir, que describiera los grados de libertad microscópicos

2Traducción al español de la palabra inglesa loops. Debido al amplio uso del inglés en este campo,

a lo largo de la tesis se harán este tipo de observaciones cuando, a nuestro criterio, la traducción de

la palabra al español no sea de uso frecuente o que no sea posible hacer una traducción efectiva.
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de la teoŕıa. La interpretación de la supermembrana como objeto fundamental en el

contexto de la teoŕıa M fue inicialmente descartada debido a que el espectro de la

teoŕıa es continuo. Posteriormente, se reinterpretó como una teoŕıa de interacción de

D0-branas, es decir, como una teoŕıa de segunda cuantización [35]. Para analizar el

comportamiento cuántico de la supermembrana se utilizaron los modelos matriciales

SU(N) supersimétricos en el ĺımite N → ∞ [33].

Sin embargo, se puede hacer una interpretación de la supermembrana como objeto

fundamental, al restringirse a un sector de la teoŕıa M: a la supermembrana con cargas

centrales no triviales [2, 3, 4], dado que su espectro es discreto [5, 6, 7, 8, 9, 10, 11].

Este sector de la teoŕıa posee una carga central no trivial en el álgebra supersimétrica.

Dicha supermembrana con cargas centrales está minimalmente inmersa en la variedad

target3 y por eso la denominamos MIM2. Su estudio podŕıa brindar herramientas para

abordar el problema más general de la cuantización de otros sectores de la teoŕıa M.

En esta tesis restringiremos el estudio a este sector sobre un 7-toro sector compacto

de la variedad target (MIM2) [3, 4, 5, 6, 7, 8, 9, 10]. La MIM2 en 9D es dual a un

fibrado construido con un sistema ligado de D2 − D0 branas. Además, la MIM2

contiene en su espectro los estados de cuerdas no perturbativos, por ejemplo las

(F,Dp)-branas [13], y por tanto es el origen en 11D de los multipletes SL(2,Z) de la

teoŕıa IIB y podŕıa ser el origen de los estados diónicos no perturbativos de tipo IIA

que no pueden ser vistos a nivel perturbativo [13]. Esto es de interés ya que se ha visto

que las configuraciones de este tipo desempeñan un papel importante en el estudio de

efectos no perturbativos. Los efectos no perturbativos en teoŕıa de cuerdas han sido

objeto de un estudio intensivo dado que potencialmente podŕıan explicar de manera

natural los valores muy pequeños de parámetros dentro de MSSM, por ejemplo, las

3Sin traducción.



6

masas muy pequeñas de los neutrinos o los acoplamientos de Yukawa. Los resultados

de Bern en [30, 31, 32] agregan interés en el análisis de la supermembrana 4D ya

que el primer nivel fundamental del espectro de la supermembrana se espera que

corresponda con el supermultiplete de supergravedad.

La teoŕıa M/cuerdas necesita la introducción de dimensiones extras. Esas dimen-

siones extras se creen que forman una variedad de compactificación tales que cuando

la teoŕıa M/cuerdas se compactifican a 4D podŕıa dotar a la teoŕıa efectiva de las pro-

piedades necesarias para reproducir la f́ısica esperada. Lo que se busca es una teoŕıa

cuántica consistente en 4D con supersimetŕıas N = 1 o N = 0, libre de móduli, acorde

a la f́ısica observada en 4D. En la naturaleza hasta el momento no se han observado

evidencias de dimensiones extras. La idea es que las dimensiones se enrollan de tal

manera que son tan pequeñas que los experimentos realizados no han podido detec-

tarlas. Actualmente sin embargo en el acelerador de part́ıculas LHC, en el CERN,

hay experimentos diseñados para detectar posibles violaciones de la conservación de

enerǵıa debidos a la existencia de una quinta dimensión.

Cualquiera de las teoŕıas formuladas hasta ahora cuando es compactificada a 4D

contiene muchos vaćıos debido a la presencia de los campos móduli que deben ser

estabilizados. Son muchas las posibles variedades de compactificación que se pueden

generar al hacer estos enrollamientos. A falta de uno o más principios f́ısicos de se-

lección de vaćıos (problema del Landscape) el criterio que se sigue para encontrar las

mejores variedades de compactificación es ir verificando que la teoŕıa f́ısica obtenida

reproduce el modelo estándar. En el contexto de las supercuerdas 10D, las variedades

más estudiadas para la compactificación de las seis dimensiones espaciales extras para

obtener D = 4, son las llamadas variedades de Calabi-Yau. En un principio se consi-

deró el 6-toro T 6 como la 6-variedad de compactificación de estas dimensiones extras
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por ser la extensión natural de la compactificación en un ćırculo a más dimensiones.

Esta variedad tiene curvatura nula, y es el caso más sencillo del proceso de compacti-

ficación. Debido a que las compactificaciones toroidales tienen holonomı́a trivial todas

las supersimetŕıas de la teoŕıa en D dimensiones se preservan también al reducir a

D = 4, y se obtiene una teoŕıa N = 8 lo que no genera modelos realistas. Además el

6-toro T 6 no incorpora en la teoŕıa los aspectos quirales del modelo estándar. Existen

teoŕıas efectivas de cuerdas que cuando son compactificadas sobre orbifolds toroidales

reproducen muchas de las caracteŕısticas del modelo estándar. Un orbifold toroidal

es el cociente entre una variedad suave y una grupo discreto, por ejemplo, T 6/ZN .

Esta tesis tiene dos objetivos fundamentales: (1) obtener la formulación de la su-

permembrana con cargas centrales N = 1 en 4D por sus potencial fenomenológico. La

formulación de la supermembrana con cargas centrales compactificada en un 7-toro

genera una teoŕıa N igual a 1 en cuatro dimensiones, que tiene además monopolos

magnéticos en el volumen del mundo, y que por lo tanto incorpora aspectos quirales

deseables que pueden ser de utilidad a futuro en una formulación más realista. Y (2)

encontrar la teoŕıa de supergravedad que se obtiene como ĺımite a bajas enerǵıas de

la supermembrana con cargas centrales no triviales en 9D 4. La supermembrana con

cargas centrales veremos que está naturalmente asociada a las supergravedades del

tipo calibrada5. Las teoŕıas de supergravedades calibradas pueden construirse tando

a partir de reducciones de supergravedades maximales (no calibradas/no masivas) co-

mo de supergravedades masivas [42, 43, 44]. Hay esencialmente tres maneras en que

pueden construirse teoŕıas calibradas/masivas de supergravedad a partir de reduccio-

nes de supergravedades maximales: (1) A través de compactificaciones en variedades

internas no-triviales [42, 43, 44], (2) haciendo reducciones dimensionales generalizadas

4Estas dimensiones se refieren a las dimensiones no compactas del target.

5Del inglés gauged.
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llamadas de Scherk-Schwarz (SS), con las cuales se introducen parámetros de masa

en las compactificaciones de las teoŕıas de supergravedad y supercuerdas. Finalmente,

(3) se obtienen las supergravedades calibradas/masivas a través de compactificaciones

hechas con flujos no triviales [45].

Desde el punto de vista de la teoŕıa M, el origen de las supergravedades calibradas

es un problema interesante abierto y al que pretende dar respuesta esta tesis. Es bien

conocido que las ecuaciones de movimiento de la supergravedad 11D son obtenidas de

la invariancia bajo simetŕıa kappa de la acción de la supermembrana D = 11 formula-

da sobre un background6 general [41]. Esto apoya la conjetura de que la descripción a

baja enerǵıa de la supermembrana es la supergravedad 11D (esta conjetura significa

que el estado base de la supermembrana 11D corresponde al supermultiplete asociado

a la supergravedad 11D, pero aún no se tiene una prueba rigurosa sobre este pro-

blema que sigue abierto). La dimensión máxima para supergravedades calibradas es

9D. Hay cuatro clases diferentes de calibrados7 que aparecen en 9D. Este resultado se

estableció inicialmente por [42, 46]. Si incluimos además, las deformaciones que pro-

vienen del sector de la teoŕıa de tipo IIA, existen cuatro más, pero solo siete de ellas

son deformaciones independientes y ellas constituyen la supergavedad calibrada del

tipo II en 9D [46], donde está incluida el calibrado de las simetŕıas de escala [47, 48].

Recientemente en [49] se han analizado de forma más general los calibrados en 9D a

través del formalismo del tensor de embedding8 y se ha visto que corresponden a los

resultados obtenidos en [46].

Para alcanzar el segundo objetivo de esta tesis se procede a analizar los aspectos

globales de la supermembrana con cargas centrales. Los efectos no perturbativos,

6Sin taducción.

7Traducción usada para gauging.

8Sin traducción.
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tales como monopolos e instantones en las teoŕıas de calibre convencionales, o las

dualidades en el contexto de las teoŕıas M/cuerdas, descansan en aspectos globales

de dichas teoŕıas que las describimos en términos de fibrados. Propiedades como

el confinamiento también podŕıan ser debidas a aspectos topológicos no triviales.

Las fibraciones no triviales han sido usadas también en el contexto de las teoŕıas no

conmutativas, como es el caso de la formulación no conmutativa del toro [50], aśı como

para caracterizar espacios de compactificación útiles para fenomenoloǵıa de cuerdas,

por ejemplo [51].

Hay evidencia que la teoŕıa de cuerdas puede ser consistentemente definida en

backgrounds no geométricos en los cuales las funciones de transición entre parches

de coordenadas incluye no solo los difeomorfismos y transformaciones de calibre, sino

también transformaciones de dualidad [52, 53, 54, 55]. Una forma de obtener estos

backgrounds no geométricos es a través de compactificaciones denominadas com-

pactificaciones con twist dual9 [45], las cuales generalizan las compactificaciones a

la Scherk-Schwarz usadas con las teoŕıas de supergravedad. En casos especiales, las

compactificaciones con twists duales son equivalentes a orbifolds asimétricos los cuales

pueden dar backgrounds de cuerdas consistentes [56]. Otro tipo de backgrounds no

geométricos son las denominadas T-variedades10, en las cuales las funciones de transi-

ción incluyen T-dualidades. Estas T-variedades [54, 57] están construidas usando las

cuerdas formuladas sobre una variedad cuya fibra es un toro doble T 2n con n coorde-

nadas conjugadas al momento y las otras n coordenadas conjugadas a los modos de

enrollamiento [53]. Ejemplos de T-variedades generalizadas pueden ser obtenidas con-

truyendo fibraciones de toro sobre variedades base con ciclos que no pueden contraerse

[58].

9En inglés ’duality twist’

10Traducción de T-folds.
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En [53] fue argumentado que una formulación fundamental de la teoŕıa M/cuerda

debeŕıa existir, en la cual las simetŕıas de dualidad (T, S, U) son manifiestas desde el

comienzo. Ver también [59]. En particular, se argumentó que muchas supergravidades

masivas y calibradas no pueden naturalmente ser incluidas11 en la teoŕıa de cuerdas

sin este esquema o marco [52, 55, 58]. Sin embargo, hasta lo que sabemos previo a

esta tesis, no existe un desarrollo de la realización de estas ideas en términos de la

supermembrana para teoŕıa M.

En esta tesis se prueba que la acción de la Supermembrana con cargas centrales

no triviales en 9D, cuyas estructura local fue dada en [2, 3, 13], puede ser globalmente

definida en términos de secciones de un fibrado toroidal simpléctico con monodromı́a

en SL(2,Z).

El contenido de la tesis está estructurado como sigue. En los primeros tres caṕıtu-

los se hace un repaso a los temas necesarios para poner el contexto adecuado a nuestra

investigación. En el caṕıtulo 1 se hace una recopilación de resultados de la literatu-

ra respecto a la supergravedad y a la supermembrana en once dimensiones. Se dan

sus definiciones y caracteŕısticas. Se explica la conexión entre ambas. En el caṕıtulo

2, se presentan las consideraciones matemáticas que describen los elementos de la

metodoloǵıa empleada para conseguir los resultados de esta tesis. Entre ellas están

un repaso a los métodos de compactificación empleados en supergravedad, la discu-

sión sobre la relación entre estas reducciones y los conceptos geométricos como los

fibrados y monodromı́as, y la descripción de un nuevo método de calibrado a nivel

de la supermembrana, denominado mecanismo de esculpido de [14]. Intentos ante-

riores para establecer la conexión entre el calibrado de la supermembrana y el de

las supergravedades calibradas 9D se pueden encontrar en [60, 61]. En el caṕıtulo

11Traducción de embedded.
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3, repasamos tanto las supergravedades maximales como las supergravedades cali-

bradas en 9D, 10D. También describimos el objeto fundamental de nuestra teoŕıa: la

supermembrana con cargas centrales no triviales.

En los siguientes caṕıtulos mostramos los nuevos resultados obtenidos en esta tesis.

En el caṕıtulo 4, se construye la acción para la supermembrana con cargas centrales

no triviales compactificada sobre un T 7 y se analizaron sus propiedades f́ısicas en

el calibre del cono de luz. La acción describe una supermembrana que evoluciona

en un espacio de Minkowski 4D. En el caṕıtulo 5, probaremos que la acción de la

supermembrana con cargas centrales no triviales en 9D, cuya estructura local fue

dada en [2, 3, 13], puede ser definida globalmente en términos de secciones de un

fibrado toroidal simpléctico con monodromı́a no trivial en SL(2,Z).

En el caṕıtulo 6, se clasifican los fibrados simplécticos toroidales que describen a

la supermembrana con cargas centrales de acuerdo a las monodromı́as y se establece

la relación con las supergravedades calibradas IIB. En las supergravedades tipo II

en 9D, hay cuatro calibrados inequivalentes de la simetŕıa global GL(2,R), tres de

ellos están asociados al calibrado de la simetŕıa global SL(2,R) correspondiendo a las

llamadas clases inequivalentes parabólicas, eĺıpticas e hiperbólicas. En este caṕıtulo

se encuentran los fibrados toroidales simplécticos asociados a cada clase. El cuarto

calibrado corresponde al calibrado de la simetŕıa trombón [47] asociado a los escala-

mientos R+. A nivel cuántico la realización de estos calibrados es más compleja ya que

no es suficiente describirlos en términos de fibrados cuya monodromı́a esté contenida

en el subgrupo aritmético GL(2,Z). La razón es que la simetŕıa de escalamiento no

está incluida en ese subgrupo. Esta simetŕıa trombón se realiza mediante una trans-

formación no lineal SL(2,Z) que los autores [62] denominaron simetŕıa activa. En

este caṕıtulo se encuentra el calibrado de dicha simetŕıa a nivel de la teoŕıa de la
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supermembrana. Además se analizan las simetŕıas residuales de la teoŕıa calibrada y

se clasifican los fibrados toroidales equivalentes de acuerdo al grupo de coinvariantes

para una monodromı́a dada.

En el caṕıtulo 7, consideraremos las transformaciones de dualidad en el contexto

del objeto fundamental de nuestro modelo: la supermembrana con cargas centrales.

Mostramos la existencia de una simetŕıa nueva Z2 que juega el papel de T-dualidad en

la supermembrana intercambiando las cargas de enrollamiento y las KK pero dejando

el hamiltoniano invariante, tal que el grupo de simetŕıa completo en la supermembrana

no calibrada corresponde a: (SL(2,Z)Σ×SL(2,Z)T 2)/Z2. La T-dualidad se convierte

en una simetŕıa exacta de la descripción de la supermembrana a en términos del

fibrado toroidal simpléctico. Las monodromı́as con el origen tipo IIA son inferidas a

partir de la invariancia bajo T-dualidad del operador de masa de la supermembrana

con cargas centrales.

Aunque en cada caṕıtulo hemos presentado conclusiones parciales, en el caṕıtulo 8

damos una visión general de todos los resultados obtenidos además que presentamos

algunos aspectos que quedan abiertos para trabajos posteriores. Finalmente, se anexan

varios apéndices donde se explican más detalles de algunos cálculos expĺıcitos, además

de las convenciones y notación usadas en la tesis.
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Caṕıtulo 1

Supergravedad y Supermembrana

en 11D

En este caṕıtulo se hará una revisión de resultados descritos en la literatura para

la teoŕıa de supergravedad no-calibrada en 11D aśı como para la supermembrana en

11D, y la relación entre ambas los cuales son parte del marco teórico adecuado para

cumplir los objetivos y para la discusión de los resultados de esta tesis.

1.1. Supergravedad Maximal en 11D

En esta sección haremos una breve descripción de una de las supergravedades

llamadas maximales o no calibradas [27, 28, 63]. En general, las supergravedades ma-

ximales son teoŕıas invariantes bajo super-Poincaré. Ésta denominación incluye los

generadores de Lorentz, los generadores de las traslaciones, y los generadores de la

supersimetŕıa. El álgebra de super-Poincaré puede extenderse agregándole generado-

res de calibre, bosónicos denominados p-formas [64].

A las teoŕıas con exactamente 32 supercargas se les llama supergravedades maxi-

males. D = 11 es la máxima dimensión permitida para las teoŕıas de supergravedad
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que solamente contienen campos con esṕın máximo igual a dos, el gravitón (part́ıcula

conjeturada como mediadora de la interacción gravitatoria). En esta dimensión solo

existe una única teoŕıa de supergravedad. Dependiendo del número de supercargas

N , se pueden tener diferentes teoŕıas maximales en diferentes dimensiones. En esta

tesis nos referiremos a las teoŕıas formuladas en D = 11, 10, 9. Los campos de super-

Dimensión Supergravedad (N )

11 1

10 1, IIA, IIB

9 2

Cuadro 1.1: Supergravedad en diversas dimensiones D, etiquetadas por el número de

sus generadores de supersimetŕıa.

gravedad forman multipletes sin masa bajo supersimetŕıa, llamados supermultipletes.

Por ejemplo, el multiplete gravitón lo contienen todas las teoŕıas de supergravedad,

incluye los siguientes campos: el gravitón (esṕın 2), uno o más gravitinos (esṕın 3/2)

y campos de esṕın más pequeño. Las supergravedades maximales solo contienen este

supermultiplete.

Para que la supersimetŕıa sea una simetŕıa consistente, todos los supermultipletes

deben tener igual número on-shell de grados de libertad bosónicos y fermiónicos. En

la tabla 1.2 se distinguen dos tipos de escalares posibles: dilatones φ (en teoŕıa de

cuerdas el campo dilatón está determinado por la intensidad de acoplo de la cuerda

eφ = gs) y axiones χ.

El potencial d-forma, C(d), tiene la misma cantidad de grados de libertad que un

potencial dual d̃-forma con d̃ = D − 2− d. Lo que corresponde a una carga eléctrica

en un potencial es una carga magnética en su potencial dual y viceversa. Esta equi-
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valencia entre dos potenciales es llamada dualidad de Hodge y es una generalización,

a mayores rangos de d y d̃ y dimensión D, de la dualidad eléctrica-magnética bien

conocida en 4D por Montonen-Olive [65]. En el caso d = (D−2)/2 se puede imponer

una restricción de autodualidad sobre la (d+1)-forma de intensidad de campo. Todos

los campos del supermultiplete de gravedad pueden agruparse de la siguiente manera:

Nombre Śımbolo Esṕın Grados de libertad On-shell

Gravitón Gmn 2 (D − 2)(D − 1)/2− 1

Gravitino Ψm 3/2 (D − 3) · q/2

Potencial de Rango-d potential C
(d)
m1···md

1

(
D − 2

d

)

Dilatino λ 1/2 q/2

Escalar φ ó χ 0 1

Cuadro 1.2: Grados de libertad on-shell de los campos de supergravedad de D dimen-

siones. Tabla original de [66]

En esta sección describimos brevemente las caracteŕısticas fundamentales de la

única teoŕıa de supergravedad en D = 11 que fue obtenida en [25] con N = 1 y 32

supercargas. Es una teoŕıa maximal. La acción es

SD=11
SG =

∫
d11x{−1

2
eR(ω)− 2eΨ̄mΓ

mnlDn(
ω + ω̂

2
)Ψl −

1

96
eFmnrsF

mnrs+

− 1

2(12)4
εm1m2....m11Fm1m2m3m4

Fm5m6m7m8
Cm9m10m11

+

− 1

96
e(Ψ̄nΓ

m1m2m3m4nlΨl + 12Ψ̄m1Γm2m3Ψ̄m4)(Fm1m2m3m4
+ F̂m1m2m3m4

)},

(1.1)

donde como mencionamos antes, encontramos un único supermultiplete formado por

los campos sin masa: el gravitón (tensor simétrico de segundo orden) construido con el
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vielbein eâm(x) en 11D, el gravitino (espinor de Majorana) Ψα̂m(x) y un tensor de tres

ı́ndices totalmente antisimétrico llamado la 3-forma de potencial de calibre Cmnl(x),

con la intensidad de campo F4 = dC3 (para mayor detalle en la notación e identifica-

ción de variables, ver apéndices A y B). El multiplete gravitón {ema, Cmnl; Ψm} tiene

256 grados de libertad on-shell

D=11: (44+ 84)B + (128)F. (1.2)

La parte bosónica de la acción tiene un término de Einstein-Hilbert, un término

cinético para el potencial de rango-3 y un término de Chern-Simons llamado también

término topológico. La teoŕıa de supergravedad 11D contiene una simetŕıa global de

escalamiento que se conoce como R
+ que actúa como

Gmn → λ2Gmn , Cmnl → λ3Cmnl , Ψm → λ1/2Ψm , (1.3)

con λ ∈ R+. Esta simetŕıa actúa covariantemente sobre las ecuaciones de campo

pero no deja el Lagrangiano invariante: éste transforma como L → λ9L. Todos los

términos en L escalan con el mismo peso: por esta razón a esta simetŕıa se le conoce

como simetŕıa trombón. La existencia de esta simetŕıa trombón es una caracteŕıstica

en las supergravedades sin masa o no calibradas. En general, un lagrangiano en D

dimensiones escalará como L → λD−2L bajo dicha simetŕıa [62]. Alternativamente,

tales simetŕıas trombón se pueden ver como un escalamiento de la única longitud de

escala de la teoŕıa, ver por ejemplo [62, 67]. La acción de supergravedad 11D tiene

una relevancia fundamental en el contexto de la teoŕıa M, ya que se le considera la

teoŕıa efectiva de la misma, por ser la única maximal en D = 11 [20, 34, 68].
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1.1.1. Supergravedad en el Formalismo del Superespacio 11D

En esta sección queremos referirnos a la descripción de la supergravedad maximal

11D en el formalismo del superespacio 1, resultados obtenidos por Cremmer y Ferrara

en [24]. Este formalismo es importante debido a la conexión de la supergravedad 11D

con la supermembrana 11D. Sobre esta conexión nos referiremos en la sección (1.3). En

[24], demuestran que las ecuaciones de movimiento de la supergravedad 11D pueden

resumirse en la ecuación:

(Γûv̂ŵD̃)x̂Wûv̂ŵx̂(x, θ) = 0, (1.4)

donde Wûv̂ŵx̂(x, θ) es un supercampo tensorial completamente antisimétrico definido

tal que

Wûv̂ŵx̂(x, θ = 0) = F̂ûv̂ŵx̂(x) = euûe
v
v̂e

w
ŵe

x
x̂F̂uvwx. (1.5)

Luego, es posible escribir todos los supercampos que definen al superespacio de la

supergravedad 11D en términos de este campo W . Esto es,

(1) La supertorsión, T Ĉ
ÂB̂

, definida en (A.7),

T t̂
ûŝ = T δ̂

α̂β̂
= T t̂

α̂ŝ = 0, T û
α̂β̂

=
1

2
i(Γ0Γû)α̂β̂, (1.6)

T β̂
ûv̂ = − 1

42
(Γŵx̂Γ0)β̂ α̂D̃α̂Wûv̂ŵx̂, (1.7)

T β̂
α̂û =

1

2
Wp̂v̂ŵx̂(T

p̂v̂ŵx̂
û )β̂α̂. (1.8)

(2) La supercurvatura, R ĈD̂
ÂB̂

, definida en (A.8) y (A.9),

R û v̂
α̂β̂

= (Γ0Sû v̂ŵx̂ŷẑ)α̂β̂Wŵx̂ŷẑ, (1.9)

1En el apéndice A se explica la convención y notación usada aqúı, tanto para los ı́ndices como

para la definición de la estructura del superespacio.
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R û v̂
α̂t̂ = − 1

42
i[(Γ0Γv̂Γŵx̂Γ0D̃)α̂W

û
ŵx̂t̂ − (Γ0ΓûΓŵx̂Γ0D̃)α̂W

v̂
ŵx̂t̂ + (Γ0Γt̂Γŵx̂Γ0D̃)α̂W

û v̂
ŵx̂ ],

(1.10)

Rû v̂
β̂

δ̂
= − 1

21
(Γŵx̂Γ0)β̂α̂D̃δ̂D̃α̂Wŵx̂û v̂−2(T ŵx̂ŷẑ

[û D̃v̂])
β̂

δ̂
Wŵx̂ŷẑ−[T ŵx̂ŷẑ

û , T m̂n̂p̂q̂
v̂ ]β̂

δ̂
Wŵx̂ŷẑWm̂n̂p̂q̂,

(1.11)

donde Sŵx̂ŷẑ
û v̂ = 1

72
(Γŵx̂ŷẑ

û v̂ +24δ
[ŵ
û δ

x̂
v̂Γ

ŷẑ]). El resto de las componentes para la supercur-

vatura están definidas por (A.9).

(3) La intensidad de campo FMNLP , definida en (A.18) y (A.19),

Fûv̂ŵx̂(x, θ) =Wûv̂ŵx̂(x, θ), (1.12)

Fûv̂α̂β̂(x, θ) +
1

2
(Γ0Γûv̂)α̂β̂ = 0, (1.13)

Fα̂v̂ŵx̂(x, θ) = Fα̂β̂λ̂x̂(x, θ) = Fα̂β̂λ̂χ̂(x, θ) = 0. (1.14)

La supertorsión T Ĉ
ÂB̂

y la supercurvatura RÂB̂ verifican las identidades de Bianchi

(A.12). Mientras que FMNLP cumple la identidad de Bianchi (A.17).

1.2. Supermembrana 11D

En 1962 Dirac [69] introdujo la idea de que las part́ıculas elementales podŕıan co-

rresponder a los diferentes modos de vibración de una membrana. No fue hasta 1986

que Hughes, Liu y Polchinski [70] combinaron exitosamente la idea de la membrana

con supersimetŕıa, dando origen a la supermembrana. Luego, se extendió esta idea a

objetos de más de dos dimensiones, denominados p-branas. Aśı, tal y como la mem-

brana al moverse en el espacio-tiempo describe un volumen-mundo 2+1-dimensional,

la p-brana describe uno (d = p + 1)-dimensional. Sin embargo, la consistencia de la

teoŕıas de objetos extendidos, p-branas tiene restricciones debidas a las dimensiones

del espacio-tiempo y a la supersimetŕıa [71, 72]. La supermembrana de Bergshoeff,
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Sezgin y Townsend [41, 73] está formulada en D = 11, que como se mencionó an-

tes, es la máxima dimensión del espacio-tiempo permitida por supersimetŕıa en una

teoŕıa que admita campos con esṕın máximo 2. Hay dos caracteŕısticas importantes

de esta supermembrana 11D que mostraban que esta teoŕıa podŕıa ser una teoŕıa fun-

damental en el contexto de la teoŕıa M. Una, es que ella se acopla a la única teoŕıa de

supergravedad D = 11 [25, 74, 75]. Y la otra, es que a partir de ella puede obtenerse la

teoŕıa de supercuerdas Tipo IIA [76]. Al descubrirse en 1988 que la supermembrana

tiene espectro continuo [35], su estudio como objeto microscópico fue prácticamente

abandonado, sobre todo desde que se vio cualitativamente que la supermembrana en-

rollada tiene también estas mismas propiedades espectrales [37]. Sin embargo, como

hemos mencionado en la Introducción, a partir de 1997 se han obtenido avances en

la teoŕıa de la supermembrana como objeto cuántico bien definido. Ver por ejemplo,

[2, 3, 6, 7, 8].

1.2.1. Super p-branas

En esta sección se presentan algunos de los principales resultados que han sido

obtenidos en la literatura en la formulación de una teoŕıa de la supermembrana D =

11. Consideremos en primer lugar de forma más general, un objeto extendido p-

brana con dimensiones d = p + 1, donde 1 es la coordenada temporal y (d − 1)

coordenadas espaciales, que se mueve en un espacio-tiempo de D dimensiones. Se

define su dinámica, por medio de la acción que describe el volumen del mundo de la

p− brana al evolucionar en el tiempo, esto es,

S = −Td
∫
ddξ {−det(∂ixm ∂jx

nηmn)}1/2, (1.15)

donde ξi, con (i = 0, . . . , d − 1), son las coordenadas del volumen-mundo, mientras

que xm, con (m = 0, . . . , D − 1) son las coordenadas del espacio-tiempo D. En esta
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acción se supone el espacio-tiempo plano con métrica de Minkowski ηmn y signatura

(−,+, . . . ,+). Td es una constante llamada tensión del objeto con dimensión tal que

deja a S adimensional. Esta acción fue introducida por primera vez por Dirac para

la membrana (d = 3) [69] y luego por Nambu y Goto para la cuerda (d = 2) [77, 78].

La variación de la acción (1.15) produce las ecuaciones clásicas de movimiento, las

cuales son equivalentes a las que se pueden obtener de la acción de Polyakov:

S = Td

∫
ddξ

(
−1

2

√−ggij∂ixm∂jxnηmn +
1

2
(d− 2)

√
−g
)
. (1.16)

En dicha acción se introduce el campo auxiliar gij(ξ), con g, su determinante y gij

su inversa [79, 80]. La acción (1.16) puede hacerse más general suponiendo que la

membrana está en un espacio curvo, es decir, sustituir ηmn por Gmn(x). También

puede incorporarse un tensor de campo antisimétrico Cmn...l(x) de rango d que se

acopla a través de un término de tipo Wess-Zumino. Con estos nuevos elementos

(1.16) queda:

S = Td

∫
ddξ

[
−1

2

√−ggij∂ixm∂jxnGmn(x) +
1

2
(d− 2)

√−g

+
1

d!
ǫi1i2..id∂i1x

m1∂i2x
m2 . . . ∂idx

mdCm1m2..md
(x)

]
, (1.17)

la cual da como ecuaciones de movimiento:

∂i
(√−ggij∂jxnGmn

)
+GmlΓ

l
pt∂ix

p∂jx
tgij

=
1

d!
Fmnt...pǫ

ij...k∂ix
n∂jx

t . . . ∂kx
p, (1.18)

y

gij = ∂ix
m∂jx

nGmn(x), F = dC, (1.19)

donde F es la intensidad de campo2 que obedece la identidad de Bianchi dF = 0.

2Traducción de field-strength.
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A partir de estas generalizaciones se formula la versión supersimétrica de la mem-

brana, la supermembrana. La introducción de la supersimetŕıa a la teoŕıa de la mem-

brana bosónica puede hacerse de dos maneras. La primera es formular una super-

membrana con supersimetŕıa del espacio-tiempo manifiesta pero sin supersimetŕıa

en el volumen-mundo barrido por la membrana. La segunda es formular una mem-

brana con supersimetŕıa del volumen-mundo manifiesta pero sin supersimetŕıa en el

espacio-tiempo, a esta supermembrana se le denomina membrana spinning3. En esta

membrana spinning se presenta el problema [80] de que el término cosmológico del

volumen-mundo no permite la supersimetrización con las reglas usuales del cálculo

tensorial sin la introducción de un término de Einstein-Hilbert [81]. Este impedimento

se tradujo en un teorema de no-go para este tipo de membranas [82]. Posteriormente

se consiguió formular la supermembrana con ambas supersimetŕıas [83]. El enfoque en

esta tesis será el de considerar a la supermembrana descrita por una acción del tipo

Green-Schwarz que tiene supersimetŕıa en el espacio-tiempo y tiene simetŕıa kappa en

el volumen-mundo. Para formular la acción de la super p-brana a la Green-Schwarz

es necesario usar el formalismo del superespacio (ver apéndice A). Se introducen las

super-coordenadas (A.1) ZM = (xm, θα) de un superespacio curvo y los supervielbeins

(A.3), EM
Â(Z) donde los ı́ndices definidos por la convención (A.1). Con el pull-back

definido:

Ei
Â = ∂iZ

MEM
Â , (1.20)

con i la coordenada del volumen-mundo. Es necesario definir una super-d-forma

CÂd...Â1
(Z), ya que para poder definir la acción de la super p − brana tiene que

3Sin traducción.
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existir una (p+ 2)-forma cerrada en el superespacio. Su acción es:

S = Td

∫
ddξ

[
− 1

2

√−ggijEi
âEj

b̂ηâb̂ +
1

2
(d− 2)

√−g

+
1

d!
ǫi1...idEi1

Â1 . . . Eid
ÂdCÂd...Â1

]
, (1.21)

Para el caso d = 3 esta acción se corresponde con la de la supermembrana. Esta

acción es equivalente a:

S = T3

∫
d3ξ

[
−1

2

√−ggijEi
âEj

b̂ηâb̂ +
1

2

√−g + 1

6
εijkEÂ

i E
B̂
j E

Ĉ
k CĈB̂Â

]
. (1.22)

donde, gij = Ei
âEj

b̂ηâb̂.

La acción (1.21) al igual que (1.17) tiene un término cinético, un término cos-

mológico y un término de Wess-Zumino. Esta acción (1.21) se reduce a la acción de

la supercuerdas Green-Schwarz cuando d = 2.

Las simetŕıas del espacio target son los superdifeomorfismos, la invariancia de

Lorentz y la invariancia de calibre de la d-forma. Mientras que las simetŕıas del

volumen-mundo son los difeomorfismos usuales y la invariancia kappa. Las leyes de

transformación bajo simetŕıa kappa [70] son:

δZME â
M = 0, δZMEα̂

M = κβ̂(1 + Γ)α̂β̂, (1.23)

donde κβ̂(ξ) es un espinor que anticonmuta del espacio-tiempo pero un escalar en el

volumen-mundo, con:

Γα̂
β̂ =

(−1)d(d−3)/4

d!
√−g ǫi1..idEi1

â1Ei2
â2 . . . Eid

âdΓâ1..âd
. (1.24)

Alĺı las matrices Γa son las matrices de Dirac en el espacio-tiempo que verifican (B.3)

y (B.4). Sobre la invariancia bajo simetŕıa kappa de la acción (1.22) se pueden hacer

las siguientes observaciones. En primer lugar, la invariancia se verifica si y solo si se
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satisfacen ciertas restricciones sobre el tensor de intensidad de campo antisimétrico

FMNPQ(Z) y sobre la supertorsión T Â
MN (en el caso d = 3). En particular, la identidad

de Bianchi dF = 0 requiere que Γ verifique la matriz identidad:

(dθ̄Γadθ)(dθ̄Γ
ab1...bd−2dθ) = 0, (1.25)

para un espinor que conmuta dθ. Esta restricción solo se satisface para ciertos valores

de d y D [72]. En el caso de la supercuerda y la supermembrana los valores permitidos

son:

d = 2 : D = 3, 4, 6, 10; d = 3 : D = 4, 5, 7, 11. (1.26)

Se tiene entonces el resultado ya conocido para la existencia clásica de las supercuerdas

Green-Schwarz y el ĺımite superior para D, D = 11. En segundo lugar, la matriz Γ

(1.24) tiene traza nula y satisface:

Γ2 = 1 (1.27)

cuando se satisfacen las ecuaciones de movimiento, por lo que las matrices (1± Γ)/2

actúan como operadores proyectores. Entonces la ley de transformación (1.23) elimina

la mitad de los grados de libertad fermiónicos, con lo cual el número de grados de

libertad fermiónicos y bosónicos coinciden sobre el volumen-mundo. Finalmente, una

propiedad importante para el caso de la supermembrana D = 11 es que la invariancia

kappa de la acción impone v́ınculos sobre los campos del background, EM
Â y CMNP ,

que coinciden con las ecuaciones de movimiento de la única teoŕıa de supergravedad

en D = 11 [41, 73].

1.2.2. La Supermembrana en el Superespacio

Se puede obtener una expresión de la supermembrana en el superespacio en térmi-

nos de las componentes de los supercampos en un espacio-tiempo curvo. Para ello,
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usaremos los resultados obtenidos por B. de Wit, K. Peeters, J. Plefka en [84], donde

se usa el método denominado gauge completion4, el cual fue usado para la supergra-

vedad en un principio por Cremmer y Ferrara en [24]. Se puede ver también [85, 86].

Con dicho método es posible obtener las expresiones expĺıcitas en términos de las

coordenadas fermiónicas de dichos supercampos y obtener toda la descripción de di-

cho superespacio. En [84] se obtienen los supercampos solamente a segundo orden en

la variable fermiónica θ debido a la complejidad de estas expansiones. Por ejemplo,

para la expansión del superveilbein EÂ
M se obtiene:

E â
m = eâm + 2θ̄ ΓâΨm − 1

4
θ̄ Γâω̂ t̂û

mΓt̂ûθ + θ̄ ΓâT tfgh
m F̂tfghθ +O(θ3),

Eα̂
m = Ψα̂

m − 1

4
ω̂ t̂û
n (Γt̂ûθ)

α̂ + (T tfgh
m θ)α̂F̂tfgh +O(θ3),

E â
α = −(θ̄ Γâ)α +O(θ3),

Eα̂
α = δα̂α +M α̂

α +O(θ3), M α̂
α ∝ F̂ θ2, (1.28)

de igual manera consiguen expresiones para los campos CMNP , E
Â
i y para todos los

campos que aparecen en la acción y los que definen la estructura del superespacio

correspondiente.

Luego, sustituyen estos resultados en la acción de la supermembrana (1.22) en su

versión Nambu-Goto,

S =

∫
d3ξ[−(

√−g) + 1

6
( εijkEÂ

i E
B̂
j E

Ĉ
k CĈB̂Â)], (1.29)

4Sin traducción.
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y obtienen:

S =

∫
d3ξ(−√−g) +

∫
d3ξ[

1

6
εijk∂iX

m∂jX
n∂kX

p{Cmnp − 6θ̄ΓmnΨp +
3

4
θ̄Γt̂ûΓmnθω̂

t̂û
p }]+

+

∫
d3ξ[

1

6
εijk∂iX

m∂jX
n∂kX

p{−3θ̄ΓmnT
tuvw
p θF̂tuvw − 12θ̄ΓtmΨnθ̄Γ

tΨp}]+

+

∫
d3ξ[−εijkθ̄Γmn∂kθ{

1

2
∂iX

m∂jX
n +

1

2
∂iX

mθ̄Γn∂jθ +
1

6
θ̄Γm∂iθθ̄Γ

n∂jθ}]+

+

∫
d3ξ[

1

3
εijk∂iX

m∂jX
n{4θ̄Γpm∂kθθ̄Γ

pΨn − 2θ̄Γp∂kθθ̄ΓpmΨn}+O(θ3)]. (1.30)

La expresión (1.30) es consistente con la simetŕıa kappa cuya expresión está en

(1.23). Esto garantiza, en principio, que los v́ınculos derivados coincidan con las ecua-

ciones de movimiento de la supergravedad D = 11 como se vio en [41]. Debido a lo

complicado de la expresión a este orden o a órdenes superiores en θ, los autores en [84]

hacen un análisis restringiéndose a la membrana bosónica en un background curvo,

donde aparece un elemento importante en la caracterización del background que es la

3-forma. Hablaremos más de ella en la subsección 1.2.3. La acción (1.22) es comple-

tamente general. En particular, se incluye la posibilidad de que el espacio-tiempo sea

plano lo cual simplifica la acción enormemente. La métrica del espacio-tiempo es la

métrica de Minkowski, y la representación en componentes de los supercampos EM
Â

y CMNP en el formalismo del superespacio plano se reduce a:

E â
m(x, θ) = δâm(x), Eα̂

m(x, θ) = 0,

E â
α(x, θ) = −(θ̄Γâ)α, Eα̂

α(x, θ) = δα̂α , (1.31)

y,

Cmnp = 0, Cmnα = (θ̄ Γmn)α, Cmαβ = (θ̄ Γmn)(α(θ̄Γ
n)β),

Cαβγ = (θ̄ Γmn)(α(θ̄Γ
m)β(θ̄Γ

n)γ). (1.32)
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Con las condiciones (1.31) y (1.32), la acción (1.29) se reduce a:

S =

∫
d3ξ{−√−g − εijkθ̄Γmn∂kθ [

1

2
∂iX

m(∂jX
n + θ̄ Γn∂jθ) +

1

6
θ̄ Γm∂iθ θ̄ Γ

n∂jθ]}.
(1.33)

En un primer análisis, nosotros analizamos a primer orden en θ en el formalismo

del superespacio a la supermembrana enrollada en un T 2 siguiendo a [41]. Se impuso

la simetŕıa kappa:

δκSM9×T 2 = −
∫
d3ξδ(

√−g)+

−
∫
d3ξ

1

6
δκ[ε

ijkEÂ′

i E
B̂′

j EĈ′

k BĈ′B̂′Â′ + 3εijkEÂ′

i E
B̂′

j EĈ∗
k BĈ∗B̂′Â′+

+ 3εijkEÂ′

i E
B̂∗
j EĈ∗

k BĈ∗B̂∗Â′ + εijkEÂ∗
i EB̂∗

j EĈ∗
k BĈ∗B̂∗Â∗], (1.34)

y determinamos los v́ınculos para los supercampos T Â
MN y CMNP , asociados a las

ecuaciones de movimiento de la supergravedad D = 9, N = 2 (para mayor detalle ver

apéndice C donde encontramos los siguientes resultados):

T b̂′

ρ̂β̂
∝ (Γb̂′)ρ̂ β̂, T ŝ

ρ̂ β̂
∝ (Γŝ)ρ̂β̂, (1.35)

y

δκCr̂q̂α̂ = δκCχ̂b̂′â′ = 0,

δκCr̂ŝν = (κ̄−Γrs)ν , δκCr̂b̂′α̂ ∝ κ̄−Γm′s. (1.36)

Obtenidos estos resultados, se siguió esta metodoloǵıa aplicada al caso de la su-

permembrana con cargas centrales para encontrar los superv́ınculos correspondientes.

Iniciamente se consideró el caso a primer orden en θ. Se calcularon parcialmente estos

v́ınculos asociados con la intención de obtener la supergravedad calibrada en el for-

malismo del superespacio. Resultados parciales fueron presentados en el VII Congreso
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de la Sociedad Venezolana de F́ısica, Diciembre 7-11, Caracas, Venezuela, 2009 (ver

apéndice C).

Debido a la complejidad de las expresiones obtenidas usando este método que

dificultaban la clasificación de las supergravedades calibradas asociadas, finalmente

se prefirió utilizar un método diferente basado en el análisis global de la supermem-

brana tal y como explicaremos a partir del caṕıtulo 2. Con este método se obtuvieron

los resultados que se presentarán en los caṕıtulos 5, 6 y 7. Sin embargo, esperamos

en un trabajo posterior completar y publicar los resultados del apéndice C, con los

superv́ınculos de la supermembrana con cargas centrales correspondientes con las

ecuaciones de movimiento de la supergravedad calibrada asociada en D = 9 en el

formalismo del superespacio.

1.2.3. La Supermembrana en el Calibre del Cono de Luz

En esta sección, en primer lugar comentaremos los resultados de [84] referente a la

teoŕıa de la membrana formulada en un background no trivial en el calibre del cono de

luz (CCL). Aunque en nuestro caso se parte de un background plano, es interesante el

resultado discutido en [84] porque el enrollamiento con la condición de carga central

podŕıa reinterpretarse en términos de flujos sobre el background de la parte compacta

generando un background curvo.

En primer lugar se formula a la membrana en el calibre del cono de luz en el

background definido por la métrica Gmn y el tensor de campo de calibre Cmnl. La

densidad lagrangeana de la membrana bosónica es:

L = −√−g − 1

6
εijk∂iX

m ∂jX
n ∂kX

l Clnm , (1.37)
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donde la métrica inducida es gij = ∂iX
m ∂jX

n ηmn.

En la formulación del cono de luz, las coordenadas se descomponen en (X+, X−, Xa)

con a = 1, . . . , 9. Por otra parte se usan los difeomorfismos en el espacio target para

escribir la métrica en una forma conveniente [87],

G−− = Ga− = 0 . (1.38)

A continuación se identifica la coordenada temporal del espacio target con el tiem-

po del volumen-mundo, imponiendo la condición X+ = τ . Además, denotamos las

coordenadas de la parte espacial del volumen-mundo de la membrana σr, r = 1, 2.

Siguiendo los pasos descritos en [33] para la membrana en espacio plano, se obtiene

el hamiltoniano de la teoŕıa en términos de las coordenadas y momento, sometido al

v́ınculo

φr = Pa ∂rX
a + P− ∂rX

− ≈ 0 , (1.39)

que es igual al de la teoŕıa en espacio plano. El hamiltoniano obtenido en [84] es:

H =

∫
d2σ

{
G+−

P− − C−

[
1

2

(
Pa − Ca −

P− − C−
G+−

Ga+

)2
+

1

4
(εrs ∂rX

a ∂sX
b)2
]

− P− − C−
2G+−

G++ − C+ − C+− + crφr

}
. (1.40)

donde se han hecho las siguientes definiciones:

Ca = −εrs∂rX−∂sX
bC−ab +

1

2
εrs∂rX

b∂sX
cCabc ,

C± =
1

2
εrs∂rX

a∂sX
bC±ab ,

C+− = εrs∂rX
−∂sX

aC+−a . (1.41)

En (1.40) se incluye un multiplicador de Lagrange cr acoplándose al v́ınculo (1.39). Los

ı́ndices son contraidos con la métrica Gab o su inversa. La selección del calibre X+ = τ

permite reparametrizaciones dependientes de τ de las coordenadas del espacio de
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mundo5 σr, que a su vez induce transformaciones sobre el multiplicador de Lagrange cr

a través de las ecuaciones de movimiento de Hamilton. Mediante posteriores fijaciones

de calibre y resolución del v́ınculo se llega a otras expresiones del hamiltoniano. En

los casos en los que la matriz constante antisimétrica C−ab es distinta de cero se ha

conjeturado, que ésta tiene un papel importante dentro de los modelos matriciales

en la compactificación sobre un toro no-conmutativo [88, 89, 90]. Si en cambio se

considera C−ab = 0, el hamiltoniano correspondiente fue reformulado en términos

del lagrangiano de la teoŕıa de calibre de los difeormorfismos que preservan el área

del volumen-mundo de la supermembrana. En dicho caso el espacio-tiempo 11D es

Minkowski, se toma el volumen-mundo como una foliación Σ×R, con Σ una superficie

de Riemann de genus g, las coordenadas locales espaciales sobre Σ, σa (a = 1, 2), y

τ ∈ R representa el tiempo en el volumen-mundo. Si ahora se descomponen los Xµ y

Pµ de acuerdo al ansatz estándar del calibre del cono de luz y se resuelven los v́ınculos

[33], el hamiltoniano canónico reducido de la supermembrana D = 11 está dado por:

H = T−2/3

∫

Σ

√
W

[
1

2

(
PM√
W

)2

+
T 2

4
{XM , XN}2 +

√
WθΓ−Γm{Xm, θ}

]
, (1.42)

sometido al v́ınculo local

φ ≡ d(PMdX
M + θΓ−θ) = 0, (1.43)

y al v́ınculo global

φ0 ≡
∫

C∫
PMdX

M + θΓ−dθ = 0, (1.44)

donde Cs es una base de homoloǵıa sobre Σ, conM = 1, . . . , 9, y PM son los momentos

conjugados a XM .
√
W es la densidad escalar introducida en el CCL, Σ es la variedad

base que es una superficie de Riemann, θ representa los espinores de Majorana 11D y

5Traducción de world-space.
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Γm son las matrices de Dirac correspondientes. T es la tensión de la supermembrana. φ

y φ0 son los generadores de los difeomorfismos que preservan el área. φ0 se corresponde

con los generadores de los difeormorfismos homotópicos a la identidad, y es el único

presente en el target no-compacto. Ambos tipos de generadores preservan el elemento

de área
√
Wǫabdσ

a ∧ dσb, una 2-forma simpléctica. La ecuación

{Xm, Xn} =
ǫab√
W
∂aX

m∂bX
n, (1.45)

es el corchete simpléctico asociado.

1.2.4. Propiedades Espectrales: Espectro Continuo

En esta sección se comentará sobre el resultado obtenido en [35] acerca del hecho

de que la supermembrana 11D tiene espectro continuo. Una primera observación sobre

el hamiltoniano en el cono de luz es que los modos cero se desacoplan del operador de

masa que describe los modos de oscilación de la supermembrana que se corresponde

con el hamiltoniano que usaremos en lo sucesivo. La cinemática del movimiento del

centro de masas es descrito por la cinemática de una part́ıcula relativista libre. Cuando

nos restringimos a la membrana bosónica se observa que la densidad de potencial es:

V = (ǫrs∂aX
r∂sX

b)
2
. (1.46)

Esta expresión es cero cuando los campos X dependen de una combinación lineal de

las coordenadas espaciales que parametrizan el volumen mundo σr’s. En estos casos,

se dice que la superficie degenera, esto es, cuando la membrana tiene ’brotes’ infinitos

muy delgados en su superficie, llamadas configuraciones tipo cuerdas. Este hecho

muestra que membrana clásicamente es inestable, dado que estas configuraciones

tienen enerǵıa cero (enerǵıa proporcional al área), por lo que clásicamente el sistema
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accede a todos los estados posibles, con o sin cuerdas. La membrana clásicamente no

preserva ni el número de part́ıculas ni la topoloǵıa [92].

Para estudiar el espectro de la supermembrana como objeto cuántico se introduce

el modelo matricial SU(N) con N grande pero finito, con el hamiltoniano descrito

por:

H =
1

2
PA
a PaA +

1

4
(fAB

CXA
a X

B
b )

2 − i

2
fABCX

A
a θ

BγaθC , (1.47)

con el v́ınculo de Gauss,

φA = fABC(X
B
a P

C
a − i

2
θBα θ

C
α ) ≈ 0. (1.48)

Con este modelo matricial se encuentra que el espectro del hamiltoniano es continuo

[35], y ello llevó a interpretar a esta teoŕıa como una teoŕıa de segunda cuantización

[92, 93].

Para explicar este resultado se usa un modelo de juguete6 que incluye todos los

aspectos cualitativos de la supermembrana. Este modelo es un sistema cuántico su-

persimétrico de dos dimensiones con valles planos. El hamiltoniano supersimétrico del

modelo de juguete es:

H =


−∆+ x2y2 x+ iy

x− iy −∆+ x2y2


 . (1.49)

La estructura de este hamiltoniano supersimétrico H muestra la parte bosónica en

la diagonal y la parte fermiónica fuera de ella. Consideraremos una función de onda

definida por,

Φ =


φ1(x, y)

φ2(x, y)


 . (1.50)

6Traducción de toy model.
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El potencial V (x, y) = x2y2 tiene dos direcciones planas que se corresponden con las

direcciones x = 0 y y = 0, el potencial se anula. Es importante conocer cómo se

comporta la parte bosónica del hamiltoniano. Esto es,

HB =
1

2
(p2x + p2y) +

1

2
(p2x + x2y2) +

1

2
(p2y + x2y2) ≥ 1

2
(p2x + p2y) +

1

2
|y|+ 1

2
|x|, (1.51)

donde esta desigualdad es una desigualdad entre operadores, donde está acotado

inferiormente por la suma de los osciladores armónicos con frecuencia variable dadas

respectivamente por y y por x. Por un teorema de Barry Simon [91], un hamiltoniano

acotado inferiormente por otro hamiltoniano con espectro discreto, tiene espectro

discreto. Esto es sorprendente teniendo en cuenta el comportamiento clásico. Cuando

se incluye la contribución fermiónica en el hamiltoniano supersimétrico, lo que de

Wit, Lüscher y Nicolai probaron en [35] es que el espectro es continuo. Esto significa

que no existe potencial que permita el confinamiento de la función de onda, lo cual

implica que el espectro será un continuo. Para la demostración, ellos usaron el método

de reducción al absurdo. Aplicándolo al modelo de juguete, se prueba que existe al

menos una familia de funciones de onda que eligieron espećıficamente:

Ψλ(x, y) := χ(x− λ)

√
|x|
4π
e−

1
2
|x|y2


 1

−1


 , (1.52)

donde,

χ(x) := eikxχ0(x), (1.53)

con k =
√
E, λ ∈ R y χ0 es una función real que vaŕıa suavemente de soporte

compacto en R que es normalizada

‖χ‖2 =
∫
χ2dx = 1. (1.54)

Demostraron que dado cualquier ǫ > 0, existe un λ tal que

‖(H − E)Ψλ‖ < ǫ. (1.55)
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Lo cual prueba que el espectro de H lo forman un continuo de números positivos.

Este resultado fue totalmente inesperado y contrario al comportamiento de la

supercuerda, cuyas excitaciones discretas se interpretan como excitaciones de tipo

part́ıcula de una teoŕıa cuyo espacio target está en más dimensiones. Posteriormente

este resultado fue reinterpretado en términos de una teoŕıa en segunda cuantización

en la que las membranas se entienden como una teoŕıa de interacción de muchas

part́ıculas (D0-branas), y en donde ahora por consistencia es necesario que el espectro

sea continuo, ya que los estados de scattering7 de la supermembrana conectados por

configuraciones de tipo cuerdas debeŕıan tener un espectro continuo de enerǵıa [92,

93].

1.3. Conexión entre Supermembrana y Supergra-

vedad en 11D

Como se mencionó antes, a la supergravedad D = 11 se le considera como la teoŕıa

efectiva del ĺımite a bajas enerǵıas de la teoŕıa-M. Por otro lado, está bien establecido

que las ecuaciones de movimiento de la supergravedad en 11D surgen como una con-

secuencia de imponer la simetŕıa kappa a la acción de la supermembrana formulada

sobre un background general [41]. Esto respalda la conjetura de que la descripción a

baja enerǵıa de la teoŕıa de la supermembrana es la teoŕıa de supergravedad en 11D.

Más espećıficamente, esta conjetura significa que el estado fundamental de la super-

membrana en 11D se corresponde al supermultiplete asociado a la supergravedad en

11D. Una prueba rigurosa sobre este punto aún no existe, aunque se está trabajando

7Sin traducción.
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en ello [94]. En esta sección mencionaremos los resultados más generales encontrados

en [41]. Sea la variación de la acción de la supermembrana (1.22) bajo simetŕıa kappa

δκS =

∫
d3ξ{√−ggij(−δκEβ̂E γ̂

i T
â
γ̂β̂
)Ejâ +

√−ggij(−δκEβ̂E ĉ
iT

â
ĉβ̂
)Ejâ+}

−1

2

√−gδκg(T ij − 1

2
gijT − 1

2
gij) + εijkEÂ

i E
B̂
j E

Ĉ
k δκE

α̂Fα̂ĈB̂Â}, (1.56)

donde las transformaciones bajo simetŕıa kappa (1.23) se pueden escribir de manera

más compacta:

δκE
β̂ = (1 + Γ)αβκ

β,

δκE
a = 0, (1.57)

y gij ≡ Tij . Finalmente, los v́ınculos que se obtienen imponiendo la invariancia de la

acción bajo esta simetŕıa δκS = 0 son:

Fαβγδ = Fαβγd = Fαabc = 0, (1.58)

Fαβab = −1

6
(Γab)αβ, (1.59)

T a
αβ = (Γa)αβ . (1.60)

que coinciden con las ecuaciones de movimiento de la supergravedad 11D en el for-

malismo del superespacio, mostradas en (1.6) y (1.12).
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Caṕıtulo 2

Metodoloǵıa: Compactificación y

Calibrados

En este caṕıtulo resumiremos la metodoloǵıa usada en esta tesis para alcanzar los

objetivos planteados. Discutiremos algunos de los métodos de compactificación usa-

dos en supergravedad y en la teoŕıa de la supermembrana. Se repasará el concepto

de fibrado y el papel desempeñado por la monodromı́a en los métodos de calibrado.

Se describirán dos métodos para obtener la descripción efectiva de la supermembrana

con cargas centrales. En particular, se describe el método de esculpido que explica a

nivel global el calibrado de la supermembrana con cargas centrales y que posterior-

mente a lo largo de esta tesis va a permitir establecer la correspondencia entre las

supergravedades calibradas, la teoŕıa-M y las relaciones de dualidad.

2.1. Métodos de Compactificación usados en Su-

pergravedad

En esta sección describimos algunos métodos de compactificación usados en su-

pergravedad. Estos procedimientos son importantes para obtener las descripciones
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efectivas de las supergravedades en menor dimensión. En particular, las teoŕıas de

supergravedad en cuatro dimensiones pueden ser obtenidas mediante estos métodos

a partir de esas teoŕıas de supergravedad en mayor dimensión.

2.1.1. Compactificación Toroidal: Reducción Dimensional

En esta sección describimos la compactificación toroidal resumiendo los resultados

expuestos en [66]. El procedimiento esencialmente consiste en expresar un campo de

dimensión mayor en una torre infinita de campos de menor dimensión expandiendo la

dependencia sobre las coordenadas internas en armónicos. En el caso de la reducción

sobre un ćırculo de un campo escalar complejo φ̂ en D̂ dimensiones, dependiente de

las coordenadas xm̂ = (xm, y), se hace la expansión de Fourier:

φ̂(xm, y) =
∑

n

einy/Rφn(x
m) , (2.1)

donde la dirección y se toma como dirección compacta de longitud 2πR, con el mo-

mento k definido por k = n/R en dicha dirección, y se impone la condición de borde:

φ̂(xm, 0) = φ̂(xm, 2πR). (2.2)

Supondremos, además, que el campo escalar φ̂ verifica la ecuación de Klein-Gordon

✷̂φ̂ = 0 donde ✷̂ = ∂µ∂
µ + ∂y∂

y . Si se descompone el D’Alambertiano en términos de

las coordenadas, la ecuación queda:

✷φk − k2φk = ✷φn − (n/R)2φn = 0 , (2.3)

donde ✷ = ∂µ∂
µ. Esta es la ecuación para un escalar complejo de (masa)2 = k2. Por

lo tanto, un escalar sin masa en D̂ dimensiones se convierte en un número infinito

de campos escalares en D = D̂ − 1 dimensiones. Estos campos son los estados de
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Kaluza-Klein (KK). El espectro de los estados KK es continuo para las direcciones

internas no-compactas mientras que es discreto cuando estas son compactas. Solo la

componente φ0 (n = 0) no tiene masa. El caso en que el proceso de compactificación

solo considera estos modos no masivos, se le denomina reducción dimensional [66].

Luego, en el ĺımite R→ 0, los modos masivos se convierten en infinitamente ma-

sivos por lo cual pueden ser descartados consistentemente. Al despreciar los estados

masivos, esta compactificación se reduce a una reducción dimensional. Para obtener

la descripción a bajas enerǵıas se debe truncar de manera consistente a un número

finito de campos. En este caso, la consistencia se refiere a que cada solución de menor

dimensión corresponda a una solución en dimensión mayor. En la reducción dimen-

sional toroidal ésto queda automáticamente satisfecho, si bien no es necesariamente

cierto para compactificaciones más generales [95].

En la reducción dimensional las masas son inversamente proporcionales al tamaño

de la variedad interna. Esto significa que las masas asociadas a los estados con mo-

mentos distintos de cero son muy grandes y no se observan a bajas enerǵıas. En este

tipo de reducción el número de grados de libertad no cambia, dado que se preserva

solo el modo más ligero. Esos campos de menor dimensión forman multipletes del gru-

po de isometŕıas de la variedad interna, ver por ejemplo [96]. Los grados de libertad

de la teoŕıa formulada en menor dimensión, no son siempre no-masivos. Los grados

de libertad masivos aparecen cuando la expansión de Fourier de un campo sobre la

variedad interna no contiene ningún campo sin masa.

En la teoŕıa de la supermembrana con cargas centrales partimos de un espacio-

tiempo plano compactificado toroidalmente. Desde ese punto de vista también resulta

interesante considerar la reducción toroidal de la métrica a fin de poder establecer
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la relación con la teoŕıa efectiva asociada. En la práctica, se construye un ansatz de

reducción, que se sustituye en las ecuaciones de campo o en el lagrangiano.

Lo ilustramos con el ejemplo más sencillo descrito por [66]. Se considera la reduc-

ción de la métrica en D̂ dimensiones sobre un ćırculo a D = D̂ − 1 dimensiones. El

ansatz estándar para la descomposición de la métrica es:

d̂s
2
= e2αφds2 + e2βφ(dy + Amdx

m)2 , (2.4)

donde se muestra que ĝm̂n̂ en D̂-dimensiones se descompone en gmn D-dimensional

más un vector Am y un escalar φ. Las constantes α y β son, en principio, arbitrarias,

pero pueden ser seleccionadas de modo que la teoŕıa formulada en menor dimensión

esté descrita con el lagrangiano en su forma estándar1 :

L =
√
−ĝR̂ =

√−g[R− 1
2
(∂φ)2 − 1

2 2!
e2(β−α)φF 2] , (2.5)

con F = dA. Las simetŕıas del Lagrangiano en menor dimensión (2.5) se pueden

entender considerando su origen en dimensiones más altas.

En D̂ dimensiones, la transformación general de coordenadas no preserva la forma

del ansatz de reducción (2.4), sin embargo puede definirse un ansatz con paráme-

tros espećıficos α y β que preservan la transformación general de coordenadas D-

dimensional, las transformaciones de calibre U(1) y una simetŕıa de escalamiento

global en D. En el caso de la simetŕıa trombón o de escalamiento en D̂-dimensiones

ĝm̂n̂ → λ2ĝm̂n̂, ésta se reduce a una simetŕıa de escalamiento en dimensión D. Por

tanto, en la teoŕıa formulada en D dimensiones se pueden construir combinaciones

lineales de estas dos simetŕıas globales para obtener las siguientes transformaciones

1Ver, por ejemplo, los lagrangianos efectivos provenientes de teoŕıas de cuerdas descritos por

Stelle en [29].
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ŕıgidas [66]:

gmn → λ1
2gmn, Am → λ1Am ; Am → λ2

α−βAm, eφ → λ2e
φ, (2.6)

donde λ1, λ2 ∈ R
+. La simetŕıa trombón parametrizada por λ1 en dimensión D, escala

todos los términos en el lagrangiano con el mismo factor, y es solamente una simetŕıa

de las ecuaciones de campo. La simetŕıa de escala parametrizada por λ2 es la única

simetŕıa que deja invariante el lagrangiano. Las dos simetŕıas R+ de la supergravedad

IIA en D dimensiones aparecen de esta manera.

Si se hace la reducción de la métrica sobre un toro T n, tal y como se explica en

[66], el ansatz de reducción de la métrica D̂-dimensional a D = D̂−n dimensiones es

(con una descomposición de coordenadas xm̂ = (xm, yr) donde r = 1, . . . , n):

d̂s
2
= e2αφds2 + e2βφJrs(dy

r + Ar
mdx

m)(dys + As
ndx

n) . (2.7)

Los campos en menor dimensión son: gmn, n vectores Ar
m, un dilatón φ y una matriz

escalar Jrs que parametriza un coset SL(n,R)/SO(r). Este último corresponde a

(n− 1) dilatones y 1
2
n(n− 1) axiones. El lagrangiano en dimensión D viene dado por

una reducción del término Einstein Hilbert:

LD =
√

−ĝR̂ =
√−g[R− 1

2
(∂φ)2 + 1

4
Tr(∂J∂J−1)− 1

2 2!
e2(β−α)φJmnF

mF n] , (2.8)

con F r = dAr. Los valores convenientes para α y β producen el lagrangiano en

la forma convencional (2.8). La métrica (2.7) es invariante bajo transformaciones

de coordenadas generales D-dimensional, transformaciones de calibre U(1)n y una

simetŕıa global GL(n,R) = SL(n,R) × R+ Las transformaciones globales vienen

descritas por consiguiente por SL(n,R) y R+.

Consideremos ahora la reducción de un potencial de calibre de rango d, Ĉ(d),

sobre un ćırculo [66]. La dinámica del potencial de mayor dimensión Ĉ(d), acoplada a
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gravedad y a un dilatón ϕ̂, es determinada por:

L̂ =
√
−ĝ[−1

2
(∂ϕ̂)2 − 1

2
eaϕ̂Ĝ(d+1) · Ĝ(d+1)], (2.9)

con Ĝ(d+1) = dĈ(d), donde se ha incluido el término cinético dilatónico. El parámetro

a caracteriza el acoplamiento de dilatón. El ansatz de reducción para la forma de

calibre es:

Ĉ(d) = C(d) + (dz + A) ∧ C(d−1) , ϕ̂ = ϕ. (2.10)

donde A es el campo vectorial KK del ansatz (2.4). El lagrangiano resultante está des-

crito por:

LD =
√−g[−1

2
(∂ϕ)2 − 1

2
eaϕ−2dαφG(d+1) ·G(d+1) − 1

2
eaϕ+2(D−d−1)αφG(d) ·G(d)] , (2.11)

con intensidades de campo G(d+1) = dC(d) + F ∧ C(d−1) y G(d) = dC(d−1).

Se puede ver que la reducción de una d-forma sobre un n-toro produce la cantidad

de


 n

d− d̃


 formas de rango d̃ (donde d − n ≤ d̃ ≤ d). Por ejemplo, la reduc-

ción de una 2-forma (que es el caso que nos interesa) sobre un 2-toro da lugar a una

2-forma, dos vectores y un escalar. Al reducir sobre un toro, la simetŕıa de calibre

δĈ(d) = dλ̂(d−1) se divide en diferentes transformaciones de calibre de menor dimen-

sión, correspondiente a los diferentes potenciales d̃-formas. Los potenciales d̃-formas,

forman representaciones lineales de la simetŕıa global SL(n,R).

Finalmente, nos referiremos al sector fermiónico de la teoŕıa de supergravedad [96].

En la reducción dimensional fermiónica los espinores en dimensión D̂, se expresan

como un producto tensorial de espinores en el espacio de dimensión D y el espacio

interno. Para la reducción toroidal, los espinores ’internos’ se toman como constantes.

Por ejemplo, el ansatz de reducción para el dilatino es:

λ̂ =
∑

i

λi ⊗ ηi , (2.12)



Caṕıtulo – 2. Metodoloǵıa: Compactificación y Calibrados 41

donde λi son los espinores de menor dimensión y ηi los espinores internos. El rango de i

es igual al número de componentes de esṕın-1/2 independientes de la variedad interna

por lo que depende de (D̂−D). Por ejemplo, al reducir sobre un siete-toro, el espinor

minimal de 32-componentes λ̂ se divide en espinores minimales de 4-componentes

λi, por lo que i va desde 1 a 8. En el caso de fermiones de esṕın-3/2, es decir, si

los fermiones tienen además un ı́ndice del espacio-tiempo, el procedimiento es una

combinación de los ansätze bosónico y fermiónico. Ambos ı́ndices, espinorial y del

espacio-tiempo, se separan en rangos de menor dimensión:

ψ̂m =
∑

i

ψi
m ⊗ ηi , ψ̂r =

∑

j

λj ⊗ ηjr , (2.13)

donde ηi y ηjr son fermiones constantes en el espacio interno de esṕın 1/2 y 3/2,

respectivamente. Aśı, los fermiones resultantes son el gravitini ψi
m y el dilatini λj .

Este tipo de reducciones genera todas las supergravedades maximales en D < 11.

2.1.2. Reducción con un Twist: Compactificaciones Scherk-

Schwarz (SS)

En esta sección se hace un repaso de un método de reducción dimensional que

es una generalización de la reducción de Kaluza-Klein (KK) con un twist la cual es

posible siempre que la teoŕıa de mayor dimensión contenga una simetŕıa global [97].

Las compactificaciones SS aparecieron como una generalización de las reducciones KK

en las cuales los campos pueden tener una dependencia no-trivial sobre las variables

compactificadas, pero de tal modo que el truncamiento del lagrangiano en menor

dimensión sigue siendo consistente. Este método consiste en imponer una condición

de borde, denominada twisted.



Caṕıtulo – 2. Metodoloǵıa: Compactificación y Calibrados 42

Supongamos que tenemos inicialmente una teoŕıa invariante bajo un grupo de

simetŕıa global G. Consideremos los campos escalares φ̂ transformando linealmente

bajo una transformación global: φ̂ → gφ̂ con g ∈ G. Esto permite imponer una

condición de borde twisted más general [97]:

φ̂(x, 2πR) = M(g)φ̂(x, 0) . (2.14)

donde al compactificar en el ćırculo los campos tienen una condición de periodicidad

módulo una transformación de simetŕıa. A esta transformación de simetŕıa se le llama

monodromı́a.

Para grupos generales G, el elemento g(y) tiene que satisfacer el siguiente criterio

de consistencia:

M = g(y)−1∂yg(y), (2.15)

debe ser constante. Esta condición se impone para asegurar que se anula la dependen-

cia de las coordenadas compactas y aśı garantizar la consistencia del truncamiento

en menor dimensión. Esta condición puede satisfacerse si:

g(y) = e(My) , con M = e(2πRM) . (2.16)

Por lo tanto, las constantes M constituyen un elemento del álgebra de Lie de g.

Este ansatz de reducción lleva desde las ecuaciones Klein-Gordon sin masa en

mayor dimensión a las ecuaciones de Klein-Gordon masivas de menor dimensión:

✷̂φ̂ = 0 ⇒ ✷φ+M2φ = 0 . (2.17)

Por esta razón, la matrizM es usualmente llamada la matriz de masa. Los autovalores

de M2 están relacionados a la (masa)2 de los campos φ: los autovalores negativos

corresponden a las (masas)2 positivas y viceversa, dependiendo si los subgrupos de

G generados por M son o no compactos respectivamente.
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La simetŕıa G es rota en la reducción twisted: elementos de G no preservan las

ecuaciones de campo sino que transforman la matriz de masa por:

M → g−1Mg . (2.18)

Solamente las transformaciones para las cuales las dos matrices de masa M y g−1Mg

son iguales preservan las ecuaciones de campo de menor dimensión [66]. Ésto, en

general, solo lo cumplen los elementos de grupo. Si G es el grupo trivial G = I

entonces M = 0 y se recupera la reducción toroidal. Si por otra parte, G no es una

simetŕıa de la teoŕıa, la reducción no será consistente: en general, no se encontrará la

cancelación de todas las dependencias en las coordenadas internas al obtener las

ecuaciones de campo de menor dimensión [97].

Aplicando este método en el contexto de la teoŕıa de supergravedad, el lagrangiano

en D̂-dimensiones es:

L̂ =
√

−ĝ[R̂ + 1
4
Tr(∂Ĵ∂Ĵ−1)], (2.19)

donde J es la matriz definida por el conjunto de escalares de la teoŕıa de supergravedad

maximal que parametriza el coset G/H [66]. Hemos visto que para este lagrangiano,

la reducción sobre un ćırculo tiene el ansatz (2.4), con Ĵ = J . Además tiene una

simetŕıa global ya que J → ΩJΩT con Ω ∈ G.

Consideremos el ansatz de reducción twisted definido por:

d̂s
2
= e2αφds2 + e2βφ(dy + Amdx

m)2 , Ĵ = U(y)JU(y)T , (2.20)

para un elemento U(y) = exp(My) ∈ G, donde M es la matriz de masa del álgebra

de Lie de G. Notemos que el ansatz es el mismo empleado de la reducción KK, pero

el conjunto de escalares J tiene una relación no trivial (definida a través de la matriz

de monodromı́a (2.16)) con el conjunto de escalares Ĵ , a diferencia del caso toroidal

en el que U(y) = I y Ĵ = J .
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La descomposición de las transformaciones de coordenadas en dimensión D̂ a

menor dimensión (D = D̂ − n), δxm̂ = −ξ̂m̂, es análoga a la reducción KK. Ésta

se descompone en una transformación de coordenadas, U(1)n simetŕıas de calibre y

una transformación global. La transformación de calibre U(1) viene parametrizada

por ξ̂y = λ(x). La transformación de coordenadas en D dimensiones mantiene la

invariancia bajo difeomorfismos. Las otras dos transformaciones quedan modificadas

debido al twist.

En el caso de la reducción twisted sobre un ćırculo [66], el ansatz de reducción

(2.20) no es invariante bajo la siguiente transformación de coordenadas:

Ĵ = U(y)JU(y)T → Ĵ = U(y − λ)JU(y − λ)T . (2.21)

Usando U(y) = exp(My) ∈ G, la transformación de coordenada interna corresponde

a la transformación de J en D dimensiones:

J → exp(−Mλ)Jexp(−MTλ) , Am → Am + ∂mλ . (2.22)

De hecho, la intensidad de campo escalar transforma covariantemente bajo esta trans-

formación local. Por lo tanto puede decirse que el subgrupo unidimensional de G

generado por M está calibrado. Esto significa que el parámetro global de esta trans-

formación λ es promovido a local. Por esta razón se dice que la reducción twisted

lleva a un calibramiento no-trivial en la teoŕıa de menor dimensión [66].

La transformación global viene parametrizada por un parámetro constante c y

bajo este parámetro, J transforma como

Ĵ = U(y)JU(y)T → Ĵ = U(y − cy)JU(y − cy)T . (2.23)

Sin embargo, a diferencia de lo que ocurre con la transformación de calibre (2.21),

ésta no puede ser interpretada como una transformación de simetŕıa en dimensión D
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dado que no es independiente de las coordenadas internas sobre J . Además los térmi-

nos cinéticos no escalan igual que el potencial escalar. Esto hace que la simetŕıa de

escalamiento se rompa debido a los parámetros de masaM . Esta es una caracteŕıstica

general de la mayor parte de las teoŕıas masivas: La masa rompe la invariancia de

escala.

Se pueden construir ansätze de reducciones twisted para un lagrangiano más ge-

neral que incluya a los potenciales de calibre y fermiones. Para ello, se debe estudiar

cómo modificar los ansätze toroidales mediante la introducción de la transforma-

ción U(y) de manera conveniente. Sin embargo, la consistencia de tales reducciones

está garantizada por la simetŕıa global G en D̂ [66].

En casos especiales, la existencia de potenciales de calibre extra en las reducciones

twisted da origen a un ’aumento o mejoramiento’ del calibrado. En esos casos, adi-

cionalmente al calibrado por simetŕıa twisted, se encuentran otras simetŕıas que han

sido promovidas a locales en la teoŕıa calibrada. Para que esto sea posible, se nece-

sita que la parte global de esas simetŕıas estén presentes en la teoŕıa no-calibrada, y

adicionalmente deben existir los vectores de calibre correspondientes, necesarios para

calibrar las simetŕıas extras.

Por ejemplo, tal y como se explica en [66], supongamos que se incluye un vector de

calibre V̂ en el lagrangiano en D̂ dimensiones. V̂ tiene una simetŕıa global V̂ → ΩαV̂

con Ω ∈ R+, con un peso espećıfico α. Además se tiene la transformación de calibre

δV̂ = dλ̂. Entonces, el ansatz de reducción twisted para V̂ y λ̂ se escribe:

V̂ = Uα(V + χ(dy + A)), λ̂ = Uαλ, (2.24)

donde V̂ se descompone en un vector V y el axión χ. A es el vector que proviene de

la métrica y el elemento del grupo R+ es U = expmy, con un parámetro de masa m.
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Consideremos a λA y λV , los parámetros de calibre de A y V , respectivamente.

Su acción sobre el axión χ es:

δAχ = mλAχ , δV χ = mλV . (2.25)

Por lo tanto, cuando un parámetro de masa es generado por dos transformaciones

locales independientes: se encuentra un ’aumento o mejoramiento’ en la simetŕıa de

calibre. De hecho, en este caso los dos calibres son no-abelianos, ya que:

[δA, δV ] = m2λAλV . (2.26)

Estas transformaciones forman el grupo no-Abeliano bidimensional único, que se de-

nota por A(1) [46]. Éste aparece en nueve dimensiones y tiene su origen en el calibrado

de la teoŕıa de supergravedad IIA en diez dimensiones.

Ahora analicemos cómo afectan las reducciones twisted al sector fermiónico. Para

una teoŕıa de supergravedad con una simetŕıa global G y simetŕıa local K, los fer-

miones son inertes bajo G pero transforman bajo K. Se puede primero seleccionar

un calibre f́ısico eliminando la simetŕıa local K, y por consiguiente se reduce con

un twist en G (el cual solo actúa sobre los fermiones mediante la transformación

compensadora) y una selección de la estructura de esṕın para cada representación K.

Para una reducción twisted sobre un toro, las simetŕıas incluyen una simetŕıa ŕıgida

SL(2,R) ⊆ G y una local U(1) ⊆ K en D+1 dimensiones. En este caso, si fijamos la

simetŕıaK completamente, seleccionando un calibre f́ısico, la transformación SL(2,R)

representada por la matriz

Λ =


a b

c d


 , (2.27)
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actúa mediante un fermión λ de carga U(1), q por la transformación compensadora

U(1)

λ→
(
cτ̄ + d

cτ + d

)q/4

λ. (2.28)

Las reducciones twisted de supergravedad dan lugar a supergravedades calibradas en

menor dimensión.

2.1.3. Otros Calibrados

(1) Calibrados CSO de Supergravedades Maximales

En esta sección se mencionan otras posibilidades de supergravedades maximales

calibradas. Un importante papel en la supergravedad maximal calibrada lo juegan

los grupos llamados CSO, ver por ejemplo [66]. Estos grupos pueden ser vistos como

continuaciones anaĺıticas y contracciones de grupos SO. Por ejemplo este es el caso

que se obtuvo al reducir la supergravedad D = 11 en una 7-esfera con flujo asociado

al calibrado SO(8) en cuatro dimensiones [98].

Los calibrados CSO generalizan los calibrados de subgrupos de SL(2,R) en nueve

dimensiones. Un ejemplo es el calibrado del subgrupo SO(n) de teoŕıas de supergra-

vedad con simetŕıa global SL(n,R). Además de SO(n), existen otros subgrupos de el

grupo de SL(n,R) que pueden ser calibrados. Estos calibrados pueden obtenerse por

continuación anaĺıtica o contracción de grupo del grupo de calibre [99], y se conocen

como el grupo CSO(p, q, r) con p + q + r = n, donde p, q, r ∈ Z. En esta tesis nos

restringiremos a reducciones a nueve dimensiones (n = 2). Un caso especial de esta

reducción es dada por p+ q = 1 o 2. En esos casos, Hp,q corresponde a una variedad

uno-dimensional, sobre los cuales se hace una reducción twisted.
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La diferencia entre (p, q, r) = (2, 0, 0), (1, 1, 0) y (1, 0, 1) es el flujo de los escalares:

los diferentes valores corresponden a twisting con los subgrupos SO(2), SO(1, 1) y R

de un grupo de simetŕıa global SL(2,R), respectivamente.

(2) Tensor de Embbeding

Motivados por el descubrimiento de nuevos calibrados, asociados a la correspon-

dencia AdS/CFT y al estudio de compactificaciones con flujo, se propuso un nuevo

método: El método del tensor de embedding, que pretende clasificar de la forma más

general posible todos los calibrados asociados a una teoŕıa de supergravedad en una

dimensión dada [99, 100]. Esta clasificación se hace atendiendo a los subgrupos de

simetŕıas globales residuales en la teoŕıa calibrada v́ıa un tensor de embedding. Una

condición que se le impone a este método de calibrado es que se preserve la supersi-

metŕıa del lagrangiano original.

Una caracteŕıstica fundamental de las supergravedades maximales es que los esca-

lares parametrizan un espacio simétrico G/H . Con, G denominado el grupo dualidad

y H el grupo de la simetŕıa R (R-symmetry)2. Los campos escalares son descritos en

términos de un elemento de G, V (x), que depende de las coordenadas del espacio-

tiempo, y transforma bajo transformaciones globales por la izquierda. Las tranforma-

ciones locales H actúan por la derecha [52]. Si se selecciona un calibre, el elemento

de grupo V es el coset de G/H . Para calibrar la teoŕıa de la supergravedad se utiliza

el embedding de este grupo de calibre en G mediante un tensor ΘM
α, denominado

tensor de embedding:

δM ≡ ΘM
αδα, (2.29)

donde δM son los generadores del grupo H y δα, los generadores de G.

2Simetŕıa que actúa notrivialmente sobre las supercorrientes.
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Al calibrar las derivadas se sustituyen por derivadas covariantes preservando la

forma del lagrangiano. Estas derivadas covariantes tienen la siguiente forma:

Dm = ∂m − eAM
mΘM

αtα, (2.30)

donde AM
m son campos de calibre abelianos que transforman en G con los generadores

(tα)
N
M , tal que δAm

M = −Λα(tα)N
MAN

m, y e es la constante de acoplamiento de la

teoŕıa que en ocasiones es absorbida en la definición ΘM
α. El tensor de embedding

ΘM
α es real y satisface la condición de cierre del álgebra:

ΘM
αΘN

β fαβ
γ = fMN

P ΘP
γ , (2.31)

donde fαβ
γ son las constantes de estructura deG, y fMN

P , las constantes de estructura

del grupo de calibre. Esta condición implica que Θ es invariante bajo el grupo de

calibre. La ec (2.31) se puede escribir en términos de los generadores tα,

fβγ
αΘM

β ΘN
γ − (tβ)N

P ΘM
β ΘP

α = 0 . (2.32)

A esta condición se le denomina el v́ınculo cuadrático en el tensor de embedding.

Además Θ verifica también la condición:

P1Θ = 0 (2.33)

donde P1 es un proyector que proyecta en la representación en Θ que son prohibidas.

A esta condición se le denomina v́ınculo lineal en el tensor de embedding [101].

Por consiguiente, calibrados consistentes están caracterizados a través de tensores

de embedding que satisfacen dos v́ınculos, uno cuadrático y uno lineal en el tensor

de embedding. El v́ınculo cuadrático asegura que el tensor de embedding define un

subgrupo propio del grupo de dualidad. El v́ınculo lineal implica que el tensor de

embedding pertenece a una representación espećıfica del grupo de dualidad. Recien-

temente en [49] han usado el método del tensor de embedding para construir en 9D

las supergravedades calibrada/masivas más generales a partir de la maximal en 9D.
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2.1.4. El grupo GL(2,R)

Para el caso de interés aqúı, las supergravedades calibradas tipo II en 9D, las

monodromı́as están asociadas al grupo de simetŕıa global GL(2,R) = SL(2,R)×R+.

Los primeros trabajos en relacionar las teoŕıas de supergravedad tipo II en 9D con

la clasificación de la simetŕıa SL(2,R) y su subgrupo aritmético SL(2,Z) fueron

realizados por [42, 43]. En esta sección nosotros repasaremos las clases inequivalentes.

En el sector SL(2,R), existen tres clases inequivalentes de teoŕıas correspondientes

a las clases conjugadas SL(2,R) denominadas hiperbólicas, eĺıpticas y parabólicas,

que están representadas de la forma [102]:

Mp =


1 k

0 1


 , Mh =


e

γ 0

0 e−γ


 , Me =


 cos θ sin θ

− sin θ cos θ


 , (2.34)

donde cada clase se especifica por la constante de acoplamiento (k, γ o θ). Además,

en 9D la teoŕıa puede ser descrita en términos de la matriz de masa M con tres

parámetros [42, 43]:

M =
1

2


 m1 m2 +m3

m2 −m3 −m1


 . (2.35)

Esta matriz de masa, como se explicó en [42, 43], pertenece al álgebra de Lie

sl(2,R) y transforma en la representación adjunta irreducible. Esto se caracteriza

por el vector de masa
→
m= (m1, m2, m3). A bajas enerǵıas la supergravedad calibrada

está determinada por la matriz de masa M para una monodromı́a dada M.

Existen tres casos distintos dependiendo del valor de ~m2 = 1
4
(m1

2 +m2
2 −m3

2)

[102, 105] caracterizando un conjunto de tres clases conjugadas mostradas en (2.34):

R, SO(1, 1)+, SO(2). Como haremos uso de los mismos se describen a continuación.
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Cada uno de los subgrupos es generado por un elemento del grupo SL(2,R), Λ

con detΛ = 1. Ellos se clasifican de acuerdo a su traza:

La supergravedad parabólica calibrada está asociada al calibrado del subgrupo

R con parámetro ζ generada por una Λp de la forma Mp. La clase conjugada

corresponde a las matrices con |TrΛp| = 2.

La supergravedad calibrada hiperbólica está asociada al calibrado del subgrupo

SO(1, 1)+ con parámetro γ generada por una Λh de la forma Mh. La clase

conjugada la forman las matrices cuyos |TrΛh| > 2.

La supergravedad calibrada eĺıptica está asociada al calibrado del subgrupo

SO(2) generada por elementos Λe de SL(2,R) de la forma Me con parámetro

θ. La clase conjugada eĺıptica corresponde a las matrices con |TrΛe| < 2.

El grupo R+ es una clase conjugada uniparamétrica. Esto corresponde a los esca-

lamientos que dejan invariante las ecuaciones de campo pero escalan globalmente el

lagrangiano. Estas simetŕıas fueron llamadas trombón por [62]. Su calibrado fue estu-

diado en [47, 48]. Esto corresponde a la reducción con un nuevo parámetro m4 6= 0.

Siguiendo a [46], la simetŕıa R
+ se calibra con parámetro ΛR+ = em4λ.

Como se explicó en [46] el conjunto completo de deformaciones {mi, m4} con un

grupo de simetŕıa GL(2,R) para las reducciones de supergravedad tipo IIB corres-

ponden a:

ΛGL(2,R) = ΛSL(2,R)ΛR+ . (2.36)
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2.2. Compactificaciones en términos de Fibrados

En esta sección describimos teoŕıas de supercuerdas/supergravedad/teoŕıa-M en

términos de fibrados, para ello se hace una breve revisión del concepto de fibrado y

se estudian la reducciones analizadas anteriormente.

2.2.1. Fibrados

A continuación daremos un resumen sobre nociones de fibrados que nos serán de

utilidad. La motivación para introducir el formalismo de fibrados es considerar las

compactificaciones del espacio space como un tipo particular de fibrados [14, 106].

Se define a un fibrado (E, π,M, F,G) como una construcción matemática que

está formada por los siguientes elementos: tres variedades diferenciables, llamadas el

espacio total E, la base M , y la fibra F ; una función sobreyectiva π denominada

proyección tal que π : E →M , y con la imagen inversa π−1(p) ≡ Fp
∼= F donde F es

denominada la fibra en p ∈M ; un grupo de Lie G denominado el grupo de estructura,

el cual actúa sobre F por la izquierda; un difeomorfismo φ, φi : Ui × F → π−1(Ui)

tal que πφi(p, f) = p, donde {Ui} es un conjunto de cubrimiento abierto de M . A φi

se le llama trivialización local; y finalmente, un conjunto de funciones denominadas

funciones de transición tij, tal que tij : Ui ∩ Uj → G y φj(p, f) = φi(p, tij(p)f),

relacionando φi y φj con Ui ∩ Uj 6= ∅.

En general, a un fibrado como el descrito antes (E, π,M, F, {Ui}, {φi}, G) se le

denomina, fibrado coordenado. Con lo cual, el término fibrado representa una clase de

equivalencia de fibrado coordenado. Existen generalizaciones del concepto de fibrados

llamadas fibraciones, en donde no se admiten siempre trivializaciones locales. Esto es,
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en el que no necesariamente todas las fibras son iguales. Las diferentes fibraciones para

una base B y una fibra F se clasifican por las clases caracteŕısticas correspondientes.

Se denomina sección de un fibrado s , a un mapa suave s :M → E, que satisface

πs = idM . Con s(p) = s|p es un elemento de Fp = π−1(p). El conjunto de secciones

sobre M se denota por Γ(M,E). Si U ⊂ M , se puede definir una sección local solo

sobre U . Por lo tanto, Γ(U,E) denota el conjunto de secciones locales sobre U . Los

campos f́ısicos de una teoŕıa son secciones de un fibrado, mientras que la acción S
de una teoŕıa es el funcional invariante de calibre de las secciones. Dada un fibración

determinada se pueden construir varias acciones (y lagrangianos) compatibles con las

mismas secciones para un fibrado dado.

El fibrado E será trivial si todas las funciones de transición tij son la identidad,

en tal caso se puede describir como el producto directo del espacio base y la fibra,

E = M × F . Una variedad fibrada no trivialmente no se puede ser escrita de esta

manera, lo cual significa que se necesitan varias cartas o cubrimientos {Ui} para

cubrirla tal que las funciones de transición existan.

Un Fibrado Principal se define como un fibrado cuya fibra F es idéntica al grupo de

estructura G3. Un fibrado principal P
π−→M se denota como P (M,G), G-fibrado sobre

M . Los fibrados principales pueden ser triviales o no. Un fibrado principal es trivial si

y solo si, éste admite una sección global. Dado un fibrado principal P (M,G), se define

un fibrado asociado: Supongamos que G actúa sobre una variedad F por la izquierda.

Define una acción de g ∈ G sobre P×F por (u, f) → (ug, g−1f) donde u ∈ P y f ∈ F .

Luego, el fibrado asociado (E, π,M,G, F, P ) es una clase de equivalencia P × F \ G
en los cuales dos puntos (u, f) y (ug, g−1f) están identificados.

3Un ejemplo del mismo es un fibrado toroidal principal en el que la fibra es un toro y el grupo

de estructura es el mismo toro U(1)× U(1).
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Un fibrado vectorial E
π−→M es un fibrado cuya fibra es un espacio vectorial. Si F

es Rk y M una variedad de m dimensiones. A k se le denomina dimensión de la fibra,

mientras que la dimensión del espacio total E es m + k. Para este tipo de fibrado,

las funciones de transición forman parte del grupo GL(k,R), ya que son funciones

que mapean un espacio vectorial en otro espacio vectorial de la misma dimensión

isomórficamente. Si F es es un espacio vectorial complejo Ck, el grupo de estructura

es GL(k,C). Un fibrado vectorial V es trivial si y solo si su fibrado principal también

lo es. Un fibrado vectorial asociado P × V , con V ≡ F un espacio vectorial de k

dimensiones y es la representación k-dimensional de G, se define identificando los

puntos (u, v) y (ug, (g)−1v) de P × V , donde u ∈ P , g ∈ G y v ∈ V . En f́ısica los

campos son secciones de un fibrado vectorial.

La Conexión en un fibrado permite la comparación entre diferentes fibras asociadas

a diferentes puntos de la variedad. Son conocidas como potenciales de calibre. Se

define globalmente sobre E, aunque también puede llevar información local. Sea Ai

la conexión sobre una trivialización que satisface la siguiente condición:

Aj = t−1
ij Aitij + t−1

ij dtij. (2.37)

Debido a que un fibrado principal no trivial no admite una sección global, el pull

back Ai = s∗iω existe localmente pero no necesariamente globalmente. La uno-forma

de conexión sobre el fibrado principal permite definir ’subespacios horizontales’. Las

uno-formas de conexión Ai están asociadas al fibrado trivial y no tienen información

global de E, por consiguiente se necesitan un conjunto completo {Ai} para definirla

globalmente sobre E.
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2.2.2. Compactificaciones, Fibrados y Monodromı́as

En esta subsección queremos interpretar las compactificaciones que antes hemos

descrito (KK y Scherk-Schwarz(SS)) y otras más generales, en términos de fibra-

dos. En el contexto de supergravedad las reducciones toroidales en un T d producen

backgrounds del tipo X11−d × T d. Estos backgrounds pueden ser interpretados como

fibrados triviales con fibra T d y base X11−d.

Si por ejemplo se considera una reducción de la teoŕıa de supergravedad en una

variedad tridimensional M3 = S1 × T 2, con T 2 una variedad twisted. La variedad

tridimensional M3 es un fibrado toroidal principal no trivial de base el ćırculo y fibra

T 2. Las reducciones de supergravedad a la KK están asociadas a supregravedades

maximales en menor dimensión y las de SS están asociadas a las calibradas. En am-

bos sectores las distintas teoŕıas están conectadas entre śı mediante transformaciones

de dualidad (dualidad S, dualidad U y dualidad T ). La teoŕıa M como teoŕıa de unifi-

cación en once dimensiones, se espera que realice estas transformaciones de dualidad

como simetŕıas de la teoŕıa [107].

C. Hull propuso que estas dualidades se podŕıan observar de forma expĺıcita co-

mo simetŕıas de un fibrado que describa globalmente la teoŕıa de cuerdas o la teoŕıa

M [107]. Las funciones de transición de dicho fibrado, deben transformar no solo

bajo difeomorfismos sino también bajo transformaciones de dualidad. La teoŕıa del

campo doble intenta realizar estas ideas a partir de teoŕıas efectivas de supercuer-

das/supergravedad usando las nociones de geometŕıa generalizada.

Estos fibrados asociados a la teoŕıa del campo doble son fibrados toroidales no

triviales. El hecho de que la fibra sea una variedad toroidal tiene su origen en la T-

dualidad, la cual es llamada aśı porque en su realización más sencilla, conecta teoŕıas
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de cuerdas compactificadas en un ćırculo (IIA/IIB y Het(SO(32))/(E8 × E8)) o

a nivel de teoŕıa M compactificada en un toro, transforma una teoŕıa en su dual

conservando la f́ısica del sistema. Por ejemplo, analicemos ahora las compactificaciones

SS de los backgrounds de supergravedad desde el punto de vista de fibrados. Las

reducciones SS pueden ser expresadas en términos de los fibrados principales sobre

ćırculos con un twisting dado por la monodromı́a [102, 103, 104]. El background

posee un grupo de isometŕıas globales G asociadas a la variedad de compactificación

sobre la cual es fibrada. Los mapas que describen las variables compactificadas g(y)

no son periódicos, sino que tienen una monodromı́a g(y) = exp(My) [102]. g(y) es

una sección local de un fibrado principal sobre el ćırculo con fibra G y monodromı́a

M(G) en g. El funcional invariante que describe la acción se expresa en términos de

las secciones locales de este fibrado (los campos).

La monodromı́a M(g), como hemos visto antes, viene expresada en términos de

una matriz de masa M , como M(g) = expM . Monodromı́as relacionadas por una

conjugación G definen teoŕıas con acciones equivalentes pero cambiando la carga

de la ret́ıcula. La compactificación twisted induce un potencial Scherk-Schwarz (SS)

en el espacio móduli. Para ciertos valores de ese espacio móduli hacer un twist es

equivalente a introducir flujos junto a un corrimiento4 en las coordenadas internas del

toro compactificado.

La descripción global necesaria para encontrar la relación entre supermembrana

con cargas centrales y la teoŕıa de supergravedad se hace en términos de fibraciones

toroidales más complejas como se verá en la subsección 2.3.2.

4Traducción de shift.
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2.2.3. Condiciones de Cuantización

En esta sección se considera la realización de las compactificaciones twisted a nivel

de la teoŕıa de cuerdas. Es decir, se pasa de una descripción clásica de la supergravedad

a una cuántica de teoŕıa de cuerdas. De acuerdo a [107] esto implica que la simetŕıa

global clásica G se rompe a su subgrupo arimético G(Z) y por tanto la matriz de

monodromı́a debe ser un elemento de este subgrupo. Para el caso de la teoŕıa de

cuerdas IIB el grupo de monodromı́a debe pertenecer a SL(2,Z), donde la matriz de

masa está evaluada en los números enteros. Las clases conjugadas SL(2,Z) han sido

analizadas en [108]. Dada una monodromı́a, ±M y ±M−1 son clases conjugadas.

En el caso de las monodromı́as eĺıpticas existen cuatro clases conjugadas, aparte

de la clase trivial M = I [45]:

M2 =


−1 0

0 −1


 , M3 =


 0 1

−1 −1


 , M4 =


 0 1

−1 0


 , M6 =


 1 1

−1 0


 ,

(2.38)

que generan respectivamente Z2,Z3,Z4,Z6 que son subgrupos de orden finito de

SL(2,Z).

Las monodromı́as en las clases parabólicas e hiperbólicas conjugadas generan gru-

pos de twist de orden infinito.

Hay un número infinito de clases conjugadas parabólicas SL(2,Z) con Tr(M) = 2,

representada por T n:

MTn =


1 n

0 1


 , (2.39)

con una clase conjugada distinta para cada entero n.
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Hay un número infinito de clases conjugadas hiperbólicas SL(2,Z) con |Tr(M)| >
2, representado por:

MHn =


 n 1

−1 0


 , (2.40)

para enteros n con |n| ≥ 3, junto con monodromı́as puntuales M(t) de traza t (clases

esporádicas). Para más detalles ver [45].

Siguiendo a [66], los parámetros de masa son parametrizados por ~m = m̃ (p, q, r).

Entonces, dado el radio de compactificación R y los coeficientes relativos (p, q, r) de

los parámetros de masa, se selecciona el coeficiente global m̃ tal que la monodromı́a

esté en SL(2,Z). Esto no siempre es posible: un requerimiento necesario estudiado en

[108] es que (p, q, r) sean enteros y satisfagan la llamada ecuación diofántica, esto es,

una ecuación para números enteros. Aśımismo, se deber exigir que q y r sean ambos

pares o ambos impares. Por tanto, se obtienen todas las monodromı́as que pueden ser

expresadas como productos de los elementos:

S =


 0 1

−1 0


 , T =


 1 1

0 1


 , (2.41)

y sus inversas. Las clases de conjugación de SL(2,Z) fueron recopiladas en [108].

A nivel cuántico la realización de estas simetŕıas G se propone que esté asocia-

da a sus subgrupos aritméticos G(Z) [107]. La realización cuántica de la simetŕıa

trombón R+ es más complicada. El problema a nivel cuántico es el siguiente: El

grupo GL(2,R) debeŕıa romperse a sus subgrupo aritmético para garantizar la cuan-

tización de la ret́ıcula de carga BPS, sin embargo el conjunto de matrices Mat(2,Z)

cuyos determinantes son un entero, no forman un grupo ya que la inversa de un en-

tero no necesariamente es un entero (el subgrupo aritmético de GL(2,R) es el grupo

GL(2,Z) = SL(2,Z)× Z2, pero falla en incorporar los escalamientos).
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Class α2 Tr(Λ) p2 + q2 − r2 (p, q, r) Λ

I = 0 2 0 (0, n, n) T n =

(
1 n

0 1

)
n ∈ Z

II > 0 n n2 − 4 (±n, 0,±2) (S T−n)±1 =

(
0 1

−1 n

)±1

3 ≤ n ∈ Z

III < 0 0 −4 (0, 0,±2) S±1 =

(
0 1

−1 0

)±1

1 −3 (±1, 0,±2) (T−1 S)±1 =

(
1 1

−1 0

)±1

2 −4 I =

(
1 0

0 1

)

Cuadro 2.1: La tabla original de [108] que clasifica las diferentes monodromı́as SL(2,Z).

2.2.3.1. Simetŕıa Trombón a Nivel Cuántico

La simetŕıa de escalamiento R+ aparece cuando consideramos escalamientos que

dejan invariante las ecuaciones de campo, pero que pueden escalar globalmente el la-

grangiano. Estas simetŕıas fueron llamada trombón por [62]. En [62] ellos encuentran

una manera propia para modelar los escalamientos a nivel cuántico introduciendo re-

presentaciones no lineales de SL(2,Z) que ellos denominan activas, para distinguirlas

de aquellas asociadas a la U -dualidad. Esta simetŕıa está caracterizada por el hecho

que ésta actúa sobre la carga reticular transformando cargas de enteros en cargas de

enteros mediante la transformación SL(2,Z) pero dejando el móduli fijo. Esto se al-

canza a través del uso de una transformación compensadora, que es aplicada una vez,

la U-dualidad transforma cargas y móduli por un SL(2,Z) lineal. La transformacin

compensadora actúa sobre el móduli transformado para retornar a su valor original.
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A nivel cuántico la realización fue estudiada por [62] mientras que su calibrado por

[48]. Hacemos un breve resumen de los procedimientos seguidos en [62].

Dado un mapping arbitrario SL(2,Z) entre Q1 y Q2, con Q1 la ret́ıcula elemental

de carga, notamos que la descomposición de Iwasawa para SL(2,Z) nos permite

factorizar un elemento del grupo Λ ∈ SL(2,Z) como

Λ = B̃H , (2.42)

donde B̃ es un elemento del grupo de Borel que deja invariante Q2 bajo escalamiento

y H es un elemento del grupo de estabilidad H = SO(2) para un valor dado del

parámetro de Teichmüller, τ0 = i. Este grupo de estabilidad es al mismo tiempo, el

subgrupo linealmente realizado del grupo de simetŕıa estándar clásico G = SL(2,R),

con los campos escalares tomando sus valores en G/H . Claramente, solo la trans-

formación B es la que realmente provoca que τ0 se transforme, aśı que la parte de

transformación de Borel del compensador debe ser B = B̃−1. En consecuencia, parte

de la tranformación de Borel del compesador y de Λ se anulan, quedando simplemente

con

B tΛ = tH , (2.43)

i.e. la transformación compensadora SL(2,Z) puede ser realizada como una transfor-

mación espećıfica SO(2), de H por el rescalamiento trombón t. Debe notarse que la

matriz H (y además el producto tH) no es, en general, una matriz de valores enteros.

Se llamará a las transformaciones compensadoras SL(2,Z), transformaciones SL(2,Z)

activas, para distinguirlas de las transformaciones de dualidad SL(2,Z) de teoŕıa de

cuerdas, que transforman simultáneamente el módulo τ0 y las cargas.
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2.3. Metodoloǵıa usada para Calibrar la Super-

membrana

En esta sección revisaremos las herramientas tanto conceptuales como de cálculo

que han sido usadas en esta tesis para encontrar, interpretar y discutir los resultados

obtenidos que mostraremos a partir del caṕıtulo 4 que se refieren al calibrado de la

supermembrana con cargas centrales.

2.3.1. Método de la Simetŕıa Kappa

En esta tesis hemos denominado Método de la Simetŕıa Kappa al método mediante

el cual usamos la exigencia de invariancia de la acción de la supermembrana D = 11 y

de la supermembrana con cargas centrales bajo la simetŕıa kappa en el modo en que lo

hace Bergshoeff, Sezgin y Townsend en [41]. Este procedimiento es llevado a cabo para

encontrar los v́ınculos que conectan a la teoŕıa a altas enerǵıas en dimensión D con la

teoŕıa efectiva de supergravedad a la cual se acopla. En esta tesis uno de los objetivos

es encontrar cuál supergravedad es la teoŕıa efectiva de la supermembrana con cargas

centrales en 9D. En el caso 11D, fue probado en [41] que las ecuaciones de movimiento

de la supergravedad 11D se obtienen a partir de la teoŕıa de la supermembrana 11D.

Esto lo verificamos a primer orden en la coordenada fermiónica en la sección (C.1)

del apéndice C.

Nosotros extendimos el resultado de [41] cuando se hace una compactificación

toroidal de la supermembrana en un background X9 × T 2. Usando este método ob-

tuvimos los v́ınculos de la única teoŕıa de supergravedad maximal en D = 9. Estos
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resultados los reportamos en la sección (C.2) del apéndice C y esperamos que formen

parte de una futura publicación.

Para usar este método se parte del formalismo del superespacio en el que se ex-

panden los supercampos del background en términos de la variable fermiónica θ. Para

obtener las expresiones de los supercampos de la supergravedad en el formalismo del

superespacio como expansiones en la variable θ es necesario hacer la identificación, de

un modo compatible, de todos esos supercampos y superparámetros de las supertrans-

formaciones en el superespacio, considerándolos como expansiones en la coordenada

θ, con los campos y parámetros de la teoŕıa de la supergravedad usual.

El procedimiento se denomina método de ”gauge completion”, ver [24, 84, 85],

y consiste en: (1) Se escoge un calibre en el que se identifican las componentes de

todos los supercampos y superparámetros en θ = 0 con los campos y parámetros

de las transformaciones de la supergravedad usual. Y, (2) se comparan las reglas de

transformación de los supercampos y las álgebras de dichas transformaciones con las

correspondientes a los campos en la teoŕıa de la supergravedad D = 11.

Una vez formulada la supermembrana compactificada en el toro T 2 en el forma-

lismo del superespacio se impone la invariancia de la simetŕıa kappa de la acción

y se obtienen un conjunto de superv́ınculos. Posteriormente se compararon con los

v́ınculos de [41] compactificados en el T 2 (sección C.2) .

Luego, se aplicó el mismo método para la supermembrana con cargas centrales,

pero las expresiones obtenidas, aún a primer orden en θ, son bastante complejas para

efectuar cálculos y llegar a resultados definitivos. Por otra parte en la literatura no

existen una clasificación de las supergravedades calibradas en 9D en el formalismo
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del superespacio. Por esta razón se propuso un método alternativo que explicamos a

continuación.

Los resultados de la sección C.3 esperamos completarlos y que formen parte de

una publicación a futuro.

2.3.2. El Mecanismo de Esculpido para Calibrar Teoŕıas

En esta sección se resumen los resultados de [14]. El mecanismo propuesto alĺı es

un mecanismo nuevo de calibrado que consiste en extraer la teoŕıa deformada utili-

zando y modificando la estructura global de la misma en términos de fibrados. A esto

se le llama mecanismo de esculpido5. Éste consiste en una deformación del tipo de

homotoṕıa de la fibración completa E preservando el tipo de homotoṕıa de la base y

de la fibra. Nos restringiremos en esta tesis a la aplicación de este mecanismo a la su-

permembrana. Se toma como teoŕıa no-calibrada a la supermembrana compactificada

sobre un 2-toro. Esta corresponde a un funcional invariante (acción) sobre una va-

riedad base de Riemann cuya fibra, por simplicidad, es el espacio tangente T 2 ×M9.

La parte topológicamente no-trivial de la fibra corresponde a la variedad toroidal

asociada al espacio tangente. La formulación global de la teoŕıa no-calibrada es un

fibrado toroidal trivial sobre una variedad base que, por simplicidad, seleccionaremos

que sea homotópicamente un toro.

La deformación en el fibrado total puede ser vista al imponer dos tipos de res-

tricciones: la primera, debida a la introducción de una condición topológica que se

explicará más adelante (la carga central) mediante la cual el fibrado toroidal trivial se

deforma a un fibrado principal. F́ısicamente, esto puede verse como restricciones sobre

5Denominado en inglés sculpting mechanism.
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los mapas permitidos en el espacio target compactificado. En segundo lugar, el proce-

so de extracción del campo de calibre de una manera consistente a partir de la forma

cerrada implica la modificación del fibrado toroidal principal en un fibrado toroidal

simpléctico con monodromı́a no trivial. El fibrado total puede ser o no simpléctico

de acuerdo a si la monodromı́a es dada por la clase de torsión asociada al ”Mapping

Class Group”(MCG) de la variedad base Π1(Σ). La supermembrana resultante es, por

lo tanto, calibrada en este nuevo sentido de esculpido y corresponde geométricamente

a una supermembrana minimamente inmersa en el espacio target. Como resultado de

este procedimiento, la simetŕıa global (discreta) de la teoŕıa no-calibrada está par-

cialmente rota a un subgrupo H ∈ G. El grupo de calibre de los simplectomorfismos

de la variedad de la base se deforma a aquellos dados por las clases de isotoṕıa aso-

ciados a la monodromı́a ρ. Además esta deformación dota al nuevo fibrado de una

conexión A en el fibrado toroidal simpléctico conectado con el fibrado principal. Este

tipo de deformaciones de acuerdo a [14] pueden entenderse como restricciones que se

le imponen al fibrado y a la conexión y en ese sentido se denomina de esculpido. El

cambio en la cohomoloǵıa del fibrado toroidal es de la siguiente manera:

I ❀ H2(Σ,Z) ❀ H2(Σ,Zρ), (2.44)

siendo ρ una representación contenida en el grupo de isotoṕıa asociado al grupo de

difeomorfismos de la variedad base. Para el caso de la supermembrana dicho grupo

es el SL(2,Z).

Notar que las flechas no implican una secuencia espectral. Siguiendo [14], enfatiza-

mos que los tres principales pasos necesarios para producir la deformación sculpting/de

esculpido del fibrado, esto es: el primer paso es imponer la condición de carga cen-

tral que representa un impedimento a la trivialidad supuesta produciendo un twist

en la fibración, generándose un fibrado principal cuya cohomoloǵıa en H2(Σ,Z) es
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no trivial. El lagrangiano de la fibra sin deformar tiene las siguientes simetŕıas: una

simetŕıa de calibre DPA0(Σ
2
1), el espacio target supersimétrico N = 2, una simetŕıa

global discreta G ≡ Sp(2, Z) asociada a la condición de enrollamiento de los mapas

embebidos Σ2
1 → T 2: Existe un conjunto infinito de conexiones que pueden fijarse

al fibrado principal. La condición de enrollamiento define 1-formas cerradas dXr que

admiten una descomposición de Hodge en términos de uno-formas armónicas dX̂r y

una uno-forma exacta dAr:

dXr = P s
r dX̂s + dAr, (2.45)

la matriz P s
r describe los 4 grados de libertad globales asociados a la condición de

enrollamiento, cuyos coeficientes dependen del tiempo. En presencia de la condición

de carga central, dicha matriz Ps
r es constante y no-degenerada, estamos ”congelando”

el enrollamiento.

Las uno-formas armónicas, gracias a la condición de carga central, tienen una

simetŕıa global extra Sp(2,Z) = SL(2,Z). Como consecuencia de ello, la matriz Ps
r

se puede expresar de la siguiente manera:

P s
r =Ms

r = 2πRrSs
r con Ss

r ∈ SL(2,Z). (2.46)

Una vez elegida la base de formas armónicas {dX̂s}, la descomposición de Hodge es

única, y la matriz P s
r queda fijada (por ejemplo a δrs). Como consecuencia de ello

hay una fijación parcial de la simetŕıa global que se rompe a una simetŕıa residual

asociada dada por las monodromı́as del fibrado calibrado.

El próximo paso es extraer una uno-forma de conexión al fibrado no-trivial. Defini-

mos una conexión simpléctica A preservando la estructura de la fibra bajo holonomı́as.

Para ello, primero definimos una derivada rotada asociada al fibrado Weyl [8]:

Dr• = (2πRrlr)θrl
ǫab√
W (σ)

∂aX̂
l(σ)∂b•, (2.47)
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haciendo expĺıcita la dependencia en θ ∈ SL(2,Z), la cual depende de la monodromı́a

ρ.

En 2-dim los difeomorfismos que preservan el área son también los simplectomor-

fismos. La tercera selección relevante es la elección para W en el modelo geométrico

que hemos definido. A continuación, se define:

√
W =

1

2
ǫrs∂aX̂

r∂bX̂
sǫab, (2.48)

ésta es una densidad regular globalmente definida sobre Σ. Es invariante bajo un

cambio de la base canónica de homoloǵıa.

La matriz θ lleva la información de la simetŕıa global residual discreta asociada a

las funciones de transición del ”patching” de las diferentes cartas en la variedad base

compacta para una base fijada de las formas armónicas. Esto juega un rol análogo

al tensor de embbeding en el calibrado de Noether de las teoŕıas de supergravedad.

Señalaremos aqúı que el lugar donde las simetŕıas globales discretas surgen junto con

el operador derivada en lugar de aparecer además el campo de calibre ya que su origen

es topológicamente asociado a la superficie compacta de la variedad base p-brana.

La definición de esta derivada rotada (estamos haciendo una extensión de la defi-

nición de la derivada covariante), en la cual el fibrado asociado tiene una monodromı́a

no-trivial de la π1(Σ) sobre la homoloǵıa de la fibra H1(T
2). La derivada asociada

fija una escala en la teoŕıa y rompe la primera teoŕıa H = Sp(2,Z) a un subgrupo

Γ ∈ Sp(2, Z) especificando los enteros de Ss
r .

La derivada covariante simpléctica [8], es entonces:

Dr• = Dr •+{Ar, •}, (2.49)
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y entonces la conexión transforma con el simplectomorfismo como:

δǫA = Drǫ. (2.50)

Se concluye que el fibrado esculpido es un fibrado toroidal simpléctico con cohomoloǵıa

H2(Σ,Zρ) [14].
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Caṕıtulo 3

Supergravedad y Supermembrana

en 9D

En este caṕıtulo se hará un repaso de las principales caracteŕısticas de las super-

gravedades tanto maximales como las calibradas en nueve dimensiones 9D, ya que

será muy importante al analizar nuestros resultados. Además, incluiremos una muy

breve descripción de las teoŕıas de supergravedad maximal y calibrada en 10D. Se

describirá aśımismo el elemento fundamental de nuestro trabajo, la supermembrana

con cargas centrales formulada en 9D no compactas.

3.1. Supergravedades Maximales en 10D y 9D

Antes de pasar directamente a referirnos al caso 9D, se hará en esta sección una

muy breve descripción de las teoŕıas de supergravedad no-calibradas en 9D y 10D,

destacando los aspectos que tienen que ver con las simetŕıas globales de las teoŕıas,

pues éstas juegan el rol principal para obtener las supergravedades masivas/calibradas

en las cuales estos grupos se calibran.
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3.1.1. Supergravedades Maximales en 10D

En esta sección se da un vistazo a las supergravedades no calibradas en 10D. En

diez dimensiones se puede tener supersimetŕıa N = 1 o N = 2, correspondiendo a 16

ó 32 supercargas, respectivamente. A la teoŕıa con N = 1 se le denomina supergrave-

dad minimal y para N = 2 se tienen dos supergravedades maximales inequivalentes,

por lo que D = 10 es la única dimensión en que sucede esto, en todas las otras dimen-

siones hay solo una supergravedad maximal. La estructura de las supergravedades

maximales en diez dimensiones corresponde a las posibles teoŕıas de cuerdas con su-

persimetŕıa maximal. De hecho, en esta dimensión, se tienen las teoŕıas de cuerdas

IIA y IIB, cuyas acciones efectivas a bajas enerǵıas están dadas por las supergraveda-

des correspondientes. En 10D el espinor minimal es un espinor Majorana-Weyl de 16

componentes. Entonces, supersimetŕıa minimal N = 1 en 10D tiene 16 supercargas.

En cuanto a la supersimetŕıa maximal N = 2 en 10D, se tienen dos posibilidades:

se pueden seleccionar espinores Majorana-Weyl de opuesta o igual quiralidad, para

obtener las teoŕıas de supergravedad no-quiral IIA o la quiral IIB con supersimetŕıa

(1, 1) y (2, 0), respectivamente.

La superálgebra IIA y IIB puede ser extendida con simetŕıas de calibre. La su-

perálgebra IIB tiene una simetŕıa adicional llamada R-simetŕıa SO(2), que rota los

dos espinores de supersimetŕıa de igual quiralidad.

Hay un subsector bosónico, llamado subsector NeveuSchwarz (NS)-NeveuSchwarz

(NS), que contiene la gravedad, un potencial de rango 2 y un dilatón. La parte bosóni-

ca restante es llamada subsector Ramond-Ramond (RR) y solo contienen potenciales

R-R de rango-d donde d es impar en IIA y par en IIB. En el caso IIA, los fermiones

son reales y contiene dos espinores minimales de ambas quiralidades, mientras en el
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caso IIB los espinores son complejos y contiene dos espinores minimales de la misma

quiralidad. El contenido en campos estándar de estas teoŕıas tienen d = 1, 3 para IIA

y d = 0, 2, 4 para IIB:

IIA: {gmn, Bmn, φ, Cm
(1), C

(3)
mnl;ψm, λ} ,

IIB: {gmn, Bmn, φ, C
(0), C(2)

mn, C
(4)+
mnlp;ψm, λ} . (3.1)

Para ver las acciones bosónicas maximales IIA y IIB [109, 110]. Existe una formulación

especial de la supergravedad IIA y IIB, equivalente a la estándar, que enfatiza la

equivalencia de los potenciales R-R duales. En esa formulación no aparecen términos

de Chern-Simons expĺıcitos en la acción.

Las teoŕıas de supergravedad maximales en 11D y 10D están conectadas a través

de una reducción dimensional. Estas relaciones pueden ser entendidas por las dife-

rentes dualidades entre las diferentes teoŕıas de cuerdas y la teoŕıa M. Cuando se

reduce dimensionalmente la supergravedad 11D sobre un ćırculo, manteniendo solo

los modos sin masa, se obtiene la supergravedad IIA en 10D. Cuando se compactifica

sobre un orbifold S1/Z2 se obtiene la teoŕıa de supergravedad heterótica SO(32). El

Lagrangiano completo 11D y las transformaciones supersimétricas al ser reducidas

dan lugar a sus contrapartes de la teoŕıa IIA, aśı como los grados de libertad on shell.

Se pueden obtener relaciones entre entre los parámetros de IIA y 11D reducida sobre

un ćırculo:

ls
2 =

lp
3

R
, gs =

(R
lp

)3/2
, (3.2)

donde lp es la longitud de Planck yR el radio del ćırculo interno. Dadas estas relaciones

puede interpretarse que el acoplamiento fuerte en la teoŕıa de cuerda IIA corresponde

a formularla en un radio grande, lo que equivale a descompactificar la coordenada

undécima y surge la teoŕıa M en 11D [20, 34, 68]. Por otro lado, la teoŕıa IIA sobre

un ćırculo con radio R es equivalente a la IIB sobre un ćırculo con radio R̃ con
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la relación R̃ = α′/R mediante el intercambio de los modos de enrollamiento y los

modos de KK [114, 115]. Esta relación entre las teoŕıas sobre diferentes variedades de

compactificación es llamada T-dualidad [113, 116].

3.1.2. Supergravedad Maximal 9D

Para D ≤ 9 las supergravedades maximales son únicas, por ello todas pueden ser

obtenidas, por reducción dimensional de cualquiera de las teoŕıas de mayor dimen-

sión, del mismo modo que la supergravedad IIA puede ser obtenida desde 11D. El

contenido en campos aśı como los lagrangianos y fórmulas generales de cualquiera de

las supergravedades maximales D ≤ 9-dimensional se pueden obtener por reducción

dimensional, [111]. La reducción toroidal de las supergravedades sin masa IIA y IIB

sobre un ćırculo produce la única supergravedad N = 2 sin masa D = 9. Su contenido

en campo está dado por:

D=9: {emâ, φ, ϕ, χ, Am, A
i
m, B

i
mn, Cmnl;ψm, λ, λ̃} , (3.3)

con los ı́ndices i = 1, 2 de SL(2,R). En [66] se muestra que el sector escalar de la

teoŕıa 9D es, por construcción, invariante bajo el grupo semi-simple correspondiente

a determinadas transformaciones globales. Sin embargo, este grupo resulta ser una

simetŕıa no solo del subsector escalar sino de toda la teoŕıa en la que se incluyen los

potenciales de mayor rango y fermiones.

En la dimensión D = 9 las supergravedades IIA y IIB se reducen a la super-

gravedad maximal de nueve dimensiones. Se reducen tanto las transformaciones de

supersimetŕıa IIA y IIB y las ecuaciones de campo a sus equivalentes en 9D. Además,

los dos lagrangianos IIA y IIB pueden ser reducidos a la acción correcta en 9D. En
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términos de los grados de libertad on-shell, las descomposiciones de las representa-

ciones IIA y IIB de SO(8) bajo SO(7), coinciden [112].

Por tanto, los modos sin masa de las supergravedades IIA y IIB sobre S1 son

equivalentes: están descritas por la misma teoŕıa efectiva, la teoŕıa de supergravedad

maximal única D = 9. Sin embargo, los modos masivos de las supergravedades IIA

y IIB sobre S1, algunas veces llamados modos de momentos, son distintos. Por esta

razón, estas dos supergravedades son equivalentes solamente sobre pequeños ćırculos,

donde estos modos se transforman en infinitamente masivos [112]. Esto no sucede

en la teoŕıa de cuerdas donde se obtiene que la combinación de estados de momento

masivos y estados masivos de enrollamiento producen el mismo resultado para las

teoŕıas de cuerdas IIA y IIB. Por tanto, como se mencionó antes, estas dos teoŕıas

son equivalentes en el contexto de la T-dualidad.

3.1.3. Simetŕıas Globales de Supergravedades Maximales

En esta sección se resumirán las simetŕıas globales de las supergravedades maxi-

males en D = 9, 10 [67]. Si G son los grupos de simetŕıas de la supergravedad 11D

reducida sobre un toro, se espera que éstos se rompan a un subgrupo aritmético G(Z)

a nivel cuántico, para la teoŕıa M completa sobre un toro [107]. El grupo de simetŕıa

SL(11−D,R) es el grupo esperado para las supergravedades maximales sobre ćırculos

teniendo en cuenta su origen en 11D. Sin embargo el grupo de simetŕıa global G en D

dimensiones es usualmente más grande, por esta razón el grupo G es conocido como

una simetŕıa oculta [117]. Los sectores escalares de las supergravedades maximales

están definidos sobre el espacio simétrico determinado por G/H , denominado coset

escalar. H es el subgrupo maximal compacto de G, y corresponde al grupo de la si-
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metŕıa R de la superálgebra. La dimensión del coset escalar G/H es igual al número

de escalares.

El número de axiones es dado por el número de ráıces positivas del álgebra co-

rrespondiente a G mientras el número de dilatones iguala a 11 − D (uno para cada

dimensión reducida). Al reducir a menor dimensión aparecen potenciales bosónicos de

mayor rango que transforman bajo los grupos G. Los potenciales forman representa-

ciones lineales de G mientras son invariantes bajo H . A diferencia de los bosones, los

fermiones son invariantes bajo G pero transforman bajo H . Ver [66] donde se muestra

una tabla con un resumen de todos los grupos G, H y la dimensión G/H para las

supergravedades maximales D ≤ 11.

3.1.3.1. Simetŕıas Globales: Supergravedad Maximal 10D

En la sección 3.1.1 se mostró el contenido de campos para las supergravedades

maximales en 10D (3.1). A continuación nos referimos a sus simetŕıas globales.

La teoŕıa de supergravedad IIA en 10D, tiene dos simetŕıas R
+. La primera es

una simetŕıa del Lagrangiano y está dada por

eφ → λeφ , Bmn → λ1/2Bmn , C(1)
m → λ−3/4C(1)

m , C
(3)
mnl → λ−1/4C

(3)
mnl , (3.4)

con λ ∈ R+ y otros campos invariantes. La segunda simetŕıa es la análoga en 10D de

la simetŕıa trombón en 11D (1.3):

Gmn → λ2Gmn , Cmnl → λ3Cmnl , Ψm → λ1/2Ψm .

La teoŕıa de supergravedad IIB tiene una simetŕıa global SL(2,R) [119], con elemento

Λi
j =


 a b

c d


 ∈ SL(2,R), (3.5)
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que actúa sobre los campos de la teoŕıa:

τ → aτ + b

cτ + d
, Bi → (Λ−1)j

iBj , C(4) → C(4),

ψm →
(
cτ ∗ + d

c τ + d

)1/4

ψm, λ→
(
c τ ∗ + d

c τ + d

)3/4

λ , (3.6)

donde Bi = (−B,C(2)) y el escalar complejo τ = χ+ ie−φ con el axión χ = C(0).

La simetŕıa SL(2,R) de la supergravedad IIB es rota a SL(2,Z) en la teoŕıa

de cuerdas IIB [107]. Una transformación particular es, por ejemplo, el elemento

(a, b; c, d) = (0, 1;−1, 0) que corresponde a la transformación φ → −φ (con un back-

ground sin axión), que relaciona los acoplamientos de cuerdas fuerte y débil. Por esta

razón esta transformación es llamada dualidad S [120]. Adicionalmente, la teoŕıa IIB

también tiene una simetŕıa trombón.

3.1.3.2. Simetŕıas Globales: Supergravedad Maximal 9D

El contenido en campos de la supergravedad tipo II en 9D se mostró en (3.3). En

dicha ecuación se tiene para el sector bosónico: un supervielbein em
â, tres escalares

(φ, ϕ, χ), tres campos de calibre (Am, {A(1)
n , A

(2)
n } ≡ ~A), dos 2-formas antisimétricas

({B(1)
mn, B

(2)
mn} ≡ ~B), y una 3-forma Cmnl. Para el sector fermiónico, la contribución es

un espinor ψµ y dos dilatinos λ, λ̃ [42, 46]. La simetŕıa global D = 9 (3.5) actúa en la

teoŕıa no-calibrada de la siguiente manera:

τ → aτ + b

cτ + d
, ~A→ Λ ~A, ~B → Λ ~B, (3.7)

más las transformaciones fermiónicas:

ψm →
(
c τ ∗ + d

c τ + d

)1/4

ψm , λ→
(
c τ ∗ + d

c τ + d

)3/4

λ , λ̃→
(
c τ ∗ + d

c τ + d

)−1/4

λ̃ , (3.8)
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mientras el escalar ϕ y la 3-forma C permanecen invariantes. Esta simetŕıa global

SL(2,R) en 9D proviene de la simetŕıa análoga en supergravedad IIB en 10D. Las

transformaciones de simetŕıa de escalares y fermiones no cambian si se reemplazan Λ

por −Λ; por lo tanto, esos campos transforman bajo PSL(2,R). Usualmente solo se

consideran elementos de grupo Λ que están continuamente conectados a la identidad.

Además de la simetŕıa global SL(2,R) veamos otras simetŕıas1 de la teoŕıa de

supergravedad en 9D [66]: Esta hereda dos simetŕıas de escalamiento α y β pro-

cedentes de la IIA y, una simetŕıa de escalamiento γ incluida en SL(2,R), y una

simetŕıa trombón δ, procedentes de la IIB. Pero, solo tres de las cuatro simetŕıas de

escalamiento son linealmente independientes [46]:

8α− 48β = 18γ + 9δ . (3.9)

Por lo tanto, cada uno de los tres campos de calibre Am, A
1
m, A

2
m tienen peso cero

bajo las dos combinaciones lineales de esas tres simetŕıas: una es una simetŕıa de la

acción, y la otra es una simetŕıa de las ecuaciones de movimiento solamente. Como

se encontró en 10D, las simetŕıas que dejan al vector de calibre invariante pueden

hacerse locales. Los pesos de escalamiento de los campos de supergravedad 9D y la

acción bajo las simetŕıas de escalamiento α, β, γ y δ se muestran en [66].

3.2. Supergravedades Calibradas

Las supergravedades calibradas fueron descubiertas por [121, 122] al compactificar

la supergravedad 11D sobre un S7, una variedad compacta con holonomı́a no-trivial.

Prontamente después de este resultado, el mecanismo de calibrado se aplicó a teoŕıas

1Aqúı estamos usando la nomenclatura usada en [66] para su designación.
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con grupos de simetŕıas no-compactos [123]. Desde entonces, este campo de investiga-

ción ha sido muy activo, encontrándose diferentes maneras de obtener una deforma-

ción consistente de una determinada supergravedad maximal formulada en un espacio

target con D < 11. Una de estas posibilidades es a través de compactificaciones del

tipo SS (ver sección 2.1.2), y otra, haciendo compactificaciones sobre variedades con

flujos. Para profundizar, ver por ejemplo, [52, 66].

En esta sección se hace un resumen de cómo algunos de los métodos de reducción

dimensional mencionados en el caṕıtulo anterior producen, cuando son aplicados a

la teoŕıas de supergravedades maximales, una teoŕıa calibrada resultante en menor

dimensión, esto es, se calibra una simetŕıa global de la teoŕıa sin masa. También se

pueden deformar estas teoŕıas agregando masa a estos campos sin producir calibrado.

De esta manera se tendrán supergravedades masivas. Además, se puede producir un

aumento2 de la simetŕıa de calibre lo cual es de interés a nivel de teoŕıas efectivas.

Una propiedad importante de las deformaciones que se están considerando es que

ellas no rompen supersimetŕıa. Entonces, las supergravedades calibradas o masivas

tienen el mismo número de supercargas (i.e. 32) tal y como las correspondientes

supergravedad sin calibrar o sin masa. Este hecho puede ser contrastado con, por

ejemplo, las compactificaciones Calabi-Yau, las cuales rompen una fracción de la

supersimetŕıa [124].

En esta sección incluiremos una breve referencia a la supergravedad masiva IIA

[125], que es la única deformación masiva de la supergravedad de la que actualmente

no se conoce ni su formulación covariante en 11D ni de su origen a partir de teoŕıa

M/cuerdas. En [102, 128] fueron discutidos los fundamentos de su formulación no

covariante. Usualmente, la reducción dimensional se hace sobre las transformaciones

2Traducción de enhancement.
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supersimétricas de los campos y sobre las ecuaciones de campo en lugar de reducir

los lagrangianos (ver apéndices en [66]). Esto debido a que hay simetŕıas ŕıgidas que

se emplean para la reducción, las cuales escalan a los lagrangianos, es decir, no los

dejan invariantes. En general, las transformaciones supersimétricas y las ecuaciones de

campo tendrán términos de masa impĺıcitos que aparecen a través de las intensidades

de campo covariantes, y términos de masa expĺıcitos. Un ejemplo de supergravedades

sin lagrangiano son las calibradas trombón.

En esta sección solo se revisarán aspectos - todos ellos encontrados previamente en

la literatura-, que son relevantes para nuestras construcciones: aquellos en los cuales

la monodromı́a tiene un rol importante.

3.2.1. Supergravedad Masiva y Calibrada en 10D

En esta sección se consideran dos deformaciones de la supergravedad IIA, una de

las cuales lleva a una versión masiva de IIA mientras que la otra da origen a la teoŕıa

IIA calibrada.

La reducción toroidal de la teoŕıa 11D en un ćırculo produce la teoŕıa no calibrada

y sin masa IIA en 10D. El contenido en campos de la teoŕıa de supergravedad IIA

D = 10 está dado por:

D=10 IIA: {emâ, Bmn, φ, Cm
(1), Cmnl

(3);ψn, λ} . (3.10)

Como se mencionó en la sección 3.1.3.1, la teoŕıa IIA tiene dos simetŕıas de escala-

miento: una, la simetŕıa α que escala el lagrangiano y tiene su origen en 11D; y la otra,

la simetŕıa β, que deja el lagrangiano invariante y que proviene de las coordenadas

internas de la supergravedad de 11D.
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El vector Ramond-Ramond C(1) en (3.10) es invariante bajo α mientras que escala

bajo β. Solamente la simetŕıa α puede ser calibrada mientras que es imposible para

la simetŕıa β [126].

La teoŕıa supergravedad IIA masiva fue construida por Romans [125] y resulta de

hacer una deformación masiva, con parámetro de masa mR. El lagrangiano contiene

términos lineales y cuadráticos en mR. El potencial escalar de Romans es:

VmR
=

1

2
e5φ/2m2

R . (3.11)

El parámetro mR rompe ambas simetŕıas α y β de la teoŕıa IIA. No obstante, hay una

combinación lineal que no es rota por los términos masivos: la combinación 12β−5α.

El parámetro de masa mR debe ser visto como una cero-forma Ramond-Ramond de

intensidad de campo. La correspondiente D-brana es la D8-brana, la cual está cargada

magnéticamente con respecto a mR [127]. La supergravedad masiva IIA, no es una

supergravedad calibrada, dado que ninguna simetŕıa global de la teoŕıa sin masa se

ha promovido a local. Las transformaciones de supersimetŕıa, δmR
, son [66]:

δmR
ψm = − 1

32
WΓmǫ , δmR

λ = δφWǫ , W = e5φ/4mR , (3.12)

donde W es un superpotencial, φ el dilatón, y δφW = δW/δφ. Las intensidades de

campo quedan modificadas de la manera siguiente:

G(2) = dC(1) +mRB, H = dB, G(4) = dC(3) + C(1) ∧H +
1

2
mRB ∧ B. (3.13)

La supergravedad calibrada IIA puede obtenerse a través de dos procedimientos:

(1) por una deformación con un parámetrom11, donde la simetŕıa α ha sido calibrada;

y (2) una reducción twisted de la supergravedad D = 11 usando la simetŕıa trombón

(1.3) con parámetro mR [104, 129, 103]. También es posible hacer una combinación

de las dos deformaciones consideradas, ver [46].
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El ansatz correspondiente a la reducción twisted con m11 produce la teoŕıa redu-

cida la cual es una supergravedad calibrada, dado que la simetŕıa de escalamiento α

ha sido calibrada. En particular, el parámetro de calibre y la transformación de los

potenciales Ramond-Ramond son:

Λ = ewαm11λ , C(1) → C(1) − dλ , C(3) → e3m11λ(C(3) − dλB) , (3.14)

donde wα son los pesos bajo α. Para la supergravedad calibrada D = 10 no se pue-

de definir un lagrangiano ya que la simetŕıa que es calibrada no es una simetŕıa

del lagrangiano. Sin embargo, las ecuaciones de campo correspondientes śı pueden

obtenerse pero no pueden ser interpretadas como ecuaciones de Euler-Lagrange. La

simetŕıa que es calibrada es simetŕıa de las ecuaciones de movimiento, debido a que al

hacer una reducción desde una teoŕıa de mayor dimensión, hay un twisting con una

simetŕıa de las ecuaciones de campo solamente.

El método (2) para construir la teoŕıa de supergravedad calibrada D = 10 se

llevó a cabo en [129]. Alĺı se consideran una solución más general de las identidades

de Bianchi del superespacio D = 11 para un espacio-tiempo no-trivial de la forma

M10 × S1 y luego se reduce sobre un ćırculo.

3.2.2. Supergravedades Calibradas en 9D

En esta sección se muestran los resultados de varias deformaciones masivas de la

supergravedad maximal en D = 9, las cuales dan origen a supergravedades calibradas

y tienen un origen de mayor dimensión, ver [46, 66]. Pueden obtenerse supergraveda-

des calibradas en nueve dimensiones haciendo reducciones twisted de la supergrave-

dad IIB en D = 10 usando la simetŕıa SL(2,R). Esto ha sido tratado con creciente

generalidad en [42, 43, 103, 104, 130].
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Para el caso de interés aqúı, esto es, las supergravedades calibradas del tipo II

en 9D, las monodromı́as están asociadas al grupo de simetŕıa global GL(2,R) =

SL(2,R)×R+. En el sector SL(2,R), hay tres clases inequivalentes de teoŕıas, corres-

pondientes a las clases de conjugación de SL(2,R) hiperbólica, eĺıptica y parabólica,

representadas por las matrices de monodromı́as de la forma (2.34) donde cada clase

está determinada por la constante de acoplamiento (ζ , γ o θ) [102]. En 9D la teoŕıa

puede además ser descrita en términos de la matriz de masa M , la cual está caracte-

rizada por tres parámetros que definen el vector de masa
→
m= (m1, m2, m3) [42]:

M =
1

2


 m1 m2 +m3

m2 −m3 −m1


 . (3.15)

Esta matriz de masa, como se explicó en [42], pertenece al álgebra de Lie sl(2,R) y

transforma en la representación irreducible adjunta. A bajas enerǵıas la supergravedad

calibrada está determinada por la matriz de masaM para una monodromı́a dada M.

Como se explicó en [42, 46] las simetŕıas locales previamente a ser calibradas,

corresponden a:

A→ A− dλ, ~B → ~B − ~Adλ. (3.16)

Las deformaciones masivas a partir del sector tipo IIB están etiquetadas por cuatro

parámetros m = (mi, m4) con i = 1, . . . , 3. Tres de ellas, caracterizadas por ~m =

(m1, m2, m3), pertenecen a las deformaciones SL(2,R) y la restantem4 tiene su origen

en el calibrado de la simetŕıa de escalamiento R
+. Los parámetros de m calibran

un subgrupo de la simetŕıa global SL(2,R) y R+ respectivamente, con parámetro

Λ = eM̃λ y las transformaciones de calibre de campo se convierten en:

A→ A− dλ, ~B → Λ( ~B − ~Adλ), (3.17)

donde definimos M̃ = (M,m4), para agrupar los dos tipos de deformaciones.
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Siguiendo [42, 46], consideremos en primer lugar las deformaciones masivas aso-

ciadas a ΛSL(2,R) para el calibrado del subgrupo de SL(2,R) con generador la matriz

de masa M empleada en la reducción. Hay tres casos distintos dependiendo del valor

de ~m2 = 1
4
(m1

2+m2
2−m3

2) caracterizando el conjunto de tres clases de conjugación

ya mostrada en (2.34) [102, 105]: R, SO(1, 1)+, SO(2). Ya que se hará uso de ellas, se

describirán brevemente (para simplificar la notación se mantiene la usada en [46] y se

hace un resumen de sus resultados enfocados solo en el análisis de la monodromı́a).

Cada uno de los subgrupos está generado por un elemento Λ del grupo SL(2,R) con

detΛ = 1. Ellos se clasifican de acuerdo a sus trazas como se vio en la sección 2.1.4:

La teoŕıa de supergravedad calibrada parabólica está asociada al calibrado del

subgrupo R con parámetro ζ generada por Λp.

La teoŕıa de supergravedad calibrada hiperbólica está asociada al calibrado del

subgrupo SO(1, 1)+ con parámetro γ generada por Λh.

La teoŕıa de supergravedad calibrada eĺıptica está asociada al calibrado del

subgrupo SO(2) generada por los elementos Λe de SL(2,R) con parámetro θ.

El grupo R
+ es una clase de conjugación de 1 parámetro. Corresponde a los es-

calamientos que dejan invariantes las ecuaciones de campo pero que escalan al la-

grangiano globalmente. Estas simetŕıas fueron llamadas trombón por [62]. Su cali-

brado fue estudiado por ejemplo en [47, 48]. Esto corresponde a la reducción con

m4 6= 0;m1 = m2 = m3 = 0. Siguiendo a [46], la simetŕıa R+ ha sido calibrada con

parámetro ΛR+ = em4λ. Como se explicó en [46], el conjunto completo de deformacio-

nes {mi, m4} para las reducciones IIB corresponde a

ΛGL(2,R) = ΛSL(2,R)ΛR+ . (3.18)
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Además de las reducciones twisted para obtener teoŕıas calibradas de supergra-

vedad en 9D, se pueden generar términos masivos en nueve dimensiones haciendo la

reducción toroidal de la supergravedad masiva IIA, con un ansatz de reducción que

lleva a la supergravedad calibrada 9D [42, 130]. Por consiguiente, la reducción de la

supergravedad IIA masiva corresponde a una reducción twisted de la supergravedad

IIB, empleando el subgrupo de R de SL(2,R). Esta equivalencia en nueve dimensio-

nes es llamada T-dualidad masiva y puede considerarse como una deformación de la

dualidad T sin masa.

Una caracteŕıstica interesante de la T-dualidad masiva es que la teoŕıa IIA masiva

se transforma en una teoŕıa calibrada después de la reducción. El surgimiento de este

calibrado puede ser visto como una generalización de los calibrados ’aumentados o

mejorados’ mencionados antes, en los cuales el vector de calibre extra proviene de un

vector de mayor dimensión. En el caso de la teoŕıa masiva IIA, sin embargo, el vector

de calibre es A, proveniente de la 2-forma Neveu-Schwarz B en IIA.

Además de la reducción twisted SL(2,R) de IIB, se puede también hacer reduc-

ciones twisted de ambas IIA y IIB usando las simetŕıas de escalamiento α, β y δ3,

con los parámetros de masa correspondientes denotadas por mIIA, m4 y mIIB, res-

pectivamente. Por ejemplo, se puede obtener un calibrado de la supergravedad IIA

en 9D por reducción en un ćırculo a la KK de la teoŕıa masiva IIA en diez dimen-

siones. Las diferentes posibilidades están ilustradas en la figura 3.1 [66]. En total,

esto equivale a siete deformaciones de la supergravedad única D = 9, con parámetros

m1, m2, m3, m4, mIIA, mIIB y m11. El parámetro de Romans mR no es independiente

sino que está relacionado a un subconjunto de los parámetros ~m.

Los autores de [46] analizan en 9D todas las combinaciones con las 7 deformaciones

3Aqúı estamos siguiendo la notación de Roest en [66].
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Gauge Group

Gauge Vector

Gauged Symmetry

IIA m

11D

10D

9D

11D

IIBIIARIIA m

mR m11 mIIA

R

A

m4 m=0 mIIB mi

A2 A1 A1 A A
R RR R R, SO(1,1), SO(2)+ + + + +

ζ α α δβ ζ,γ,θ

ζ,γ,θδβ
α

α

KK−reduction

SS−reduction

No action

11

Figura 3.1: Gráfico original de [66] donde se resume todas las reducciones twisted. Los

parámetros de masa en la misma caja forman un multiplete bajo el grupo SL(2,R).

También se dan la simetŕıa calibrada y el vector de calibre en 9D.
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masivas existentes en 9D. Ellos consiguen las siguientes posibles combinaciones (con

los otros parámetros de masa cero) que recopilamos por completitud:

(1) Combinación con las deformaciones {mIIA, m4}: Puede obtenerse además

por una reducción twisted de IIA usando una combinación lineal de las simetŕıas

α y β. Hay un calibrado de ambas simetŕıas y (para m4 6= 0) el subgrupo

parabólico de SL(2,R) en 9D, resultando un grupo de calibre no-abeliano.

(2) Combinación con las deformaciones {~m,mIIB}: Esta combinación contiene

tres casos diferentes inequivalentes dependiendo de ~m2 (dependiendo de manera

crucial del hecho que mIIB es un singlete bajo SL(2,R)): (a) con {~m,mIIB} y

~m2 = 0; (b) con {~m,mIIB} y ~m2 > 0; y, (c) con {~m,mIIB} y ~m2 < 0. Todas

esas combinaciones pueden además ser obtenidas por reducción twisted de IIB,

empleando una combinación lineal de las simetŕıas δ y uno de los subgrupos

de SL(2,R). Todos los casos (con mIIB 6= 0) corresponde al calibrado de una

simetŕıa de escalamiento abeliana en 9D.

(3) Combinaciones con {5m4 = −12mIIA, m2 = m3}: Este caso puede enten-

derse como la reducción twisted de la teoŕıa masiva IIA de Romans, usando la

simetŕıa de escalamiento que no es rota por las deformaciones mR: Esto es dado

por la combinación 12β − 5α. Esta deformación calibra tanto la combinación

lineal de simetŕıas de escalamiento como el subgrupo parabólico de SL(2,R) en

9D, formando ambos un grupo de calibre no-abeliano.

Por lo tanto las deformaciones más generales son los cinco casos dados arriba,

conteniendo todos dos parámetros de masa. Todos ellos son teoŕıas calibradas y tienen

un origen de mayor dimensión. Los casos (1) y (3) tienen un grupo de calibre no-

abeliano contemplando m4 6= 0. Solo las simetŕıas que se preservan cuando se incluyen
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en la teoŕıa de supergravedad correcciones a orden árbol cuyo origen es teoŕıa de

cuerdas, van a ser a su vez simetŕıas de teoŕıas de cuerdas. Se tienen dos de tales

simetŕıas [46]:

La simetŕıa SL(2,R) de IIB (o mejor su subgrupo SL(2,Z)). De este modo las

deformaciones ~m = (m1, m2, m3) corresponden a los ĺımites a bajas enerǵıas de

tres sectores diferentes de la teoŕıa de cuerdas IIB compactificada (dependiendo

de ~m2 = 1
4
(−m1

2 −m2
2 +m3

2)).

La combinación lineal α + 12β de simetŕıas de escalamiento de la teoŕıa IIA.

Por lo tanto se puede definir una deformación masiva ms dentro del caso 1 con

{mIIA = ms, m4 = 12ms} que corresponde al ĺımite a baja enerǵıa de un sector

de la teoŕıa de cuerdas IIA compactificada.

Todas las correcciones α′, a mayor orden en 11D son invariantes bajo transforma-

ciones de coordenadas generales x11 → λ x11 y en caso de reducción, deben transfor-

mar covariantemente bajo las transformaciones de coordenadas reducidas, entre las

cuales está la simetŕıa de escalamiento α+12β. Por consiguiente, esa combinación es

simetŕıa de escalamiento de la teoŕıa IIA debido a su origen en 11D [66].

Un ejemplo de cómo se relacionan los diferentes métodos de reducción dimensional

es el siguiente: la reducción twisted desde la teoŕıa IIA a 9D usando la transformación

de coordenadas generales de arriba es equivalente a la reducción única del grupo de la

variedad de 11D a 9D. Las deformaciones ms corresponden a un calibrado del grupo

2D no-abeliano y no solo el de la simetŕıa α + 12β.
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3.3. La Supermembrana con Cargas Centrales no

Triviales en 9D

En la sección 1.2 se hizo un resumen de los resultados hasta ahora presentes en la

literatura en la descripción de la supermembrana en 11D. Se incluyó su formulación

en el superespacio (sección 1.2.2) y la selección del calibre del cono de luz (CCL)

(sección 1.2.3) para obtener su hamiltoniano y sus propiedades espectrales (sección

1.2.4).

En esta sección describiremos un sector de la Supermembrana compactificada

sobre un espacio target M9 × T 2. T 2 es un toro plano definido en términos de una

ret́ıcula4 L sobre el plano complejo C por C/L:

L : z → z + 2πR(l +mτ), (3.19)

donde m, l son enteros, R es un móduli real, R > 0, y τ un móduli complejo τ =

Reτ + iImτ , Imτ > 0. τ es la coordenada compleja del espacio de Teichmüller para

g = 1, que es la parte superior del plano. El espacio de Teichmüller es un cubrimiento

del espacio de móduli de las superficies de Riemann, es una variedad 2g−1 compleja,

anaĺıtica, simplemente conexa, para superficies de Riemann de genus g. Los toros

conformalmente equivalentes están identificados por el parámetro τ módulo el grupo

modular de Teichmüller, el cual en el caso g = 1 es SL(2,Z). Este grupo actúa sobre

el espacio de Teichmüller mediante una transformación de Möbius y tiene una acción

natural sobre el grupo de homoloǵıa H1(T
2).

Para definir una supermembrana con cargas centrales no triviales, consideraremos

mapas Xm, Xr desde una superficie de Riemann Σ con g = 1 al espacio target, donde

4Traducción de lattice.
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Xm son mapas univaluados hasta el sector Minkowski del espacio target mientras que

los mapas Xr van hasta el sector compacto T 2 del espacio target con los ı́ndices m =

3, . . . , 9; r = 1, 2. Recordemos que partimos de la supermembrana 11D que está en el

CCL con coordenadas del espacio target (X+, X−, Xa) con a = 1, . . . , 9.
√
W es una

densidad independiente del tiempo introducida para preservar el comportamiento de

densidad de P− [33]. Eliminamos X−, P+ de los v́ınculos y se resuelven los v́ınculos

fermiónicos de segunda clase de la manera usual [4].

Las condiciones necesarias de enrollamiento que deben cumplir los mapasXm, Xr:Σ →
T 2, (con r = 1, 2) son:

∮

Cs
dXm = 0, (3.20)

∮

Cs
dX = 2πR(ls +msτ), (3.21)

ls, ms, s = 1, 2, son enteros, y Cs, la base de homoloǵıa de una superficie de Riemann

Σ de genus g = 1. Las uno-formas dXm son exactas, sin embargo las uno-formas

asociadas al sector compacto dXr son cerradas. Podemos por consiguiente, hacer

la descomposición de Hodge de dichas uno-formas en términos de las uno-formas

armónicas más uno-formas exactas. Sin perder generalidad, podemos descomponer

las uno-formas cerradas dXr en

dXr =M r
s dX̂

s + dAr, r = 1, 2, (3.22)

donde dX̂s, s = 1, 2 es la base de uno-formas armónicas, denotaremos por dX̂r, con

r = 1, 2, la base normalizada de uno-formas armónicas sobre Σ:

∮

Cs
dX̂r = δsr , (3.23)

dAr son las uno-formas exactas y M r
s son los coeficientes constantes.
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Además, podemos definir dichas formas en coordenadas complejas:

dX = dX1 + idX2, dA = dA1 + idA2. (3.24)

La condición de enrollamiento (3.21) implica:

M1
s + iM2

s = 2πR(ls +msτ). (3.25)

En consecuencia, la expresión más general para los mapas Xr, es:

dX = 2πR(ls +msτ)dX̂
s + dA, (3.26)

ls, ms, s = 1, 2, enteros arbitrarios.

Se impone a continuación la restricción topológica sobre los mapas de enrolla-

miento: el v́ınculo de enrollamiento irreducible, también llamado condición de carga

central5:

∫

Σ

dXr ∧ dXs = nǫrsArea(T 2), r, s = 1, 2, (3.27)

donde el número de enrrollamiento n se toma como distinto de cero. ǫrs es el tensor

antisimétrico simpléctico asociado a la 2-forma simpléctica sobre el toro plano T 2. En

el caso que estamos considerando ǫrs es el śımbolo antisimétrico de Levi Civita.

La densidad escalar natural
√
W en el modelo geométrico que estamos conside-

rando se obtiene del pullback6 de la 2-forma simpléctica por el mapa X̂r, r = 1, 2,

sobre T 2:

ω = ǫrsdX̂
r ∧ dX̂s ≡

√
Wǫabdσ

a ∧ dσb, (3.28)

5La ecuación (3.25) describe la carga central de del álgebra supersimétrica en 11D asociada a

una M2.

6Sin traducción.
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donde
√
W = 1

2
ǫrs∂aX̂

r∂bX̂
sǫab. Los simplectomorfismos que preservan la estructura

canónica simpléctica sobre T 2 son entonces el pull-back a los simplectomorfismos que

preservan W sobre Σ. Esto es relevante en la construcción de la supermembrana

con cargas centrales como secciones de un fibrado toroidal simpléctico. Usando que

Area(T 2) = (2πR)2Imτ , la condición (3.27) implica que la matriz de enrollamiento

W =


 l1 l2

m1 m2


 satisface:

n = detW, (3.29)

(no confundir con W ). Esto es, todos los enteros ls, ms con s = 1, 2 son admitidos

con tal que ellos satisfagan la restricción (3.29).

La supermembrana con cargas centrales no triviales es invariante bajo los di-

feomorfismos que preservan el área homotópicos a la identidad. En particular, bajo

mapas conformes que dejan invariante la base de homoloǵıa sobre Σ. De hecho, dX̂r

permanece invariante y por lo tanto la 2-forma simpléctica en Σ. También, la teoŕıa

es invariante bajo los difeomorfismos no homotópicos a la identidad actuando sobre

la base de homoloǵıa en Σ como transformaciones SL(2,Z).

El hamiltoniano f́ısico para la supermembrana con cargas centrales en el CCL

está dado por [2, 3, 4],

HCCL =

∫

Σ

T−2/3
√
W

[
1

2
(
Pm√
W

)2 +
1

2
(
Pr√
W

)2 +
T 2

2
{Xr, Xm}2 + T 2

4
{Xr, Xs}2

]

+

∫

Σ

T−2/3
√
W

[
T 2

4
{Xm, Xn}2 − θΓ−Γm{Xm, θ} − θΓ−Γr{Xr, θ}

]
, (3.30)

sujeto a los nuevos v́ınculos:

d(PrdX
r + PmdX

m − θΓ−dθ) = 0, (3.31)

∮

Cs
(PrdX

r + PmdX
m − θΓ−dθ) = 0, (3.32)
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y la condición de carga central (3.27). Notemos que, comparando con el hamilto-

niano (1.42), ambos son muy similares en su forma, pero en este último hay términos

adicionales que incluyen las coordenadas compactificadas.

3.3.1. Simetŕıas SL(2,Z)

La supermembrana con cargas centrales tiene dos simetŕıas SL(2,Z). Una está aso-

ciada a la invariancia conforme sobre la variedad base Σ. Esto se debe a que los

simplectomorfismos que preservan la estructura canónica simpléctica sobre T 2 son

entonces pull-back a los simplectomorfismos que preservan W sobre Σ y esto nos per-

mite identificar los modos de enrollamiento. La otra simetŕıa SL(2,Z) actúa sobre el

móduli del espacio target en particular sobre la coordenada de Teichmüler τ y además

sobre el radio R, por lo que las clases de equivalencia del toro bajo esta transformación

no son clases conformalmente equivalentes. Usando ambas transformaciones SL(2,Z),

se vio en [13] que la contribución al operador de masa de los estados de cuerdas con-

tenidos en la supermembrana con cargas centrales, concuerdan exactamente con el

espectro de masa perturbativo de las supercuerdas (p, q) IIB y IIA. A continuación

veremos con más detalle estas simetŕıas.

3.3.1.1. SL(2,Z) de la superficie de Riemann

La supermembrana con cargas centrales es invariante bajo mapas conformes ho-

motópicos a la identidad (mapas biholomórficos). Ellos son difeomorfismos que preser-

van dX̂r, r = 1, 2, las uno-formas armónicas. Entonces, el área de la métrica espacial

del volumen de mundo de la supermembrana W es invariante:

W
′

(σ) =W (σ). (3.33)
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Además, la supermembrana con cargas centrales es invariante bajo difeomorfismos

cambiando la base de homoloǵıa, y en consecuencia cambiando las uno-formas armóni-

cas normalizadas por una transformación modular sobre el espacio de Teichmüller de

la base del toro Σ. De hecho, si

dX̂r′(σ) = Sr
sdX̂

r(σ), (3.34)

satisface:

ǫrsS
r
t S

s
u = ǫtu, (3.35)

esto es, S ∈ Sp(2,Z) ≡ SL(2,Z), y por consiguiente la 2-forma simpléctica ω perma-

nece invariante.

Entonces se concluye que la supermembrana con cargas centrales tiene una si-

metŕıa adicional con respecto a la supermembrana D = 11 y a la supermembrana

compactificada del sector sin cargas centrales o n = 0. Todas las transformacio-

nes conformes sobre Σ son simetŕıas de la la supermembrana con cargas centrales

[7, 9, 10, 38]. Notemos que bajo (5.7)

dX → 2πR(ls +msτ)S
s
rdX̂

r + dA, (3.36)

donde A(σ) transforma como un campo escalar. Esto es,

W
′ = W


S

1
1 S1

2

S2
1 S2

2




−1

(3.37)

Sp(2,Z) actúa desde la derecha.
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3.3.1.2. Invariancia bajo U-dualidad

La supermembrana con cargas centrales es además invariante bajo la siguiente

transformación SL(2,Z) sobre el toro del target T 2 también conocida por U-dualidad:

τ → aτ + b

cτ + d
, R → R|cτ + d|, A→ Aeiϕτ , W →


 a −b
−c d


W, (3.38)

donde cτ+d = |cτ+d|e−iϕt y Λ =


a b

c d


∈ Sp(2,Z). Notar que la transformación de

U-dualidad para la supermembrana con cargas centrales no solo transforma los módu-

li sino también la fase del campo de calibre. En esta tesis hemos constatado que esta

transformación del campo de calibre ha sido requisito indispensable para poder esta-

blecer la relación entre la supermembrana con cargas centrales y la supergravedades

calibradas como veremos en caṕıtulo 6.

Como se muestra en [13] la densidad hamiltoniana de la a supermembrana con

cargas centrales es entonces invariante bajo (3.38). La matriz Sp(2,Z) actúa, ahora,

desde la izquierda de la matriz W.

La acción de la matrices Sp(2,Z) por la izquierda y la correspondiende por la de-

recha no son equivalentes, sino son complementarias. Es decir, son simetŕıas distintas

bien definidas que actúan simultáneamente sobre el hamiltoniano de la supermem-

brana con cargas centrales. Las siguientes observaciones son válidas. La expresión

general para los mapas dX es:

dX = dXh + dA, (3.39)

donde la parte armónica de dX , se puede expresar como:

dXh = 2πR(ndX̂1 + τdX̂2), (3.40)
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es una inmersión mı́nima de Σ a T 2 sobre el target, además está directamente rela-

cionado con una inmersión holomórfica de Σ en T 2.

La extensión de la teoŕıa de supermembranas con el v́ınculo topológico asociado

a enrollamiento irreducible, a sectores compactos más generales en el espacio target

está directamente relacionado con la existencia de inmersiones holomórficas [38]. Por

eso a la supermembrana con cargas centrales también se le denominó supermembrana

minimalmente inmersa MIM2.

3.3.2. Propiedades Espectrales: Espectro Discreto

En esta sección nos referimos a la discretitud del espectro de la supermembrana

con cargas centrales. Haremos un breve resumen de sus propiedades más significativas,

para un análisis detallado ver trabajos originales [5, 9, 6, 7, 11, 12]. El análisis del

espectro se hace a nivel del operador de Schrödinger regularizado asociado al modelo

matricial de la supermembrana con cargas centrales Ĥ , (ver [5]): En primer lugar,

a diferencia de lo que ocurre para el caso de la supermembrana D = 11, o con

la supermembrana compactificada en M9 × T 2 sin la condición de cargas centrales,

el potencial del operador de Schrödinger se anula solo en el origen del espacio de

configuración:

V = 0 → ||(Xm, Ar)|| = 0, (3.41)

donde ||.|| representa la norma eucĺıdea en RL. Es decir, Ĥ no tiene configuraciones

singulares asociadas a direcciones planas del potencial [5]. Por consiguiente, no hay

configuraciones tipo cuerdas y la teoŕıa a nivel clásico es estable. Esto es debido a que

la condición de carga central implica la cancelación de un término del hamiltoniano

que es una derivada total que es el responsable de la presencia de estas configuraciones.
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En segundo lugar, usando un teorema de B. Simons [91], se demostró en [9] que

existe una constante M > 0 tal que,

V (Xm, Ar) ≥M ||(Xm, Ar))||2. (3.42)

Denotando (Xm, Ar) ≡ (X,A) y escribiendo en coordenadas polares X = Rx A =

Ra donde θ ≡ (x, a) se define sobre la esfera unitaria, ||(x, a)|| = 1, el potencial

satisface que:

V (X,A) ≥ MR2. (3.43)

El operador de Schrödinger está acotado inferiormente por un oscilador armónico pe-

ro va a infinito en todas las direcciones del espacio de configuración, por consiguiente

tiene espectro discreto. Este resultado es análogo al que se obtiene al probar la dis-

cretitud del espectro de la membrana bosónica regularizada sin la condición de carga

central, aunque la cota, al tratarse de hamiltonianos diferentes, no es la misma.

Además, en [10] se probó la discretitud de la parte bosónica de la supermembrana

con cargas centrales a nivel exacto de la teoŕıa, es decir sin regularizar. Este resultado

implicó trabajar con infinitos grados de libertad en el que los teoremas usuales de

mecánica cuántica para espacios de Hilbert finitos en general no se cumplen.

En [6, 7, 133], se demostró que el hamiltoniano supersimétrico de la supermem-

brana con cargas centrales es discreto. Este es un resultado notable que ha permitido

a los autores interpretar este sector de la supermembrana como una teoŕıa de primera

cuantización. La demostración se basa en lo siguiente: Los autores probaron que la

contribución fermiónica al potencial es una perturbación de la contribución bosónica,

algo que no ocurre en general.

Para ello en [6] desarrollaron el Lemma.1 : Sean vk(x) los autovalores de V (x). Si

todos vk(x) → +∞ cuando |x| → ∞, entonces el espectro de H es discreto. Con el
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operador hamiltoniano: H = −d2/dx2 + V = −∆ + V . Para la demostración, en [6]

se considera la resolvente de un operador µ:

µ = −∆+ VBI+ VF , (3.44)

definido en el espacio total de configuraciones sin v́ınculos, con VB, el potencial bosóni-

co y VF el potencial fermiónico. Los autovalores están determinados por las soluciones

de la ecuación caracteŕıstica, entonces λ debe satisfacer:

det

[
λ− VB
R

I−M(x, a)

]
= 0, R > 0. (3.45)

con M homogéneo. Luego, si λ̂ son los autovalores de M(x, a), entonces

λ = VB(Rx,Ra) +Rλ̂. (3.46)

En consecuencia, λ → +∞ cuando R → ∞. V = VB + VF es un potencial continuo,

por lo que está automáticamente acotado por debajo. Esto también es cierto para

el operador µ con su dominio en el espacio de configuración completo sin tener en

cuenta los v́ınculos, y por lo tanto también se cumple para la teoŕıa con v́ınculos.

Entonces, el hamiltoniano supersimétrico mantiene las propiedades de discretitud de

la parte bosónica del mismo. La contribución supersimétrica cancela el punto de cero

enerǵıa de los osciladores bosónicos aún en la teoŕıa exacta [10, 81]. El operador

de Schröedinger es acotado por el oscilador armónico y por tanto tiene resolvente

compacta. Los autores de [6] lo generalizaron a otras teoŕıas de mecánica cuántica

matricial y obtuvieron una condición de suficiencia para asegurar que el espectro

de esta teoŕıa es discreto, resultado que utilizaron posteriormente para analizar la

M5-brana y teoŕıas tipo ABJM [132], modelos BMN y D2−D0 [11, 12].
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Nuevos Resultados
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Caṕıtulo 4

La Supermembrana 4D N = 1 desde

11D

En lo que sigue nos enfocaremos en el sector de la supermembrana con cargas centrales

de la cual se ha hablado en preliminares. Recordemos que la condición de carga central

es una condición topológica que aparece al imponer una condición irreducible sobre el

sector compacto de la variedad target. La importancia de este sector es que hasta el

momento presente es el único sector que puede ser definido a nivel cuántico de forma

consistente y por lo tanto tiene un claro potencial interés para la fenomenoloǵıa1.

El propósito de este caṕıtulo es mostrar la construcción de la acción de la super-

membrana con cargas centrales no triviales compactificada sobre un T 7 y una vez

obtenida analizar sus propiedades f́ısicas. Este proceso lo haremos en dos pasos, un

primero en el que compactificaremos la MIM2 en cinco dimensiones, generalizando

la condición de carga central, y un segundo paso, en el que compactificaremos en el

ćırculo restante.

1Posteriormente a la realización de este trabajo se demostró en [11] que la supermembrana en

una pp-wave a nivel regularizado tiene espectro discreto y no solo su aproximación semiclásica. Sin

embargo sus propiedades espectrales en el ĺımite con N grande no quedan claras.
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La acción describe una supermembrana que evoluciona en un espacio de Minkowski

4D. Ésta es invariante bajo supersimetŕıa (SUSY) con un parámetro espinorial de

Majorana de 32 componentes. Sin embargo, lo que observamos es que en el caso de la

supermembrana con cargas centrales esta supersimetŕıa se rompe espontáneamente

a una teoŕıa N = 1 en 4 dimensiones cuando la configuración minimal es fijada.

Cuando la variedad de compactificación es una variedad isotrópica, como es el caso

particular del toro T 7 que estamos asumiendo, es decir, cuando todos los radios son

iguales, demostramos que el potencial no tiene direcciones planas. Esto implica que

dicho potencial es estable en el espacio móduli de parámetros. Los resultados de este

caṕıtulo fueron reportados en [18, 19].

4.1. Supermembrana 11D con cargas centrales so-

bre una variedad target M5 × T 6

En lo que sigue vamos a generalizar la acción de la supermembrana con cargas

centrales que se introdujo en la sección preliminares a una espacio targetM5×T 6. Es-

tamos interesados en reducir la teoŕıa al modelo 4-dimensional, por lo que tomaremos

una variedad target M4 × T 7. Separamos el T 7 en T 6 × S1 porque vamos a imponer

la condición generalizada de cargas centrales a la subvariedad de mayor dimensión

contenida en T 7, ésta se corresponde con un T6. Los mapas de configuración Σ en T7

satisfacen las siguientes condiciones de enrollamiento:

∮

cs

dXr = 2πSr
sR

r r, s = 1, . . . , 6. (4.1)

∮

cs

dX7 = 2πLsR, (4.2)
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∮

cs

dXm = 0, m = 8, 9, (4.3)

donde Sr
s , Ls son enteros y Rr, r = 1, . . . , 6 son los radios de T 6 = S1 × · · · × S1,

mientras que R es el radio del S1 restante sobre el target. Estas condiciones aseguran

que estamos haciendo el mapa de Σ sobre un sector Π7
i=1S

1
i de la variedad target. En

lo que sigue consideraremos solamente la compactificación sobre el toro T 6 para ello

necesitamos generalizar la condición de carga central, que la definimos de la siguiente

manera:

Irs ≡
∫

Σ

dXr ∧ dXs = (2πRrRs)ωrs, (4.4)

donde ωrs es una matriz simpléctica sobre el sector T 6 del target. Por simplicidad

tomaremos que ωrs sea la matriz simpléctica canónica:

ω =




0 1

−1 0

0 1

−1 0

0 1

−1 0




n, (4.5)

Esta matriz corresponde a la intersección ortogonal de tres supermembranas toroida-

les T 2. La dirección temporal es el espacio de intersección. La condición topológica

(4.4) no cambia las ecuaciones de campo del hamiltoniano (1.42) restringidos por los

v́ınculos (1.43) y (1.44). De hecho, cualquier variación de Irs bajo un cambio δXr,

univaluada sobre Σ, es idénticamente cero. Además de las ecuaciones de campo obte-

nidas de (1.42), las configuraciones clásicas deben satisfacer la condición (4.4). Ésta es

solamente una restricción topológica sobre el conjunto original de soluciones clásicas

de las ecuaciones de campo. En la teoŕıa cuántica, el espacio de las configuraciones

f́ısicas está además restringida por la condición (4.4). La interpretación geométrica

de esta condición fue discutida en trabajos anteriores [2, 3].
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Observemos que (4.4) solo restringe los valores de Sr
s , los cuales son ya números

enteros por (4.1).

Consideraremos a continuación el mapa más general que satisface la condición

(4.4). Para ello hacemos una descomposición de Hodge de una uno-forma cerrada

dXr en una parte armónica y una parte exacta, como en casos anteriores:

dXr =M r
s dX̂

s + dAr, (4.6)

donde dX̂s, s = 1, . . . , 2g es una base de uno-formas armónicas sobre Σ. Se puede

normalizar esta base seleccionando una base canónica de homoloǵıa e imponiendo:

∮

cs

dX̂r = δrs . (4.7)

Ahora, consideraremos una superficie de Riemann con una clase de base canónica

equivalente. La condición (4.1) determina:

M r
s = 2πRrLr

s. (4.8)

Con dAr una uno-forma exacta. A continuación se impone la condición (4.4) y se

obtiene:

Sr
tω

tuSs
u = ωrs, (4.9)

esto es, S ∈ Sp(6,Z). Este es el mapa más general que satisface (4.4). Notar que

el grupo de simplectomorfismos ya no coincide con el grupo de difeomorfismos que

preserva la base que es SL(2,Z).

La elección natural para
√
W (σ) en este marco geométrico es considerarla como

la densidad obtenida del pull-back de la 2-forma de Khäler sobre T 6 en términos de

la forma simpléctica anteriormente introducida. Entonces definimos:

√
W (σ) =

1

2
∂aX̂

r∂bX̂
sωrs. (4.10)
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La
√
W (σ) es entonces invariante bajo el cambio:

dX̂r → Sr
sdX̂

s, S ∈ Sp(2g, Z), (4.11)

Pero, éste es justo el cambio sobre la base canónica de uno-formas armónicas cuan-

do un mapa biholomórfico en Σ es hecho cambiando la base canónica de homoloǵıa.

Entonces, concluimos que la teoŕıa es invariante no solo bajo los difeomorfismos ge-

nerados por φ1 y φ2, sino además bajo los difeomorfismos, mapas biholomórficos, que

cambian la base canónica de homoloǵıa por una transformación modular.

La teoŕıa de supermembranas con cargas centrales en el CCL que hemos construi-

do, depende entonces del espacio de móduli de las superficies de Riemann compactas

Mg solamente. Ella puede ser definida sobre las clases equivalentes conformes de su-

perficies de Riemann compactas.

Comparte esta propiedad con la teoŕıa de cuerdas, aunque al estar la teoŕıa de la

supermembrana restringida por los v́ınculos que preservan el área, hay difeomorfis-

mos que preservan el área que no son mapas conformes. Además, la supermembrana

depende del móduli identificando la inmersión holomórfica desde el Mg a la variedad

target. Este es un espacio de móduli interesante que ya ha sido considerado en un

contexto diferente en [134].

Identificada la invariancia modular de la teoŕıa, se puede regresar a la expresión

general de dXr, y podemos siempre considerar una base canónica de tal modo que:

dXr = RrdX̂r + dAr, (4.12)

haciendo expĺıcita la dependencia de los radios. Debido a que estamos en dimensión

impar no haremos uso de las definiciones estándar de la formulación compleja de los

móduli geométricos para caracterizar la variedad de compactificación. Los correspon-

dientes grados de libertad son descritos exactamente por los campos univaluados Ar.
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Después de reemplazar esta expresión en el hamiltoniano (1.42) y siguiendo todo el

proceso indicado en [3], obtenemos:

H =

∫

Σ

√
Wdσ1 ∧ dσ2[

1

2
(
Pm√
W

)2 +
1

2
(
Πr

√
W

)2 +
1

4
{Xm, Xn}2 + 1

2
(DrX

m)2 +
1

4
(Frs)

2+

+

∫

Σ

F + (2π)4(RrRs)4
∫

Σ

√
W (DrX̂)2 + Λ(Dr(

Πr√
W

) + {Xm,
Pm√
W

})]

+

∫

Σ

√
W [−θΓ−ΓrDrθ] + θΓ−Γm{Xm, θ}+ Λ{θΓ−, θ}],

(4.13)

dondeDrX
m = DrX

m+{Ar, X
m}, Frs = DrAs−DsAr+{Ar, As},Dr = 2πRr ǫab√

W
∂aX̂r∂b.

Pm y Πr son los momentos conjugados a Xm y Ar respectivamente. Dr y Frs son la

derivada covariante y curvatura de una teoŕıa simpléctica no conmutativa [3, 9], cons-

truida a partir de la estructura simpléctica ǫab√
W

introducida por la carga central. Esta

es la estructura de la supermembrana con cargas centrales donde se ha generalizado

el número de componentes. Tomaremos la integral de la curvatura como cero y el

término de volumen corresponde al valor del hamiltoniano en su estado fundamental.

El último término representa su extensión supersimétrica en términos de los espinores

de Majorana. Los grados de libertad f́ısicos de la teoŕıa son los Xm, Ar,Ψα, que son

campos univaluados sobre Σ.

En [38] un sector de la supermembrana con cargas centrales compactificado sobre

T 4 fue analizado. Su hamiltoniano fue expresado en términos de un marco diferente

para el sector compactificado sobre el toro T 4. En ese caso el pull-back se hizo di-

rectamente con los modos armónicos dX̂r, mientras que en la presente formulación

la métrica sobre ese sector es δrs y el pullback debeŕıa ser hecho con G1/2dX̂, G es

la matriz constante introducida en [38]. En ambos casos la misma densidad escalar
√
W (σ) es obtenida.
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4.2. Compactificación sobre el S1 restante

El análisis de la compactificación sobre el S1 restante puede ser realizado direc-

tamente en el formalismo descrito antes o bien considerando su formulación dual en

términos de los campos de calibre U(1). Se discutirán ambas aproximaciones.

En el primer caso, caso directo, podemos resolver la condición de enrollamiento

(4.2), y obtener:

dX7 = RLsdX̂
s + dφ̂, (4.14)

donde dφ̂ es una uno-forma exacta y dX̂s, como antes son la base de 1-formas armóni-

cas sobre Σ. Para el análisis sobre la discretitud es más conveniente expresar dX7 en

términos de la solución del laplaciano covariante sobre Σ:

DrDrX̃ = 0, (4.15)

donde Dr, r = 1, . . . , 6 fueron definidos en la sección previa. Hay 6 soluciones inde-

pendientes de (4.15). De hecho, dX̃ es necesariamente una combinación lineal de la

base de 1-formas armónicas más las uno-formas exactas. Para cada dX̂s existe un

único φs, univaluado sobre Σ tal que se satisface:

DrDrX̂
s +DrDrφ

s = 0. (4.16)

La solución más general para X̃1 que satisface DrDrX̃1 = 0 es entonces,

dX̃1 = Ls(dX̂
s + dφs), (4.17)

puesto que la única solución en términos de las formas puramente exactas es la trivial.

Notemos además que dX̂s + dφs con s = 1, . . . , 6 son linealmente independientes. La

solución más general para DrDrX̃ = 0, es de la misma forma (4.17), ya que todas
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las contribuciones nuevas a la solución son exactas. Podemos reescribir (4.14) en la

forma:

dX7 = RLsdX̃
s + dφ, (4.18)

Notemos que Ls son iguales a los introducidos en (4.8). El único cambio está en las

1-formas exactas.

Podemos ahora analizar la contribución de los campos dX7 al hamiltoniano. Adi-

cionalmente a sus momentos conjugados, los cuales aparecen cuadráticamente, tene-

mos una contribución extra al potencial:

V7 =
〈
(DrX

7)2 + {Xm, X7}2
〉
=
〈
(LsDrX̃

s)2 + (Drφ)
2 + {Xm, X7}2

〉
, (4.19)

donde hemos usado expĺıcitamente (4.15). Entonces, obtenemos el ĺımite inferior:

V7 ≥
〈
(Drφ)

2 + {Xm, X7}2
〉
≥ (Drφ)

2, (4.20)

el cual directamente muestra que el enrollamiento correspondiente a dX7 no afecta las

propiedades cualitativas del espectro de (4.13) dado que se pueden usar los teoremas

de discretitud previamente explicados.

Ahora, construiremos por completitud la formulación dual a (4.13), cuando dX7

está restringida por la condición (4.2) asegurando que X7 toma valores sobre S1 (ver

apéndice C), obteniéndose:

L = pIẊ
I + pẊ −H(pI , X

I , p,X), (4.21)

donde ∮

Cs

dX = RLs, (4.22)

y la dependencia sobre X es solamente a través de sus derivadas ∂λX con λ = 0, a, y

a = 1, 2 a está etiquetando las coordenadas espaciales construimos,

〈
L̂+WλFµνǫ

λµν
〉
, (4.23)
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donde

L̂ = pIẊ
I + pW0 −H(pI , X

I , p,Wa), (4.24)

la eliminación de W0, a través de su ecuación de campo o directamente de la integral

gausiana en la integración funcional, produce la acción dual:

L̃ = pIẊ
I +ΠaȦa + A0∂aπ

a −H(pI , X
I , Fabǫ

ab,−1

2
ǫbaΠ

b). (4.25)

Esta es ya una formulación canónica del hamiltoniano. El nuevo hamiltoniano es

obtenido del original haciendo las sustituciones antes mencionadas. Nótese que no

hay suposiciones sobre la estructura de H, la cual no es necesariamente cuadrática.

En nuestro caso particular la dependencia de p y Wa es cuadrática. La condición

(4.22) se transforma en ∮

Cs

(−1

2
ǫbaΠ

b)dσa =
1

R
ms, (4.26)

donde ms son enteros.

Notemos que el campo As asociado a la compactificación de la supermembrana x7

no es una conexión en un fibrado lineal sobre Σ. De hecho, la condición:

∫

Σ

Fabdσ
a ∧ dσb = 2πn, (4.27)

no necesariamente es satisfecha. Para tener una conexión en el fibrado lineal sobre

Σ se debe requerir un tiempo eucĺıdeo periódico sobre la formulación de la inte-

gral funcional. En ese caso la condición (4.2), donde ahora la base de la homoloǵıa

uno-dimensional incluye el S1 adicional, asegurando que Fmn es la curvatura de una

uno-forma de conexión sobre la variedad base de tres dimensiones. Bajo esta supo-

sición la condición (4.2) para cualquier Ls implica la suma sobre todos los fibrados

principales U(1). La contribución de esta suma de la función de partición es una fun-

ción θ generalizada [134] que surge de la evaluación de la acción abeliana sobre las

configuraciones mı́nimas, esto es, soluciones tipo monopolos [135].



Caṕıtulo – 4. La Supermembrana 4D N = 1 desde 11D 106

La expresión final de la formulación dual de (4.13) cuando X7 es enrollada sobre

un S1, condición (4.2), es:

Hd =

∫

Σ

√
Wdσ1 ∧ dσ2[

1

2
(
Pm√
W

)2 +
1

2
(
Πr

√
W

)2 +
1

4
{Xm, Xn}2 + 1

2
(DrX

m)2+

+
1

4
(Frs)

2 +
1

2
(Fab

ǫab√
W

)2 +
1

8
(
Πc

√
W
∂cX

m)2 +
1

8
[Πc∂c(X̂r + Ar)]

2]+

+ Λ({ Pm√
W
,Xm} − Dr(

Πr

√
W

)− Πc

2
√
W
∂c(Fab

ǫab√
W

)) + λ∂cΠ
c]+

+

∫

Σ

√
W [−θΓ−ΓrDrθ + Γ−Γm{Xm, θ}+ 1/2θΓ7Π

b∂bθ] + Λ{θΓ−, θ}. (4.28)

El término:

1

2
(
Pm√
W

)2 +
1

4
{Xm, Xn}2 + 1

2
(Fab

ǫab√
W

)2 +
1

8
(
Πc

√
W
∂cX

m)2+

+ Λ({ Pm√
W
,Xm} − 1

2
Πc∂c(Fab

ǫab√
W

)) + λ∂cΠ
c, (4.29)

describe la densidad canónica de una teoŕıa de tipo Dirac-Born-Infeld en términos

de Gab = ∂aX
m∂bX

m y Fab. En la teoŕıa completa con el hamiltoniano Hd, hay

términos adicionales de interacción que describen el acoplamiento al sector enrrollado

sobre un T 6. Consideramos la M2 con todas las configuraciones f́ısicas enrolladas de

un modo irreducible sobre un espacio target T 6 × S1. Si a continuación se toma el

sector compactificado del target como T 7 = (S1)7, se debeŕıan entonces considerar

todas las posibles descomposiciones de la forma T 6 × S1. Entonces, el espacio de

Hilbert de las configuraciones f́ısicas es ampliado al tomar en cuenta todas las posibles

inmersiones holomórficas y sus correspondientes estados f́ısicos en términos de campos

univaluados sobre la variedad base, como se explicó en la sección 2. El rompimiento

de la supersimetŕıa inducido por el estado base se sigue de la misma manera.
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4.3. N = 1 supersimetŕıa

La condición topológica asociada a la carga central determina una inmersión ho-

lomórfica minimal desde la g-superficie de Riemann a la variedad target 2g-toro. Esta

inmersión minimal está directamente relacionada al estado BPS que minimiza el ha-

miltoniano. Cuando comenzamos con el g = 1 y T 2 sobre el espacio target, el estado

base preserva 1
2
de la supersimetŕıa original con el parámetro espinorial un espinor de

Majorana de 32 componentes. Cuando consideramos nuestra construcción para toros

sobre el target T 4, T 6 con g = 2, 3, el análisis de la preservación de la supersimetŕıa es

exactamente el mismo a cuando consideramos intersecciones ortogonales de 2-branas

con la dirección temporal como la dirección de intersección. La supersimetŕıa del esta-

do base preserva 1
4
, 1

8
de la supersimetŕıa original. El estado base en todos esos casos

corresponde a:

θ = 0, Xm = 0, Xr
i = X̂r

i . (4.30)

La preservación del estado base implica el rompimiento de la supersimetŕıa. En el

CCL, terminamos cuando g = 3 con 1
8
de la supersimetŕıa original, esto es un paráme-

tro de Grassmann complejo correspondiente a un multiplete N = 1 de supersimetŕıa

en el cono de luz.

La acción es invariante bajo supersimetŕıa en el cono de luz. Hay una clase com-

pleta de mı́nimos para el hamiltoniano, correspondiente a:

θ = ǫ1 + ǫ2,

Xr = X̂r + iǫ2Γǫ1,

Xm = iǫ2Γ
mǫ1. (4.31)

Sin embargo, cuando el vaćıo es fijado espontáneamente a uno de ellos, la supersi-

metŕıa se rompe a N = 1 a nivel cuántico cuando el target esM5×T 6. Posteriormente,
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no hay rompimiento de susy cuando se compactifica el S1 adicional para obtener un

target M4 × T 7 dado que no hay modificaciones de la condición de carga central

generalizada.

4.4. Discretitud del espectro

Consideraremos un procedimiento de fijación de calibre sobre una formulación

BFV de la teoŕıa. Varias condiciones de calibre son apropiadas para analizar cualita-

tivamente las propiedades del espectro. Podemos imponer como en ([6, 9]) una selec-

ción de calibre una vez que una base normal de funciones sobre Σ se introduce en la

teoŕıa. Podŕıamos también considerar la condición de calibre de Coulomb DrAr = 0.

Podemos resolverla en términos de modos longitudinales y transversos de la manera

usual, junto con la resolución de los v́ınculos de primera clase, el v́ınculo de Gauss. En

este caso, una vez que todo el hamiltoniano canónico es expresado en términos de los

modos canónicos transversos, uno de ellos tiene una expresión complicada asociada

al cuadrado del momento después de desacoplar el término longitudinal. Este es de

la forma:

DrΠ
LDrΠ

L, (4.32)

donde ΠL es la parte longitudinal del momento Πr, y ΠL tiene que ser reemplazado por

la solución de los v́ınculos. En lo que sigue podemos eliminar este término positivo,

ya que la discretitud del operador de ĺımite inferior asegura la misma propiedad del

hamiltoniano original. Este argumento fue usado en [9].

Podŕıamos además considerar una condición de fijación de calibre:

χ ≡ aDrAr +B, (4.33)
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donde B es el transformado BRST del campo antighost mientras que a es un número

real que puede ser seleccionado de modo de cancelar la contribución (DrAr)
2 del

término F2 en el hamiltoniano. Después de la redefinición de B, éste se desacopla de la

integral funcional, finalizamos con una formulación canónica en términos del cuadrado

de todos los momentos junto con los términos cuadráticos de masa para cada modo

en la formulación. Un importante aspecto para mencionar es que en todos esos casos

los campos ghost no se desacoplan de la acción, sin embargo las contribuciones son

siempre lineales en las variables de la configuración. El teorema 2 en [7] asegura que

esta contribución ghost no cambia las propiedades de discretitud de la formulación

canónica. La discusión de las propiedades espectrales del hamiltoniano es bastante

simplificada por estas consideraciones. Podemos reducir los grados de libertad f́ısicos

o podemos ampliar el espacio de fase como en el formalismo canónico BFV, en ambos

casos el análisis se reduce a un operador Schröendiger con términos cuadráticos de

masa y potencial positivo. Podemos considerar, por ejemplo, usando (4.20):

ĤB =

∫

Σ

√
W [

1

2
(
Pm√
W

)2 +
1

2
(
P√
W

)2 +
1

2
(
Πr

√
W

)2 +
1

4
{Xm, Xn}2+

+
1

4
{Xm, X7}2 + 1

2
(DrX

m)2 +
1

2
(Drφ)

2 +
1

4
(Frs)

2 +
1

2
(DrAr)

2], (4.34)

donde P es el momento conjugado de φ, la contribución de la compactificación sobre

S1. Este hamiltoniano es exactamente de la forma considerada en [6, 7, 9]. Entonces,

para poder aplicar los resultados alĺı desarrollados y estudiar en detalle sus propie-

dades espectrales, obtenemos una versión matricial (regularizada) del hamiltoniano

[5].

Consideramos, del modo usual, una descomposición de todos los campos escalares

sobre Σ en términos de una base discreta ortonormal YA(σ
1, σ2). Es relevante en esta
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ĺınea de trabajo considerar una superficie de Riemann compacta y cerrada Σ:

Xm(σ1, σ2, τ) =XmA(τ)YA(σ
1, σ2),

Ar(σ
1, σ2, τ) =AA

r (τ)YA(σ
1, σ2),

φ(σ1, σ2, τ) =φA(τ)YA(σ
1, σ2). (4.35)

El corchete simpléctico es además un escalar sobre Σ, por consiguiente éste debe ser

reescrito en términos de la base:

{YA, YB} = fC
ABYC , (4.36)

después de definir: ∫

Σ

YAYB = ηAB. (4.37)

Obtenemos: ∫

Σ

{YA, YB}YC = fABC , (4.38)

fABC son en consecuencia completamente antisimétricas. fC
AB son las constantes de

estructura de los difeomorfismos que preservan el área. Entonces, se reemplazan esas

expresiones en la densidad hamiltoniana y se integra la dependencia σ1, σ2. Se obtiene

una formulación del operador en términos de los modos dependientes de τ solamente.

Consideramos el truncamiento del operador, esto es restringimos el rango de los ı́ndices

A,B,C a un conjunto finito N e introduce constantes fN C
AB tal que:

limN→∞f
N C
AB = fC

AB. (4.39)

En [35, 36], fN C
AB son las constantes de estructura de SU(N), esto es la teoŕıa truncada

tiene además simetŕıa de calibre. En [6] para la supermembrana con cargas centrales

compactificada sobre un T 2 la teoŕıa truncada en términos de las constantes de es-

tructura de SU(N) tiene además una simetŕıa de calibre. El álgebra de los v́ınculos de

primera clase en ambos casos es la misma. Sin embargo, en la prueba de discretitud
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del espectro en [6] las propiedades algebraicas de fN C
AB no juegan ningún papel. Enton-

ces, continuamos con el análisis del espectro del operador de Schröedinger truncado

asociado a Ĥ sin otros requerimientos sobre las constantes fN :

i) El potencial del operador de Schröedinger solamente se anula en el origen del

espacio de configuración:

V = 0 → ||(X,A, φ)|| = 0, (4.40)

donde ||.|| denotando la norma eucĺıdea en RL. Nótese que el hamiltoniano original

aśı como ĤB están definidos sobre los campos salvo constantes.

ii) Existe una constante M > 0 tal que:

V (X,A, φ) ≥M ||(X,A, φ))||2. (4.41)

Otra vez, este ĺımite surge de consideraciones muy generales. De hecho, escribiendo

(X,A, φ) en coordenadas polares:

X = Rx, A = Ra, φ = Rϕ, (4.42)

donde θ ≡ (x, a, ϕ) está definida en la esfera unidad, ||(x, a, ϕ)|| = 1, obtenemos:

V (X,A, φ) = R2Pθ(R), (4.43)

donde:

Pθ(R) = R2k1(θ) +Rk2(θ) + k3(θ) > 0, (4.44)

con k3(θ) > 0, k1(θ) ≥ 0 y k1(θ) = 0 ⇒ k2(θ) = 0. Entonces, definimos:

µ(θ) = minRPθ(R), (4.45)

que es continuo en θ y µ(θ) > 0. Usando que la esfera unidad es compacta se obtiene:

V (X,A, φ) = R2Pθ(R
2) ≥ R2minPθ =MR2. (4.46)
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Entonces, el operador de Schröedinger está limitado por un oscilador armónico. En

consecuencia tiene una resolvente compacta. Usamos el teorema 2 [7] para mostrar

que: i) las contribuciones ghost y antighost a la acción efectiva, ii) la contribución

fermiónica al hamiltoniano supersimétrico, no cambian las propiedades cualitativas

del espectro del hamiltoniano. De hecho, ambas contribuciones son lineales en las

variables de configuración.

Adicionalmente, la contribución supersimétrica cancela la enerǵıa del punto cero

de los osciladores bosónicos aún en la teoŕıa exacta [10, 81]. Se ha mostrado entonces,

que el hamiltoniano regularizado compactificado sobre el espacio targetM4×T 6×S1

tiene una resolvente compacta y por consiguiente tiene un espectro discreto con mul-

tiplicidad finita. Esperamos que el mismo resultado sea válido para la teoŕıa exacta.

4.5. Otras Propiedades F́ısicas

Hasta ahora hemos visto que la acción de la supermembrana N = 1 en 4 dimen-

siones tiene un espectro discreto regularizado. Una de las caracteŕısticas de la teoŕıa

es que debido a la condición topológica los campos adquieren masa. Estos hechos

representan una alternativa al mecanismo de Higgs como mecanismo para generar

masa, ya que no hay ninguna part́ıcula de Higgs involucrada2 sino que la masa se

genera dinámicamente por efecto de la condición de carga central. Existen varios

mecanismos en la literatura generadores de masa [136, 137]. Debido a que nuestro

mecanismo no corresponde estrictamente hablando a ninguno de ellos, aunque tienen

algunos aspectos parecidos, explicaremos el nuestro brevemente para mayor claridad.

2Recientemente se ha encontrado en el LHC una resonancia de 125GeV cuyas propiedades parecen

corresponder a la esperada para la part́ıcula de Higgs [138].
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En el mecanismo nuestro, los campos de la teoŕıa Xm, Ar, φ, θ adquieren masa

v́ıa los campos vectoriales X̂r definidos sobre la supermembrana. Puesto que esos

campos no viven en el espacio target no hay violación de la invariancia de Lorentz.

Esto se asemeja al mecanismo de Scherk-Schwarz que induce una monodromı́a sobre

los campos que hacen que éstos se vuelvan masivos.

Una posible pregunta extra es el análisis de la estabilización de los móduli. Estos

son los campos escalares sin masa que pueden parametrizar la geometŕıa compacti-

ficada aśı como a diferentes sectores de materia. Pueden ser distinguidos dos tipos

de móduli: el cuántico y el clásico. El móduli cuántico de la teoŕıa, en general no es

conocido aunque existen algunas aproximaciones para sistemas en los cuales un grupo

diferente de esos móduli muestran la interpolación entre diferentes vaćıos con dife-

rentes grupos de calibre [139]. Como hemos enfatizado a lo largo del texto, la teoŕıa

de supermembranas cuánticas con cargas centrales que hemos construido depende

entonces del espacio móduli de superficies de Riemann compactas Mg solamente. La

teoŕıa está definida sobre las clases equivalentes conformes de superficies de Riemann

compactas, y además depende del móduli identificando la inmersión holomórfica desde

Mg a la variedad de target.

Generalmente, el análisis de los campos móduli se hace a nivel clásico desde el pun-

to de vista de supergravedad, donde estos móduli son supercampos y no parámetros.

Esto ha sido hecho en potenciales 4D efectivos en aproximaciones de supergrave-

dad de acciones inspiradas en la teoŕıa M. El potencial de Kähler está expresado en

términos de ellos [140]. Puesto que nuestro estudio es a nivel de la supermembrana,

esos términos no aparecen, sin embargo la acción posee escalares y parámetros de la

variedad compacta que pueden generar direcciones planas en el potencial. Podemos

distinguir entre dos tipos de campos escalares, aquellos asociados a la posición de la
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supermembrana en las dimensiones transversas, -análogo a lo que en teoŕıa de cuer-

das representa el móduli de cuerda abierta- y los escalares cuyos vevs parametrizan

la variedad compacta - análogo a lo que en teoŕıa de cuerdas representa el móduli de

la cuerda cerrada-.

Vamos a analizar de manera separada los dos tipos de móduli clásicos. Este análisis

desacoplado es solo justificado si y solo si las escalas de estabilización (las masas del

móduli) son claramente diferentes, de otro modo la minimización con respecto al

conjunto completo de móduli (origen geométrico y de materia) deben ser realizados.

Un análisis exhaustivo de este hecho va más allá del alcance de este art́ıculo. Sin

embargo, algunas consideraciones pueden hacerse:

A nivel clásico el comportamiento de la teoŕıa es conocido. La teoŕıa no contiene

ninguna configuración tipo cuerda. Supondremos por el momento una variedad com-

pacta cuyos radios R1, . . . , R7 están fijos. Los Xm que parametrizan la posición en las

dimensiones transversas de la supermembrana adquieren masa debido a la condición

de carga central aśı que no hay direcciones planas en la pieza escalar del potencial.

La componente número 7 tiene un efecto inducido debido a la condición de carga

central a través del acoplamiento cuadrático con los campos de calibre simplécticos

Ar y además gana una masa efectiva. Todos esos tipos de móduli se convierten en

estables.

Hasta ahora, hemos considerado que el 7-toro es ŕıgido, de tal modo que los

R1 . . . , R7 son dejados fijos y ellos no aparecen en la métrica y correspondeŕıan al

móduli de la cuerda cerrada. Si ahora se relaja esta condición y se dejan que ellos

vaŕıen muy suavemente, nos podemos preguntar si, en principio es posible obtener

un mı́nimo. Un argumento heuŕıstico para apoyar la estabilización del móduli es la

siguiente: Tratamos en nuestra construcción con fibrados de calibre no triviales cuyas
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intensidades de campo asociados pueden ser representados como flujos del volumen-

mundo [12]. Ya que para la construcción el mapa representa una inmersión mı́nimal

sobre el espacio target, ellos inducen un efecto similar al producido por una calibra-

ción generalizada. Las calibraciones minimales además toman en cuenta la dependen-

cia sobre la variedad base, la superficie de Riemann seleccionada Σ. La condición de

la calibración generalizada - la cual muestra la deformación de los ciclos que son en-

rollados por la supermembrana- representa una condición para minimizar la enerǵıa

[141]. Sucede igual con las inmersiones minimales. Para un flujo inducido dado, se

puede esperar que el volumen sea fijado. La supermembrana con cargas centrales

está enrollada en el 7-toro con las máxima cantidad de monopolos inducidos sobre él,

aśı que, es lógico esperar que el el móduli geométrico total será estabilizado.

Ilustraremos ésto, con el caso particular de un toro isotrópico, esto es, R1 = · · · =
R7 = R0. Entonces, obtenemos en ĤB, la siguiente expresión:

V = A +BR0 + CR2
0 +DR4

0, (4.47)

donde A ≥ 0, C ≥ 0 y D > 0, con las siguientes expresiones:

A =

∫

Σ

√
W

[
1

4
{Xm, Xn}2 + 1

4
{Xm, φ}2 + 1

2
{Ar, X

m}2 + 1

2
{Ar, φ}2 + {Ar, As}2

]
.

B =

∫

Σ

√
W

[
1

2
{Xm, LsX̃

s}{Xm, φ}+DrX
m{Ar, X

m}+Drφ{Ar, φ}
]
+

+

∫

Σ

√
W [

1

2
(DrAs −DsAr){Ar, As}].

C =
1

2

∫

Σ

√
W
[
(DrX

m)2 + (Drφ)
2 + (DrAs)

2 + {Xm, X̂sLs}2
]
.

D =
1

4

∫

Σ

√
W{X̂r, X̂s}2, (4.48)

donde hemos extráıdo el factor R0 de las expresiones de la derivada Dr.

Los términos de masa cuadráticos constribuyen a la expresión de C. C es cero si

y solo si (Xm, φ, As) son constantes, en la clase de equivalencia de cero. Obtenemos
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el potencial:

d2V

dR2
0

= 2C + 12DR2
0 > 0, (4.49)

aśı el problema es siempre estable con respecto a las variaciones de R. Podemos tener

dos posibles mı́nimos: un mı́nimo centrado en R0 = 0, o un mı́nimo para R0 6= 0. El

potencial es globalmente estable con respecto al módulo R0.

El análisis de los casos de compactificaciones toroidales con radios todos diferentes,

que claramente es el indicado para obtener un modelo más realista, es mucho más

complejo. Es necesario un estudio más exhaustivo que está fuera del objetivo de esta

tesis.

4.6. Conclusión

Hemos obtenido la acción de la supermembrana D = 11 compactificada sobre T 7

con cargas centrales no triviales inducidas por una condición topológica invariante

bajo transformaciones supersimétricas y de simetŕıa kappa. Para poder imponer la

condición de carga central se descompuso la variedad del 7-toro en un T 6 × S1 y se

obtuvo la formulación de la MIM2 en dicho T 6 y posteriormente se compactificó en

un ćırculo extra. Además, también se obtuvo la formulación dual sobre este último

ćırculo.

El hamiltoniano de la MIM2 en el CCL es invariante bajo las transformaciones

conformes sobre la variedad base que es una superficie de Riemann. La susy es rota

espontáneamente por el vaćıo a 1/8 de la original. Este corresponde en 4D a tener

N = 1. Clásicamente el hamiltoniano no contiene configuraciones singulares y a nivel

cuántico el hamiltoniano regularizado tiene un espectro discreto, con multiplicidad
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finita. Su resolvente es compacto. El potencial no contiene ninguna dirección plana

en el espacio de configuración ni en el espacio de parámetros de móduli (para el caso

de un 7-toro isótropo). El hamiltoniano es estable en ambos espacios.
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Caṕıtulo 5

La Supermembrana como un

Fibrado Toroidal Simpléctico

En este caṕıtulo se formula globalmente la supermembrana con cargas centrales

compactificada en un espacio target M9 × T 2. La estructura local de esta supermem-

brana ya ha sido estudiada y dichos resultados los hemos descrito brevemente en la

sección 3.3 de esta tesis. Los resultados de este caṕıtulo fueron reportados en [17].

A continuación se mostrará que globalmente la supermembrana con cargas cen-

trales se corresponde a secciones de un fibrado toroidal simpléctico con monodromı́a

no trivial en SL(2,Z). Esta construcción nos va a permitir en el caṕıtulo 6 obtener

una clasificación de todas las supermembranas mostrando en términos de fibrados las

simetŕıas discretas asociadas a las monodromı́as en SL(2,Z). Luego, este resultado

junto con los del caṕıtulo 7 conducen, de forma natural, a interpretar la teoŕıa de la

supermembrana con cargas centrales como el origen en teoŕıa M del calibrado de las

teoŕıas efectivas de cuerdas de tipo II.
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5.1. Introducción

Los efectos no perturbativos, tales como monopolos e instantones en las teoŕıas

de calibre convencionales, o las dualidades en el contexto de las teoŕıas M/cuerdas,

descansan en aspectos globales de dichas teoŕıas. Propiedades tales como el confina-

miento también podŕıan ser debidas a aspectos topológicos no triviales. En el pasado,

las fibraciones no triviales han sido usadas también en el contexto de las teoŕıas no

conmutativas, como es el caso de la formulación no conmutativa del toro [50], aśı co-

mo para caracterizar espacios de compactificación interesantes para fenomenoloǵıa de

cuerdas, por ejemplo [51]. Por esta razón estudiaremos la formulación global de la

supermembrana con cargas centrales.

A la hora de encontrar una teoŕıa globalmente definida sobre un fibrado es necesa-

rio obtener una acción que sea un funcional invariante compatible con dicho fibrado.

Para lo cual es preciso satisfacer ciertas condiciones. En este caṕıtulo encontramos una

descripción de la supermembrana compactificada en términos de fibrados toroidales.

Probamos un paso no-trivial como es el demostrar que la acción de la supermembrana

con cargas centrales es globalmente definida.

La supermembrana con cargas centrales no triviales es una supermembrana com-

pactificada y podemos describir esta compactificación en términos de fibrados en don-

de la base del fibrado viene descrita por el volumen del mundo de la supermembrana

y la fibra está asociada al espacio target en el que se compactifica. La supermem-

brana con cargas centrales no triviales, como hemos visto introduce una restricción

topológica sobre las configuraciones f́ısicas. Esta restricción topológica globalmente

está asociada a la existencia de la primera clase de Chern no trivial. Desde un punto

de vista algebraico, ésto puede ser interpretado como una carga central no trivial en
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el álgebra supersimétrica. Desde el punto de vista geométrico ella asegura la exis-

tencia de un fibrado principal no trivial U(1) y una conexión monopolo sobre él [1],

cuya curvatura está en la clase de Chern asociada a la restricción topológica. En este

sentido, se tiene una manera natural de introducir configuraciones tipo monopolo que

estabilizan la supermembrana. Aśı, el hamiltoniano regularizado resultante tiene un

espectro discreto [6, 7, 10, 11].

La estructura global adicional que consideraremos, conlleva de un modo manifiesto

el grupo de dualidad S de la teoŕıa de cuerdas, el grupo SL(2,Z) y como veremos en

el caṕıtulo 7 también realiza la T -dualidad. El origen de la dualidad S desde el punto

de vista de la supermembrana fue destacado en [118] en relación con las soluciones

de cuerdas (p, q) (ver además [13]). El grupo SL(2,Z), que ya ha sido caracterizado

en la sección 3.3.1, veremos cómo actúa sobre la estructura del fibrado y probaremos

cómo la acción de la supermembrana con cargas centrales queda formulada en el

mismo. La consistencia de esta construcción se verifica al probar que la estructura

global del fibrado SL(2,Z) es compatible con la restricción topológica tipo monopolo

(o carga central). Este fibrado es un fibrado toroidal simpléctico con monodromı́a

en SL(2,Z). Esto permite una clasificación de todas las supermembranas con cargas

centrales y que como se verá en el caṕıtulo 6, es el origen en teoŕıa M de las teoŕıas

de supergravedades calibradas tipo II en 9D. Ellas son teoŕıas efectivas asociadas a

las teoŕıas de cuerdas tipo II compactificadas sobre un ćırculo.

5.2. Fibrados Toroidales Simplécticos

Consideraremos en este sector la estructura global de la supermembrana en el

CCL cuando los campos X,Ψ son secciones y A es una conexión simpléctica sobre un
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fibrado toroidal simpléctico no trivial. Un fibrado toroidal simpléctico E es un fibrado

suave F → E
π→ Σ cuyo grupo de estructura G es el grupo de simplectomorfismos que

preserva una dos-forma simpléctica ω sobre la fibra F . Σ es la variedad de base, que

consideraremos una superficie de Riemann compacta y cerrada que modela la parte

espacial de la foliación del volumen-mundo de la supermembrana, y E es el espacio

total. Tomaremos la fibra como la variedad del espacio target F =M9 × T 2 como en

[14]. La parte topológicamente no-trivial corresponde al T 2, y es la única relevante

en el análisis a continuación, aśı que en lo que sigue nos referiremos a esta parte que

es la que caracteriza el fibrado. En particular, consideraremos Σ, una superficie de

genus g = 1 con una métrica inducida no-plana:

d2s =
1

cosh2 φ

[
d2ϕ+ d2φ

]
. (5.1)

Cuando g > 1, el primer grupo de homotoṕıa π1(Σ) es no-abeliano permitiendo la

construcción de fibrados toroidales simplécticos con monodromı́as no-abelianas. En

esta tesis nos restringimos solo al caso abeliano. Sobre T 2, un toro plano, conside-

raremos la 2-forma canónica simpléctica. Su pullback, usando los mapas armónicos

desde la variedad base a T 2,define la 2-forma simpléctica ω sobre Σ. En términos de

una base armónica de uno-formas dX̂r, r = 1, 2, la 2-forma simpléctica asociada es:

ω = [(2πR)2nImτ ]ǫrsdX̂
r ∧ dX̂s. (5.2)

Esto induce la métrica asociada (5.1), cuya curvatura es no nula, con tensor de Ricci

diferente de cero

Rab =
4δab

(eφ + e−φ)2
. (5.3)

Los simplectomorfismos sobre una superficie bidimensional, y la simetŕıa residual de

la supermembrana, que son los difeomorfismos que preservan el área, corresponden

al mismo grupo. Por tanto, los simplectomorfismos sobre Σ homotópicos a la identi-

dad están generados por los v́ınculos de primera clase de la supermembrana (1.43),
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(1.44). En la supermembrana con cargas centrales no triviales [2] los simplectomor-

fismos corresponden al pull-back de los simplectomorfismos sobre la fibra, y no son

los mismos que aparecen si no se impone la condición de cargas centrales. Para des-

cribir los aspectos globales de la supermembrana se introduce una monodromı́a y el

Z-módulo asociado. Por otro lado, los simplectomorfismos que preservan ω definen

clases isotópicas. Estas clases forman el grupo π0(G). En el caso que estamos consi-

derando, donde la fibra es T 2, π0(G) es isomorfo a SL(2,Z). La acción de G sobre

la fibra T 2 produce una acción sobre la homoloǵıa y cohomoloǵıa de T 2. Esta acción

se reduce a una acción de π0(G), ya que sobre una clase de isotoṕıa dada, dos sim-

plectomorfismos están conectados por un camino continuo dentro de la clase, y por

lo tanto no se puede cambiar el elemento del grupo de homoloǵıa o cohomoloǵıa. La

acción de G sobre la fibra definida sobre un punto de la base x(σ1, σ2) cuando se va

alrededor del mismo mediante un elemento de π1(Σ) define un homomorfismo

π1(Σ) → π0(G) ≈ SL(2,Z), (5.4)

tal que ρ : π1(Σ) → SL(2,Z), se define como la monodromı́a del fibrado toroidal. Esta

definición de monodromı́a es la extensión natural de la monodromı́a en un fibrado

toroidal sobre un ćırculo, que fue considerado previamente por Thurston [142]. En

esta tesis hemos seguido la ĺınea de acción de [143]. Otros trabajos relacionados son

[144, 145, 146]. La monodromı́a puede ser trivial o no, pero aún cuando sea trivial,

el fibrado toroidal simpléctico puede ser no-trivial. De hecho, se podŕıa tener una

transición no-trivial dentro de los simplectomorfismos sobre una clase de isotoṕıa. Si

la monodromı́a es trivial, el fibrado toroidal simpléctico es trivial si y solo si existe

una sección global. Este es el caso de la supermembrana sobre un espacio target de

Minkowski en once dimensiones [33], aśı como el caso de la supermembrana en el

CCL sobre un espacio compactificado del tipo1 R9−d × T d en [37]. Por consiguiente,

1d es el número de coordenadas transversas de enrollamiento sobre el toro de d dimensiones.
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también es el caso de una supermembrana enrollada sin carga central en un M9×T 2.

Para el caso de fibrados no triviales con monodromı́a, ρ actúa naturalmente sobre

el primer grupo de homoloǵıa H1(T
2) sobre T 2, y le da a H1(T

2) la estructura de un

Z[π1(Σ)]-módulo el cual puede denotarse como Z2
ρ . Dado ρ, existe una corresponden-

cia biyectiva entre las clases de equivalencia de los fibrados toroidales simplécticos con

base Σ y los módulos Z2
ρ ((m,n)), con los elementos del segundo grupo de cohomoloǵıa

de Σ cuyas coeficientes Z2
ρ , H

2(Σ, Z2
ρ) [143]. Según [143], el elemento de H2(Σ, Z2

ρ)

es denominado la clase de cohomoloǵıa del fibrado toroidal simpléctico y es denotado

por C(E). C(E) = 0 si y solo si existe una sección global sobre E. Si ρ es trivial,

C(E) = 0 si y solo si E es trivial.

La teoŕıa de la supermembrana con cargas centrales no-triviales tiene C(E) 6= 0

y por lo tanto E siempre es no-trivial. La condición C(E) 6= 0 es una condición

relevante que asegura un espectro discreto de la supermembrana con cargas centrales

no-triviales [5, 6, 7, 8, 9, 10, 11]. En el caso de un fibrado toroidal simpléctico trivial

el espectro de la supermembrana es continuo desde [0,+∞) [35].

El segundo grupo de cohomoloǵıa H2(Σ, Z2
ρ) puede ser igual al conjunto de los

enteros Z, como ocurre en el caso donde la monodromı́a viene dada por:

ρ(α, β) =


1 α

0 1


 o ρ(α, β) =


1 β

0 1


 , (5.5)

donde (α, β) denotan los elementos de π1(Σ). Pero también puede ocurrir que solo

contenga un número finito de elementos como en el caso de [143],

ρ(α, β) =


−2mn + 1 2mn2 + n

−m mn + 1




(α+β)

, (5.6)
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donde los enterosm,n > 0. Estos fibrados son fibrados con torsión ya queH2(Σ, Z2
ρ) =

Zm⊕Zn. El número de fibrados toroidales inequivalentes simplécticos es, en este caso,

mn. Por lo tanto, dado ρ el número de fibrados simplécticos toroidales inequivalentes,

en general, no está necesariamente en correspondencia con los enteros como en un

principio se podŕıa pensar, sino que depende de si el fibrado tiene o no torsión. Esta

es una afirmación importante en el análisis de los grupos de simetŕıa asociados a la

teoŕıa a nivel cuántico.

5.3. Mapas de la Supermembrana como Secciones

de un Fibrado Toroidal Simpléctico

Para formular la supermembrana con cargas centrales en términos de secciones de

un fibrado toroidal simpléctico con monodromı́a ρ induciendo un Z[π1(Σ)]-módulo, te-

nemos que considerar la transformación de su hamiltoniano bajo la acción de SL(2,Z)

sobre la base de homoloǵıa puesto que el móduli del 2-toro T 2 aparece expĺıcitamente

en el hamiltoniano. En esta sección se probará la invariancia del hamiltoniano de la

supermembrana con cargas centrales bajo el Z[π1(Σ)]-módulo. Dicho hamiltoniano

que hab́ıamos visto en la sección 3.3, está dado por la ecuación (3.30):

H =

∫

Σ

T−2/3
√
W

[
1

2
(
Pm√
W

)2 +
1

2
(
Pr√
W

)2 +
T 2

2
{Xr, Xm}2 + T 2

4
{Xr, Xs}2

]

+

∫

Σ

T−2/3
√
W

[
T 2

4
{Xm, Xn}2 − θΓ−Γm{Xm, θ} − θΓ−Γr{Xr, θ}

]
,

Con los v́ınculos (3.31) y (3.32):

d(PrdX
r + PmdX

m − θΓ−dθ) = 0,

∮

Cs
(PrdX

r + PmdX
m − θΓ−dθ) = 0,
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y la condición de carga central (3.27), donde Xr son las secciones sobre el fibrado

toroidal simpléctico E con grupo de estructura G, los simplectomorfismos preservando

la 2-forma simpléctica sobre la fibra T 2 definida previamente. Pr son los momentos

conjugados a la parte exacta en la descomposición de Xr.

Para hacer más expĺıcita la dependencia del hamiltoniano en términos del móduli

del toro del target space se introducen variables complejas. El integrando dependiente

de Xr, con r = 1, 2, puede ser reescrito de la siguiente manera:

dX = dX1 + idX2, (5.7)

y el potencial asociado se puede reescribir como:

1

2
{X,Xm}{X,Xm}+ 1

8
{X,X}{X,X}, (5.8)

donde

dX = 2πR(ls +msτ)dX̂
s + dA, (5.9)

con R y τ el móduli de T 2, dX̂s, s = 1, 2 como antes, la base armónica de Σ y dA es

la uno-forma exacta en la descomposición de Hodge. A = A1 + iA2 lleva los grados

de libertad del sector compacto. La acción de π0(G) ≡ SL(2,Z) en H1(T
2) es el

modo más natural de inducir una transformación de Möbius en el plano superior con

coordenada compleja τ .

A continuación probaremos que el hamiltoniano (3.30) es un funcional bien defi-

nido sobre el fibrado toroidal simpléctico con monodromı́a ρ, donde ρ es una repre-

sentación de π1(Σ) en SL(2,Z). Como vimos en la sección 3.3.1.2, es invariante bajo

las transformaciones sobre T 2 dadas por la ecuaciones (3.38):

τ → aτ + b

cτ + d
, R → R|cτ + d|, A→ Aeiϕτ , W →


 a −b
−c d


W,
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con cτ +d = |cτ +d|e−iϕτ y Λ =


a b

c d


 ∈ Sp(2,Z). Esta invariancia fue encontrada

en [13]. El hamiltoniano (3.30) aśı como (3.27), y el área Area(T 2), son invariantes

bajo la transformación anterior.

Podemos darnos cuenta que el grupo SL(2,Z) (3.38) actúa desde la izquierda

sobre W, mientras que la invariancia SL(2,Z) sobre la base Σ, actúa a la derecha.

Bajo esas transformaciones el detW permanece invariante.

Dada W con determinante 6= 0 siempre existen elementos de SL(2,Z) cuya acción

desde la izquierda y desde la derecha produce


a b

c d


W


S

1
1 S1

2

S2
1 S2

2


 =


λ1 0

0 λ2


 , (5.10)

donde λ1λ2 = n. Además, si λ1 y λ2 son primos relativos siempre existen elementos de

SL(2,Z) cuya acción desde la izquierda y desde la derecha produce λ1 = n y λ2 = 1.

Si λ1 y λ2 no son primos relativos, se puede redefinir el parámetro R y nuevamente

reducirse al caso donde λ1 y λ2 son primos relativos. Aunque podemos tener números

de enrollamiento l1, l2, m1, m2 las simetŕıas de la teoŕıa permiten reducir todo a que

la carga central sea un entero n. Ahora queremos determinar qué representaciones ρ :

π1(Σ) → π0(G) ≡ SL(2,Z) dejan invariante la forma de la densidad del hamiltoniano:

H =

∫

Σ

H =

∫

Σ

T−2/3
√
W [

1

2
(
Pm√
W

)2 +
1

2
(
Pr√
W

)2 +
T 2

2
{X,Xm}{X,Xm}] +

+

∫

Σ

T−2/3
√
W [

T 2

8
{X,X}{X,X}+ T 2

4
{Xm, Xn}2] +

−
∫

Σ

T 2/3
√
W [θΓ−Γm{Xm, θ}+ 1/2θΓ−Γ{X, θ} + 1/2θΓ−Γ{X, θ}, (5.11)

donde dX = 2πR(dX̂1 + nτdX̂2).
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Las representaciones ρn : π1(Σ) → SL(2,Z)n, donde SL(2,Z)n es el subgrupo de

SL(2,Z) cuyos elementos son de la forma:


a nb

c d


 , (5.12)

dejan invariante la densidad hamiltoniana en (5.11). ρn caracteriza las representa-

ciones compatibles con la restricción topológica (3.27). Por ejemplo, si tomamos las

representación ρ : π1(Σ) → SL(2,Z)n definida de la siguiente manera:

π1(Σ) ∋


M

N


→


1 nM

0 1


 . (5.13)

El elemento de H1(T
2) puede ser dado


p

q


 siendo p, q enteros. Entonces, la acción

natural de SL(2,Z) es dada por


1 nM

0 1




p

q


 =


p+ nMq

q


 . (5.14)

El grupo de cohomoloǵıa H2(Σ, Z2
ρ)

∼= Z, además de la condición de la carga central

(3.27) establece que estamos en la clase caracteŕıstica C(E) = n 6= 0, en consecuencia,

existe una supermembrana D = 11 con cargas centrales no triviales formulada en

términos de secciones de un fibrado de toro simpléctico E con representación (5.13)

produciendo un Z[π1(Σ)]-módulo. En el caso (5.6) todos los elementos son de torsión

mientras que en el caso (5.5) solo cuando C(E) = 0, lo cual está excluido en el análisis

presente ya que consideramos una supermembrana con carga central no-trivial.

Ahora, consideraremos la ley de transformación de los campos describiendo la su-

permembrana con carga central no trivial. Consideremos una supermembrana sobre

un fibrado toroidal simpléctico con monodromı́a ρ(α, β). Bajo una simetŕıa ŕıgida
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SL(2,Z) sobre el target la conexión simpléctica A(x) transforma con un factor global

eiϕ donde e−iϕ = cτ+d
|cτ+d| , Λ ∈ SL(2,Z) actúa sobre el móduli y la matriz de enrollamien-

to W como ya se ha presentado. Sobre el fibrado toroidal simpléctico con monodromı́a

ρ(α, β), A(x) transforma además con un factor de fase eiϕρ con ϕρ ≡ ϕ(ρ(α, β)) pero

ahora Λ ≡ ρ(α, β). Esto es, a, b, c, d son enteros, que dependen de (α, β). Por ejemplo,

si consideramos α = β = 0 correspondiendo a un elemento trivial de π1(Σ), enton-

ces ϕ = 0, mientras que si (α, β) 6= (0, 0) entonces ϕ puede ser diferente de cero,

por ejemplo en el caso (5.6). Si escribimos A(x) = |A(x)|eiλ(x), entonces asociado a

(α, β) ∈ Π1(Σ) tenemos A(x) = |A(x)|eiλ(x)+ϕρ . Aśı, se obtiene

d
(
|A(x)|eiλ(x)+eiϕρ

)
= dA(x)eiϕρ . (5.15)

Para tomar en cuenta el factor de fase eiϕρ , se puede multiplicar la derivada co-

variante simpléctica en la formulación por este factor de fase y dejar A(x) como una

1-forma de conexión univaluada. En el hamiltoniano de la sección 3, el factor de

fase eiϕ(ρ(α,β)) es cancelado por la contribución de su complejo conjugado, en conse-

cuencia, el hamiltoniano está bien definido sobre un fibrado toroidal simpléctico con

monodromı́a no-trivial.

Otro aspecto importante de la supermembrana formulada sobre un fibrado toroidal

simpléctico con monodromı́a es que las cargas Kaluza-Klein (p, q) que aparecen en

el operador de masa no son cualesquiera sino que dependen del tipo de fibrados que

consideremos ya que toman su valor sobre el módulo Z2
ρ .

De hecho, las cargas (p, q) están asociados naturalmente al elemento de H1(T
2). Se

tiene entonces una bonita interpretación geométrica: Las cargas KK están asociadas

a la homoloǵıa de T 2 sobre el target, mientras el enrollamiento está asociado a la

cohomoloǵıa sobre la base Σ. Probamos que el hamiltoniano junto con los v́ınculos
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son invariantes bajo la acción de SL(2,Z) sobre el grupo de homoloǵıa H1(T
2) de la

fibra del 2-Toro T 2.

Las clases de calibrados permitidas vienen parametrizadas por Λ, por lo que corres-

ponden a las clases inequivalentes (eĺıpticas, parabólicas e hiperbólicas) de SL(2,Z).

Esto será analizado en detalle en el caṕıtulo 6.

Sin embargo, como ya se explicó, la clasificación de los calibrados del tipo IIB a

nivel global es más fina ya que depende de la clase de cohomoloǵıa de la fibración.

Esto es, hay más clases inequivalentes de fibrados toroidales simplécticos que no son

visibles a bajas enerǵıas para una monodromı́a dada. Como veremos en el caṕıtulo 7,

para el caso menos directo de las monodromı́as de origen tipo IIA, estas se inferirán

del hecho de que el hamiltoniano es invariante bajo T-dualidad.

5.4. Conclusión

Mostramos que la Supermembrana con cargas centrales no triviales puede ser

formulada en términos de secciones de fibrados toroidales simplécticos con una mono-

dromı́a dada por una representación ρ : π1(Σ) → SL(2,Z) induciendo un Z[π1(Σ)]-

módulo en términos del grupo de homoloǵıa de la fibra H1(T
2). El punto no trivial

en la construcción fue probar que el hamiltoniano junto con los v́ınculos son invarian-

tes bajo la acción de SL(2,Z) sobre el grupo de homoloǵıa H1(T
2) de la fibra T 2.

Un aspecto interesante de esta estructura geométrica es la posible existencia de una

extensión de la 2-forma simpléctica sobre la fibra al espacio total del fibrado toroidal

simpléctico.
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Un teorema de Khan [143] establece que la extensión existe si y solo si la clase

caracteŕıstica es una clase de torsión en H2(Σ, Z2
ρ). En el caso del ejemplo consi-

derado, concluimos que alĺı no existe dicha extensión ya que C(E) = n no es una

clase de torsión. Solo hay una, C(E) = 0, la cual no es compatible con la restricción

topológica (3.27) de la supermembrana con cargas centrales. Localmente, tenemos

la interpretación de la supermembrana en términos de mapas desde Σ hasta el tar-

get. Globalmente tenemos ahora una estructura geométrica más interesante ya que el

hamiltoniano está definido sobre un fibrado toroidal simpléctico no trivial con mono-

dromı́a.

Localmente, el target es un producto de M9 × T 2 pero globalmente no podemos

descomponer el target desde la base Σ puesto que T 2 es la fibra en el fibrado toroidal

simpléctico no trivial T 2 → Σ. La formulación de la supermembrana en términos de

secciones del fibrado toroidal simpléctico con una monodromı́a es una bonita estruc-

tura geométrica para analizar aspectos globales de procesos de calibrado de teoŕıas

efectivas provenientes de la teoŕıa M. Notamos el caso particular en el cual la repre-

sentación ρ es dada por la matriz:


 0 1

−1 0




M+N

. (5.16)

El subgrupo se reduce a Z2 × Z2. Está asociado a bajas enerǵıas a la supergravedad

calibrada eĺıptica. Este caso fue considerado en [3, 5, 147].
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Caṕıtulo 6

La Supermembrana como Origen

de Supergravedades tipo II en 9D

6.1. Introducción

El origen en teoŕıa-M de las supergravedades calibradas es un problema abierto de

gran interés. En este caṕıtulo se demuestra que la supermembrana en 11D compac-

tificada sobre un toro es el origen en teoŕıa-M de todas las supergravedades en 9D:

no solo la asociada a la supergravedad maximal [25] sino además las que provienen

del sector calibrado (Ver [42, 43, 44, 45, 46, 47, 48, 49]). Se propone que hay dos

sectores bien diferenciados: El primero está asociado a compactificaciones triviales de

la supermembrana sobre un 2-toro, con su ĺımite a baja enerǵıa correspondiente a

la supergravedad maximal N = 2 en 9D, y globalmente asociado a la formulación

de la supermembrana en un fibrado toroidal simpléctico trivial. El segundo sector

corresponde a la supermembrana formulada globalmente como un fibrado toroidal

simpléctico no-trivial. Esta condición de no trivialidad puede estar asociada a una

monodromı́a no trivial o aún en el caso de una monodromı́a trivial (la identidad)
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debido a la existencia de una clase de cohomoloǵıa no-trivial en la variedad de ba-

se. Imponer la condición de carga central sobre la supermembrana se corresponde

exactamente a imponer una condición de cohomoloǵıa no-trivial sobre el fibrado. La

supermembrana con cargas centrales no triviales corresponde a este sector. A conti-

nuación clasificaremos la teoŕıa de la supermembrana con cargas centrales de acuerdo

a las clases de fibrados toroidales con monodromı́a no trivial. F́ısicamente, como recor-

daremos, la consecuencia de imponer esta condición es muy importante. El espectro

del hamiltoniano de la supermembrana con carga central se convierte en un espectro

discreto con multiplicidad finita. Al hacer esta afirmación, nos referimos al espectro

del hamiltoniano exacto, y no solo a su aproximación semi-clásica.

Está bien establecido que las ecuaciones de movimiento de la supergravedad en

11D surgen como una consecuencia de la invariancia bajo simetŕıa kappa de la ac-

ción de la supermembrana formulada sobre un background general. Esto respalda la

conjetura de que la descripción a baja enerǵıa de la teoŕıa de la supermembrana es la

teoŕıa de supergravedad en 11D. Más espećıficamente, esta conjetura significa que el

estado fundamental de la supermembrana en 11D se corresponde al supermultiplete

asociado a la supergravedad en 11D. Una prueba rigurosa completa sobre este punto

aún no existe. Sin embargo, es natural esperar que sea la supermembrana compactifi-

cada en un toro la teoŕıa asociada a todas las supergravedades en 9D, no solamente a

las maximales. Para ello es necesario considerar los dos sectores de la supermembrana

compactificada, tanto el que tiene carga central trivial como el de carga central no

trivial.

La dimensión máxima para supergravedades calibradas es 9D. Existen cuatro

clases diferentes de deformaciones que aparecen en la supergravedad calibrada IIB

en 9D, establecidas incialmente por [42, 43]. Si se incluyen además las deformaciones
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que provienen del sector de supergravedad de tipo IIA, hay cuatro deformaciones

más, pero solamente siete de ellas son deformaciones independientes y constituyen las

supergravedades calibradas de tipo II en 9D [46]. En estas se incluye el calibrado de

las simetŕıas de escalamiento [47, 48].

El objetivo de este caṕıtulo es caracterizar la supermembrana con cargas centra-

les en términos de los fibrados toroidales simplécticos con monodromı́a no-trivial en

SL(2,Z) y su correspondencia a bajas enerǵıas con los calibrados de las supergrave-

dades tipo II en 9D. Estos resultados de fueron reportados en [15].

Esta descripción global corresponde a una supermembrana calibrada en el sentido

del ’mecanismo de esculpido’ explicado en la sección 2.3.2. Intentos preliminares para

establecer la relación entre el calibrado de la supermembrana y las supergravedades

calibradas en 9D se consideraron en [60, 61].

De acuerdo a las clases inequivalentes de monodromı́as, nosotros encontramos una

clasificación de los fibrados toroidales simplécticos que describen globalmente la su-

permembrana. La monodromı́a es la representación del grupo fundamental Π1(Σ) en

SL(2,Z), donde Σ es la variedad de base de la supermembrana, y SL(2,Z) es el gru-

po de isotoṕıa de las clases homotópicas de simplectomorfismos (simetŕıa local de la

supermembrana en el CCL). El grupo SL(2,Z) actúa naturalmente sobre el primer

grupo de homoloǵıa de la fibra, lo cual en nuestro caso corresponde a un toro en el es-

pacio target. La monodromı́a define un automorfismo sobre las fibras, proporcionando

la estructura global de la configuración geométrica. Recientemente, se ha encontrado

en [49] una manera más general de calibrar en 9D expresada en el formalismo del

tensor embedding [100, 149]. En las supergravedades IIB en nueve dimensiones, hay

cuatro calibrados inequivalentes posibles de la simetŕıa global GL(2,R), tres de ellos

están asociados al calibrado de la simetŕıa global SL(2,R), con las clases inequiva-
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lentes parabólicas, eĺıpticas e hiperbólicas y se encuentran sus respectivos fibrados

toroidales simplécticos. El cuarto calibrado corresponde al calibrado de la simetŕıa

trombón asociada a los escalamientos R+. A nivel cuántico, la realización de este últi-

mo calibrado es más complejo ya que el escalamiento no está incluido en el subgrupo

aritmético GL(2,Z). En [62] se brinda un modo de realizar esta simetŕıa antes de

calibrarla estudiando una realización de ella que se llamó simetŕıa SL(2,Z) activa.

Un modo de realizar esta simetŕıa de escalamiento es mediante una representación

no-lineal del grupo SL(2,Z). A nivel de supergravedad, el calibrado de las simetŕıas

trombón produce supergravedades sin lagrangiano, debido al hecho que la simetŕıa

trombón es simetŕıa de las ecuaciones de movimiento y no del lagrangiano. Mostramos

que esta ’simetŕıa’ está presente en la teoŕıa de la supermembrana con cargas cen-

trales no-calibrada. Construimos el fibrado toroidal simpléctico asociado al calibrado

de esta simetŕıa de escalamiento, el cual corresponde, desde el punto de vista de la

fibración, a una cuarta clase inequivalente de fibras. Esto prueba el origen a partir de

la supermembrana de todas las supergravedades calibradas del tipo IIB en 9D. Las

monodromı́as de origen de tipo IIA son inferidas del hecho de que el hamiltoniano

es invariante bajo T-dualidad como veremos en el caṕıtulo 7. En la sección 6.2, mos-

tramos las clases inequivalentes de fibrados toroidales calibrados (en el sentido del

mecanismo de esculpido) asociados a las clases inequivalentes de monodromı́as. Es

importante puntualizar que para monodromı́as que incluyen las clases eĺıptica, pa-

rabólica e hiperbólica, hay elementos de torsión en el segundo grupo de cohomoloǵıa

de la variedad base con coeficientes enteros dados por la monodromı́a que brindan

una restricción sobre los posibles valores de las cargas de la teoŕıa. En la sección

6.3, se discute la construcción del fibrado para la supermembrana con la simetŕıa

trombón calibrada. El efecto de la representación no-lineal de la monodromı́a produ-

ce cambios en los coeficientes de homoloǵıa del toro de la fibra llevando a fibraciones
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inequivalentes.

6.2. Clasificación del Fibrado Toroidal Simpléctico

En esta sección vamos a clasificar todos los fibrados toroidales simplécticos compa-

tibles con la supermembrana con cargas centrales. Para ello, estableceremos primero

la noción de fibrados equivalentes.

Dos representaciones conjugadas ρ y UρU−1, con U ∈ SL(2,Z), definen respecti-

vamente los módulos Z2
ρ y Z2

UρU−1 con grupos de cohomoloǵıa isomorfos H2(Σ, Z2
ρ) ∼

H2(Σ, Z2
UρU−1). Ellos definen fibrados toroidales simplécticos equivalentes. Esta equi-

valencia la podemos ver estudiando los grupos de coinvariantes respectivos. Es decir,

consideramos el grupo de coinvariantes asociados a ρ y a UρU−1. Hay, entonces, un

isomorfismo entre el grupo de los coinvariantes asociados a ρ y los asociados a UρU−1,

ellos definen los fibrados toroidales simplécticos equivalentes. Para clasificarlos, se de-

be determinar primero las clases de conjugación de SL(2,Z) y luego los coinvariantes

asociados. Una vez hecho esto, la correspondencia con las supergravedades calibradas

en nueve dimensiones se sigue directamente.

Cada clase de conjugación de SL(2,Z) puede ser representada por uno de los

siguientes coinvariantes:

Caso Eĺıptico : ±S, con Traza=0.

Caso Eĺıptico : ±T−1S, ±(T−1S)2, con |Traza| = 1.

Caso Parabólico : ±T n, n ∈ Z, con |Traza| = 2.

Caso Hiperbólico : ±T r0ST r1S . . . T rkS, ri ≤ −2, r0 < −2, i = 1, . . . , k, y |Traza| > 2.

(6.1)
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donde

S =


 0 1

−1 0


 y T =


1 1

0 1


 . (6.2)

A continuación se explican cada una de estas clases de conjugación.

6.2.1. Clase de Conjugación Eĺıptica

El caso de la clase de conjugación eĺıptica está asociado a matrices de SL(2,Z)

con traza cero o uno. Las monodromı́as asociadas a la clase de conjugación eĺıptica

son, por tanto:

ρ(α, β) = (−I)α+β ,

ρ(α, β) = (+(T−1S)2)α+β ,

ρ(α, β) = (±S)α+β ,

ρ(α, β) = (+T−1S)α+β,

(6.3)

los cuales definen subgrupos finitos isomorfos a Z2, Z3, Z4, Z6, respectivamente. Como

se explica en [45], estos subgrupos están asociados a su vez, respectivamente, a las

monodromı́as M2, M3, M4 y M6 para una compactificación con un twist SL(2,R).

Entonces, existe una relación entre esta descripción global con los twists asociados a

los calibrados eĺıpticos correspondientes a las supergravedades calibradas eĺıpticas tipo

IIB en 9D. Luego, la supermembrana globalmente descrita como fibrados toroidales

simplécticos que tienen las monodromı́as anteriormente presentadas (6.3) son el origen

en teoŕıa M de estas supergravedades calibradas eĺıpticas.

Las representaciones de las monodromı́as:

ρ(α, β) = (−T−1S)α+β y ρ(α, β) = (−(T−1S)2)α+β, (6.4)
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definen subgrupos isomorfos a Z3 y Z6 respectivamente, sin embargo los grupos coin-

variantes asociados son el trivial y Z6, respectivamente. En términos de la represen-

tación:

ρmn(α, β) =


−2mn + 1 2mn2 + n

−m 1 +mn




α+β

, (6.5)

con m,n > 0 [143], [(T−1S)2]α+β es conjugada a ρ31(α, β), S
α+β es conjugada a

ρ21(α, β) y [T−1S]α+β a ρ11(α, β).

Los fibrados toroidales simplécticos inequivalentes asociados a ρmn(α, β) son mn

y todos ellos corresponden a las clases de torsión en H2(B,Z2
ρ) ≡ Zn ⊕ Zm equiva-

lentemente al grupo coinvariante Zn ⊕ Zm. Es interesante que más allá de los casos

de grupos finitos (M2,M3,M4,M6) asociados al caso eĺıptico, hay monodromı́as

definiendo subgrupos no-finitos asociados a un número finito de fibrados toroidales

simplécticos. Por ejemplo, ρ41(α, β) es conjugado a (−T−1)α+β ≡


−1 1

0 −1




α+β

, que

genera un subgrupo no-finito, el número asociado de fibrados toroidales simplécticos

es finito, en concreto cuatro, y en este caso el grupo de coinvariantes es isomorfo a

Z4. Un ejemplo de grupo Z2 × Z2 es (5.16).

6.2.2. Clase de Conjugación Parabólica

Para la clase de conjugación parabólica |Traza| = 2, hay dos casos, el primero

está asociado a las monodromı́as con traza positiva, generando infinito fibrados toroi-

dales simplécticos en correspondencia a Z, mientras que en el segundo caso, con traza

negativa, se genera un número finito de fibrados toroidales simplécticos inequivalen-

tes. El grupo de coinvariantes es siempre Z4. En ambos casos, los subgrupos generados

por la representación de monodromı́a son no finitos. Simn > 4, Trazaρmn(α, β) < −2,
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con ρmn dado por (6.5). El caso parabólico con torsión no hab́ıa sido analizado pre-

viamente en [46].

6.2.3. Clase de Conjugación Hiperbólica

Hay representaciones hiperbólicas de SL(2,Z). En este caso hay un número finito

de fibrados toroidales simplécticos inequivalentes generados por subgrupos no finitos.

En este caso, mn > 4, la matriz M ≡ ρmn(α, β) (6.5) con α+ β = 1 es conjugada, de

acuerdo a (6.3), a ±T r0ST r1S . . . T rkS, ri ≤ −2, r0 < 2, y i = 1, . . . , k. Esta clasifi-

cación de monodromı́as hiperbólicas SL(2,Z) generaliza la considerada en [108]. En

particular, obtenemos para n = 1, m ≥ 5 que M es conjugado a −T−3S(T−2S)m−5.

El grupo de coinvariantes asociados a la monodromı́a correspondiente es Zm, m ≥ 5.

Hay m fibrados toroidales simplécticos inequivalentes correspondientes a esta mono-

dromı́a. El signo es muy importante. Por ejemplo, param = 5, ρ51(α, β) = (−T 3S)α+β

tiene un grupo coinvariante Z5 mientras que (+T 3S)α+β tiene un grupo coinvariante

trivial, con solo el elemento identidad. Este último caso no está contenido en (6.5),

puesto que corresponde a traza positiva, aunque es otro ejemplo válido de calibrado

hiperbólico.

6.3. Simetŕıas Residuales de la Supermembrana

Calibrada

En esta sección queremos caracterizar las simetŕıas globales residuales de la su-

permembrana una vez que la teoŕıa se ha calibrado v́ıa el mecanismo de esculpido.

Sabemos que a nivel de las teoŕıas de supergravedad el calibrado implica una ruptura



Caṕıtulo – 6. La Supermembrana como Origen de Supergravedades tipo II en 9D 139

de las simetŕıas globales de la teoŕıa no calibrada a un subgrupo que genéricamente

viene dado por la monodromı́a. Para ello podemos ahora considerar la libertad de

calibre asociada al calibrado de los subgrupos abelianos de SL(2,Z). Esto correspon-

de a fibrados toroidales simplécticos equivalentes que surgen de las representaciones

conjugadas Uρ(α, β)U−1, U ∈ SL(2, Z). Podemos seleccionar U para dejar congela-

da la matriz de enrollamiento bajo la acción de la transformación de monodromı́a.

La fijación de calibre es como sigue: Se re-arregla la matriz de enrollamiento como

W =


m1 l1

m2 l2


, con detW = n. Bajo la simetŕıa de la sección 3, ésta transforma

como: 
s1 s2

s3 s4




m1 l1

m2 l2


Λ−1. (6.6)

La simetŕıa SL(2,Z) asociada a la variedad base del fibrado Σ puede ser inter-

pretada como la simetŕıa que garantiza la independencia de elección de la base de

homoloǵıa de dicha variedad Σ. De hecho, la matriz de enrollamiento está asociada a

una base particular de homoloǵıa. Por lo tanto, ya que el cambio de la base de homo-

loǵıa corresponde a una transformación SL(2,Z), la teoŕıa solo debeŕıa depender de

las clases de equivalencia construidas desde la aplicación desde la izquierda por una

matriz SL(2,Z): 
s1 s2

s3 s4




m1 l1

m2 l2


 . (6.7)

Bajo esta transformación, la matriz de enrollamiento puede ser siempre reducida a la

forma canónica: 
λ1 0

β λ2


 , (6.8)

con λ1λ2 = n, la carga central definida en la sección 2, y |β| ≤ λ1

2
. En particular, si

λ1 = n, λ2 = 1 entonces |β| ≤ n
2
. Notemos que además de la carga central entera n,
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hay grados de libertad adicionales representados por el entero β.

Podemos ahora considerar la supermembrana formulada como un fibrado toroidal

simpléctico con monodromı́a Uρ(α, β)U−1. La acción sobre la matriz de enrollamiento

está dada por: 
λ1 0

β λ2


Uρ−1U−1. (6.9)

Podemos, además, actuar desde la izquierda por una matriz SL(2,Z), la cual toma-

remos de la forma V −1ρ∗V . Se puede tomar U y V ambas matrices SL(2,Z) para

re-escribir la matriz de enrollamiento en forma tal que es invariante por la izquierda

bajo la acción de ρ∗ y ρ−1. Por ejemplo, si se toma la monodromı́a asociada a la

supermembrana con cargas centrales n como:

ρ(α, β) =


a nb1

c d




α+β

∈ SL(2,Z), (6.10)

se puede tomar:

ρ(α, β)∗ =


 a b1

nc d


 , (6.11)

y V, U tal que:

V


λ1 0

β λ2


U =


1 0

0 n


 . (6.12)

Luego,

ρ∗(α, β)


1 0

0 n


 ρ−1(α, β) =


1 0

0 n


 . (6.13)

Se tiene entonces:

V −1ρ∗V


λ1 0

β λ2


Uρ−1U−1 =


λ1 0

β λ2


 . (6.14)
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Esto es, la matriz de enrollamiento es dejada invariante bajo la monodromı́a

ρ(α, β) propuesta que consideramos una representación abeliana asociada de SL(2,Z)

actuando sobre la homoloǵıa de la variedad base. Establecido el procedimiento de fi-

jación de calibre que surge de las representaciones conjugadas Uρ(α, β)U−1, podemos

preguntar cuál es la simetŕıa residual de la supermembrana en el fibrado toroidal

simpléctico con monodromı́a Uρ(α, β)U−1. Esta simetŕıa residual debe dejar inva-

riante los elementos del grupo coinvariante asociado a la monodromı́a, es decir, debe

actuar como la identidad sobre dicho grupo de coinvariantes. En consecuencia, éste

es el mismo grupo abeliano que define a la monodromı́a. Esto es diferente al análisis

realizado por Hull en [105] donde la simetŕıa residual asociada a la teoŕıa de supergra-

vedad calibrada viene descrita por el subgrupo de simetŕıa global que conmuta con el

grupo de simetŕıa asociado a la monodromı́a, el cual no tiene que ser necesariamente

la identidad. Este último caso a nivel de la supermembrana se corresponde con la

simetŕıa residual de la teoŕıa siempre y cuando consideremos un conjunto de fibrados

asociados a una monodromı́a dada y no un único fibrado. Cuando construimos las

supergravedades calibradas en 9D a partir de la teoŕıa de la supermembrana compac-

tificada en el toro con la condición de carga central, tomamos fibrados inequivalentes

(como fibrados) todos ellos con una monodromı́a dada, los cuales dan origen a bajas

enerǵıas a una misma clase de supergravedades calibradas.

6.4. Calibrando la Simetŕıa Trombón de la Super-

membrana

En esta sección mostraremos que además hay una teoŕıa de supermembrana con

cargas centrales formulada sobre un fibrado toroidal simpléctico con una monodromı́a
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que corresponde al calibrado de la simetŕıa trombón introducido en el contexto de

supergravedad en la sección (3.2.2), ver [62]. El primer paso será considerar la super-

membrana formulada sobre un fibrado toroidal simpléctico con monodromı́a trivial (la

teoŕıa sin calibrar) y obtener la ley de transformación bajo simetŕıa de escalamiento

del operador de masa presentada en el caṕıtulo 3.

Se seguirá, en primer lugar, la aproximación de [62] y se calculará el compensador

general en el contexto de la teoŕıa de la supermembrana. El segundo paso, será calibrar

la simetŕıa trombón en teoŕıa-M. La simetŕıa trombón a nivel de la supergravedad

escala el lagrangiano y las cargas KK sin variar el móduli de la teoŕıa.

6.4.1. La Simetŕıa Trombón

A continuación generalizamos expĺıcitamente la ley de transformación compensa-

dora bajo la simetŕıa de escalamiento [62], para valores arbitrarios del móduli τ , y no

solo para el caso τ = i.

6.4.1.1. La Forma General de la Transformación Compensadora

Consideramos una ret́ıcula entera de cargas KK parametrizada por Q =


p

q


.

La interpretación geométrica de Q está en términos de los elementos del grupo de

homoloǵıa H1(T
2) de la fibra, el cual es un 2-toro. Bajo la transformación de U-

dualidad (3.38), las cargas transforman como Q → ΛQ, con Λ ∈ SL(2,Z), donde la

transformación correspondiente de los parámetros del móduli es como se presentó en

el caṕıtulo 5. Estamos interesados en la transformación más general que mapea Qi →
Qj : Qj = ΛijQi. Para un Qi dado, definimos Λi ∈ SL(2,Z) : ΛiQ0 = Qi donde
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Q0 =


1

0


. Λi no es única, su expresión más general es Λig, donde g =


1 k

0 1




para cualquier entero k 6= 0, y g ∈ H es el grupo de Borel de las matrices parabólicas

SL(2,Z). Entonces, tenemos Λji = ΛjgΛ
−1
i para cualquier g ∈ H . Bajo composición

se tiene que:

ΛkjΛji = Λki. (6.15)

Para Λji ∈ SL(2,Z) actuando sobre Qi hay una transformación asociada de los

parámetros de móduli. La fórmula de la masa es invariante bajo una transforma-

ción general de este tipo. Consideramos las clases de equivalencia de matrices Λji: dos

elementos de la clase difieren en un elemento g ∈ H . Denotamos la clase Λ̃ij. Ahora,

se puede introducir el compensador siguiendo [62].

El siguiente resultado es válido: para cada clase de equivalencia Λ̃ji existe una

matriz única Hji ∈ GL(2,R), Hji = MjiΛji y un número complejo único hji ∈ C tal

que:

(i) HjiQi = Qj , (ii) Hji


τ
1


 = hji


τ
1


 . (6.16)

Hji depende solo de la clase de equivalencia, es independiente de g ∈ H . En cambio,

el compensador Mji depende expĺıcitamente de g ∈ H . La relación ii) es equivalente

a hacer la siguiente secuencia de transformaciones:

τ
Λji→ τ̃

Mji→ τ, (6.17)

donde τ → τ̃ es la transformación de Möbius asociada a Λji ∈ SL(2,Z). La expresión

general de la matriz Hji es:

Hji =


−pj

qj
u+ qi

qj
C pj

qi
+

pipj
qiqj

u− pi
qj
C

−u qj
qi
+ pi

qi
u


 , (6.18)
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con:

u =
(pjqi − piqj)

|pi − qiτ |2
, C = detMji =

|pj − qjτ |2
|pi − qiτ |2

, λji =
pj − qjτ

pi − qiτ
,

y τ es el complejo conjugado de τ . Entonces, se sigue que el compensadorMji depende

expĺıcitamente de g ∈ H ya que Mji = HjiΛ
−1
ji . Aunque Hji ∈ GL(2,R), la transfor-

mación no lineal transforma cargas enteras Qi en cargas enteras Qj para satisfacer la

condición de cuantización de carga.

Es directo mostrar que Hji define una realización no-lineal del grupo SL(2,Z). De

hecho, si

Λ21 → H21, Λ32 → H32, Λ31 → H31, (6.19)

entonces H21Q1 = Q2, H32Q2 = Q3 y por lo tanto, H32H21Q1 = Q3. De manera

análoga,

H32H21


τ

1


 = λ32λ21


τ

1


 = λ31


τ

1


 . (6.20)

La unicidad de la transformación implica entonces que H31 = H32H21. Hji realiza

una representación no lineal de SL(2,Z) y representa la simetŕıa trombón en el nivel

cuántico.

6.4.1.2. La Transformación del Operador de Masa bajo Simetŕıa Trombón

Determinada la ley de transformación para las cargas KK y el móduli complejo τ ,

podemos considerar la transformación del otro móduli R, y la matriz de enrollamiento.

De (3.38) sabemos sus leyes de transformación bajo Λji ∈ SL(2,Z), se puede entonces

determinar la acción compensadora sobre ellos. Se hará esto imponiendo la condición
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de que el hamiltoniano permanezca invariante bajo su acción. La transformación para

el móduli complejo τ puede ser re-escrito como:

τ
1




Λji
lji→


τ

′

1




lji
hji

Mji

→


τ
1


 , (6.21)

donde lji ≡ cτ + d cuando Λ ∈ SL(2,Z) mientras 1
|hji|Mji ∈ SL(2,R) y hji se

define como en la sección previa. El sector armónico de la supermembrana puede ser

expresado como:

2πR(dX̂1, dX̂2)


m1 l1

m2 l2




τ

1


 . (6.22)

Bajo la primera transformación en la composición (6.21), el factor |lji|−1 es cancelado

por la transformación de R:

R
|lji|→ R

′

= R|lji|. (6.23)

Debemos considerar:

R
′′

=
R

′

|lji|
(6.24)

para compensar el factor |lji| en la segunda transformación en (6.21). Se tiene enton-

ces,

R→ R
′ → R. (6.25)

Finalmente, bajo Λji la matriz de enrollamiento transforma como:


m1 l1

m2 l2


→


m

′

1 l
′

1

m
′

2 l
′

2


Λ−1

ji , (6.26)

En consecuencia, la acción compensadora debe ser

m

′

1 l
′

1

m
′

2 l
′

2


 Λ−1

ji→


m1 l1

m2 l2


Λji, (6.27)
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de modo de tener un hamiltoniano invariante bajo esa acción. Notemos que el sector

armónico no es invariante pero su contribución junto con la de su complejo conjugado

produce un hamiltoniano invariante. El término de enrollamiento en la fórmula de

masa, además permanece invariante mientras los términos KK vaŕıan de acuerdo a:

|pi − qiτ |
RImτ

→ |pj − qjτ |
RImτ

. (6.28)

6.4.2. Calibrando la Simetŕıa Trombón

Finalmente, podemos considerar el calibrado de la simetŕıa trombón. El principal

punto en la construcción es la descripción geométrica de las cargas KK (p, q) en

términos de los elementos del grupo de homoloǵıa H1(T
2) de la fibra T 2. Si denotamos

ρ(α, β) ∈ SL(2,Z), el elemento de SL(2,Z) asociado a (α, β) ∈ π1(Σ), su acción sobre

H1(T
2) produce:

Qj = ρ(α, β)Qi. (6.29)

De la sección (6.3) se concluye que ρ(α, β) = Λji y que existe una representación

asociada no-lineal realizada en términos de la matriz Hji. La monodromı́a está cons-

truida con esta representación no-lineal de SL(2,Z). Nótese que el módulo Z[Π1(σ)]

es el mismo que el que surge de la representación lineal ρ, sin embargo su acción sobre

τ , R y la matriz de enrollamiento es diferente ya que su transformación está hecha

en términos de las matrices Hji. De este modo, se obtiene una estructura global di-

ferente para la supermembrana sobre este fibrado toroidal simpléctico. Siguiendo el

análisis del caṕıtulo 5, el hamiltoniano de la supermembrana está bien definido sobre

este fibrado toroidal simpléctico. Notamos que las cargas (p, q) en el término KK de

la fórmula de la masa al cuadrado no tiene valores arbitrarios. De hecho, los valores

permitidos son aquellos determinados del módulo Z2
ρ . Para obtener la invariancia de
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la fórmula de la masa al cuadrado se puede considerar la suma sobre todos los va-

lores (p, q) permitida por el módulo Z2
ρ . Se llega a la familia de fibrados toroidales

simplécticos cuyas monodromı́as realizan el calibrado de la simetŕıa trombón.

6.5. Conclusión

Hemos encontrado que la supermembrana con cargas centrales formulada en térmi-

nos de secciones del fibrado toroidal simpléctico con monodromı́a, es el modo natural

de entender el origen en teoŕıa M de las teoŕıas de supergravedad calibradas tipo IIB

en 9D. La descripción global es una realización del mecanismo de esculpido encon-

trado en [14] y que está asociado a las clases inequivalentes de fibrados toroidales

simplécticos con monodromı́as en SL(2,Z). La supermembrana compactificada sobre

un T 2 sin ninguna ninguna condición topológica extra, es una teoŕıa de calibre sobre

un fibrado principal trivial con grupo de estructura el grupo simpléctico homotópico

a la identidad. La supermembrana con carga central no trivial es también invarian-

te bajo el grupo de isotoṕıa de simplectomorfismos, que en el caso considerado es

SL(2,Z). Se analizó la supermembrana calibrada que se genera del calibrado de los

subgrupos abelianos de este grupo SL(2,Z) el cual tiene un significado intŕınseco en

la teoŕıa. El calibrado se realiza automáticamente formulando la supermembrana con

cargas centrales como secciones de un fibrado toroidal simpléctico con monodromı́a.

El subgrupo abeliano de SL(2,Z) actúa naturalmente sobre la homoloǵıa del toro

target (la fibra del fibrado H1(T
2)). Identificamos, en nuestra formulación de la su-

permembrana, los elementos de H1(T
2) con (p, q), cargas KK. Además, los números

de enrollamiento están directamente relacionados a la cohomoloǵıa de la variedad ba-

se Σ. Para una monodromı́a dada hay una correspondencia uno a uno entre el fibrado

toroidal simpléctico con esa monodromı́a y los elementos del grupo de coinvariantes de
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la monodromı́a [143]. Esos elementos son clases equivalentes de las cargas KK (p, q),

las cuales describimos expĺıcitamente para las monodromı́as eĺıpticas, parabólicas e

hiperbólicas. Clasificamos los fibrados toroidales simplécticos en términos del grupo

de coinvariantes de la monodromı́a. Esto muestra que a nivel de la supermembra-

na lo que es relevante son los elementos del grupo de coinvariantes de un grupo de

monodromı́a dada. Los posibles valores de las cargas (p, q) sobre un fibrado toroi-

dal simpléctico con esa monodromı́a están restringidos a la correspondiente clase de

equivalencia que define el elemento del grupo de coinvariantes asociados al fibrado.

Además, analizamos la presencia de elementos de torsión en la cohomoloǵıa de la

base de la variedad o de forma equivalente los grupos Zm ⊕ Zncomo grupo de coin-

variantes de la monodromı́a. Obtuvimos, usando el mismo escenario geométrico, el

calibrado de la simetŕıa trombón. Esta se construyó de una representación no lineal

de SL(2,Z), dando origen a un fibrado toroidal simpléctico diferente en compara-

ción a las construcciones anteriores en términos de representaciones lineales. De esta

construcción de la supermembrana sobre un fibrado toroidal simpléctico, podemos

identificar directamente las supergravedades calibradas IIB en 9D correspondientes.

Por otro lado, una supergravedad calibrada dada solamente puede interactuar con la

supermembrana correspondiente sobre un fibrado toroidal simpléctico asociado a un

elemento coinvariante de la misma monodromı́a, porque en caso contrario ocurre una

inconsistencia con las funciones de transición sobre el fibrado. Además, se obtienen

los grados de libertad de calibre expĺıcitos de la teoŕıa, y la simetŕıa global residual

de la teoŕıa para una monodromı́a dada.
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Caṕıtulo 7

T-Dualidad en la Supermembrana

con Cargas Centrales

En este caṕıtulo mostramos que la T-dualidad es una simetŕıa de la supermembra-

na con cargas centrales, resultado reportado en [16]. En teoŕıa de cuerdas existen

diferentes transformaciones de dualidad que relacionan las distintas teoŕıas de cuer-

das entre śı, que muestran que son diferentes aproximaciones de una única teoŕıa, la

teoŕıa M. Aśı, se tienen las dualidades S, T y U . La dualidad S es una simetŕıa bajo

la cual la constante de acoplamiento de una teoŕıa cuántica cambia no-trivialmente,

ésta incluye el caso de la dualidad fuerte-débil [120, 127].

Por ejemplo, la teoŕıa de cuerdas de tipo IIB es autodual bajo la simetŕıa de

SL(2,Z). Otros ejemplos de dualidad S son: la dualidad entre la IIA y la teoŕıa-M

(sobre un ćırculo), la dualidad Tipo I y la heterótica SO(32), y la dualidad entre la E8

y la teoŕıa-M (sobre un intervalo). En el caso de teoŕıas de cuerdas compactificadas,

la transformaciones de dualidad S se refiere a aquellas dualidades que dejan el radio

invariante, y vaŕıan el acoplamiento global de la teoŕıa.

Por su parte la T-dualidad en teoŕıa de cuerdas se refiere a una simetŕıa que deja

la constante de acoplamiento invariante a cualquier orden de perturbación y vaŕıan el
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radio de compactificación. En el nivel más sencillo se presenta, por ejemplo en la teoŕıa

de cuerdas IIA o IIB, compactificada sobre un ćırculo, o más general, toroidalmente.

Para el caso del ćırculo es la dualidad R → α
′

/R, que relaciona teoŕıas de cuerdas

compactificadas sobre un ćırculo pequeño con las compactificadas sobre uno grande

intercambiando a su vez los modos de enrollamiento y los modos de Kaluza-Klein.

En un sentido más general, incluye traslaciones1 en el tensor antisimétrico y transfor-

maciones de coordenadas más generales en el espacio-tiempo. La T-dualidad ha sido

generalizada a backgrounds arbitrarios y también se ha explorado la T-dualidad no

abeliana y T-dualidad fermiónica, tópicos que no comentamos en esta tesis.

Finalmente, la U-dualidad [22, 151] en teoŕıa de cuerdas se postula como la uni-

ficación de dualidades, e incluye tanto la S-dualidad y T-dualidad, y adicionalmente

incluyen transformaciones que mezclan los radios y los acoplamientos.

Actualmente, la teoŕıa de campo doble es un escenario interesante para tratar de

comprender algunas de las propiedades de dualidad de la teoŕıa de cuerdas. Ésta es

una teoŕıa efectiva que de forma global describe modelos sigma en donde se introducen

2d variables (d asociadas a las coordenadas –modos de enrollamiento– y d asociadas a

sus momentos respectivos –modos de Kaluza-Klein–), sobre fibraciones toroidales T 2d,

más un v́ınculo necesario para garantizar el número correcto de grados de libertad. Las

funciones de transición entre las diferentes cartas de coordenadas del fibrado incluyen

no solo difeomorfismos y tranformaciones de calibre sino además transformaciones

de dualidad [53]. El grupo de T-dualidad, genéricamente es igual a O(d, d,Z). A

este tipo de compactificaciones se le conoce como T-variedades [54]. Ejemplos de

T-variedades generalizados pueden ser obtenidos construyendo fibraciones toroidales

sobre variedades de base con ciclos no-contraibles, por ejemplo el toro. La teoŕıa de

1Traducción de shifts.
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cuerdas puede ser definida consistentemente en estos backgrounds no-geométricos.

Tales backgrounds pueden obtenerse a partir de compactificaciones con twists a los

que se les hace porteriormente una tranformacion de dualidad [45] o bien si se actúa

sobre backgrounds geométricos con flujos, y realizando luego una transformación con

T-dualidad [53, 55].

En casos especiales, dichas compactificaciones con twists de dualidad corresponden

a compactificaciones en orbifolds asimétricos los cuales pueden generar backgrounds

de cuerdas consistentes [56, 59].

La realización de estas ideas en términos de la acción efectiva de cuerdas de tipo II

ha sido obtenida recientemente en [152, 153]. Dicha acción efectiva propuesta es por

consiguiente invariante bajo transformaciones de dualidad. En 9D las transformacio-

nes de dualidad corresponden a la simetŕıa SL(2,Z)× Z2 [107]. Algunos aspectos de

la T-dualidad en teoŕıa de cuerdas fueron analizados con anterioridad en [113, 154] y

más recientemente por [54]. La relación de la dualidad y teoŕıa M también fue analiza-

da en [112]. En [53] se argumentó que debe existir una formulación fundamental de la

teoŕıa de cuerda/teoŕıa M en la cual las simetŕıas de dualidad sean manifiestas desde

el comienzo. Las simetŕıas de dualidad de la teoŕıa M y la teoŕıa de cuerdas debeŕıan

ser simetŕıas geométricas discretas de este espacio generalizado. Con especial impor-

tancia, se argumentó que muchas supergravedades masivas o calibradas no pueden

ser embebidas naturalmente en la teoŕıa de cuerdas sin este esquema [52, 55, 58]. Sin

embargo, a pesar de estos importantes avances, hasta donde sabemos, una realización

concreta de estas ideas en términos de teoŕıas del volumen-mundo de la teoŕıa M, aún

no se tiene, y es lo que hemos intentado resolver en esta tesis. Nuestro enfoque ha

sido partir directamente de un objeto bien definido en teoŕıa M: la supermembrana

con cargas centrales compactificada en un toro. Hemos generalizado la noción de T-
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dualidad a este objeto cuyo volumen del mundo es tridimensional. Hemos utilizado

la descripción global de la supermembrana en términos de fibrados para aśı obtener

las transformaciones globales y locales de T-dualidad.

7.1. Transformación de T-dualidad

En esta sección, introducimos las transformaciones de T-dualidad para la teoŕıa de

la supermembrana. Esto va más allá de la T-dualidad de la teoŕıa de supercuerdas.

De hecho, ésta última puede ser obtenida directamente a partir de la teoŕıa de la

membrana si se restringe la teoŕıa a imponer que los campos dependan de una única

coordenada espacial [13]. En esta sección generalizamos dichos resultados y obtenemos

la transformación de T-dualidad asociada a la totalidad de los grados de libertad de la

supermembrana. Veremos que esta es una simetŕıa de la teoŕıa cuando ésta se formula

sobre un fibrado toroidal simpléctico dual (es decir, un fibrado toroidal simpléctico

definido bajo la transformación de T-dualidad). Esta transformación actúa sobre el

móduli aśı como sobre los campos bosónicos y fermiónicos. Veremos que la T-dualidad

es una simetŕıa natural de la teoŕıa que fija la escala de enerǵıa de la tensión de la

supermembrana T . La transformación de T-dualidad es una transformación no-lineal

la cual intercambia los modos de enrollamiento W, - definidos previamente como

aquellos asociados a la cohomoloǵıa de la variedad de base-, con las cargas KK,

Q = (p, q) -asociadas a la homoloǵıa del toro del target- junto con la transformación

del móduli real R → 1
R
y móduli complejo τ → τ̃ , ambos de un modo no trivial. En

lo que sigue todas las cantidades transformadas bajo T-dualidad están denotadas con

una tilde, para diferenciarlas de otras simetŕıas anteriormente consideradas.

Dada una matriz de enrollamiento W y los modos KK, siempre existe una matriz
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de enrollamiento equivalente W
′

=


 l

′

1 l
′

2

m
′

1 m
′

2


, bajo la simetŕıa SL(2,Z) (3.37) y

para las cargas KK, que transforma a Q =


p
q


, como:


 l

′

1

m
′

1


 = Λ0


p

q


 , (7.1)

donde Λ0 =


α β

γ δ


 ∈ SL(2,Z) con α = δ (ver apéndice E). Esta es una relación

intŕınseca entre las clases de equivalencia de matrices de enrollamiento W y los modos

KK. De hecho, es preservada bajo una transformación de U-dualidad que denotamos

mediante variables con gorrito, ver (3.22):


 l

′

1

m
′

1


 −→


 l̂1

m̂1


 =


 a −b
−c d




 l

′

1

m
′

1





p

q


 −→


p̂

q̂


 =


a b

c d




p

q




(7.2)

Por lo tanto 
 l̂1

m̂1


 = M


p̂

q̂


 , (7.3)

donde

M =


 a −b
−c d


Λ0


a b

c d


 . (7.4)

La matriz M ∈ SL(2,Z) tiene términos en la diagonal iguales, dado que Λ0 tiene α =

δ. Para definir la transformación de T-dualidad introducimos las siguientes variables

adimensionales (ec. 47) en [13]:

Z := TAỸ , Z̃ := TÃY, (7.5)



Caṕıtulo – 7. T-Dualidad en la Supermembrana con Cargas Centrales 154

donde T es la tensión de la supermembrana, A = (2πR)2Imτ es el área del toro target

y Y = RImτ
|qτ−p| . Las variables con tilde Ã, Ỹ son las cantidades transformadas bajo la

T-dualidad. La transformación de T-dualidad se introduce por:

El móduli : ZZ̃ = 1, τ̃ =
ατ + β

γτ + α
;

Las cargas : Q̃ = Λ0Q, W̃ = Λ−1
0 W

′

.

(7.6)

Notemos que las transformaciones de T-dualidad para la matriz de enrollamiento,

teniendo Λ0 términos iguales en la diagonal, se convierte en una matriz que tiene

la misma forma que (3.22). La expresión expĺıcita para Λ0 está en el apéndice E.

La principal diferencia es que Λ0 está determinada en términos de los modos de

enrollamiento y los modos KK, definiendo una transformación no-lineal sobre las

cargas de la supermembrana, mientras que (3.22) es una transformación lineal sobre

ellos. Con la definición anterior de la transformación de T-dualidad se tiene:

p
q


→


p̃
q̃


 =


 l

′

1

m
′

1


 ,


 l

′

1

m
′

1


→


 l̃

′

1

m̃
′

1


 =


p
q


 . (7.7)

Esto es, los modos KK son transformados en los modos de enrollamiento y vicever-

sa. Esta propiedad junto con la condición Z = 1, Z̃ = 1 asegura que (T-dualidad)2 =

I, la principal caracteŕıstica de la T-dualidad. Las transformaciones expĺıcitas del

modulus real, obtenido de la transformación de la T-dualidad es:

R̃ =
|γτ + α||qτ − p|2/3

T 2/3(Imτ)4/3(2π)4/3R
, con τ̃ =

ατ + β

γτ + α
y Z2 =

TR3(Imτ)2

|qτ − p| , (7.8)

Los modos de enrollamiento y la contribución de las cargas KK en la fórmula de masa

al cuadrado transforma de la siguiente manera:

Tn2A2 =
n2

Ỹ 2
Z2,

m2

Y 2
= T 2m2Ã2Z2.

(7.9)
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Para ver cómo transforma bajo T-dualidad la cantidad [13, 118]

Masa2 = T 2((2πR)2nImτ)2 +
1

R2
((m2

1 + (
m|qτ − p|
RImτ

) + T 2/3H, (7.10)

con el hamiltoniano H definido como:

H = HCCL − T−2/3

∫

Σ

√
W
T 2

4
{Xr

h, X
s
h}2, (7.11)

y Xs
h, la parte armónica de Xs dada por (3.39). Las reglas de transformación para los

campos son:

dXm = udX̃m, dX̃ = ueiϕdX, A = ueiϕÃ,

y θ = u3/2θ̃, θ = u3/2θ̃.
(7.12)

Donde u = Z2 = R|γτ+α|
R̃

, ϕ fue definido en (3.38) y dX = dX1 + idX2. El dual de

dX , dX̃ es:

dX̃ = 2πR̃[(m̃1τ̃ + l̃1)dX̂
1 + (m̃2τ̃ + l̃2)dX̂

2]. (7.13)

La fase eiϕ se cancela con el hermı́tico conjugado (h.c.) de la transformación del

hamiltoniano. La relación entre el hamiltoniano a través de una transformación T-

dual es

H =
1

Z̃8
H̃, H̃ =

1

Z8
H. (7.14)

Por lo tanto, obtenemos para el operador de masa expresado en las variables originales

y las variables duales la siguiente identidad:

M2 = T 2n2A2 +
m2

Y 2
+ T 2/3H =

1

Z̃2
(
n2

Ỹ 2
+ T 2m2Ã2) +

T 2/3

Z̃8
H̃. (7.15)

Entonces como veremos más adelante, cuando Z̃ = Z = 1, la expresión para M2 es

invariante bajo las transformaciones antes mencionadas.
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7.2. T-Dualidad sobre Fibrados Simplécticos

En esta sección vamos a definir la noción de fibrado simpléctico dual.

Dos representaciones conjugadas ρ y UρU−1, con U ∈ SL(2,Z), define los módulos

Z2
ρ y Z2

UρU−1 con los grupos de cohomoloǵıa isomórficos H2(Σ, Z2
ρ) ∼ H2(Σ, Z2

UρU−1).

Estos definen fibrados toroidales simplécticos equivalentes. Una manera equivalente

es considerar el grupo de coinvariantes asociadas a ρ y UρU−1. De hecho, el grupo

H2(Σ, Z2
ρ) es isomórfico, mediante la dualidad de Poincaré, al grupo de coinvariantes

asociados a ρ. Entonces, hay un isomorfismo entre el grupo de coinvariantes asociados

a ρ y a UρU−1, ellos definen fibrados equivalentes simplécticos. Dado Q ≡


p
q


 ∈

H1(T
2), el grupo de coinvariantes de monodromı́a ρ es el grupo abeliano de clases de

equivalencia

{Q − ΛQ̂ − Q̂}, (7.16)

para cualquier Λ ∈ ρ y cualquier Q̂ =


p̂

q̂


 ∈ H1(T

2). De esto se sigue que esta clase

es transformada a la clase asociada a UQ bajo la representación UρU−1:

{UQ− UΛU−1Q̃ − Q̃}, (7.17)

donde Q̃ = UQ̂, pero cualquier Q̃ ∈ H1(T
2) puede ser expresado siempre como UQ̂

para algún otro Q̂ ∈ H1(T
2), ya que U es invertible. Entonces, hay un isomorfis-

mo entre el grupo de coinvariantes asociados a ρ y a UρU−1, ellos definen fibrados

toroidales simplécticos equivalentes.

Hay una relación biyectiva entre los fibrados toroidales simplécticos con mono-

dromı́a ρ(α, β) y los elementos del grupo de cohomoloǵıa H2(Σ, Zρ) de la variedad
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de base Σ con coeficientes sobre el módulo Z2
ρ , y por lo tanto con los elementos del

grupo de coinvariantes asociado al grupo de monodromı́a G. Es decir, cada clase de

equivalencia

{Q+ gQ̂ − Q̂}, (7.18)

para cualquiera g ∈ G y Q̂ ∈ H1(T
2), caracteriza un fibrado toroidal simpléctico. En

la formulación de la supermembrana sobre esta estructura geométrica, Q están iden-

tificadas con las cargas KK. La acción de G, el grupo de monodromı́a, deja invariante

a la clase de equivalencia. G actúa como la identidad sobre el grupo coinvariante.

Consideremos la transformación de dualidad introducida antes. Ésta intercambia los

modos de KK Q en componentes de la matriz de enrollamiento a través de la relación

(7.1):


 l1

m1


 = Λ0


p

q


 . (7.19)

Bajo la transformación de dualidad la clase de equivalencia transforma como:

{Λ0Q+ (Λ0gΛ
−1
0 )Λ0Q̂ − Λ0Q̂}. (7.20)

Por lo tanto, para el fibrado dual ésto se cumple,

{Λ0


 l1

m1


+ (Λ0gΛ

−1
0 )


 l̂1

m̂1


−


 l̂1

m̂1


}. (7.21)

Esto es, como un elemento del grupo coinvariante de Λ0GΛ
−1
0 . Entonces, conclui-

mos que la transformación de dualidad, adicionalmente a la transformación sobre el

móduli R, τ , también transforma la estructura geométrica sobre un fibrado toroidal

simpléctico con monodromı́a Λ0GΛ
−1
0 . Notamos que la transformación depende cru-

cialmente de la clase de equivalencia original del grupo coinvariante. Aśı, para un

fibrado toroidal simpléctico no-equivalente, la transformación dual es realizada con
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una matriz SL(2,Z) diferente, Λ0. En consecuencia, esta transformación dual entre

la supermembrana sobre fibrados toroidales simplécticos no puede ser vista a el nivel

de la teoŕıa de supergravedad en la cual solo se distingue el grupo de monodromı́a

pero no a su estructura coinvariante. Es posible que esta información quede codificada

en los distintos tipos de soluciones que presentan un mismo tipo de supergravedad

calibrada, por ejemplo, las diferentes soluciones tipo domain wall2 en 9D que llevan

a soluciones tipo (p, q) 7-branas en 10D [131]. Un estudio detallado sobre ésto queda

para un futuro trabajo.

7.3. T-Dualidad como una Simetŕıa

A continuación se puede determinar la T-dualidad como una simetŕıa natural para

la familia de supermembranas con cargas centrales. Tomamos:

Z̃ = Z = 1 ⇒ T0 =
|qτ − p|
R3(Imτ)2

. (7.22)

Esto impone una relación entre la escala de enerǵıa de la tensión de la supermembrana

y el móduli de la fibra toroidal y la de su dual. De hecho, podemos pensar en dos

maneras diferentes: dados los valores del móduli y cargas Kaluza-Klein, éstos fijan la

tensión permitida T0 o la manera a la inversa, en la cual para una tensión fija T0,

el radio, el parámetro de Teichmuller del 2-toro, y las cargas KK satisfacen (7.22).

Cuando esta T-dualidad extendida a teoŕıa M actúa únicamente sobre los estados tipo

cuerda3 de la supermembrana con cargas centrales sobre un T̃ 2 (congelando los demás

modos), se recuperan las relaciones de T-dualidad estándar en teoŕıa de cuerdas [13].

2Sin traducción.
3Estas son configuraciones f́ısicas de la supermembrana con cargas centrales en las cuales se

considera Xm = Xm(τ, q1X̂
1 + q2X̂

2) y Ar = Ar(τ, q1X̂
1 + q2X̂

2) donde q1, q1 son números enteros

primos relativos [13].
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La restricción de los estados tipo cuerda de la supermembrana con cargas centrales

sobre un toro dual T̃ 2 fue encontrada en [13].

En el nivel de la supergravedad la simetŕıa de la variedad de base de la super-

membrana es invisible y ella aparece indirectamente como las componentes no nulas

de la 3-forma, la cual para la supermembrana en el CCL corresponde a C−rs, ver [84].

En el trabajo [155] sobre toros no-conmutativos, el análisis está hecho fundamental-

mente en espacio plano con un producto estrella de Moyal en el cual el parámetro

no-conmutativo es constante y está dado por la 2-forma.

Sin embargo como se expresó en [155], esta descripción se puede generalizar a

variedades curvas, para las cuales el producto estrella (no conmutativo) se modifica

a una deformación por cuantización a la Kontsevich [156] y entonces, es necesario

seleccionar adicionalmente una estructura de Poisson para caracterizar la teoŕıa. En

nuestro caso se corresponde a un producto estrella tipo Fedosov [157], por lo que

podemos interpretar a C−rs = Frs como la 2-forma no-degenerada asociada a la

condición de carga central, entonces
∫
Σ
Frs = n.

La formulación de la supermembrana en la presencia de la 3-forma no nula ha sido

analizada en [84]. En nuestra formulación hay una particularidad ya que el campo

magnético sobre el volumen de mundo de la supermembrana inducido por la contri-

bución de monopolo no es constante, en consecuencia pensamos que ésto debe estar

asociado a la existencia de una 4-forma de flujo no nula G = dC en 11D. En teoŕıa de

cuerdas la doble T-dualidad se puede ver como la existencia de una 3-forma no-nula

asociada a un 2-toro no-conmutativo que aparece debido a la presencia del campo no

nulo Bij en el sector de cuerda cerrado. Seŕıa interesante ver si existe alguna conexión

con nuestros resultados.
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7.4. Conclusión

En este caṕıtulo mostramos la existencia de una nueva simetŕıa Z2 que juega

el papel de T-dualidad en la teoŕıa M intercambiando las cargas de enrollamiento

y las cargas KK pero dejando el hamiltoniano invariante. Localmente obtenemos la

realización de la transformación de la T-dualidad a nivel de la supermembrana y

globalmente estudiamos cómo se transforman dichos fibrados simplécticos. Encontra-

mos que dicha transformación de dualidad es en realidad una simetŕıa de la teoŕıa.

Por consiguiente, las monodromı́as cuyo origen está en la teoŕıa de supergravedad

IIA conjeturamos que se generan del fibrado toroidal simpléctico dual obtenido de

esta nueva simetŕıa de T-dualidad. En consecuencia, esperamos que la formulación

geométrica global de las supermembranas que proponemos dé un origen unificado de

todas las teoŕıas de supergravedad calibradas del tipo II en 9D. Entonces, podemos

conjeturar que la supermembrana se convierte en el origen en teoŕıa M de todas las

teoŕıas de supergravedades del tipo II en nueve dimensiones.

Este resultado es relevante tambén desde el punto de vista de teoŕıa M dado que

hemos conseguido realizar una formulación invariante bajo dualidades en términos de

un objeto cuántico de la misma bien definido: la supermembrana con cargas centrales.

Esta es una caracteŕıstica exigida a cualquier teoŕıa que pretenda describir grados de

libertad microscópicos de la teoŕıa M.
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Caṕıtulo 8

Conclusiones

En esta tesis hemos obtenido en el calibre del cono de luz (CCL), la acción de la

supermembrana con cargas centrales no triviales sobre un 7-toro. En vista de las

propiedades espectrales de la supermembrana en 9D y 7D no compactas respecti-

vamente era natural hacer lo mismo para formulaciones de la teoŕıa en 4D. A nivel

clásico se obtuvo que el hamiltoniano no contiene tampoco configuraciones tipo cuer-

da que puedan producir inestabilidades. Este resultado no era directo dado que la

generalización de la condición de carga central es natural en dimensiones pares, y la

variedad de compactificación es impar (7-toro), por lo que el análisis se hizo en dos

pasos: primero compactificando en un T 6 sobre el cual se imponen una condición de

carga central generalizada y porteriormente en un S1.

A nivel cuántico haciendo el análisis supersimétrico de la teoŕıa se ve que el ha-

miltoniano cuántico regularizado tiene espectro discreto con multiplicidad finita. Esto

prueba que la supermembrana con cargas centrales es un objeto bien definido a nivel

cuántico en 4D y por tanto describe (al menos) una parte de los grados de libertad

microscópicos de la Teoŕıa M.

A nivel de simetŕıas la teoŕıa tiene una simetŕıa global Sp(6,Z) × U(1) y una

simetŕıa de calibre asociada al grupo de simplectomorfismos sobre el volumen del
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mundo de la supermembrana. Este grado de libertad esta asociado a la presencia

de monopolos sobre el volumen de mundo de la misma. Esos monopolos magnéticos

sugieren propiedades de quiralidad de manera similar a lo que ocurre en la descripción

de D-branas magnetizadas, aunque este punto necesita de un estudio más profundo.

En principio se podŕıa pensar que una compactificación en un 7-toro careceŕıa de

interés fenomenológico. Sin embargo la imposición de la condición de cargas centrales

afecta a los mapas de la variedad base en el espacio target produciendo una ruptura

espontánea de la supersimetŕıa a una teoŕıa con N = 1. Los grados de libertad de la

teoŕıa se preservan, además debido a la compactificación y a la carga central, todos

los campos escalares adquieren masa. Luego, se hizo el análisis con la variedad de

compactificación restringiéndose al caso de un 7-toro isotrópico. Para ello, se hizo

expĺıcita la dependencia en el móduli geométrico del 7-toro, esto es, en términos de

los radios y éstos se consideraron iguales. Se encontró que no hay direcciones planas.

Este es un resultado prometedor cara a un estudio realista de estabilización de móduli.

En resumen, la supermembrana con cargas centrales compactificada en un 7-toro

isotrópico es un objeto cuántico bien definido que captura grados de libertad no

perturbativos de la teoŕıa M, con N = 1 formulada en 4D y quiral con simetŕıa de

calibre, realizando el grupo de simplectomorfismos.

Este un comienzo prometedor cara a obtener en un estudio a futuro una descrip-

ción fenomenológica del modelo estándar en términos de la supermembrana. Puntos

abiertos es encontrar la formulación lagrangiana de la supermembrana que contenga

al grupo de calibre del modelo estándar a bajas enerǵıas. Esfuerzos en esta dirección

posteriores a este trabajo fueron hechos en: [148] la formulación no abeliana de la

supermembrana, [147] la formulación de la supermembrana en una variedad G2.
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La segunda parte de esta tesis se centró en encontrar la descripción a bajas enerǵıas

del sector topológico de la supermembrana con cargas centrales dada por las teoŕıas

de supergravedad en el caso más sencillo, 9D. A este respecto se trabajó en dos di-

recciones diferentes. En un principio, se intentó obtener los (super) v́ınculos1 en el

formalismo del superespacio usando el método de la simetŕıa kappa explicado en la sec-

ción 2.3.1. La complejidad de ciertas expresiones para ir más alla de la aproximación

a primer orden, entre otras cosas, hizo que se abandonase esa ĺınea de investigación

por otra centrada en fibrados con especial énfasis en la relación dada por los calibra-

dos y las monodromı́as asociadas a dichos fibrados. En particular se estudiaron las

simetŕıas globales de la supermembrana con cargas centrales, los grupos SL(2,Z), y

se interpretan a la luz de los conceptos de fibrados y monodromı́as. Como ya se ha

dicho, estos conceptos son importantes porque ellos sirven de factor de clasificación

de las teoŕıas de supergravedad calibradas. Ya sabemos que localmente, tenemos la

interpretación de la supermembrana en términos de mapas desde Σ hasta el target, el

cual es un producto de M9×T 2. En el desarrollo del caṕıtulo 5, se mostró que global-

mente se puede describir nuestra teoŕıa con una estructura geométrica más compleja

e interesante. Como sabemos, la supermembrana compactificada sobre un T 2 sin nin-

guna ninguna condición topológica extra, es una teoŕıa de calibre sobre un fibrado

principal trivial cuya fibra es el toro.

Para el caso de la supermembrana con cargas centrales se probó que el hamilto-

niano junto con los v́ınculos son invariantes bajo la acción de SL(2,Z)σ × SL(2,Z)T .

El grupo SL(2,Z)T actúa sobre el grupo de homoloǵıa H1(T
2) de la fibra T 2. Con

este resultado se pudo entonces formular la supermembrana con cargas centrales no

triviales en términos de secciones de fibrados toroidales simplécticos con una represen-

tación ρ : π1(Σ) → SL(2,Z) induciendo un Z[π1(Σ)]-módulo en términos del grupo de

1Traducción de superconstraints.
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homoloǵıa de la fibra H1(T
2). La representación ρ es la monodromı́a sobre el fibrado.

Entonces, el hamiltoniano de la supermembrana con cargas centrales no triviales

está definido sobre un fibrado toroidal simpléctico no trivial, por lo tanto global-

mente, no podemos descomponer el target de la base Σ. Un aspecto interesante de

esta estructura geométrica es la posible existencia de una extensión de la 2-forma

simpléctica sobre la fibra al espacio total del fibrado toroidal simpléctico.

En el caṕıtulo 6 se demuestra que a través de esta nueva interpretación geométrica

de la supermembrana con cargas centrales no triviales podemos conectar con las su-

pergravedades calibradas en 9D tipo IIB. Estas supergravedades son las que aparecen

al calibrar el grupo GL(2,R): la eĺıptica, parabólica e hiperbólica y una supergrave-

dad calibrada de tipo trombón. La supermembrana con carga central no trivial es

también invariante bajo el grupo de isotoṕıa de simplectomorfismos, que en el caso

considerado es SL(2,Z). Se analizó la supermembrana calibrada asociada a las distin-

tas clases de monodromı́as dadas por los subgrupos abelianos del grupo SL(2,Z). El

calibrado se realiza automáticamente formulando la supermembrana con cargas cen-

trales como secciones de un fibrado toroidal simpléctico con monodromı́a. Además,

la monodromı́a se define intŕınsecamente considerando representaciones de Π1(Σ),

el grupo fundamental de la variedad de base de Riemann de genus uno (Σ), sobre

Π0(G), el grupo de isotoṕıa de los simplectomorfismos de la fibra G que en este ca-

so corresponden al grupo SL(2,Z). Los simplectomorfismos en dos dimensiones son

equivalente a los difeomorfismos que preservan el área. Los subgrupos abelianos de

SL(2,Z) actúan naturalmente sobre la homoloǵıa del toro target H1(T
2). La fibra

completa corresponde en este caso al espacio target, que en el caso considerado es

M9 × T 2 pero las propiedades topológicas no triviales están solo asociadas al sector

compacto. Identificamos, en nuestra formulación de la supermembrana, los elementos
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de H1(T
2) con (p, q), cargas KK. Además, los números de enrollamiento están direc-

tamente relacionados a la cohomoloǵıa de la variedad base Σ. Para una monodromı́a

dada hay una correspondencia uno a uno entre el fibrado toroidal simpléctico con esa

monodromı́a y los elementos del grupo de coinvariantes de la monodromı́a [143]. Los

elementos del grupo de coinvariantes clasifican las clases de fibrados inequivalentes.

Ellos están asociados a las clases equivalentes de las cargas KK (p, q), las cuales des-

cribimos expĺıcitamente para las monodromı́as eĺıpticas, parabólicas e hiperbólicas.

Clasificamos los fibrados toroidales simplécticos en términos del grupo de coinvarian-

tes para una monodromı́a dada. Los posibles valores de las cargas (p, q) sobre un

fibrado toroidal simpléctico con una monodromı́a dada están restringidos a los va-

lores dados por la correspondiente clase de equivalencia que define el elemento del

grupo de coinvariantes asociados al fibrado. Nosotros interpretamos que las distintas

clases de coinvariantes para una monodromı́a dada pueden etiquetar a bajas enerǵıas

las diferentes soluciones de supergravedad con esa monodromı́a. Pensamos que puede

ser interesante estudiar con más profundidad esta relación para un trabajo a futuro

y ver si los coinvariantes pueden ser de utilidad para encontrar nuevas soluciones de

supergravedad.

Además, analizamos la presencia de elementos de torsión en la cohomoloǵıa de

la variedad de base o de forma equivalente los grupos Zm ⊕ Zn como grupo de coin-

variantes de la monodromı́a. Obtuvimos, usando el mismo escenario geométrico, el

calibrado de la simetŕıa trombón. Esta se contruyó de una representación no lineal de

SL(2,Z), dando origen a un fibrado toroidal simpléctico inequivalente en comparación

a las construcciones anteriores hechas en términos de representaciones lineales. De es-

ta construcción de la supermembrana sobre un fibrado toroidal simpléctico, podemos

identificar directamente las supergravedades calibradas en 9D correspondientes. Por

otro lado, una supergravedad calibrada dada, solamente puede interactuar con la su-
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permembrana correspondiente sobre un fibrado toroidal simpléctico asociado a un

elemento coinvariante de la misma monodromı́a, porque en caso contrario ocurre una

inconsistencia con las funciones de transición sobre el fibrado. Además obtenemos los

grados de libertad de calibre expĺıcitos de la teoŕıa, y obtenemos la simetŕıa residual

una vez que la monodromı́a ha sido fijada. Para un fibrado particular esta coincide

exactamente con el subgrupo dado por la monodromı́a.

Hemos mostrado expĺıcitamente la relación con las teoŕıas de supergravedad ca-

libradas del tipo IIB en 9D. En el caṕıtulo 7 mostramos la existencia de una nueva

simetŕıa Z2 que juega el papel de T-dualidad en la teoŕıa M intercambiando las car-

gas de enrollamiento y las cargas KK pero dejando el hamiltoniano invariante. Esta

transformación de T-dualidad es una simetŕıa de la teoŕıa que transforma supermem-

branas descritas por un fibrado toroidal en supermembranas formuladas en el fibrado

toroidal dual que está en la misma clase de equivalencia. La transformación de T-

dualidad de la cuerda cerrada en 9D entre el operador de masa IIA y IIB se obtiene

como un ĺımite de la transformación de T-dualidad para la supermembrana cuando

el toro degenera en un ćırculo y consideramos únicamente las configuraciones de tipo

cuerda contenida en la supermembrana.

Por esta razón, pensamos que todas las monodromı́as asociadas a la teoŕıa IIA

se generen del fibrado toroidal simpléctico dual obtenido de esta nueva simetŕıa de

T-dualidad. En consecuencia, esperamos que la formulación geométrica global de

las supermembranas que proponemos dé un origen unificado de todas las teoŕıas de

supergravedad calibradas del tipo II en 9D. Entonces, podemos conjeturar que la

supermembrana se convierte en el origen en teoŕıa M de todas las teoŕıas de super-

gravedades del tipo II en nueve dimensiones. Como se ha conjeturado en [14] se puede

afirmar que se verifica el diagrama 8.1: Esto es, se conjetura que la formulación de
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M2 Compactificada(n = 0) en X9 × T
2 M2 con cargas centrales (n 6= 0) en X9 × T

2

Supergravedad Maximal TipoII 9D Supergravedades Calibradas TipoII 9D

✲
’Esculpido’

❄

Baja Enerǵıa

❄

Baja Enerǵıa

✲
Noether

Figura 8.1: Relaciones entre la supermembrana con cargas centrales y la supergravedades tipo II.

la supermembrana en términos de secciones del fibrado toroidal simpléctico con una

monodromı́a, es el modo natural de entender el origen en teoŕıa M de las supergrave-

dades calibradas. La descripción global es una realización del mecanismo de esculpido

encontrado en [14] y que está asociado a las clases inequivalentes de fibrados toroidales

simplécticos con monodromı́as en SL(2,Z).

Este estudio demuestra que considerar solamente la supermembrana compactifi-

cada sin cargas centrales es incompleto y es totalmente necesario incluir como parte

fundamental de la teoŕıa M el sector de la supermembrana con cargas centrales aún

a nivel clásico.

Una vez vista la conexión con las supergravedad calibradas en 9D, una v́ıa posi-

ble de extender este estudio es ver si podemos utilizar la clasificación en términos de

fibrados de las supermembranas con cargas centrales para obtener las posibles super-

gravedades calibradas en dimensiones de mayor interés como son 5D y 4D. Aśımismo

el estudio y clasificación de las clases de coinvariantes nos puede servir para prede-

cir, en principio soluciones nuevas de una teoŕıa de supergravedad calibrada con una

monodromı́a dada.

Otra posible v́ıa a explorar es el origen de la supergravedad de Romans, hasta

ahora desconocido a nivel de teoŕıa M. La idea seŕıa explorar esta deformación en

términos de esta descripción global de la supermembrana con cargas centrales. Una
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dificultad es que la condición de cargas centrales está definida para dimensión no

compacta 9D, y en 10D habŕıa que encontrar el equivalente a la condición de carga

central sobre un ćırculo. El que ésta sea una deformación masiva y no calibrada desde

este punto de vista es normal porque no hay campos de calibre que aparezcan v́ıa

compactificación sobre un ćırculo. En la fenomenoloǵıa de cuerdas tipo II, el papel

de las M2-branas enrolladas sobre 2-ciclos homológicos con torsión han sido usadas

recientemente como una realización de la M-teoŕıa de las llamadas simetrias de calibre

discreta ZN . Estas simetŕıas pueden tener un potencial número de cualidades desde el

punto de vista fenomenológico. Por ejemplo, que sean simetŕıas discretas que pueden

ayudar a realizar la estabilidad del protón o ayudar a eliminar algunos operadores

peligrosos. Se ha conjeturado que estas M2-branas a bajas enerǵıas podŕıan producir

part́ıculas Aharonov-Bohm [150]. En nuestras construcciones muchos de los fibrados

M2-branas naturalmente son enrolladas sobre 2-ciclos homológicos con torsión. Seŕıa

interesante ver si en compactificaciones a 4D, podŕıa ser una posible conexión con

nuestra construcción.

Es de particular interés el que se haya encontrado que la formulación global de

la supermembrana con cargas centrales tiene como simetŕıas las transformaciones de

dualidad S y T, algo que está predicho para teoŕıa M y hasta ahora buscado en el

contexto de las acciones efectivas v́ıa la teoŕıa de campo doble. Esto representa una

realización de esta propuesta directamente en teoŕıa M, a partir de una teoŕıa cons-

truida con un objeto cuántico bien definido: la supermembrana con cargas centrales.
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ApéndiceA

Notación y Convenciones

A.1. Notación

Amenos que se indique otra cosa, los ı́ndices de los campos en esta tesis significarán

lo siguiente: Los ı́ndices expĺıcitos que aparecen en la acción son ı́ndices bosónicos

del espacio target. Aśı que en nuestra convención se escribirán los ı́ndices bosónicos

del espacio-tiempo como las letras del alfabeto latino a, b, c, ... = 0, ..., 10, mientras

que los fermiónicos serán los del alfabeto griego α, β, χ, ... = 1, ..., 32. Cuando los

ı́ndices tengan gorrito, (â, α̂) entonces estos serán del espacio-tangente, bosónicos y

fermiónicos, respectivamente.

A.2. Superespacio

En esta sección se describe el formalismo del superespacio [158] en el contexto de

la supergravedad. Las coordenadas del superespacio son designadas por:

ZM = (Xm, θµ) (A.1)
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donde Xm son las coordenadas bosónicas y θµ, las fermiónicas. La geometŕıa del su-

perespacio queda establecida por el supervielbein, EÂ
M , y el campo de la superconexión

de esṕın, ΩÂ
M Ĉ . El supervielbein verifica

EM
Â
EB̂

M = δB̂
Â
. (A.2)

En el lenguaje de las formas, se tiene, respectivamente,

EÂ = dzMEÂ
M , (A.3)

y

ΩÂ
Ĉ
= dzMΩÂ

MĈ
. (A.4)

Esta última satisface la condición de Lorentz:

Ωβ̂
α̂ =

1

4
Ωâb̂(Γâb̂)

β̂
α̂, (A.5)

y Ωb̂
α̂ = Ωβ̂

â = 0.

A partir de EÂ
M y ΩÂ

M Ĉ , se define la supertorsión (en componentes) T Ĉ
ÂB̂

, esto es:

T Ĉ
ÂB̂

= (−1)M(B̂+p)EM
Â
Ep

B̂
[D̃ME

Ĉ
p − (−1)MpD̃pE

Ĉ
M ], (A.6)

o

T Â
MN = ∂ME

Â
N + ∂NE

Â
M + (−1)m(b+n)EB̂

NΩ
Â
MB̂

+ (−1)m(b+n)EĈ
MΩÂ

NĈ
, (A.7)

Se puede definir también, la supercurvatura, R û v̂
ÂB̂

, de la manera siguiente:

R û v̂
ÂB̂

= (−1)L(B̂+p)EL
Â
Ep

B̂
{∂LΩû v̂

p − (−1)Lp∂pΩ
û v̂
L + [Ωû t̂

L Ω t̂′ v̂
p − (−1)LpΩû t̂

p Ω t̂′ v̂
L ]ηt̂ t̂′}.

(A.8)

Además de la estructura del grupo del espacio-tangente (el grupo de Lorentz) se puede

extender y definirse, además de R û v̂
ÂB̂

, las otras componentes de R ĈD̂
ÂB̂

,

RÂB̂
χ̂
δ̂ =

1

4
R û v̂

ÂB̂
(Γû v̂)

χ̂

δ̂
,

R χ̂ v̂

ÂB̂
= R û δ̂

ÂB̂
= 0. (A.9)
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En el lenguaje de las formas, las super identidades de Bianchi, son:

DT Â = EĈRÂ
Ĉ
, (A.10)

DRÂ
Ĉ
= 0. (A.11)

En componentes, estas identidades se escriben como:

BD̂
ÂB̂Ĉ

≡ 2D̃[ÂT
D̂
B̂Ĉ} + 4T Ĉ′

[ÂB̂
T D̂
Ĉ′Ĉ} +RD̂

[ÂB̂,Ĉ} = 0, (A.12)

D̃[ÂRB̂Ĉ} + 2T D̂
[ÂB̂

RD̂Ĉ} = 0, (A.13)

donde las derivadas covariantes, están definidas por:

D̃LE
û
p = ∂LE

û
p + Ωû

Lv̂E
v̂
p ,

D̃LE
α̂
p = ∂LE

α̂
p +

1

4
ΩLâb̂(Γ

âb̂)α̂
β̂
Eβ̂

p ,

D̃Â = EL
Â
D̃L, (A.14)

[D̃Â, D̃B̂} = −2T Ĉ
ÂB̂
D̃Ĉ +RÂB̂,

[X, Y } = XY − (−)XY Y X, (A.15)

[[D̃Â, D̃B̂}, D̃Ĉ} = 0. (A.16)

En la representación en el formalismo del superespacio, la teoŕıa de supergrave-

dad D = 11 tiene una super 3-forma de calibre, CMNL que define a una 4-forma

denominada intensidad de campo FMNLP , verificando:

dC = F, dF = 0. (A.17)

En componentes, se tiene:

FMNLP = 4∂[MCNLP}. (A.18)

La 4-forma, F , se puede escribir en el espacio tangente usando los supervielbein, esto

es,

FÂB̂ĈD̂ = (−)M(N+B̂+L+Ĉ+P+D̂)+N(L+Ĉ+P+D̂)+L(P+D̂)EM
Â
, EN

B̂
EL

Ĉ
EP

D̂
FMNLP . (A.19)
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ApéndiceB

Supergravedad 11D

Por completitud, en este apéndice vamos a escribir la acción y simetŕıas de la super-

gravedad 11D [24, 25]. Seguimos la notación para los ı́ndices definidas en (A.1).

La acción de la supergravedad 11D es:

SD=11
SG =

∫
d11x{−1

2
eR(ω)− 2eΨ̄mΓ

mnlDn(
ω + ω̂

2
)Ψl −

1

96
eFmnrsF

mnrs+

− 1

2(12)4
εm1m2....m11Fm1m2m3m4

Fm5m6m7m8
Cm9m10m11

+

− 1

96
e(Ψ̄nΓ

m1m2m3m4nlΨl + 12Ψ̄m1Γm2m3Ψ̄m4)(Fm1m2m3m4
+ F̂m1m2m3m4

)}

(B.1)

En esta acción se tienen tres campos fundamentales: Un tensor de segundo orden

simétrico, 11-bein, gravitón, eâm(x); un vector-espinor de Majorana, gravitino, Ψα̂m(x),

y un potencial de calibre de tres ı́ndices completamente antisimétricos Cmnl(x).

Identificamos los objetos que aparecen en la acción:

e = det eâm, diag(ηâb̂) = (+,−,−, ...,−), k =
√
8πG, (B.2)

donde k es la constante gravitacional, y ηâb̂ es la métrica Minkowski del espacio-

tangente.
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Las matrices Γ, (Γâ)α̂
β̂
, obedecen

{Γâ,Γb̂} = 2ηâb̂. (B.3)

Luego, Γâ1...ân, está definido por:

Γâ1...ân ≡ Γ[â1 ....Γân], (B.4)

donde los corchetes [. . . ] indican la suma antisimetrizada de los ı́ndices sobre todas

las permutaciones. Los ı́ndices fermiónicos de las matrices (Γâ)α̂
β̂
, son bajados por Γ0:

(Γâ)α̂γ̂ = (Γ0)α̂β̂(Γ
â)β̂γ̂ . (B.5)

La acción (B.1) tiene k = 1, con lo cual quedan definidas las siguientes cantidades

de la manera siguiente:

(1) El escalar de curvatura:

R = en
b̂
emâR

â b̂
m n . (B.6)

(2) El tensor de curvatura:

R â
mn b̂ = 2∂[mω̂

â
n] b̂

− [ω̂m, ω̂n]
â
b̂
. (B.7)

(3) El tensor de torsión:

T â
m n =

i

2
[Ψ̄rΓ

â r s
m n Ψs − 2Ψ̄mΓ

âΨn]. (B.8)

(4) La conexión de esṕın supercovariante:

ω̂mr̂ŝ = ωmr̂ŝ(e) +
1

2
i(Ψ̄mΓŝΨr̂ − Ψ̄mΓr̂Ψŝ + Ψ̄ŝΓmΨr̂), (B.9)

con

ω â
m b̂

= −en â∂[men]b̂ + el âen
b̂
e ĉ
m ∂[len]ĉ + en

b̂
∂[me

â
n] +

+(Ψ̄mΓb̂Ψ
â + Ψ̄b̂ΓmΨ

â − Ψ̄mΓ
âΨb̂)−

1

2
Ψ̄nΓ

a n p
m b Ψp. (B.10)
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(5) La derivada covariante:

Dn(ω)Ψm = ∂nΨm +
1

4
ωnâb̂Γ

âb̂Ψm. (B.11)

(6) El campo supercovariante:

F̂rstl = Frstl − 3Ψ[rΓstΨl], (B.12)

con la intensidad del campo F :

Frstl = 4∂[rCstl]. (B.13)

La acción (B.1) es invariante bajo las siguientes transformaciones:

(1) Transformaciones supersimétricas:

δsse
â
m = 2ε̄ΓâΨm,

δssΨm = Dm(ω̂)ε+ T rstu
m εF̂rstu,

δssAklm = −6ε̄Γ[klΨm], (B.14)

donde

T rstu
m ≡ 1

288

(
Γrstu
m − 8δ[rmΓ

stu]
)
. (B.15)

(2) Transformaciones de coordenadas generales:

δge
â
m = ξn∂ne

â
m + ∂mξ

neân.

δgΨ
α̂
m = ξn∂nΨ

α̂
m + ∂mξ

nΨα̂
n.

δgAmnl = ξp∂pAmnl + 3∂[mξ
kA|k|nl].

δgω
â
mb̂ = ξn∂nω

â
mb̂ + ∂mξ

nωâ
nb̂. (B.16)

(3) Transformaciones de Calibre:

δcCmnl = 3∂[mξnl]. (B.17)
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(4) Transformaciones Locales de Lorentz:

δle
â
m = λâ

b̂
eâm.

δlΨ
α̂
m =

[
1

4
λâb̂(Γ

âb̂)α̂
β̂

]
Ψβ̂

m.

δlω
â
mb̂ = ∂mλ

â
b̂
+ λâĉω

ĉ
mb̂ − ωâ

mĉλ
ĉ
b̂
. (B.18)

El álgebra completa de estas transformaciones son:

[δ1, δ2] = δg(ξ3) + δss(ε3) + δl(λ3) + δc(ξ3mn), (B.19)

δ ≡ δg(ξ) + δss(ε) + δl(λ) + δc(ξmn), (B.20)

donde,

ξm3 = ξn2 ∂nξ
m
1 + ε̄2Γ̂

mε1 − (1 ↔ 2),

ε3 = −ε̄2Γ̂nε1Ψn − ξn1 ∂nε2 +
1

4
λâb̂Γ

âb̂ε1 − (1 ↔ 2),

ξ3mn = −ε̄2Γ̂kε1Akmn − ε̄2Γmnε1 − ξk1∂kξ2mn − 2ξk1∂[mξ2n]k − (1 ↔ 2)

λâ3 b̂ = −ε̄2Γ̂nε1ωn − ξn1 ∂nλ
â
2 b̂+λâ2 ĉλ

ĉ
1b̂+

1

144
ε̂2

[
Γâ
b̂
rstuF̂rstu + 24ΓrsF̂

â
b̂
rs
]
ε1− (1 ↔ 2).

(B.21)

Las ecuaciones de movimiento a partir de δL = 0 [24] son:

Γûv̂ŵD̂v̂Ψŵ = 0,

D̂t̂F̂
t̂ûl̂ẑ +

1

(24)2
εm̂n̂p̂q̂v̂ŵx̂ŷF̂m̂n̂p̂q̂F̂v̂ŵx̂ŷ = 0. (B.22)

donde la cantidad D̂ indica superderivada covariante.

Las identidades de Bianchi para las tres intensidades de campo supercovariantes
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son:

R̂n̂
t̂ ,ŷn̂ −

1

2
ηt̂ŷR̂

m̂n̂
m̂n̂, =

1

24
[ηt̂ŷ(F̂m̂n̂p̂q̂)

2 − 8F̂m̂n̂p̂t̂F̂
m̂n̂p̂

ŷ],

D̂[p̂D̂m̂Ψn̂] + T v̂ŵx̂ŷ
[n̂ D̂p̂Ψm̂]F̂v̂ŵx̂ŷ = 0,

R̂[m̂n̂,p̂]q̂ = 0,

D̂[ŷF̂m̂n̂p̂q̂] = 0. (B.23)
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ApéndiceC

Cálculo de Superv́ınculos Usando

Simetŕıa Kappa

En este apéndice vamos a reportar los resultados preliminares obtenidos cuando se

aplica el método basado en la simetŕıa kappa para determinar la supergravedad ca-

librada asociada a la supermembrana con cargas centrales. Este método se basa en

el conocimiento que se tiene que la supergravedad consistente acoplada a esta super-

membrana D = 11 es la única supergravedad D = 11. Esto se determina cuando

al exigir que la acción (1.29) sea invariante kappa, se consiguen restricciones sobre

la super-3-forma BLMN(x, θ) y la supertorsión T Â
ĈB̂

(x, θ). Este procedimiento es rea-

lizado por [41] para el caso general. En nuestro caso tenemos una acción que tiene

una expresión expĺıcita en términos de las supercoordenadas del superespacio. Por

esta razón una posibilidad a seguir es verificar a cada orden en θ si realmente hay

invariancia bajo la simetŕıa kappa y cuáles son los v́ınculos sobre la geometŕıa del

superespacio. En el caso de la supermembrana D = 11 o enrollada sobre un T 2 el

resultado debeŕıa ser una extensión del encontrado por [41]. Sin embargo, a nuestra

teoŕıa, la extensión no es directa.
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C.1. Supermembrana y Supergravedad D = 11. Su-

perespacio Plano a Primer Orden en (θ, ∂iθ)

En esta sección se explica el método a aplicar usando el ejemplo de la supermem-

brana D = 11 en el superespacio plano a primer orden en θ para verificar el resultado

ya conocido para el caso espacio-tiempo de Minkowski.

Para el superespacio plano se tienen las expresiones (1.31) y (1.32) para EÂ
M y

CMNP respectivamente. Si consideramos la aproximación O(θ2, ∂iθ
2, ), estas expresio-

nes quedan:

E â
m(x, θ) = δâm, Eα̂

m = 0, E â
α = −(θ̄ Γâ)α, Eα̂

α = δα̂α ,

Cmnp = 0 + (θ2), Cmnα = (θ̄ Γmn)α + (θ2), Cmαβ = 0 + (θ2),

Cαβγ = 0 + (θ2). (C.1)

Con estas expresiones la ecuación (1.33) resulta:

Sθ =

∫
d3ξ{−√−g − 1

2
εijkθ̄Γmn∂kθ ∂iX

m∂jX
n}+O(θ2, (∂i θ)

2). (C.2)

A continuación se hace δκSθ = 0 considerando la transformación kappa (1.23) en su

versión en componentes a primer orden en θ, esto es:

δXm = (1− Γ)κ̄Γmθ +O(θ2) = κ̄−Γ
mθ +O(θ2),

δθ = (1− Γ)κ+ θ̄Γm(1− Γ)κ+O(θ2) = κ− +O(θ2), (C.3)

donde se toma también la aproximación O(θ2, (∂iθ)
2) y adicionalmente O(∂iκ̄,Ψ = 0).

Con κ el parámetro fermiónico de la transformación kappa.
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Entonces, se hace δκSθ = 0 obteniéndose:

δκSθ =

∫
d3ξ{−(κ̄− Γ)[(+1)εijk∂iX

ĉ∂jX
b̂Γĉb̂]∂kθ+

+
1

2
(κ̄− Γ)εijk∂iX

m∂jX
nΓmn∂kθ +O(θ2, (∂i θ)

2, ∂iκ̄)} = 0, (C.4)

Expresión que puede probarse se verifica al usar gijgij = δii = +1, κ̄−Γ = −κ̄−.

La segunda parte del método consiste en hacer:

δκS =

∫
d3ξ[−δ(√−g) + 1

6
δ( εijkEÂ

i E
B̂
j E

Ĉ
k BĈB̂Â)]

∣∣∣
O(θ2,(∂iθ)

2,∂iκ̄,Ψ=0)
, (C.5)

para luego comparar con (C.4). Luego de hacer expĺıcitamente (C.5) e imponer la

aproximación O(θ2, (∂iθ)
2, ∂iκ̄,Ψ = 0), en la que estamos trabajando, se obtiene:

δκS =

∫
d3ξ
[√−ggij{∂iX â∂jX

ĉ + ∂iX
âθ̄Γĉ∂jθ + ∂jX

ĉθ̄Γâ∂iθ}δκEβ̂T b̂
ĉβ̂
ηâb̂+

+
√−ggijδκEβ̂∂iX

â∂jθ
λ̂T b̂

λ̂ β̂
ηâb̂+

+
1

6
3{−εijk[∂iX â∂jX

b̂∂kX
ĉ]δκE

β̂T λ̂
ĉβ̂
(θ̄ Γb̂â)λ̂+

− εijkδκE
β̂[∂iX

â∂jX
b̂∂kθ

ν̂ ]T λ̂
ν̂ β̂
(θ̄ Γb̂â)λ̂}+

− 3εijk[∂iθ
α̂∂jX

b̂∂kX
d̂]δκE

β̂T ĉ
d̂β̂
(θ̄ Γĉb̂)α̂+

+ εijk∂iθ
α̂∂jX

b̂∂kX
ĉδκ{(θ̄ Γĉb̂)α̂}

]
= 0, (C.6)

donde δκE
β̂ = κβ̂−. Entonces, si se comparan (C.6) y (C.4) se obtiene:

T b̂
ĉβ̂

= 0, T λ̂
ĉβ̂

= 0, T λ̂
ν̂ β̂

= 0. (C.7)

El resultado (C.7) conduce a:

δκS =

∫
d3ξ[+

√−ggijδκEβ̂∂iX
â∂jθ

λ̂T b̂
λ̂ β̂
ηâb̂+

+εijk∂iθ
α̂∂jX

b̂∂kX
ĉδκ{(θ̄ Γĉb̂)α̂}] = 0, (C.8)
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donde ya sabemos que

Bmnα = (θ̄ Γmn)α +O(θ2), δκBmnα = δκ(θ̄ Γmn)α +O(θ2). (C.9)

Al comparar (C.8) con (C.4), se tiene:

T b̂
λ̂ β̂

∝ (Γb̂)λ̂ β̂, δκBmnα ∝ κ̄−Γmn. (C.10)

Estos resultados (C.7) y (C.10) es el que podŕıa esperarse de acuerdo al resultado

general en [41].

C.2. Supermembrana en M9 × T 2 a Primer Orden

en (θ, ∂iθ)

A continuación consideraremos un enrollamiento de las coordenadas del target en

un T 2, e intentaremos hacer el mismo procedimiento descrito en la sección C.1 de este

apéndice. Se supone que el espacio-tiempo se podrá considerar comoM9×T 2. Para ello

partiendo de (C.2) se hace una descomposición en las coordenadas Xm = (Xm′

, Xr)

donde m′ = 0, · · · , 8 y r = 9, 10 corresponden a las no-compactas y compactas

respectivamente. Entonces, la acción se puede escribir como:

S =

∫
d3ξ{−√−g + Sno−compacta + Scompacta + Smixta}, (C.11)

con

Sno−compacta ≡ −1

2
εijkθ̄Γm′n′∂kθ ∂iX

m′

∂jX
n′

,

Scompacta ≡ −1

2
εijkθ̄Γsr∂kθ ∂iX

s∂jX
r,

Smixta ≡ −1

2
2εijkθ̄Γm′s∂kθ ∂iX

m′

∂jX
s. (C.12)
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A continuación se hace δκS, esto es, δκSno−compacta, δκScompacta, δκSmixta y δ
√−g, y

seguimos el mismo procedimiento de antes. Se obtiene

δκSM9×T 2 =

∫
d3ξ{−2

√−ggij[∂iX â′κ̄− Γâ′∂jθ + ∂iX
r̂κ̄− Γr̂∂jθ]+

− 1

2
εijkκ̄−Γm′n′∂kθ ∂iX

m′

∂jX
n′ − 1

2
εijkκ̄−Γrs∂kθ ∂iX

r∂jX
s+

− 1

2
2εijkκ̄−Γm′s∂kθ ∂iX

m′

∂jX
s +O(θ2, (∂kθ)

2, ∂iκ)}, (C.13)

donde hemos supuesto las transformaciones bajo simetŕıa kappa en la aproximación

considerada para nuestros cálculos:

δXm′

= (1− Γ)κ̄Γm′

θ +O(θ2) = κ̄−Γ
m′

θ +O(θ2),

δXr = (1− Γ)κ̄Γrθ +O(θ2) = κ̄−Γ
rθ +O(θ2),

δθ = (1− Γ)κ+ θ̄Γm(1− Γ)κ+O(θ2) = κ− +O(θ2). (C.14)

Se puede verificar que efectivamente (C.13) se anula. Este cálculo no lo mostrare-

mos aqúı pero era un resultado esperado. A continuación hacemos δκ de la acción

en su forma supercovariante, pero esta vez hay que introducir el hecho que hay dos

coordenadas compactificadas. Se hace la descomposición usando la siguiente nota-

ción: las coordenadas primadas corresponden a las coordenadas no compactificadas,

y las coordenadas cos asteriscos las coordenadas compactificadas (todos ı́ndices del

superespacio):

δκSM9×T 2 = −
∫
d3ξδ(

√−g)+

−
∫
d3ξ

1

6
δκ[ε

ijkEÂ′

i E
B̂′

j EĈ′

k BĈ′B̂′Â′ + 3εijkEÂ′

i E
B̂′

j EĈ∗
k BĈ∗B̂′Â′+

+ 3εijkEÂ′

i E
B̂∗
j EĈ∗

k BĈ∗B̂∗Â′ + εijkEÂ∗
i EB̂∗

j EĈ∗
k BĈ∗B̂∗Â∗]. (C.15)

Esta expresión puede re-escribirse:

δκSM9×T 2 =

∫
d3ξ{δκS√−g + δκSB

ĉ′b̂′α̂′
+ δκSB

Ĉ∗B̂′Â′
+

δκSB
Ĉ∗B̂∗Â′

+ δκSB
Ĉ∗B̂∗Â∗

}, (C.16)
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donde:

δκS√−g ≡
1

2

√−ggij2E â
i δκE

B̂EĈ
j T

b̂
ĈB̂
ηâb̂. (C.17)

Se ha supuesto que la parte no-compacta cumple las condiciones de superespacio

plano. Luego,

δSĈ′B̂′Â′ = −1

6
3εijkE â′

i E
b̂′

j [−2δE ρ̂ED̂′

k T λ̂
D̂′ρ̂

− 2δE ρ̂ED̂∗
k T λ̂

D̂∗ρ̂]Bλ̂b̂′â′+

− εjikE b̂′

j E
α̂
i [−2δE ρ̂ED̂′

k T ĉ′

D̂′ρ̂
− 2δE ρ̂ED̂∗

k T ĉ′

D̂∗ρ̂]Bĉ′α̂b̂′+

− 1

2
εijkEα̂

i E
b̂′

j E
ĉ′

k δBĉ′b̂′α̂, (C.18)

δSB
Ĉ∗B̂′Â′

≡ −1

6
9εijkEÂ′

i E
B̂′

j [∂k(δE
Ĉ∗)− δEB̂′

ED̂′

k T Ĉ∗
D̂′B̂′ − δEB̂∗ED̂′

k T Ĉ∗
D̂′B̂∗]BĈ∗B̂′Â′+

− 1

6
9εijkEÂ′

i E
B̂′

j [−δEB̂′

ED̂∗
k T Ĉ∗

D̂∗B̂′ − δEB̂∗ED̂∗
k T Ĉ∗

D̂∗B̂∗]BĈ∗B̂′Â′+

− 1

6
3εijkEÂ′

i E
B̂′

j EĈ∗
k δBĈ∗B̂′Â′, (C.19)

δSB
Ĉ∗B̂∗Â′

≡ −1

6
9εijkEÂ′

i E
B̂∗
j [∂k(δE

Ĉ∗)− δEB̂′

ED̂′

k T Ĉ∗
D̂′B̂′ − δEB̂∗ED̂′

k T Ĉ∗
D̂′B̂∗]BĈ∗B̂∗Â′+

− 1

6
9εijkEÂ′

i E
B̂∗
j [−δEB̂′

ED̂∗
k T Ĉ∗

D̂∗B̂′ − δEB̂∗ED̂∗
k T Ĉ∗

D̂∗B̂∗]BĈ∗B̂∗Â′+

− 1

6
3εijkEÂ′

i E
B̂∗
j EĈ∗

k δBĈ∗B̂∗Â′), (C.20)

δSB
Ĉ∗B̂∗Â∗

≡ −1

6
(3εijkEÂ∗

i EB̂∗
j [∂k(δE

Ĉ∗)− δEB̂′

ED̂′

k T Ĉ∗
D̂′B̂′ − δEB̂∗ED̂′

k T Ĉ∗
D̂′B̂∗]BĈ∗B̂∗Â∗+

− 1

6
3εijkEÂ∗

i EB̂∗
j [−δEB̂′

ED̂∗
k T Ĉ∗

D̂∗B̂′ − δEB̂∗ED̂∗
k T Ĉ∗

D̂∗B̂∗]BĈ∗B̂∗Â∗+

− 1

6
εijkEÂ∗

i EB̂∗
j EĈ∗

k δBĈ∗B̂∗Â∗. (C.21)

Cuando se compara (C.13) con las expresiones (C.17), (C.18), (C.19), (C.20) y
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(C.21), se obtiene:

T ĉ′

ŝρ̂ = 0, T λ̂
ŝρ̂ = 0, T λ̂

d̂′ρ̂
= 0, T α̂

δ̂ ρ̂
= 0, T ĉ′

d̂′ρ̂
= 0,

T r̂
d̂′β̂

= 0, T r̂
d̂∗β̂ = 0, T r̂

d̂∗β̂ = 0, T r̂
q̂β̂

= 0, T b̂′

ρ̂β̂
∝ (Γb̂′)ρ̂ β̂,

T ŝ
ρ̂ β̂

∝ (Γŝ)ρ̂β̂. (C.22)

δBr̂q̂α̂ = 0, δBr̂q̂â′ = 0, Bŝb̂′â′ = 0, δBr̂b̂′â′ = 0,

δBχ̂b̂′â′ = 0, Br̂ŝq̂ = 0, Br̂q̂â′ = 0, δBr̂ŝq̂ = 0,

T r̂
δ̂ β̂

= 0 Br̂ŝq̂ = 0; δBr̂ŝν = (κ̄−Γrs)ν ,

δBr̂b̂′α̂ ∝ κ̄−Γm′s. (C.23)

C.3. Supermembrana con Condición de Carga Cen-

tral a Primer Orden en (θ, ∂iθ)

A continuación se aplica el mismo procedimiento, pero ahora se impone la condi-

ción de carga central,

Xs(ξi) = X̂s(σ1,2) + Ãr(τ, σ1,2), (C.24)

imponiendo que las transformaciones kappa quedan:

δκX̂
r = 0, δκÃ

r = κ̄Γrθ, (C.25)

obteniéndose los resultados parciales en la aproximación O(θ2, (∂iθ)
2, ∂iκ̄,Ψ = 0),:

T ĉ′

ρ̂β̂
= (Γĉ′)ρ̂ β̂, T ŝ

ρ̂β̂
= (Γŝ)ρ̂ β̂, T ŝ

q̂β̂
= 0, T b̂′

ĉ′β̂
= 0, T b̂′

q̂β̂
= 0,

T ŝ
ĉ′β̂

= 0, T ŝ
δ̂β̂

6= 0, T λ̂
δ̂β̂

= 0, T λ̂
r̂β̂

= 0, T λ̂
d̂′β̂

= 0,

T ĉ′

ŝρ̂ = 0, T λ̂
ŝρ̂ = 0, T λ̂

d̂′ρ̂
= 0, T α̂

δ̂ ρ̂
= 0, T ĉ′

d̂′ρ̂
= 0, (C.26)
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Br̂ŝq̂ = 0, δBr̂q̂α̂ ∝ δθ̄Γr̂q̂, Br̂q̂â′ = 0, ,

δBr̂â′β̂ ∝ δθ̄Γr̂â′ , δBr̂q̂α̂ = 0, δBŝb̂′â′ = 0,

δBχ̂b̂′â′ = 0. (C.27)
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ApéndiceD

Hamiltoniano Supermembrana con

Cargas Centrales 4D

El hamiltoniano bosónico de Belloŕın-Restuccia en [38] describe una supermembrana

en un M7 × T 4:

H =
1

2

∫
d2σ

√
w

[
1

w

(
P 2
m + P r2

)
− 2

w
Pmε

ab∂aX
m∂bΛ

]
+

+
1

2

∫
d2σ

√
w

[
− 2

w
Prε

ab∂aA
r∂bΛ̃

]
+

+
1

2

∫
d2σ

√
w

[
1

2
F̃ 2
rs + grsδmnD̃rX

mD̃sX
n

]
+

+
1

2

∫
d2σ

√
w

[
1

2
{Xm, Xn}2 + n2

]
, (D.1)

con el v́ınculo, ∫

σ

F̃rsdX
r ∧ dXs = 0, (D.2)

y donde

P r =
δL
δȦr

, Pm =
δL
δẊm

, Ȧr =
δH
δP r

, Ẋm =
δH
δPm

, H =

∫

σ

d2σH,
(D.3)

F̃rs = DrAs −DsAr + {Ar, As} , D̃r = Dr + {Ar, } , Dr =
ǫab√
w
∂aX̂r∂b, (D.4)
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con el corchete:

{ϕ, χ} = ωrsDrϕDsχ. (D.5)

En lo que sigue describiremos a la supermembrana en unM5×T 6 con el hamiltoniano

de Belloŕın-Restuccia con los ı́ndices m = 1, 2, 3,+,−. y r = 4, 5, 6, 7, 8, 9.

D.1. Acción S en M5 × T 6

Calculando expĺıcitamente (D.3), se tiene:

Ẋm =
Pm

√
w

− 1√
w
εab∂aX

m∂bΛ, Ȧr =
P r

√
w

− 1√
w
εab∂aA

r∂bΛ̃. (D.6)

Sustituyendo (D.6) y la expresión para H de (D.1) en:

S =

∫

V

d3σ
[
PmẊ

m + PrȦ
r −H

]
=

∫

V

d3σL. (D.7)

Para obtener:

SM5×T 6 =
1

2

∫
d2σ

√
w

[
1

w

(
P 2
m + P r2

)]
+

1

2

∫
d2σ

√
w

[
−1

2
F̃ 2
rs − grsδmnD̃rX

mD̃sX
n

]
+

+
1

2

∫
d2σ

√
w

[
−1

2
{Xm, Xn}2 − n2

]
. (D.8)

D.2. Acción SM5×T 6 compactificada en S1

Se considera la siguiente descomposición en los ı́ndices m:

Xm =
(
Xm−1, φ

)
=
(
Xm′

, φ
)
. (D.9)

A continuación se reescribe la acción (D.8) en términos de estas nuevas variables.

Para ello, PmP
m, con:

Pm =
√
wẊm + εab∂aX

m∂bΛ, (D.10)
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se reescribe:

PmP
m = Pm′Pm′

+ PφP
φ = Pm′Pm′

+
[√
w∂0φ+

√
w {φ,Λ}

] [√
w∂0φ+

√
w {φ,Λ}

]
,

(D.11)

donde se ha definido

{φ,Λ} ≡ εab√
w
∂aφ∂bΛ, (D.12)

{Xm, Xn}2 =
{
Xm′

, Xn′
}2

+
{
Xm′

, φ
}2

+
{
φ,Xn′

}2

. (D.13)

La acción con la descomposición de los ı́ndices propuesta S ′ = SM5×T 6×S1 , se

escribe:

S ′ =

∫

σ

d3σ
1

2

√
w

{
1

w

(
Pm′2 + P r2

)
− 1

2
F̃ 2
rs − grsδm′n′D̃rX

m′

D̃sX
n′

}
+

+

∫

σ

d3σ
1

2

√
w

{
−1

2

{
Xm′

, Xn′
}2

− n2 + [∂0φ+ {φ,Λ}]2 −
{
φ,Xn′

}2
}
+

+

∫

σ

d3σ
1

2

√
w
{
−grsD̃rφD̃sφ− grsδm′φD̃rX

m′

D̃sφ− grsδφn′D̃rφD̃sX
n′
}
. (D.14)

Pero,

grsδm′φD̃rX
m′

D̃sφ+ grsδφn′D̃rφD̃sX
n′

= gsrδn′φD̃sX
n′

D̃rφ+ grsδφn′D̃rφD̃sX
n′

=

= 2grsδφn′D̃rφD̃sX
n′

. (D.15)

Finalmente, la acción S ′ se puede escribir como S ′ = SM5×T 6×S1 = S0+S1, donde:

S0 =

∫

Σ

d3σ
1

2

√
w[

1

w
(Pm′2 + P r2)− 1

2
F̃ 2
rs − grsδm′n′D̃rX

m′

D̃sX
n′ − 1

2

{
Xm′

, Xn′
}2

− n2],

(D.16)

S1 =

∫

Σ

d3σ
1

2

√
w[(∂0φ+ {φ,Λ})2 −

{
φ,Xn′

}2

− grsD̃rφD̃sφ− 2grsδm′φD̃rX
m′

D̃sφ].

(D.17)
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D.3. Hamiltoniano Dual HM4×T 6×S1

En esta sección se construye el hamiltoniano dual en 4D. Cada paso relevante en

dicha construcción se trabajará como una subsección.

D.3.1. Cálculo de la Acción Dual S̃

Se define S̃ de la siguiente manera:

S̃ = S +

∫
d3σεijkAk∂jLi, (D.18)

donde

Li ≡ ∂iφ → L0 ≡ ∂0φ, La ≡ ∂aφ. (D.19)

Entonces,

S̃ = S −
∫
d3σεijk∂jAkLi = S − 1

2

∫
d3σεijkLiFjk. (D.20)

Se escribe la acción S expĺıcitamente en términos de L0 y Li. La parte de S que

depende de φ es (D.17). Aśı que analizamos cada término de S1:

{φ,Λ} =
εab√
w
∂aφ∂bΛ =

εab√
w
La∂bΛ,

{
φ,Xn′

}
=

εab√
w
∂aφ∂bX

n′

=
εab√
w
La∂bX

n′

,

D̃rφD̃sφ =

[
εab√
w
∂aX̂rLb +

εab√
w
∂aArLb

] [
εcd√
w
∂cX̂sLd +

εcd√
w
∂cAsLd

]
,

D̃rφD̃sX
n′

=

[
εab√
w
∂aX̂rLb +

εab√
w
∂aArLb

]
D̃sX

n′

. (D.21)
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Sustituyendo en (D.17) y haciendo la sustitución Ar ≡ X̂r + Ar, para simplificar la

notación, tenemos que S puede escribirse como:

S = S0 +

+

∫
d3σ

1

2

√
w{[L0 +

εab√
w
La∂bΛ]

2 − [
εab√
w
La∂bX

n′

]2 − grs[
εab√
w
∂aArLb][

εcd√
w
∂cAsLd]}+

+

∫
d3σ

1

2

√
w{−2grsδφn′ [

εab√
w
∂aArLb]D̃sX

n′}. (D.22)

Luego, S̃ tiene la expresión:

S̃ = S0 +

+

∫
d3σ

1

2

√
w{[L0 +

εab√
w
La∂bΛ]

2 − [
εab√
w
La∂bX

n′

]2 − grs
εab√
w

εcd√
w
∂aAr∂cAsLbLd+

−2grsδφn′

εab√
w
∂aArD̃sX

n′

Lb}+
1

2

∫
d3σ(εabL0Fab − 2εabLaF0b). (D.23)

D.3.2. Variación de S̃ con respecto a L0 y La

Se hace la variación de (D.20) como se muestra a continuación:

δS̃ = δS −
∫
d3σεijk∂jAkδLi =

=
∂S

∂L0

δL0 +
∂S

∂La

δLa +
1

2

∫
d3σ

(
εabδL0Fab − 2εabδLaF0b

)
. (D.24)

Expĺıcitamente, la variación con respecto a L0:

∫
d3σ

{√
wL0 + εabLa∂bΛ+

1

2
εabFab

}
δL0 = 0, (D.25)

implica

L0 =
1√
w

[
−εabLa∂bΛ− 1

2
εabFab

]
. (D.26)

Luego, variando (D.20) con respecto a Le,

∂S

∂Le
δLe +

1

2

∫
d3σ

(
−2εebδLeF0b

)
= 0, (D.27)



Caṕıtulo – D. Hamiltoniano Supermembrana con Cargas Centrales 4D 191

y usando la expresión para (D.22) y (D.26), se tiene:

∂S

∂Le
=

∫
d3σ

1

2

√
w

{
− 1

w
εabεedFab∂dΛ− 2

w
εabεed∂bX

n′

∂dXn′La+ (D.28)

− 2

w
grsεabεce∂aAr∂cAsLb −2grsδφn′

εae√
w
∂aArD̃sX

n′

}
, (D.29)

para obtener:

∫
d3σ

{
−1

2

1√
w
εabεedFab∂dΛ− 1√

w
εabεec∂bX

n′

∂cXn′La+

− 1√
w
grsεbaεce∂bAr∂cAsLa −grsδφn′εae∂aArD̃sX

n′ − εebF0b

}
δLe = 0. (D.30)

D.3.3. Cálculo de La

De (D.30) se obtiene:

−1

2

εabεed√
w
Fab∂dΛ− εabεec√

w

[
∂bX

n′

∂cXn′ + grs∂bAr∂cAs

]
La +

−grsδφn′εae∂aArD̃sX
n′ − εebF0b = 0. (D.31)

Se hacen las siguientes definiciones,

∂bX
n′

∂cXn′ ≡ υbc, grs∂bAr∂cAs ≡ βbc , υbc + βbc ≡ Υbc. (D.32)

Entonces, (D.31) queda:

−1

2

εabεed√
w
Fab∂dΛ− εabεec√

w
ΥbcLa − grsδφn′εae∂aArD̃sX

n′ − εebF0b = 0. (D.33)

Se despeja La, usando que εabεecΥbc = ΥΥae,

La = −√
w
Υae

Υ

(
grsδφn′εfe∂fArD̃sX

n′

+ εebF0b +
1

2

εfbεed√
w
Ffb∂dΛ

)
. (D.34)

Simplificando la expresión de (D.23) con ayuda de L0 y La, se obtiene:

S̃M4×T 6×S1 = S0 +

∫
d3σ

{
−1

8

1√
w
εabεefFefFab +

1

2
√
w
ΥΥaeLaLe

}
, (D.35)
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con S0 determinado por (D.16). Por lo tanto el lagrangiano es:

LM4×T 6×S1 ≡ 1

2

√
w[

1

w
(Pm′2 + P r2)− 1

2
F̃ 2
rs − grsδm′n′D̃rX

m′

D̃sX
n′

]+

−1

4

√
w{Xm′

, Xn′}2 − 1

2

√
wn2 − 1

8

1√
w
εabεefFefFab +

1

2
√
w
ΥΥaeLaLe+

≡ L0 + L1. (D.36)

D.3.4. Cálculo del Hamiltoniano Dual HM4×T 6×S1

Finalmente, se obtiene la expresión para el hamiltoniano dual HM4×T 6×S1 partien-

do de la expresión usual para el cálculo del hamiltoniano, esto es,

HM4×T 6×S1(P,X,A) = Pm′Ẋm′

+ PrȦ
r + PaȦ

a −LM4×T 6×S1, (D.37)

donde los momentos conjugados son:

Pm′ =
δL
δẊm′

, Pr =
δL
δȦr

, Pa =
δL
δȦa

. (D.38)

Para determinar las velocidades generalizadas se usan las ecuaciones resultantes del

cálculo de los momentos conjugados (D.38), obteniéndose:

Ẋm′ =
Pm′

√
w

− 1√
w
εab∂aX

m′

∂bΛ, Ȧr =
P r

√
w

− 1√
w
εab∂aA

r∂bΛ̃,

∂0Ah = ∂hA0 +
1√
w
ΥhcP

c − 1

2

εfb√
w
Ffb∂hΛ− grsδφn′∂hArD̃sX

n′

. (D.39)

A continuación, se sustituyen las expresiones (D.39) en (D.37), para obtener el ha-

miltoniano:

HM4×T 6×S1(P,X,A) =
Pm′

Pm′

2
√
w

+
P rPr

2
√
w

− 1

2
√
w
ΥcfP

cP f +
1√
w
ΥacP

aP c+

+
1

8

1√
w
εabεefFefFab +

√
w

4
F̃ 2
rs +

√
w

2
grsδm′n′D̃rX

m′

D̃sX
n′

+

√
w

4

{
Xm′

, Xn′
}2

+

√
w

2
n2+

+P a∂aA0 − P agrsδφn′∂aArD̃sX
n′ − 1

2

εfb√
w
P aFfb∂aΛ− Pm′√

w
εab∂aX

m′

∂bΛ− Pr√
w
εab∂aA

r∂bΛ̃.

(D.40)
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ApéndiceE

Cálculo de la Matriz Λ0 de

Transformaciones de T-dualidad

En este apéndice determinaremos Λ0. Sin pérdida de generalidad podemos suponer l1

y m1 sean enteros primos relativos. Tenemos det(W) = n. Es importante notar que
p1
q1


 son también enteros primos relativos. Siempre existe Λ0 ∈ SL(2,Z) tal que


 l1

m1


 = Λ0


p1
q1


 . (E.1)

Entonces tenemos de (5.5):


p̃1
q̃1


 =


 l1

m1


 . (E.2)

Se introduce


r2
r1


 = Λ−1


 l2

m2


 . (E.3)
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A continuación se define A =


p1 r2

q1 r1


 en consecuencia A = Λ−1


 l1 l2

m1 m2


, con

detA = n. Notemos que det


 l̃1 l̃2

m̃1 m̃2


 = A. Se tiene entonces una transformación

intercambiando los modos KK y los modos de enrollamiento. La expresión para Λ0

puede ser obtenida de la siguiente manera: Existen enteros (b2, b1, d1, c1) tal que hay

B =


p1 b2

q1 b1


, y C =


 l1 d1

m1 c1


, con:


p1
q1


 = B


1

0


 ,


 l1

m1


 = C


1

0


 , (E.4)

donde B,C ∈ SL(2,Z). Finalmente podemos determinar la matriz de transformación

Λ0 . Esto corresponde a,

Λ0 =


 l1 d1

m1 c1




p1 b2

q1 b1




−1

. (E.5)

y junto con la condición (7.6), implica que la transformación T-dualidad satisface,

(T-dualidad)2 = I y por tanto es una transformación de tipo Z2.
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ApéndiceF

Clases de Equivalencia entre

Fibrados Toroidales Simplécticos

Una manera equivalente de verlo es considerar el grupo de coinvariantes asociados a

ρ y UρU−1. De hecho, el grupo H2(Σ, Z2
ρ) es isomórfico, a través de la dualidad de

Poincaré, al grupo de coinvariantes asociadas a ρ. Dado Q ∈ H1(T
2) definido como,

Q ≡


p

q


, el grupo de coinvariantes de la monodromı́a ρ es el grupo abeliano de las

clases de equivalencia:

{Q − ΛQ̂ − Q̂}, (F.1)

para cualquier Λ ∈ ρ y cualquier Q̂ ∈ H1(T
2). Se sigue que esta clase es transformada

a la clase asociada a UQ bajo la representación UρU−1:

{Q − UΛU−1Q̃ − Q̃}, (F.2)

donde Q̃ = UQ̂, pero cualquier Q̃ ∈ H1(T
2) puede siempre ser expresada como UQ̂

para algún otro Q̂ ∈ H1(T
2), ya que U es invertible. Entonces, hay un isomorfismo

entre el grupo de coinvariantes asociados a ρ y a UρU−1, ellos definenun fibrado

toroidal simpléctico equivalente.
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[12] M. P. Garćıa del Moral, A. Restuccia, The Supermembrane with central charge

as a bundle of D2 - D0 branes, Institute of Physics Conference Series 2005, Vol 43,

151. hep-th/0410288.
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[17] M.P. Garćıa del Moral, I. Mart́ın, J.M. Peña, A. Restuccia, SL(2,Z) symme-

tries, Supermembranes and Symplectic Torus Bundles, JHEP 1109 (2011) 068. hep-

th/1105.3181.
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[94] L. Boulton, M.P Garćıa del Moral, A. Restuccia, in preparation.

[95] A. Font, S. Theisen, Introduction to string compactification, Lect. Notes Phys.

668 (2005) 101-181.

[96] M.J. Duff, B. E. W. Nilsson, C. N. Pope, Kaluza-Klein Supergravity, Phys. Rep.

130 (1986) 1.

[97] J. Scherk, J. H. Schwarz, Spontaneous Breaking of Supersymmetry Through Di-

mensional Reduction, Phys. Lett. B82 (1979) 60.

[98] B.de Wit, H.Nicolai, N=8 supergravity, Nucl. Phys. B208 (1982) 323.

[99] C. M. Hull, Noncompact gaugings of N=8 supergravity, Phys. Lett. B142 (1984)

39.

[100] B. de Wit, H. Samtleben, M. Trigiante, On Lagrangians and gaugings of maxi-

mal supergravities, Nucl. Phys. B655 (2003) 93. hep-th/0212239.



Bibliograf́ıa 206

[101] M. Weidner, Gauged supergravities in various spacetime dimensions, Fortsch.

Phys. 55 (2007) 843-945 . hep-th/0702084

[102] C.M. Hull, Massive string theories from M theory and F theory. JHEP 9811:

027, 1998. hep-th/9811021.

[103] I.V. Lavrinenko, Hong Lu, C.N. Pope,Fiber bundles and generalized dimensional

reduction. Class. Quant. Grav. 15: 2239-2256,1998. hep-th/9710243.

[104] I.V. Lavrinenko, Hong Lu, C.N. Pope, From topology to generalized dimensional

reduction. Nucl. Phys. B492:278-300,1997. hep-th/9611134.

[105] C.M. Hull Gauged D=9 Supergravities and Scherk-Schwarz Reduction, Class.

Quant. Grav. 21: 509-516, 2004. hep-th/0203146.

[106] M. Nakahara, Geometry, Topology and Physics, Second Edition, Taylor Francis;

2 edition (June 4, 2003)

[107] C. M. Hull, P. K. Townsend, Unity of superstring dualities, Nucl. Phys. B438:

109-137, 1995. hep-th/9410167.

[108] O. DeWolfe, T. Hauer, A. Iqbal , B. Zwiebach, Uncovering the symmetries

on (p,q) 7-branes: Beyond the Kodaira classification, Adv. Theor. Math. Phys. 3

(1999) 1785-1833. hep-th/9812028.

[109] J.H. Schwarz, Covariant field equations of chiral N=2 D = 10 supergravity,

Nucl. Phys. B226 (1983) 269.

[110] P. S. Howe, P. C. West, The complete N=2, d = 10 supergravity, Nucl. Phys.

B238 (1984) 181.

[111] H. Lu, C. N. Pope, p-brane Solitons in Maximal Supergravities, Nucl. Phys.

B465 (1996) 127-156. hep-th/9512012.



Bibliograf́ıa 207
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[148] M. P. Garćıa del Moral, A. Restuccia , A N=8 Action for Multiple M2-branes

with an Arbitrary Number of Colors, JHEP 1006:020, 2010. hep/th-09035202.

[149] B. de Wit, H. Nicolai, H. Samtleben, Gauged Supergravities, Tensor Hierarchies,

and M-Theory. JHEP 0802:044, 2008. hep-th/08011294.

[150] L. E. Ibanez, A. N. Schellekens, A. M. Uranga, Discrete Gauge Symmetries in

Discrete MSSM-like Orientifolds. hep-th/12055364.

[151] I. V. Lavrinenko, H. Lu, C. N. Pope, T.A. Tran, U-duality as general coordinate

transformations, and spacetime geometry, Int. J. Mod. Phys. A14 (1999) 4915-

4942. hep-th/9807006.

[152] O. Hohm, S. Ki Kwak, B. Zwiebach, Double Field Theory of Type II Strings,

JHEP 1109: 013, 2011. hep-th/1107.0008

[153] O. Hohm, S. Ki Kwak, Massive Type II in Double Field Theory. JHEP 1111:

086, 2011. hep-th/1108.4937.



Bibliograf́ıa 211

[154] M. Cvetic, H. Lu, C. Pope, K. Stelle, T duality in the Green-Schwarz formalism,

and the massless massive IIA duality map, Nucl. Phys. B573: 149-176,2000. hep-

th/9907202.

[155] A. Connes , M. R. Douglas, A. S. Schwarz, Noncommutative geometry and

matrix theory: Compactification on tori, JHEP 9802 (1998) 003. hep-th/9711162.

[156] M. Kontsevich, Deformation quantization of Poisson manifolds, I , Lett. Math.

Phys. 66:157-216, 2003. q-alg/9709040.

[157] B. V. Fedosov, J. Diff. Geom. 40 (1994) 213.

[158] P. S. Howe, Supergravity in Superspace, Nucl. Phys. B199 (1982) 309.


