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Abstract
Over the past few years, we observed a rethinking of classical artificial intelligence algorithms from a quantum computing
perspective. This trend is driven by the peculiar properties of quantum mechanics, which offer the potential to enhance
artificial intelligence capabilities, enabling it to surpass the constraints of classical computing. However, redesigning classical
algorithms into their quantum equivalents is not straightforward and poses numerous challenges. In this study, we analyze
in-depth two orthogonal designs of the quantum K -nearest neighbor classifier. In particular, we show two solutions based
on amplitude encoding and basis encoding of data, respectively. These two types of encoding impact the overall structure
of the respective algorithms, which employ different distance metrics and show different performances. By breaking down
each quantum algorithm, we clarify and compare implementation aspects ranging from data preparation to classification.
Eventually, we discuss the difficulties associated with data preparation, the theoretical advantage of quantum algorithms, and
their impact on performance with respect to the classical counterpart.

Keywords Quantum algorithms · K -nearest neighbors · Encoding · Distances · QKNN

1 Introduction

Artificial intelligence (AI) gained attentiondue to its effective
usage in many applications (Tan et al. 2005). Nonetheless,
guaranteeing high accuracy and low computational time,
qualities often critical for these applications, can be chal-
lenging. The rise of quantum computers provides peculiar
properties to perform computation, such as superposition and
entanglement. Exploiting these properties stems new algo-
rithms that rely on a completely different framework with
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respect to their classical counterpart (Nielsen et al. 2016). In
particular, quantum computing (QC) promises to solve cer-
tain problems substantially faster than classical computing.

The AI field can leverage QC properties to fit certain
requirements not easily achievable by classical computation.
Indeed, quantum artificial intelligence (QAI) summarizes
approaches that use synergies between artificial intelligence
and quantum computing (Lloyd et al. 2013). Among existing
QAI approaches, we focus on quantum algorithms process-
ing classical datasets (Schuld and Petruccione 2018). In this
setting, preparing classical data into quantum data can be a
non-trivial task. In fact, it requires a classical-quantum“inter-
face” typically realized through ad hoc data transformation
procedures.

Among the wide range of QAI algorithms, we focus our
analysis on a particular subset known as quantum K -nearest
neighbor (QKNN) algorithms, which draw inspiration from
the classical K -nearest neighbor (KNN). This supervised
learning classifier employs a given distancemetric to forecast
the grouping of a specific data point. The theoretical advan-
tage of QKNNwith respect to KNN is that QKNN calculates
the distances between the test instance and all the records in
the training set simultaneously. In the literature, we find vari-
ous versions of QKNN (Schuld et al. 2014, 2017; Ruan et al.
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2017;Wiebe et al. 2018; Dang et al. 2018; Afham et al. 2020;
Li et al. 2021) implementing different distance functions and
different data encoding.However, they offer limited details to
replicate the results to comprehensively understand the trade-
offs associated with the various QKNNs under investigation.
In this work, we study and analyze in depth two QKNNs by
examining their complexities and empirically testing themon
three datasets.We opt for two distinct variants of QKNN, one
that encodes the data in the amplitudes of a quantum state and
the other in the basis. This choice allows us to analyze and
show the impact in terms of complexity and performance of a
different encoding approach.Moreover, we provide a Qiskit1

implementation for each algorithm to make the results repro-
ducible. Within this study, we also investigate if the accuracy
scores of QKNN solutions are promising and employable
for real-world tasks by comparing them with the classical
KNN.

The results of our study show that QKNN can be compa-
rable to or even better than the classic KNNwith appropriate
data encoding and training strategies. Nevertheless, due
to existing technological constraints in executing quantum
algorithms on a real quantum computer and simulating those
algorithms on a classical computer, it is currently impracti-
cal to empirically achieve the superior theoretical complexity
of QKNN. It is also evident from the experiments that the
costs of using QKNNmethods lie in the data preparation and
its encoding. Indeed, developing an efficient state prepara-
tion technique or quantum memory is mandatory to cut the
cost of data encoding in quantum states, thus guaranteeing a
speed-up over its classical counterpart.

This work represents the extended version of the confer-
ence paper presented in Berti et al. (2022) where our primary
focuswason comparing the performance in termsof the accu-
racy of the quantum classifiers against the classical KNN.
This current version offers a much more comprehensive
exploration, extending the analysis not only to the accu-
racy of the algorithms but also to the complexities involved,
including a detailed examination of how different encodings
and distance functions influence these factors. Specifically,
we provide a thorough and self-contained study of quantum
algorithms, clarifying critical aspects of their implementa-
tion. This includes detailed explanations of each subroutine,
providing examples, analytical descriptions, and circuit illus-
trations along with the Qiskit implementations. To the best of
our knowledge, this work represents the first in-depth explo-
ration and comparison of the impacts of the encodings and
distance functions on both the accuracy and complexity of
quantum nearest neighbor classifiers.

Hereby, we clarify important aspects related to imple-
menting each quantum algorithm. In particular, we shed
light on each subroutine, providing examples, analytical

1 https://qiskit.org/

descriptions, and circuit illustrations along with the Qiskit
implementations. This manuscript is organized as follows:
Sect. 2 introduces the motivation of interest for studying the
QKNN, Sect. 3 presents the notations and the classical KNN,
Sect. 4 describes different encoding techniques of data into a
quantum state, Sect. 5 illustrates two different QKNN tech-
niques based on amplitude encoding and basis encoding,
respectively, Sect. 6 shows the performance of the classical
KNN and the two QKNNs with respect to three different
datasets, and eventually Sect. 7 draws the conclusions over
the manuscript.

2 Related works

In this section, we review representative works on QKNN.
We refer the reader to Schuld and Petruccione (2018) for a
comprehensive overview of key concepts and ideas regarding
QAI algorithms.

In Schuld et al. (2014), the authors design one of the
first proposals of QKNN that relies on a binary data repre-
sentation combined with Hamming distance for the pattern
classification task. The data is encoded in the qubits using
basis encoding (see Sect. 4.3). The algorithm runs in poly-
nomial time O(T MN ) where N is the number of features,
M is the number of training instances, and T is the accuracy
threshold. The authors also indicate that assuming an effi-
cient state preparation for the training set, the complexity of
the proposed algorithm would be independent of the number
of training vectors.

Another QKNN based on Hamming distance and basis
encoding is discussed in Ruan et al. (2017). Here, the fea-
tures of the training set are extracted, stored as bit vectors,
and mapped to quantum states (Nielsen et al. 2016). Dis-
tances between the instance to classify and the training set are
computed leveraging quantum parallelism. Moreover, these
distances are calculated as Hamming distances exploiting the
adder circuit proposed inKaye (2004) according to a distance
threshold. The time cost is O(N 3), where N is the number of
features. Note that this evaluation does not take into account
the cost of the initial state preparation. Finally, the authors
evaluate the performance of their classifier with respect to
the solutions proposed in (Wiebe et al. 2018; Lloyd et al.
2013), showing an improvement in terms of accuracy, but
also observing that the complexity of the proposed classifier
scales only with respect to the number of features N and not
with the dataset size.

Another QKNN classifier based on Hamming distance is
proposed in Li et al. (2021), where Hamming distances are
computed as described in Ruan et al. (2017) and the near-
est neighbor is selected through a quantum sub-algorithm
for searching the minimum of an unsorted integer sequence
(Durr andHoyer 1999),which is the novelty of thiswork. The
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overall time complexity of the proposed quantum algorithm
is O(

√
M log N (logM + N log2 N )), where M is the num-

ber of instances, andN is the number of features. Thus, when
the M instances lie in a low-dimensional feature space (i.e.,
N � M), the algorithm classifies a sample with time com-
plexity O(

√
M logM), showing a quadratic speedup over

its classical counterpart , but also noting that the proposed
solution loses its quadratic speedup when applied to high-
dimensional instances.

A QKNN encoding data using amplitude encoding (see
Sect. 4.2) is proposed in Schuld et al. (2017). The algorithm
stores instances in the amplitudes of quantum states using a
number of qubits logarithmic in the number of featuresN and
training instances M. Then, the distances are computed by
estimating the Euclidean distance through the interference
between each training instance and the sample to classify.
This distance-based quantumclassifier uses a simple interfer-
ence circuit that moves in the opposite direction of quantum
circuits with complex subroutines that are difficult to imple-
ment in today’s quantum computers. The effectiveness of the
classifier is demonstrated through experiments on the IBM
Quantum Experience and numerical simulations, showing
good performance on simple benchmark tasks.

Another amplitude encoding approach is presented in
Wiebe et al. (2018) for s-sparse datasets (i.e., only s fea-
tures are non-zero). This aspect makes this algorithm useful
for classifying images with black background. In particu-
lar, the authors demonstrate that their oracle-based solution
overcomes the low assignment accuracy that occurs in the
nearest-centroid approach of Lloyd et al. (2013). Eventually,
they also show that the proposed solution is noise-resistant
and performs effectively on typical real-world tasks.

An application of QKNN based on amplitude encoding to
image classification is presented in Dang et al. (2018). The
algorithm extracts and stores the features of all the images
in a quantum state. Next, it computes distances in parallel
between the M training images and the image to classify.
Eventually, a quantumminimum search subroutine (Durr and
Hoyer 1999) is applied to get the k neighbors having mini-
mum distance with respect to the sample. The complexity of
the quantum algorithm is O(

√
kM) with respect to the com-

plexity O(M log k) of the classical process: the largerM, the
greater the quantum advantage. This work also examines the
complexity of the proposed quantum solution compared to
the classical one by varying k. Unlike other approaches, the
quantum algorithm encodes values in the amplitude and then
transfers the information to the basis using the amplitude
estimation algorithm (Brassard et al. 2002), enabling the use
of the quantumminimum search subroutine (Durr and Hoyer
1999).

Finally, the QKNN in Afham et al. (2020) employs a con-
trolled swap and two Hadamard gates on an ancilla qubit
to estimate the fidelity, a distance measure corresponding to

cosine similarity. In particular, the fidelity between each data
in the training set and the sample to classify is estimated by
measuring an ancilla qubit. The width of the algorithm is
polylogarithmic in size M of the training set, and the query
complexity to extract the k nearest neighbors is O(

√
kM).

Unlike other approaches, the class label is not encoded in
qubits and is assigned to the sample by classical majority
voting.

From the state of the art, it is clear that QKNN has valu-
able properties that make it more efficient than the classical
KNN, at least from a theoretical perspective. However, most
of the aforementionedworks only provide a few details about
the quantum circuits and the data preprocessing needed to
run the QKNN algorithms. Our study not only offers a thor-
ough analysis of the performance of different QKNNs but
also clarifies key implementation details, crucial to ensure
the reproducibility and comparability of different QKNN
methodologies. Moreover, we provide the circuit implemen-
tations2 of the analyzed QKNN algorithms.

3 Preliminaries

A classification dataset D = 〈X ,Y 〉 consists of a set
X = {x (0), x (1), . . . , x (M−1)} of M instances (or records)
described by N features (i.e., x (i) = {x (i)

0 , x (i)
1 , . . . , x (i)

N−1})
and a set Y of labels y(i ∈ N each assigned to an instance
x (i) ∈ X . Each label (or class) y(i) is chosen among L the
labels in a set V, i.e., L = |V |. In AI, given a dataset D,
the objective is to find a function f that assigns to an unseen
instance u a label y, i.e., y = f (u), such that y = ŷwhere ŷ is
the ground truth of u. The performance of an AI classifier can
be measured in terms of accuracy that accounts for the num-
ber of correspondences between the predicted labels and the
ground truth. Our objective is to illustrate and analyze how
this problem can be solved with QAI procedures modeling
the well-known K -nearest neighbor (KNN) classifier (Tan
et al. 2005).

3.1 Classical K-nearest neighbors

K -nearest neighbors (KNN) is a supervised AI algorithm
implementing a classifying function f. The core idea behind
KNN is that instances similar in the feature spacemust also be
similar with respect to the class label. It has been successfully
applied to many problems: classification of tabular data (Tan
et al. 2005), text (Manning et al. 2008), time series (Fawaz
et al. 2019), parameter optimization (Nigsch et al. 2006), and
also outlier detection (Ramaswamy et al. 2000).

2 Code available at: https://github.com/Brotherhood94/exploring_
different_encoding_and_distance_metrics_for_a_quantum_instance_
based_classifier
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KNN takes as input a set of training examples D and the
number of nearest neighbors k. Then, given a distance func-
tion d, for each unseen instance u, it computes the distance
between u and all the instances inD. Then, it selects fromD
the k instances Du ⊆ D having the smallest distance from u
(i.e.,Du are the nearest neighbors of u). Finally, it assigns to
u a label y based on themajority vote of the nearest neighbors
according to the following formula:

y = argmax
v∈V

∑

(x (i),y(i))∈Du

I (v = y(i)),

where v is a class label, y(i) is the class label of the nearest
neighbors x (i), and I (·) returns 1 if its argument is true, 0
otherwise.

Despite being simple, KNN can be characterized by many
variants (Tan et al. 2005). For instance, the choice of the num-
ber of neighbors denoted as k determines the sensitivity of
KNN and has an impact on the classification results. Addi-
tionally, the selection of the distance function, denoted as d,
is important. Typically, the Euclidean distance is employed
for continuous features, while the Hamming distance is used
for categorical features. We highlight that, since KNN relies
on distances, if the features are modeled with vastly differ-
ent scales, normalizing the training data can dramatically
improve the accuracy (Tan et al. 2005). Furthermore, the
majority vote for the class selection can be weighted.

The main weakness of KNN is the computation of the
distances. Indeed, given an instance u, KNN has to compute
the distance between u and every instance in the training
set D. Thus, the computational complexity of KNN strictly
depends on the number of features N describing an instance
and on the number of instances M in the training set. This
leads to a computational complexity of O(NM). A possi-
ble workaround to this issue is to reduce the number of
instances in the training set by using centroids instead of
real data (Manning et al. 2008). In this version, named near-
est centroid classifier, the unseen instance u is compared
with a small set of instances representative of the classes of
the problem, typically obtained by averaging the features of
the records in each class. However, this approach typically
reduces the accuracy of the classifier, which no longer relies
on “real” records but on prototypical ones. As an alternative,
KNN can refer to a sample D′ ⊂ D of instances randomly
selected, with M ′ < M and M ′ = |D′|.

Regardless, even when reducing the number of training
instances, K -nearest neighbors (KNN) still requires the com-
putation of distances between the unseen instance u and
the training set. What makes quantum K -nearest neighbors
(QKNN) intriguing is its ability to surmount this limitation
by simultaneously calculating all distances.

4 Encoding data into quantum states

In this section, we review two different techniques to encode
classical information into quantum state typically used for
QKNN algorithms (Schuld and Petruccione 2018) and then
discuss the general state preparation problem. We remark
that the question of data encoding becomes crucial for QAI
algorithms as it can heavily impact the performance both in
terms of the quality of the results and time.

4.1 Quantum state preparation

Quantum state preparation consists of the initialization of a
quantum register that encodes classical data. This is a funda-
mental and crucial step for practical applications. To preserve
the potential advantages of quantum algorithms for big data
applications, quantum state preparation must be performed
efficiently. However, the initialization of the quantum state
may result in computationally expensive in terms of thewidth
and depth of the circuit implementing a given state prepara-
tion technique.

Different techniques for loading classical data into a quan-
tum state have been proposed and implemented. A standard
approach for quantum state preparation is the method pro-
posed in Shende et al. (2006) and implemented on the IBM
Qiskit framework. The idea is to assume that the n-qubit
quantum register is already in the desired state |ψ〉 and to
construct a circuit that takes |ψ〉 to the zero state |0〉⊗n of the
computational basis. The state preparation circuit is then the
reverse of such a circuit. The arbitrary state |ψ〉 is trans-
formed into the zero state through an iterative procedure
that disentangles the n qubits one by one, starting from the
least significant one. Each disentangled qubit state can be
taken to |0〉 using appropriate one-qubit elementary rotation
gates. The overall resulting circuit contains atmost 2n+1−2n
CNOT gates, in addition to the rotation gates, and is asymp-
totically optimal as it lies a factor of four away from the
theoretical lower bound (Shende et al. 2004; Möttönen et al.
2005).

Another method to transform any given n-qubit quantum
register into an arbitrary state usinguniformly controlled one-
qubit rotations is proposed in Möttönen et al. (2005). The
circuit sequentially applies 2n+2 –4n –4 CNOTs and 2n+2 –
5 one-qubit elementary rotations, in the worst case, and can
be simplified in case of initial and target states with suitable
symmetries. For instance, if one of the two states coincides
with some vector of the computational bases, only half of the
gates are needed.

A different approach to state preparation is based on the
use of Quantum Random Access Memory (QRAM) (Ven-
tura and Martinez 2000; Giovannetti et al. 2008; Park et al.
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2019), a device that stores quantum data. A QRAM mim-
ics the functionalities of RAM in classical computers and
has the same three basic components as the RAM: a mem-
ory array, an address register, and an output register. Address
and output registers are composed of qubits instead of bits,
while the memory array can be either quantum or classi-
cal, depending on the QRAM’s usage. Most importantly, the
QRAM has the ability to performmemory accesses in coher-
ent quantum superposition: if the quantum computer needs to
access a superposition of memory cells, the address register
must contain a superposition of addresses, and the QRAM
will return a superposition of data in the output register. The
possibility of efficiently implementing these devices, which
will become an essential component of quantum computers if
large quantum computers are eventually built, would yield a
speedup for many quantum algorithms over classical data. In
the literature, various frameworks implementing this model
have been proposed. However, it is worth noting that a hard-
ware implementation of a QRAM is still under development.

A first attempt in this direction is proposed in Ventura
and Martinez (2000) for the basis encoding of binary data.
This method can construct a quantum state |D〉 representing
a classical dataset D of M binary instances, of length � bits
each, in time linear in � and M. We adopt this technique to
encode data in the QKNN of Sect. 5.2. Section5.2.2 provides
a detailed description of this strategy.

In Giovannetti et al. (2008), the authors introduce a
QRAMmodel, called bucket brigade, that requires O(logM)

address qubits, O(M) qutrits (i.e., three-level quantum sys-
tems) used as switches for routing, and O(M) classical or
quantum memory cells for M binary data. This architecture
exponentially reduces the requirements for a memory call:
even if it still requires O(M) switches for routing, it only acti-
vates O(log2 M) of them. This yields a more robust QRAM
algorithm, as it entails an exponential reduction in the num-
ber of gates that need to be entangled for each memory call,
leading to an exponential decrease in the power needed for
addressing.

Another QRAM model is the Flip-Flop QRAM (FF-
QRAM) (Park et al. 2019). The FF-QRAMcan read unsorted
classical data stored in memory cells and superpose them in
the computational basis states with non-uniform probabil-
ity amplitudes to create a specific quantum state for a given
algorithm. FF-QRAMallows the encoding of discrete or con-
tinuous classical information as quantum bits or probability
amplitudes of a quantum state. For the encoding of classical
data consisting ofM entries, eachwithN features, FF-QRAM
requires O(MN ) quantum operations. We refer the reader to
Sect. 5.1.2 for a detailed description of FF-QRAM, as this
is the strategy adopted for the initial state preparation in
our implementation of the QKNN with amplitude encoding
Sect. 5.1.

The paper (Araujo et al. 2021) proposes a new format
for data encoding. It exploits the method of Möttonen et al.
(2005) and a divide-and-conquer approach using controlled
swap gates and ancilla qubits. The method achieves an expo-
nential quantum speedup in time to load an N-dimensional
real vector in the amplitude of a quantumstatewith a quantum
circuit of depth O(log22(N )), and using O(N ) qubits. Thus,
the decrease of the circuit depth is obtained at the expense of
the width of the circuit, creating entanglement between data
register qubits and an ancillary system. After filtering out the
ancilla qubits, we do not get the pure state that one obtains
with amplitude encoding but amixed statewhere the classical
data is still encoded as amplitudes of an orthonormal basis
set. As shown in the paper, there are, however, applications
where we can work directly with this encoding.

In the literature, other versions of QRAMs are dis-
cussed (Möttönen et al. 2005; Araujo et al. 2021; Soklakov
and Schack 2006; Long and Sun 2001;Kerenidis and Prakash
2017). See also Phalak et al. (2023) for a general review on
this subject.

4.2 Amplitude encoding

Amplitude encoding associates classical data with the ampli-
tudes of a quantum state. Given a vector x = (x0, . . . , xN−1)

of classical data, we can encode the information in the fol-
lowing quantum state:

|ψ〉 =
N−1∑

j

x j | j〉 .

where the register | j〉 is a �log N�-qubit register sufficiently
large to store all indexes j = 0, 1, . . . , N − 1 in superposi-
tion.We recall that the norm of a quantum statemust be equal
to 1; thus, before amplitude encoding a vector x, we need to
normalize it, so that

∑
j |x j |2 = 1. Another detail concerns

the length N of the vector. In particular, if the vector length
is not a power of two, it must be padded with zeros up to
the next power of two. For simplicity, we assume that N is
a power of two. Overall, this encoding requires n = log2 N
qubits.

For instance, let us show how to preprocess x =
(0.3, 0.4, 0.8). Since the length of the vector is N = 3,
we need to pad the vector to the next power of two: x =
(0.3, 0.4, 0.8, 0.0). Then, we normalize to unit length (i.e.,

to divide it by
√∑

j x
2
j ), landing on the following vector

x = (0.32, 0.42, 0.85, 0.00) that can be now amplitude
encoded in a quantum state |ψ〉.

The main advantage of amplitude encoding is that encod-
ing a dataset with M instances and N features only requires
O(log2 N + log2 M) qubits. Further details for loading a
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real dataset into a quantum state with amplitude encoding
are presented and discussed in Sect. 5.1.2.

4.3 Basis encoding

Basis encoding associates a classical �-bit-string with a com-
putational basis state of an �-qubit system. For instance, we
can encode the string 0011 as the basis state |0011〉. In this
way, if we use s bits to encode a feature, each N-feature
instance is represented with � = N s bits. Thus, given a
binary record x (i) = (x (i)

0 x (i)
1 . . . x (i)

�−1), we can prepare basis
states |x (i)〉 where each qubit corresponds to a bit of the
binary input:

|ψ〉 = |x (i)
0 x (i)

1 . . . x (i)
�−1〉 = |x (i)〉. (1)

We highlight that turning a dataset D into a binary one
using a basis encoding approach is not necessarily a trivial
task, as discussed in Sect. 5.2.2.

5 Quantum KNN algorithms

In this section, we re-design quantum KNN algorithms in
the state-of-the-art, highlighting technical details, similari-
ties, and differences between different procedures. There are
two fundamental aspects for which QKNN algorithms can
differ:

• The distance function
• The data encoding

The choice of a distance function highly impacts the data
encoding; specifically, a distance function that computes the
distances on the binary representation of the data is substan-
tially differentwith respect to a distance function acting on an
amplitude encoding of the data. Moreover, it is worth noting
that quantum computation evolves the initial quantum state
encoding a given dataset. Thus, a new state preparation of
this quantum state from scratch occurs to classify every new
instance (Schuld et al. 2017). A common feature among the
QKNNapproaches under investigation is the parallel compu-
tation of distances between the training set and the instance
to classify. This aspect is what makes QKNN an appealing
quantum algorithm.

The implementations of QKNNs in the literature often
lack details, making it difficult to reproduce the results.
Hence, our goal is to analyze and implement a complete QAI
procedure and provide reproducible research. Moreover, we
provide a Qiskit implementation of each QKNN algorithm
investigated. We highlight that the simulation of quantum
algorithms on classical devices requires a significant amount

of resources that scale exponentially according to the num-
ber of qubits. Therefore, we perform the experiments to fit
all the available classical resources.

To simplify the presentation, with a little abuse of nota-
tion, we will use the notation |r〉 to denote the contents of a
quantum register r, of one or one qubits.

5.1 QKNNwith amplitude encoding

We describe here an implementation of QKNN inspired
by Schuld et al. (2017). The fundamental concept involves
the encoding of datawithin the amplitudes of a quantumstate,
as expounded in Sect. 4.2. The classification of an instance
employs an estimate of the Euclidean distance. For the sake
of conciseness, we shall herein refer to this implementation
as amplitude encoding-based QKNN, succinctly denoted as
aQKNN.

5.1.1 Quantum Euclidean distance

Let us consider two quantum states |δ〉 and |φ〉 that amplitude
encodes N features each. We want to compute an estimate of
the Euclidean distance between |δ〉 and |φ〉:

d(|δ〉, |φ〉) =
√√√√

N−1∑

i=0

(δi − φi )2 = ‖|δ〉 − |φ〉‖,

where δi and φi correspond to the i-th amplitudes of |δ〉 and
|φ〉, respectively.

To compute the Euclidean distance d(|δ〉, |φ〉), we require
an ancillary qubit |0〉e and n = log2 N qubits to ampli-
tude encode the quantum states |δ〉 and |φ〉. The idea behind
the quantum algorithm for computing the Euclidean distance
consists in leveraging the phenomena of interference. In par-
ticular, we put in equal superposition the ancillary qubit
H |0〉e = |0〉+|1〉√

2
, and we amplitude encode and entangle |δ〉

(|φ〉) with the branch |1〉e (|0〉e) of the ancillary qubit. Then,
we make the branches interfere by means of a Hadamard
gate on the ancillary qubit |e〉. Eventually, a post-selection on
|e〉 = |1〉 occurs. The probability of measuring the ancillary
qubit |e〉 in state |1〉 results in an estimate of the Euclidean
distance between |δ〉 and |φ〉. Figure1 describes the quan-

Fig. 1 Circuit computing the Euclidean distance
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tum circuit implementing the corresponding algorithm. A
detailed description follows.

The initial state corresponds to |0〉e|0〉. Then, we apply
the first Hadamard gate on the qubit in register e:

1√
2
(|0〉e|0〉 + |1〉e|0〉).

Now,wehave twobranches, |0〉e and |1〉e,whichweentan-
gle respectively with |δ〉 and |φ〉 landing in the subsequent
quantum state:

1√
2
(|0〉e|δ〉 + |1〉e|φ〉).

Then, the last Hadamard gate produces the interference
between |δ〉 and |φ〉:

1

2
(|0〉e(|δ〉 + |φ〉) + |1〉e(|δ〉 − |φ〉)).

Eventually, the probability of measuring the ancillary
qubit |e〉in state 1 is given by the following:

P(|e〉 = |1〉) = ‖1
2
(|δ〉 − |φ〉)‖2 = 1

4
‖|δ〉 − |φ〉‖2 = 1

4
d(|δ〉, |φ〉)2;

therefore, we have an estimate of the Euclidean distance:

d(|δ〉, |φ〉) = 2
√
P(|e〉 = |1〉)

5.1.2 Encoding a dataset in the amplitudes

Multiple state preparation techniques describe how to encode
a dataset in the amplitude of a quantum state, as previously
discussed. Hereby, we employ the FF-QRAM (Park et al.
2019) to map a dataset into a quantum state. Given a dataset
D withM instances and a single feature each, we need m =
log2 M qubits to address a specific instance x (i), where 0 ≤
i < M . In particular, we define a quantum register |a(i)〉 =
|a(i)

0 a(i)
1 . . . a(i)

m−1〉, and an additional qubit |r〉 that stores the
single feature x (i)

0 of x (i) via amplitude encoding. We denote

by |x (i)
0 〉r the qubit which amplitude-encodes the feature x (i)

0 ,

i.e., |x (i)
0 〉r =

√
1 − (x (i)

0 )2|0〉r + x (i)
0 |1〉r . The FF-QRAM

models the dataset D as follows:

FF−QRAM(D) =
M−1∑

i=0

|a(i)〉(
√
1 − (x (i)

0 )2|0〉r+x (i)
0 |1〉r ),

(2)

where |a(i)〉 acts as a register index that identifies a given
memory address. The branch corresponding to |r〉 = |1〉
contains our instances while the branch |r〉 = |0〉 can be

ignored. For example, let us define |a(0)〉 = |00 . . . 0〉 as the
register index that locates the memory address storing the
feature x (0)

0 in qubit |x (0)
0 〉r . Then, according to this logic,

the register index |a(1)〉 = |00 . . . 01〉 locates the feature x (1)
0 .

In general, a register index |a(i)〉 corresponds to the binary
encoding of i on m = log2 M bits.

Let us show the step-by-step idea of an FF-QRAM that
maps in a quantum state a dataset D of M instances, one
feature each. Thefirst step is to normalize the classical dataset
D. Then, we allocate a quantum register index |a〉 = |0〉⊗m

of size m = log2 M qubits plus an additional qubit |0〉r , so
that the initial quantum state |ψ0〉 is

|ψ0〉 = |0〉⊗m
a |0〉r .

At this point, we have a single memory address |0〉⊗m
a ,

but we need to storeM values. Therefore, we create the extra
memory addresses by putting each qubit of the quantum reg-
ister |0〉⊗m

a into equal superposition:

|ψ1〉 = H |0〉⊗m
a |0〉r = 1√

M

M−1∑

i=0

|a(i)〉|0〉r .

The last step involves mapping the feature value x (i)
0 in

the amplitude of the register r. For each normalized instance
x (i)
0 , we compute θi = 2 arcsin(x (i)

0 ). Then, we perform
a rotation Ry(θi ) controlled on the quantum register |a(i)〉
for each θi . The key point is that by rotating a given qubit
by θi = 2 arcsin(x (i)

0 ), we land in the state Ry(θi )|0〉 =√
1 − (x (i)

0 )2|0〉 + x (i)
0 |1〉, where the amplitude associated

with |1〉 coincides with our normalized feature x (i)
0 . The final

state that describes the FF-QRAM encoding a datasetD with
M instances and one feature each is therefore given by

|ψ2〉 =
M−1∑

i=0

|a(i)〉(
√
1 − (x (i)

0 )2|0〉 + x (i)
0 |1〉) = FF−QRAM(D).

It isworth noting that theFF-QRAMrotates (i.e., stores the
feature value x (i)

0 ) the same qubit |r〉, but it does not overwrite
the previous value x (i−1)

0 since the register index switched

from |a(i−1)〉 to |a(i)〉. In other words, the M values x (i)
0 are

stored in the amplitudes of different copies in a superposition
of the same qubit |r〉.

From a circuit perspective, to implement a basic FF-
QRAM, we employ the following gates: the Hadamard gate,
the X gate, and the Multi Controlled-Ry (MCRy) gate,
according to the following intuition. The Hadamard gate
creates a superposition of the index register |a〉; the X
gate enables us to target a specific index register |a(i)〉 =
|bin(i)m〉, and the MCRy gate amplitude-encodes the feature
value x (i)

0 in the register |r〉.
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An example follows. Let us assume M = 4, then we
need m = log2(4) = 2 qubits for the register index |a〉 to
address 4 different memory locations. Initially, |a〉 = |00〉;
thus, we apply H over |a〉 obtaining the following super-
position: |ψ〉 = 1√

4
(|00〉 + |01〉 + |10〉 + |11〉). We then

select the appropriate register index |a(i)〉 to store the fea-
ture value x (i)

0 in the amplitude of |r〉. For instance, let us
assume i = 2, and consider the register index |a(2)〉 = |10〉.
We move to the memory address |10〉 by means of X gates.
Eventually, we store the feature x (2)

0 by selectively rotating
the qubit |r〉 associated with the register index superposition
|a(2)〉 = |10〉. Practically, this last step requires an MCRy
gate controlled on |a〉 and targeting |r〉 (see Fig. 2).

However, it is unlikely that an instance has only one fea-
ture. The logic to extend the FF-QRAM defined in Eq. 2
to handle more than one feature is similar to the one we
used to address memory locations. We add a second level
addressing employing additional qubits. Let us define N as
the number of features; then we require n = log2 N addi-
tional qubits to index a given feature j, where 0 ≤ j < N ,
of a given instance i, 0 ≤ i < M . We denote these qubits
as |bi 〉 = |b(i)

0 b(i)
1 . . . b(i)

n−1〉. The overall quantum state is
therefore

FF−QRAM(D) =
M−1∑

i=0

N−1∑

j=0

|a(i)〉|b(i)
j 〉|x (i)

j 〉r .

The last definition deals with an FF-QRAM that also
encodes the class of a given instance. Indeed, in the AI field,
it is typical to deal with labeled instances. Thus, we complete
the whole picture by describing an FF-QRAM that takes into
account classes. Let us define L as the total number of dis-
tinct classes within a datasetD. Then, according to the same
rationale of the previous FF-QRAM definition, we introduce
l = log2 L qubits to map the classes into a quantum state.We
define those qubits as |c(i)〉 = |c(i)

0 c(i)
1 . . . c(i)

l−1〉 where |c(i)〉
is the class index of the instance x (i), for 0 ≤ i < M . Thus,
we have

FF−QRAM(D) =
M−1∑

i=0

N−1∑

j=0

|a(i)〉|b(i)
j 〉|x (i)

j 〉r |c(i)〉. (3)

Fig. 2 Amplitude encoding of the feature x (2)
0 in index register

|a(2)〉=|10〉

In summary, utilizing the FF-QRAM for encoding a
dataset D comprising M training instances, each with
N features, and encompassing L distinct classes requires
O(log2 N + log2 M + log2 L) qubits.

5.1.3 Quantum classification with Euclidean distance

Given a dataset D, the aQKNN under analysis classifies an
instance u leveraging quantum parallelism and employing
the quantum Euclidean distance as a distance function. We
remind the reader of the notation adopted. In particular:

• M is the number of instances in D, and m = log2 M is
the number of qubits required to index the instances.

• N is the number of features per instance in D, and n =
log2 N is the number of qubits required to index each
feature of a given instance.

• L is the number of distinct classes inD, and l = log2 L is
the number of qubits needed to represent all the possible
classes.

Then, we denote as |a〉⊗m , |b〉⊗n , and |c〉⊗l the registers
to amplitude encode the instance tand the training instances
in D. In particular, |a〉⊗m indexes the instances, |b〉⊗n the
features, and |c〉⊗l the classes. We refer to |u〉 and |D〉 as the
quantum states that amplitude encodes u andD, respectively,
following the encoding. Note that the instance u is the one
we want to classify; thus, we encode along with u an equal
superposition of all the classes instead of a specific one. In
some sense, since we do not know the actual class of u, we
say that it can be any class at the beginning of the algorithm.

To implement the quantum Euclidean distance, we add an
ancillary qubit |e〉 = 0, and then we apply an H-gate to it
(i.e., |e〉 = |+〉e = |0〉e+|1〉e√

2
). Afterwards, we entangle |0〉e

with |u〉, and |1〉e with the quantum state |D〉. Eventually,
we apply the H-gate on the ancillary qubit |e〉, thus comput-
ing simultaneously all Euclidean distances among |u〉 and
each training instance in |D〉. Figure3 illustrates the circuit
implementation.

The last step of the algorithm consists of a post-selection.
Indeed, only a subset of superpositions of our final quantum
state contributes to the classification. Namely, we post-select
on those quantum states such that registers |r〉 = 1 and
|e〉 = 0. Then, we measure the register |c〉, which encodes
the predicted class for the instance u. Indeed, the ancilla |e〉
in the state |0〉e holds the amplitudes depending on the dis-
tances between the instance u and all the training ones (see
Sect. 5.1.1). A measurement on |c〉 returns the most proba-
ble class for u according to the distances with respect to the
training instances.

This method relates to KNNwhen setting k = M , where k
defines the number of neighbors (i.e., the training instances)
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Fig. 3 Overall circuit for the classification of uwith Euclidean distance
with respect to the dataset D

taken into account, and weighing the neighborhood by the
distance measure (Schuld et al. 2017).

Complexity analysis The overall complexity of aQKNN is
dominated by the cost of encoding the training set into a
quantum state. In fact, employing the FF-QRAM to prepare
the quantum state requires O(log2 M + log2 N + log2 L)

qubits and O(MN ) operations. It is worth noting that the
classical KNN also requires the same cost, which, instead,
is due to the computation of the distance between the train-
ing instances and the instance to classify. Therefore, we will
only have an advantage over the classical KNN when a state
preparation routine with a (poly)logarithmic cost is effec-
tively available. We also observe that the post-selections
on |r〉 and |e〉 reduce the success probability of the algo-
rithm, thus requiring a non-negligible number of repetitions
of the whole quantum algorithm. In particular, according
to Schuld et al. (2017), the success probability of the post-
selection on |e〉 is 1

2 (i.e., P(|e〉 = 1) = 1
2 ). While the

success probability of |r〉 is data dependent; specifically,
P(|r〉 = 1) = ∑M−1

i=0
∑N−1

j=0 | sin (x (i)
j )|2, thus, as discussed

in Park et al. (2019) , the number of shots scales as 1
P(|r〉=1) .

Therefore, the overall success probability of a given run is
P(|e〉 = 1) × P(|r〉 = 1) = 1

2

∑M−1
i=0

∑N−1
j=0 | sin (x (i)

j )|2.

5.2 QKNNwith basis encoding

In this section, we introduce a version of the quantum
K -nearest neighbors (QKNN) algorithm, leveraging the
Hamming distance as the chosen metric for quantifying
similarity and employing the basis encoding technique as elu-
cidated in Sect. 4.3. We denote this algorithm as bQKNN. As
detailed in Li et al. (2021), this algorithm employs a search-
ing algorithm to find the minimum distance to accomplish
the classification task for a given instance.

5.2.1 Quantum Hamming distance

TheHamming distance is a measure of dissimilarity between
twobinary stringsσ and τ with the same length �. It quantifies
the number of positions at which the two strings differ. We
evaluate the Hamming distance of two strings by computing
the bitwise XOR of the two strings and then counting the
number of 1 s in the resulting sequence.

The Hamming distance circuit consists of the following
steps:

1. Basis encode (see Sect. 4.3) the two binary vectors σ and
τ of length � in the two �-qubits quantum registers |σ 〉
and |τ 〉.

2. Perform the bitwise XOR between |σ 〉 and |τ 〉 using
CNOT gates. Indeed, CNOT(|σ j 〉, |τ j 〉) = |σ j 〉|σ j ⊕τ j 〉,
for 0 ≤ j < � − 1. Let |h j 〉 denote |σ j ⊕ φ j 〉, for
0 ≤ j < � − 1.

3. Counting the 1s in |h〉 = |h0, . . . , h�−1〉 returns theHam-
ming distance. The sum of the 1s in |h〉 is computed with
the circuit discussed in Kaye (2004) that takes in input
the register |h〉 and a register |g〉 of p = �log2 �� + 1
qubits needed to represent the sum of the 1 s in |h〉.

Figure4 illustrates the quantum circuit that computes the
Hamming distance.

5.2.2 Encoding a dataset in the basis

Basis encoding consists of encoding a given string of � bits in
the computational basis of a quantum state of �-qubits (see
Sect. 4.3). In this section, we consider the basis encoding
technique presented in Ventura and Martinez (2000), and we
apply this technique on a binary dataset D of M instances
and N features each. It is worth noting that the number of

Fig. 4 Quantum circuit computing Hamming distance between two
generic quantum states |σ 〉 and |τ 〉
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instances impacts the depth of the circuit, while the number
of features and their binary representation impacts the width
of the circuit.

Once the classical data have been encoded as binary
strings intoD,we canbasis-encode thedataset into a quantum
state |D〉 according to the strategy of Ventura and Martinez
(2000). In order to encode theM binary instances of length �,
the quantum circuit requires �+2 qubits, logically organized
as follows:

• an �-qubit register |x (i)〉 = |x (i)
0 x (i)

1 . . . x (i)
�−1〉 for the M

binary instances;
• a 2-qubits ancillary register |z〉.

Note that the register |x (i)〉 has as many qubits as the num-
ber of bits of the instance intended for encoding. Therefore,
we can represent any possible input binary pattern by flip-
ping the qubits from 0 to 1 according to the corresponding
bits of the input instance. We describe below the steps to
basis-encode the (i + 1)-th instance x (i), assuming that the
previous i instances have already been encoded.

1. Selective-flip the |x (i)〉 qubits to match the binary encod-
ing of instance x (i) on the � qubits. We perform this
operation by applying a CNOT controlled on |z1〉 = |0〉
that targets the qubits corresponding to the bit equals to
1 of the (i + 1)-th instance x (i).

2. Flip the qubit |z0〉 if the state of |z1〉 = |0〉 and apply the
controlled-rotation gate Rμ defined as follows:

Rμ =

⎡

⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0

0 0
√

μ−1
μ

−1√
μ

0 0 1√
μ

√
μ−1
μ

⎤

⎥⎥⎥⎥⎦
(4)

where μ = M − i is the number of instances, including
the current one, yet to be encoded. This gate takes |z0〉
as the control qubit and |z1〉 as the target qubit. The idea
behind this step is to split the quantum state into two
branches: a branch b1 containing the first i + 1 instances
in superposition, each with amplitude 1√

M
, and a branch

b2 with the new instance x (i), with amplitude
√
1 − i+1

M .

The branch b1 (where |z〉 = |01〉) permanently encodes
the binary instances up to the (i + 1)-th.

3. Eventually, we restore b2 so that |x (i)〉 = |0〉⊗�.
4. Repeat from Step 1 to load the next instance.

Figure 5 illustrates the quantum circuit to encode the
binary record 001with basis encoding. Once all theM binary
instances have been encoded, the system ends up in the fol-
lowing state:

|D〉 = 1√
M

M−1∑

i=0

|x (i)〉. (5)

The quantum state |D〉 has value 1√
M

for each record

x (i), and zero otherwise. Since the number of amplitudes 2M

can be larger than the number of nonzero amplitudes, basis
encoding datasets can generate sparse amplitude vectors.

5.2.3 Quantum classification with Hamming distance

Given a datasetD ofM training instances ofN features each,
we want to classify an instance u exploiting quantum paral-
lelism by means of the Hamming distance. First, we prepare
the quantum state |D〉 encoding the dataset D as described
in the previous section. Then, we basis-encode the instance
u that we want to classify in an additional quantum regis-
ter of �-qubits, obtaining |u〉 = |u0u1 . . . u�−1〉. Next, we
employ the circuit illustrated in Fig. 4 to compute the Ham-
ming distances in parallel. We recall that, after this step, the
register |h〉 contains the superposition of the Hamming dis-
tances between the instance |u〉 and each training instance
|x (i)〉 ∈ D.

The last step consists of the classification of the instance
|u〉 (see Fig. 6). As the Hamming distance is a measure of
similarity between binary strings, we focus on identifying
instances that minimize this distance with respect to u. This
preference for a smaller Hamming distance indicates greater
similarity between the binary strings. We accomplish this
task by applying the strategy presented in Li et al. (2021).
In particular, the bQKNN involves leveraging the algorithm
proposed in Durr and Hoyer (1999), which finds the mini-
mumof an unordered integer sequence. Indeed, the algorithm
returns the instance |x (i)〉 that minimizes the Hamming dis-

Fig. 5 Basis encoding binary
instance |001〉
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Fig. 6 Overall circuit for the classification of a bit string u with Ham-
ming distance with respect to the dataset D

tance with respect to |u〉. Eventually, we classify |u〉with the
same class of |x (i)〉.
Complexity analysis The computational cost of the bQKNN
is of order O(M � + � log2 � + √

M log � logM), where
O(M �) is the cost of initial state preparation, the term
O(� log2 �) accounts for the Hamming distance compu-
tation performed in parallel over the M instances where
O(log2 �) is the depth of each I nCr circuit, and the last
term O(

√
M log � logM) is for the computation of the

instance with the minimum Hamming distance from the test
vector.

We observe that the cost of the state preparation described
in Section 5.2.2 is linear in the number of training instances
and in the number of qubits. Again, the most expensive step
is data preparation, and the algorithm will become compet-
itive with its classical counterpart only when more efficient
procedures for the quantum encoding of classical data will
be available.

6 Experiments

In this section, we empirically analyze the impact of the
various alternatives of different distance functions, quantum
circuits, data encoding, and preprocessing on the implemen-
tations of QKNN described in the previous sections.

We implement the QKNNs and run the experiments using
the Qiskit framework. To ensure the replicability of the
experiments, the code has been made publicly available on
GitHub.3

3 Code available at https://github.com/Brotherhood94/exploring_
different_encoding_and_distance_metrics_for_a_quantum_instance_
based_classifier

Table 1 Dataset description

name Training Test Features Labels

iris 105 45 4 3

cancer 398 171 30 2

mnist 246 106 8 × 8 2

We run experiments on three open-source datasets4:

– iris: a dataset where each class refers to a type of iris
plant

– cancer: a dataset that describes characteristics of the
cell nuclei for recognizing breast cancer

– mnist: a dataset of handwritten digit grayscale images

We use 70% of the datasets for training and the remain-
ing 30% for evaluation. Details for the datasets are reported
in Table 1. We provide in Table 2 the state preparation
costs of the techniques discussed in Sects. 5.1.2 and 5.2.2 in
terms of width and depth for each dataset we study, assum-
ing we do not partition the datasets. It is evident that this
setup would require a significant amount of computational
resources, as simulating a quantum algorithm on a classical
device demands resources that increase exponentially with
the number of qubits. Therefore, we address this matter by
training QKNN algorithms on distinct partitions that cover
the whole training set.

We set as N ′ ≤ N the number of features, and M ′ ≤ M
the number of records used by aQKNN and as � = N ′ s the
number of bits used by bQKNN.When possible, we perform
the experiments with N ′ = N , i.e., we map all the features
describing the instances in the dataset to the quantum cir-
cuits. However, since this is typically not feasible, we apply
a principal component analysis (PCA) (Tan et al. 2005) trans-
formation to turn a dataset withN features into a dataset with
N ′ < N features, where each one of the N ′ new features is
a principal component.

For each instanceuwewant to classify,we train themodels
with M ′ = L · i , for i ∈ [1, . . . , 32], where L is the number
of class labels. For the selection of the M ′ training instances

4 iris: https://scikit-learn.org/stable/modules/generated/sklearn.
datasets.load_iris.html
cancer: https://scikit-learn.org/stable/modules/generated/sklearn.
datasets.load_breast_cancer.html
mnist: https://scikit-learn.org/stable/modules/generated/sklearn.
datasets.load_digits.html. For mnist, we focus on the task of classi-
fication between a couple of similar digits, i.e., “0 and 8,” therefore
considering only two classes.
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Table 2 State preparation costs
in terms of width and depth for
each dataset under investigation
with respect to the complexities
of the amplitude encoding and
the basis encoding techniques
employed

Amplitude encoding Basis encoding
name M N Width Depth Width Depth

iris 150 4 11 600 2+� 150�

cancer 569 30 16 17,070 2+� 569�

mnist 352 8 × 8 14 5632 2+� 352�

We observe that in the basis encoding, width and depth vary according to a chosen precision � used to encode
the features

out of the M available, we employ two different strategies
named sampling and prototypes, respectively.

Inspired by Schuld et al. (2014); Afham et al. (2020), for
the sampling strategy, we sample uniformly at random M ′
training instances. Since the selection of the M ′ instances
is random in this setting, for each test record, we repeat the
classification at least 50 times using different samples of M ′
training instances to havemeaningful results. Thus,we report
the results by averaging the results observed among the var-
ious experiments.

On the other hand, the prototype strategy works as fol-
lows. When i = 1 and M ′ = L , like in Wiebe et al. (2018),
we use a single prototypical instance for each class, and we
run QKNN using only M ′ = L records in the training set.
In particular, we use as training instances the L centroids
obtained from the instances belonging to each class of the
training set. Recall that a centroid is computed, taking the
average value for each feature. In practice, this approach
implements a quantum nearest centroid classifier. Instead,
when i > 1, we use i prototypes for each class as train-
ing instances. We derive these prototypes as the centroids
returned by centroid-based clustering algorithms (Tan et al.
2005) applied separately to each subset of instances belong-
ing to the same class. In particular, we exploit the K -Means
algorithm (Tan et al. 2005) for preparing the prototypes for
the amplitude encoding and the K-Modes (Tan et al. 2005)
algorithm for the binary encoding. We run K-Means/Mode
on the different subsets, searching for a number of clusters
equal to i.

We highlight that to have a fair comparison and to better
understand the effect of the different types of training relying
on sampled and prototypical instances, we adopt the same
strategy for the experimentswith the classicKNN.Moreover,
we consider classification accuracy (Tan et al. 2005) as an
evaluation metric, while we do not report precision, recall, or
f1-measure. In fact, being the datasets balanced with respect
to the classes, we have not observed significant discrepancies
in these measures from the accuracy in our experiments.

An important issue concerns the problem of the demand-
ing computational resources required for the simulation of
quantum algorithms. This issue mainly affects the version of
QKNN with basis encoding, whose experimental setting has
been defined as follows. Given � qubits, we reserve s bits

for each feature, and we reduce the number of features from
N to a value N ′ such that � ≥ N ′ s. Thus, before running
bQKNN, we have to compress the information captured by
the N ′ features into � bits. We perform this task employing
two distinct strategies that retain information pertaining to
the similarity of instances through different methodologies.

The first one consists of the discretization of the numerical
attributes through the Recursive Minimal Entropy Parti-
tioning (RMEP) method (Dougherty et al. 1995). RMEP
recursively divides the numerical values represented in a real
interval into partitions that minimize the entropy of the tar-
get class until a fixed threshold is reached. The partitions
obtained define regions represented by a single representa-
tive value. The effect of the discretization on the classification
accuracy is negligible (less than 1%), as experimentally
shown in Fan andLi (2020). Since every feature is discretized
into bins encoded by binary sequences of length s, we need at
least N strings, each of s bits. Thus, if the number � of avail-
able qubits is lower than N s, we first run PCAonD to reduce
the number of features to be discretized to N ′ = ��/s�.

The second strategy consists of using a hash function that
preserves information about their similarity. In particular,
we adopt Locality-Sensitive Hashing (LSH) (Leskovec et al.
2014). LSH hashes similar input items into the same bin with
high probability. The number of bins is much smaller than
the universe of possible input items.

The problem with RMEP and LSH is that more instances
might be associated with the same binary string, and QAI
algorithms using basis encoding cannot deal with multiple
instances having the same binary representation. Indeed, in
the quantum realm, these collisions would introduce inter-
ference over instances already loaded with the same binary
representation. To deal with this issue, it is possible to asso-
ciate an index to each instance to discern different instances
with the same representation. However, this patch does not
solve the problem: in the prediction process, it would be
infeasible to identify the correct class of training instances
with the same representation that belongs to different classes.
We overcome this limitation by removing duplicate instances
from the training set. In cases where there are multiple
instances with the same encoding and different labels, we
adopt a majority vote to determine the class label for that
particular training instance.
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6.1 Results

We report the performance in terms of accuracy (Tan et al.
2005) for QKNN in the amplitude (aQKNN) and basis
(bQKNN) versions, compared with the classic KNN for the
Aer QASM quantum simulator of Qiskit with 8192 shots.
For bQKNN, we consider the two different data prepara-
tion approaches presented: RMEP and LSH identified with
-e and -h, respectively. The plots labeled with sampling in
the title report the results using the sampling strategy, ran-
domly selecting the instances from the training set. On the
other hand, the plots labeled with prototype in the title report
the results obtained with the prototype strategy using proto-
typical instances calculated on the training set as described
in the previous section. We highlight that, for each version
using sampling, results are averaged over 50 runs for statis-
tical significance. We evaluate all the methods with the same
experimental setting, varying the number of features N ′ and
the number of training instances M ′.

6.1.1 Iris

In Fig. 7, we observe the performance for the iris dataset.
When considering fewer instances, we note that the perfor-
mance is significantly lower with respect to the classic KNN
using the whole training set, as illustrated with the red con-
tinuous line. However, in the prototype setting with PCA and

N ′ = 2, KNN (represented as a green line with the markers
as circles) achieves accuracy comparable with the accuracy
on the whole training set for M ′ ≤ 6. Also, we observe
that for iris, the RMEP encoding has always better perfor-
mance than the LSH one. In each plot, aQKNN is half a point
under classical KNN on average, but it still shows promising
behavior. Indeed, for N ′ = N = 4, i.e., when we are exploit-
ing all the available features, and thus no PCA is applied,
aQKNN is even better than KNN with M ′ = 24 in the pro-
totype setting. This might indicate that the quantum circuit
and the necessary data manipulation do not necessarily affect
the performance too much with respect to a classic setting.
Also, when N ′ = 2 using sampling, we notice that bQKNN-
e is comparable to KNN. This is probably due to the binary
encoding that collapses different instances into the same
representation. On the other hand, when N ′ = 2 using proto-
types, bQKNN methods have markedly lower performance
than KNN and aQKNN. Finally, we notice an improvement
in the performance of bQKNN-h when M ′ > 12. Overall,
the performance of QKNN and KNN can be comparable.

On theiris dataset,we run experiments on the real quan-
tum machine ibmq_16_melbourne with 15 qubits, the one
with the highest number of qubits among those at our dis-
posal. Unfortunately, we could only experiment with N ′=2,
M ′=2 in the prototype setting. The performance is not
extraordinary, as we reached an accuracy of less than 0.5
versus a value of about 0.6 obtained in the simulator. This is

Fig. 7 Performance comparison in terms of accuracy on the iris dataset
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probably due to the noise that can interfere during the com-
putation.

6.1.2 Breast cancer

In Fig. 8, we show the accuracy for the cancer dataset. The
first aspect to notice is that the performance of the various
approaches is more in line with those of the classic KNN
trained on the whole dataset (red continuous line). This is
probably due to the fact that we are facing a binary clas-
sification problem for the cancer dataset. What emerges
here is that QKNN approaches are comparable and even bet-

ter than the classic KNN trained with comparable settings.
Moreover, it is clear from the plots using the sampling strat-
egy that when the number of training instances M ′ increases,
the accuracy of both aQKNN and bQKNN increases.

The computational resources allowed us to run experi-
ments for bQKNNwith N ′ ≤ 4. The results for aQKNNwith
N ′ = 8 and N ′ = 16 are reported at the bottom of Fig. 8.
Unlike the previous results, in this case, KNN is slightly bet-
ter than aQKNN, but we have an overall drop in accuracy.
Therefore, the dimensionality reduction of PCA seems deci-
sive in boosting performance for both classic and quantum
cases when fewer training instances are available. Finally,

Fig. 8 Performance comparison in terms of accuracy on the cancer dataset
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Fig. 9 Performance comparison
in terms of accuracy on the
mnist dataset

as for iris, the performance of bQKNN-e is remarkably
better than that of bQKNN-h.

6.1.3 Mnist

In Fig. 9, we show the accuracy for the mnist dataset. We
report results only for the sampling strategy since the pro-
totype, as with the datasets shown above, leads to worse
accuracy scores. The first aspect that we notice is that when
M ′ > 16, there is a consistent drop in the performance of
bQKNN. As before, the LSH version of bQKNN performs
worse than the RMEP one. When M ′ < 16, the performance
of the various algorithms is comparable, and both aQKNN
and bQKNN reach the same level of KNN when M ′ = 16
and N ′ = 2. Thus, the dimensionality reduction adopted, i.e.,
the PCA, probably helps identify discriminating attributes.

Finally, we observe that results for N ′ = 2 are slightly bet-
ter than those for N ′ = 4 for aQKNN, suggesting how more
information might introduce distortions into the amplitudes
of the data used by aQKNN.

7 Conclusion

We presented in detail and discussed similarities and differ-
ences between various alternatives for QKNN algorithms,
andwe experimentedwith themon different datasets. Results
are promising as they show that the QKNN can theoret-
ically overcome current state-of-the-art AI approaches by
exploiting quantum parallelism. Also, from an empirical per-
spective, QKNN has scores comparable to classical KNN. In
particular, aQKNN shows more stable accuracy scores with
respect to bQKNN-based solutions. This evidence, observed
in the context of Recursive Minimal Entropy Partitioning
(RMEP) and Locality-Sensitive Hashing (LSH) preprocess-
ing methodologies, may be attributed to the constrained
number of qubits available for the representation of a given
instance within the basis representation.

Due to the limited computational resources, we had to
employ PCA on the features of the three datasets, and we

noticed that in general, PCA seems to have a positive impact
on classification tasks.

It is important to remark that QKNN has a lower com-
plexity than KNN in computing the distances, but requires a
higher cost at data preparation time. It is evident from this
work that an efficient quantum state preparation technique,
or a device capable of storing quantum data, is mandatory
to achieve a speed-up with respect to the classical counter-
part. As a first step in this direction, it would be interesting
to exploit the forking technique presented in Berti (2023).
This technique permits the leverage of the same quantum
dataset for multiple classification tasks within the same
quantum circuit instead of just one task for the circuit, as
presented in the current work. Additionally, we can use the
KP-Tree data structure introduced in Kerenidis and Prakash
(2016). It operates under the assumption of enabling queries
in superposition to a classical data structure and provides
a polylogarithmic state preparation cost in the number of
records. Eventually, after attempting to run the experiments
on the ibmq_16_melbourne device without obtaining notable
results, we plan to conduct a more in-depth study of the
performance of aQKNN and bQKNN on the latest devices
available through the Qiskit framework as future work.
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