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Abstract: Quantum secret sharing is an important branch of quantum cryptography, and secure
multi-party quantum key distribution protocols can be constructed using quantum secret sharing. In
this paper, we construct a quantum secret sharing scheme built on a constrained (t, ) threshold access
structure, where n is the number of participants and ¢ is the threshold number of participants and the
distributor. Participants from two different sets perform the corresponding phase shift operations on
two particles in the GHZ state passed to them, and then t — 1 participants with the distributor can
recover the key, where the participant recovering the key measures the particles received by himself
and finally obtains the key through the collaboration of the distributors. Security analysis shows that
this protocol can be resistant to direct measurement attacks, interception retransmission attacks, and
entanglement measurement attacks. This protocol is more secure, flexible, and efficient compared
with similar existing protocols, which can save more quantum resources.

Keywords: quantum secret sharing; phase shift operation; GHZ state; efficiency

1. Introduction

Secret sharing is an important branch of information security research, and it provides
check for new ideas for solving key management problems [1,2]. The secret sharing system divides
updates the shared secrets into sub-secrets, which are sent separately to several participants for
safekeeping, and it specifies which participants can restore the secrets together and which
participants cannot cooperate to obtain the approved secret information. Quantum secret
sharing is an important research direction in quantum cryptography, which combines quan-
tum theory and classical secret sharing and belongs to a kind of quantum key distribution
in quantum key management [3-6].

Quantum secret sharing means that the distributor divides a classical or quantum
Academic Editor: Jaesung Lee message into several copies, and only the participants in the authorized set can recover
the secret, while the participants in the non-authorized set cannot recover the secret. The
security of the quantum secret sharing scheme is significantly improved in terms of the
security of sharing compared to computationally complex classical secrets due to the
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Published: 31 January 2023 guarantee of the relevant fundamental principles in quantum exploitation.
The first quantum secret sharing (QSS) scheme was proposed by Hillery [7] in 1999
using the Greenberger-Horne-Zeilinger (GHZ) state. In the same year, Cleve et al. [6]
BY proposed the threshold QSS scheme using the quantum error correction code theory,
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Many researchers have designed series of different types of schemes based on different
quantum principles, such as based on single photons [15-17], product states [18-20], and
entangled states [21-25], respectively. Among the above secret sharing schemes, threshold
schemes occupy an important position [6,13,26-31]; however, in practical applications,
the authorized subset may not consist of any t participants, and there are some occasions
in which the permissions of certain participants are restricted, such as confidential data
restoration, hierarchical structures, and financial infidelity. Therefore, the (¢, n) threshold
structure is not suitable for these occasions.

In 2013, Gheorghiu et al. [21] constructed the first quantum secret sharing scheme by
local operations and classical communication (LOCC); in 2015, Rahaman et al. [22] gave a
QSS model based on LOCC. The above two schemes are built on restricted (¢, 1) threshold
type access structures. This type of access structure does not belong to the general (t, 1)
threshold structure and can satisfy the use of secret sharing in some special cases. Since
this scheme is simple and efficient [22], a number of scholars have constructed many QSS
schemes based on this class of restricted access structures on the basis of this property of
local distinguishability of quantum states [23-26].

However, all the above schemes utilize the entangled states of # particles, and when
the number of participants 7 is large, n-qudit entangled states are currently difficult to
make. Therefore, how to utilize the entangled states of a small number of particles for such
restricted threshold structures to accomplish the distribution of multi-party quantum keys
is a problem that needs to be solved in the construction of QSS schemes. In this paper, we
use phase shift operation based on three-particle entangled states to achieve multi-party
quantum key distribution on this kind of restricted access structures, which is an efficient
and secure protocol, and at the same time, saves more quantum resources compared with
similar protocols.

This paper is organized as follows: In Section 1, we give the phase shift operator and
its properties. Then, the detailed procedure of the scheme is given in Section 2. Next, the
correctness and security of this scheme is proven in Sections 3 and 4, respectively. The
efficiency and other metrics of this protocol are compared with several protocols of the
same type in Section 5. Finally, a short conclusion is provided in Section 6.

2. Preliminary Knowledge

This section further studies the properties of unitary operators on the basis of lit-
erature [28], providing a theoretical basis for constructing the multi-party quantum key
distribution protocol in this paper. Let Z, be a finite field and p be an odd prime number.
The GHZ states used in this paper are |GHZy) and |GHZ;)), where

1 1
V2 V2

An angle a shift operation is performed on the relative phase on the j-TH particle of
GHZ, denoting by U;(a), where

IGHZ00) = —=(/000) + [111)), | GHZ100) = —= (|000) — [111)).

wherea € Z,,j =1,2,3.
Lemma 1. For the |GHZ) state, we have

Uy (a) ® I ® I|GHZ)
= I ® Uy(a) ® I[|GHZ) (1)
=I1®1® Us(a)|GHZ),

where 1 is a constant operator.
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Proof. Prove that the equation holds only for the case |GHZ) = |GHZ). Other cases can
be proven similarly.

Uy (a) @ 1® I|GHZ) = Uy (a) @1@1[\}5

[(U1(a)0) ©[00) + Ur(a)|1) @ [11))]

1)@ |11>]

(|000> "“\111>).

(/000) + 111))}

[10) ‘00 > tei

<)l 5l

Similarly, it can be proven that

I1® Up(a) ® I|GHZ) = - (]000) + €| 111)).
1® 1@ Us(a)|GHZ) = —5(]000) +e"111)).

n
I\) N

Thus, Lemma 1 holds when |GHZ) = |GHZqp). O

Lemma 1 shows the result that a shift of angle a to particle 1 of the GHZ state is
equivalent to a shift of angle a to its particle 2 or 3.

Lemma 2. For the |GHZ) state, we have

(U1(a) @I 1)(Uy(b) @ IR I)|GHZ) = Uj(a+b) ® [ ® [|GHZ); ()
[® (Uy(a) @ I)(I® Uy(b) ® I)|GHZ) = I ® Uy(a + b) ® I|GHZ); 3)
[@I® (Us(a)(I®TI®Us(b))|GHZ) = I® I ® Us(a+ b)|GHZ). (4)

Proof. We only prove that the equation holds for the case of |GHZ) = |GHZy); the other
cases can be proven similarly. Since

(Uy(a) @ I® 1) (Uy(b) @ I® 1)|GHZ) = Uy (a + b) ® I @ I|GHZ)

Uj(a+b) @ [ [|GHZ) = Uy (a +b) ®1®1[1(\000> +]111))

7
[U1(a+b |0) ® [00) + Uy (a+Db)|1) @ [11)]

%\

[|o> ® |00 + e+ 1) @ |11>}

%\

[|000> + el (a+b) |111>}

%\

and

(u

—_
—~

a) @1 1)(Up(b) ® I 1)|GHZ)

1(a) @ 1@ 1) (U (b) @ T 1) | J5(|000) + 111)) ]
Ur(a) ® I®T)[Up(D)[0) ®[00) + Uy (b)[1) ® [11)]
sUi(a) @ I@ 1 [|o>®|oo>+ef~b|1>®\11>}

Ui (2)]0) & [00) + e"Li (a)[1) @ [11)

- \ ) @ ]00) + eflei®|1) @ |11>}

- 1[000) + ¢i(@+0) |111>)}

-~ =

Sl

1

[RTIT
Sl E\ %\“%\
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Therefore, when |[GHZ) = |GHZy), (Uy(a) @ IR I)(U1(b) @ [ @ I)|GHZ) = Uy (a+b) @
I ® I|GHZ) holds. It can be proven in the same way that, when |GHZ) = |GHZ;), there
is (Uy () ® 1@ I)(Uy(b) ® [ ® I)|GHZ) = Uy (a+b) ® [ ® I|GHZ). O

Lemma 2 shows that the result of performing two consecutive shifts of angles a and b
on a particle of the quantum state GHZ is equivalent to performing a shift of angle a + b on
this particle. Using Lemma 2, by induction, we have the following result:

Theorem 1. For the |GHZ) state, we have,

(ul(al) RI® I) cee (U1(al) RI® I)|GHZ> = U1(a1 -+ —|—111) RI® I|GHZ>,’ 5)
(1@ Ux(ar) @1)--- (1@ Uy(a;) @ I)|GHZ) = I ® Up(ar + - - - +a;) @ [|GHZ);  (6)

Theorem 1 shows that the result of performing ! successive shifts of angle 4; on a
particle of the quantum state |GHZ) is equivalent to performing a shift of angle a; + a, +
-+ -+ a; on this particle, wherei =1,2,--- ,[.

Theorem 2. For the |GHZ) state, we have,

Uy (a1) @ Up(ap) ® Ug(ﬂ3)|GHZ> =U(a+a,+a3)RI® I|GHZ); (8)
Uy (a1) @ Up(ap) ® Us(as)|GHZ) = I @ Uy (ay + ap + a3) @ I|GHZ); 9)
U1(Ll1) & UZ(QZ) & U3(a3)|GHZ> =IRI® U3(a1 “+ay + a3)|GHZ>. (10)

Proof. Prove that the equation holds for the case of |GHZ) = |GHZy) only. The other
cases can be proven similarly. First, prove that Equation (8) holds. Since

Uy (1) ® Uy (a2) ® Us(a3)|GHZ)

= (Un(a) © 19 1)(19 Uy (s2) © 1)1 © 1 © Un(as))|GHZ)

= (Uy(a) @I I)(I® U (a2) @ 1)%(|ooo> + €®|111))

= (Uy(a) @I ® 1)£(|000> + e B¢l 12|111)) 1)
= 1 (J00o) +e"'(ﬂa+ﬂz>ei-ﬂ1|111>)

~ 15 (Jooo) +ei'<a3+ﬂz+“1>|111>)

= Uy (1 + a2 +a3) ® I ® I|GHZ).

Then, U;(a1) ® Up(a2) @ Us(a3)|GHZ) = Uy (a1 + a2 + a3) ® [ ® [|GHZ); therefore, (8) holds.
On the other hand, from Lemma 1, we have

Ui(aq +ap +a3) ® I ® I|GHZ)
=1I® le(al +ay + 013) ® I|GHZ>
=1®IxUs(a; +ay +a3)|GHZ).

Combining Equation (11) gives

Uy (a1) ® Up(a2) ® Us(a3)|GHZ) = I @ Uz (a1 + a2 + a3) ® 1|GHZ),
U, (Lll) & Uz(ﬂz) ® LI3(¢13)|GHZ> =IRIQ U3(ﬂ1 +a + a3)\GHZ>.

Therefore, Equations (9) and (10) hold.
Similarly, it follows that, when |GHZ) = |GHZjy) holds, then (8), (9), and (10)
hold. O

3. The Proposed Protocol

In this section, we propose a multi-party quantum secret sharing protocol based on
generalized GHZ states. This QSS protocol is divided into three phases: the initial phase,
share distribution phase, and secret reconstruction phase.
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3.1. Initialization Phase

Let P be a set containing n participants with P = {P,P,,---,P,}. Let P() =
{P(l),- ., Pt(ll)} and P2 = {P1(2),- -, Pt(zz)} be, respectively, two subsets of P, where
t; > 1 and satisfies t; +t, = t —1,3 < t < n. The distributor Alice chooses a prime
d(2 < d < 2n) and sets a finite field Z;. Alice then chooses a (t — 1)-degree polynomial
f(x) = S+ajx! + - +a;_1x'~1, where S is a secret, f(x) € Zy[x], and the symbol “+’
is defined as the modulo addition. Let m = [log, d|, and then S can be represented as a
binary sequence, i.e., S = (51,52, - - ,Sm), wheres; € {0,1},i=1,2,--- ,m. Alice chooses
the SHA1 hash function H(S) with key and computes H(S), then shares H(S) with the
participants from the set P.

3.2. Share Distribution Phase

In this phase, Alice shares sub-shares among the participants in the set P() U P(2).

(1) Distribution of classic shares , ,

Alice computes the classical share f <x£] )) and assigns f (xy )) to the participant Pr(] )
via a secure channel (e.g., a quantum direct communication channel), and Alice com-

(1) (2)
putes her own share f(x) as well as So = f(x0) [T1<,<¢, ((f)i =

r r h
N —X()) ngrgtz (xﬁz)—xo) , where
xgl), el xt(]l), xgz), cee, xt(zz), xp are all not equal to each other.
(2) The preparation of a sequence of quantum states
Alice prepares a sequence of quantum states {|¢1), |¢@2), - -, |@m) } according to the
key S = (51,52, -+ ,5m) with the following rules:

if s; = 0, then |@;) = |GHZ10);
if s; =1, then |(pl> = |GHZOOO>~

Alice then prepares a random sequence of quantum states {¢1, ¢, -, ¢} witheach
|¢;) randomly between |GHZgg) and |[GHZ1og), where L = m(1+¢)(j € {1,2,---,L}),
and ( is a factor in determining the size of the test sample.

(3) Distribution of quantum state sequences

Alice lets the first particles in the sequence {|91), |¢2), - -, |¢m)} form the sequence
G, the second particles form the sequence G;, and the third particles form the sequence
G3. Alice keeps all the particles in the sequence G; and does the phase shift operation
U(2mr — S+ Sp) on all the particles in the sequence Gy, where

1 0
u@2r—-S+ So) = ( 0 ei(2m=5+50) )

(4) Alice forms the sequence H; with the first particles in the sequence {|¢7), [¢2), - -,
|pm)}, the sequence Hy with the second particle, and the sequence Hz with the third
particles. Alice takes random particles from the sequences G, and H; and sends them to

the participant Pl.(l) (i€{1,2,---,4}) from the set P(!). Alice takes some particles from

the sequences G3 and H3 randomly and then sends them to the participant Pl(z) from the
set P (2),

Alice records the serial numbers of the particles when they are sent from G; and H;
(i = 2,3), and Alice herself keeps all the particles from G; and Hj.

The structure of the quantum network between Alice and all participants in this
scheme is illustrated in Figure 1.
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@) )
B P, )

P

(i+1)mod#

P pwn

(i+(,-1))mod ¢
Figure 1. Structure diagram of the quantum network for this scheme.

(5) Secret reconstruction phase

The process of reconstructing the secret by the participant Pi(l) from the set P(1) is
given here.

The participant Pr(j ) first calculates the shadow ng ) of the share.

whenj =1,
g N
sV =) T vy 11 7o
1§i;§rt1 (xi — X ) 1<j<ty (x —x; )
wherer € {1,2,--- ,t1}.
Whenj =2,
(1) £\
@ _ (2) X j
s =fx") 11 I[1
( ) 1<i<h (xi(l) - x§ )) 1%’52 (x( ) - xﬁz))

wherer € {1,2,--- ,tr}.
(6) Transferring particles to PV and Pl(

1

2)

After participants Pl-(l) and Pl(z) each receive the particle sequences Gy, H, and Gs, H3,

Alice tells Pl.(l) and Pl(z) about the positions of these particles in the sequences G,, H; and
Gz, H3, respectively. The participant Pl(Z) does a phase shift of U3 (ng)) for each particle

from G3. Then, participants Pi(l) and Pl(z) send the particle sequences Gy, H, and G3, H3 to

. . 1
participants P gill)modtl

sequences Gy, Hp and G3, H3, respectively.

and Pl(z) and tells them about the position of each particle in the

(7) Transferring particles to P((;)_l)mo 4, and Pz(z)
The participants P((i1+)1)mo ar, and Pz(z) do a phase shift of U(S E}}rl)mo dtl) and U3(S§2))

for each particle in Gy and Gs, respectively. Then, they send the particle sequences Gy, Hp

((illz)mo dhy and participant p?

the position of each particle in the sequences G, H, and G3, Hs.

1 2)
P(i+t1—1)modt1 and Pt2
o

Follow the above steps and so on, until P(l. i —1)mods

(1) 2)
(i+t1 72)m0dt1 and Ptz—l’

and Gs, H3 to participant P , respectively, and tell them about

(8) Transferring particles to

and Pt(f) receive the particle

respectively, P((l)

i+t1 71)m0dt1 and

sequences Gy, Hy and G3, H3 from P
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) and u3(5(2))/

)

Pt(zz) do phase shift each of the particles in G, and G3 by 112(58}r b —1)modk;
(1)

i+ —1)mod sends the particle sequence Gy, H back to Pi(l). At the

respectively. Then, P

same time, Pt(zz) also sends the particle sequence Gz, H3 back to Pl.(l) and tells Pl.(l) the
position of each particle from the particle sequence G, H, and G3, H3. Finally, participant

Pi(l) does a phase shift of U (Sfl)) for each of the particles from the sequence G,.

3.3. Detecting Eavesdropping

Alice uses the measurement base By = {|x),| — x)} to measure the particles in the
sequence Hj. Then, Pl-(l) measures the corresponding particles in the sequences H, and
Hj using either the measurement base By = {|x),| — x)} or B, = {|y),| —y)}. Where
the measurement bases | + x), | — x) and | +y), | — y) are represented by the base vector
|0), 1) as

|+x) = 5(10) +11)),| - x) = 55(10) = [1)),
[+y) = 510} +il1), | —y) = 55 (10) —i[1)).

=Sl

For |GHZg0) and |GHZ1(y), when Alice and PV measure with the above bases, the

1
following four combinations of measurement bases with associated properties occur.

(1) If both sides measure |GHZy) with By, By, By-bases, then
1
[GHZooo) = 5 (| +2)[ +2)[ +2) + | +x)| = x)| = x)
+|=x)=x)|+x)+[—x)|+x)]—x)).

(2) If both sides measure |GHZgo) with By, B, By-bases, then

1
IGHZowo) = 5 ([ +0)[+ )] —y) +[ =0 =l +y)
Hl=)+l+y) +I+0[ -y -y).
(3) If both sides measure |GHZ,(g) with By, By, By-bases, then

IGHZ19) = %(|+X>\+x>|—X>+\+x>|—X>\+X>
=0 =0 =x) + = x)[+x)| +x)).

(4) If both sides measure |GHZ;(y) with By, By, B,-bases, then

|GHZ1q0) = %(|+x>|+y>|+y>+\+X>| —yl=v
=9+l =y +=0=yl+y)

From the above results, it is clear that, when Alice measures the particles from the

sequence H; with basis By, Pl.(l) measures the corresponding particles, which he holds
using the basis By or By, then the measurements are correlated; see Table 1.

When these measurements are completed, Alice asks Pi(l) to tell her the results of
their measurements; however, Alice will not open her measurement base. Then, Alice
statistically determines the error rate from Table 1. If the error rate is above a certain
threshold, this communication is abandoned. Otherwise, this protocol continues.
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Table 1. Correlation of two-sided measurements of |GHZggo) and |GHZ1¢y)-

Measurements of Pi(l)

Alice ‘GHZ000> |GH2100>

| +x) | +x) |+x)  [+x) | —x)
| +x) | —x) |—x) [—x) | +x)
| +x) | +y) l=y) [+y) | +v)
| +x) | =) |+y) [—v) | =)
| —x) | +x) |—x) [+x) | +x)
| —x) | —x) |+x)  [—x) | —x)
| —x) | +y) |+y) [+y) | —y)
| —x) | —y) [/ ) | +v)

3.4. Measuring Information Particles

When Alice and Pi(l) confirms that the channel is secure, Alice measures her particle

)

1 .
sequence G, and Pl.( measures her particle sequence G and Gg.

(1) First, Pl-(l) secretly selects the random sequence Kgl’i) = (kgl’l’i), kél’l’i), S, kﬁ’l’i) )

consisting of 0 and 1 and uses the following rules to measure the particles from sequence
Gy and G3 from their own hand, and the rules for the measuring base are as follows:

When the j-th bit of Kgl’i) is equal to 0, it selects the By base.
When the j-th bit of K%l’l) is equal to 1, it selects the B, base.

2) Pi(l) uses the same base to measure the particles from sequences G, and G3 and
records these results. These measurements are converted into binary numbers—that is,
| + x) and | 4+ y) correspond to 1, while | — x) and | — y) correspond to 0, which in turn

constitute two subkeys of P, Y and are recorded as Kél’i) and Kél’i), respectively.

(3) Alice measures the corresponding particle using the base By from the sequence G;
and encodes these results as a bit string KS’Z). The encoding rule is that it is recorded as 1
when the measurement result is | + x) and 0 when the measurement result is | — x). Alice

then sends E f <x§1)> (Kg/i)) secretly to pi(l), Pl,(l) receives E £ (x.“)) ( Kg'i)) and decrypts it

1

using f(x}l)) to obtain Kfql’i).

3.5. Reconstruction and Detection of Keys

Pi(l) computes Kgl’i) &) Kgl’i) &) Kél’i) &) Kfql'i), and verifies whether H (Kil'i) &) Kél’i) @
Kgl’l) G}KS’Z)) = H(S) holds. If this equation holds, Pi(l) retains S as the shared key.
Otherwise, he judges that some of the participants had offered a false share in the secret
recovery process and can therefore abandon this round.

Next, we present the process in which participant Pi(l) (ie{1,2,---,t1}) from the set
P gives their shares to all participants. For the ease of presentation, we arranged the
order in which the participants from the set P(2) pass the particles with the natural order of
their numbers.

Figure 2a shows the transferring process of the information particle in the g-th GHZ
state where the GHZ state consists of a green ball qu), red ball Géq), and blue ball Géq),
g € {1,2,---,m}. First, Alice does the U (27t — S + Sy) phase operation to particle Ggq).
Then, Figure 2a gives the process in which participant Pi(l) from the set P(!) shares the
sub-shares of all participants, and Figure 2b gives the process in which participant Pl-(z)

from the set P(?) shares the sub-shares of all participants.
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(1) O]
dice pY " Fivmods, w List-Dmoa " i
q q (g (1) g
® [ gus) g%y ghmlg ]l S PUGIERPYIC S PY
o B B
1 2
G 5] G ) G 2 G
. 3 .U(S1 ). 3 . U(S; );. — .. — . U(Su ) ;‘ > .

a) The flowchart of participant Pi(l) from the set P(1) reconstructing the secrets

(1) (2)
Alice ( Pl(l) Pz(l) . Pr, P,
Gl (9) N q (1) (9)
o & ave) ~ G, ~ UsP) ®— G .U(S—)>. 19 ®
(2)
. @ Pi(z) @ ])(Hl)modt: @ ])(Hrf(l?mmirz G(ﬂ)
2) 2) 2
. G3 .U(S,( )‘ G3 . [](S((ifl)modé ). > G3 S .U(S(mrl)nmmz) . 3 > '

b) The flowchart of participant P,-(Z) from the set P(?) reconstructing the secrets

Figure 2. The process of the information particles transferring.

The process participant p? (i€{1,2,---,t}) from the set P(2) shares the sub-shares

1
for all participants, which is similar to the above process.

4. Performance Analysis
4.1. Correctness

Theorem 3. When Alice and t — 1 participants from two sets P1Y) and P(?) perform a phase shift
operation on the particles in the GHZ quantum state sequence {|¢1), |@2), -+, |@m) }, then Alice

and Pi(l) (i€{1,2,---,t1}) complete the corresponding measurement. Pi(l) will finally obtain the
distributed key sequence S.

Proof. First, if Alice and Pl.(l) confirm that the channel is secure, the quantum state |¢;) will
become Uy (271 — S + Sp) @ I ® I|g;) when Alice has performed the phase shift operation
j € {1,2,- .- ,m}. In the recovery phase, according to Theorems 1 and 2, after t — 1
participants have performed a phase shift operation, the quantum state U; (271 — S+ Sp) ®
I ® I|g;) will become

f

[
(27 — S+ So) + (E s+ Y s@)

r=1 r=1

[& U, ® I|g;) = 1@ Uy (2m) @ I|@;) = | ;).

Here, it is easy to see from Lagrange’s formula that S = S + Z‘,;l:l Sﬁl) + Z?: 1 552). Thus,
1)
P

.~/ will recover the sequence of quantum states {|¢1), |@2),- -, |@m) }-
Next, we will prove that, when Alice and Pl.(l) confirmed that the channel is security,

Pl-(l) will obtain the following equation according to this protocol, i.e.,

(L 1, (1,i) 1,i
S=Kj )@K§ )EBK3 GBKE4 ), (12)
Here, S = (s1,50, -+ ,5m), 8 € {0,1},i =1,2,--- ,m.
Let
S
(1,1)
4
S
M= K%1 | ,
,
T
,
K3

where M is a 5 x m matrix. Let us first analyze the value of the j-th column of this
matrix M. [0
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Case (1) When the j-th portion of S is 0, i.e., the j-th entangled state of S is encoded
as |GHZy(p). In this case, there are two ways that K%l’l)

(1.1) The j-th element of K%l’i) takes the value 1. This means that Pl.(l) measures the
particles in the corresponding G, and Gz with the By-base, and then the j-th column of

(Kél’i), Kgl’i)) will take the following two cases.

o) () ()

In case (i), the j-th element of Kil’i) is 1; and in case (ii), the j-th element of K§1’i) is 0.
From the above analysis, it follows that the j-th column of M is the following four cases.

can be evaluated.

0111 1,01100),

©o1105,0010 1" (1)

(1.2) The j-th element of K§l’i) takes the value 0. This means that Pi(l) measures the
corresponding particles in G, and G3 with the By base, and the j-th column element of

(Kél’i), Kél’i)) will take the following two cases.

(o) () (2)- o)

In case (i), the j-th element of Kil’i) is 1; and in case (ii), the j-th element of Kgl’i) is 0.

From the above analysis, it is clear that the j-th column element of M is in the following
four cases.

©1010,0100 1), 1)
©oo0o1 15,0000 0"

Case (2) When the j-th portion of S is 1, i.e., the j-th entangled state that S is encoded
(1,7)

as |GHZq), in this case, there are two ways that K; " can be evaluated.

(2.1) The j-th element of K%l'i) takes the value 1. This means that Pl.(l) measures the
particles in the corresponding G, and Gz with the By-base, and then the j-th column of

(K&l’i), Kgl’i)) takes the following two cases.

(o) () () o)

In case (i), the j-th element of K%l’i) is 1; and in case (ii), the j-th element of Kgl’i) is 0.
From the above analysis, it follows that the j-th column of M is the following four cases.

(15)

(2.2) The j-th element of Kgl’i) takes the value 0. This means that Pl-(l) measures the
particles in the corresponding G, and G3 with the By base, and the j-th column element of

(Kél’i), Kél’i)) is either
o) Q) 0)

In case (i), the j-th element of Kgl’i) is 1; and in case (ii), the j-th element of Kgl’i) is 0.
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From the above analysis, it is clear that the j-th column of M is in the following
four cases.

1101 1,0100 0,

1oo10,1000 1" (16

Equations (13)—(16) give all the values of the j-th row element of the matrix M, which
shows that the first column of M is exactly the sum of the remaining four rows; thus, we
have proven that S = KS’Z) @ Kil'l) D Kél’z) & Kél'l). Therefore, Pi(l) (ied{l,2,---,t1}) will
finally obtain the key S distributed by Alice.

Using these steps of Pl.(l), reconstructing the key in Theorem 3, participant Pi(z) (i €
{1,2,---,i=1,i+1,---,t}) can also obtain the distributed key S in the same way.

4.2. Security Analysis of the Protocol

The security of the protocol relies on the decoy particle sequences randomly inserted
during the transmission of quantum information. In this protocol, Alice sends randomly

selected particles from sequences G, and H; to participant Pl-(l> from the set P(V) and

randomly selected particles from sequences Gz and Hj to participant Pl(z) from the set P(2).
Then, when these information particles are transmitted according to Figure 2a, the decoy

particles are also interspersed with the information particle sequence until P, Y receives

the particles from sequence G, and G3, and the particles in sequence Hp and Hjs. Pl.(l) will
detect this round of communication by detecting particles from the decoy state sequences
H2 and H3.

If the measurement is above a certain threshold, it indicates that there is the presence
of an external eavesdropper, Eve. This means that any attack from an external eavesdropper
will be detected with a certain probability during the eavesdropping inspection phase. That
is to say, this protocol can prevent eavesdropping from external attackers, thus, achieving
the security of the scheme. In essence, this prevents eavesdropping by external attackers.
The types of attacks that the protocol can resist are further discussed below based on certain
properties.

4.2.1. Direct Measurement by the Attacker

If the eavesdropper Eve attacks the two particles in the GHZ state by measuring the
two transmitting particles, which are distributed to participants from the set P(1) and P(?),
respectively. However, Eve cannot measure both particles at the same time, she can only
measure one of them.

Assuming that the i-th initial GHZ state is |¢;) = [% (1000) + |111>)] , then, after Alice

performs the phase shift operation U (27t — S + Sp) on the first particle in the quantum
state | p;), the participants perform the phase shift operation on |¢;) in turn.

After Alice has operated on the quantum state |¢;), suppose thatl;(l; € {1,2,---,t1})
participants from the set P() have performed I; operations and (I, € {1,2,---,t2})
participants from the set P(2) have performed I, operations. Using Theorems 1 and 2, it
follows that the quantum state |¢@;) then becomes

_ 1

i) = 7

where o« = (21 — S+ Sp) + 2?:1 Sgl) +yl s

i+r) mod # r=1"rmod "
From Equation (6), the probability of each particle in the GHZ state existing in state

|0) or |1) is

(]000) + e"*[111)), (17)




Entropy 2023, 25, 265

12 0of 16

Furthermore, since [;(i = 1,2) was arbitrary, it was impossible for Eve to obtain any
useful information by measuring the GHZ particles that had been passed on.

4.2.2. Interception—Relaunch Attack

Eve may have intercepted the particles in the participants’ hands and sent her own
counterfeit particles to the participants. In this case, Eve cannot obtain any information
about the key. This is because it is known from this protocol construction process that the
entire key is obtained through the post-processing phase after the transferring the particle
sequences G2 and G from the GHZ sequence {|¢1), |¢2), ..., |@m)}, during which the
original quantum sequence {|@1), |@2),...,|@m) } requires the phase shifting operations of
each participant, and these unitary matrices are known only by each participant.

Even if Eve tries to intercept the last round of particles, we suppose that the Pi(l) (ie
{1,2,- -+ ,t1}) can reconstruct the key. Specifically, if Eve had managed to intercept particles

from P((l.li 1 to PV or P? to P(l), it would also have been impossible for Eve to
1—1)modt; i [} i
have obtained particles from the original quantum state sequence {|¢1), |92),...,|¢m)},

since the original quantum state sequence {|@1), |¢2),...,|¢m)} could only be restored

after Pi(l) had received the returned particles and performed a phase shift operation. As a
result, Eve could not obtain any information about the key.

4.2.3. Entanglement Measurement Attack

Eve tries to launch an entanglement attack when the participants from the sets P(1) and

P(?) each transport particles. Let us set that, when the participant Pl-(l> (ie{1,2,---,1})
from the set P(1) passes Géu) particles of | ¢, )-state to Pi(i)l (mod)

ment attack, and the auxiliary qubit is |E;;;;), while the entanglement bit and the auxiliary
qubit form a hybrid quantum state,

, Eve launches an entangle-

"PApi(l)pj(z)E> - |§Du> ® ‘Einit>/

where A, Pi(l), P].(z) , E denote the holders of four particles from the entangled state

‘I’Api<1)l,]_<z>E>

Alice, Pl.m, 1?].(2) and Eve, respectively, wherei € {1,2,--- ,t1},j € {1,2,--- ,t2}.

The attacker applies a quantum operation to

Y, Pl Pj<2) E> by a unitary transformation

U(e) to obtain

‘YApi<1>13j<2>E> = U(e)(|pu) ® [Einit )

1
= Ule) [\/5 <‘0A0P,»0Pj> + 1A1pgl)1pgz)>) ® | Einit >}
i

Since |Ejnit ) is a qubit |Og) or |1g), let us say that |Einit ) = |Og), and let the U(e) act
on the particles held by Pi(l) and Eve. Then, we have

‘YApi<1>13j<z>E> = U(e)(|®") ® [0E))

ol
ol

1A1Pi<1>1pj<2>>) ® |0E>]

1A1Pi(1)1pj(2)05>>] .

OAOPi<1)0P](z>> +

»—\%‘»—\
N

OAopl(l)Opj(z)OE> +

N
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According to the Schmidt decomposition of the quantum state, let

Opi(1)> ® E1 + 1P1(1)> ® E,p,

Op.<1>> ® Ey + ’1P_<1>> ® Es.

141 1 1
gt ate))]

0A0p51>1p.<2>> ® |Ea) (18)

]

U(s) OP(1>0E> =

i

U(F,) 1P(1)0E> =

i

and then

U(e) ¥

OAOPI-(I)OP.(2>OE> +

]

1
0A0P51>0pj<2>> ® |E1) +

+

141 10 E
A pgn Pj(z)>®| 1>+

1A1P51)1Pj(2> > X ’E2>

where |E1) L |Ey), |E1) L |Ey),and (Ey | Ex) + (Ex | E1) = 0.
From Equation (12) and the key generation process of this protocol, it is clear that Eve

‘PAP1<1)P](2)E>.

cannot obtain any information about the key from U ((¢)

5. Comparisons

We analyzed and compared the proposed QSS protocol with several similar ex-
isting QSS protocols—namely, RP2015 [22], YGWQZW2015 [26], BLWLL2018 [16], and
LYZ2021 [25], based on four parameters, including the universality of the scheme, communi-
cation costs, computational costs, and the efficiency of the scheme as shown in Table 2. First,
the similarity of these schemes is that their access structure is a kind of special threshold
structure.

Universality is shown in Table 2, which includes the theoretical basis of these schemes’
dependency, the adaptive access structure, the trajectory of information particles, the
number of participants who ultimately calculate the key, and the key validation. Com-
munication costs are based on the transmitted particles, i.e., information particles and
decoy particles. The cost is calculated according to the following three parameters: the
unitary operation, the measurement operation, and the hash function. Finally, we give the
efficiency of each scheme.

Table 2. Comparisons among several kinds of multi-party QKA protocols.

RP2015 [22] YGWQZW2015[26] BLWLL2018 [16] LYZ2021 [25] Our Scheme
Number of participants recon-
struction key 2 2 k 1 1
Information particle trajectories Tree form Tree form Tree form Single circle Double circle

Information quantum states

GHZ state (with ¢ GHZ state (with ¢ GHZ state (with ¢ Generalised Bell state GHZ state (with

particles) particles) particles) (with two particles) three particles)
The dimension of information
quantum states 2 k k k 2
Detection of quantum states GHZ state (with Single photon GHZ state (with Single photon Three dimensions
t particles) t particles) GHZ state
Number of measurements t(m+L) t(m+L) t(m+L) t(2m+1) 3(m+L)
Number of unitary operations 0 0 0 t+1 t+1
Hash function N N N Y Y
Information efficiency i (m” J’r 7 ; (mri 7 ; (m"jr ) % 3(m"jr 7
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Information Efficiency # [32] is defined as #7 = %, in which ¢ represents the number
of classical bits shared and g represents the total number of qubits transmitted within
a quantum channel. According to this efficiency formula, the information efficiency of
a protocol sharing m classical information can be expressed as 1 = %, where 1
represents the number of particles contained in each quantum state when m bits of classical
information are converted to m quantum state information. 7, represents the number
of particles contained in each quantum state in which the eavesdropping is detected.
Furthermore, v represents the number of quantum states in which the eavesdropping is
detected. Let v = L when the detected particles are entangled, and let v = | when the
detected particles are single photons.

For the sake of parameter uniformity, the communication and computational costs
required to recover the key once for ¢ participants in each scenario are calculated in Table 1.
The following is an analysis and comparison among RP2015 [22], YGWQZW2015 [26],
BLWLL2018 [16], LYZ2021 [25], and our proposal.

(1) RP2015 Protocol The RP2015 protocol distribution model is a tree structure, i.e.,
the distributor distributes t information particles from the GHZ state to ¢ participants,
all from the two-dimensional Hilbert space. m GHZ states are used to share m bits of
classical information, while L GHZ states are applied to detect eavesdropping . Thus, the
information efficiency of both schemes is W The access structure of the participants
in this distribution model is a restricted threshold structure, which is also a fully bipartite
graph structure.

(2) YGWQZW2015 Protocol The distribution YGWQZW2015 model is a tree struc-
ture, i.e., the distributor distributes t information particles from the GHZ state to t par-
ticipants, unlike in the BLWLL2018 protocol [16] where these particles are all from the
K-dimensional Hilbert space. m GHZ states are used to share m bits of classical informa-
tion, while L GHZ states are applied to detect eavesdropping. Therefore, the information
efficiency of this scheme is % The access structure of the participants in this allocation
model belongs to the fully bipartite graph.

(3) BLWLL2018 Protocol This distribution model of the BLWLL2018 scheme is also
a tree structure, i.e., the distributor distributes ¢ information particles from the GHZ state
to t participants, all of which come from the k-dimensional Hilbert space. m GHZ states
are used to share m bits of classical information, while L GHZ states are applied to detect
eavesdropping. Therefore, the information efficiency of this scheme is % Unlike the
YGWQZW?2015 protocol, the access structure of the participants in this distribution model
is a restricted threshold structure and also a fully bipartite graph structure.

(4) LYZ2021 Protocol The LYZ2021 distribution model of the LYZ2021 scheme is
a one circle structure, where the distributor distributes a particle of information from a
generalized Bell state to one of the participants, and the particle is then passed through ¢
participants in turn, where the two particles in the Bell state are from the k-dimensional
Hilbert space. m-generalised Bell states are used to share m-bit classical information, while
I X-bases and Z-bases are applied to detect eavesdropping. Thus, the information efficiency
of the scheme is t(n;il)'

(5) Our Protocol This distribution model of our scheme is a bicyclic structure, i.e.,
the distributor distributes two information particles from the GHZ state to f participants
according to the requirements of a fully bipartite graph structure, where the three particles
from the GHZ state are from a three-dimensional Hilbert space. m GHZ states are used to
share m-bit classical information, while L GHZ states are applied to detect eavesdropping.
Thus, the information efficiency of both schemes is %

In the protocol proposed, the quantum states corresponding to the information parti-
cles and the detection particles are three-dimensional GHZ states, and are only detected

between Alice and Pi(l) (or Pj(z)), where (m + L) three-dimensional GHZ states are used as

information quantum states and detection quantum states, m-dimensional bits of classical
information are obtained, and the efficiency of the scheme is . It can be seen that

3(mniL)
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the scheme in this paper significantly saves quantum resources and is significantly more
efficient than the above schemes.

6. Conclusions

In this paper, we proposed an efficient quantum secret sharing scheme for restricted
gated access structures. The three-dimensional GHZ state of this scheme was used for
the key transfer and the detection of the decoy state particles, and the distributor did not
need to send the particles that she holds to the key reconstruction during the detection of
the decoy state particles and the reconstruction of the key. This protocol is more practical,
secure, and quantum resource efficient compared with similar processes.
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