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Abstract
The standard cosmological model, ΛCDM, has long been successful in explaining

the Universe’s evolution. However, as observational precision has advanced, significant
tensions, such as the Hubble tension and the S8,0 tension, have emerged, challenging the
model’s validity and hinting at the potential need for theories beyond General Relativ-
ity. Among these alternatives, Teleparallel Gravity, where gravity is described through
torsion rather than curvature, offers a promising avenue. In particular, the Teleparal-
lel Equivalent of General Relativity (TEGR) is considered, a formulation that replicates
General Relativity’s field equations but uses the torsion scalar T as the primary con-
tributor to the gravitational Lagrangian. To explore the potential of this framework in
addressing these tensions, generalised functions such as f (T) and f (T, B) gravity mod-
els are investigated. Consequently, in this work a comprehensive suite of cosmological
datasets are utilised. The Pantheon compilation of Type Ia Supernovae (SNe Ia) provides
precise luminosity distance measurements, constraining the expansion history. Cosmic
Chronometers (CC) data offer model-independent estimates of the Hubble parameter
based on differential age dating of galaxies. Baryon Acoustic Oscillations (BAO) mea-
surements probe the imprint of sound waves in the early Universe, refining constraints
on the late-time expansion. Redshift Space Distortions (RSD) trace the growth of cos-
mic structures, offering insights into large-scale structure formation. Additionally, the
BICEP/Keck BB-spectrum enables exploration of primordial gravitational waves, shed-
ding light on early Universe physics. Alongside these datasets advanced techniques
like Gaussian Processes (GPs) for reconstructing the arbitrary function, and Markov
Chain Monte Carlo (MCMC) for constraining the parameters of these models are em-
ployed. The results establish f (T) gravity as a promising alternative to ΛCDM, capable
of addressing persistent tensions such as H0 and S8,0. The models provide observation-
ally consistent solutions for late-time cosmic acceleration, the growth of structures, and
primordial gravitational waves. These findings present the most comprehensive con-
straints on f (T) gravity to date, underscoring its potential as a viable framework and
enhance our understanding of the Universe’s evolution, offering valuable insights into
the late- and early-time Universe. As a result, this work contributes to the growing body
of research exploring alternatives to ΛCDM and highlighting the potential of modified
gravity models as viable solutions.
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Introduction

Recent decades have witnessed immense advancements in cosmology, a field focused on
the origin, evolution, and eventual fate of the Universe. Technological progress and new
observational discoveries have profoundly changed our understanding of the cosmos. At
the heart of this exploration is the study of the fundamental forces of nature—gravity, elec-
tromagnetism, the strong nuclear force, and the weak nuclear force— with gravity emerging
as both intriguing and mysterious.

Isaac Newton’s “Philosophiæ Naturalis Principia Mathematic” [23] provided a founda-
tional description of gravity as a force following an inverse square law. While this model
successfully explained many aspects of planetary motion, it faced limitations, such as the
discrepancy in the prediction of Mercury’s orbit. Albert Einstein addressed these limitations
with his theory of General Relativity (GR) in 1915 [24], proposing that gravity results from
the curvature of spacetime. This theory was confirmed by key observations, including the
bending of light during the 1919 solar eclipse [25] and accurate measurement of Mercury’s
precession [26]. These findings helped establish GR as a viable theory of gravity.

In turn, Einstein’s GR led to the development of a model describing an isotropic and ho-
mogeneous Universe, explored independently by Friedmann [27], Robertson [28], Lemaître
[29], and Walker [30]. However, these solutions to Einstein’s equations pointed to an ex-
panding Universe. Believing this to be a mistake, Einstein attempted to modify his theory
by introducing a cosmological constant to account for a static Universe, which was the pre-
vailing assumption at the time [31].

Later on, Edwin Hubble’s 1929 discovery of an expanding Universe [32] overturned the
previously accepted model of a static Universe. Through his observations, Hubble found
that galaxies are receding from Earth at speeds proportional to their distance, providing
compelling evidence that the Universe is expanding. This relationship led to the formulation
of the Hubble constant, H0, which quantifies the rate at which the Universe is expanding,
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overturning the previously accepted model of a static Universe .
To build on Hubble’s discovery of an expanding Universe, a significant breakthrough

in the late 1990s revealed that the Universe is not only expanding, but that its expansion
is accelerating. This observation was made by two independent groups: the Supernova
Cosmological Project [33] and the High-z Supernova Search Team [34] revealed that the
Universe’s expansion is accelerating. This unexpected acceleration, contrary to gravity’s
attractive nature, led to the introduction of dark energy—a form of energy with negative
pressure [35, 36]. One simple candidate for dark energy is the cosmological constant, Λ,
which drives this acceleration with an exerted negative pressure.

At the same time, astrophysical observations of galaxy rotation curves suggested the
presence of dark matter, a non-baryonic matter component that interacts only through grav-
ity, as it has never been directly detected and thus, is assumed to interact with baryons
solely through gravitational effects [37]. Despite no direct detection, dark matter accounts
for the discrepancies observed in galaxy dynamics [36]. Cold Dark Matter (CDM), referring
to slow-moving particles relative to light, remains the leading candidate in addressing the
inconsistency between measured and predicted velocities of galaxy rotation curves [35].

Together, dark energy and CDM form the ΛCDM model, the cornerstone of modern
cosmology. This model describes a flat, homogeneous, and isotropic Universe, where dark
energy drives cosmic acceleration and CDM accounts for the unseen matter shaping galaxies
[38]. As the simplest and most successful framework, ΛCDM provides the most comprehen-
sive explanation of the Universe’s large-scale structure and evolution.

Considered as the standard model of cosmology, ΛCDM can describe the Universe us-
ing only six free parameters: the densities of dark matter and baryons, the scalar spectral
index, the amplitude of curvature fluctuations, the angular diameter distance to the sound
horizon at last scattering, and the reionisation optical depth. By setting these parameters, it
is possible to derive other cosmological quantities, including the Hubble constant [39]. The
Hubble constant is a crucial metric for measuring the rate of the Universe’s expansion [40].

This relatively simple model has achieved remarkable success in describing the Uni-
verse, encompassing its evolution from the Big Bang to the present epoch [39]. The story
begins with the Big Bang, which marks the origin of the Universe in an extremely hot and
dense state [41]. It is also assumed, that almost immediately, the Universe underwent a
period of rapid exponential expansion known as inflation. During this phase, the Universe
expanded at a staggering rate, smoothing out initial quantum fluctuations and resolving key
issues like the horizon problem (which refers to the question of why regions of the Universe
that are far apart appear to have the same temperature and properties, despite being too dis-
tant to have exchanged information since the Big Bang) and flatness problem (the Universe
appears to be nearly flat, requiring extremely precise initial conditions in the early Universe
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to maintain this flatness over time) [42]. This inflationary period set the initial conditions
for the large-scale structure of the Universe [43].

As inflation subsided, the Universe entered the radiation-dominated era. During this
time, the Universe was filled with a hot, dense plasma of particles and photons [35]. Ap-
proximately 380,000 years after the Big Bang, the Universe cooled enough for protons and
electrons to combine and form neutral hydrogen atoms—a process called recombination
[44]. This cooling allowed photons to travel freely through space, resulting in the Cosmic
Microwave background (CMB), a faint glow of radiation that provides a snapshot of the
Universe at this early stage. Discovered in 1965 [45, 46], the CMB remains one of the most
significant pieces of evidence for the early Universe, offering insights into the Universe’s
infancy and its subsequent evolution.

Following the release of the CMB, the Universe entered the matter-dominated era. Dur-
ing this phase, matter became the dominant component, leading to the formation of galaxies
and large-scale cosmic structures [35]. In the past few billion years, the Universe has tran-
sitioned into a dark energy-dominated era [41, 34, 33]. This phase defines the current state
of cosmic evolution, where dark energy plays a crucial role in the accelerated expansion the
Universe.

Beyond its role as a cosmic snapshot, the CMB encodes critical information about the
early Universe in the form of density fluctuations—tiny variations in temperature that serve
as the seeds of all the structure in the Universe today, from galaxies to galaxy clusters [44].
The detailed study of these fluctuations has been significantly advanced by experiments
such as the Cosmic Background Explorer (COBE) [47], the Wilkinson Microwave Anisotropy
Probe (WMAP) [13], and Planck [15, 16], which have provided precise measurements of cos-
mological parameters like the mean density of the Universe, expansion rate, and distribution
of baryonic matter, dark matter, and dark energy .

Inflation also predicts the existence of primordial Gravitational Waves (GW), which are
ripples in spacetime generated during the early Universe and therefore, carry valuable in-
formation about the Universe’s earliest moments. While direct detection remains elusive at
current stage due to the sensitivity limits of current detectors like LIGO-Virgo [48], indirect
evidence may be found through the effect of primordial GWs on the polarisation spectrum
of the CMB. Experiments such as BICEP2 [49], Keck Array [50] and BICEP3 [51] have placed
constraints on primordial GWs amplitudes by analysing CMB polarisation data, offering po-
tential insights into these primordial waves .

These detailed investigations into the early Universe, including the study of GWs and
CMB fluctuations, have contributed to the refinement of the ΛCDM model plus inflation
cosmology. According to this model, the Universe is composed of three primary compo-
nents: dark energy, which constitutes about 68% of the total energy density; CDM, which
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accounts for approximately 27%; and baryonic matter, which makes up the remaining 5%
and includes all baryonic matter and observable structures such as stars, galaxies, and other
luminous objects [16, 44] . The accuracy of this model in matching cosmological observations
is impressive. However, despite its success, the ΛCDM model faces significant challenges
that continue to engage the scientific community. One key issue include the nature of dark
energy and dark matter. Despite extensive and precise measurements over decades, no di-
rect or indirect evidence for these exotic particles has been conclusively found [52, 53, 54, 55].
This lack of definitive detection leaves many fundamental questions unanswered, especially
since dark energy and dark matter are believed to constitute approximately 95% of the total
energy density of the Universe. Consequently, the true nature of these constituents remains
one of the most significant unknowns within the ΛCDM model [39].

Another significant challenge to the ΛCDM model is the Hubble tension [18, 40, 22, 56,
57, 58], an unresolved discrepancy in the measurements of the current Universe’s expansion
rate. The Hubble constant, H0, which defines this rate, has been determined through var-
ious methods. In theory, these methods should yield the same value; however, they have
produced conflicting results, leaving cosmologists with the challenge of determining which
measurement is correct. This discrepancy has sparked intense debate and ongoing research
into potential new physics.

Historically, late-time measurements based on the cosmic distance ladder [59, 60, 2, 4]
and early-time measurements inferred from the CMB [10, 15, 16, 14] have provided these
different values for the Hubble constant. For example, data from the CMB, primarily from
the Planck satellite, suggest a lower value of the Hubble constant, while local, more direct
methods, such as those using Cepheid variables and Supernovae of Type Ia (SNe Ia), indi-
cate a higher value.

Over the years, this tension between the measurements has become increasingly pro-
nounced as technological advancements and statistical refinements improved precision, with
the discrepancy reaching a level of 5σ, making it highly unlikely that this difference is a mere
statistical anomaly. To illustrate the growing tension, Fig. 1.1, sourced from Ref. [18], shows
the Hubble constant as a function of publication date, using the two different methods.
The orange error bars represent values from the distance ladder, particularly from SH0ES
[1, 2, 3, 4, 5, 6, 7] and Carnegie Hubble Program (CHP) [8], while the purple error bars show
indirect measurements from CMB data, including results from the WMAP [9, 10, 11, 12, 13]
and Planck collaborations [14, 15, 16]. The most recent measurements diverge significantly,
with a difference exceeding 5σ.

This growing gap suggests that our understanding of cosmological parameters may re-
quire refinement or, perhaps, point to new physics beyond the ΛCDM model. Address-
ing the Hubble tension is critical for resolving fundamental questions about the Universe’s
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Figure 1.1: The graph illustrates the Hubble constant as a function of publication date, using
two measurement methods: direct measurements from the late Universe, primarily from
SH0ES [1, 2, 3, 4, 5, 6, 7] and CHP [8] projects, shown in orange, and indirect measurements
derived from early-Universe data based on CMB observations from WMAP [9, 10, 11, 12, 13],
Planck [14, 15, 16], and BAO [17] collaborations, shown in purple. The latest data exhibits a
disagreement greater than 5σ. Sourced from Ref. [18].

structure and its evolution.

In addition to the Hubble tension, another significant discrepancy in cosmology is the
S8,0 tension [61, 62]. Like the Hubble constant, S8,0 is a key cosmological parameter that de-
scribes the clustering of matter and how matter is distributed across large-scale structures in
the Universe [18]. Specifically, S8,0 is a parameter that combines two key measurements: the
amplitude of matter fluctuations (how much matter clumps together) and the total matter
density of the Universe [63].

Similar to the Hubble tension, early-time measurements based on the CMB, such as those
from the Planck satellite, suggest a higher value for S8,0 than late-time measurements, in-
cluding weak gravitational lensing and galaxy clustering surveys [61, 64, 62]. This tension
has also grown more prominent as data collection and precision improve, indicating that,
much like the Hubble tension, the chances of it being a statistical fluke are increasingly slim.

Therefore, the ΛCDM model can be interpreted as a first-order approximation of the re-
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alistic and practical Universe, which still, needs to be fully appreciated. However, both the
H0 and S8,0 tensions point to potential gaps in our current understanding of the standard
cosmological model, suggesting that either unknown systematic errors are at play, or new
physics beyond the standard ΛCDM framework might be required to explain these discrep-
ancies [57, 63, 65, 66, 18, 40, 56].

The scientific community has explored numerous approaches to address these cosmo-
logical tensions, both from observational and theoretical perspectives. On the observational
front, the James Webb Space Telescope (JWST) has provided a new avenue to examine the
Hubble tension with unprecedented precision. However, early findings from JWST have so
far reinforced the existence of the tension rather than resolving it [67, 68].

From a theoretical standpoint, the idea that new physics may alleviate these discrep-
ancies is an exciting prospect, particularly given that the Hubble tension is not the only
challenge to the ΛCDM model—or to GR itself [65, 66, 69, 70]. One promising avenue of
exploration involves modified gravity, where extensions or alternatives to GR could offer
new insights. Numerous theories have been proposed in the literature, often motivated by
phenomena that GR struggles to fully explain, as well as by the desire to reconcile gravity
with quantum mechanics [66]. In reality modifications to GR had started to formulate im-
mediately after Einstein’s field equations had been published, with the intention of unifying
gravity with electromagnetism [69, 71]. Nevertheless, in the current context, modifying Ein-
stein’s GR implies that corrections on the gravity content of the cosmological model will be
considered.

One intriguing possibility gaining significant traction in recent years is Teleparallel Grav-
ity (TG) [65, 66]. Unlike GR, which describes gravity through spacetime curvature, TG re-
places curvature with torsion as the mechanism responsible for generating the gravitational
field. This shift in geometric interpretation opens new pathways for addressing both the
Hubble and S8,0 tensions and may offer a viable alternative framework to describe the evo-
lution of the Universe. Additionally, TG enhances interpretability by emphasising torsion,
which facilitates the natural inclusion of extra degrees of freedom and its capability to define
a local energy-momentum tensor, thereby addressing a significant challenge inherent in GR
[72].

A key formulation within TG is the Teleparallel Equivalent of General Relativity (TEGR),
which maintains the same field equations as GR, ensuring consistency with classical grav-
itational phenomena while offering a new perspective. In TEGR, gravity is not seen as the
result of curved spacetime but as a result from torsion in a flat spacetime.

In TEGR, spacetime is equipped with a “Teleparallel connection” and a torsion scalar T,
in which the former has zero curvature but non-zero torsion [72, 66, 73, 74]. This torsion cap-
tures the gravitational interaction, essentially describing how mass and energy twist space-
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time, creating the effects that are observed as gravity. The underlying structure allows TEGR
to not only reproduce the successes of GR but also explore new modifications to the theory.

This reimagining of gravity opens the door to further extensions of TEGR that aim to
resolve key cosmological issues, such as the nature of dark energy or the current expan-
sion rate of the Universe. As a bridge between classical GR and modified gravity models,
TEGR has become an active area of research, particularly for those investigating possible
alternatives to the standard ΛCDM paradigm. By reinterpreting gravity in terms of torsion,
TEGR serves as a foundational step toward more generalised theories of gravity. One nat-
ural extension of TEGR is through generalising the action to an arbitrary function of the
torsion scalar, f (T). This modification, known as f (T) gravity, has recently gained consid-
erable attention for its potential to explain various astronomical observations, including the
accelerated expansion of the Universe, without invoking dark energy [73, 75, 76, 77, 78, 79].

A notable advantage of f (T) gravity lies in its ability to generate second-order equa-
tions of motion. These equations depend only on the Hubble parameter, H(z), and its first
derivative, which simplifies the theory’s mathematical structure and makes it well-suited
for non-parametric reconstruction approaches. In this work, such approaches will be ex-
plored to analyse the functional form of f (T). Additionally, cosmological observations will
be utilised to test if the proposed f (T) can be used to explain the accelerating cosmic expan-
sion without dark energy.

In GR, the curvature scalar can be decomposed into a torsion term and a boundary term,
the latter of which does not affect the dynamics at the Lagrangian level. However, this de-
composition allows for the construction of a more generalised model, where both the torsion
scalar and the boundary term contribute when extended to an arbitrary function, f (T, B)
[80, 81, 82, 83, 84]. The boundary term, responsible for fourth-order derivatives, comple-
ments the torsion scalar’s second-order contributions, offering a richer and more versatile
gravitational framework. This extended f (T, B) model provides a promising avenue for de-
veloping new gravitational theories, potentially resolving longstanding issues in cosmology
and astrophysics.

This leads to a critical question: Are these extended TG theories viable when tested
against recent cosmological datasets? This study aims to address that question by assessing
the cosmological dynamics of these two classes of theories, focusing primarily on late-time
behaviour, but also considering their effects on the amplitude of density fluctuations and
primordial GWs. The central objective is to identify viable cosmological models that align
with current observational data while also providing potential solutions to tensions and
discrepancies emerging between different datasets.

In this work, two main approaches are employed. The first approach leverages Gaussian
Process (GP), which enable a model-independent reconstruction of the arbitrary function’s
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behaviour within these theories. This technique is particularly valuable for exploring mod-
els beyond ΛCDM, as it allows for the construction of cosmological models without im-
posing predefined parametrisations, offering a flexible means to detect deviations from the
standard model of cosmology.

The second approach adopts a more traditional framework using the Markov Chain
Monte Carlo (MCMC) method to evaluate the viability of these models with current ob-
servational data, focusing on f (T) and f (T, B) gravity. This method is essential for testing
the compatibility of these models with cosmological observations, particularly in studying
the Universe’s late-time acceleration and fluctuations. By constraining the model parame-
ters and assessing their fit to the data, this analysis aims to identify which models best reflect
the cosmological history of the Universe and offer a meaningful alternative to ΛCDM.

In summary, this work explores the potential of extended TG theories, specifically f (T)
and f (T, B) models, as alternatives to the standard ΛCDM cosmology. These theories offer
new insights into gravity through torsion rather than curvature, and may address signifi-
cant cosmological challenges like the Hubble tension and the nature of dark energy. By us-
ing both model-independent techniques such as GPs and more traditional approaches like
MCMC this research seeks to assess the viability of these models against recent observa-
tional data, focusing on their impact on late-time cosmic acceleration, density fluctuations,
and primordial GWs. The ultimate aim is to identify cosmological models that not only fit
current data but also shed light on unresolved tensions in modern cosmology.

The structure of this thesis is as follows: Chapter 2 provides an overview of the concepts
of curvature and torsion, alongside discussions of GR and TEGR. This leads into an exam-
ination of the standard model of cosmology and its challenges, ultimately motivating the
consideration of extended TG theories, such as f (T) and f (T, B) gravity.

Chapter 3 introduces the methodologies employed in this work, including the GP al-
gorithm and the MCMC technique. A discussion of the data sets and H0 priors follows, ac-
companied by a detailed explanation of the models used in the analysis of f (T) gravity—the
primary focus of this investigation—along with statistical metrics. Chapter 4 explores f (T)
gravity using GP, presenting the reconstruction results and accompanying statistical analy-
sis. In Chapter 5, the MCMC technique is applied to constrain the f (T) cosmological models
introduced earlier, yielding parameter constraints and examining the resulting tensions.

Chapter 6 extends the analysis to the more generalised framework of f (T, B) gravity,
where new cosmological models are introduced and constrained using recent data. In Chap-
ter 7, an updated data catalogue is employed to assess the impact on the cosmological mod-
els, with comparisons drawn between the widely-used Pantheon and Pantheon+ catalogues
in the context of f (T) gravity and the H0 tension. Chapter 8 constrains the f (T) cosmolog-
ical models in terms of density fluctuations, providing further insights into f (T) gravity in
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relation to both the H0 and S8 tensions. In addition, Chapter 9 leverages a modified Boltz-
mann code integrated with the MCMC approach to constrain f (T) gravity at late times, and
also includes modifications to incorporate CMB BB-spectrum modes to constrain GWs and
examine the effects of f (T) on these parameters. Finally, Chapter 10 presents the conclusions
of this work, summarising the key findings, their implications, and potential directions for
future research.

N.B: throughout this work, unless otherwise stated, the reduced Planck unit system,
c = h̄ = 1, will be used.
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2

Foundations of General Relativity and
Teleparallel Gravity

Modern cosmology is built on the framework of GR, which describes gravity as the curva-
ture of spacetime. Over the past century, GR has successfully explained a wide range of
phenomena, from the motion of planets to the large-scale structure of the Universe. The
ΛCDM model, based on GR, has become the standard model of cosmology, postulating that
the Universe is dominated by dark energy, represented by the cosmological constant Λ, and
CDM. This model has been highly successful in explaining many observations.

However, despite its success, challenges like the “Hubble tension” have raised questions
about whether GR and ΛCDM provide a complete picture of the Universe. These tensions
have motivated the exploration of extensions to GR, including modifications where gravity
is described not by spacetime curvature but by torsion, as in TEGR.

In this formulation, which represents a less-explored competing geometry, gravity is
attributed to the torsion of spacetime rather than curvature, opening the door to further
modifications such as f (T) gravity, where the Lagrangian is generalised to a function of
the torsion scalar T. These extensions offer new avenues to address unresolved issues, in-
cluding cosmic acceleration, without solely relying on the cosmological constant Λ. Further
modifications, such as f (T, B) gravity, which introduces a boundary term B, allow a richer
dynamical framework by connecting torsion and curvature.

These extensions have significant implications for understanding the evolution of the
Universe, density fluctuations and primordial GWs. These are a key observational features,
which provide a powerful tool for testing these modified theories of gravity and assessing
their viability in explaining the early Universe and the current cosmic tensions.

This chapter will explore these theoretical developments, beginning with the founda-
tions of curvature and torsion, and will outline how extensions like f (T) and f (T, B) gravity
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that aim to address the limitations of GR and ΛCDM.

2.1 | Notions of Curvature and Torsion
The motion of particles within the Universe is intrinsically linked to the geometry of space-
time. A fundamental aspect of understanding gravity involves defining a mathematical
framework that describes gravitational effects through curvature or torsion. This is for-
malised through the concept of a manifold, denoted as M. In this context, manifolds form
the foundational framework upon which spacetime is modelled. A manifold can be re-
garded as a complex geometric space that locally resembles flat spacetime [19]. Therefore,
the manifold appears to be a construction of locally sewed coordinate patches with real
numbers [85].

Manifolds are classified according to their dimensions, which correspond to the number
of coordinates required to specify a point on them. For example, a line is a 1-dimensional
manifold, a surface like a sphere or plane is a 2-dimensional manifold, and our intuitive 3-
dimensional space is an example of a 3-dimensional manifold. In the realm of GR, spacetime
itself is modelled as a 4-dimensional manifold, incorporating three spatial dimensions and
one temporal dimension.

While a manifold encompasses all the necessary information regarding the spatial and
temporal coordinates, it does not specify how these coordinates are related. The relation-
ships and geometries on a manifold are defined using the metric tensor gµν, which encapsu-
lates all the necessary information to describe the manifold’s geometry [86, 20]. The metric
tensor is a smooth function that varies from point to point on the manifold. In simple terms,
it is a mathematical object that allows the calculation of the infinitesimal distance ds between
two nearby points in a manifold, given by

ds2 =
3

∑
µν=0

gµνdxµdxν ≡ gµνdxµdxν , (2.1)

where ds2 represents the line element and dxµ and dxν are differential displacements of the
coordinates [19]. For any given coordinate system, the metric tensor is represented as a
matrix, and its form depends on the spacetime’s characteristics [41]. It is important to note
the use of the Einstein summation convention, where the summation sign is omitted. The
first index is designated for time coordinates, while the remaining indices are for spatial
coordinates. The metric tensor also has an inverse, and the relationship between the metric
tensor and its inverse is given by the Kronecker delta δ

µ
σ [87]

gµνgνσ = δ
µ
σ . (2.2)
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Figure 2.1: Illustration of the mapping from the global spacetime metric on the manifold to
the local Minkowski metric in the local frame via tetrad contraction.

Although the metric tensor is fundamental in describing spacetime within a given coor-
dinate system, there are cases where working in a locally flat or orthonormal frame (Minkowski
spacetime) is advantageous. This is where the concept of tetrads comes into play as they pro-
vide a means to transition between local orthonormal bases and global coordinate systems.
Tetrads eA

µ enable the construction of the global metric from the local Minkowski metric
and vice versa, as shown in Fig. 2.1 [72, 88]. The Minkowski metric ηAB describes a flat
spacetime (essentially the spacetime for special relativity) where there is no curvature due
to gravity and is expressed ηAB = ηAB = diag(−1, 1, 1, 1) [72, 89]. Using tetrads, the rela-
tionship between the general spacetime metric gµν and the local Minkowski metric is given
by [66]

gµν = eA
µeB

νηAB , ηAB = E µ
A E ν

B gµν , (2.3)

where E µ
A denotes the inverse of eA

µ. Greek indices (µ, ν) refer to the general manifold,
while Latin indices (A, B) are used for the Minkowski space [73]. Additionally, the tetrads
and their inverses satisfy the orthogonality condition [73, 90]

eA
µE µ

B = δA
B , eA

µE ν
A = δν

µ . (2.4)

In the same vein, the term tensor, in this case, arises from mathematical objects of identi-
cal name which have explicit transformation properties under a change of coordinates and
are in general denoted as Tµ1 ...µk

ν1...νl . In theories of gravity, tensor formalism is a necessity
as each term in the equations obeys certain transformation rules which removes another
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layer of complexity when going from one coordinate basis to another [41, 87]. Tensors gen-
eralise the concept of vectors and scalar and provide a framework for describing physical
quantities that transform is a specific way under coordinate changes. A tensor of (µ, ν) is an
object that µ contravariant indices (which are superscripts) and ν covariant indices (which
are subscripts). For example the metric tensor can be though of rank-2 tensor that describes
the geometry of spacetime. Tensors can be thought of as multi-dimensional arrays that en-
capsulate information about physics laws and relationships in a coordinate-independent
manner. For instance, scalars (rank 0-tensors) and vectors (rank-q tensors) are special cases
of tensors [91].

In addition, tensor contraction is an operation that reduces the rank of a tensor by sum-
ming over one contravariant and one covariant index. For instance, contracting the metric
tensor gµν with its inverse gµσ yields the Kronecker delta δσ

ν

gµσgσν = δ
µ
ν . (2.5)

This operation is essential for simplifying expressions and for calculations involving tensors.
Another key operator, which will be used frequently, is the derivative with respect to

the manifold, denoted as ∂µ = ∂
∂xµ [87]. In flat Minkowski spacetime, partial derivatives are

generally sufficient for describing physical quantities. However, when extending to curved
manifolds, partial derivatives no longer suffice because they do not account for the man-
ifold’s curvature. To properly describe differentiation on curved spacetime, the concept
of covariant differentiation is introduced, ensuring the result remains a tensor and incor-
porates the curvature. Covariant differentiation uses the connection coefficients (Christoffel
symbols) to account for the curvature of the manifold [31]. This makes partial derivatives in-
adequate in such cases, and a new operator—the covariant derivative—must be employed.
For a general tensor, the covariant derivative is defined as follows [19]

∇σTµ1 ...µk
ν1...νl = ∂σTµ1 ...µk

ν1 ...νl + Γ̂µ1
λσTλµ2 ...µk

ν1 ...νl
+ Γ̂µ2

λσTµ1λ...µk
ν1 ...νl

. . .

− Γ̂λ
ν1σTµ1...µk

λν2 ...νl
− Γ̂λ

ν2σTµ1 ...µk
ν1λ...νl

. . . , (2.6)

where Γ̂ is called the general connection, which encapsulate the effects of geometry, depend-
ing on the type of theory used. The additional terms in the above equation characterises the
geometry of spacetime in the manifold [85]. The exact mathematical definition of the gen-
eral connection will be defined later as it will be dependant, as will be shown, on the type of
geometry (theory) used.

When working with covariant derivatives involving Latin indices, the standard connec-
tion is replaced by the spin connection coefficients, denoted as ω̂A

Bµ. The covariant deriva-
tive of a general tensor in this context is expressed as follows [72]
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∇σTA1...Ak
B1...Bl

= ∂σTA1 ...Ak
B1 ...Bl

+ ω̂A1
CσTCA2...Ak

B1...Bl
+ ω̂A2

CσTA1C...Ak
B1 ...Bl

+ . . .

− ω̂C
B1σTA1 ...Ak

CB2 ...Bl
− ω̂C

B2σTA1...Ak
B1C...Bl

+ . . . . (2.7)

When covariant derivatives of tensors are taken in these local frames, the spin connection
ω̂A

Bµ is introduced to account for the changes in these local frames from point to point in
the curved spacetime. The way the basis vectors (or tetrads) “twist” and “turn” as they are
moved through spacetime is essentially described by the spin connection [19, 90].

In the framework of GR and other gravity theories, the connection plays a crucial role in
describing the motion of free-falling particles, whereas the metric defines the causal struc-
ture of spacetime. To characterise the degree of curvature associated with any given connec-
tion, the Riemann curvature tensor is used, which is defined as [20, 21, 87, 92]

R̂ρ
σµν = ∂µΓ̂ρ

νσ − ∂νΓ̂ρ
µσ + Γ̂ρ

µλΓ̂λ
νσ − Γ̂ρ

νλΓ̂λ
µσ . (2.8)

The Riemann curvature tensor captures the intrinsic curvature of the manifold by quan-
tifying how vectors change when parallel transported around a closed loop. In a flat space-
time, this transport would result in no change to the vector’s direction. Conversely, in a
curved spacetime, the vector will differ from its original orientation upon completing the
loop. This deviation from flatness is precisely described by the Riemann tensor, providing a
measure of the manifold’s curvature. Therefore, in the case of a flat spacetime, the Riemann
curvature tensor would be identically zero, R̂ρ

σµν = 0, indicating the absence of curvature
[21, 66]. This concept is illustrated on the left-hand side of Fig. 2.2.

However, curvature is not the only geometric feature that can be examined. Another
crucial aspect of spacetime geometry is torsion, which reveals additional structural proper-
ties of the manifold. Torsion is characterised by the twisting and rotational characteristics
inherent to the manifold and is quantified by the torsion tensor. While the curvature tensor
measures deviations from flatness, the torsion tensor provides insight into the twisting and
rotational behaviour of the manifold. It is defined as [72, 19, 21]

T̂λ
µν = Γ̂λ

νµ − Γ̂λ
µν . (2.9)

The torsion tensor quantifies how the connection deviates from being symmetric, thus
providing a measure of the twisting within the manifold. This distinction is crucial in theo-
ries where torsion plays a significant role in gravitational interactions, such as in TG, where
torsion is used to describe gravitational effects within a framework distinct from GR. The
influence of torsion on spacetime geometry is illustrated in Fig. 2.2, where it is depicted as
the non-closure of a parallelogram.
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Chapter 2. Foundations of General Relativity and Teleparallel Gravity

Figure 2.2: Left hand side shows the geometrical interpretation of the Riemann curvature
tensor. If a vector is parallel transported along a closed loop, the end vector does not meet
the original direction vector. The difference between the two vectors is a measure of the
curvature. Right hand side illustrates the physical meaning of torsion, where the parallelo-
gram does not close when two vectors are parallel transported along each other. The torsion
tensor is the difference between the final two vectors. Illustrations based on [19, 20, 21]

In examining the geometric features of spacetime, it is important to note that the connec-
tions used in defining both the Riemann curvature tensor and the torsion tensor can vary
depending on the theory of gravity. Each connection uniquely characterises different aspects
of the manifold’s geometry [72].

For the Riemann curvature tensor, the connection used is the Levi-Civita connection.
This connection is defined specifically for a metric-compatible 1, torsion-free geometry, mean-
ing T̂µ

νσ = 0 , and is given by [19]

◦
Γσ

µν =
1
2

gσρ
(
∂µgρν + ∂νgρµ − ∂ρgµν

)
. (2.10)

The Levi-Civita connection ensures that the metric tensor is preserved under parallel trans-
port, and it plays a fundamental role in GR, where gravity is described purely through
curvature with a vanishing torsion tensor, such that R̂µ

νσρ ̸= 0 [19, 66].

In contrast, the teleparallel connection is used in TG and is characterised by a metric-
compatibility and vanishing curvature, R̂µ

νσρ = 0. This connection is defined as [72, 93]

Γρ
νµ = E ρ

A ∂µeA
ν + E ρ

A ωA
BµeB

ν , (2.11)

where ωA
Bµ accounts for the fictitious forces arising in inertial frames.

1Metric compatibility means that the metric tensor, which measures distances and angles, remains un-
changed when vectors are parallel transported along any path in the manifold [21]

16



2.1. Notions of Curvature and Torsion

The teleparallel connection is designed to incorporate torsion (T̂µ
νσ ̸= 0), which describes

how spacetime deviates from being curvature-free. In this framework, gravitational effects
are attributed to torsion rather than curvature, providing an alternative perspective to the
traditional description of gravity in GR [19].

Both connections offer unique insights into the nature of gravity and the structure of
spacetime, with the Levi-Civita connection focusing on curvature and the teleparallel con-
nection emphasising torsion.2

In theories where torsion plays a significant role, such as in TG, additional tensors are
introduced to describe and quantify the effects of torsion on the geometry of spacetime. Two
such tensors are the contorsion tensor and the superpotential tensor.

The contorsion tensor quantifies how the connection deviates from being symmetric due
to the presence of torsion In a spacetime with torsion, the connection is not symmetric,
which means that the order in which you take the covariant derivative of a tensor affects the
result. The contorsion tensor Kσ

µν is defined as [66]

Kσ
µν := Γσ

µν −
◦
Γσ

µν =
1
2

(
T σ

µ ν + T σ
ν µ − Tσ

µν

)
, (2.12)

which can be seen to be described as the difference between the teleperallel and its coun-
terpart of the Levi-Civita connection. Notably, this tensor can be expressed entirely in terms
of torsion tensors, similar to how the Riemann tensor is formulated purely in terms of the
Levi-Civita symbols.

The superpotential tensor is a construct that combines information about the contorsion
tensor and the torsion tensor in a spacetime with torsion. It plays a role in various formula-
tions of gravity, particularly in TG.

The superpotential tensor S µν
A is given by [66]

S µν
A :=

1
2

(
Kµν

A − E ν
A Tαµ

α + E µ
A Tαν

α

)
. (2.13)

The superpotential tensor combines these contributions to give a measure that encapsu-
lates how torsion and contorsion affect the spacetime structure. It is useful in formulating
the action in TG theories and in understanding how torsion contributes to the overall geom-
etry and dynamics of spacetime.

2The quantities calculated using the Levi-Civita connection are denoted with over-circles, while those cal-
culated with the teleparallel connection are presented without this notation.
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2.2 | Gravitational Frameworks: GR and TEGR
Having explored the concepts of torsion, contorsion, and the superpotential tensor, which
are central to TG, it is now essential to examine how these geometric properties are incorpo-
rated into the gravitational actions of various theories.

Starting with GR, the geometry of spacetime is intricately linked to the distribution of
matter in the Universe through the Einstein field equations [90]. These field equations can be
derived from the principle of least action, a method that constructs the equations of motion
from a scalar quantity known as the Lagrangian. This approach was first formalised by
Hilbert in Ref. [94]. In GR, the action is referred to as the Einstein-Hilbert action, reflecting
the collaborative efforts of both Einstein and Hilbert in its development [19].

The Lagrangian in GR is a scalar quantity. Therefore since gravity is described through
the curvature of spacetime this scalar must be constructed from the Riemann curvature ten-
sor, which encapsulates the curvature properties of spacetime. In GR, the relevant scalar is
the Ricci scalar

◦
R =

◦
Rµ

µ, derived from the Ricci tensor
◦
Rµν =

◦
Rα

µαν [41]. To account for the
matter content of spacetime, the matter Lagrangian Lm is introduced and added to the total
Lagrangian.

Thus, the action for GR is expressed as an integral over spacetime of the Lagrangian
density, encompassing both the curvature of spacetime and the matter fields [94, 72]

SGR =
1

2κ2

∫
d4x

√
−g

◦
R +

∫
d4x

√
−gLm , (2.14)

where g = det(gµν), κ2 = 8πG is the metric determinant. As the metric tensor encodes all
the information regarding gravitation, it represents the dynamical variable of the system.

By applying the principle of least action, one can derive the equations of motion for the
system by varying the action leading to the Einstein field equations, which are the corner-
stone of GR [95, 96]

◦
Gµν :=

◦
Rµν −

1
2

◦
Rgµν = κ2Tµν , (2.15)

where
◦

Gµν is the Einstein tensor, and Tµν is the stress-energy tensor. The Einstein tensor
◦

Gµν encapsulates the curvature of spacetime due to the presence of matter and energy. It
is constructed from the Ricci tensor

◦
Rµν. On the other hand, the stress-energy tensor Tµν

characterises the density and flux of energy and momentum in spacetime, representing the
matter constituents of the Universe [86]. This tensor includes contributions from all forms
of matter, radiation, and any other forms of energy present in the Universe.

The Einstein field equations Eq. 2.15 thus relates the curvature of spacetime, encoded
in the Einstein tensor

◦
Gµν, to the distribution of matter and energy, described by the stress-

energy tensor Tµν. These equations form the core of GR, governing how matter and energy

18
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influence the curvature of spacetime, which in turn dictates the motion of matter and energy
within the gravitational field. They are the feature of GR when Wheeler said “spacetime tells
matter how to move, matter tells spacetime how to curve” [97], although this statement is a
very simplistic description of Eq. 2.15.

Given the cosmological principle, which states that the Universe is isotropic (the same in
all directions) and homogeneous (uniform in composition) on large scales [98], the Universe
can be modelled as filled with an isotropic and homogeneous perfect fluid. A perfect fluid
is characterised solely by its density and pressure, with no viscosity or heat conduction.
Under these conditions, the stress-energy tensor, which describes the distribution of matter
and energy in spacetime, is given by

Tµν = (ρ + p)uµuν − pgµν , (2.16)

where, ρ represents the energy density, and p denotes the pressure of the fluid. The four-
velocity uα represents the macroscopic velocity of the fluid elements. In a Universe modelled
as a perfect fluid, uα cannot have a preferred spatial direction due to isotropy. Therefore, it
must be aligned with the temporal component only, meaning uα = (1, 0, 0, 0) [99, 19]

Having established the framework of GR where the geometry of spacetime is described
by the curvature encoded in the Ricci scalar

◦
R, an alternative but equivalent formulation

of gravity that focuses on torsion rather than curvature can be explored. This alternative
approach, known as the Teleparallel Equivalent of General Relativity (TEGR), shifts the em-
phasis from the curvature of spacetime to the torsion that arises from a different choice of
connection.

In TEGR, instead of the Levi-Civita connection used in GR, a connection that is curvature-
less but possesses torsion is employed, as seen in Eq. 2.11. In this case, the curvature scalar,
as calculated by the teleparallel connection vanishes. Instead a torsion scalar which is en-
tirely dependant torsion tensor calculated by the teleparallel connection is defined by [72, 73]

T ≡ S µν
ρ Tρ

µν =
1
4

TρµνTρµν +
1
2

TρµνTνµρ − T ρ
ρµ Tνµ

ν . (2.17)

where S µν
ρ is the superpotential previously defined. The torsion scalar T plays a central

role in this formulation, analogous to the Ricci scalar in GR. Remarkably, the torsion scalar
T and the Ricci scalar

◦
R are related through a total divergence term, [99]

R =
◦
R + T − 2

e
∂µ

(
eTσ µ

σ

)
= 0 , (2.18)

where e = det
(

ea
µ

)
=

√−g is the tetrad determinant. This implies that the Ricci and
torsion scalar are equal to up to a boundary term, B such that [66]

◦
R = −T +

2
e

∂µ

(
eTσ µ

σ

)
:= −T + B . (2.19)
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This forms the fundamental starting point for TG, highlighting that the same gravita-
tional phenomena can be described from two different geometric perspectives; curvature in
GR and torsion in TG. This equivalence is the essence of what is known as the TEGR.

In TEGR, much like the Einstein-Hilbert action in GR, the action is constructed by inte-
grating the torsion scalar T over spacetime. The TEGR action is expressed as [72, 66]

STEGR = − 1
2κ2

∫
d4x eT +

∫
d4x eLm . (2.20)

where e (the determinant of the vierbein (tetrad field), which replaces the metric tensor as
the fundamental dynamical variable in TEGR and Lm represents the matter Lagrangian,
which remains the same as in GR.

The field equations derived from varying the tetrad field in TEGR are given as [72]

e−1∂ν(eS µν
A ) +

1
2

E u
A T − Tσ

νAS νµ
σ + wB

AνS νµ
B = κ2T µ

A , (2.21)

where S µν
A is the superpotential tensor, Tb

νA is the torsion tensor, and wb
Aν denotes the

spin connection.
The connection between these two frameworks is made explicit through the contorsion

tensor. Specifically, the Riemann tensor can be expressed in terms of the torsion tensor and
contorsion tensor. This relationship allows one to transform between the curvature-based
equations of GR and the torsion-based equations of TEGR. By combining the definitions of
the Riemann tensor and the contorsion tensor, the field equations of TEGR can be shown to
reduce to those of GR [72, 100]. This reduction illustrates that TEGR and GR are equivalent
at level of the field equations, despite being formulated in different geometric languages.

The transition from curvature to torsion provides a new perspective on gravity, ulti-
mately leading to the same field equations as in GR, hence the name TEGR. In other words,
this equivalence arises from the relationship between the Ricci scalar and the torsion scalar,
as described in Eq. 2.19. In this equation, the boundary term B vanishes because it is a total
derivative, such that the action of TEGR becomes totally equivalent to the Einstein-Hilbert
action [72, 101, 102].

2.3 | FLRWFramework: FromFriedmannEquations toCos-
mic Fluctuations

With the framework of GR and TEGR established and their equivalence demonstrated, at-
tention is now shifted toward their applications in cosmology. The Friedmann-Leîmaitre-
Roberston-Walker (FLRW) metric serves as the foundation for describing the Universe’s
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large-scale structure, while the Friedmann equations derived from this metric outline the
dynamics of cosmic expansion. To gain a comprehensive understanding of the Universe’s
evolution, it is crucial to explore both the density variations that shape the cosmic structure
and the primordial GW, which provide insights into the early Universe’s conditions. These
elements collectively enhance our knowledge of the Universe’s past, present, and future and
and will be explored in the following sections.

2.3.1 | FRLW and the Friedmann Equations
In modern cosmology, the foundational premise is the cosmological principle, which posits
that on large scales, the Universe is both isotropic and homogeneous. To describe such a
Universe, the FLRW metric is employed. This metric, named after Alexander Friedmann,
Georges Lemaître, Howard Robertson, and Arthur Walker, is a solution to Einstein’s field
equations under the assumptions of the cosmological principle [29, 27, 28, 30]. It was first
derived by Friedmann in 1922 [27], who showed that the equations of GR allowed for an
expanding Universe, a concept that was revolutionary at the time. Lemaître independently
arrived at similar conclusions, further developing the model, and Robertson and Walker
later provided a more general formulation.

The flat FLRW metric is defined as [103, 98, 19, 90]

ds2 = dt2 − a2(t) (dx2 + dy2 + dz2) , (2.22)

where the metric tensor gµν is given by
(
1,−a2(t),−a2(t),−a2(t)

)
.

The scale factor, a(t), is a fundamental concept in cosmology that encapsulates how the
distances between objects in the Universe evolve over time. The scale factor is a function
of cosmic time t and represents the relative expansion of the Universe, in a dimensionless
fashion. When a(t) increases, it signifies that the Universe is expanding [104]. At present
times, the scale factor is normalised to 1, meaning that all distances are measured relative to
their current values. The evolution of the scale factor over time is related to the redshift z by
the relation a(t) = 1

1+z , where z is a measure of the fractional change in wavelength due to
the expansion of the Universe [43].

The FLRW metric, when applied to Einstein’s field equations, leads to a set of equations
that govern the dynamics of the Universe. By plugging the FLRW metric into Einstein’s
field equations, only the (00) and (ii) components yield non-trivial results. These resulting
equations are known as the Friedmann equations, which are fundamental in cosmological
models and describe how the Universe evolves over time [20, 104, 105].
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The first Friedmann equation is given by

H2 =

(
ȧ
a

)2

=
8πGN

3
ρ (2.23)

where H is the Hubble parameter, defined as H = ȧ
a , which describes the expansion rate of

the Universe and the quantity ρ represents the energy density of the Universe, as referenced
in Eq. 2.16. This equation encapsulates the relationship between the expansion rate of the
Universe and the total energy density, providing insight into how the Universe’s expansion
is influenced by its matter and energy content.

The second Friedmann equation is

ä
a
= −4πGN

3
(ρ + 3p) (2.24)

where ä is the second time derivative of the scale factor a(t), and p represents the pressure of
the cosmic fluid (as referenced in Eq. 2.16). This equation governs the acceleration or decel-
eration of the Universe’s expansion. The overdot in these equations refers to the derivative
with respect to cosmic time t, so ȧ = da

dt and ä = d2a
dt2 .

The matter content of the Universe, described by ρ and p, are typically modelled as a
combination of pressure-less matter (often referred to as dust) and radiation. This means
the total energy density, ρ, is composed of contributions from both matter and radiation,
expressed as ρ = ρm + ρr, where ρm is the energy density of matter and ρr is the energy
density of radiation. Correspondingly, the pressure p is given by p = pm + pr, with the
pressure of matter pm = 0, as pressure-less matter (dust) is assumed to have no pressure.

From the Friedmann equations Eqs. 2.23,2.24, a continuity equation can be derived,
which describes the conservation of energy in the expanding Universe. This continuity
equation is given by [103]

ρ̇ + 3H(ρ + p) = 0 , (2.25)

where ρ̇ represents the time derivative of the energy density ρ. In cosmology, the relation-
ship between the energy density ρ and the pressure p of a fluid is often characterised by the
equation of state (EoS) parameter w, defined as [19]

p = wρ , (2.26)

where the parameter w determines the nature of the fluid.
Substituting the equation of state into the continuity equation and rearranging terms,

the energy density ρ as a function of redshift z can be obtained. Integrating the resulting
equation gives ρ = ρ0 exp

[
3
∫ 1+w

1+z dz
]

where ρ0 is the energy density at the present time
(i.e., z = 0). In turn, specific values of w, corresponding to different components of the
Universe such that

22



2.3. FLRW Framework: From Friedmann Equations to Cosmic Fluctuations

1. dust; w = 0 =⇒ ρm = ρ0(1 + z)3

2. radiation; w = 1
3 =⇒ ρr = ρ0(1 + z)4

It is standard to define the present-day density parameters for various components in
the dimensionless ratio

Ωi,0 =
ρ0

ρcr
=

8πGNρ0

3H2
0

, (2.27)

where ρcr =
3H2

0
8πGN

and H0 is the current rate of expansion.

Therefore, the first Friedmann equation Eq, 2.23 can be re-written in a more familiar
format such that for flat spacetime

H2(z) = H2
0 ∑

i
Ωi,0(1 + z)3(1+wi) (2.28)

= H2
0

[
Ωm,0(1 + z)3 + Ωr,0(1 + z)4

]
, (2.29)

where Ωm,0 represents the density parameter for matter (including baryonic and dark mat-
ter) and Ωr,0 represents the density parameter for radiation.

Having derived the Friedmann equations, which describe the expansion dynamics of the
Universe, the next step involves analysing how the expansion rate itself is evolving. This is
quantified by the deceleration parameter, q, a key metric in cosmology that provides insights
into the rate of change of cosmic expansion. The deceleration parameter is given by

q = − aä
ȧ2 = −1 − Ḣ

H2
′ (2.30)

The deceleration parameter is used to gauge the nature of cosmic expansion. If

o If ä > 0: The Universe’s expansion rate is accelerating, indicating a period of acceler-
ating expansion, and hence q is negative (q < 0).

o If ä < 0: The expansion rate is slowing down, corresponding to a decelerating phase,
with q being positive (q > 0).

o If ä = 0: The expansion rate remains constant, and q = 0, signifying a static Universe
or a transitional phase.

Thus, the deceleration parameter offers crucial information about how the expansion
rate of the Universe is evolving over time, distinguishing between periods of acceleration,
deceleration, and steady expansion.
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2.3.2 | Density Fluctuations and Large-scale structure
The flat FLRW metric describes a homogeneous and isotropic Universe on large scales.
However, on smaller scales, the Universe is not perfectly uniform; it is filled with struc-
tures such as galaxies and clusters. These structure arise from small density fluctuations
that evolve over time due to gravitational interactions.

To mathematically model these structures, linear perturbations to Einsteins field equa-
tions within an FLRW background are applied. The key idea is to consider a slightly in-
homogeneous Universe by introducing small perturbations to both the the metric tensor
(gµν = gµν + δgµν, where gµν is the background metric and δgµν is the perturbed metric) and
the energy-momentum tensor such that the Einstein equations are given by [35]

δGµ
ν = 8πGNδT µ

ν . (2.31)

The perturbed form of the FLRW metric relevant for these growth of structures becomes

ds2 = (1 − 2ϕ)dt2 − a2(t)(1 − 2ψ)δijdxidxj , (2.32)

where ϕ and ψ are gravitational potentials under the Newtonian gauge and δij is the Kro-
necker’s delta. These equations yield the usual Friedmann equations that govern the large
scale evolution of the Universe, along with additional equations that describe the evolution
of the perturbations themselves [106, 35, 19].

In practice, the matter density ρ(x) varies from point to point and can be expressed as
[35, 87]

ρ(x) = ρ(t) [1 + δ(x)] , (2.33)

where ρ(t) is the average density at time t, and δ(x) represents the small perturbations or
deviations from this average density. In most practical cases, these perturbations are small
δ ≪ 1. Over time, these small density fluctuations grow due to gravitational attraction; re-
gions with slightly higher density will attract more matter, becoming denser and eventually
leading to the formation of galaxies, clusters, and other large structures. For convenience
in analysis, it is often beneficial to work in Fourier space, with the sub-index wave vector
k dropped for simplicity. This approach simplifies the mathematical treatment of perturba-
tions.

For pressureless matter (cold dark matter), the Fourier transform of the density contrast
δ = δρm

ρm
, satisfies the following differential equation at the linear level and for sub-horizon

scales [106, 107, 108]

δ̈ + 2Hδ̇ = 4πGNρδ , (2.34)
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where δ is the matter perturbation. This equation is valid for linear perturbations and
sub-horizon scales, where k ≫ aH, with a being the scale factor.

By changing the independent variable from cosmic time t to redshift z, and using the
relation for the matter density parameter Ωm as defined in Eq. 2.27, Eq. 2.34 can be rewritten
in terms of redshift z as [109]

δ′′(z) +
(

H′(z)
H(z)

− 1
1 + z

)
δ′(z) =

3
2

(
H0

H(z)

)2

Ωm,0(1 + z) δ(z) , (2.35)

where δ(z) is now the growth of the density contrast as a function of redshift [110].
One important property in probing the growth of large scale structure is the growth rate

f , is defined as the logarithmic derivative of the matter perturbations δ(z) with respect to
the logarithm of the cosmic scale factor [106, 35, 111]

f (z) =
d ln δ(z)

d ln a
= −(1 + z)

d ln δ(z)
dz

= −(1 + z)
δ′(z)
δ(z)

. (2.36)

However, to make contact with observations, the typical value reported is a combination
of

f σ8(z) = f (z)× σ8(z) , (2.37)

where f (z) is the growth data reported above , while σ8 is defined as the root-mean-square
density fluctuations within a sphere of radius 8h−1Mpc. This parameter evolves as

σ8(z) = σ8,0
δ(z)
δ0

, (2.38)

where the 0-subscript refers to the value at z = 0. Therefore, a bias-independent growth rate
can be provided such that [112, 109]

f σ8(z) = −(1 + z)
σ8,0

δ0
δ′(z) . (2.39)

The growth rate can now be easily obtained in terms of redshift by rearranging Eq. 2.36
such that

δ′(z) = − f (z)
1 + z

δ(z) , (2.40)

and therefore

δ′′(z) =
[

f 2(z)
(1 + z)2 +

f ′(z)
1 + z

]
δ(z) . (2.41)

Substituting δ′ and δ′′ into the transformed linear matter perturbation Eq. 2.35, the growth
rate f becomes [110, 111, 109]

f 2(z) +
[

2 − (1 + z)
H′(z)
H(z)

]
f (z)− (1 + z) f ′(z) =

3
2

(
H0

H(z)

)2

Ωm,0(1 + z)3 . (2.42)
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The derived equations illustrate how the growth rate f (z) and the matter overdensity
δ(z) are interconnected, providing a framework to analyse the evolution of cosmic struc-
tures in a perturbed FLRW Universe. These expressions bridge theoretical models with
observational data, such as RSD data and the evolution of σ8(z), to probe into the dynamics
of large-scale structure formation. The equations derived here are thus essential for inter-
preting observational data, and play a crucial role in cosmological research.

2.3.3 | Primordial Gravitational Waves
An insightful approach to these linear perturbations in cosmology is to decompose the com-
ponents of the metric perturbation tensor based on their behaviour. The perturbations can
be categorised into three distinct types: scalar, vector, and tensor components. The scalar
component, corresponding to the ii-component of the perturbation tensor, and are related to
variations in the matter density and plays a crucial role in understanding large-scale struc-
tures in the Universe as seen in the previous section. The vector components, derived from
the 0i or i0 parts, describe rotational effects but often decay in an expanding Universe. The
remaining ij components, forming a symmetric rank-two tensor, are linked to Gravitational
Waves (GW), which provide insights into the Universe’s early conditions [106].

Specifically, the focus of this section, will be on primordial GW–ripples in spacetime gen-
erated in the early Universe during the period of cosmic inflation. Primordial GW are tensor
perturbations in the early Universe that originate from quantum fluctuations during the in-
flationary era [113]. These waves are essentially small distortions in the fabric of spacetime
that were stretched to macroscopic scales due to the rapid expansion of the Universe during
inflation [114]. Unlike, scalar perturbations, which are associated with density fluctuations
and lead to the formation of large-scale structure, tensor perturbations correspond to GW
and provide a unique probe into the the very early Universe [115].

The corresponding perturbed FLRW metric for these tensor perturbations is generally
expressed as [116]

ds2 = dt2 − a2(t)(δij + hij)dxidxj , (2.43)

where hij represents the gravitational wave perturbation.
One of the key signatures of primordial GW is their imprint in the CMB in the form of

polarisation patters [114]. The polarisation of this after glow of the Big Bang (i.e the CMB)
can be decomposed into E-modes and B-modes. While E-modes are primarily generated by
scalar perturbations, B-modes are specifically linked to tensor perturbations. Therefore, the
current best method to detect these GW is to look for the imprint they would have left in
the CMB, in the form of B-modes. The polarisation signature that CMB experiments seek
are shown in Fig. 2.3 [89]. The observed pattern of linear polarisation’s can be decomposed
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Figure 2.3: CMB polarisation patterns: E-modes exhibit radial or tangential alignments (top
configurations), while B-modes are characterised by polarisation aligned at 45◦ angles to
these directions (bottom configurations).

into curl-free (E-modes, upper part of Fig, 2.3) and curl components (B-modes, lower part of
Fig. 2.3), named in analogy to the electric and magnetic field. Density fluctuations can only
produce E-modes, while GW can produce both E-modes and B-modes. Therefore, B-modes
are sourced by tensor perturbations but not by scalars [117, 118, 119].

Detecting these polarisation patterns in the CMB, has been central to understanding both
scalar and tensor perturbations in the early Universe. E-modes, have been measured with
high precision by experiments like Planck [14, 120] and WMAP [11, 12], providing valuable
insights into the structure of the Universe. On the other hand, there are numerous observa-
tional efforts, such as BICEP/Keck [49, 51], POLARBEAR [121], and the Simons Observatory
[122, 123], which have focused on detecting these elusive B-modes. While E-modes have
been conclusively observed, B-modes remain more challenging to detect due to their weaker
signal and interference from foreground effects. As observational techniques improve and
sensitivities increase, detecting B-modes remains one of the most anticipated breakthroughs
in cosmology.

Tensor perturbations evolve according to specific dynamical equations derived from the
linearised Einstein field equations. In the context of an expanding Universe, the evolution
of these tensor perturbations can be described by the following equation [116]

ḧij + 3Hḣij −
k2

a2 hij = 0 , (2.44)

where hij represents the tensor perturbations.
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This equation captures the dynamics of GW and how they propagate, indicating how
they evolve over time in an expanding Universe. These equations are essential for under-
standing how GW propagate through the cosmic medium and therefore, how they can be
used to probe the conditions of the early Universe.

2.4 | Challenges of the StandardModel of Cosmology and
Pathways to Modified Gravity

The above sections have established the foundational concepts of GR, TEGR, and key cos-
mological perturbations, such that the discussion now proceeds to the exploration of the
Standard Model of Cosmology. While this model has been instrumental in explaining the
Universe’s evolution, it faces certain limitations, as previously discussed. These limitations
prompt the consideration of modified gravity theories, such as f (T) and f (T, B) gravity,
which offer potential avenues for a more comprehensive understanding of the Universe’s
structure and dynamics.

2.4.1 | The Standard Model of Cosmology
Recent observations have revealed that the deceleration parameter q, as defined in Eq. 2.30,
is negative, signifying that the expansion of the Universe is accelerating [85, 19]. This dis-
covery was pivotal in the formulation of the ΛCDM model, necessitating the introduction of
an additional term in the Einstein field equations to account for the accelerated expansion.
The cosmological constant, Λ, was proposed as this additional term [124].

Indeed, the Einstein field equations originally published in 1916 [125] did not include
a cosmological constant. However, to reconcile the theory with the observed accelerated
expansion rate [34, 33], the cosmological constant was introduced. By incorporating this
term, the action for GR was modified to [20]

SΛCDM =
1

2κ2

∫
d4x

√
−g
( ◦

R − 2Λ
)
+
∫

d4x
√
−gLm , (2.45)

where the energy-momentum tensor can be defined as Tµν := −2√−g
δLm
δgµν

The resulting field equations, which form the basis of the ΛCDM model, are then given
by [92, 90, 35]

◦
Rµν −

1
2

◦
Rgµν + Λgµν = κ2Tµν . (2.46)
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This equation introduces the cosmological constant Λ as a uniform energy density that
drives the accelerated expansion, thereby extending the original formulation of GR to ac-
count for the observed dynamics of the Universe.

Together, the Friedmann equations, the FLRW metric, and the action principle form the
foundation of the ΛCDM model, which includes dark energy and CDM. These equations
encapsulate the evolution of the Universe, from the Big Bang to its present state and be-
yond, predicting key cosmological phenomena such as the expansion history, the age of the
Universe, and the properties of the CMB radiation.

The introduction of the cosmological constant, Λ, modifies the original Friedmann equa-
tions by adding a term that accounts for the accelerated expansion of the Universe, now
understood as the influence of dark energy. While the original equations, Eqs. 2.23 and 2.24,
describe the expansion rate in terms of the Universe’s energy content and curvature, the
inclusion of Λ expands this framework to encompass not only matter and radiation but also
the mysterious dark energy driving the observed acceleration [35] such that

H2 =

(
ȧ
a

)2

=
κ2

3
ρ +

Λ
3

, (2.47)(
ä
a

)
=

−κ2

6
(ρ + 3p) +

Λ
3

. (2.48)

The negative pressure exerted by dark energy is reflected in the equation of state, Eq. 2.26
of the cosmological constant where w = −1, such that pΛ = −ρΛ [35, 16]. Therefore the
using the same notation as Eq. 2.28, the first Friedmann equation becomes

H2

H2
0
= Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩΛ , (2.49)

where the additional term ΩΛ represents the density parameter for dark energy. For a flat
Universe, the sum of all the Ω terms equals to 1 such that, Ωm,0 + Ωr,0 + ΩΛ = 1 [85].

The ΛCDM model has been notably successful in explaining a wide range of cosmolog-
ical phenomena. One of its most significant achievements is its accurate prediction of the
Large Scale Structure (LSS) of the Universe [126, 127]. Observations of the CMB radiation,
particularly from the Planck satellite, have confirmed the model’s predictions regarding the
distribution of temperature fluctuations [15]. The model has also accurately predicted the
Baryon Acoustic Oscillations (BAO) feature-regular, periodic fluctuations in the density of
baryonic matter in the Universe, resulting from sound waves in the early hot plasma, which
provide a scale for measuring cosmic distances-which was confirmed in 2005 [128, 129].
This success underscores the model’s robustness in describing the distribution of galaxies
and galaxy clusters, as well as their formation and evolution. Furthermore, the ΛCDM
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model has also effectively accounted for the accelerating expansion of the Universe. The
model’s ability to predict and explain these various phenomena highlights its effectiveness
in capturing the complexities of the Universe’s past and present dynamics.

Despite its remarkable success and the elegance of the ΛCDM model, its validity has
faced scrutiny and debate [22, 130, 56, 18]. This scrutiny has been driven by several profound
theoretical and observational challenges. One major theoretical issue is the fine-tuning prob-
lem, which arises from the significant discrepancy between the observed value of the cos-
mological constant and theoretical predictions [124, 131, 132]. Additionally, the coincidence
problem poses a challenge by highlighting the striking alignment between the observed
vacuum energy density and matter density, despite their vastly different evolutionary be-
haviours [133].

Beyond the theoretical challenges, several pressing issues and challenges have garnered
significant attention within the scientific community as has been briefly discussed in Chap-
ter 1. Among these, the most pertinent are the unresolved nature of dark energy and dark
matter [52, 53, 54, 55]. Further compounding these theoretical uncertainties are two com-
pelling observational challenges: the Hubble tension and the growth tension. The Hubble
tension refers to the discrepancy between the local measurements of the Hubble constant
H0 and its value inferred from observations of the early Universe, particularly the CMB
[4, 16]. The local measurement of H0, primarily obtained using the cosmic distance lad-
der method, is in significant tension with the value inferred from the angular scale of CMB
fluctuations under the ΛCDM model [22, 134]. Specifically, the distance ladder approach,
which calibrates distances step by step through various methods, yields a value of H0 that
is approximately 5σ higher than the CMB-inferred value [57].

To illustrate, the Planck Collaboration, which analyses CMB data, reports an H0 value of
HP18

0 = 67.4 ± 0.5 km/s/Mpc at 68% confidence level [16]. In contrast, the Supernovae
H0 for the Equation of State (SH0ES) Collaboration, using late-time measurements such
as Type Ia supernovae as part of the distance ladder, reports a value of HR22

0 = 73.04 ±
1.04 km/s/Mpc at 68% confidence level [4]. Additionally, alternative methods, such as
those involving Tip of the Red Giant Branch (TRGB) stars, have produced an H0 value
of HF21

0 = 69.6 ± 1.9 km/s/Mpc at 68% confidence level, which sits between the Planck
and SH0ES results [135, 59, 60]. However, even within TRGB calibrations, there are stud-
ies whose results align more closely with either the early-time or late-time observations,
fuelling an ongoing debate.

As it currently stands, the 5σ tension between the SH0ES and Planck measurements is
one of the most prominent discrepancies in modern cosmology, as these measurements the-
oretically should converge to the same value of H0 [39]. This tension extends beyond these
two key collaborations and is observed across various late- and early-time observational
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Figure 2.4: A comprehensive overview of the values of H0 measurements coming form both
early and late-times, taken from Ref. [22].
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techniques. The disagreement is particularly evident when comparing direct, late-time,
model-independent measurements—such as those from distance ladders and gravitational
lensing—with early-time, model-dependent estimates, such as those derived from CMB and
BAO data [22].

The Hubble tension has sparked the development and refinement of numerous method-
ologies aimed at independently measuring H0. Beyond the well-known Planck (CMB) and
SH0ES (distance ladder) results, a variety of approaches have been explored, each offering
unique insights into the tension. Gravitational lensing time delays, for instance, leverage
the deflection of light by massive foreground objects to estimate H0. By measuring the
time delay between multiple images of lensed quasars, this technique provides a direct,
model-independent measurement of the Hubble constant. While current results from lens-
ing generally favour intermediate values of H0, further advancements in lensing models
and improved data quality could help reduce uncertainties and refine the results [136, 137].

Another promising avenue is the use of gravitational wave standard sirens, which rely
on the direct observation of the waveform emitted by inspiraling binary systems. These
events provide an absolute distance scale, and when combined with redshift measurements,
they yield independent estimates of H0. Although current GW-based measurements have
relatively large error bars, the anticipated increase in the number of detected events from
next-generation observatories is expected to significantly enhance their precision [48].

As has already been discussed, cosmic chronometers offer yet another independent method
for H0 estimation, utilizing the age difference between passively evolving galaxies to di-
rectly measure the Hubble parameter at various redshifts. This technique is independent of
any cosmological model and provides constraints on H0 that are generally consistent with
early-time measurements, though with larger uncertainties [138, 139]. In addition, BAO,
also offer an indirect way to constrain H0. While BAO measurements are tied to a fiducial
cosmological model (often ΛCDM), they play a vital role in cross-validating results from
other methods. Galaxy clustering and redshift-space distortions also provide valuable infor-
mation, offering constraints on the expansion history of the Universe that indirectly inform
H0 estimates.

Quasars provide another intriguing avenue for measuring the Hubble constant, lever-
aging their unique characteristics as bright, distant sources. A key methodology involves
reverberation mapping of quasars, where time delays between variations in the continuum
emission and the response of the broad-line region are used to estimate the size of the emit-
ting region. Combined with redshift measurements, this technique provides an independent
estimate of the distance to quasars, and consequently, H0 [140, 141]. Indeed, advancements
in understanding quasar physics and the accumulation of high-quality data hold promise
for reducing uncertainties.
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Lastly, lensing-relations-based methods and Tully-Fisher-based techniques, which uti-
lize the relationship between a galaxy’s luminosity and rotational velocity, add further di-
versity to the landscape of H0 determinations. These methods contribute to a more compre-
hensive understanding of the tension by probing different astrophysical phenomena and
data sets.

A visual summary of this tension is provided in Fig. 2.4, taken from Ref. [22]. This
whisker plot illustrates the Hubble tension by comparing direct and indirect measurements
of the Hubble constant (H0). The x-axis shows H0 values in km/s/Mpc, while the y-axis lists
various studies. The plot is divided into two sections: indirect methods (upper half), derived
from early-Universe observations like the CMB (in pink), and direct methods (lower half),
based on late-Universe measurements such as Cepheids (in orange). Each horizontal line
represents a measurement with its error bars, highlighting uncertainty. The purple shaded
region shows the confidence range for the P18 value, while the orange band represents the
latest SH0ES value. The clear separation between these ranges visually emphasises the Hub-
ble tension, as the two methods yield conflicting results, now exceeding 5σ significance.

A similar issue arises with the growth tension, which relates to discrepancies in the ob-
served clustering of matter in the Universe. Recent observations of the LSS have provided
direct measurements of the strength of matter clustering, which differ from those inferred
from early Universe observations. Specifically, the anisotropies in the CMB measured by
the Planck satellite suggest a different degree of matter clustering compared to what is ob-
served at lower redshifts through probes like weak gravitational lensing and galaxy clus-
tering [142, 64, 143, 144, 109, 145, 61, 16]. This discrepancy manifests as a tension of about
2 − 3σ when comparing the growth rate inferred from Planck’s CMB data to that measured
directly at lower redshifts [22, 18].

In the framework of GR, a slower growth rate implies either a lower matter density or
a smaller amplitude of the primordial fluctuation spectrum than what is predicted by the
Planck/ ΛCDM model. This tension is often quantified using the parameter S8,0, defined as

S8,0 ≡ σ8,0
√

Ωm,0/0.3 , (2.50)

which is closely related to the growth rate parameter f σ8,0 measured by RSD, as will be
discussed in more detail later.

Generally, lower-redshift observations favour a smaller value of S8,0 compared to the
higher value inferred from the CMB data. For instance, as shown in Fig. 2.5, the Planck
CMB estimate of SP18

8,0 = 0.834 ± 0.016 [16] is in tension with late-Universe measurements,
such as the value obtained from the Kilo-Degree Survey (KiDS-1000) (KiDS), which reported
SKiDS

8,0 = 0.766+0.020
−0.014. Although the tension is less pronounced than the Hubble tension, it still
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Figure 2.5: Constraints on S8,0 and their corresponding 68% confidence levels derived from
recent measurements. Taken from Ref. [22].
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represents a significant challenge to the ΛCDM model. The x-axis in Fig. 2.5 shows S8,0

values, while the y-axis lists different studies. Similar to the previous figure, the plot is
divided into two sections: Early Universe (top), based on CMB measurements (in blue),
and Late Universe (bottom), using weak lensing (WL), galaxy clustering (GC), and RSD (in
green, orange, yellow, and red).

Each horizontal line represents an S8,0 measurement, with error bars indicating uncer-
tainties. The vertical shaded purple region highlights the early-Universe S8,0 value from
Planck values. On the other hand late-Universe measurements generally fall below this
range, between 0.75 − 0.80. This tension in S8,0 values, although less pronounced than the
Hubble tension, represents a growing challenge in cosmology, hinting at potential inconsis-
tencies in our understanding of the Universe’s structure formation or underlying physics.

As one can observe, the late-time measurements, despite involving different probes and
methods, generally provide consistent results for both the H0 tension and, to a lesser extent,
the S8,0 tension. This consistency strongly suggests that these tensions are unlikely to arise
from systematic or statistical errors within the data itself, but rather point to an intrinsic
issue within the current cosmological framework [18, 39, 56, 22].

The persistence and significance of these tensions across various observations may indi-
cate the need for new physics beyond the standard ΛCDM model. The literature presents
a wide range of innovative approaches to address these growing cosmic tensions. Some
proposals involve reexamining the cosmological principle [146, 147], exploring the potential
impacts of early Universe dark energy [148, 149], or considering the introduction of extra
degrees of freedom, such as additional neutrino species in the early Universe [150, 151].
Among these approaches, modified gravity stands out as it offers a way to implement
smaller, yet pervasive, changes that can affect the Universe’s evolution across a broad range
of redshifts. Modifications to GR can impact both the background and perturbative levels
of the cosmological model. A particularly promising and natural avenue is TG [21, 152] (as
discussed in more detail Sec. 2.2), where in turn, a natural extension of this approach is to
generalise the TEGR Lagrangian to a more general function f̃ (T), which will be discussed
in more detail in the next subsection.

2.4.2 | f (T) Gravity
One promising avenue to address the aforementioned cosmological tensions is through a
natural extension of TEGR, known as f̃ (T) gravity. This approach is inspired by the f (

◦
R)

class of theories, where the gravitational Lagrangian is generalised to a function of the tor-
sion scalar T, rather than the Ricci scalar

◦
R [70, 153, 154]. By doing so, it introduces ad-

ditional degrees of freedom, which can be used to modify the cosmological dynamics [65].
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Furthermore, the significance of the boundary term B in the relationship between
◦
R and

T suggests a further natural extension to a more generalised framework, such as f̃ (T, B)
gravity [80, 155]. However, this extension, will be explored further in the next subsection.

The flexibility in f̃ (T) gravity is particularly appealing for addressing the challenges
posed by ΛCDM. Firstly, it preserves the fundamental principles of gravity while only
changing the approach to the geometry of spacetime. Secondly, by adjusting the functional
form of f̃ (T), it becomes possible to account for the observed accelerated expansion of the
Universe without the need to introduce a cosmological constant.

Moreover, f̃ (T) gravity holds the potential to reconcile early- and late-time cosmological
observations by introducing modifications that are relevant at different epochs in the Uni-
verse’s history. This could provide a unified framework that addresses both the H0 and S8

tensions, offering a more complete understanding of the Universe’s evolution.

Indeed, this f̃ (T) framework has been verified in solar system and white dwarfs tests, as
shown in the works of Farrugia et al. [156] and Bahamonde et al. [66]. These models have
also been confirmed in several other contexts, including studies involving white dwarfs,
further supporting the consistency of the framework with both local observations and solar
system constraints. These results suggest that, even without a screening mechanism, the
deviations from General Relativity predicted by f(T) remain within the bounds established
by stringent tests in these regimes.

The f̃ (T) gravity theory, which was introduced nearly a decade ago [157, 158], can be
understood as a straightforward extension of TG. It introduces modifications to TEGR by
focusing solely on the torsion scalar T. In this context, the theory is expressed as f̃ (T) =

−T + f (T), and the corresponding action is given by [99, 66]:

S f (T) =
1

2κ2

∫
d4x e (−T + f (T)) +

∫
d4x eLm . (2.51)

It is important to highlight that, while GR and TEGR are equivalent at the level of their
field equations, this equivalence breaks down when considering their extensions f̃ (

◦
R) and

f̃ (T). As discussed earlier in Eq. 2.19, the relationship
◦
R = −T + B shows that B is a bound-

ary term that does not contribute to the Lagrangian in TEGR. However, in f̃ (T) gravity,
which can involve a non-linear function and therefore, the equivalence between the two
theories is no longer equivalent [65].

Studying the action in Eq. 2.51, the TEGR limit can be achieved by setting f (T) → 0. On
the other the ΛCDM limit is recovered in the limits in which f (T) takes a constant value,
such that f (T) → −2Λ.

Varying the action with respect to the tetrad eA
µ, the field equations in a flat, homoge-
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neous and isotropic Universe, the field equations for f (T) read [65]

e−1∂ν

(
eS µν

A

)
(−1 + fT) + TB

νAS νµ
B (−1 + fT)−

1
2

E µ
A (−T + f (T))

+ S µν
A ∂ν(−1 + fT) + ωB

AνS νµ
B (−1 + fT) = κ2T µ

A , (2.52)

where subscripts refer to derivatives, such that fT refers to the first derivative of f with
respect to T and fTT is the second derivative of the function.

This study investigates cosmology within the framework of the FLRW metric as de-
scribed in Eq. 2.22, employing the tetrad choice [159, 160]

eA
µ = diag (1, a(t), a(t), a(t)) . (2.53)

For this particular tetrad, the spin connection vanishes [66]. In this configuration, the
torsion scalar T is derived as [66, 65] 3

T = −6H2 , (2.54)

while the corresponding boundary term B is given by

B = −6(3H2 + Ḣ) . (2.55)

From these expressions, the standard Ricci scalar can be directly related to the torsion
scalar and boundary term, leading to a deeper understanding of the dynamics governed by
the TEGR.

Using the diagonal tetrad in the field equations, the modified Friedmann equations for
f (T) gravity can be written as [65, 66]

H2 +
T
3

fT − f
6
=

κ2

3
ρ , (2.56)

Ḣ (1 − fT − 2T fTT) = −κ2

2
(ρ + p) . (2.57)

Evidently, f (T) gravity can be interpreted such that the “extra terms” in the above equa-
tions can be explained as an effective dark energy and the modified Friedmann equation
take the following shape [65, 66]

3H2 = κ2(ρ + ρeff) , (2.58)

2Ḣ + 3H2 = −κ2(p + peff) , (2.59)

3It is important to note that in Chapter. 4, the signs of T and B are reversed, with T = 6H2 and B =
6(3H2 + Ḣ). This difference rises from a choice of convention, which depends on the signature of the metric. In
Chapter 4, the metric is taken to be gµν =

(
−1, a2(t), a2(t), a2(t)

)
. However, it is crucial to recognise that at the

level of the Hubble parameter within the Friedman equations, both conventions yield equivalent results.
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such that

ρeff :=
1

2κ2 ( f − 2T fT) , (2.60)

peff := − 1
κ2

[
−2Ḣ ( fT + 2T fTT)

]
− ρeff . (2.61)

The effective fluid also satisfies the standard conservation equation [161, 66]

ρ̇eff + 3H (ρeff + peff) = 0 , (2.62)

and can be used to define an effective equation of state giving [65]

ωeff :=
peff

ρeff
= −1 +

( f − T − 2T fT)( fT + 2T fTT)

(1 + fT + 2T fTT)( f − 2T fT)
. (2.63)

In the upcoming chapters, particularly Chapter 8, a detailed analysis of the H0 and S8,0

tensions is conducted within the context of f (T) gravity. Alongside the Friedmann equa-
tions (Eqs. 2.56, 2.57), the equation governing the evolution of matter perturbations in the
linear regime (Eq. 2.34) is also explored. In f (T) gravity, as in many other modified grav-
ity theories, the gravitational constant Geff becomes an effective, dynamic parameter rather
than a fixed constant [162]. This arises because the function f (T) modifies the field equa-
tions, causing Geff to vary with the torsion scalar T, thereby reflecting the changing nature
of gravitational interactions across different cosmological contexts. This relationship is cap-
tured by the equation [65, 22, 66]

δ̈ + 2Hδ̇ = 4πGeff ρ δ , (2.64)

where Geff generally depends on redshift z and the cosmic wave vector k [35, 163]. How-
ever, for the specific limits and data sets under consideration, Geff can be considered inde-
pendent of k. In GR Geff is equal to GN . In the context of f (T) gravity, the evolution of linear
matter perturbations is expressed as [162, 164]

Geff(z) =
GN

1 + fT(z)
. (2.65)

Thus, the sensitivity of the linear matter perturbation equation to f (T) gravity high-
lights the potential of large-scale structure data to place observational constraints on viable
models. In this setting, Eq. 2.35 takes the form,

δ′′(z) +
(

H′(z)
H(z)

− 1
1 + z

)
δ′(z) =

3
2

Geff(z)
GN

(
H0

H(z)

)2

Ωm,0 (1 + z) δ(z) . (2.66)

In addition to the analysis of density fluctuations, the propagation of GW within f (T)
gravity (specifically in Chapter 9). The generalised form of the tensor perturbation equation,
extending Eq. 2.44 to this context, is given by [165, 166]
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ḧij + (3 + αm)ḣij − (1 + αT)
k2

a2 hij = 0 , (2.67)

where αT represents the tensor excess speed and αm denotes the Planck mass rate. The tensor
excess speed αT quantifies the deviation of the propagation speed of GW from the speed of
light, characterised by the relation c2

T = 1+ αT, where cT is the speed of gravitational waves.
In f (T) gravity, as in GR, gravitational waves propagate at the speed of light, implying that
c2

T = 1 [167, 168], and consequently,

αT = 0 . (2.68)

The Planck mass rate αm introduces a friction-like term in the tensor perturbation equa-
tion. This term corresponds to a redefinition of the Planck mass and is related to the cos-
mological strength of gravity, denoted by M2

∗ (the kinetic term of the tensor perturbations)
[165, 169]. In the context of f (T) gravity, αm is given by [66]

αm =
1
H

ḟT

fT
. (2.69)

When expressed in terms of redshift, the tensor perturbation equation can be rewritten
as

h′′ij + (2 + αm)aHh′ij + (1 + αT)k2hij = 0 , (2.70)

with αm = −12 H′
a

fTT
fT

. This formulation emphasises the dependence of the propagation
dynamics on the modified gravity model parameters and provides insight into the effects of
f (T) gravity on GW propagation across different cosmological epochs.

2.4.3 | f (T, B) gravity
A rather more generalised extension of TEGR can be achieved by taking the arbitrary func-
tion f̃ (T, B) which encapsulates both the torsion scalar and the boundary term. In this
case, one can deviate from TEGR by considering the arbitrary function f̃ (T, B) such that
f̃ (T, B) = −T + F(B). This arises naturally when aiming to isolate purely fourth-order
modifications of gravity, as the boundary term B encapsulates the divergence between the
Ricci scalar and the torsion scalar. By choosing F(B) as the modification term, the distinction
between first- and fourth-order effects is maintained, avoiding the additional complexity in-
troduced by mixed T − B terms.

Excluding mixed T − B terms simplifies the theoretical landscape and ensures that de-
viations from GR are sourced exclusively by B. This has implications for the structure of
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the field equations, which remain manageable and analytically tractable, making it easier to
connect the models with observational data.

While the absence of such terms simplifies the framework and retains a clear distinction
between T and B contributions, mixed terms have been explored in the literature, such as
Ref. [80] and shown to yield interesting dynamical behaviours.

Therefore, the action becomes [155, 66]

S f (T,B) =
1

2κ2

∫
d4x e (−T + F(B)) +

∫
d4x eLm . (2.71)

The TEGR limit is achieved when f̃ (T, B) → −T, implying there will be no contribution
from the boundary term B and F(B) = 0. The ΛCDM limit, on the other hand, is obtained
for a constant F(B), where F(B) → 2Λ, such that f̃ (T, B) → −T + 2Λ.

Thus, the field equations for such action can be obtained by taking the variation with
respect to the tetrad [155]

E µ
A □̊FB − E ν

A ∇̊µ∇̊νFB +
1
2

BFBE µ
A − (∂νFB − 1)S µν

A +
1
e

∂ν(eS µν
A )− TB

νAS νµ
B

−ωB
AνS νµ

B − 1
2
(−T + F(B))E µ

A = κ2T µ
A (2.72)

where □ = ∇µ∇µ is the d’Alembert operator and FB is the derivative of F with respect
to B.

Following the f (T) FLRW cosmology, Eqs. 2.53 – 2.55 remain exactly the same. The
modified Friedmann equation for f (T, B) thus become

3HḞB − 3H2(−2 + FB)− 3FBḢ − 1
2

F(B) = κ2ρ , (2.73)

−(3H2 + Ḣ)(−2 + 3FB) + F̈B − 1
2

F(B) = −κ2 p , (2.74)

where ḞB is the time derivative of FB = dF(B)
dB whilst F̈B is the second derivative with respect

to time of said term.

Similarly to f (T), f (T, B) can be interpreted as a gravitational fluid with associated en-
ergy density ρeff and peff, such that the above equations can be rewritten in the form

3H2 = κ2(p + ρeff) (2.75)

3H2 + 2Ḣ = −κ2(p + peff , (2.76)
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with the gravitational fluid defined as

κ2ρeff := 3H2(3FB)− 3HḞB + 3HḞB + 3ḢFB +
F(B)

2
(2.77)

κ2 peff :=
F(B)

2
− 3FB(3H2 + Ḣ) + F̈B . (2.78)

Consequently the effective, EoS becomes [82, 80]

weff :=
peff

ρeff
= −1 +

F̈B − 3HḞB

3H2(3FB)− 3HḞB + 3ḢFB + 1
2 F

. (2.79)

2.5 | Conclusion
In this chapter, the foundational concepts of modern cosmology, centring on the interplay
between curvature and torsion, as well as the frameworks of GR and TEGR were explored.
These discussions provide a comprehensive backdrop for understanding the evolution of
our Universe and the fundamental forces that govern it.

At the heart of classical gravitational theories lies the distinction between curvature and
torsion as geometric properties of spacetime. In GR, gravity is understood as the mani-
festation of spacetime curvature, encoded in the Ricci scalar

◦
R, which is derived from the

Levi-Civita connection. The Levi-Civita connection, in turn, is torsion-free, implying that
torsion does not play a direct role in the formulation of GR. This geometric interpretation of
gravity has been extraordinarily successful in explaining a wide array of physical phenom-
ena, from the perihelion precession of Mercury to the deflection of light by massive objects
and the expansion of the Universe.

Indeed, the successes of GR has laid the foundation for ΛCDM model, which has be-
come the standard model of cosmology. It elegantly combines GR with the cosmological
constant Λ and a dark matter component, explaining the accelerated expansion of the Uni-
verse, the formation of large-scale structures, and the anisotropies in the CMB. Yet, despite
its successes, ΛCDM is not without its challenges. Two of the most prominent issues are the
so-called H0 tension and S8,0 tension. The H0 tension refers to the discrepancy between the
value of the Hubble constant H0 as inferred from early Universe observations (such as CMB)
and its value as measured in the late Universe (using local distance indicators like Cepheid
variables and supernovae). The S8,0 tension, on the other hand, arises from differences in the
inferred amplitude of matter fluctuations on a scale of 8 Mpc, again between early Universe
measurements and those from large-scale structure surveys.

These tensions suggest that there might be more to our Universe than what is encap-
sulated within the ΛCDM paradigm. They may hint at new physics beyond the standard
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model of cosmology, possibly requiring modifications to GR or the introduction of new com-
ponents beyond dark matter and dark energy.

Admittedly, the perspective of perceiving gravity through curvature is not the only way
to describe gravity. An alternative approach is offered by TG, wherein gravity is attributed
not to curvature, but to torsion. In this framework, the Teleparallel connection, which is
curvature-free but possesses torsion, replaces the Levi-Civita connection. The TEGR is a
particular formulation of this theory, where the torsion scalar T plays a role analogous to the
Ricci scalar in GR (up to a boundary term B). Remarkably, TEGR is dynamically equivalent
to GR, meaning it reproduces the same field equations and thus the same phenomenology,
despite its distinct geometric foundation.

Given the challenges faced by ΛCDM, particularly the H0 and S8,0 tensions, the explo-
ration of extended modified gravity theories becomes a compelling avenue for addressing
these cosmological issues. One such extension is f (T) gravity, a generalisation of TEGR
where the Lagrangian is a function of the torsion scalar T. This natural modification, allows
for further exploration in the subsequent chapters and its implications for cosmic evolution,
structure formation, and the propagation of gravitational waves will also be investigated.

Furthermore, the f (T, B) theory represents an even more generalised approach by incor-
porating the boundary term B into the gravitational action. In f (T, B) gravity, the boundary
term B serves as a bridge between curvature-based and torsion-based descriptions of grav-
ity, making it a natural extension for addressing the inconsistencies within ΛCDM and to
also study its implications.

The aim of exploring these alternatives to ΛCDM, is to investigate whether these mod-
els can provide a better fit to observational data. These alternatives might offer solutions
that resolve the existing discrepancies without conflicting with the successful predictions
of ΛCDM in other areas. Furthermore, these explorations have the potential to reveal new
insights into the fundamental nature of gravity, and the behaviour of dark energy, and the
overall dynamics of the cosmos. In essence, the goal is to push the boundaries of our knowl-
edge, and see if these approaches can provide a clearer picture of the Universe and deepen
our understanding of its fundamental workings
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3

Methods, Observations and the Road to
Cosmological Models

In the evolving field of cosmology, understanding the dynamics of the Universe’s expansion
remains a central pursuit. Over recent decades, the standard cosmological model, ΛCDM,
has provided a foundational framework for interpreting observations of cosmic structure
and evolution. However, the quest to explore alternative theories has driven significant re-
search into modifications of general relativity and extensions to the standard model. Among
these alternatives, f (T) gravity stands out as a compelling framework that modifies the
TEGR to address phenomena such as cosmic acceleration.

In cosmology, traditional computational methodologies often revolved around analyt-
ical approximations and direct numerical integration techniques. While these approaches
were effective in simple cases, their limitations became evident with increasingly complex
datasets and models. The advent of MCMC methods represented a significant advance-
ment, offering robust tools for model selection and parameter estimation by sampling from
high-dimensional probability distributions. MCMC methods, and its algorithms such as the
Metropolis-Hastings, remain widely used for their reliability and ability to explore posterior
distributions comprehensively.

More recently, GPs have gained prominence as a versatile non-parametric method. Un-
like MCMC, which relies on explicit assumptions about the model’s functional form, GPs
provide a data-driven approach to reconstruct functions and quantify uncertainties. This
has proven particularly valuable in cosmological reconstructions, where flexibility and adapt-
ability are crucial.

Additionally, the rise of machine learning has introduced neural networks and other Ar-
tificial Intelligence-based methods as computational tools. These techniques have demon-
strated potential in areas such as classification and clustering of cosmological data. How-
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ever, their application to parameter estimation and model selection is still in its infancy, with
challenges surrounding interpretability and the need for extensive training datasets.

In this context, MCMC and GPs stand out as a mature and well-established methodol-
ogy, providing an ideal balance between interpretability, flexibility, and computational effi-
ciency. Therefore, this chapter delves into a comprehensive analysis of several f (T) cosmo-
logical models, utilising advanced statistical techniques to assess their viability. Specifically,
key methodologies employed include GPs and MCMC simulations, which offer powerful
tools for extracting meaningful insights from observational data. The observational datasets
used, while current at the time of analysis, will undoubtedly evolve as new data becomes
available. This ongoing development underscores the importance of continually refining
models and datasets to stay up-to-date of the latest cosmic measurements.

The chapter begins with a detailed introduction of the methods employed in the analy-
sis: GP and MCMC. These methods are crucial in analysing the f (T) (ans later on f (T, B)
framework and extract insights from observational data. MCMC provides a framework for
exploring the parameter space of these models, while GP offers a flexible approach for re-
constructing the Hubble parameter and the f (T) function.

Following the discussion of methodologies, the chapter transitions to a review of the ob-
servational data used in the analysis. Then, five distinct f (T) models, each offering unique
perspectives on the dynamics of cosmic expansion are presented and explored. These mod-
els will be later on compared against the observational data, with a particular emphasis on
their comparative performance relative to the ΛCDM model. To facilitate this comparison,
statistical criteria such as the Akaike Information Criteria (AIC) and Bayesian Information
Criteria (BIC) are employed, with results interpreted through the lens of the Jeffreys’ Scale
(which will be explained in detail further on) to gauge the strength of evidence supporting
each model and help identify which models offer the best balance between fit and complex-
ity.

In the course of this analysis, future work will extend this investigation to include more
complex models, such as f (T, B) gravity, which incorporates additional parameters to fur-
ther refine our understanding of cosmic dynamics. This forthcoming analysis will build
upon the insights gained from the current models, offering a broader and more detailed
perspective on cosmological evolution.

Through this exploration, the chapter aims to contribute to the broader dialogue on cos-
mological models, providing a better evaluation of f (T) gravity and its potential to offer
new perspectives on the Universe’s expansion. The subsequent section will start off with
the first method used: Gaussian Process (GP).
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3.1 | Gaussian Processes
Least squares regression is a fundamental statistical technique used to estimate parame-
ters by minimising the sum of squared differences between observed and predicted values
[170]. This method assumes a specific form for the underlying function and provides point
estimates for the parameters. However, it may not effectively capture the uncertainty in
predictions or handle complex, non-linear relationships.

As data complexity increases, Gaussian Processs (GPs) present a robust alternative. Un-
like least squares regression, which relies on predefined parametric forms, GPs offer a non-
parametric approach that does not require an explicit functional form for the data. This
flexibility is crucial for modelling intricate relationships and for scenarios where the under-
lying data structure is unknown.

GPs are a powerful tool within the machine learning toolbox [171], providing a sophisti-
cated method for making predictions by incorporating prior knowledge. Given a set of data
points, there are potentially infinite functions that could fit the data. However, GPs address
this by assigning a probability distribution to each possible function, rather than selecting
a single model. The mean of this distribution represents the most probable characterisation
of the data, while the probabilistic framework allows for the incorporation of confidence
intervals in the predictions [171].

In the following subsections, the fundamental principles and core concepts of GPs will be
explored. A detailed discussion of the most commonly used covariance matrices will follow,
providing insight into their roles and applications. This will be followed by a comprehensive
overview of how to effectively implement GPs. Finally, the discussion will extend beyond
predicting the underlying function to include the modelling of its derivatives.

3.1.1 | Fundamentals of Gaussian Processes
The fundamental building block of GPs is the Gaussian (or normal) distribution, which de-
scribes the distribution of a random variable. GP generalises this concept to model functions
within a stochastic statistical process. Formally, a GP is defined as a collection of random
variables, any finite number of which have a joint Gaussian distribution [171]. This enables
GPs to reconstruct the most plausible continuous function that describes the data and its
derivatives, while also providing confidence intervals without requiring a predefined func-
tional form [172].

By using GPs, predictions can be made for function values at new points based on ob-
served data, without assuming a specific functional form. This non-parametric approach
offers a significant advantage over traditional parametric models by providing a distribu-
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tion as a prediction, which reflects the uncertainty inherent in the model. Therefore, GPs
are particularly valuable for handling complex, non-linear relationships and for scenarios
requiring model independence.

The process of reconstructing a function using GPs is outlined as follows. Given a dataset
D comprising of n observations

D = {(z̃i, yi) | i = 1, . . . , n} , (3.1)

in which GP aims to reconstruct the function g(z) that best represents this data. Similar to
a multivariate normal distribution, a GP is characterised by two fundamental components:
a mean function µ(z) and a covariance function C(z, z′) [173]. The GP (GP) can be formally
expressed as

g(z) ∼ GP(µ(z), C(z, z′)) . (3.2)

In many cases, the mean function µ(z) can be assumed to be zero across all points, as
each point is insensitive to this. The covariance function, C(z, z′) captures the dependencies
between function values at different points z and z′, indicating how they are correlated.

In GPs, the mean function is often set to zero as a simplifying assumption, especially
when no prior knowledge about the data is available. The choice of mean function typically
doesn’t affect the results significantly as long as the covariance structure (the kernel) is well-
defined and captures the data’s underlying structure. Mathematically, setting µ = 0 implies
that the GP prior assumes no initial bias or trend, which allows the covariance function
to dictate the correlations between the function values at different input points. Thus, by
relying solely on the covariance structure, we ensure that the GP model remains flexible
and can adapt to the data without imposing unnecessary assumptions on its baseline.

When the mean function is not set to zero, it introduces an assumption about the base-
line of the data. For instance, using a constant mean assumes a fixed baseline, which may
influence predictions if the true mean deviates from this assumption. However, without
prior knowledge of the mean, this choice could lead to bias in the model’s predictions if the
assumed mean does not align with the true underlying behaviour of the data.

For redshift points z∗ where no direct data is available but where function values need
to be reconstructed, the covariance function is defined as C(z∗, z∗

′
) ≡ K(z∗, z∗

′
). Here,

K(z∗, z∗
′
) denotes the kernel function, which describes the correlation between the function

values at z∗ and z∗
′
. This kernel is thus far unknown, but the function must be symmet-

ric and encapsulates information about the correlation structure and the scale of deviations
from the mean.
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Therefore, the GP generates a Gaussian vector g∗ of function values at the redshift points
z∗, where g∗i = g(z∗i ). The distribution of g∗ follows a multivariate normal distribution

g∗ ∼ N (0, C(Z∗, Z∗)) , (3.3)

where µ∗ = 0, Z∗ = {z∗i }, and C(Z∗, Z∗) is the covariance matrix with entries C(Z∗, Z∗)|ij =

C(z∗i , z∗j ). This matrix encapsulates the covariances between all pairs of points in the set Z∗,
facilitating the reconstruction of the function at unobserved locations based on the observed
data. This

It is also important to note that the notation N signifies that the GP (GP) is evaluated
at specific points z∗, where g(z∗) is a random variable drawn from a normal distribution.
As the function itself is not constrained by prior observations, it initially appears arbitrary.
However, the covariance function imposes correlations between function values at different
locations z∗. This covariance function acts as a prior that influences the selection of potential
output functions. The introduction of additional observational data points z̃i subsequently
refines and constrains the function further, ensuring that the predictions are consistent with
the observed data.

In the case of observational data points, z̃, the correlations and uncertainties are acces-
sible and thus, the covariance matrix, G(z̃, z̃′), between these points is known. This can
be used as the first step to finding a relation between the data and the underlying func-
tion as the covariance function for observational data points can be defined as C(z̃, z̃′) ≡
K(z̃, z̃′) + G(z̃, z̃′). This leads to to the following multivariate normal distribution

y ∼ N (0, C(Z̃, Z̃)) , (3.4)

where µ = 0, Z̃ = {z̃i} and thus, C(Z̃, Z̃) is the covariance matrix defined by C(Z̃, Z̃)|ij =
C(z̃i, z̃j).

However, there remains an unknown correlation between observational data points z̃
and the general points z∗ for which the covariance function can be defined as C(z̃, z∗) ≡
K(z̃, z∗), where K(z̃, z∗) is yet to be defined.

The above two GP can be incorporated together in the below joint probability distribu-
tion  y

g∗

 ∼ N
0 ,

 C(Z̃, Z̃) C(Z̃, Z∗)

C(Z∗, Z̃) C(Z∗, Z∗)

 . (3.5)

From the above equation, y can be obtained from observations, however, g∗ needs to be
reconstructed by using a following conditional distribution [173]

g∗|Z∗, Z, y ∼ N (g∗, cov(g∗)) . (3.6)
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Thus, the mean value (g∗) and the covariance cov( f ∗) of the reconstructed function g∗ at
point z∗ can be shown to be

g∗ = g(z∗) =
n

∑
i,j=1

C(z∗, z̃j)[C(z̃i, z̃j)]
−1(y) , (3.7)

cov(g∗) = C(z∗, z∗)−
n

∑
i,j=1

C(z∗, z̃i)[C(z̃i, z̃j)]
−1C(z̃j, z∗) (3.8)

3.1.2 | Overview of Kernel Functions
A diverse range of kernel functions, K (z, z′), mentioned earlier, are available for use in
Gaussian processes [171], each offering distinct advantages and limitations depending on
the specific application or problem at hand. The effectiveness of these kernels is an area of
ongoing research and debate [172, 174]. Central to these kernel functions are two crucial
parameters known as hyperparameters, which impact the performance and flexibility of
the GP. These hyperparameters control the kernel’s ability to accurately model and fit the
underlying data. An understanding of these hyperparameters is essential for tailoring the
kernel to the specific characteristics of the data. The following points will first describe these
hyperparameters in detail, followed by an overview of the specific kernels employed in this
study.

■ Vertical Scale Parameter (σg): This parameter governs the magnitude of the function’s
variations and the strength of correlations between uncertainties. By adjusting σg, one
can control the vertical scaling of the function, which directly influences the amplitude
of the fluctuations in the predicted values. A larger σg results in a broader range of
values for the function, reflecting greater uncertainty in the predictions [175].

■ Length Scale Parameter (lg): The length scale, denoted as lg, determines how the cor-
relation between data points diminishes with distance. Specifically, lg defines the
spatial range over which the function values remain correlated. When the distance
between two points |z − z′| is much smaller than lg, the function values are strongly
correlated. Conversely, as the distance increases beyond lg, the correlation rapidly de-
creases. Thus, lg sets the scale for how quickly the influence of one data point fades
with distance [176]. This parameter is crucial for capturing the smoothness and vari-
ability of the function over the input space [175].

For the purposes of this project, several kernel functions were evaluated to assess their
impact on the reconstruction of the function. The following equations present four of the
most widely used kernels, which were employed in this study.
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■ Squared-Exponential kernel

K
(
z, z′

)
= σ2

g exp

[
− (z − z′)2

2l2
g

]
, (3.9)

where σg and lg are hyperparameters of the kernel functions. This kernel is considered
to be a general purpose kernel and thus, it is one of the most actively used kernel [172].
This kernel function is also infinitely differentiable and is therefore, very smooth. This
is a useful property for constructing higher-order derivatives as well [171, 177]. If
z ≈ z′, then K(z, z′) approaches a maximum, which in turn means that g(z) and g(z′)
are almost perfectly correlated with each other. This continues to substantiate the point
that for neighbouring points the functions must have have similar values and thus, it
will be a smooth function. If on the other hand, z and z′ are distant from each other,
then K(z, z′) ≈ 0 and the function at these points will have no correlation with each
other [178]. The length scale lg determines how quickly this correlation decays, influ-
encing the function’s smoothness, while σ2

g scales the overall variability of the func-
tion. This kernel’s properties make it particularly effective for modelling continuous
trends and smooth variations in data, making it a popular choice in Gaussian process
regression for its flexibility and capability to handle a wide range of smooth functions.

■ Cauchy Kernel

K
(
z, z′

)
= σ2

g

[
lg

(z − z′)2 + l2
g

]
, (3.10)

which is also dependant on the hyperparameters σg and lg. Unlike the squared ex-
ponential kernel, which features an exponential decay in covariance, the Cauchy ker-
nel decreases polynomially with distance. This behaviour is governed by the term
(z − z′)2 + l2

g in the denominator. This decay allows the Cauchy kernel to accommo-
date data with abrupt changes and outliers, as it does not penalise large deviations as
severely as kernels with exponential decay.

The Cauchy kernel’s ability to handle such heavy-tailed behaviour makes it particu-
larly valuable for modelling functions where data may exhibit irregularities over large
distances. Its sharp variations makes it a suitable choice for scenarios where traditional
smooth kernels might fail to capture essential features of the data [174].

■ Matérn Kernel

K
(
z, z′

)
= σ2

g

(
1 +

√
3|z − z′|

lg

)
exp

[
−
√

3|z − z′|
lg

]
, (3.11)

.
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The Matérn kernel incorporates both a polynomial term and an exponential term to
control the smoothness of the resulting function. The term

√
3|z−z′|

lg
introduces a lengthscale-

dependent decay, while the exponential function exp
[
−

√
3|z−z′|

lg

]
modulates the rate of

decay. This combination allows the Matérn kernel to interpolate between different de-
grees of smoothness.

The Matérn kernel is known for its ability to produce functions that exhibit less smooth-
ness compared to the squared exponential kernel, making it suitable for modelling
functions with rougher features or varying smoothness [179].

■ Rational quadratic kernel

K
(
z, z′

)
= σ2

g

[
1 +

(z − z′)2

2αl2
g

]−α

, (3.12)

In this case, an additional hyperparameter is included, the α parameter, which governs
the flexibility of the kernel. The parameter α controls the relative weighting of these
varying length scales. Essentially, α adjusts the average distance over which the func-
tion exhibits vertical variations. The Rational Quadratic kernel can be seen as a scale
mixture of squared exponential kernels, allowing it to effectively capture both short-
range and long-range dependencies in the data. This makes it particularly useful for
handling data with different scales of variation and complex patterns [171].

To reconstruct the function using GPs the choice of kernel function and its associated
hyperparameters, such as σg and lg, play a crucial role. The kernel function determines the
covariance structure of the data, while the hyperparameters tune the kernel to best fit the
observed data. The reconstruction process depends on these choices, as described by the
kernel equations. This process ensures that the model captures the underlying patterns of
the data by adjusting the hyperparameters to minimize the discrepancy between the model’s
predictions and the observed data.

Therefore, the hyperparameters need to be optimised by maximising the marginal likeli-
hood, which involves integrating over the possible functions g evaluated at the data points
Z̃. This is represented mathematically as

p(y|Z̃, σg, lg) =
∫

p(y|g, Z̃)p(g|Z̃, σg, lg) dg , (3.13)

where p(y|g, Z̃) is the likelihood of the observed data given the function values, and
p(g|Z̃, σg, lg) is the prior distribution over the functions. This integration marginalises over
the function values, focusing only on the observed data locations Z̃ and not on the new
reconstruction points Z∗.
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Assuming a Gaussian prior for the function values, g|Z̃, σg, lg ∼ N (µ,K(Z̃, Z̃)), and that
the observations are also Gaussian, y|g ∼ N (g,G), the marginal likelihood simplifies to

lnL = ln p(y|Z̃, σg, lg) (3.14)

= −1
2

n

∑
i,j=1

(yi − µi)
T[C(Z̃, Z̃)]−1(yj − µj)−

1
2

ln |C(Z̃, Z̃)| − n
2

ln 2π , (3.15)

where C(Z̃, Z̃) denotes the covariance matrix with entries C(z̃i, z̃j), and L represents the
marginal likelihood. The hyperparameters σg and lg are selected to maximise this likeli-
hood, ensuring that the Gaussian Process best fits the given dataset. Notably, the marginal
likelihood depends only on the observed data points z̃i, and thus, the optimisation of hy-
perparameters effectively tunes the model to the observed data.

3.1.3 | Applying Gaussian Processes
Therefore, as has been mentioned, the process involves first defining the kernel function,
then tuning its hyperparameters by maximising the marginal likelihood, thereby fitting the
GP model to the data and providing a robust reconstruction of the underlying function.

In summary, the application of GPs follows the summarised steps, which are illustrated
in Fig. 3.1.

1. Select a Dataset: Initiate the process by selecting a dataset that includes observational
input locations z̃i, their corresponding output values yi, and associated variances. This
step is depicted in Fig. 3.1(a).

2. Define Reconstruction Points: Identify the points z∗ where no observational data is
available but where predictions are desired as shown in Fig. 3.1(b).

3. Choose a Kernel Function: Select an appropriate kernel function to model the co-
variance structure of the data. This step is illustrated in Fig. 3.1(c) In this study, the
following kernels are considered: the Squared Exponential kernel, the Cauchy kernel,
the Matérn kernel, and the Rational Quadratic kernel.

4. Optimise Hyperparameters: Each chosen kernel function has associated hyperparam-
eters, such as σg (vertical scale) and lg (lengthscale), shown in Fig. 3.1(d). These hy-
perparameters are optimised by maximising the log marginal likelihood, as defined in
Eq. 3.14.

5. Compute the Covariance Matrix: With the optimised hyperparameters, compute the
final covariance matrix, (Fig. 3.1(e)) required in Eq. 3.5.
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Figure 3.1: This diagram illustrates the workflow of Gaussian Processes. The blue box rep-
resents the initial inputs, including the dataset. Modelling choices, such as the selection
of kernel functions and reconstruction points, are depicted by the grey boxes. The green
boxes indicate the essential computations, including the determination of final covariances,
optimisation of hyperparameters, and the prediction of the mean and uncertainties for the
reconstructed function, which is shown in the final box.

6. Make Predictions: Utilise the covariance matrix and optimised parameters to predict
the mean using Eq. 3.7 and uncertainty of the function at the reconstruction points,
using Eq. 3.8 as shown in Fig. 3.1(f), (g).

3.1.4 | Reconstructing the derivative of a function
GPs extend beyond the prediction of functions to also model the derivatives of these func-
tions. Notably, the derivative of a GP itself adheres to the framework of a GP [171].

In the GP framework, a function g(z) is represented as a sample from a GP. If g(z) is
smooth, its derivatives, including g′(z) and higher-order derivatives, can also be modelled
as samples from GPs. The covariance structure between observational data points remains
consistent with the standard GP formulation. However, the covariance between the function
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and its derivative, as well as between different derivatives, is derived from the original
covariance function

cov
(

gi,
∂gi

∂zj

)
=

∂K(zi, zj)

∂zj
, (3.16)

cov
(

∂gi

∂zi
,

∂gj

∂zj

)
=

∂2K(zi, zj)

∂zi∂zj
. (3.17)

Analogously, the covariances for higher derivatives can be determined in the same man-
ner.

The GP for the first and second derivative are given by the following equations, provided
that the GP for g(z) has already been computed

g(z) ∼ GP
(
µ(z), C(z, z′)

)
, (3.18)

g′(z) ∼ GP
(

µ′(z),
∂2C(z, z′)

∂z∂z′

)
, (3.19)

g′′(z) ∼ GP
(

µ′′(z),
∂4C(z, z′)

∂x∂z′

)
. (3.20)

In the subsequent part, the reconstruction of the first derivative of g is shown, however it
is noteworthy to say that the reconstruction of higher derivatives are done likewise. Similar
to the previous case, the joint distribution of y and g∗

′
is defined as y

g∗′

 ∼ N
0 ,

 C(Z̃, Z̃′) C ′(Z̃, Z∗)

C ′(Z∗, Z̃) C ′′(Z∗, Z∗′)

 , (3.21)

where

C ′(Z̃, Z∗)|ij =
∂C(z̃i, z∗j )

∂z∗j
,

and

C ′′(Z∗, Z∗′)|ij =
∂2C(z∗i , z∗j )

∂z∗i ∂z∗j
.

In turn, the conditional distribution can be defined as [173]

g∗′ |Z∗, Z, y ∼ N
(

g∗′ , cov(g∗′)
)

. (3.22)

The reconstructed mean value and the covariance of g∗
′

at point z∗ can then be written as
follows

g∗′ =
n

∑
i,j=1

C ′(z∗, z̃i)[C(z̃i, z̃j)]
−1y(z̃j) , (3.23)

cov(g∗
′
) = C ′′(z∗, z∗)−

n

∑
i,j=1

C ′(z∗, z̃i)[C(z̃i, z̃j)]
−1C ′(z̃j, z∗) . (3.24)
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In addition, the maximum marginal likelihood, Eq. 3.14, depends only on the input ob-
servational data points and thus, the hyperparameters in this case are trained in the same
manner as before since the equation itself is independent of the function needed to be recon-
structed.

Finally, GPs are extensively utilised by cosmologists for the reconstruction and analysis
of cosmological data, facilitating the prediction and refinement of cosmological parameters
across various redshifts [180]. Their non-parametric nature proves invaluable in addressing
issues such as the Hubble tension [181], constraining cosmological parameters with flexi-
bility [182], and exploring phenomena related to dark energy [173]. This capacity to model
data without predefined functional forms enhances their effectiveness in studying intricate
cosmological phenomena. In this context, the methodology of GPs is applied to impose
constraints on TG models, specifically f (T) gravity. The subsequent chapters will detail
how this approach is used to investigate and constrain these gravity models, illustrating the
practical application of GPs in modern cosmological research.

3.2 | Markov Chain Monte Carlo
The GP approach has been primarily described for its capacity to model and predict com-
plex relationships within data. While GP provides a strong framework for understanding
and predicting functions, it operates primarily in the realm of predictive modelling and does
not extend to parameter estimation. For this purpose, Markov Chain Monte Carlo (MCMC)
methods offer a valuable alternative. MCMC methods are employed for sampling from in-
tricate probability distributions and are particularly advantageous in Bayesian inference for
estimating posterior distributions of model parameters. Understanding the complementary
nature of MCMC’s parameter estimation and GP’s predictive capabilities offers a broader
perspective on how these methods can be applied to various research problems.

MCMC methods were first introduced in the 1950s by Metropolis et al. [183] as a means
to efficiently sample from unknown probability distributions [184, 185]. Since their incep-
tion, MCMC techniques have become widely used in cosmology for parameter estimation
[10, 186, 187, 188, 189, 190]. Through these methods, chains are generated to sample the
posterior probability distribution, following the Bayesian approach.

At the core of MCMC methods are two key concepts: Markov Chains and Monte Carlo
methods. The term Monte Carlo refers to a class of computational algorithms that rely on
random sampling to obtain numerical results, a concept named after the Monte Carlo dis-
trict in Monaco, famous for its association with gambling and, consequently, randomness
[191]. The second fundamental concept is that of a Markov Chain—a sequence of random
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variables where each variable depends only on its immediate predecessor. This implies that
the probability of a particular state in the chain depends solely on the previous state, inde-
pendent of the chain’s history [192, 193]. MCMC algorithms combine these two concepts,
allowing for random sampling in high-dimensional spaces, which is essential for complex
probabilistic modelling [184].

With the foundational concepts of Markov Chains and Monte Carlo methods estab-
lished, attention can now be turned to the formal structure and mechanics of the MCMC
algorithm. MCMC is particularly significant in statistical modelling, especially in Bayesian
inference, where it is utilised to approximate posterior distributions.

In the discussion that follows, the principles underlying MCMC will be explored, begin-
ning with an overview of the algorithm’s key components and the theoretical basis that sup-
ports its operation. The most commonly used MCMC algorithms, such as the Metropolis-
Hastings algorithm, will then be examined, with their respective advantages and practical
applications highlighted. Finally, the computational techniques of using MCMC will be dis-
cussed.

3.2.1 | Fundamental Concepts of MCMC
In Bayesian inference, the objective is to update beliefs about a set of parameters Θ, given
observational data D and an underlying model M [194]. These elements are combined
using Bayes’ Theorem, allowing the probability of the parameters Θ, given D and M, to be
determined [191]

P(Θ|D,M) =
P(D|Θ,M)P(Θ|M)

P(D|MD)
, (3.25)

where

◦ P(Θ|D,M) is the (joint) posterior distribution of some parameters Θ, conditioned
upon some data D of the model

◦ P(D|Θ,M) is the likelihood, quantifying how well the parameters Θ explain the ob-
served data

◦ P(Θ|M) is the prior distribution, representing our belief before observing the data.

◦ P(D|M) is the evidence term or marginal likelihood, acting as a normalising constant
across all possible parameter values.

The aim is to transition from a prior belief to a posterior belief by incorporating observa-
tional data. The likelihood function, P(D|Θ,M), denoted by L, represents the conditional
probability of the data given a particular choice of Θ within the model M [195]. The prior,
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P(Θ|M), denoted by π, describes the probability of specific values of Θ for the given model
M before the data is considered, and can be computed in advance [194]. In other words,
the prior reflects the initial belief about the model before the data is introduced [192]. The
evidence term in the denominator of Eq. 3.25 indicates how well the model M explains the
data. Since it does not depend on Θ, it serves as a normalising factor [184]. The left-hand
side of Eq. 3.25 represents the posterior, denoted as P , which provides a description of the
parameters Θ given the data D and the model M. This posterior is derived by combining
the prior π with the likelihood L, and normalising by the evidence, thereby yielding the
most probable parameters Θ [194].

Building upon the aforementioned equation, the MCMC process utilises the observa-
tional data, denoted as D, as its input to ultimately produce a posterior distribution of the
parameters Θ, conditioned on the data D and a pre-selected model M [196]. The fundamen-
tal objective of an MCMC algorithm is to construct a chain, or a sequence of points, within
the parameter space and to evaluate the posterior distribution as derived from Bayes’ theo-
rem, as shown in Eq. 3.25. This process, in its simplified form, is depicted in Fig. 3.2.

As has been mentioned, the denominator in Bayes’ theorem serves as a normalising fac-
tor, ensuring that the total probability integrates to one. However, since this normalising
factor is independent of the parameters Θ, it does not influence the shape of the posterior
distribution. Consequently, Eq. 3.25 can be simplified for the purposes of MCMC calcula-
tions, reducing to the following proportionality [192]

P(Θ|D,M) ∝ P(D|Θ,M) P(Θ|M) or

P ∝ L π . (3.26)

This simplification highlights that the posterior distribution P is directly proportional
to the product of the likelihood L and the prior π. As such, MCMC methods focus on this
proportional relationship, allowing the posterior to be effectively sampled without needing
to explicitly compute the normalising constant, which can often be intractable in complex
models.

In general, the prior distribution serves to adjust the likelihood function based on exist-
ing knowledge or beliefs about the parameters before observing the data. As a probability
distribution, the prior is constrained to lie within the range of 0 to 1. One common approach
is to use an uninformative prior, which provides a way to specify the acceptable range for
the parameters, effectively defining the parameter space over which the search for the opti-
mal model is conducted.

For instance, if the goal is to estimate a parameter b within the range 0 < b < 10, an
uninformative prior can be defined such that the prior probability is 1 within this range and
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0 outside of it. Explicitly, the prior function π(b) could be defined as

π(b) =

1 for 0 < b < 10,

0 otherwise.
(3.27)

This choice of prior reflects the belief that values of b outside the specified range are not
considered plausible or relevant for the model. By setting the prior in this manner, the search
for the optimal model is confined to the parameter space of interest, aligning the prior with
the constraints and expectations of the problem at hand.

Therefore, with the prior distribution already computed ( and the posterior distribution
being the ultimate goal), the primary task is to evaluate the likelihood. The likelihood,
denoted as L = P(D|Θ,M), represents the probability (through a function, such as the
normal distribution) of observing the given data under a specific set of parameters within
the model M [193].

For a dataset D = {y1, y2, . . . , yn} and given parameters, the likelihood is expressed as
the product of individual probabilities [191], such that

L = P(D|Θ,M) =
n

∏
i=1

P(yi|Θ,M) . (3.28)

Here, P(yi|Θ,M) is defined as follows, assuming the data follows a normal distribution
[193]

P(yi|Θ,M) =
1√

2πσ2
yi

exp

(
− r2

i
2σ2

yi

)
, (3.29)

where ri represents the residuals between the observed data yi and the model prediction
with the chosen parameters, and σyi denotes the uncertainty associated with yi.

Therefore the likelihood function provides a measure of how well the model with given
parameters explains the observed data. Consequently, the parameters that maximise the
likelihood function, as given by Eq. 3.28, are considered the most probable. However, di-
rectly maximising L can be challenging due to the product of probabilities, particularly
when dealing with large datasets. To simplify this process, it is common practice to work
with the logarithm of the likelihood function [184]. Taking the natural logarithm of L,
Eq. 3.28

lnL =
n

∑
i=1

ln P(yi|Θ,M)

= K −
n

∑
i=1

r2
i

2σ2
yi

= K − 1
2

χ2 , (3.30)
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Figure 3.2: Illustration of the MCMC process. On the left-hand side, observational data D
is input into the system. The sampler explores the parameter space by generating random
samples of Θ. These samples are evaluated within the model, where they, along with the
data, contribute to calculating the likelihood L. The prior distribution is also assessed based
on the generated Θ values such that in turn, the posterior distribution is computed. The
sampler iteratively refines its guesses to maximise the posterior probabilities, ultimately
producing corner plots that represent the distribution of parameter values.

where K is a constant that does not depend on the parameters Θ, and χ2 = ∑n
i=1

r2
i

σ2
yi

is the
chi-squared statistic, which measures the goodness-of-fit between the observed data and the
model predictions.

By maximising lnL, which is equivalent to minimising χ2, one effectively identifies the
parameter values Θ that provide the best fit to the data. This approach is computationally
advantageous, as it transforms the problem from handling products of probabilities to sum-
ming log-probabilities, which is numerically more stable and manageable. Therefore, the
optimisation process for parameter estimation often focuses on obtaining the chi-squared
value, aligning the fit of the model to the observed data.

The general process of MCMC is illustrated in Fig. 3.2. In this process, the observational
data is first introduced as the input. The core of the MCMC method involves the inser-
tion of this data into a predefined model to evaluate various parameter sets. Initially, the

58



3.2. Markov Chain Monte Carlo

sampler generates random proposals for the parameter vectors, denoted as Θ. These pro-
posed values are then used to assess their validity based on the prior distribution. If the
proposed parameters fall within the acceptable range defined by the prior, the likelihood
for the given parameter set is calculated using Eq. 3.30. This calculation incorporates both
the data and the model to determine the fit of the parameters. Following this, the sampler
makes more refined or "intelligent" proposals for Θ based on the posterior probabilities de-
rived from the likelihood and prior. The goal is to explore the parameter space effectively
to maximise the posterior probability. This iterative process allows the sampler to focus on
regions of higher posterior probability, refining the search for the most probable parameter
values. Ultimately, the output of the MCMC process is a collection of samples representing
the posterior distribution of the parameters. These samples can be visualised in a corner
plot, which displays the posterior distributions for each parameter and their correlations,
providing a comprehensive view of the inferred parameter values.

3.2.2 | The Metropolis-Hastings algorithm
While the general MCMC process involves iteratively exploring the parameter space to ob-
tain a posterior distribution, this exploration is typically conducted using a specific sampling
algorithm. In this work, the Metropolis-Hastings algorithm will be employed to facilitate
this exploration.

The algorithm derives its name partly from Nicholas Metropolis, who, along with his
colleagues, introduced the original version in 1953 for cases involving symmetric proposal
distributions [183]. Later, in 1970, W.K. Hastings generalised the algorithm to accommodate
asymmetric proposal distributions, thus extending its applicability to a broader range of
problems [197]. This generalised approach became widely recognised as the Metropolis-
Hastings algorithm, reflecting the contributions of both Metropolis and Hastings.

The Metropolis-Hastings algorithm is used to sample from the posterior distribution to
make more refined or “intelligent ” proposals for Θ and thus explore the parameter space.
This sampling procedure can be thought of as a random walk through the parameter space
each time proposing new steps which are accepted or rejected, depending on whether it fits
the data better for the model or not. If the new step is worse then the previous one, it may
still be accepted with a certain probability since it could be the that, if the accepted steps are
only those with better probability, the chain could be converging to a local maximum in the
parameter space and therefore not completely mapping all of the points.

To initiate the parameter exploration process, often referred to as the "walk" through the
parameter space, an initial guess for the parameter, denoted as Θ0, must be specified. Using
this initial parameter set, the likelihood and prior are computed based on the previously

59



Chapter 3. Methods, Observations and the Road to Cosmological Models

outlined information. Consequently, the initial posterior P0 is inferred.
The Metropolis-Hastings algorithm then proposes a new set of parameters, Θtrial. The

likelihood Ltrial and prior πtrial associated with the proposed parameters are computed,
yielding a new trial posterior Ptrial = P(Θtrial|D,M).

The acceptance of the proposed parameters, Θtrial, is determined based on the acceptance
ratio, which is given by [184, 193]

s = min
(

1,
P(Θtrial|D,M) · q(Θcurrent|Θtrial)

P(Θcurrent|D,M) · q(Θtrial|Θcurrent)

)
(3.31)

where, P(Θtrial|D,M) and P(Θcurrent|D,M) represent the posterior probabilities of the
trial and current parameters, respectively. The terms q(Θcurrent|Θtrial) and q(Θtrial|Θcurrent)

are the proposal probabilities for the moves between the current and trial parameters. In
general, the proposal distribution q(Θ′|Θ) in the Metropolis-Hastings algorithm is used to
generate candidate parameters Θ′ based on the current parameters Θcurrent, guiding the ex-
ploration of the parameter space and facilitating the sampling of the posterior distribution.

If the proposal distribution q(Θtrial|Θcurrent) = q(Θcurrent|Θtrial), then the accepatnce rate
simplifies to

s = min
(

1,
P(Θtrial|D,M)

P(Θcurrent|D,M)

)
(3.32)

It also noteworthy to see that the normalisation factor (the evidence) is the same for both
the numerator and the denominator, therefore it cancels out, meaning that the algorithm can
function without needing to compute the marginal likelihood.

The proposed parameters are accepted with probability s. However, to be able to accept
or reject the trial parameters, a random number u is generated from a uniformly distribution
between 0 and 1. If

◦ u ≤ s, accept the new parameters Θnew, where Θnew = Θtrial = Θcurrent.

◦ u > s, reject Θtrial and retain Θcurrent.

The key idea is that even if Θtrial has a lower posterior probability then Θcurrent, there is still
a chance of accepting it, which helps the algorithm from getting stuck in local maxima.

This iterative process continues, allowing the algorithm to explore the parameter space
and converge towards the posterior distribution. The algorithm will keep on jumping from
one step to another until it converges in a high posterior probability region where it has a
high likelihood [196] as shown in Fig. 3.3.

The successful jumps from one step to another are part of the Markov chain and as a
whole can be referred to as a random walk. It also noteworthy, that the initial steps which
are far away from the high posterior probability region are identified as the burn-in chain and
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Figure 3.3: The MCMC Process. Left: Initial conditions for the Metropolis-Hastings algo-
rithm are set. The algorithm proposes a new set of parameters, Θ, with an associated pos-
terior probability, Ptrial. These proposed parameters are evaluated and accepted based on
the acceptance rate r and the proposal distribution. Right: The random walk illustrates the
algorithm’s progression through the parameter space. Initially, the chain explores various
parameter values, represented as the burn-in period, which are outside the high posterior
probability region (depicted in green). After this burn-in phase, the chain continues to sam-
ple within the high posterior region, converging towards a set of parameters that maximise
the likelihood.

are removed as they are not relevant or close to the converging region [195]. This avoids any
initialisation effect in the final posterior distribution [198]. In Fig. 3.3 the burn-in chain are
those steps which are outside the high likelihood region (the green region). The remaining
samples are then used to represent the posterior distribution the parameters and can be
visualised in corner plots, which show the posterior distributions of individual parameters
and their pairwise correlations.

Therefore, in summary, the full algorithm can therefore be detailed as follows

1. Choose initial Parameters: Select an initial set of parameters Θ0.

2. Compute initial Likelihood and Prior: Calculate the likelihood L0 and π0, based on
your model and data.

3. Compute initial posterior: Compute the initial posterior using Bayes Theorem, Eq. 3.26.
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4. Propose New Set of Parameters: Generate new candidate parameters Θtrial, and com-
pute the likelihood Ltrial and prior πtrial.

5. Calculate the New Posterior: Compute the new posterior for the new parameters
P(Θtrial).

6. Compute the Acceptance Rate: Calculate the acceptance rate, s using Eq. 3.31.

7. Accept or Reject the New parameters: From the uniformly distributed u, accept or
reject the new parameters. If accepted the trial parameters become the current param-
eters, otherwise propose new parameters.

8. Repeat Process: Repeat the process until one has a large enough chain.

The MCMC algorithm, described above, was implemented using the well-established
Python package emcee, developed by Foreman-Mackey et al. [199] 4. One of the key ad-
vantages of emcee is its use of an ensemble of multiple walkers, which allows for parallel
exploration of the parameter space rather than relying on a single random walk. This multi-
walker approach enhances the efficiency and robustness of the sampling process.

Following convergence, the outputs from these walkers are aggregated to sample the
posterior distribution. To analyse the results, the ChainConsumer package was utilised [200]
5. This specialised Python tool is designed to handle and interpret the output from MCMC
processes. ChainConsumer facilitates the visualisation of the posterior distribution by gen-
erating plots of the posterior surface, evaluating the convergence and mixing of chains
through walk plots, and producing corner plots to illustrate parameter correlations and dis-
tributions.

3.3 | Distances and Observational Data
To apply the GP and MCMC algorithms effectively, it is crucial to have a strong set of obser-
vational data. This data serves as the foundation for both methodologies, enabling the the
development of predictive models and exploration of parameter spaces. For GPs, the data
is essential as a baseline to make accurate predictions and understand underlying trends. In
the context of MCMC, the observational data is used to calculate the likelihood (and hence
the χ2), which in turn drives the exploration of the parameter space towards the posterior
distribution. Therefore, acquiring high-quality, relevant observational data is a critical first

4https://emcee.readthedocs.io
5https://pypi.org/project/ChainConsumer
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step, ensuring that the subsequent analysis through GP and MCMC methods yields mean-
ingful and reliable results.

3.3.1 | Distances in Cosmology
To begin, the first subsection will focus on the concepts of distances and geometry, which are
fundamental to understanding the observational data required for the analysis. Distances
and geometric relationships play a crucial role in interpreting the data, as they provide the
necessary framework for understanding the observed phenomena. Understanding these
concepts is essential for accurately processing and applying the observational data within
both the GP and MCMC algorithm. This subsection will delve into the key principles of dis-
tances and geometry, setting the stage for their application in the data analysis that follows.

Distances to cosmological objects constitute the most common way to probe the cosmic
metric and the expansion history of the Universe. Astronomical observations, including
those that provide clues about nature of dark energy, fundamentally rely on two basic tech-
niques; measuring fluxes from objects and measuring angles on the sky. It is therefore useful
to define these types of distances [201, 18].

3.3.1.1 | Luminosity distance

Luminosity Distance is a fundamental concept in both astrophysics and cosmology, crucial
for determining the distance to astronomical objects based on their observed brightness.
Consider a luminous cosmological source with an absolute luminosity L, which represents
the total power emitted by the source. If an observer is located at a distance dL from this
source, in a static Universe, the emitted power is assumed to be conserved as it spreads
uniformly across a spherical surface area of 4πd2

L. Consequently, the luminosity distance dL

can be defined by the following relationship [35]

d2
L =

L
4πF , (3.33)

where F represents the apparent luminosity, or the observed flux. Here, flux is under-
stood as the amount of energy per unit area received by an observer from a luminous object
[31]. This concept is visually illustrated in Fig. 3.4.

However, in an expanding Universe, the relationship between luminosity distance and
the observed flux becomes more complex due to the effects of cosmic expansion. The lumi-
nosity distance must be adjusted to account for the redshift z of the source, which is a result
of the Universe’s expansion. In this context, the luminosity distance dL(z) is expressed as
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Figure 3.4: Definition of the luminosity distance as an analogy to 1/r2 dimming in flat Eu-
clidean space. A source with luminosity L is observed with flux F ∝ 1/d2

L .

an integral over the redshift, incorporating the cosmological parameters that govern the
expansion [86, 202]. The equation is given by

dL(z) = (1 + z)
∫ z

0

c dz′

H(z′)
(3.34)

where c is the speed of light, and H(z′) is the Hubble parameter as a function of redshift
z′. This integral reflects how the expansion of the Universe stretches the wavelengths of
light, affecting the observed luminosity and thus the perceived distance to the source.

3.3.1.2 | Comoving distance

The Comoving Distance is a fundamental concept in cosmology used to measure the dis-
tance between objects in the Universe while accounting for its expansion. Imagine two
galaxies that are moving apart due to the expansion of the Universe. The comoving dis-
tance is the measure of their separation that remains constant over time if both galaxies are
following the general expansion of space (Hubble flow).

Mathematically, the comoving distance dC(z) to an object at redshift z is given by

dC(z) = c
∫ z

0

dz′

H(z′)
(3.35)

The comoving distance is crucial because it provides a baseline for defining other types
of cosmological distances.

3.3.1.3 | Transverse Comoving Distance

The Transverse Comoving Distance dM(z) is an extension of the comoving distance that is
especially important for cosmological models where the Universe has curvature, whether it
is open or closed. It helps in understanding how distances are affected by the overall shape
of the Universe.
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In a flat Universe, where space is not curved, the transverse comoving distance is simply
the same as the comoving distance

dM(z) = dC(z) (3.36)

However, in Universes with curvature—where the geometry of space is either open (neg-
atively curved) or closed (positively curved)—the transverse comoving distance accounts
for this curvature. It adjusts the distance calculation based on whether the Universe is
curved and by how much. The formula for the transverse comoving distance depends on
the curvature parameter Ωk and is given by [203]

dM(z) =


c

H0
sinh

(
H0

√
ΩkdC(z)

c

)
, for a closed Universe (Ωk > 0)

dC(z), for a flat Universe (Ωk = 0)

c
H0

sin
(

H0
√

|Ωk |dC(z)
c

)
, for an open Universe (Ωk < 0)

(3.37)

In simple terms, the transverse comoving distance provides a way to measure how far
apart objects are in a curved Universe, correcting for the way the Universe’s shape affects
our distance calculations. For a flat Universe, this distance is straightforwardly the same
as the comoving distance, but for curved Universes, it adjusts the distance accordingly to
account for the curvature.

3.3.1.4 | Angular Diameter distance

Consider an astronomical source with a known physical scale D, often referred to as a ‘stan-
dard ruler‘, which subtends a small angle θ in the sky, as illustrated in Fig. 3.5. In an Eu-
clidean space, where geometry is flat, the physical angular diameter distance dA is defined
as

dA(z) =
D
θ

. (3.38)

For an expanding Universe, the physical angular diameter distance needs to be amended
and is given by [86]

dA(z) =
c

(1 + z)

∫ z

0

dz′

H(z′)
=

dM(z)
(1 + z)

=
dL(z)

(1 + z)2 . (3.39)

The angular diameter distance dA is reduced by a factor of 1 + z compared to the trans-
verse comoving distance dM. This reduction accounts for the stretching of space during the
light’s journey from the source to the observer.
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Figure 3.5: Diagram of the definition of the angular diameter distance, which is obtained
from the angular and physical scales.

In essence, the angular diameter distance dA, is also related to the luminosity distance,
dL, as dA measures the distance between the observer and the object when the light was
emitted as shown in Eq. 3.39 [89].

3.3.1.5 | Comoving Volume Distance

The comoving volume distance, dV , measure is used to describe the effective distance that
accounts for the volume of space within a certain redshift. It incorporates the transverse
comoving distance and the rate of the expansion of the Universe. This distance helps in the
understanding of how the volume of the Universe evolves with redshift, providing insights
into the distribution and density of cosmic structures.

[204]

dV(z) =
[

d2
M(z)

cz
H(z)

]1/3

(3.40)

3.3.1.6 | Hubble Distance

Apart from the above distances, some surveys also report the value of the Hubble distance,
dH. It is defined as the distance of an object based in the Hubble flow, such that [35]

dH =
c

H0
(3.41)

tells us how far light travels in one Hubble time (the inverse of the Hubble constant). This
gives the distance from the observer at which the recession velocity of a galaxy would equal
the speed of light. Roughly speaking, the Hubble radius is the radius of the observable
Universe.

66



3.3. Distances and Observational Data

3.3.2 | Expansion Data Sets
Over the years, several cosmological probes have been developed to explore the fundamen-
tal questions surrounding the expansion of the Universe, as well as the nature of dark en-
ergy and dark matter. These probes work by measuring how the Universe is expanding and
modelling it through various cosmological parameters. Thanks to significant advancements
in methodology, technology, and theory, some of these probes have now reached a level of
maturity that allows them to be considered ‘standard’ in cosmological studies. Among these
are the SNe Ia and BAO [201]. Ongoing and completed cosmological missions have contin-
uously refined the accuracy and precision of these measurements, pushing the capabilities
of these probes to their limits. Notable examples include SNe Ia for SNe Ia, and the BOSS
and eBOSS surveys [205] for BAO.

This discussion on various cosmological distances, such as luminosity distance, angular
diameter distance, and comoving distance, forms the basis for understanding the observa-
tional data utilised in this work. Specifically, datasets like PN (Type Ia Supernovae), BAO,
and Cosmic Chronometers (CC) play a crucial role in constraining cosmological parameters
and providing insights into the expansion history of the Universe. These datasets offer com-
plementary perspectives, helping to piece together a comprehensive picture of the cosmos
and refine our teleparallel models

3.3.2.1 | Cosmic Chronometers

Cosmic Chronometerss (CCs) refer to astrophysical objects whose evolutionary history is
well understood. A prime example of such objects includes certain types of galaxies, par-
ticularly massive and passively evolving. By observing these galaxies at different redshifts
and comparing their evolutionary stages, researchers can directly estimate the value of the
Hubble parameter, H(z), at each redshift z .

The CC method is conceptually straightforward and involves determining the Hubble
parameter as a function of redshift z without relying on any specific cosmological model.
This technique, first proposed by Jimenez and Loeb over 20 years ago [138] , is based on the
relationship between time and redshift. In the context of a flat FLRW metric, this relationship
can be expressed as

H(z) = − 1
1 + z

dz
dt

≈ − 1
1 + z

∆z
∆t

. (3.42)

One method of obtaining H(z) is by calculating the differential age of two passively
evolving galaxies at different redshifts [138]. This spectroscopic dating of galaxies is referred
to as the CC method and has proven to be a useful tool for acquiring observational H(z)
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values at redshifts z ≲ 2 [176]. In this context, ∆z in Eq. 3.42 represents the redshift difference
between the galaxies, which can be accurately measured using spectroscopic observations.
However, obtaining the age difference ∆t is more challenging, as it requires a reliable ‘cosmic
clock‘ [206].

Empirical evidence suggests that the best CCs are galaxies that have been evolving pas-
sively, with star formation ceasing at redshifts z ∼ 3 or earlier. These galaxies, particularly
those that have not formed new stars since z ∼ 2, provide a reliable cosmic clock for mea-
suring ∆t [207, 208]. A particularly useful feature for determining the age of these galaxies
is the 4000Å break in their spectra. This break, caused by the accumulation of metal ab-
sorption lines (mainly from elements like calcium and iron), appears as a discontinuity in
the spectrum, with the flux just appears as a noticeable drop in the spectrum at 4000 Å The
strength of this break increases with the age of the stellar population, making it a valuable
tool for estimating ∆t when combined with known metallicity [209, 210] [209, 210].

Thus, the CC method provides a direct way to measure H(z) from observations, offering
an advantage over other cosmological probes that rely on integrated quantities like lumi-
nosity distance. In this work, 31 CC data points were used. The data points were adopted
from Refs. [211, 212, 139, 213, 214, 215, 216] and have been compiled in Table [180].

As discussed in Sec. 3.2 and Eq. 3.14, the MCMC technique involves the critical step of
maximising the likelihood, or equivalently, minimising the χ2 statistic. For the CC dataset,
this is expressed as [217]

χ2
H(Θ) =

31

∑
i=1

(H(zi, Θ)− Hobs(zi))
2

σ2
H(zi)

, (3.43)

where H(zi, Θ) represents the theoretical values of the Hubble parameter at redshift zi

based on the model parameters Θ, Hobs(zi) denotes the corresponding observational data
points obtained through the CC method, and σH(zi) are the associated observational un-
certainties. It is important to highlight that the numerator in Eq. 3.43 corresponds to the
residuals term in Eq. 3.30, representing the difference between the observed and theoretical
values of the Hubble parameter.

3.3.2.2 | Supernovae of Type Ia

One of the most effective methods for studying the expansion of the Universe is through
the observation of supernovae, particularly Supernovae of Type Ia (SNe Ia), which are the
explosive deaths of certain types of stars [218]. These events, which often occur at the end of
a star’s life cycle, are characterised by exceptionally bright explosions. The consistent peak
brightness of SNe Ia allows them to serve as standard candles, enabling for the the accurate
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measurement of extragalactic distance and to probe the history of cosmic expansion. [35].
Indeed, observations of these supernovae provided the first direct evidence of the acceler-
ating expansion of the Universe, as revealed by the groundbreaking work projects led by
Riess et al. [34] and Perlmutter et al. [33].

Supernovae are generally classified into two broad categories: Type I and Type II, dis-
tinguished by the presence or absence of hydrogen lines in their spectra [95]. Type I super-
novae, which lack hydrogen lines, are further subdivided, with Type Ia supernovae being
identified by a strong absorption line of singly ionized silicon (Si II) [219]. These Type Ia
supernovae are of particular interest in cosmology due to their consistent peak luminosity,
which makes them reliable standard candles for measuring cosmic distances [35].

The SNe Ia typically occur in a binary system where a white dwarf accretes matter
from its companion star. When the white dwarf’s mass approaches the Chandrasekhar
limit—approximately 1.4 times the mass of the Sun—it undergoes a runaway thermonu-
clear explosion [96].6 Due to the nearly uniform mass at which this explosion occurs, the
resulting luminosity is also nearly uniform, making these supernovae powerful tools for
measuring distances across the Universe [220].

In cosmology, the brightness of a supernova is measured using its apparent magnitude,
denoted by m, which relates to the observed flux F through the relation m = −2.5 log10(F ).
However, to understand the intrinsic brightness, the absolute magnitude M is used. Abso-
lute magnitude is defined as the apparent magnitude an astrophysical source would have
if it were placed at a standard distance of 10 parsecs from the observer. The relationship
between apparent magnitude, absolute magnitude, and distance is encapsulated in the dis-
tance modulus µ [18]

µ ≡ m − M = 5 log10

(
dL

Mpc

)
+ 25 , (3.44)

where µ is the distance modulus, and dL is the luminosity distance to the supernova,
expressed in megaparsecs (Mpc) as given in Eq. 3.34.

To facilitate analysis, a dimensionless form of the luminosity distance denoted DL is
often used, which is defined as

DL =
H0dL(z)

c
, (3.45)

such that the apparent magnitude can be expressed as

m = M + 5 log10(DL) + 5 log10

(
c/H0

Mpc

)
+ 25 . (3.46)

6The Chandrasekhar limit represents the maximum mass a stable white dwarf can have before collapsing
under its own gravity.
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A critical aspect of using SNe Ia as standard candles is the calibration of their absolute
magnitude M, which is an essential part of the cosmic distance ladder. The first rung of this
ladder involves measuring the distances to nearby stars through parallax, a method that
relies on observing the apparent shift in a star’s position as the Earth orbits the Sun. With
parallax providing precise distances to nearby stars, the next step involves Cepheid vari-
able stars, which serve as primary distance indicators. Cepheids have a well-established
relationship between their luminosity and pulsation period, allowing their absolute mag-
nitude to be determined accurately. By measuring distances to galaxies that contain both
Cepheids and Type Ia supernovae, astronomers can calibrate the absolute magnitude of the
supernovae. This calibration is crucial for converting observed apparent magnitudes into
reliable measurements of cosmic distances, thereby enabling a deeper understanding of the
Universe’s expansion [221].

The redshift z of the supernova, which provides insight into the cosmic expansion, is
determined by analysing the absorption lines in its spectrum. The redshift z is calculated as

z ≡ λobs

λrest
− 1 , (3.47)

where λobs is the observed wavelength, and λrest is the known rest-frame wavelength.
With the redshift z measured from spectroscopy and the ratio of apparent magnitude to their
intrinsic brightness known, the luminosity distance can be found.

The dataset used in this analysis is the Pantheon Type Ia Supernova Compilation [222]
(PN), which includes 1048 apparent magnitude measurements over a redshift range of 0.01 <

z < 2.26. This dataset is crucial for estimating the Hubble constant (H0) and other cosmo-
logical parameters within the framework of MCMC analysis. The absolute magnitude M,
calibrated as described, is treated as a nuisance parameter in these analyses, meaning it is es-
sential for accurate data modelling but does not provide direct insights into the underlying
cosmological model [199].

In this context, the associated χ2
SN is expressed as [223]:

χ2
SN(Θ) = (∆µ(zi, Θ))T C−1

SN ∆µ(zi, Θ) (3.48)

where CSN is the total covariance matrix, and ∆µ(zi, Θ) = µ(zi, Θ) − µobs(zi), with
µ(zi, Θ) being the theoretical value of the distance modulus and µobs(zi) obtained from the
Pantheon dataset.

It is also noteworthy that, as shown in Eq. 3.46, H0 and M are degenerate parameters,
meaning different combinations of {H0, M} can yield the same observed apparent magni-
tude m. This degeneracy necessitates a joint analysis to obtain the most accurate estimates
for both parameters [224, 225].
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3.3.2.3 | Baryon Acoustic Oscillations

Before the era of recombination (at redshift z > 1100), the early Universe was a hot, dense
plasma composed of baryons and photons. This plasma underwent pressure-driven oscilla-
tions, known as sound waves, due to density fluctuations. In regions of overdense primor-
dial plasma, gravitational attraction drew in matter, particularly dark matter. The trapped
photons within these density peaks exerted an outward pressure due to the intense heat
generated by photon-matter interactions. The competing forces of gravitational attraction
and photon pressure generated oscillations, forming sound waves of baryons and photons.
As the Universe expanded and cooled, it eventually reached a critical temperature where
protons and electrons could combine to form neutral hydrogen—the event known as re-
combination. This decoupling of photons from baryons allowed photons to travel freely,
while the baryonic matter was left behind, marking a pivotal moment in cosmic evolution
[226]..

At decoupling, the sound waves stopped, leaving behind a shell of baryonic matter
around each initial density peak. These shells, "frozen" in place, are relics of the early Uni-
verse, now observed at lower redshifts in the distribution of galaxies and galaxy clusters.
The distance these sound waves travelled before decoupling is known as the sound hori-
zon, a fundamental scale in the Universe.

This process imprinted a characteristic pattern in the distribution of matter, observed
today as Baryon Acoustic Oscillations (BAO). These oscillations act as a standard cosmo-
logical ruler, offering a powerful tool to study the large-scale structure of the Universe
[227, 228, 229, 230].

The angular scale of the sound horizon, θs, measured at the drag epoch (when photons
decoupled from baryons) provides valuable insights into the Hubble expansion rate through
the standard ruler relation [35]

θs =
rd

(1 + z)dA
, (3.49)

where θs represents the subtended angle of the sound horizon, rd denotes the comoving
radius of the sound horizon at the last scattering surface and dA is the comoving angular
distance defined by Eq. 3.39. By measuring this radius, cosmologists can infer the expansion
rate of the Universe, since the sound waves participate in cosmic expansion [231].

The sound horizon, which acts as a standard ruler, remains constant in comoving dis-
tance, a scale that accounts for the expansion of the Universe. This distance can be calculated
from the Big Bang to the recombination era at z = zd using the formula [35]
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rd(zd) =
∫ td

0

cs(t)
a(t)

dt =
∫ ∞

zd

cs(z)
H(z)

dz , (3.50)

where cs is the sound speed, defined as cs = c√
3(1+R)

, and R represents the ratio of

baryon to radiation energy densities, given by R = 3ρb
4ργ

.

Eq. 3.50 demonstrates that the sound horizon rd is influenced by factors such as the
recombination era, the Universe’s expansion rate, and the baryon-to-photon ratio. There-
fore, this calculation is based on a cosmological model, and use physical parameters well-
constrained by CMB observations, including the baryon-to-photon ratio and the sound hori-
zon itself [204]. This indicates that BAO measurements are not entirely model-independent.
However, they provide valuable complementary data, to for example, PN supernova mea-
surements, which provide more detailed, fine-grained information about the Universe’s ex-
pansion history [95]. Together, these measurements enhance our understanding of cosmic
expansion.

As mentioned earlier, BAO can serve as cosmological probes, particularly through mea-
surements of the angular-diameter distance. However, unlike SNe Ia, BAO measurements
can differ depending on how they are defined. For the GP method, the BAO data utilised
include H(z) measurements from the Sloan Digital SKy Survey (SDSS)-IV Extended Baryon
Oscillation Spectroscopic Survey (eBOSS) DR14 quasar survey at redshifts zeff = {0.98, 1.23,
1.52, 1.94} [232] and from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS)
DR12 consensus at redshifts zeff = {0.38, 0.51, 0.61}[204]. These datasets are supplemented
with their respective correlation matrices.

For the MCMC analysis, a more comprehensive dataset is used since MCMC can handle
more than one type of observation. Therefore, to complement these H(z) measurements, the
third generation of the SDSS mission (SDSS BOSS DR12, [204]) was used to add the corre-
sponding comoving angular diameter dM at zeff = {0.38, 0.51, 0.61}. The fourth generation
of the SDSS mission (SDSS IV eBOSS DR 14 [232]) also include angular diameter distance dA

at zeff = {0.98, 1.23, 1.52, 1.94 }.

Further to these measurements, comoving volume distance, dV data points from the 6df
Galaxy Survey (6dFGS) at zeff = 0.106 [233] and SDSS Main Galaxy Sample measurement
at zeff = 0.15 [234] were also included. In addition, the Hubble distance, dH (as defined in
Eq. 3.41, measurement at zeff = 2.4 from the BOSS DR11 quasar Lymann-α, [235] was also
considered.

Measurements from these studies are quoted with a scaling factor, H(z) × (rd/rd,fid),
where rd,fid is the sound horizon for the fiducial model. This scaling ensures that the mea-
surements are independent of the fiducial model. Therefore, the following corresponding
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combination of results G(zi) = DV(zi)/rs(zd), rs(zd)/DV(zi), DH(zi), DM(zi)(rs,fid(zd)/rs(zd)),
H(zi)(rs(zd)/rs,fid(zd)), DA(zi)(rs,fid(zd)/rs(zd)). had to be calculated.

In this context, the fiducial cosmological model used is a flat ΛCDM model. Measure-
ments from these studies are quoted with a scaling factor, H(z)× (rd/rd,fid), where rd,fid is
the sound horizon for the fiducial model. This scaling ensures that the measurements are
independent of the fiducial model.

Alam et al. [204] report a value for rd of 147.78 Mpc, while the baryon density param-
eter is given as Ωb,0 = 0.02242/h2 and the radiation density parameter as Ωr,0 = 2.4697 ×
10−5/h2 [16] with h = H0/100. The comoving sound horizon rd(z) was computed using
Equation 3.50 at redshift zd ≈ 1059.94 [16].

For the MCMC analysis, the corresponding chi-squared statistic χ2
bao for the BAO dataset

is defined as

χ2
BAO(Θ) = (∆G(zi, Θ))T C−1

BAO ∆G(zi, Θ) , (3.51)

where ∆G(zi, Θ) = G(zi, Θ) − Gobs(zi)and CBAO is the corresponding covariance ma-
trix for the BAO observations. The total χ2

BAO is therefore the sum of all the individual χ2

corresponding to each dataset.

3.3.2.4 | Hubble Constant priors

The growing tension between the locally measured values of the Hubble constant, H0, and
those predicted by the ΛCDM model based on early Universe observations has been widely
discussed in the literature. To provide a comprehensive analysis, different H0 priors were
selected from recent studies.

The lowest of these values is derived from the TRGB, where HTRGB
0 = 69.8± 1.9 km s−1Mpc−1

[135]. The TRGB method employs the luminosity of the brightest red-giant branch stars in a
galaxy as a standard candle to estimate the galaxy’s distance [105]. Specifically, in Ref. [135],
this H0 prior was calibrated using TRGB observations and then applied to host galaxies of
SNe Ia.

At the other end of the spectrum is the H0 value obtained by the SH0ES Collaboration
in 2019, where HR19

0 = 74.22 ± 1.82 km s−1Mpc−1 [2]. This estimate, referred to as the Riess
prior (R19), is based on long-term observations of Cepheid variable stars in the Large Mag-
ellanic Cloud (LMC) using the Hubble Space Telescope (HST). Cepheid variables are pulsat-
ing stars whose periodic brightness variations make them reliable distance indicators [105].
Their high luminosity and well-defined periodicity enable precise distance measurements
across cosmological scales [4].

The third H0 prior, falling between the TRGB and R19 values, is provided by the H0LiCOW
Collaboration, where HHW

0 = 73.3+1.7
−1.8 km s−1Mpc−1 [136]. This value is derived from obser-
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vations of six strongly lensed quasars. Quasars, extremely luminous objects powered by
supermassive black holes, are among the most distant and bright objects in the Universe,
making them useful probes for gravitational lensing studies [105]. The gravitational lensing
method relies on the bending of quasar light as it passes through the curved spacetime near
massive objects, allowing for precise H0 measurements based on the time delays between
multiple lensed images [136].

The above selected H0 priors are summarised in the upper part of Table 3.1, along with
their corresponding references and the labels used throughout this work.

H0 Prior Program Label
H0 Value
(km s−1Mpc−1)

Ref.

SH0ES Collaboration R19 74.22 ± 1.82 [2]

H0LiCOW Collaboration HW 73.3+1.7
−1.8 [136]

Carnegie-Chicago Hubble
Program

TRGB 69.8 ± 1.9 [135]

SH0ES Collaboration R21 73.30 ± 1.04 [4]

TRGB F21 69.8 ± 1.7 [60]

Table 3.1: Summary of the H0 priors used in this analysis. The first column lists the research
program from which each prior was obtained, the second column provides the label used
in this work, and the third column shows the corresponding H0 value. The final column
contains the relevant references. In the top section, lists the values used in Chapters 4 and 5,
whilst in the bottom section presents updated values used in the subsequent of the Chapters.

Over time, these values have undergone further refinement as new data and techniques
became available as shown in the lower part of Table 3.1. The SH0ES Collaboration up-
dated their measurement, leading to the R21 value, HR21

0 = 73.3 ± 1.04 km s−1Mpc−1, as
reported in [4]. This revision incorporated additional observations of Cepheid variables,
further tightening the uncertainty and strengthening the tension between local measure-
ments and those inferred from the early Universe. Similarly, Freedman et al. [60] pro-
vided an updated value in 2021 using TRGB as a standard candle, known as F21, with
H0F21 = 69.8 ± 1.7 km s−1Mpc−1 . This updated TRGB result reduced the uncertainty com-
pared to earlier measurements, continuing to support a lower value of H0. These revisions
reflect the ongoing effort within the scientific community to resolve the Hubble tension, of-
fering increasingly precise measurements but also deepening the disparity between early-
and late-Universe estimates.
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3.4 | f (T) Cosmological Models for Parameter Inference
With the key observational datasets and H0 priors established, attention is now directed to-
wards the cosmological models that are fundamental to the MCMC analysis, with a primary
focus on f (T) gravity models 7. The accuracy of cosmological inferences depends signifi-
cantly on the models applied to interpret observational data. These models encapsulate
the current understanding of the Universe’s expansion history and are essential for making
predictions and inferring parameters with high confidence. Within the MCMC framework,
these models serve as the basis for generating theoretical predictions that are compared
against observed data, enabling the determination of cosmological parameters such as the
Hubble constant, matter density, and other properties, through the use of the associated
χ2 equations. The following sections introduce the specific models employed in this study,
detailing their theoretical foundations and their role in the MCMC analysis.

3.4.1 | Power Law Model
The first cosmological model considered in this analysis is the Power Law Model, denoted
as f1CDM. This model, inspired by the work of Bengochea and Ferraro [157] and further
explored by Linder [78], modifies the standard GR framework by introducing a specific
function of the torsion scalar T into the gravitational action. In this model, the function f (T)
follows a power-law dependence on T, expressed as

f1(T) = α1(−T)p1 , (3.52)

where α1 is a constant, and p1 is a dimensionless model parameter that governs the deviation
from the standard ΛCDM model.

This model is of particular interest because it allows for an alternative explanation of the
accelerated expansion of the Universe, through the power-law dependence of the torsion
scalar T, which is traditionally attributed to the cosmological constant Λ. The parameter
p1 introduces a new dynamical degree of freedom, and varying p1 can lead to different
cosmological behaviours. Specifically, the model reduces to the ΛCDM scenario when p1 =

0, and it approaches the GR/TEGR limit with a redefined gravitational constant when p1 =

1.
To ensure the parameters in the MCMC technique are left to a minimum, the parameter

α1 is determined by evaluating the modified Friedmann equation at the present time. By
substituting the expression for f1(T) from Eq. 3.52 and its derivative f1T = −α1 p1(−T)p1−1

7While f (T, B) models are also derived from the following models, they are discussed in detail in the rele-
vant chapter.
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into the Friedmann equation, Eq. 2.56, the constant α1 can be written as

α1 = (6H2
0)

1−p1
1 − Ωm,0 − Ωr,0

1 − 2p1
, (3.53)

where as a reminder H0 represents the current value of the Hubble constant, Ωm,0 denotes
the current matter density parameter, and Ωr,0 is the current radiation density parameter,
taken to be as Ωr,0 = 4.1534 × 10−5/h2, where h = H0/(100 km s−1Mpc−1) [16]. This ex-
pression is crucial as it ensures that the model aligns with the observed expansion rate of
the Universe today.

The modified Friedmann equation for the f1CDM model, incorporating the power-law
function f1(T), can then be expressed as

E2(z) = Ωm,0 (1 + z)3 + Ωr,0 (1 + z)4 + (1 − Ωm,0 − Ωr,0) E2p1(z) , (3.54)

where E(z) = H(z)/H0 is the normalised Hubble parameter. This equation describes the
evolution of the Hubble parameter as a function of redshift z, reflecting the influence of the
parameter p1 on the cosmic expansion history. It is worth noting that this equation cannot be
solved analytically. Therefore, numerical methods were employed to calculate E(z)at each
redshift point. Consequently, using MCMC analysis, parameter values were obtained by
solving for each redshift point where observational data exists

To visualise the implications of the f1CDM model and the imapct of the parameter p1

on cosmic evolution, a Hubble diagram has been illustrated in Fig. 3.6. This diagram plots
the Hubble parameter H(z) against redshift z for various values of the parameter p1. The
Hubble diagram is a key diagnostic tool in cosmology, as it directly illustrates the rate of
expansion of the Universe at different epochs.

In this analysis, the Hubble diagram includes curves corresponding to several values of
p1. The colours on the diagram represent different values of p1, illustrating how this param-
eter influences the expansion rate. As p1 increases, the model predicts a higher expansion
rate at late times, which corresponds to a steeper slope in the Hubble diagram. This be-
haviour indicates that the f1CDM model can drive accelerated expansion without the need
for a cosmological constant. The ability of the model to match the observed accelerated
expansion of the Universe at late times is a critical test of its viability.

Furthermore, the Hubble diagram serves as a comparison between the theoretical pre-
dictions of the f1CDM model and observational data, in particular the CC data. The consis-
tency of the model’s predictions with the observed H(z) values across a range of redshifts is
crucial for validating the model. The analysis shows that the f1CDM model can reproduce
the key features of the observed cosmic acceleration, making it a compelling alternative to
the ΛCDM model.
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Figure 3.6: Hubble diagram of H(z) versus z for Power Law Model as defined in Eq. 3.54.
The H(z) data points from the CC datasets are also depicted.

This Hubble diagram analysis also highlights how the parameter p1 influences the model’s
predictions. For instance, at p1 = 0, the f1CDM model reduces to the ΛCDM model, which
serves as a baseline for comparison and is represented by the dashed black line. The Hubble
diagram also gives an indication to the prior range that needs to be inserted in the MCMC
analysis for the p1 parameter.

In summary, the Power Law Model ( f1CDM) offers a versatile framework for explaining
the accelerated expansion of the Universe. The detailed analysis of the Hubble diagram,
including its dependence on the parameter p1, provides strong evidence that this model is
capable of reproducing key cosmological observations. As such, it stands as a significant
alternative to the ΛCDM model, with the potential to offer new insights into the nature of
cosmic acceleration.

3.4.2 | Square-root Exponential Model
The second cosmological model under consideration is the Linder model or the Square-root
Exponential Model, hereafter referred to as f2CDM. Unlike the Power Law model discussed
earlier, which generalises the cosmic expansion behaviour through a power-law dependence
on the torsion scalar, the Linder model is specifically designed to naturally incorporate late-
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time accelerated expansion. This model, proposed by Linder [78], offers a different func-
tional form of f (T) that achieves accelerated expansion through an exponential modification
of the torsion scalar

f2(T) = α2T0

(
1 − Exp

[
−p2

√
T/T0

])
, (3.55)

where α2 and p2 are the model parameters, and T0 = T|t=t0 = −6H2
0 corresponds to the

present-day value of the torsion scalar.

In the same light as f1CDM, α2 can be defined by evaluating the Friedmann equation at
current times

α2 =
1 − Ωm,0 − Ωr,0

(1 + p2) e−p2 − 1
. (3.56)

This makes p2 the new parameter for the f2CDM model, apart from the current density
matter Ωm,0 and the functional form in the exponential term H/H0.

The corresponding Friedmann equation for the Linder model, which describes the evo-
lution of the Hubble parameter H(z) with redshift, is given by:

E2 (z) = Ωm,0 (1 + z)3 + Ωr,0 (1 + z)4 +
1 − Ωm,0 − Ωr,0

(p2 + 1)e−p2 − 1
[(1 + p2E(z))Exp [−p2E(z)]− 1] ,

(3.57)

where E(z) = H(z)/H0 is the normalised Hubble parameter. The p2 parameter in this
equation provides a different interpretation compared to p1 from the Power Law model,
reflecting the exponential nature of the functional form.

By construction, the Linder model is tailored to ensure accelerated expansion at late
times, a feature that aligns with current cosmological observations [236, 78]. This intrinsic
characteristic distinguishes it from the Power Law model, where the nature of expansion
depends more heavily on the specific value of p1. Indeed, Eq. 3.55 for p2 → +∞ the f2CDM
reduces to ΛCDM, since

lim
p2→+∞

[−T + f (T)] = −T + 2Λ . (3.58)

To enhance numerical stability, the f2CDM parameter can be redefined as 1/p2, where the
ΛCDM limit is approached as 1/p2 → 0+. This reparameterisation to 1/p2 is crucial for
ensuring numerical stability, particularly in MCMC analyses where precise parameter es-
timation is required. The parameter p2 controls the deviation from the standard model of
cosmology. However, directly working with p2 in numerical simulations can lead to instabil-
ity due to the exponential nature of the function f2(T). When p2 is large, small changes in p2

can cause significant variations in the model’s predictions, making it difficult to achieve con-
vergence in MCMC chains. By reparameterising to 1/p2, the model becomes more tractable,
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Figure 3.7: Hubble diagram of H(z) versus z for Linder Model as defined in Eq. 3.57. The
H(z) data points from the CC datasets are also depicted, together with the ΛCDM curve

allowing for smoother convergence. This approach mitigates issues of numerical instability
and enhances the strength of the analysis, especially when exploring the parameter space
close to the ΛCDM limit.

In terms of observational consequences, a Hubble diagram plotting H(z) versus z is pre-
sented for the Linder model in Fig. 3.7, showing how different values of 1/p2 influence the
expansion rate across redshifts. The comparison with the Power Law model will illustrate
how the exponential form in f2CDM consistently leads to a more pronounced acceleration
at late times, as expected by its design. The diagram also reveals the prior range for 1/p2

parameter, which spans from 0 < 1/p2 < 1.

In conclusion, while both f1CDM and f2CDM are capable of explaining late-time ac-
celeration, the Linder model does so with an inherently different approach, leveraging the
exponential form of its functional dependence on T. This difference not only impacts the the-
oretical framework but also the observational signatures predicted by each model, making
the Linder model a compelling candidate for explaining dark energy within the modified
gravity paradigm.
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3.4.3 | Exponential Model
The third cosmological model under consideration is the Exponential Model, denoted as
f3CDM, which is inspired by extended gravity theories within the context of GRas proposed
by Linder [236] and further developed by Nesseris et al. [237]. This model introduces a
variant of the Linder model by modifying the functional form of f (T) to incorporate an
exponential dependency on the torsion scalar T. The model is described by the function

f3(T) = α3T0 (1 − Exp [−p3T/T0]) , (3.59)

where α3 and p3 are the model’s parameters, and T0 represents the value of the torsion
scalar at the current time (T0 = −6H2

0). Similar to the f2CDM model, α3 is determined by
evaluating the Friedmann equation at the present epoch, leading to

α3 =
1 − Ωm,0 − Ωr,0

(1 + 2p3) e−p3 − 1
. (3.60)

Substituting these expressions for f3(T) and α3 into the modified Friedmann equation,
Eq. 2.56 the evolution equation for the normalised Hubble parameter E(z) = H(z)/H0 be-
comes

E2(z) = Ωm,0 (1 + z)3 +Ωr,0 (1 + z)4 +
1 − Ωm,0 − Ωr,0

(1 + 2p3)e−p3 − 1
[(

1 + 2p3E2(z)
)

Exp
[
−p3E2(z)

]
− 1
]

.

(3.61)
The f3CDM model bears similarities to the f2CDM Linder model, particularly in its abil-

ity to reduce to the ΛCDM model in the appropriate limit. Specifically, as p3 → +∞, the
exponential term diminishes, leading the model to converge to the standard ΛCDM cos-
mology. This is analogous to the behaviour of the f2CDM model where p2 controls the
deviation from ΛCDM. However, unlike the power-law model ( f1CDM), which introduces
a simpler power-law dependency on the torsion scalar, the f3CDM model incorporates a
more complex exponential function, offering a distinct approach to modelling the late-time
acceleration of the Universe.

In both the f2CDM and f3CDM models, reparameterisation is employed for numerical
stability during analysis. Specifically, the reparameterisation to 1/p3 is introduced to ensure
smooth convergence in MCMC simulations, particularly when exploring parameter spaces
close to the ΛCDM limit. This technique is consistent with the approach used in the Linder
model ( f2CDM) and highlights the necessity of such transformations for such cosmological
analysis.

To further examine, the f3 model’s behaviour, a Hubble diagram is constructed, illus-
trated the relationship parameter h(z) and redshift z in Fig. 3.8. This diagram highlights
the impact of the p3 parameter on the expansion history of the Universe, in the range of
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Figure 3.8: Hubble diagram of H(z) versus z for the Exponential Model as defined in
Eq. 3.61. The H(z) data points from the CC datasets are also depicted, together with the
ΛCDM curve.

our dataset. This analysis is crucial for understanding the model’s ability to replicate the
observed accelerated expansion of the Universe. The diagram shows that for smaller values
of 1/p3, the model closely follows ΛCDM, while for larger values, deviations become more
pronounced, particularly at higher redshifts. This behaviour is consistent with the design of
the model, which, like the Linder model, is intended to capture late-time acceleration.

Therefore, the f3CDM model adds another dimension to our exploration of modified
gravity theories, using an exponential form to capture the dynamics of cosmic expansion.
By comparing it to the power-law and Linder models, the range of possible behaviours
these models predict can be better understood, particularly in relation to the Universe’s
accelerated expansion.

3.4.4 | Logarithmic Model
The fourth cosmological model considered in this analysis is the logarithmic model pro-
posed by Bamba et al. [238], which is denoted as f4CDM. This model is characterised by the
f (T) function given by
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f4(T) = α4T0

√
T

p4T0
log
[

p4T0

T

]
, (3.62)

where α4 and p4 are the model parameters, and T0 is previously defined. The parameter α4

is determined by evaluating the Friedmann equation at the current epoch, which leads to:

α4 = − (1 − Ωm,0 − Ωr,0)
√

p4

2
. (3.63)

Substituting the function f4(T) and α4 into the modified Friedmann equation, the logarith-
mic Friedmann equation becomes

E2(z) = Ωm,0 (1 + z)3 + Ωr,0 (1 + z)4 + (1 − Ωm,0 − Ωr,0) E(z) . (3.64)

The logarithmic model stands out due to its distinct characteristics compared to the
previously discussed models. Unlike the power-law model f1CDM and the Linder model
f2CDM, which can approximate ΛCDM cosmology under certain conditions, the f4CDM
model does not reduce to ΛCDM for any value of p4. This is because the Friedmann equa-
tion for the logarithmic model, as shown in Eq. 3.64, does not involve the parameters α4 or
p4 in a way that allows for a direct comparison with ΛCDM. Although p4 is absent at the
background level, these parameters could emerge at the perturbative level, which would
make them semi-independent of background observations.

The fact that the logarithmic model is not capable of matching ΛCDM parameters high-
lights its distinctive behaviour. Specifically, this model does not exhibit the same parameter
tuning flexibility as f1CDM or f2CDM. Consequently, it provides a more rigid framework
for evaluating cosmological data, making it less prone to fitting biases that could arise from
adjusting parameters to mimic ΛCDM.

In terms of the Hubble diagram. in Fig 3.9 the logarithmic model presents a more con-
strained scenario compared to f1 − f3CDM models. The Hubble diagram for the f4CDM
model produces a specific curve that reflects the unique relationship between H(z) and z.
This is because the model’s functional form does not include adjustable p4 parameter that
would otherwise alter the shape of the curve.

However, while the f4CDM model’s Hubble diagram does not exhibit variability with p4,
it can still be influenced by changes in the cosmological parameters H0 and Ωm,0. These pa-
rameters determine the overall shape and positioning of the Hubble curve relative to obser-
vational data and the ΛCDM model. This characteristic makes the logarithmic model valu-
able for comparative studies, as it provides a clear benchmark that contrasts with the more
flexible behaviours of the power-law and Linder models, as will be shown in the MCMC
analysis.
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Figure 3.9: Hubble diagram if H(z) versus z for the Logarithmic Model as defined in Eq. 3.62.
In this case only one instance of the Hubble diagram is taken, since the Friedmann Equation
is independent of the p parameter. The H(z) data points from the CC dataset are also de-
picted, together with the ΛCDM curve illustrated by the black dashed line.

The absence of parameter-driven variation in the Hubble diagram for the logarithmic
model underscores its unique place in cosmological analyses. This feature helps in under-
standing the fundamental differences between models that approximate ΛCDM and those
that inherently exhibit different dynamical properties.

3.4.5 | Hyperbolic-tangent Model
The final cosmological model analysed is the hyperbolic-tangent model, denoted as f5CDM,
as proposed by Wu et al. [239]. This model introduces the f (T) function given by

f5(T) = α5(−T)p5Tanh
(

T0

T

)
, (3.65)
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where α5 and p5 are the model parameters. The parameter α5 is determined by evaluating
the Friedmann equation at the present epoch, resulting in

α5 =

(
6H2

0
)1−p5 (1 − Ωm,0 − Ωr,0)

(1 − 2p5)tanh(1) + 2Sech2(1)
. (3.66)

Substituting f5(T) and α5 into the modified Friedmann equation yields

E2 (z) = Ωm,0 (1 + z)3 + Ωr,0 (1 + z)4 +

1 − Ωm,0 − Ωr,0

(2p5 − 1)tanh(1)− 2Sech2(1)
E2(p5−1)(z)

[
(2p5 − 1)E2(z)Tanh(E−2(z))− 2Sech2(E−2(z))

]
.

(3.67)

The hyperbolic-tangent model f5CDM introduces a distinctive functional form that sets
it apart from the previously discussed models. Unlike the power-law model ( f1CDM), Lin-
der model ( f2CDM) and Variant of the Linder Model ( f3CDM), the f5CDM model does not
approximate ΛCDM cosmology for any value of p5. This is because the hyperbolic-tangent
function introduces a non-trivial dependence on the torsion scalar T, which affects the mod-
ified Friedmann equation in a manner that prevents it from reducing to ΛCDM.

In comparison, the power-law model exhibits a straightforward dependency on T with
the possibility of reducing to ΛCDM when p1 → 0. In addition, the Linder model is de-
signed to achieve late-time acceleration, similar to f5CDM. However, f2CDM approaches
ΛCDM in the limit of p2 → ∞, whereas f5CDM retains its distinct behavior due to the
hyperbolic-tangent function. The f5CDM model, does not allow for such a reduction, re-
flecting a more complex interplay between the parameters.

The logarithmic model cannot replicate ΛCDM either, but the reasons are different.
While f4CDM does not include parameters that would allow it to mimic ΛCDM, f5CDM’s
functional form inherently prevents such a reduction.

The Hubble diagram for the hyperbolic-tangent model f5CDM , in Fig. 3.10 illustrates the
dependence of H(z) on the redshift parameter z and the model parameter p5. This diagram
reveals how variations in p5 influence the Hubble parameter, with the model exhibiting a
striking similarity to the ΛCDM curve. Despite the absence of a formal ΛCDM limit within
this model, it closely approximates ΛCDM, demonstrating a remarkable alignment with its
predictions.

In summary, the hyperbolic-tangent model offers a distinct and intricate alternative to
ΛCDM, providing a different perspective on cosmological dynamics compared to the power-
law, Linder, and logarithmic models. This model’s behaviour suggests it can replicate ΛCDM
outcomes under certain conditions, thereby enriching our understanding of cosmological
models.
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Figure 3.10: Hubble diagram of H(z) versus z for the Hyperbolic-tangent Model as defined
in Eq. 3.67. The H(z) data points from the CC datasets are also depicted, together with the
ΛCDM curve.

3.5 | Statistical Indicators
In this section, the focus shifts to the statistical evaluation of the models just described.
These models will be analysed and parameters will be extracted when using the MCMC
algorithm with observational data to assess their viability in describing the Universe. These
models selected for their previous application in alternative gravity theories will be exam-
ined to understand further their predictive power relative to recent cosmological parameters
in particular H0.

To evaluate the performance of each model, a comparative analysis needs to be con-
ducted and also compared to the ΛCDM model. Two-widely used statistical indicators are;
the AIC and BIC to quantify how well each model fits the observational data.

3.5.1 | Akaike Information Criterion
The Akaike Information Criteria (AIC), a widely used criterion for model selection that bal-
ances goodness of fit with model complexity was first introduced by Akaike in 1974 [240].
It provides a quantitative measure for comparing different models based on their fit to the
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observational data and their complexity [241]. The AICis defined as

AIC = −2 lnLmax + 2n , (3.68)

where Lmax is the maximum likelihood of the model given the data, and n represents
the number of parameters in the model. The likelihood function, Lmax, is related to the
chi-square statistic (χ2) through the relationship

χ2 = −2 lnLmax . (3.69)

The AIC evaluates model performance by incorporating both the fit of the model (via
Lmax) and a penalty for model complexity (via 2n) [241]. A higher value of Lmax indicates
a better fit to the data, while the penalty term 2n increases with the number of parameters,
discouraging overly complex models. Typically, models with an insufficient number of pa-
rameters tend to provide a poor fit to the data, and therefore, have a low log-likelihood.
Thus, a lower AIC value signifies a model that achieves a good trade-off between fit and
simplicity [242]

In practice, the AIC is particularly useful when comparing models with different num-
bers of parameters. It helps identify models that provide a good fit to the data without
unnecessary complexity, thereby aiding in selecting the most parsimonious model that ade-
quately describes the observed phenomena.

3.5.2 | Bayesian Information Criterion
The Bayesian Information Criteria (BIC), proposed by Schwarz in 1978 [243], serves as an-
other important model selection criterion. While similar to the AIC, the BIC imposes a
stronger penalty for models with more parameters, making it a more stringent criterion for
model complexity. The BIC is expressed as

BIC = −2 lnLmax + n ln m , (3.70)

where m denotes the sample size of the observational data. The term n ln m adds a
penalty that increases with both the number of parameters and the size of the dataset [241].
This greater penalty for additional parameters makes the BIC a more conservative measure
of model performance compared to the AIC.

The BIC is especially useful when comparing models with large sample sizes, as the
penalty term n ln m becomes significant. A lower BIC value indicates a model that not only
fits the data well but also does so with minimal complexity relative to the amount of data.
Both AIC and BIC are used to identify models that provide a good balance between fit and
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simplicity, but the BIC’s stricter penalty makes it more suitable for evaluating model perfor-
mance in scenarios with large datasets.

3.5.3 | Comparative Criteria
To compare the performance of each f (T) cosmological model against the standard ΛCDM
model, the differences in AIC and BIC values are calculated, denoted as ∆AIC and ∆BIC.
These differences are computed as follows

∆AIC = AICmodel − AICΛCDM = ∆χ2
min + 2∆n , (3.71)

∆BIC = BICmodel − BICΛCDM = ∆χ2
min + ∆n ln m . (3.72)

In these equations, ∆AIC and ∆BIC represent the differences between the AIC and BIC
values of each f (T) model and those of the ΛCDM model, respectively. Smaller ∆AIC and
∆BIC values indicate that the particular f (T) model performs more similarly to the ΛCDM
model, suggesting that it better approximates the observational data while accounting for
model complexity.

By evaluating these differences, an assessment of which f (T) models offer a competitive
fit compared to the ΛCDM model can be easily made. This approach facilitates a detailed
comparison of the models based on their ability to describe the cosmological dynamics,
providing insights into how well each model aligns with observational data and how it
measures up against the well-established ΛCDM framework.

Overall, the AIC and BIC provide essential tools for model comparison, helping to iden-
tify the most suitable model based on a balance of fit and complexity. Their application to
the f (T) cosmological models allows for a rigorous evaluation of how these alternative the-
ories perform in describing the late-time expansion history of the Universe in comparison
to the standard ΛCDM model.

To assess how well these different models fit the data relative to one another, the Jef-
freys’ Scale can be applied. First introduced by Sir Harold Jeffreys’ in 1939 [244, 245], this
scale offers a qualitative interpretation of the numerical differences obtained from statistical
measures like the AIC and BIC. The Jeffreys’ Scale provides insights into how much more
favourable one model is compared to another by translating these numerical differences
into qualitative evidence. This approach is especially valuable in practical settings where
decision-making relies not only on numerical outcomes but also on the interpretive strength
of the results.
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For instance, when comparing cosmological models or other statistical models, the Jef-
freys’ Scale helps determine whether the complexity and fit of a model justify its selection
over competing models. It offers a clearer perspective on how well the models align with
the observed data and aids in communicating the relative strengths of different models in a
way that is both accessible and informative [246, 217].

Regarding AIC and BIC, the scale typically categorises the strength of evidence into sev-
eral ranges: 0 to 2: This range suggests weak evidence in favour of the preferred model,
indicating that the model with the lower AIC or BIC value does not significantly outper-
form the alternative. 2 to 6: This range represents positive evidence for the model with
the lower criterion value, showing a notable improvement in fit or efficiency compared to
the other, suggesting a clear but not overwhelming advantage. 6 to 10: This range indicates
strong evidence supporting the model with the lower criterion value, reflecting a substantial
improvement in fit and providing a strong indication that the model is significantly better
[247].

Therefore, the Jeffreys’ Scale, rooted in Bayesian statistics, remains a vital tool as it en-
hances the interpretation of AIC and BIC results. It provides a structured way to interpret
the strength of evidence in model comparisons, helping to bridge the gap between numeri-
cal analysis and practical decision-making.

3.6 | Conclusion
In conclusion, this chapter has undertaken a deep exploration of two methodological frame-
work, including GP (Sec. 3.1) and MCMC (Sec. 3.2) techniques. These methodologies have
proven instrumental in effectively reconstructing cosmological functions and constraining
parameters with several f (T) cosmological models.

The application of GP has allowed for a non-parametric approach to reconstruct cos-
mological functions directly from observational data, offering flexibility and precision. Its
non-parametric nature can reveal subtle features in the data that might be missed by more
rigid parametric models within the f (T) gravity. By employing GP, insights into the under-
lying dynamics of the Universe can be gained, independent of specific model assumptions,
which serves as a powerful complement to the traditional parametric models.

MCMC, on the other hand, has enabled the systematic exploration of parameter spaces
with modified gravity theories such as f (T) and f (T, B), providing a probabilistic assess-
ment of the model parameters that best fit the data. The stochastic nature of MCMC allows
for a probabilistic assessment of the parameter distributions, helping us identify the most
likely values that fit the observational data and hence, allow for meaningful constraints from
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observational data.
The observational data employed in this study, encompassing a range of measurements

from the CC, BAO, SNe Ia (PN) and recent model-independent measurements of the Hub-
ble constant (H0), form the backbone of our analysis. These datasets will be considered as
the baseline datasets. It is important to note that while these datasets represent the most
reliable and widely accepted observations available at the present time when the study was
conducted, these datasets are subject to continuous revisions and refinements as new ob-
servations are made and analysis techniques improve. As such, the datasets discussed in
this chapter are constantly revisited and reassessed in light of new datasets to ensure the
most accurate and up-to-date cosmological interpretations as the observational landscape
evolves.

The five f (T) models (Power-Law Model - Sec. 3.4.1, Linder Model - Sec. 3.4.2, Variant of
the Linder Model - Sec. 3.4.3, Logarithmic Model - Sec. 3.4.4 and Hyperbolic-Tangent model
- Sec. 3.4.5) examined in this chapter were chosen for their potential to offer viable alterna-
tives to the standard ΛCDM model. Some of these models have been well-studied in other
contexts and have shown promise in capturing key aspects of the Universe’s expansion his-
tory. The analysis revealed that while some models provide a close match to the ΛCDM
predictions, others diverge in interesting ways, offering new perspectives on the late-time
acceleration of the Universe. These differences highlight the importance of exploring a di-
verse range of models to fully understand the possible variations in cosmic evolution.

Finally, the use of model selection criteria, specifically the AIC and the BIC, provides
a quantitative means of evaluating the relative performance of these models. By applying
the Jeffreys’ Scale to interpret the differences in AIC and BIC values, the statistical evidence
supporting each model can be contextualised. This helps in identifying which models offer
the most promising alternatives to ΛCDM in the context of f (T) gravity (and later on f (T, B)
gravity as well).

Overall, this chapter has laid a foundation for further investigations into f (T) gravity
(and also the extension of f (T, B) gravity, later on) as a potential alternative to ΛCDM. The
methodologies employed here, combined with the latest observational data, will allow for
rigorous testing of these models and hence, an assessment of their viability. As cosmologi-
cal data continues to improve, the approaches developed in this chapter will remain crucial
tools for advancing our understanding of the Universe’s expansion history and the funda-
mental forces that govern it.

In the subsequent chapter, the focus will first shift to the application of GP within the
context of f (T) gravity. This method will be employed to reconstruct the Hubble parameter,
H(z), and the f (T) function directly from observational data. By using GP, the underlying
dynamics of f (T) models will be investigated without the need to impose specific paramet-
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ric forms, offering a more flexible and potentially revealing analysis of the cosmic expansion
history. Through this approach, new aspects of f (T) models may be uncovered, further con-
tributing to the understanding of the mechanisms driving the accelerated expansion of the
Universe.

90



4

Gaussian Processes in f (T) Gravity

Throughout the years, cosmologists have had to continuously revise their understanding of
the Universe to accommodate new observations. This iterative process has led to the de-
velopment of the standard model of cosmology, which has proven successful in explaining
many phenomena. Nevertheless, a prominent issue that consistently arises is the H0 ten-
sion, which challenges the ΛCDM model. In response to this, alternative theories have been
proposed, one of which involves exploring extended modified gravity theories such as f (T)
gravity, which is based on torsional formalism. The literature presents several observational
tests showing that f (T) gravity holds significant promise [73, 237, 248, 249, 250, 251].

An effective tool in addressing these cosmological questions is the GP, a sophisticated
class of statistical models that defines a probability distribution over random functions.
Rather than specifying an explicit mathematical formula for the function from which ob-
servations are derived, GP models the covariance between pairs of samples. This approach
leverages available data to guide the modelling process, allowing for a reconstruction of the
function f (zi)± σi from data points using a point-to-point Gaussian distribution [252, 253,
254, 255, 161].

In this chapter, the GP method is employed for reconstructing functions related to f (T)
gravity using various cosmological datasets. The GP framework offers a Bayesian approach
that allows for the direct reconstruction of functions from data without assuming a spe-
cific parametrisation. The only requirement for the GP analysis is the covariance function.
Consequently, the model-independent GP has been extensively used to explore the expan-
sion dynamics of the Universe [256, 257, 258], including tests of the ΛCDM model [259].
Therefore, GP is an effective, cosmology-independent tool, and has the ability to build re-
construction pipelines on which the f (T) models can be built upon.

Therefore, the GP approach will be used to explore f (T) gravity, with the aim of re-
constructing the arbitrary function f (T) in a manner that is independent of specific mod-
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els. The analysis will begin with the reconstruction of the Hubble parameter H(z) and its
derivatives, derived from observational data. These reconstructions will then facilitate the
examination of f (T) by applying the cosmological dynamics discussed in Chapter 2. By
analysing these reconstructions, any deviations from the ΛCDM model can be identified
and hence, recognise tendencies that should be considered when developing f (T) models.
This chapter builds upon the work which has been presented and published in Briffa et. al
[161].

4.1 | Reconstruction of Hubble data
The GP algorithm can be applied to a variety of H(z) data sources, facilitating the recon-
struction of the H0 parameter. This implementation, through the publicly available Python
code Gaussian Process in Python (GaPP) 8 [178], provides three core options: the choice
of dataset combinations, the selection of priors (if any), and the choice of kernel (Squared-
Exponential, Cauchy, Matérn, or Rational Quadratic kernels).

The analysis includes three principal data sources: CC, SNe Ia, and BAO. The CC data
is highly efficient, as explained in Sec. 3.3.2.1. The second component of the dataset consists
of observations from SNe Ia reported by the PN [222], combined with data from CANDELS
and Multi-Cycle Treasury (MCT) [260]. As a reminder, the PN dataset primarily includes
1048 apparent magnitude measurements within the redshift range 0.01 < z < 2.3 as has
been explained in Sec 3.3.2.2. The MCT data focuses on higher redshifts, mainly z > 1. For
this study, the combined data from SN and MCT are collectively referred to as SN.

Since the GP approach requires Hubble data measurements, the raw SN measurements
are converted and compressed into six Hubble rate measurements E(z) ≡ H(z)/H0 by
Ref. [260], accompanied by their correlation matrix. However, following Ref. [176], only
five data points are used in this work, excluding the sixth data point at z = 1.5 due to its
non-Gaussian distribution.

The analysis also incorporates CC data along with SN data. Since the compressed SN
data consists of Hubble rate data points E(z), these must first be converted into Hubble
function data H(z) using the relation H(z) = H0E(z). Here, H0 is the linking parameter
between H(z) and E(z). In the dataset combining CC and SN, an initial value for H0 is not
available. Therefore, an iterative numerical procedure [176], explained below, is employed
to determine this value.

The GP approach is initially applied to the CC data alone to obtain an estimate for H0.
This determined H0 is then used to convert the SN data using the equation H(z) = H0E(z).

8https://github.com/carlosandrepaes/GaPP
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Subsequently, a Monte Carlo error propagation is applied to estimate the mean values and
uncertainties of H(zi). The Monte Carlo routine introduces randomness by drawing normal
distributions for H0 and E(z) at various redshifts zi, with mean standard deviations derived
from the GP and SN datasets. Using the relation H(z) = H0E(z), n samples of H(z) are
obtained. A normal distribution is then fitted over these n samples to determine the mean
and standard deviation for H(z). The GP approach is iteratively applied to the combined
CC and SN datasets until the successive values of H0 converge to within 10−4. This iterative
process ensures that the resulting H0 value and its uncertainty are precise.

The third component of the dataset is the BAO data, as explained in Sec. 3.3.2.3. There-
fore, the GP approach was applied to these various sources of Hubble data,that include
CC, CC+PN and CC+PN+BAO, along with the priors, R19, TRGB and HW, described in
Sec. 3.3.2.4. In this way, the H(z) function was reconstructed using various kernels and
thus, H0 values could be inferred. These H0 values are presented in Tables 4.1, 4.2, 4.3, and
4.4, which display the outcomes for all kernel types and dataset combinations.

The last four columns of each table show the distance, in σ units, between the GP-
inferred values of H0 and the literature priors. Generally, the distance between two values
of the Hubble constant, H0,i and H0,j or the concordance (or discordance) between the values
of H0, can be defined as

TH0 ≡ d(H0,i, H0,j) =
H0,i − H0,j√

σ2
i + σ2

j

. (4.1)

where, in this case, σi and σj are the respective 1σ uncertainties, and H0,j refers to HR19
0

(R19), HTRGB
0 (TRGB), HHW

0 (H0LiCOW (HW)), and HP18
0 (P18). The last column of Tables 4.1

through 4.4 displays the distance between the reconstructed H0 and P18, which is HP18
0 =

67.04 ± 0.5 km s−1Mpc−1 (Planck Collaboration measurement).

To complement these tables, full plots of the results for the four kernels are presented in
Figs. 4.1 through 4.4. These figures illustrate the GP reconstruction of H(z) across the entire
redshift range covered by the data. Each curve represents the GP reconstruction of H(z) for
different dataset combinations, while circle markers denote the observational data for H(z)
along with their 1σ uncertainties. The reconstructed GP curves are accompanied by their
1σ and 2σ regions. Additionally, each sub-figure displays the GP reconstruction with an H0

prior included with the original datasets. The figures also feature the ΛCDM curve, which
serves as a reference point for the analysis.

From Tables 4.1 through 4.4, it can be observed that the lower values of H0 are generally
produced by the Squared-Exponential kernel. Conversely, the CC data consistently yields
the highest reconstructed values of the Hubble constant. This outcome is due to the fact
that the CC data is situated at lower redshifts, which tends to push H0 to higher values. It
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Data set(s) H0 d(H0, HR19
0 ) d(H0, HTRGB

0 ) d(H0, HHW
0 ) d(H0, HP18

0 )

CC 67.539 ± 4.772 −1.303 −0.440 −1.133 0.0290

CC+SN 67.001 ± 1.653 −3.225 −1.118 −2.616 −0.230

CC+SN+BAO 66.197 ± 1.463 −3.847 −1.512 −3.113 −0.777

CC+R19 73.782 ± 1.374 −0.1255 1.710 0.216 4.364

CC+SN+R19 72.022 ± 1.075 −1.127 1.026 −0.622 3.896

CC+SN+BAO+R19 71.180 ± 1.024 −1.627 0.644 −1.047 3.315

CC+TRGB 69.604 ± 1.755 −1.959 −0.076 −1.490 1.207

CC+SN+TRGB 68.468 ± 1.221 −2.965 −0.594 −2.264 0.809

CC+SN+BAO+TRGB 67.811 ± 1.147 −3.407 −0.903 −2.623 0.328

CC+HW 72.966 ± 1.663 −0.486 1.261 −0.138 3.204

CC+SN+HW 70.850 ± 1.199 −1.711 0.471 −1.155 2.655

CC+SN+BAO+HW 69.911 ± 1.127 −2.271 0.050 −1.628 2.035

Table 4.1: GP reconstructions of H0 (in km/s/Mpc units) for the various datasets and prior
combinations for the square exponential kernel function of Eq. 3.9. The last 4 columns show
the distance (in units of σ) between H0 and literature priors.

Data set(s) H0 d(H0, HR19
0 ) d(H0, HTRGB

0 ) d(H0, HHW
0 ) d(H0, HP18

0 )

CC 69.396 ± 5.186 −0.861 −0.073 −0.713 0.383

CC+SN 67.082 ± 1.681 −3.156 −1.078 −2.561 −0.181

CC+SN+BAO 66.179 ± 1.471 −3.839 −1.517 −3.114 −0.785

CC+R19 73.802 ± 1.375 −0.115 1.718 0.225 4.373

CC+SN+R19 72.056 ± 1.082 −1.105 1.040 −0.604 3.904

CC+SN+BAO+R19 71.166 ± 1.027 −1.634 0.637 −1.0516 3.294

CC+TRGB 69.695 ± 1.760 −1.916 −0.040 −1.452 1.254

CC+SN+TRGB 68.508 ± 1.232 −2.936 −0.574 −2.238 0.833

CC+SN+BAO+TRGB 67.796 ± 1.151 −3.410 −0.909 −2.627 0.315

CC+HW 73.003 ± 1.666 −0.469 1.275 −0.122 3.220

CC+SN+HW 70.892 ± 1.208 −1.683 0.488 −1.132 2.669

CC+SN+BAO+HW 69.895 ± 1.132 −2.276 0.043 −1.633 2.016

Table 4.2: GP reconstructions of H0 (in km/s/Mpc units) for the various datasets and prior
combinations for the Cauchy kernel function of Eq. 3.10. The last 4 columns show the dis-
tance (in units of σ) between H0 and literature priors.
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Data set(s) H0 d(H0, HR19
0 ) d(H0, HTRGB

0 ) d(H0, HHW
0 ) d(H0, HP18

0 )

CC 68.434 ± 5.029 −1.070 −0.254 −0.913 0.204

CC+SN 66.981 ± 1.679 −3.204 −1.118 −2.605 −0.239

CC+SN+BAO 66.139 ± 1.472 −3.857 −1.533 −3.131 −0.811

CC+R19 73.777 ± 1.3760 −0.1279 1.707 0.214 4.356

CC+SN+R19 72.016 ± 1.082 −1.127 1.022 −0.623 3.872

CC+SN+BAO+R19 71.148 ± 1.028 −1.643 0.629 −1.060 3.276

CC+TRGB 69.629 ± 1.759 −1.946 −0.066 −1.479 1.218

CC+SN+TRGB 68.457 ± 1.232 −2.96 −0.597 −2.262 0.795

CC+SN+BAO+TRGB 67.772 ± 1.152 −3.422 −0.920 −2.638 0.295

CC+HW 72.963 ± 1.666 −0.487 1.259 −0.139 3.196

CC+SN+HW 70.840 ± 1.208 −1.710 0.465 −1.156 2.631

CC+SN+BAO+HW 69.872 ± 1.132 −2.288 0.033 −1.644 1.996

Table 4.3: GP reconstructions of H0 (in km/s/Mpc units) for the various datasets and prior
combinations for the Matérn kernel function of Eq. 3.11 The last 4 columns show the distance
(in units of σ) between H0 and literature priors.

Data set(s) H0 d(H0, HR19
0 ) d(H0, HTRGB

0 ) d(H0, HHW
0 ) d(H0, HP18

0 )

CC 70.672 ± 5.491 −0.592 0.150 −0.456 0.593

CC+SN 67.099 ± 1.686 −3.143 −1.069 −2.551 −0.171

CC+SN+BAO 66.195 ± 1.465 −3.839 −1.512 −3.112 −0.778

CC+R19 73.851 ± 1.376 −0.090 1.739 0.247 4.404

CC+SN+R19 72.081 ± 1.085 −1.090 1.051 −0.591 3.917

CC+SN+BAO+R19 71.620 ± 1.085 −1.348 0.838 −0.816 3.532

CC+TRGB 69.78 ± 1.763 −1.876 −0.007 −1.415 1.299

CC+SN+TRGB 68.523 ± 1.234 −2.926 −0.567 −2.2303 0.843

CC+SN+BAO+TRGB 67.810 ± 1.146 −3.407 −0.903 −2.623 0.328

CC+HW 73.077 ± 1.668 −0.434 1.304 −0.091 3.259

CC+SN+HW 70.917 ± 1.211 −1.667 0.499 −1.119 2.683

CC+SN+BAO+HW 69.911 ± 1.128 −2.271 0.050 −1.628 2.034

Table 4.4: GP reconstructions of H0 (in km/s/Mpc units) for the various datasets and prior
combinations for the rational quadratic kernel function of Eq. 3.12. The last 4 columns show
the distance (in units of σ) between H0 and literature priors.
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Figure 4.1: GP reconstruction of H(z) using the square exponential kernel function in
Eq. 3.9. For each panel a different H0 prior is used for the different combinations of datasets.

can also be noticed that the errors, in this case are higher than those with combined datasets
and this emerges due to the low number of data points this dataset has. Nonetheless, the
H0 results fall within the 1σ confidence band for all cases and kernel choices. The R19 prior
results in the highest measurements of the Hubble constant, with the highest value achieved
using the Rational Quadratic kernel on the CC data alone. This is because the R19 prior
represents the highest measurement of H0 considered. The HW prior produces results that
are similar but slightly lower compared to those obtained with the R19 prior, as the prior
values are close.

In contrast, the BAO data, which is situated at higher redshifts, favours lower Hubble
constants. For all priors and kernels, the BAO data reduces the reconstructed value of H0.
Excluding the no-prior condition, the lowest values of H0 with a prior are found for the
combination CC + SN + BAO along with the TRGB prior, which is expected since the TRGB
prior is the lowest value considered among the three priors. In fact, this prior exhibits the
least tension with the Planck Collaboration’s Hubble constant measurement.
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Figure 4.2: GP reconstruction of H(z) using the Cauchy kernel function in Eq. 3.10. For each
panel a different H0 prior is used for the different combinations of datasets.

Figure 4.1 presents the reconstruction of the Hubble function for the Squared-Exponential
kernel across the entire redshift range covered by the dataset. In all instances, the 1σ and
2σ uncertainties are reduced at higher redshifts when the BAO dataset is included. This re-
duction is attributable to the fact that the BAO data pertains to high-redshift points, which
favours smaller uncertainties in this regime. Indeed, in the cases of CC and CC + SN, the
ΛCDM line diverges from the 1σ uncertainty region at high redshifts and only deviates from
the 2σ region when the BAO data is included. This deviation is anticipated as the BAO data
is dependent on the cosmological model, whereas the other two datasets are independent.
For the remaining redshift ranges, the reconstructed Hubble rate remains close to the ΛCDM
line. This feature will be further examined in the diagnostic tests that follow this analysis.

For the remaining kernels—Cauchy, Matérn, and Rational Quadratic—the GP recon-
structions exhibit behaviour similar to that of the Squared-Exponential kernel and are con-
sistent with each other within 1σ confidence levels. A key aspect of this analysis is the
model independence of the GP reconstructions. While the choice of covariance model does
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Figure 4.3: GP reconstruction of H(z) using the Matérn kernel function in Eq. 3.11. For each
panel a different H0 prior is used for the different combinations of datasets.

influence the reconstructions, the impact is minimal.

4.1.1 | Diagnostic Tests
The results from the previous sections provided comprehensive insights into the reconstruc-
tions of the Hubble parameter H(z) across various datasets and kernels. The GP approach,
applied to different combinations of cosmic data, yielded reconstructions of H0 and illus-
trated how the choice of kernel and prior influences the derived values. While the results
showed a general agreement with the ΛCDM model, there were noteworthy variations de-
pending on the data sources and the priors used. To further investigate the consistency of
these reconstructions with the ΛCDM paradigm, diagnostic tests are employed. These tests
offer a means to quantitatively evaluate how well the reconstructed models align with the
predictions of ΛCDM and test the statistical strength of deviations from ΛCDM. In the sub-
sequent analysis, the Equation of State (EoS) together with the consistency test O(1)

m (z) and
its derivative L(1)(z) will be utilised to rigorously assess the fit of the reconstructed Hubble
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Figure 4.4: GP reconstruction of H(z) using the rational quadratic kernel function in
Eq. 3.12. For each panel a different H0 prior is used for the different combinations of datasets.

parameter to the standard cosmological model [261, 262]. This approach will provide addi-
tional insights into the validity of the ΛCDM model in light of the reconstructed data and
highlight any discrepancies that may suggest alternative cosmological scenarios.

Considering the GR Friedmann equation for a cosmos filled with a evolving dark fluid
EoS

H2(z)
H2

0
= Ω0

m (1 + z)3 + Ω0
k (1 + z)2 + Ω0

Λ exp
[

3
∫ z

0

1 + w(z′)
1 + z′

dz′
]

, (4.2)

which can be rearranged to reconstruct the EoS of the dark fluid via

w(z) =
2(1 + z)E(z)E′(z)− 3E2(z)

3 [E2(z)− Ω0
m(1 + z)3]

, (4.3)

The GP reconstructions plots of w(z) can be found in Appendix A in Figs. A.1 andA.2. It
is clear that w = −1 is not excluded by the currently available data, however, it is important
to point out that this reconstruction is dependent on the matter density parameter, which
restricts the construction of physical models.
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On the other hand, one effective diagnostic tool is the consistency test for the flat ΛCDM
model, which is formulated using the following diagnostic redshift function

O(1)
m (z) :=

E2(z)− 1
z(3 + 3z + z2)

. (4.4)

This diagnostic function is derived from the Friedmann equation specifically for the
ΛCDM cosmological model. In deriving this, it is assumed that the contribution from radi-
ation density, characterised by Ωr,0, is negligible at late cosmic times.

For the ΛCDM model, Eq. (4.4) simplifies to O(1)
m (z) = Ωm,0, where Ωm,0 denotes the cur-

rent matter density parameter. This simplification serves as a null test of the ΛCDM model.
Deviations of O(1)

m (z) ̸= Ωm,0 indicate a potential falsification of the flat ΛCDM model. The
reconstructed values of O(1)

m (z) using the GP approach are detailed in Appendix A. Figs. A.3
through A.4 illustrate that the observational datasets generally align well with the predic-
tions of the ΛCDM model. Nonetheless, a significant observation is the pronounced effect
of the H0 priors on this reconstruction. When H0 priors are included, the reconstructed
O(1)

m (z) deviates more noticeably from the ΛCDM model, which raises questions about the
robustness of the standard cosmological model.

To further explore these deviations, the evolution of O(1)
m (z) with redshift by analysing

its derivative is considered. This provides a more nuanced diagnostic tool

L(1)(z) = 3(1 − E2(z))(1 + z)2 + 2z(3 + 3z + z2)E(z)E′(z) , (4.5)

where L(1)(z) denotes the derivative of O(1)
m (z) with respect to redshift z.

The function L(1)(z) is zero if and only if dO(1)
m (z)
dz = 0. Any deviation from L(1)(z) = 0

indicates a departure from the ΛCDM model. Figures A.5 through A.6 in Appendix A, dis-
play the reconstructed values of L(1)(z), which continue to corroborate the previous anal-
yses. Notably, these figures reveal significant deviations from zero, underscoring potential
discrepancies with the ΛCDM model and highlighting areas where the model’s predictions
may not align with observed data.

4.1.2 | Transition Redshift
In the preceding analysis, the GP approach was employed to reconstruct the Hubble rate of
the Universe across its evolutionary history. While the primary focus was on determining
the Hubble constant via GP analysis, another significant parameter that warrants attention is
the transition redshift zt. This parameter denotes the redshift at which the transition from a
decelerating to an accelerating expansion of the cosmos occurs [263]. The transition redshift
is crucial as it offers insights into the nature of dark energy and its evolution over time.
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Furthermore, it can provide valuable information regarding the changing ratio of matter to
dark energy throughout cosmic history [264].

To understand this transition, consider the deceleration parameter q(z), which is a di-
mensionless quantity that quantifies the rate of acceleration of the Universe. As defined in
Eq. 2.30, it can be expressed as:

q(z) = (1 + z)
H′(z)
H(z)

− 1 . (4.6)

Here, ′ denotes differentiation with respect to z [35]. The transition redshift zt corre-
sponds to the value of z at which q(z) transitions from positive to negative. This transition
signifies a shift from decelerated to accelerated expansion, as a positive ä (the second deriva-
tive of the scale factor a) characterises an accelerating Universe, making q(z) negative (as
defined in Eq, 2.30). Consequently, for a flat FLRW cosmology, the transition redshift can be
defined by the equation [265]:

zt =

[
2 (1 − Ωm,0)

Ωm,0

]1/3

− 1 . (4.7)

According to the Planck Collaboration 2018, the transition redshift is approximately zt ∼
0.63 [16]. Given that the GP approach has been utilised to reconstruct H(z) throughout
cosmic history, it is also feasible to use the GP method to reconstruct q(z) and thereby infer
a value for zt beyond the indicative ΛCDM value. The reconstructions of q(z) are depicted
in Appendix A in Figures A.7 through A.8. Additionally, the reconstructed results for zt

corresponding to each kernel function, for the various datasets and prior combinations, are
presented in Table 4.5.

Tables 4.1 through 4.4 reveal that the highest values of H0 are obtained from the CC
dataset. Conversely, Table 4.5 indicates that this dataset generally yields the lowest values
for zt, suggesting that a higher Hubble constant corresponds to a lower redshift at which the
acceleration of the Universe transitions. Specifically, the CC+PN and CC+PN+BAO datasets,
which produce H0 values in descending order, also result in ascending zt values, as the
transition to accelerated expansion occurs closer to the present day. Notably, the lowest
transition redshift is associated with the CC dataset, particularly when the Riess prior (R19)
is applied, as this prior results in the highest H0. The HW prior leads to the next lowest zt

values, while the TRGB prior produces the highest values of zt, which is consistent with the
expected hierarchy of these priors (HW > TRGB).
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Data set(s)
zt

Square exponential Cauchy Matérn Rational quadratic

CC 0.616+nan
−0.137 0.572+0.267

−0.118 0.591+nan
−0.129 0.553+0.211

−0.110

CC+SN 0.607+0.132
−0.084 0.600+0.132

−0.087 0.605+0.131
−0.089 0.598+0.133

−0.088

CC+SN+BAO 0.667+0.095
−0.075 0.658+0.105

−0.081 0.659+0.108
−0.082 0.664+0.101

−0.079

CC+R19 0.551+0.112
−0.079 0.540+0.114

−0.081 0.546+0.115
−0.082 0.528+0.114

−0.082

CC+SN+R19 0.702+0.246
−0.112 0.687+0.268

−0.114 0.694+0.263
−0.116 0.679+nan

−0.114

CC+SN+BAO+R19 0.783+0.107
−0.088 0.770+0.119

−0.095 0.772+0.123
−0.097 0.783+0.118

−0.095

CC+TRGB 0.573+0.165
−0.096 0.552+0.161

−0.099 0.564+0.167
−0.102 0.537+0.159

−0.098

CC+SN+TRGB 0.633+0.149
−0.091 0.624+0.148

−0.094 0.629+0.148
−0.094 0.622+0.148

−0.094

CC+SN+BAO+TRGB 0.703+0.099
−0.079 0.693+0.109

−0.085 0.695+0.112
−0.087 0.699+0.106

−0.084

CC+HW 0.556+0.120
−0.083 0.544+0.122

−0.085 0.551+0.124
−0.087 0.531+0.121

−0.085

CC+SN+HW 0.679+0.196
−0.104 0.666+0.197

−0.107 0.671+0.200
−0.108 0.661+0.201

−0.107

CC+SN+BAO+HW 0.752+0.106
−0.085 0.740+0.116

−0.091 0.743+0.119
−0.094 0.745+0.113

−0.091

Table 4.5: Values of z(t) obtained from the GP reconstructions of q(z) for the different kernel
functions and the different datasets and priors combinations.

4.2 | Reconstruction of f (T) gravity
In the preceding section, the GP approach was utilised to reconstruct observational data
pertaining to the Hubble rate, H(z), together with some diagnostic tests. This reconstructed
data will now be employed to formulate a data-driven f (T) cosmological model. Specifi-
cally, the model-independent data obtained from the GP reconstruction will be integrated
with a theoretical framework governed by f (T) gravity, without assuming a particular form
for the arbitrary Lagrangian as specified in Eq. 2.51.

The critical aspect of relating the reconstructed H(z) with the f (T) cosmological dynam-
ics involves the connection between H(z) and the torsion scalar T. As stated in Chapter 2,
this chapter adopts the convention T = 6H2, which is commonly used in the literature to
align with the metric signature (−,+,+,+) [266]. Alternatively, the convention T = −6H2,
can also be employed arising from a different choice of metric signature, as seen in previous
sections and as will be employed in the next chapters.

It is important to emphasize that at the level of the Friedmann equations, both conven-
tions yield equivalent results. Specifically, at the level of the Hubble parameter H, these
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equations remain unchanged under either choice of T, ensuring consistency. This equiva-
lence is well-established in the literature (Ref. [66]), where the Friedmann equations after
evaluating the field equations under the above mentioned metric signature are expressed as

H2 = κ2
(

ρm + T
3 fT − f

6

)
, (4.8)

2Ḣ = − κ2(pm+ρm)
1− fT−2T fTT

, (4.9)

In contrast, when the convention T = −6H2 is adopted, the Friedmann equations are ex-
pressed as in Eqs. 2.56,2.57. Therefore, both formulations lead to identical expressions at the
level of the Hubble parameter H, demonstrating that the choice of sign for T does not alter
the cosmological dynamics or the resulting physical predictions.

Consequently, the cosmological dynamics within the f (T) framework can be expressed
in terms of H(z) and its derivatives, both of which were reconstructed in the prior section.
The initial step toward achieving this goal involves expressing all f (T) cosmological equa-
tions, including the Friedmann equation Eq. 2.56, in terms of redshift. To facilitate this, the
f (T) derivative in the modified Friedmann Equation, Eq. 2.56, must first be converted into a
form that depends solely on redshift. This is achieved using the following relation, in order
to convert the first derivative of f w.r.t T

fT =
d f /dz
dT/dz

=
f ′(z)
T′(z)

, (4.10)

where the redshift derivatives are defined as f ′(T) = d f /dz and T′(z) = 12HH′. To fur-
ther elaborate, f ′(z) needs to be approximated because there is no explicit equation avail-
able to determine it directly. In this case, the central differencing method is employed to
approximate f ′(z). One key benefit is that central differencing converges faster, providing
a more accurate approximation of the derivative with fewer grid points. This is due to its
higher-order accuracy, typically second-order (O(∆z2)), compared to the first-order accu-
racy of forward and backward (O(∆z)), where ∆z = zi+1 − zi−1 [267]. Therefore, by central
differencing method

f ′(zi) ≃
f (zi+1)− f (zi−1)

zi+1 − zi−1
. (4.11)

By utilising the modified Friedmann equation, Eq. 2.56, the numerical propagation equa-
tion for f (z) is derived as follows

f (zi+1) = f (zi−1) + 2 (zi+1 − zi−1)
H′(zi)

H(zi)

(
3H2(zi) +

f (zi)

2
− 3H2

0 Ωm,0 (1 + zi)
3
)

. (4.12)
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Figure 4.5: Propagation of the f (T) function obtained using the Hubble parameter recon-
structed with the square exponential kernel function of Eq. 3.9. Each panel displays a differ-
ent H0 for the different combinations of datasets.

In this equation, H0 and Ωm,0 are taken from the previous GP reconstructions, corre-
sponding to various datasets and H0 priors. However, Eq. 4.12 necessitates two boundary
conditions, which are established as follows

1. First Boundary Condition: This is obtained by evaluating the modified Friedmann
equation Eq. 2.56 at z = 0, resulting in

f (z = 0) ≃ 6H2
0 (Ωm,0 − 1) , (4.13)

This assumption assumes that at the current time, ΛCDM is the dominant cosmolog-
ical model, suggesting fT(z = 0) ≃ 0. It is noteworthy that this boundary condition
depends on the same parameters as those used in the propagation equation.

2. Second Boundary Condition: This condition is required because the propagation equa-
tion depends on both zi−1 and zi. To determine this, the forward differencing method
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Figure 4.6: Propagation of the f (T) function obtained using the Hubble parameter recon-
structed with the Cauchy kernel function of Eq. 3.10. Each panel displays a different H0 for
the different combinations of datasets.

is used [267], leading to

f ′(zi) ≃
f (zi+1)− f (zi)

zi+1 − zi
. (4.14)

By applying the Friedmann equation to Eq. 4.14, the following equation is obtained
for the second boundary condition

f (zi+1) = f (zi) + 6 (zi+1 − zi)
H′(zi)

H(zi)

[
H2(zi) +

f (zi)

6
− H2

0 Ωm,0 (1 + zi)
3
]

. (4.15)

To ensure thoroughness, the propagation of f (T) functions is accompanied by 1σ and 2σ

uncertainty regions, determined through the Monte Carlo routine described previously.
With the propagation equation in Eq. 4.12 and the specified boundary conditions, f (T)

can be determined as a function of the redshift z, enabling the construction of f (z) in a
model-independent manner. Moreover, the torsion scalar T can be related to the redshift z
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Figure 4.7: Propagation of the f (T) function obtained using the Hubble parameter recon-
structed with the Matérn kernel function of Eq. 3.11. Each panel displays a different H0 for
the different combinations of datasets.

using the equation T = 6H2(z). Thus, f (T) can be expressed as a function of T, allowing for
the creation of plots depicting f (T) against T for each kernel and for the various datasets
and prior combinations, as illustrated in Figs. 4.5-4.8. Each plot is accompanied by 1σ and 2σ

uncertainty regions. Additionally, a ΛCDM reference line is included, which corresponds to
f (T) → 6H2

0(Ωm,0 − 1).

By and large, the ΛCDM scenario remains within the reconstructed regions for all choices
of kernel, dataset, and prior combination. However, analysis of Figs. 4.5-4.8 reveals that the
f (T) reconstruction functions exhibit a slight decreasing trend with T, suggesting negative
values of f ′(T). This result is significant and should be considered when developing f (T)
models.

The first panel of each figure in Figs. 4.5-4.8 presents the reconstructions for each dataset
without priors, according to each kernel. Over the entire redshift range, ΛCDM remains
primarily within the 1σ confidence region and consistently within the 2σ region. Notably,
the f (T) line derived from the Hubble parameter, including the BAO dataset, is observed
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Figure 4.8: Propagation of the f (T) function obtained using the Hubble parameter recon-
structed with the rational quadratic kernel function of Eq. 3.12. Each panel displays a differ-
ent H0 for the different combinations of datasets.

to be the furthest from the ΛCDM line. When priors are incorporated, the propagation
line exhibits a more pronounced negative slope, especially for the R19 prior, and to a lesser
extent for the HW prior. Conversely, the TRGB prior has minimal effect on the propagation.

Overall, when no priors are included, f (T) deviates only slightly from ΛCDM through-
out the examined cosmic evolution. However, the inclusion of priors leads to a more notable
divergence of the propagated f (T) line from ΛCDM. This trend is consistent across the ker-
nels analysed, further reinforcing the conclusion that f (T) exhibits a slight deviation from
the ΛCDM model within the probed redshift range.

4.3 | Conclusion
In this work, the GP approach has been effectively utilised to reconstruct key cosmolog-
ical parameters, such as the Hubble constant H0, which has been a focal point of exten-
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sive scrutiny in modern cosmology. The application of the GP method provided a model-
independent reconstruction of the f (T) Lagrangian, distinguishing this analysis from pre-
vious studies that relied on predefined forms for the functions involved. By avoiding any
initial assumptions about the functional form, this work allowed for the construction of the-
ories extending beyond the ΛCDM model in a flexible and unbiased manner.

To apply this technique to f (T) gravity, the Hubble function was first reconstructed us-
ing the GP method, applied to observational datasets from the CC, PN, and BAO methods,
combined with three different H0 priors. This resulted in the reconstruction of H(z) and its
derivatives across the redshift range of the datasets considered. Since the Friedmann equa-
tions in f (T) gravity can be expressed in terms of H(z) and its derivatives, the reconstructed
H(z) functions were employed to model f (T) in a model-independent way.

The investigation included four different kernels to assess potential dependencies on
the statistical model. Results showed that, within the 1σ confidence region, these kernels
were consistent with each other, as detailed in Tables 4.1-4.4. The CC+SN+BAO datasets
provided the most conservative estimates of H0, which was expected due to the dependence
of the BAO dataset on the ΛCDM model. Conversely, the highest H0 values were obtained
with the CC dataset alone, and the R19 prior yielded the highest values among the priors
considered.

Diagnostic tests for the ΛCDM model revealed that while the reconstructions were con-
sistent within the 1σ confidence region at low redshifts, deviations emerged at higher red-
shifts. Notably, the transition redshift, indicating the point at which the Universe shifted
from a decelerating to an accelerating phase, was inferred from the deceleration parameter.
This transition, along with the equation of state for dark energy detailed in Appendix A,
highlights the dynamic evolution of the Universe.

The relationship between the Hubble function and the torsion scalar enabled the recon-
struction of f (T). With the necessary propagation equations and boundary conditions es-
tablished, f (T) was expressed as a function of T. The results demonstrated that the ΛCDM
model lies within the reconstructed regions, although a slight trend for f (T) to decrease
with T, particularly at higher redshifts, was observed. This trend should be considered in
future f (T) model development.

In transitioning to the next chapter, the focus will shift from the GP approach to the
MCMC analysis. While the GP method provided valuable insights into the model-independent
reconstruction of f (T), MCMC analysis offers a complementary approach for parameter es-
timation and model validation. The GP method excels in providing a smooth reconstruction
of functions without assuming a specific model form, but it does not directly address the
probabilistic evaluation of model parameters against observational data.

MCMC analysis, on the other hand, is well-suited for this purpose. It allows for the
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exploration of parameter space and the quantification of uncertainties in a probabilistic
framework. By applying MCMC techniques, the parameters of various f (T) models can
be constrained and thus, assess their viability more rigorously. This approach involves con-
structing a likelihood function based on observational data and iteratively sampling from
the posterior distribution of model parameters. This will enable a detailed examination of
how well different f (T) models fit the data and provide insights into the robustness and
reliability of the reconstructed function.

Therefore, in addition to the GP-based reconstructions discussed, the forthcoming chap-
ter will delve into the analysis of parameters extracted from various f (T) models (with a
ΛCDM limit), specifically the power law model, the Linder model, and a variant of the Lin-
der model with a varying parameter, as detailed in Sec. 3.4. As outlined in Sec. 3.2, the
MCMC analysis requires a specified range of priors to initiate the parameter estimation pro-
cess and such that the likelihood will explore this range of parameters.

To facilitate this analysis, the aforementioned f (T) models were selected based on their
alignment with the reconstructed f (T) functions. Fig. 4.9 illustrates how these three f (T)
models vary with the torsion scalar, T and therefore, gives the ability to compare them with
the reconstructed functions. The comparison indicates that all three models are consistent
with the reconstructed f (T) values, thus providing a strong basis for further exploration.
This alignment suggests that these models are promising candidates for a detailed examina-
tion through MCMC analysis and also give an indication for the prior range required in the
MCMC algorithm.

The MCMC analysis will be instrumental in evaluating which of these models most ac-
curately represents the observed data and in assessing their deviations from the ΛCDM
benchmark. By constraining the model parameters and assessing their fit against observa-
tional data, this analysis will offer a comprehensive evaluation of the f (T) models.

In summary, the next chapter will build upon the insights gained from the GP recon-
structions by employing MCMC analysis to refine and validate f (T) models. This transition
marks a critical step in advancing our understanding of f (T) gravity and its implications
for the cosmological evolution of the Universe. The detailed MCMC analysis will provide a
thorough assessment of these three f (T) models (and two more which do not have a ΛCDM
limit) and their impact on cosmological dynamics, offering valuable insights into the viabil-
ity and accuracy of these models.
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5

Constraints on viable models of f (T)
gravity using late-time observations

The possibility of an observational mismatch in ΛCDM has prompted renewed efforts to
determine the current value of the cosmological expansion, aiming to better assess any in-
consistencies in the standard model. In modern cosmology, there is a drive for the pursuit
of alternative approaches, such as f (T) gravity. These theories aim to create self-consistent
models that accurately depict the Universe’s history. To this end, possible gravitational
models that demonstrate validity are investigated in order to not only understand better the
underlying physics, but which also offer insights into resolving, or alleviating the cosmo-
logical problems described in more detail in Chapter 2.

To begin, specific TG models will be implemented in numerical code, specifically in
MCMC, whose architecture is described in Sec. 3.2. The starting point will be to use the
fundamental background equations governing f (T), from which a tailored form of f (T)
cosmological models can be deduced. Through the MCMC computational analysis, the op-
portunity is seized to utilise observational data and thereby, determining the model con-
straints in an efficient manner. This approach facilitates the study of late-time cosmic ac-
celeration without the need for resorting to exotic components like dark energy. Indeed, in
this case f (T) gravity is used to model the effect of a dynamical Λ whilst retaining the CDM
component of the ΛCDM model.

In the previous chapter, the reconstruction of f (T) gravity was explored to assess its vi-
ability in the context of that observational data. In addition, a series of f (T) models were
also analysed to assess their fit within the reconstructed f (T) as seen in Fig. 4.9. Building on
this, the current chapter extends this analysis to further investigate the same set of f (T) cos-
mological models in the late-time Universe. These particular forms of f (T) are confronted
against late-time observational data such as CC, SNe Ia and BAO, by utilising MCMC code.
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In recent years numerous cosmological independent measurements of the current value
of Hubble parameter H0 have also emerged, contributing to the growing Hubble tension. In
this work, the impact of these priors on core f (T) models is probed to gain a deeper insight
into the viable parameter values. To explore the influence of these values of measurements
of H0, several background studies are conducted on these f (T) models using various set-
tings, aiming to better discern the impact of priors and f (T) models. The findings of this
work were published in Briffa et al. [187].

5.1 | Constraints of f (T) late-time cosmology
In this section, five f (T) models as described in Sec. 3.4 are presented on which the MCMC
algorithm was implemented by using the observational data described in Sec. 3.3.2. Ad-
ditionally, these f (T) gravity models are investigated in order to examine the effect of re-
cent cosmology model independent measurements particularly, H0 and Ωm,0. Moreover, the
MCMC analysis allowed the parameter stemming from the models themselves to be con-
strained, enabling a better definition of the models. Thus, this work aims to assess the truth
value of the statement of whether these models predict the late-time expansion history of
the observable Universe to a significant enough degree in f (T) gravity.

The subsequent subsections will investigate the following five models:

■ Power-Law Model - as described in Sec. 3.4.1

■ Square Root Exponential Model - as described in Sec. 3.4.2

■ Exponential Model - as described in Sec. 3.4.3

■ Logarithmic Model - as described in Sec. 3.4.4

■ Hyperbolic Tangent Model - as described in Sec. 3.4.5

These five models, will be constrained against a combination of datasets including CC
combined with PN (CC + PN) and CC combined with PN and BAO datasets (CC + PN + BAO).
Alongside these datasets the R19, HW, and TRGB H0 priors will be employed, for which val-
ues can be found in Sec. 3.3.2.4. Furthermore, these models be analysed and compared with
ΛCDM model, which is also presented as the first subsection for comparison purposes. To
this end, the χ2

min, together with the AIC and BIC will be calculated and presented for each
model. The main role of both these criterion is as a model selection criterion when analysing
observational data as further explained in Sec. 3.5.
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Therefore, ∆AIC and ∆BIC will be calculated for model comparison, representing the
difference in AIC and BIC values between each model dataset ad prior combination, and the
corresponding ΛCDM values. This difference can be defined from the equations describing
AIC and BIC, in Eqs. 3.68,3.70. As a reminder, in this setting, smaller values of ∆AIC and
∆BIC signify that the specific model with the particular dataset and prior combination are
closer to the ΛCDM model.

5.1.1 | ΛCDMModel
The first model presented is the ΛCDM model, referred to as f0CDM, as previously indi-
cated. This choice is significant because in all subsequent f (T) models, comparison with
ΛCDM can be made through the values of AIC and BIC. To this end, an MCMC run for the
ΛCDM model was conducted using the Friedmann equation, Eq. 2.47. This equation reveals
that the free parameters for this model are the Hubble parameter H0 and the current matter
density parameter Ωm,0, which were constrained using different combination datasets.

The posterior and confidence regions, obtained from the MCMC analysis are shown in
Fig. 5.1. The two datasets combinations used, CC + PN and CC + PN + BAO, constrain the
two parameters and are shown respectively in the top and bottom figures. In addition, the
plots display the results of the priors on H0 reported in Sec. 3.3.2.4. In the top figure, an
anticorrelation between Ωm,0 and H0 is evident. However, this relationship diminishes and
becomes more degenerate when the BAO dataset is included in the bottom figure.

As expected, the constrained parameters converge quickly. In fact, the precision results
obtained through the MCMC runs for the parameters are given in Table 5.1a which shows
that by and large, the parameters have nearly Gaussian uncertainties. This is also reflected in
the posterior distributions. The table demonstrates that reliable values have been obtained
since the resultant H0 parameters are within the range of observed Hubble constant values.
Furthermore, Planck18 reports a value for the matter density parameter of ΩP18

m,0 = 0.315 ±
0.007 [16].

Additionally, Table 5.1 not only gives the results of the constrained parameters, it also
presents the minimum χ2 for each dataset and prior combination calculated through the
respective χ2 equations. For comparison purposes, the values of AIC and BIC statistical
indicators for ΛCDM are given in Table 5.1b. These values are used throughout the analysis
to compare models with respect to the obtained values for ΛCDM.

A more thorough analysis will be carried out as the remaining subsections proceed. The
objective of this subsection was solely to present the results obtained from the MCMC anal-
ysis of ΛCDM, thus enabling comparison in subsequent sections.
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Figure 5.1: Contour plots for the ΛCDM model. Top: Confidence levels and posteriors for
the model using the CC+PN setting combined with different priors denoted by R19 (green
colour), HW (red colour), TRGB (purple colour) and no prior (blue colour). Bottom: Confi-
dence levels and posteriors for the model using the CC+PN+BAO with the same parameters
being implemented.
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Data Sets H0 [km/s/Mpc] Ωm,0 M

CC + PN 68.7 ± 1.8 0.306+0.022
−0.021 −19.383+0.052

−0.054

CC + PN + R19 71.3+1.4
−1.3 0.290+0.019

−0.020 −19.310+0.038
−0.037

CC + PN + HW 71.0 ± 1.3 0.291+0.020
−0.019 −19.320+0.038

−0.037

CC + PN + TRGB 69.2 ± 1.4 0.303+0.021
−0.020 −19.371+0.040

−0.039

CC + PN + BAO 67.63 ± 0.90 0.297 ± 0.013 −19.403+0.037
−0.034

CC + PN + BAO + R19 68.81+0.82
−0.84 0.300 ± 0.013 −19.328+0.027

−0.026

CC + PN + BAO + HW 68.70 ± 0.83 0.300+0.014
−0.013 −19.350+0.030

−0.029

CC + PN + BAO + TRGB 67.98+0.85
−081 0.298 ± 0.013 −19.370+0.031

−0.029

(a) Results for the constrained parameters for the f0CDM model obtained from the MCMC runs.

Data Sets χ2
min AIC BIC

CC + PN 1041.49 1047.49 1062.44

CC + PN + R19 1046.32 1052.32 1067.27

CC + PN + HW 1041.88 1047.88 1062.83

CC + PN + TRGB 1041.69 1047.69 1062.64

CC + PN + BAO 1057.46 1063.46 1078.45

CC + PN + BAO + R19 1068.30 1074.30 1089.30

CC + PN + BAO + HW 1066.03 1072.03 1087.03

CC + PN + BAO + TRGB 1058.56 1064.56 1079.56

(b) Results for the minimum chi-squared together with the AIC and BIC values, Eqs. 3.68,3.70 for
f0CDM model.

Table 5.1: Output parameter results and statistical indicators for ΛCDM model. The first
column of both sub-tables denote the different datasets and prior combinations.
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5.1.2 | Power Law Model
The first f (T) cosmological model considered in this analysis is the power law model (re-
ferred to as f1CDM). As a reminder, within the action described by Eq. 2.51, the model
function f (T) evolves as a power law in the torsion scalar, denoted as f1(T) ∝ Tp1 . Its spe-
cific expression can be found in Eq. 3.52, which leads to the deduction that the two model
parameters in this case are α1 and p1. However, as demonstrated in Sec. 3.4.1, this can be
reduced to one model parameter by evaluating the Friedmann equation at current times to
obtain α1. Therefore, the only model parameter obtained for f1CDM is the dimensionless
constant p1.

Furthermore, the modified Friedmann equations for this model become Eq. 3.54. It is
useful to keep in mind that the model reduces to ΛCDM for p1 = 0 and reaches the GR limit
for p1 = 1.

The posterior distributions and 1σ and 2σ confidence regions are depicted in Fig. 5.2 for
the primary dataset combination of CC with PN at the top, and CC+PN+BAO at the bottom.
These datasets are also combined with different H0 priors. Precise results for these datasets
are provided in Table 5.2. In this case, as indicated by the Friedmann equation Eq. 3.54,
there are three primary parameters: H0, Ωm,0, and the additional model parameter p1. The
additional parameter featured in Table 5.2a is the nuisance parameter, derived from the PN
dataset, as elaborated in Sec. 3.3.2.2. Given its nature as a nuisance parameter, it is excluded
from the posterior plots to maintain focus on the significantly constrained parameters.

The advantage of using these corner plots is that it does not only show you the the indi-
vidual posteriors of the parameter but also the correlation between the parameters through
the confidence levels of 1σ and 2σ regions. A similar relationship between Ωm,0 and H0 as
seen in ΛCDM is observed. Initially, this relationship is anticorrelated when CC+PN data
are included, but it becomes more degenerate with the inclusion of the BAO dataset.

The posteriors for H0 in both primary datasets reveal that introducing an H0 prior pri-
marily results in an elevation of the H0 value compared to the results obtained without any
prior (indicated by the dashed blue line). Similarly, but to a lesser extent, the parameter
Ωm,0 exhibits a lower value when priors are incorporated into the datasets. This outcome is
expected, as an increase in the current acceleration of the Universe (i.e. H0) implies a greater
distribution of matter throughout the Universe. Consequently, while most of the energy
in this scenario would manifest as effective dark energy, the matter density parameter (i.e.
Ωm,0) is anticipated to decrease.

Upon a careful review of the precise values in the table, it becomes evident that the
highest value obtained for H0 occurs with the CC+PN dataset when combined with the R19
prior, yielding H0 = 71.3+1.3

−1.4 km s−1Mpc−1. This outcome is anticipated, as the R19 prior
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Figure 5.2: Contour plots for the Power Law model. Top: Confidence levels and posteri-
ors for the model using the CC+PN setting combined with different priors denoted by R19
(green colour), HW (red colour), TRGB (purple colour) and no prior (blue colour). Bottom:
Confidence levels and posteriors for the model using the CC+PN+BAO with the same pa-
rameters being implemented.
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Data Sets H0 [km/s/Mpc] Ωm,0 p1 M

CC + PN 68.5 ± 1.8 0.350+0.045
−0.064 −0.22+0.41

−0.48 −19.390+0.053
−0.055

CC + PN + R19 71.3+1.3
−1.4 0.326+0.045

−0.065 −0.13+0.40
−0.50 −19.314+0.039

−0.038

CC + PN + HW 71.0 ± 1.3 0.329+0.045
−0.062 −0.16+0.41

−0.48 −19.324+0.038
−0.037

CC + PN + TRGB 69.1+1.4
−1.3 0.344+0.045

−0.063 −0.20+0.42
−0.47 −19.375 ± 0.040

CC + PN + BAO 67.1 ± 1.6 0.294 ± 0.015 0.06 ± 0.13 −19.435 ± 0.047

CC + PN + BAO + R19 69.9 ± 1.2 0.305+0.014
−0.013 −0.14+0.12

−0.13 −19.359+0.035
−0.034

CC + PN + BAO + HW 69.7 ± 1.2 0.304+0.014
−0.012 −0.12+0.12

−0.13 −19.366+0.035
−0.033

CC + PN + BAO + TRGB 68.1 ± 1.2 0.298 ± 0.014 −0.01+0.11
−0.12 −19.407 ± 0.036

(a) Results for the constrained parameters for the f1CDM model obtained from the MCMC runs.

Data Sets χ2
min AIC BIC ∆AIC ∆BIC

CC + PN 1040.94 1048.94 1068.88 1.45 6.43

CC + PN + R19 1045.83 1053.83 1073.77 1.51 6.50

CC + PN + HW 1044.50 1052.50 1072.44 1.51 6.50

CC + PN + TRGB 1041.55 1049.55 1069.49 1.87 6.85

CC + PN + BAO 1057.13 1065.13 1085.13 1.68 6.68

CC + PN + BAO + R19 1066.87 1074.87 1094.87 0.56 5.56

CC + PN + BAO + HW 1064.92 1072.92 1086.92 0.89 5.89

CC + PN + BAO + TRGB 1058.56 1066.56 1086.56 2.00 7.00

(b) Results for the minimum chi-squared together with the AIC and BIC values, Eqs. 3.68,3.70, for
f1CDM model. The last two columns denote the respective differences of the AIC and BIC values
with the ΛCDM model

Table 5.2: Output parameter results and statistical indicators for Power Law Model. The
first column of both sub-tables denote the different datasets and prior combinations.
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is the most influential among those employed due to its high value, consequently leading
to the greatest shift towards higher values of H0 in the MCMC runs. Correspondingly, the
minimum value of the Ωm,0 parameter is attained with this combination of datasets, aligning
with the observation made for the posterior.

The values for H0 exhibit a notable variation across different dataset combinations, with
the CC+PN+BAO dataset configuration without priors yielding the lowest estimate of H0 =

67.1 ± 1.6 km s−1Mpc−1. The combination with the TRGB prior produces the next lowest
value for H0, influenced by the fact that this prior is the lowest among the three and con-
sequently has the least impact on pushing H0 upwards. The HW prior, conversely, falls
somewhere in between the R19 and TRGB priors, leaning notably closer to the R19 prior in
terms of value. This closeness is evident in the resulting output values, which tend to align
more closely with those derived from the R19 prior. Additionally, Table. 5.2a also shows that
the H0 priors produce tighter constraints when compared to no prior values. The values be-
come even more tighter when the BAO dataset is included.

Interestingly, the inclusion of the BAO dataset consistently leads to slightly lower H0

values compared to scenarios where it is omitted. This discrepancy arises due to the nature
of the BAO datasets, which primarily probe acoustic oscillations coming from the early Uni-
verse. Thus, the incorporation of the BAO dataset in conjunction with the absence of priors
results in the lowest Hubble constant estimation. However, it is observed once more that the
combination with the R19 prior results in the highest value obtained for H0 when compared
with the BAO dataset. The matter density parameter exhibits a slightly different behavior
in the combination datasets involving BAO. However, this discrepancy arises solely due to
the lower values of H0.

Shifting focus to the p1 parameter, it is notable that the values derived from the MCMC
analysis remain consistently within approximately 1σ of the ΛCDM value. This suggests a
close concordance between the f1CDM model and the standard model of cosmology, with
the uncertainties consistently encapsulating the ΛCDM. Of particular interest is the inter-
play between the p1 parameter and other parameters. Although initially appearing degen-
erate in the CC+PN scenarios, the relationship between p1 and H0 transitions to being anti-
correlated upon the addition of BAO to the combination. On the other hand, the relationship
between p1 and Ωm,0 begins as an anti-correlation but diminishes to a lesser extent when
BAO is included. It is also worth noting that the p2 values also tend to be in the negative
range.

The second column of Table 5.2b presents the χ2
min values, calculated using the corre-

sponding dataset’s χ2 equations as detailed in the observational section discussing χ2 in
Eq. 3.69. A higher χ2

min implies a larger deviation between the model-predicted values and
the observed data. Thus, based on this metric, the combination of CC+PN appears to offer

119



Chapter 5. Constraints on viable models of f (T) gravity using late-time observations

the closest fit. However, it is important to consider that this assessment depends signifi-
cantly on factors like the number of data points and the inclusion of different datasets. This
explains why incorporating BAO datasets results in a higher χ2

min. Therefore, for more ro-
bust model selection, it is worth examining ∆AIC and ∆BIC values, which serve as reliable
statistical indicators. These values represent the difference between the model under con-
sideration and the ΛCDM model.

From all the MCMC runs, the CC+PN+BAO+R19, gives the lowest values of both the
∆AIC and ∆BIC. Indeed, in this case, the evidence does not point strongly towards ΛCDM
case, in both AIC and BIC. With all ∆AIC values being less than 2, it remains inconclu-
sive to assert robust support for ΛCDM over competing models based on this evidence
alone. Nonetheless, it is important to highlight the effective explanatory power of the
ΛCDM model in describing the late-time evolution of the Universe. Consequently, while
the CC+PN+BAO+R19 model emerges as the preferred choice among this group of runs.
Furthermore, the obtained results align with the confidence regions of previous studies in
the literature [268, 237, 217, 269] for the closest prior value.

5.1.3 | Square-root Exponential Model
The second model under consideration is the Linder Model, referred to as the f2CDM model,
which was introduced earlier. This model, outlined in detail in Sec. 3.4.2, incorporates a
square root within the exponential term, as illustrated in Eq. 3.55. Like the f1CDM model,
the f2CDM model involves two model parameters, namely α2 and p2. However, α2 can be
directly derived from the Friedmann equation at present times, leaving p2 as the only new
model parameter for the f2CDM model, in addition to the current matter density Ωm,0 and
the functional form in the exponential term H/H0. The corresponding modified Friedmann
equation for this model is provided in Eq. 3.57. In this case, the model approaches ΛCDM
as p2 tends to infinity.

Clearly, the interpretation of the p2 parameter changes in the current model compared
to the previous f1CDM model, given their distinct nature. However, in the limiting scenario
where both parameters converge to ΛCDM cosmology, the f2CDM parameter can be refor-
mulated as 1/p2. This transformation ensures numerical stability, as the limit for ΛCDM
now becomes 1/p2 → 0+.

The constrained parameter results for H0, Ωm,0, and 1/p2 obtained from the MCMC
runs are presented in Fig. 5.3, following the same configuration as the previous model.
The exact outcomes are outlined in Table 5.3a. Upon comparing the f1CDM model to
the current one, it becomes apparent that certain similar trends emerge, such as priors on
H0 lead to elevated values of the Hubble constant in the MCMC runs. Indeed, the low-
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Figure 5.3: Contour plots for the Square-root exponential model. Top: Confidence levels and
posteriors for the model using the CC+PN setting combined with different priors denoted
by R19 (green colour), HW (red colour), TRGB (purple colour) and no prior (blue colour).
Bottom: Confidence levels and posteriors for the model using the CC+PN+BAO with the
same parameters being implemented.
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Data Sets H0 [km/s/Mpc] Ωm,0
1
p2

M

CC + PN 68.7+1.8
−1.7 0.298+0.031

−0.035 0.101+0.227
−0.098 −19.43+0.57

−0.47

CC + PN + R19 71.4 ± 1.3 0.283+0.027
−0.036 0.088+0.252

−0.086 −19.28+0.50
−0.51

CC + PN + HW 71.0+1.3
−1.2 0.285+0.027

−0.036 0.096+0.245
−0.093 −19.37+0.45

−0.34

CC + PN + TRGB 69.2 ± 1.3 0.296+0.028
−0.035 0.088+0.239

−0.085 −19.36+0.36
−0.37

CC + PN + BAO 66.9+1.5
−1.6 0.294 ± 0.016 0.22+0.12

−0.15 −19.38+0.22
−0.35

CC + PN + BAO + R19 68.71+0.88
−0.96 0.300 ± 0.014 0.079+0.098

−0.064 −19.35+0.19
−0.24

CC + PN + BAO + HW 68.58+0.89
−0.92 0.300+0.013

−0.014 0.076+0.105
−0.060 −19.39+0.05

−0.05

CC + PN + BAO + TRGB 67.7 ± 1.0 0.297 ± 0.014 0.128+0.111
−0.099 −19.46+0.37

−0.26

(a) Results for the constrained parameters for the f2CDM model obtained from the MCMC runs.

Data Sets χ2
min AIC BIC ∆AIC ∆BIC

CC + PN 1041.49 1049.49 1069.43 2.00 6.98

CC + PN + R19 1046.32 1054.32 1074.25 2.00 6.99

CC + PN + HW 1044.99 1052.99 1072.93 2.00 6.99

CC + PN + TRGB 1041.69 1049.69 1069.62 2.00 6.99

CC + PN + BAO 1056.52 1064.62 1084.52 1.06 6.06

CC + PN + BAO + R19 1068.31 1076.31 1096.31 2.00 7.00

CC + PN + BAO + HW 1066.03 1074.03 1094.03 2.00 7.00

CC + PN + BAO + TRGB 1058.47 1066.47 1086.47 1.90 6.90

(b) Results for the minimum chi-squared together with the AIC and BIC values, Eqs. 3.68,3.70, for
f2CDM model. The last two columns denote the respective differences of the AIC and BIC values
with the ΛCDM model

Table 5.3: Output parameter results and statistical indicators for Linder Model. The first
column of both sub-tables denote the different datasets and prior combinations.
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est H0 value is observed for the CC+PN+BAO dataset, attributed to the inclusion of the
BAO dataset and the absence of any priors, yielding H0 = 66.9+1.5

−1.6 km s−1Mpc−1. Although
marginally higher, the CC+PN combined with the R19 dataset still gives the highest value
at H0 = 71.4 ± 1.3 km s−1Mpc−1. Following similar reasoning as in f1CDM, this outcome
is expected, and similarly, the CC+PN+R19 attains the lowest value for the current matter
density. Analogous to f1CDM, the values obtained when incorporating the R19 and HW
priors into the MCMC runs generate relatively consistent outcomes for these respective pa-
rameters. This consistency arises due to the comparable values of these two priors.

As previously indicated, the active model parameter in this case is 1/p2, which was
chosen for numerical stability. In contrast to the previous model, most datasets fall within
the 2σ region of the ΛCDM rather than 1σ as in f1CDM. This suggests that in this case, the
values are slightly further away from favouring the ΛCDM model. Additionally, it can be
observed that when the BAO dataset is added, the values of this parameter are marginally
lowered, especially when the R19 and HW priors are included. Furthermore, especially in
the CC+PN cases, there is some anti-correlation between the parameters of Ωm,0 and 1/p2.
The χ2

min values are outlined in the second row of Table 5.3b. As before, combinations such
as CC+PN+BAO and CC+PN+BAO+TRGB exhibit the lowest values, indicating relatively
good fits. However, it is important to interpret these results with caution and consider the
broader context using ∆AIC and ∆BIC for a more comprehensive comparison across models
and datasets. Among the various MCMC runs, the CC+PN+BAO combination, without any
prior, emerges as the closest match to ΛCDM. This aligns with expectations, considering
the reliance of BAO datasets on early Universe data. An interesting observation in the last
two columns of Table 5.3b is that the values are around 2.00 and 6.99, respectively, which
are slightly higher than the previous model. This indicates a slight deviation from ΛCDM
compared to the previous model.

As in f1CDM, the results are consistent with literature [268, 237, 217, 269] for the closest
prior value, however, the priors add more detail to the impact of the priors on H0. They
also provide a more detailed evaluation of the effect on each MCMC run and the resulting
parameter values. In fact, to a certain extent, the priors tend to narrow the uncertainty
regions in the parameter values, which provides an interesting feature when compared to
the ΛCDM model.

5.1.4 | Exponential Model
The third f (T) cosmological model being examined is the Exponential model, described in
Sec. 3.4.3, in particular, Eq. 3.59, hereafter referred to as f3CDM. Similar to previous mod-
els, two model parameters, α3 and p3, are involved. However, through the evaluation of
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the Friedmann equation at the present time, α3 can be derived, leaving only p3 as the re-
maining model parameter. Consequently, the modified Friedmann equation takes the form
of Eq. 3.61. Similar to the analysis conducted for f2CDM, as p3 → +∞, this model tends
towards ΛCDM. For a more stable analysis, constraints are applied to 1/p3, ensuring the
model converges towards ΛCDM as 1/p3 → 0+.

The confidence regions and posteriors for this model and for all dataset combinations
are presented in Fig 5.4. This model is an intriguing one, since the only difference between
f2CDM and f3CDM is the square-root in the exponential index. However, Fig. 5.4, shows
that this difference has a clear effect on the confidence regions of the density parameter
which now has stricter confidence regions. On the other hand, the H0 parameter is mostly
unaffected, although there are still marginal increases depending on the dataset and prior
combination setting.

The precise results of the MCMC runs are shown in Table 5.4a, providing insights for
the parameters H0, Ωm,0, 1/p3 and also the nuisance parameter M. The tighter confidence
regions in the Ωm,0 parameter are more evident, making the predictions of the model less
ambiguous. As anticipated, similar to previous models, the inclusion of H0 priors tends to
exert a push effect on the H0 results, leading to higher values. Specifically, the highest H0

output is generated by the same dataset and prior settings, albeit slightly higher this time,
with a value of H0 = 72.0+1.3

−1.4 km s−1 Mpc−1. It is also notable that the H0 parameters have
an almost Gaussian error in this case. Consistently, the lowest value of Ωm,0 is for the same
CC+PN+R19. Furthermore, it is interesting to observe that the values of this parameter are
marginally lower across all dataset combinations. Notably, the anti-correlation between H0

and Ωm,0 is particularly evident in the CC+PN dataset combinations, gradually becoming
more degenerate with the inclusion of the BAO dataset.

Comparing the model parameter 1/pi between f2CDM and f3CDM offers valuable in-
sights. Notably, the best fit values for 1/p3 in the f3CDM model are generally closer to the
ΛCDM limit. Despite this proximity, the confidence regions still reveal a noticeable 2σ dis-
tinction between ΛCDM and the f3CDM model. Additionally, due to the smaller values,
the previously observed anti-correlation between this parameter and Ωm,0 in the f2CDM
diminishes and becomes more degenerate.

However, despite 1/p3 parameter being close to the ΛCDM model, the ∆AIC and ∆BIC
present a contrasting scenario. Both statistical indicators exhibit comparatively higher val-
ues, suggesting a stronger preference for the ΛCDM model in this case compared to other
models. Across various MCMC runs, these indicators range around ∼ 4.5, indicating a
significant deviation from previous models. Upon closer examination, it becomes evident
that the datasets without priors, namely CC+PN and CC+PN+BAO, are less favoured in
this analysis. On the other hand, the CC+PN+R19 setting emerges as the most favoured
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Figure 5.4: Contour plots for the Exponential model. Top: Confidence levels and posteri-
ors for the model using the CC+PN setting combined with different priors denoted by R19
(green colour), HW (red colour), TRGB (purple colour) and no prior (blue colour). Bottom:
Confidence levels and posteriors for the model using the CC+PN+BAO with the same pa-
rameters being implemented.
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Data Sets H0 [km/s/Mpc] Ωm,0
1
p3

M

CC + PN 69.6+1.8
−1.9 0.286+0.021

−0.023 0.067+0.078
−0.054 −19.367+0.053

−0.056

CC + PN + R19 72.0+1.3
−1.4 0.273 ± 0.020 0.042+0.099

−0.032 −19.302+0.037
−0.039

CC + PN + HW 71.5 ± 1.4 0.275+0.019
−0.020 0.070+0.072

−0.058 −19.317+0.039
−0.038

CC + PN + TRGB 69.7+1.3
−1.4 0.285+0.020

−0.021 0.048+0.094
−0.037 −19.366 ± 0.040

CC + PN + BAO 67.35+0.94
−0.97 0.289 ± 0.013 0.043+0.101

−0.026 −19.441+0.032
−0.031

CC + PN + BAO + R19 68.70+0.84
−0.85 0.293+0.013

−0.012 0.059+0.056
−0.047 −19.397+0.029

−0.028

CC + PN + BAO + HW 68.52+0.85
−0.82 0.295+0.011

−0.014 0.034+0.089
−0.024 −19.401+0.028

−0.029

CC + PN + BAO + TRGB 67.79 ± 0.85 0.292+0.012
−0.014 0.074+0.057

−0.059 −19.425+0.027
−0.030

(a) Results for the constrained parameters for the f3CDM model obtained from the MCMC runs.

Data Sets χ2
min AIC BIC ∆AIC ∆BIC

CC + PN 1045.04 1053.04 1072.97 5.55 10.53

CC + PN + R19 1048.16 1056.16 1076.10 3.84 8.82

CC + PN + HW 1047.06 1055.07 1075.01 4.08 9.06

CC + PN + TRGB 1045.04 1053.04 1072.98 5.36 10.34

CC + PN + BAO 1060.55 1068.55 1088.55 5.09 10.09

CC + PN + BAO + R19 1071.71 1079.71 1099.71 5.41 10.41

CC + PN + BAO + HW 1069.03 1077.03 1097.03 4.99 9.10

CC + PN + BAO + TRGB 1061.78 1069.78 1089.78 5.21 10.21

(b) Results for the minimum chi-squared together with the AIC and BIC values, Eqs. 3.68,3.70, for
f3CDM model. The last two columns denote the respective differences of the AIC and BIC values
with the ΛCDM model

Table 5.4: Output parameter results and statistical indicators for the exponential model. The
first column of both sub-tables denote the different datasets and prior combinations.
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among the analysed configurations. Additionally, these outputs, Fig 5.4 and Table 5.4 are
also consistent with previous literature [268, 237, 217, 269].

5.1.5 | Logarithmic Model
The fourth f (T) model under consideration is the Logarithmic model, referred to as f4CDM,
characterised by f4(T) ∝ log(qT), where q is a constant as described in Eq. 3.62. Similar to
previous models, this model also involves two parameters, α4 and p4. Interestingly, after
obtaining α4 through the current Friedmann Equation, the modified Friedmann equation,
Eq. 3.64, lacks the inclusion of both parameters. Therefore, in the modified Friedmann equa-
tion, neither α4 nor p4 are present. This implies that the same constrained parameters are
required in this model as those in ΛCDM. However, f4CDM is quite intriguing as it cannot
show a confirmation bias with ΛCDM, given that p4 does not appear in the equation.

The posterior distributions and confidence regions for the parameters H0 and Ωm,0 are
depicted in Fig. 5.5. Notably, an anti-correlation between these parameters is evident in the
figure, in particular for the CC+PN setting, a pattern also reflected in the precise results
provided in the upper section of Table 5.5a.

A difference also emerges in the output results between the CC+PN and CC+PN+BAO
settings. In the former scenario, H0 values fall within a reasonable range, while the Ωm,0

parameter has significantly lower values. Consequently, the combination of CC+PN+R19
yields a maximum value of H0 at 71.4± 1.3 km s−1Mpc−1, as anticipated. Conversely, upon
incorporating the BAO dataset, both the H0 and Ωm,0 parameter values notably decrease.
Specifically, the minimum H0 value is observed at H0 = 60.89+0.75

−0.71 km s−1Mpc−1 for the
CC+PN+BAO combination, as expected. However, upon closer examination, these values
are deemed low.

In this case, the statistical indicators provide a deeper insight on this model. As depicted
in the upper section of Table 5.5b, both the ∆AIC and ∆BIC values appear relatively low.
However, it is important to recognize that these values are influenced by the number of free
parameters, and in this case, the model under consideration and the ΛCDM model have an
equal number of such parameters. On the other hand, upon studying the lower section of
Table 5.5b, the values of ∆AIC and ∆BIC are exceptionally high. As evidenced in Table 5.5a,
the inclusion of the BAO dataset leads to deviations of both the Hubble constant and the
matter density parameter from their respective confidence regions. Consequently, the statis-
tical indicators in this case consistently point away from ΛCDM, due to their exceptionally
high values.

These results, as depicted in Fig. 5.5 and summarised in Table 5.3, align with previous
research findings [237, 217]. It is evident that the f4CDM model faces challenges in aligning
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Figure 5.5: Contour plots for the Logarithmic model. Top: Confidence levels and posteri-
ors for the model using the CC+PN setting combined with different priors denoted by R19
(green colour), HW (red colour), TRGB (purple colour) and no prior (blue colour). Bottom:
Confidence levels and posteriors for the model using the CC+PN+BAO with the same pa-
rameters being implemented.
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Data Sets H0 [km/s/Mpc] Ωm,0 M

CC + SN 68.8+1.8
−1.7 0.207+0.018

−0.017 −19.371+0.051
−0.052

CC + PN + R19 71.4 ± 1.3 0.194+0.016
−0.015 −19.301+0.038

−0.035

CC + PN + HW 69.2 ± 1.3 0.205 ± 0.016 −19.358+0.037
−0.040

CC + PN + TRGB 69.2 ± 1.3 0.205 ± 0.016 −19.358+0.037
−0.040

CC + PN + BAO 60.89+0.75
−0.71 0.252+0.014

−0.013 −19.611+0.027
−0.031

CC + PN + BAO + R19 62.77+0.72
−0.76 0.261+0.013

−0.014 −19.543+0.028
−0.029

CC + PN + BAO + HW 62.77+0.70
−0.76 0.260+0.014

−0.013 −19.544+0.029
−0.028

CC + PN + BAO + TRGB 62.02+0.72
−0.73 0.257+0.013

−0.014 −19.567+0.026
−0.033

(a) Results for the constrained parameters for the f4CM model obtained from the MCMC runs.

Data Sets χ2
min AIC BIC ∆AIC ∆BIC

CC + PN 1043.46 1042.46 1064.41 1.97 1.97

CC + PN + R19 1047.98 1053.98 1068.94 1.67 1.67

CC + PN + HW 1046.70 1052.70 1067.65 1.70 1.70

CC + PN + TRGB 1043.60 1049.60 1064.55 1.91 1.91

CC + PN + BAO 1078.52 1084.52 1099.52 21.07 21.07

CC + PN + BAO + R19 1124.87 1130.87 1145.87 56.56 56.56

CC + PN + BAO + HW 1121.49 1127.49 1142.49 55.47 55.46

CC + PN + BAO + TRGB 1097.80 1103.80 1118.80 39.23 39.23

(b) Results for the minimum chi-squared together with the AIC and BIC values, Eqs. 3.68,3.70, for
f4CDM model.

Table 5.5: Output parameter results and statistical indicators for Logarithmic model. The
first column of both sub-tables denote the different datasets and prior combinations.
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with observational data, particularly when considering datasets sensitive to early Universe
effects such as the BAO dataset. As a result, it appears that the f4CDM model lacks substan-
tial support from observational data.

5.1.6 | Hyperbolic-tangent Model
The hyperbolic-tangent model, hereafter refereed to as f5CDM, model stands out as quite
different from the others, offering an intriguing avenue to explore f (T). Defined by the
equation f5(T) ∝ tanh(kT), with k being just a constant, it introduces the α5 and p5 pa-
rameter. The α5 parameter is determined as usual through the current Friedmann equation,
leading to the modified Friedmann equation specific to this model, as shown in Sec. 3.4.5,
specifically Eq. 3.67. Unlike the f4CDM model, here the p5 parameter appears in Eq. 3.67,
yet it does not have a corresponding ΛCDM limit for any value of p5. Therefore, there are
no predefined expectations for this additional model parameter.

The posteriors and confidence regions are depicted in Fig. 5.6, illustrating similar rela-
tionships between the parameters as observed previously. For instance, in the CC+PN sce-
nario, an anti-correlation between Ωm,0 and H0 is apparent. The precise results are shown
in Table 5.6a. This f5CDM model presents entirely different outcomes compared to f4CDM.
The range of values for H0 is broader, and the Ωm,0 parameter tends to favor larger values
than those obtained in f4CDM, thereby having more confidence in the model’s predictions.

In line with previous models, the highest Hubble constant is obtained from the combi-
nation CC+PN+R19, yielding H0 = 71.8 ± 1.3km, s−1Mpc−1. This value falls between the
highest values obtained in f2CDM and f3CDM models. Conversely, the minimum value
is achieved for the CC+PN+BAO combination, resulting in H0 = 68.4+1.5

−1.4km, s−1Mpc−1,
which represents the highest minimum value across all the models. The TRGB prior con-
sistently yields results closer to those without prior, while the HW prior tends to produce
outcomes closer to the R19 prior combinations.

In this scenario, unlike the preceding model, the p5 parameter plays a significant role
in background cosmology, yet no value of this parameter can accurately replicate ΛCDM.
An interesting observation arises when comparing the CC+PN and CC+PN+BAO combi-
nations: p5 has positive values in the former while transitioning to negative values in the
latter. Remarkably, the highest and lowest values are observed in configurations without
any prior inclusion, with other combinations falling between these extremes. However, it is
worth noting that uncertainties are notably large.

The statistical indicators presented in Table 5.6b highlight the distinction between f4CDM
and f5CDM models. In this context, the values appear more realistic and promising. How-
ever, despite this, the ∆AIC and ∆BIC still suggest a marginal deviation from the ΛCDM
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Figure 5.6: Contour plots for the Hyperbolic-tangent model. Top: Confidence levels and
posteriors for the model using the CC+PN setting combined with different priors denoted
by R19 (green colour), HW (red colour), TRGB (purple colour) and no prior (blue colour).
Bottom: Confidence levels and posteriors for the model using the CC+PN+BAO with the
same parameters being implemented.
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Data Sets H0 [km/s/Mpc] Ωm,0 p5 M

CC + PN 69.2+1.9
−2.0 0.369+0.031

−0.036 −0.36+0.29
−0.38 −19.390+0.056

−0.058

CC + PN + R19 71.8 ± 1.3 0.349+0.029
−0.035 −0.28+0.28

−0.38 −19.314+0.038
−0.041

CC + PN + HW 71.3 ± 1.3 0.353+0.029
−0.036 −0.29+0.28

−0.38 −19.329 ± 0.040

CC + PN + TRGB 69.5+1.3
−1.4 0.366+0.030

−0.034 −0.35+0.29
−0.37 −19.381+0.041

−0.042

CC + PN + BAO 68.4+1.5
−1.4 0.302+0.014

−0.012 0.144+0.087
−0.107 −19.400+0.039

−0.037

CC + PN + BAO + R19 70.6+1.1
−1.2 0.308 ± 0.013 0.079+0.098

−0.064 −19.342+0.031
−0.033

CC + PN + BAO + HW 70.2 ± 1.1 0.308+0.012
−0.013 0.039+0.095

−0.112 −19.351+0.032
−0.031

CC + PN + BAO + TRGB 68.9+1.1
−1.2 0.304 ± 0.013 0.115+0.082

−0.100 −19.386+0.032
−0.031

(a) Results for the constrained parameters for the f5CDM model obtained from the MCMC runs.

Data Sets χ2
min AIC BIC ∆AIC ∆BIC

CC + PN 1044.44 1052.44 1072.38 4.95 9.93

CC + PN + R19 1048.13 1056.13 1076.06 3.81 8.79

CC + PN + HW 1046.94 1054.94 1074.87 3.94 8.93

CC + PN + TRGB 1044.50 1052.50 1072.44 4.81 9.80

CC + PN + BAO 1062.88 1070.88 1090.88 7.43 12.43

CC + PN + BAO + R19 1069.77 1077.77 1097.77 3.47 8.47

CC + PN + BAO + HW 1067.90 1075.90 1095.90 3.88 8.88

CC + PN + BAO + TRGB 1063.34 1071.34 1091.34 6.78 11.78

(b) Results for the minimum chi-squared together with the AIC and BIC values, Eqs. 3.68,3.70, for
f5CDM model. The last two columns denote the respective differences of the AIC and BIC values
with the ΛCDM model

Table 5.6: Output parameter results and statistical indicators for the exponential model. The
first column of both sub-tables denote the different datasets and prior combinations.
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cosmology, particularly in combinations where no prior information is incorporated. This
prompts the question of whether the hyperbolic tangent model is a viable consideration for
cosmological studies.

5.2 | Conclusion
In this study, a late-time analysis was conducted to explore the behavior of different f (T)
cosmological models in conjunction with the impact of H0 priors. Five distinct models were
carefully selected and tested using recent observational datasets, including CC, SNe Ia using
the PN dataset, and BAO, along with three cosmology-independent priors sourced from the
literature. The objective was to assess how various cosmological parameters are impacted
by different forms of f (T) gravity and their compatibility with observational data as well as
ΛCDM cosmology.

To facilitate a comprehensive cross-analysis of the different f (T) models, datasets, and
priors, a whisker plot illustrating each cosmological parameter against the others is pre-
sented in Fig. 5.7. The shaded regions in the H0 column represented the values of each prior,
providing clear insights into the direct influence of these priors on cosmological parameters.

The initial three models, f1−3CDM, have the capacity to reduce to the ΛCDM model.
However, they introduce an additional model parameter, pi (i = 1, 2, 3), which plays a piv-
otal role. A specific pi value will reduce the model to ΛCDM. Therefore, to facilitate, com-
parison and for statistical analysis purposes, an MCMC run for ΛCDM was also performed
as discussed in Sec. 5.1.1.

Furthermore, the cosmological parameters derived from these three models align with
findings in previous literature [237, 217, 269], falling within 1 − 2σ regions of ΛCDM. No-
tably, both the Hubble constant and the matter density parameter closely resemble those
obtained in ΛCDM. The value at which the models reduce to ΛCDM, denoted by pi = 0, is
represented by an orange dashed line. It is observed that, for the most part, the obtained pi

values for the first three models fall within the 1σ range of ΛCDM.

Focusing on the H0 parameter for f1−3(T), the green, red, and violet regions in Fig. 5.7
represent the R19, HW, and TRGB prior values, respectively. Notably, the green whiskers,
reflecting datasets with the R19 prior, consistently extend above their corresponding blue
whisker counterparts, indicating a tendency towards higher H0 values. This suggests that
the R19 prior tends to push the value of H0 towards higher values, albeit not quite to the
extent of the R19 prior itself. The same observation holds true for the HW prior, though
to a lesser extent, given that the value of the HW prior is slightly lower than that of the
R19. In contrast the, the violet markers, representing datasets with the TRGB prior obtained
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Figure 5.7: A whisker plot showing the three parameters {H0, Ωm,0, pi} The pi parameter
represents p1 for f1CDM, 1

p2
for f2CDM, 1

p3
for f3CDM, p4 for f4CDM and p5 for f5CDM.

Each section represents the best fits for CC+PN and CC+PN+BAO together with the differ-
ent priors where blue, green, red and purple correspond to: no prior, R19 prior, HW prior
and TRGB prior. The shaded bands represent the priors with their 1σ uncertainty whilst the
orange dashed line denotes the ΛCDM model.
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from the MCMC results, are much closer to the TRGB prior itself. This suggests that the
TRGB prior has a more subdued impact on the H0 best fit values compared to the R19 and
HW priors, as seen by the closer alignment of the violet markers with the blue markers in
Fig. 5.7.

The extra freedom parameter in the f (T) models (pi), offers more flexibility in fitting
observational data. While these models can better approximate the data, they are punished
by the statistical indicators, when compared to ΛCDM model. Indeed these models produce
higher AIC and BIC. Indeed, the ∆AIC and ∆BIC values for these models show that the
ΛCDM still remains favoured however in certain instances, particularly in f1−2CDM, the
preference to the standard model of cosmology is not decisive or strong, prompting further
investigation and analysis.

The latter two models, f4−5CDM, are of particular interest as they do not converge to
the ΛCDM model for any parameter values. In the case of the f4CDM model, the absence
of the p4 parameter at the background level distinguishes it from the others. A significant
observation regarding the H0 parameter obtained from the MCMC runs is that the values
tend to be significantly lower, indicating potential issues with the model’s performance. This
is reinforced when also including the BAO dataset and obtaining low values for the matter
density parameter there as well. Moreover, the f4CDM model lacks the p4 parameter at
background level, and is therefore not included in the last column of Fig. 5.7. In this context,
the MCMC runs had one less parameter to consider and thus, the statistical indicators will
not be severely punished by the number of parameters. In this sense, for the CC+PN dataset
this turns out to be a great benefit as the ∆AIC and ∆BIC have low values in comparison with
ΛCDM cosmology. However, this favorable outcome is not mirrored in the CC+PN+BAO
dataset combinations, where the model has exceptionally large statistical indicator values,
such that the viability of the model comes into question.

On the other hand, the f5CDM model, has cosmological parameter values that align rea-
sonably well with those of the other models. However, the statistical quantifiers still indicate
large values, such that the ΛCDM has strong preference. Thus, similar to the f4CDM, this
model is brought into question whether it should be a competitive framework for cosmol-
ogy.

In light of these findings, the pivotal question that emerges becomes: are these mod-
els cosmologically viable models within the broader framework of f (T, B) gravity? Can
these models effectively replicate the late-time cosmological dynamics observed in f (T, B)
gravity? The next chapter attempts to answer these questions by constraining cosmological
parameters in f (T, B) cosmology.
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f (T, B) cosmological models in the
late-time Universe

A noteworthy aspect of the relationship between GR and its teleparallel equivalent, the
TEGR, is the equivalence between the Ricci scalar

◦
R and the torsion scalar T, along with

a boundary scalar B. This equivalence facilitates the generalisation of the f (T) frame-
work, leading to the formulation of f (T, B) gravity, in which both the torsion scalar and
the boundary term appear through an arbitrary function f . This generalisation is inspired
by the extended forms of f (

◦
R) gravity [70, 153, 270, 271], as in the limit where f (T, B) →

f (−T + B) = f (
◦
R), yielding equivalent equations of motion.

In this chapter, which was presented and published in Briffa et al. [188], f (T, B) gravity
is strategically employed as a tool to model the effects of a dynamical cosmological constant,
Λ, while retaining the CDM aspect of the standard cosmological model. The objective is to
replicate the behaviours attributed to dark energy, thereby addressing prominent cosmolog-
ical tensions, particularly the Hubble tension.

To further this exploration, three distinct f (T, B) models have been identified, build-
ing on the groundwork laid in the previous chapter, which focused on f (T). Among these
models, two are designed to exhibit a ΛCDM limit, while the third is deliberately chosen to
deviate from this limit across all parameter values. This selection allows for an assessment
of each model’s predictive capabilities regarding the late-time expansion history of the ob-
servable Universe within the f (T, B) gravity framework, facilitating a comparative analysis
of how well these models align with current observational data.

To achieve this, the MCMC technique will be employed to effectively constrain the cos-
mological parameters. This statistical approach will enable a rigorous evaluation of the
models’ fit to observational data, probing their viability in accurately describing the dy-
namics of the Universe. Through this analysis, valuable insights into the implications of
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f (T, B) gravity for addressing cosmological tensions will be uncovered.

6.1 | Formulation of the H(z) Equation in f (T, B)Cosmol-
ogy

Constraining parameters for viable f (T, B) models entails employing algorithms like the
MCMC technique. However, for efficient utilisation of this technique, having an H(z) equa-
tion that is computationally tractable is essential. Nevertheless, when examining the mod-
ified Friedmann equation for f (T, B), as depicted in Eq. 2.73, directly deriving an equation
for H(z) presents challenges. Instead, as will be illustrated shortly, a second-order differen-
tial equation of H with respect to z can be formulated, thus providing a pathway to solving
for H(z).

Consider the first modified Friedman Equation for F(B), Eq. 2.73 which can be re-written
as follows

−F + BFB − T + 6HḞB = 2κ2ρ , (6.1)

where the dot derivative is again referring to a derivative with respect to time. The initial
step to derive a differential equation involves expressing all components in the equation in
terms of redshift. The chain rule is therefore applied, yielding,

Ḟ =
dF(B)

dt
=

dF
dB

dB
dt

= FBḂ , (6.2)

and thus, ḞB = FBBḂ. Consequently, Eq. 6.1 becomes

−F + B fB − T + 6H(FBBḂ) = 6H2
0(Ωm,0(1 + z)3 + Ωr,0(1 + z)4) , (6.3)

where ρ = 3
8πG H2

0(Ωm,0(1 + z)3 + Ωr,0(1 + z)4). Additionally, given that B = −6(3H2 + Ḣ),
Ḃ is evaluated as

Ḃ = −6(6HḢ + Ḧ) . (6.4)

Substituting this expression in Eq. 6.3, the following second order differential equation is
obtained

Ḧ =
−1

36HFBB

[
6H2

0

(
Ωm,0(1 + z)3 + Ωr,0(1 + z)4

)
+ F − BFB + T

]
− 6HḢ . (6.5)

However, it is noteworthy to mention that the above second order differential equation is
with respect to time. Hence, using the relations between the scale factor and redshift, to-
gether with H(z) one can deduce that

Ḣ = −(1 + z)H(z)H′(z) and (6.6)

Ḧ = H2(z)H′(z)(1 + z) + H(z)H
′2(z)(1 + z)2 + H2(z)H′′(z)(1 + z)2 , (6.7)
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which leads to the following Friedmann equation

H′′(z) =
−1

36(1 + z)2H3(z)FBB

[
6H2

0

(
Ωm,0(1 + z)3 + Ωr,0(1 + z)4

)
+ F − BFB + T

−216H3(z)H′(z)(1 + z)FBB
]
− H′(z)

(1 + z)
− H

′2(z)
H(z)

. (6.8)

This differential equation will be the general Friedman equation used in the subsequent
sections (except for the ΛCDM model), which is then solved for H(z) in order to be able to
constrain the f (T, B) model parameters.

6.2 | Constraints on viable f (T, B) cosmological models
In this section the MCMC algorithm is applied to three f (T, B) models using observational
data. Similar to how constraints were placed on the f (T) models, recent data surveys are
utilised. Essential baseline datasets, including the CC, PN, and BAO datasets, are employed,
which are described in further detail in Sec. 3.3.2.

The subsequent sections will present and explore the constrained parameters for the
following three f (T, B) models:

■ Power Law Model (detailed in Sec. 6.2.2 further on)

■ Square Root exponential (detailed in Sec. 6.2.3 further on)

■ Logarithmic Model (detailed in Sec. 6.2.4 further on)

These models will undergo constraints against two primary observational settings: CC+PN
and CC+PN+BAO, provided CC alone is not sufficiently reliable, primarily due to its limited
sample size. Additionally, an assessment will be made regarding the consistency of these
three models and dataset combinations with two significant Hubble constant priors. Specif-
ically, the updated versions of the SH0ES Collaboration prior (R21) and measurements from
the TRGB (F21) are implemented, detailed further Table 3.1. These observational datasets,
along with the priors, will be utilised in the MCMC algorithm, to determine the maximum
likelihood or, equivalently, the minimum χ2 for each respective dataset combination.

In addition to the fundamental analysis of each f (T, B) model against observational data,
an integral aspect of this study involves comparing these models to the well-established
ΛCDM model. The introduction of the ΛCDM model into the analysis serves as a crucial
reference point. By establishing a baseline with the ΛCDM model, the relative performance
of the f (T, B) models can be assessed. This comparative analysis allows us to determine
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whether the f (T, B) models offer improvements over the traditional ΛCDM framework or if
they are surpassed by it in terms of their ability to accurately describe the observed Universe.

To perform this comparison, the two widely-used model selection criteria, namely AIC
and BIC, are employed. By computing these values for each f (T, B) model as well as for the
ΛCDM model, an assessment can be made regarding which model offers the best balance
between explanatory power and model complexity. The comparison with ΛCDM model
provides valuable insights into the viability and efficacy of the f (T, B) and discern whether
the f (T, B) models provide a more accurate and better description of cosmological phenom-
ena or if they fall short compared to the well-established ΛCDM model.

6.2.1 | ΛCDM model – f0(T, B)CDM model
With the intention of comparing to the ΛCDM model and similar to the f (T) models, the
initial MCMC run is performed for the standard model of cosmology, using Eq. 2.49. This
section will thus present the results for ΛCDM, with a more detailed analysis provided for
the other models as they are compared with it.

The posteriors together with the confidence regions for the resulting constrained pa-
rameters are shown in Fig. 6.1. Similar to f (T), the constrained parameters for combined
datasets CC+PN are at the top and for CC+PN+BAO are at the bottom of the figure. Being
the ΛCDM model, the MCMC chains converge quickly, with Gaussian errors. This is more
enhanced in Table. 6.1a, in which precise results for the chains are shown and errors are
shown to be almost Gaussian.

Upon examining these results closely, one can observe their similarity to those obtained
in the previous chapter, Sec. 5.1.1. Specifically, H0 adn Ωm,0 exhibit an anticorrelation with
CC+PN, but show a more degenerate, almost correlated, relationship with CC+PN+BAO.
While certain alterations are attributable to the updated prior values, the consistency ob-
served in the results underscores their reliability.

The second part of Table 6.1 pertains to the statistical metrics. Specifically, Table 6.1b
displays the minimum χ2 value, alongside the statistical indicators of AIC and BIC, against
which the subsequent models will be compared.

6.2.2 | Power Law Model – f1(T, B)CDM model
Inspired by the power law model within the f (T) framework, a similar model is proposed
for f (T, B), which is defined as follows

F1(B) = r1(−B)p1 , (6.9)
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Figure 6.1: Contour plots for the ΛCDM model. Top: Confidence levels and posteriors for
the model using the CC+PN setting combined with different priors denoted by R21 (green
colour), F21 (red colour) and no prior (blue colour). Bottom: Confidence levels and posteriors
for the model using the CC+PN+BAO with the same priors being implemented.
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Data Sets H0 [km/s/Mpc] Ωm,0 M

CC + PN 68.8 ± 1.8 0.300+0.023
−0.019 −19.381+0.051

−0.054

CC + PN + R21 72.05+0.99
−0.90 0.282+0.018

−0.017 −19.292+0.028
−0.027

CC + PN + F21 69.3 ± 1.3 0.299+0.020
−0.019 −19.370 ± 0.038

CC + PN + BAO 68.2 ± 1.0 0.305 ± 0.015 −19.403+0.037
−0.034

CC + PN + BAO + R21 70.46+0.80
−0.77 0.313 ± 0.014 −19.328+0.027

−0.026

CC + PN + BAO + F21 68.54 ± 0.90 0.306+0.015
−0.014 −19.389+0.030

−0.032

(a) Results for the constrained parameters for the f1(T, B) model obtained from the MCMC runs.

Data Sets χ2
min AIC BIC

CC + PN 1041.74 1047.74 1062.83

CC + PN + R21 1046.45 1052.45 1067.41

CC + PN + F21 1041.88 1047.88 1062.83

CC + PN + BAO 1050.01 1056.01 1071.00

CC + PN + BAO + R21 1063.44 1069.44 1084.45

CC + PN + BAO + F21 1050.68 1056.68 1077.69

(b) Results for the minimum chi-squared together with the AIC and BIC values, Eqs. 3.68,3.70, for
f1(T, B)CDM model.

Table 6.1: Output parameter results and statistical indicators for ΛCDM Model. The first
column of both sub-tables denote the different datasets and prior combinations.
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where r1 and p1 are the model parameters, analogous to the f (T) case. Given the compu-
tational complexity inherent from Eq. 6.8, it is best to minimise the number of parameters
to streamline the computational efficiency. Consequently, as previously done, determining
the constant term r1 in Eq. 6.9 the number of model parameters are minimised. This process
involves evaluating the Friedmann equation at the present epoch (t = t0). By computing
all requisite derivatives from Eq. 6.9, the constant parameter r1 in km/s/Mpc2−2p1 can be
expressed as follows

r1 =
6H2

0(Ωm,0 + Ωr,0 − 1)
(p1 − 1)(−B0)p1 + 6H0

(
p1(p1 − 1)(−B0)p1−2Ḃ|t=t0

) , (6.10)

where B0 refers to the boundary term (Eq. 2.55), evaluated at current times whilst Ḃ|t=t0 is
its derivative with respect to time evaluated at current times. Therefore, the only model
parameter, left for this model is the p1 constant.

Consequently, the differential equation for obtaining H(z) can be calculated using Eq. 6.8.
Substituting the necessary derivatives from Eq. 6.9, it is expressed as

H′′ =
−1

36r1(1 + z)2H3 p1(p1 − 1)(−B)p1−2 +
[
6H2

0

(
Ωm,0(1 + z)3 + Ωr,0(1 + z)4

)
−6H2

0 + r1(1 − p1)(−B)p1 − 216r1 p1(p1 − 1)H3H′(1 + z)(−B)p1−2]
− H′

1 + z
− H′2

H
. (6.11)

Studying the equation for the power law model, Eq. 6.9, more closely reveals that TEGR
is replicated when r1 = −1 and p1 = 1, thereby setting an upper bound for p1 < 1 to
describe an accelerating Universe. Contrastingly, akin to the f1CDM scenario in the f (T)
framework, when p1 = 0, the ΛCDM limit is achieved.

The posteriors, along with the confidence regions for the two different dataset combina-
tions, namely CC+PN (top) and CC+PN+BAO (bottom) , are depicted in Fig. 6.2. Addition-
ally, the figure includes confidence level plots for the R21 and F21 priors, illustrated by the
green and red colours, respectively.

The figures highlight a significant trend: the inclusion of priors leads to an upward shift
in the H0 value, especially notable with the R21 prior as expected. The F21 prior also influ-
ences this trend, although to a lesser extent, with its impact falling between those without
any prior and those with R21 prior. A similar pattern to the f (T) cases is observed for the
CC+PN dataset combination, where an increase in H0 coincides with a slight decrease in
the matter density parameter. However, the confidence regions suggest a more simplistic
and degenerate relationship between these parameters. Conversely, in the CC+PN+BAO
dataset combination, there is a subtle shift towards a correlation between the parameters,
albeit minor.
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Figure 6.2: Contour plots for the Power Law model in the f (T, B) framework. Top: Confi-
dence levels and posteriors for the model using the CC+PN setting combined with different
priors denoted by R21 (green colour), F21 (red colour) and no prior (blue colour). Bottom:
Confidence levels and posteriors for the model using the CC+PN+BAO with the same priors
being implemented.
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Data Sets H0 [km/s/Mpc] Ωm,0 p1 M

CC + PN 68.5+2.1
−2.2 0.281+0.027

−0.023 0.140+0.090
−0.109 −19.381+0.063

−0.064

CC + PN + R21 72.0 ± 1.1 0.269+0.021
−0.016 0.080+0.108

−0.068 −19.27+0.19
−0.22

CC + PN + F21 69.1+1.5
−1.4 0.279+0.025

−0.022 0.143+0.079
−0.113 −19.362+0.075

−0.078

CC + PN + BAO 67.5 ± 1.4 0.305 ± 0.017 0.058 ± 0.053 −19.396+0.090
−0.136

CC + PN + BAO + R21 70.32+0.95
−0.94 0.314 ± 0.016 0.012+0.027

−0.0094 −19.327+0.029
−0.034

CC + PN + BAO + F21 68.1 ± 1.2 0.308 ± 0.017 0.046+0.045
−0.042 −19.35+0.69

−0.78

(a) Results for the constrained parameters for the f1(T, B) model obtained from the MCMC runs.

Data Sets χ2
min AIC BIC ∆AIC ∆BIC

CC + PN 1040.94 1048.94 1068.88 1.21 6.19

CC + PN + R21 1040.50 1053.50 1076.10 1.04 6.02

CC + PN + F21 1040.98 1048.98 1068.92 1.10 6.08

CC + PN + BAO 1047.97 1055.97 1075.97 −0.04 4.96

CC + PN + BAO + R21 1062.23 1070.23 1090.24 0.79 5.79

CC + PN + BAO + F21 1048.81 1056.81 1076.81 0.13 5.12

(b) Results for the minimum chi-squared together with the AIC and BIC values, Eqs. 3.68,3.70, for
f1(T, B)CDM model. The last two columns denote the respective differences of the AIC and BIC
values with the ΛCDM model

Table 6.2: Output parameter results and statistical indicators for Power Law Model. The
first column of both sub-tables denote the different datasets and prior combinations.
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A common feature, similar to what occurred in the f1CDM within the f (T) framework,
is the degeneracy between the H0 parameter and the model parameter p1. This degeneracy
becomes slightly more anti-correlated with the addition of the BAO dataset. Interestingly, in
this dataset combination, there appear to be two feasible sets of values for the p1 parameter.
Consequently, if one were to construct a Hubble diagram of H(z) against redshift z, these
two values of p1 would influence the tilt of the graph, resulting in a similar range of H0

values. Comparably, a similar relationship between the p1 and Ωm,0 parameters emerges. In
contrast, for CC+PN, the relationship between these parameters exhibits an anti-correlation
in the conventional sense.

The specific values for the parameters H0 in km s−1Mpc−1, Ωm,0, p1, and the nuisance
parameter M are detailed in Table 6.2a. Notably, the values of p1 are relatively lower com-
pared to those obtained in the f (T) framework. This trend is highlighted in the CC+PN+BAO
combination, where the minimum value is reached for the combination with the F21 prior,
yielding p1 = 0.046+0.045

−0.042. However, the highest value is obtained for the same F21 prior
without the BAO dataset. Overall, there is a slight deviation from ΛCDM as the p1 parame-
ter falls within 2σ of such a model.

The maximum H0 value is achieved for CC+PN+R21 with H0 = 72.0± 1.1 km s−1 Mpc−1,
which is expected as R21 is the highest prior considered. Conversely the BAO dataset re-
flects influences from the early Universe and hence, the lowest H0 value is obtained for
CC+PN+BAO, with H0 = 67.5 ± 1.4, km, s−1 Mpc−1. Another interesting characteristic is
that the value of Ωm,0 seems to be lower for CC+PN compared to CC+PN+BAO, and even
relative to the general values of this parameter.

The second half of Table 6.1b includes χ2
min, AIC, BIC, and their comparison with ΛCDM

values. Notably, the ∆AIC values appear relatively small, lacking significant evidence to
favour the ΛCDM model over this one. Conversely, the ∆BIC values suggest a different sce-
nario, indicating a potential preference for the ΛCDM model. However, these results must
be interpreted cautiously, especially considering the negative ∆AIC value for CC+PN+BAO,
technically implying a preference for this model over ΛCDM, although the significance is
minimal. This observation arises from the lower χ2

min for this model with this specific dataset
compared to ΛCDM. Similarly, the relatively low ∆BIC suggests that ΛCDM is not strongly
favoured over this model. Indeed, this observation should be considered within the broader
context of the analysis, especially given the lack of clear definition in the 2D joint probability
regions within the f (T, B) framework.
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6.2.3 | Square Root Exponential Model – f2(T, B)CDM model
The subsequent model under consideration is the square-root exponential model, denoted
as f2(T, B)CDM, defined by the equation

f2(B) = r2 Exp

[
−p2

√
B
B0

]
, (6.12)

where, r2 and p2 represent constant model parameters. The distinction from the f (T) model
lies in the fact that the exponential function is now a function of B. Following a similar
approach as before, r2 can be derived by evaluating the Friedmann equation at the present
epoch. Thus, utilising Eq. 6.3 and computing the requisite derivatives from the model equa-
tion, r2 in km/s/Mpc2 can be expressed as

r2 =
ep26H2

0(Ωmo + Ωr,0 − 1)

−1 − p2
2 + 6H0 p2

4B2
0
(1 + p2)Ḃ|t=t0

, (6.13)

This leaves p2 as the only new model parameter, which will be determined using the MCMC
algorithm. This also allows for the determination of the differential equation

H′′ =
−BB0Exp

[
p2

√
B
B0

]
9r2 p2(1 + z)2H3

(
p2

√
B0
B

)[6H2
0

(
Ωm,0(1 + z)3 + Ωr,0(1 + z)4

)
− 6H2

0

+ r2Exp

[
p2

√
B
B0

](
1 − 54p2(1 + z)H3H′

BB0

(
p2 +

√
B0

B

))]

− H′

1 + z
− H′2

H
. (6.14)

Studying Eq. 6.12 in more detail, one can note that this model reduces to the ΛCDM for
p2 = 0.

The MCMC constraint analysis was therefore executed to constrain the parameters H0,
Ωm,0, and p2, along with the nuisance parameter M, for various datasets and different priors.
The resulting posteriors and 1σ and 2σ regions are shown in Fig. 6.3.

As expected and consistent with previous findings, priors on H0 tend to elevate its val-
ues. Consequently, the density matter parameter tends to decrease accordingly, revealing
an anti-correlation relationship, particularly pronounced in the CC+PN case. Notably, the
highest H0 value is observed in the dataset combination including the R21 prior, specifically
CC+PN+R21 with H0 = 72.1+1.1

−1.0 km s−1 Mpc−1. Correspondingly, the lowest Ωm,0 value is
attained for the same dataset and prior, registering Ωm,0 = 0.307 ± 0.016.
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Figure 6.3: Contour plots for the Square-root Exponential model in the f (T, B) framework.
Top: Confidence levels and posteriors for the model using the CC+PN setting combined with
different priors denoted by R21 (green colour), F21 (red colour) and no prior (blue colour).
Bottom: Confidence levels and posteriors for the model using the CC+PN+BAO with the
same priors being implemented.
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Data Sets H0 [km/s/Mpc] Ωm,0 p2 M

CC + PN 68.7+2.1
−2.0 0.302+0.024

−0.023 −0.049+0.045
−0.095 −19.398+0.115

−0.051

CC + PN + R21 72.1+1.1
−1.0 0.282 ± 0.020 −0.045+0.041

−0.082 −19.288+0.030
−0.031

CC + PN + F21 69.3 ± 1.5 0.299 ± 0.021 −0.048+0.044
−0.090 −19.368+0.043

−0.044

CC + PN + BAO 68.0+1.1
−1.2 0.307 ± 0.016 −0.050+0.046

−0.084 −18.95+0.25
−0.00

CC + PN + BAO + R21 70.38+0.85
−0.87 0.314 ± 0.016 −0.037+0.033

−0.051 −19.329+0.053
−0.052

CC + PN + BAO + F21 68.4+1.1
−1.2 0.307+0.016

−0.014 −0.044+0.046
−0.071 −18.7+7.7

−0.0

(a) Results for the constrained parameters for the f2(T, B)CDM model obtained from the MCMC
runs.

Data Sets χ2
min AIC BIC ∆AIC ∆BIC

CC + PN 1040.70 1048.70 1068.64 0.96 5.95

CC + PN + R21 1045.69 1053.69 1073.63 1.23 6.22

CC + PN + F21 1040.89 1048.89 1068.83 1.01 6.00

CC + PN + BAO 1048.31 1056.31 1076.31 0.30 5.30

CC + PN + BAO + R21 1062.46 1070.46 1090.46 1.02 6.02

CC + PN + BAO + F21 1049.22 1057.23 1077.23 0.54 5.54

(b) Results for the minimum chi-squared together with the AIC and BIC values, Eqs. 3.68,3.70, for
f2(T, B)CDM model. The last two columns denote the respective differences of the AIC and BIC
values with the ΛCDM model

Table 6.3: Output parameter results and statistical indicators for the Exponential Model. The
first column of both sub-tables denote the different datasets and prior combinations.
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The detailed numerical results for all dataset combinations are provided in Table 6.3a.
Regarding p2, the non-Gaussianity of its values is notable in the errors, which, despite being
predominantly negative, exhibit relatively high uncertainty. However, it is worth noting
that the ΛCDM limit falls within 2σ of the observed values. Additionally, the apparent anti-
correlation observed in the f1(T,B)CDM model between the pi parameter(i = 1, 2) and Ωm,0

is absent in this scenario, across both cases.

The statistical indicators, as displayed in Table 6.3b alongside the minimum χ2 val-
ues, offer insights into the model’s fit relative to ΛCDM. Compared to the standard model
(ΛCDM), the relative indicators, namely ∆AIC and ∆BIC, exhibit lower values. Specifically,
all ∆AIC values are below 1.23, while ∆BIC values remain under 6.02. This suggests a lack
of strong preference for the ΛCDM framework based on these metrics alone, although this
is on the verge of limits according to Jeffrey’s limits. In addition, it is also crucial to consider
the broader context. Similar to the f1(T, B)CDM case, the presence of dual valid regions
for the p2 parameter is noteworthy, accompanied by considerable uncertainties in its val-
ues. Thus, while the statistical measures suggest a certain neutrality towards ΛCDM, the
intricate uncertainties in the parameter underscores the complexity of the model.

6.2.4 | Logarithmic Model – f3(T, B)CDM model
The final model under consideration is the logarithmic model, denoted as f3(T, B)CDM,
expressed by the equation

f3(B) = r3 ln
[

p3
B0

B

]
, (6.15)

where r3 and p3 are model parameters. Determining r3 involves evaluating the Friedmann
equation at the present time (t = t0), using Eq.6.3

r3 =
6H2

0 (Ωm,0 + Ωr,0 − 1)
6H0
B2

0
Ḃ|t=t0 − 1 − ln p3

. (6.16)

Therefore, since r3 can be determined using the above equation, the only model parameter
left is p3. Consequently, the differential equation can be derived using Eq.6.8, where the
necessary derivatives are substituted to obtain

H′′ =
−B2

36r3(1 + z)2H3

[
6H2

0

(
Ωm,0(1 + z)3 + Ωr,0(1 + z)4

)
− 6H2

0 + r3 ln
[

p3
B0

B

]

+ r3 −
216r3

B2 H3H′(1 + z)

]
− H′

1 + z
− H′2

H
. (6.17)
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An intriguing characteristic for this model is that no value of p3 can reproduce the ΛCDM
model. From the three models considered, this feauture is unique to f3(T, B)CDM .

The probability distributions depicted in Fig. 6.4 provide a view of the 1D and 2D joint
probability regions. Interestingly, this model diverges notably in its value of the Hubble
constant (H0) when compared to previous models, despite lacking a well-defined ΛCDM
limit. The dataset CC+PN+R21 yields the highest H0 value as in previous models, with a
value of 72.09+0.97

−0.98 km s−1 Mpc−1. Furthermore, when BAO data is included but without
any prior, the H0 value drops to its lowest value in this model, at 66.0+1.3

−1.4 km s−1 Mpc−1

as detailed in Table 6.4a. This particular value aligns with the lower end of the spectrum
observed across models.

Moreover, a similar trend of lower values is observed in the values of the matter density
parameter as shown in Table 6.4a. This is especially evident within the CC+PN dataset,
regardless of the inclusion of priors, although an improvement is noted when including
BAO. These observations prompt a reassessment of the model’s validity and predictive
capability. It highlights the need for further investigation into the underlying framework
and parameters driving the model’s predictions, particularly regarding the observed lower
values of the matter density parameter.

Despite the absence of a specific value for the p3 parameter anticipated from the MCMC
runs, it consistently converges to small values, approaching zero. This tendency persists
across all dataset combinations, with a more pronounced effect observed when incorporat-
ing the BAO dataset. Furthermore, an evident anti-correlation emerges between this param-
eter and both the Hubble constant and the matter density parameter, particularly evident
with the inclusion of the BAO dataset.

The statistical indicators present a contrasting perspective compared to the previous
models. The χ2

min values are slightly elevated for this model, consequently resulting in
higher ∆AIC and ∆BIC values. When considering datasets comprising of CC+PN, the statis-
tical indicators exhibit similar values irrespective whether a prior is added or not. However,
with the inclusion of BAO, a more variant scenario emerges, with different values obtained
upon the specific prior utilised. Overall, the indications suggest a preference for the ΛCDM
model over this logarithmic model. This further reinforces the discussion on the model’s
viability and its comparability to established cosmological frameworks.

6.3 | Conclusion
The previous chapters, Chapters 4 and 5, sparked an interest in exploring the viability of
various models established in the literature within the realm of f (T) gravity. This led to
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Figure 6.4: Contour plots for the Logarithmic model in the f (T, B) framework. Top: Confi-
dence levels and posteriors for the model using the CC+PN setting combined with different
priors denoted by R21 (green colour), F21 (red colour) and no prior (blue colour). Bottom:
Confidence levels and posteriors for the model using the CC+PN+BAO with the same priors
being implemented.
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Data Sets H0 [km/s/Mpc] Ωm,0 p3/10−3 M

CC + PN 68.8 ± 1.9 0.258+0.025
−0.024 5.9+10.4

−4.0 −19.370+0.059
−0.056

CC + PN + R21 72.09+0.97
−0.98 0.243+0.021

−0.022 5.5+10.8
−3.4 −19.274 ± 0.028

CC + PN + F21 69.3 ± 1.3 0.257 ± 0.022 5.3+9.4
−3.2 −19.355+0.039

−0.036

CC + PN + BAO 66.0+1.3
−1.4 0.300 ± 0.014 1.53+5.13

−1.00 −19.442+0.035
−0.049

CC + PN + BAO + R21 69.64+0.73
−0.76 0.310 ± 0.013 0.32+0.19

−0.0 −19.340+0.023
−0.024

CC + PN + BAO + F21 67.17 ± 0.94 0.303+0.013
−0.012 0.49+1.7

−0.12 −19.429+0.047
−0.019

(a) Results for the constrained parameters for the f3(T, B)CDM model obtained from the MCMC
runs.

Data Sets χ2
min AIC BIC ∆AIC ∆BIC

CC + PN 1042.08 1050.08 1070.02 2.35 7.33

CC + PN + R21 1046.93 1054.93 1074.87 2.48 7.46

CC + PN + F21 1042.23 1050.23 1070.17 2.35 7.33

CC + PN + BAO 1049.21 1057.21 1077.20 1.20 6.20

CC + PN + BAO + R21 1066.77 1074.77 1094.77 5.33 10.33

CC + PN + BAO + F21 1049.78 1057.78 1077.78 1.09 6.09

(b) Results for the minimum chi-squared together with the AIC and BIC values, Eqs. 3.68,3.70, for
f3(T, B)CDM model. The last two columns denote the respective differences of the AIC and BIC
values with the ΛCDM model

Table 6.4: Output parameter results and statistical indicators for the Logarithmic Model.
The first column of both sub-tables denote the different datasets and prior combinations.



Chapter 6. f (T, B) cosmological models in the late-time Universe

a deeper investigation and a generalisation by incorporating both the torsion scalar T and
the boundary scalar B, which together form the Ricci scalar. Hence, f (T, B) constitutes a
more general framework of gravity. In this regard, three models of f (T, B) were examined
to assess their their performance against ΛCDM with the data samples used. Two of these
models were specifically chosen to reproduce the standard cosmological model for certain
values of the model parameter pi for i = 1, 2, including the Power Law Model discussed
in Sec. 6.2.2 and the Square-Root Exponential outlined in Sec. 6.2.3. On the other hand, the
Logarithmic Model detailed in Sec. 6.2.4 was selected with the aim of diversification, as no
specific value of p3 leads to the ΛCDM case.

These models were evaluated against cosmological observations using the MCMC algo-
rithm. The baseline analysis relied on the CC+PN dataset, which was later supplemented
with BAO data in order to incorporate early Universe effects. Additionally, two updated
priors, derived from the SH0ES Collaboration and the F21 TRGB Calibration Update, were
incorporated. The primary aim of this investigation was to assess the framework’s suit-
ability at late times and gauge its performance against observational datasets. The analysis
focused on key cosmological parameters, including the Hubble constant H0, the matter den-
sity parameter, and the model parameter pi for i = 1, 2, 3.

To assess the performance of these models, a visualisation of the constrained parameters
is shown in the whisker plot in Fig. 6.5 for easy interpretation. The plot is divided into
three sections: the first displays the models without any priors, the second incorporates the
R21 prior with the datasets, and the third section illustrates the inclusion of the F21 prior.
This arrangement facilitates comparison across different models, within the same dataset
combinations.

Notably, the inclusion of the R21 prior tends to elevate the constrained H0 values, al-
though not to the extent of the R21 prior itself, depicted by the blue shaded region repre-
senting the 1σ range. In cases where BAO data is combined with the R21 prior, H0 values
tend to be closer to those without prior, albeit slightly higher. The density parameter ex-
hibits more variability, particularly when BAO data is included with the R21 prior, where
Ωm,0 tends towards higher values and are more consistent with each other.

In the third section of the whisker plot, the data incorporating the F21 prior are presented
for the different models. The 1σ F21 prior value is indicated by the red shaded region. Sim-
ilar to the previous section, introducing the F21 prior nudges the H0 value slightly higher
compared to the scenario without any prior. However, these adjusted values demonstrate a
closer alignment with the prior itself, particularly notable for the baseline dataset combina-
tion (CC+PN). Regarding the density parameter, a consistent trend similar to the previous
section is observed, highlighting the influence of incorporating the F21 prior.

The analysis extends to examining the model parameter pi for i = 1, 2, 3, which plays a
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Figure 6.5: Whisker plot for the parameters H0, Ωm0 and pi, respectively. Each section rep-
resents the output results of the parameters for CC+PN and CC+PN+BAO where the green
colour represents no prior, the blue colour represents the R21 prior and the red colour rep-
resents the F21 colour. The shaded bands denote the 1-σ measurements of each prior whilst
the dashed orange line in pi denotes the ΛCDM model.
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crucial role in determining the behaviour of the models. With f3(T, B) as an exception, the
first two models can exhibit ΛCDM behaviour when certain configurations of the additional
model parameter are applied. By reviewing Eqs. 6.9 and 6.12, one can discern whether the
extra Lagrangian terms favour a non-zero evolution. The orange dotted line in the last
column of the whisker plot represents the ΛCDM limit, revealing that for f1 and f2, the
parameter values fall within 2σ of p = 0. This observation underscores the proximity of
these models to the established ΛCDM framework.

The last model, f3(T, B), diverges from a ΛCDM limit due to the absence of a specific
value for the additional model parameter. Similar to observations made in the previous
chapter, such models present an intriguing alternative to ΛCDM without necessitating ex-
treme amendments. Generally, the resultant values for both the Hubble constant and the
matter density tend to be towards the lower end of the spectrum as shown in the first and
second column of Fig. 6.5. Moreover, while the additional model parameter p3 lacks an
expected value, the model generates values with minimal magnitudes and negligible uncer-
tainties, providing an interesting insight into its behaviour.

Given the observations from the analysis, it becomes apparent that the f (T) framework
exhibits certain advantages over the f (T, B) models. This conclusion is drawn from sev-
eral key findings. Firstly, in the f (T, B) models, most statistical indicators, in particular the
BIC, which is the most robust indicator, tend to have higher values,indicating a preference
towards the Λ over these models. Additionally, upon examining the 2D joint probability re-
gions, it becomes evident that they are not as well-defined in the f (T, B) models compared
to the f (T) framework. Consequently, these discrepancies prompt a shift in focus towards
the f (T) models for further investigation and analysis. By emphasising the robustness and
reliability of the f (T) framework, future studies can delve deeper into its implications for
cosmology with greater confidence and clarity. By doing so, the aim is to extend the redshift
range under consideration, thereby enhancing the comprehensiveness and accuracy of the
cosmological models. This approach ensures that investigations into the f (T) framework
are conducted with a broader scope, allowing for a more extensive understanding of the
Universe’s dynamics across different epochs.
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7

Updating late-time f (T) cosmology
with Pantheon+ catalogue

SNe Ia were pivotal in the discovery of the Universe’s accelerating expansion in 1998 by the
Supernova Cosmological Project and the High-z Supernova Search Teams [34, 33]. Since
then, transient surveys have continuously identified many more SNe Ia, significantly ad-
vancing the optimisation of their detection and measurement across various redshift ranges.
Over the past decades, the statistical power of large samples of SNe Ia has grown consid-
erably. These well-calibrated and standardised samples have facilitated the constraint of
cosmological parameters through the compilation and analysis of multiple datasets. For
example, measurements of the Hubble constant (H0) require very nearby SNe in galaxies
that host calibrated primary indicators such as Cepheids and the TRGB. However, com-
bining different sub-samples of SNe is not straightforward due to the need for rigorous
cross-calibration, self-consistent analysis of their light curves and redshifts, and characteri-
sation of the covariance arising from various sources. Therefore, as sample sizes increase, it
is essential to control systematic uncertainties meticulously.

This is where the latest compilation of confirmed SNe Ia comes into play. The Pantheon+
Compilation data set (PN+) dataset, which serves as the direct successor to the PN analysis,
will be discussed in detail in the following sections and will be analysed within the frame-
work of f (T) gravity. The objective is to highlight how the new data impacts the constraints
on f (T) gravity models and to provide an understanding of their viability in explaining cos-
mological observations. This comparison will also elucidate the improvements introduced
by the PN+ dataset and its significance.

Indeed, this chapter aims to constrain leading models of f (T) gravity using the latest
PN+ dataset in Sec. 7.2 and to compare the results with the previous PN release in Sec. 7.3.
These analyses will be considered within the context of late-time datasets extensively stud-
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ied in previous chapters. The findings of this work were presented and published in Briffa
et al. [189].

7.1 | The Pantheon+ Data Set
As previously discussed, two SNe Ia datasets were used in this analysis: the PN and the PN+
compilations, with the latter being a successor to the original Pantheon analysis. The main
difference between the original PN and the PN+ in cosmology lies in the addition of new
measurements at various redshifts. While the original PN analysis used 1048 supernovae,
the PN+ includes 1701 cosmologically viable SN light curves of 1550 distinct supernovae,
representing a significant increase in data, particularly at low redshift. In addition, unlike
the PN analysis, the PN+ dataset includes light curves with redshifts z < 0.01, allowing for
analysis over the entire redshift range from z = 0.001 to z = 2.26.

This expansion in the PN+ dataset is complemented by the contributions from the SH0ES
team. A companion paper Riess et al. 2021 [4], R22, uses observations from the HST to
combine data from 277 Hubble flow SNe Ia (with redshifts 0.023 < z < 0.15) and 42 SNe Ia
in Cepheid-calibrator hosts. These combined datasets utilise their relative distances and
covariances with the absolute distances of primary distance anchors (Cepheids and TRGB)
to calibrate the Hubble constant, resulting in a value of HR22

0 = 73.3 ± 1.04 km s−1 Mpc−1.

The primary distance indicators from the SH0ES Cepheid host galaxies were incorpo-
rated into the PN+ dataset. This incorporation is instrumental for accurately determining
distances, providing a robust calibration of SNe Ia luminosity via Cepheid distances, there-
fore improving the precision of the low-redshift sample. This helps to break the degeneracy
between the absolute magnitude M and the Hubble constant H0 when analysing SNe Ia
alone. Hence, the PN+ dataset is, henceforth, referred to as ‘PN+& SH0ES’, reflecting the
integration of the SH0ES Cepheid’s host distance anchors, which enhances the robustness
of the dataset by improving distance measurements and reducing systematic uncertainties.

In addition to these improvements, the PN+& SH0ES dataset compilation includes more
advanced systematic techniques compared to the PN dataset. These advancements encom-
pass refined calibration procedures, enhanced light-curve fitting models, and comprehen-
sive treatments of systematic uncertainties, such as those arising from peculiar velocities
and intrinsic scatter. The PN+& SH0ES dataset also incorporates updated host-galaxy prop-
erty analyses and improved redshift measurements, leading to more accurate cosmological
constraints. These enhancements make PN+& SH0ES a more robust and precise dataset for
cosmological studies, enabling better insights into the expansion history of the Universe and
the determination of fundamental cosmological parameters.
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In this case, the associated χ2
PN is still represented by

χ2
PN+(Θ) = (∆µ(zi, Θ))T C−1

PN+ ∆µ(zi, Θ) (7.1)

where CPN+ is the total covariance matrix, and ∆µ(zi, Θ) = µ(zi, Θ) − µobs(zi), with
µ(zi, Θ) being the theoretical value of the distance modulus and µobs(zi) obtained from the
PN+& SH0ES dataset.

7.2 | Constraints in f (T) cosmology: PN vs. PN+
In the context of the previous section, this next analysis examines the constraints on cosmo-
logical parameters derived from the PN and PN+& SH0ES datasets within the f (T) frame-
work. This section will focus on the specific parameters obtained from both datasets, com-
paring their implications and highlighting any significant differences. The key parameters
under investigation include the Hubble constant (H0), the matter density parameter (Ωm,0),
and the model parameters specific to the f (T) models. These models include the Power
Law Model, the Linder Model, and the Exponential Model, as detailed in Sec. 3.4, for which
the posterior distributions and confidence regions derived from the MCMC runs will be
illustrated, providing an initial overview of the datasets’ impact.

By analysing these parameters, a better understanding of how the updated and ex-
panded data in the PN+ dataset impact the constraints and whether they provide more
precise and reliable cosmological insights compared to the original PN+& SH0ES dataset,
can be obtained. This comparison is crucial for evaluating the robustness of the f (T) mod-
els and their consistency with the observational data. A comparative analysis, providing a
overview of the fit quality for each dataset combination, will be discussed in more detail in
the next section.

7.2.1 | ΛCDMModel: PN vs PN+
As in previous chapters, the first model being presented is the ΛCDM model to facilitate
comparisons with all subsequent f (T) models. With this in mind, an MCMC run was con-
ducted, yielding constrained parameters for H0 and Ωm,0. These results are illustrated in
Fig. 7.1, where the posteriors and confidence regions are shown.

The calibration of the BAO is achieved through the calculation of the sound horizon at
the drag epoch, which provides a critical scale for measuring cosmic distances. Similarly,
the PN+& SH0ES dataset is calibrated using the absolute magnitude M, a key parameter in
the distance ladder. Importantly, the values of M used in these calibrations are consistent
across all datasets. This consistency demonstrates the reliability of the calibration processes
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Figure 7.1: Confidence contours and posteriors for ΛCDM for the parameters H0 and Ωm,0.
The blue and green contours represent dataset combinations that include PN dataset, while
the red and purple contours show combinations that also include the PN+ & SH0ES datasets.

and ensures that the results remain comparable and coherent, regardless of the dataset being
analysed.

It is immediately apparent that certain combinations of datasets that include the PN+& SH0ES
(the red and purple contours), provide tighter constraints for both parameters and higher
values for the Hubble constant parameter. A more detailed explanation and analysis of this
will follow as the models are discussed in subsequent sections. The purpose of this sec-
tion is to present the posteriors and the corresponding Table 7.1 for comparison purposes
only. Nevertheless, the influence of PN+& SH0ES is immediately evident, as it consistently
pushes H0 to higher values. Additionally, the Gaussian-like errors in the Ωm,0 parameter
indicate its rapid convergence within the ΛCDM framework, whereas the errors in though
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Data Sets H0 [km s−1 Mpc−1] Ωm,0 M

CC + PN 68.6+1.8
−1.7 0.306 ± 0.021 −19.383+0.050

−0.053

CC + PN + BAO 67.59+0.89
−0.81 0.297 ± 0.013 −19.419+0.026

−0.033

CC + PN+ & SH0ES 71.88+0.88
−0.87 0.315 ± 0.016 −19.298 ± 0.025

CC + PN+ & SH0ES + BAO 70.76+0.80
−0.64 0.329 ± 0.013 −19.326+0.024

−0.022

Table 7.1: Results for the ΛCDM model, where the first column lists the datasets used to
constrain the parameters. The second to fourth columns display the constrained parameters,
namely H0, Ωm,0, and the nuisance parameter M.

not perfectly Gaussian, still display a close approximation.

7.2.2 | Power Law Model: PN vs PN+
The first cosmological model considered is the Power Law Model, with the specific Fried-
mann equation, Eq. 3.54 as detailed in Sec. 3.4.1. This model, designed to describe the late-
time acceleration of the Universe, introduces an additional parameter compared to the stan-
dard ΛCDM model, p1

The constraints on the specified parameters for this Power Law Model model are shown
in Fig. 7.2. The figure illustrates the confidence regions and posteriors for the different com-
binations of observational datasets. Specifically, it shows results for datasets that include
either the PN catalogue or the PN+& SH0ES together with CC data or BAO data. The blue
and green contours in the figure represent combinations of datasets that include the PN
sample, while the red and purple contours correspond to combinations incorporating the
PN+& SH0ES samples. The results clearly demonstrate that dataset combinations incorpo-
rating the PN+& SH0ES dataset exhibit significantly tighter constraints, indicating higher
precision. This improvement is particularly evident in the 1- and 2-σ contour regions, which
are notably smaller compared to those derived from datasets that include only PN. Specifi-
cally, the H0 parameter shows a notable enhancement in precision.

The contour plots for the CC+PN and CC+PN+& SH0ES dataset combinations display a
degeneracy between the H0 and p1 parameters. However, this degeneracy is broken when
the BAO dataset is included, revealing an anti-correlation between these parameters. No-
tably, the CC+PN+& SH0ES dataset combination shows a degeneracy between Ωm,0 and H0,
while an anti-correlation is observed between p1 and Ωm,0 for all dataset combinations. The
strength of this anti-correlation is less pronounced for datasets that include BAO.
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Figure 7.2: Confidence contours and posteriors for f1CDM for the parameters H0, Ωm,0, and
p1. The blue and green contours represent dataset combinations that include the PN dataset,
while the red and purple contours show combinations that also include the PN+ & SH0ES
datasets.

Data sets H0 [km s−1Mpc−1] Ωm,0 p1 M
CC + PN 68.6+1.7

−1.8 0.352+0.042
−0.063 −0.22+0.41

−0.48 −19.390+0.052
−0.053

CC + PN + BAO 67.1 ± 1.5 0.294+0.015
−0.014 0.06+0.12

−0.13 −19.435 ± 0.044
CC + PN+ & SH0ES 71.88+0.87

−0.89 0.266+0.062
−0.076 0.40+0.28

−0.33 −19.295 ± 0.025
CC + PN+ & SH0ES + BAO 71.55+0.85

−0.86 0.334+0.014
−0.013 −0.113+0.098

−0.108 −19.309+0.024
−0.025

Table 7.2: Results for the f1CDM (Power law) model, where the first column lists the datasets
used to constrain the parameters. The second to fourth columns display the constrained
parameters, namely H0, Ωm,0, and p1, while the last column shows the nuisance parameter
M.



7.2. Constraints in f (T) cosmology: PN vs. PN+

The precise values for the cosmological and model parameters, including the nuisance
parameter M, for the power law model are shown in Table 7.2. It is evident that the H0

values for dataset combinations including PN+& SH0ES are relatively higher than their cor-
responding H0 values. This is also reflected in the posteriors , where the red and purple
posteriors are pushed towards higher values of H0, than the blue and green contours (which
include the PN dataset. The highest H0 value is obtained for the CC+PN+& SH0ES combi-
nation, with H0 = 71.88+0.87

−0.89 km s−1Mpc−1. This result is consistent with the high H0 value
reported by the SH0ES team, (HR22

0 = 73.30 ± 1.04 km s−1Mpc−1 [4]). In this scenario, the
Ωm,0 parameter reaches a minimum value, indicating that most of the Universe’s energy ap-
pears as effective dark energy, aligning with the high H0 value. The CC+PN+& SH0ES+BAO
combination results in a lower H0 value due to the influence of BAO data, which is sensitive
to early Universe effects and tends to lower the resulted value of H0.

With regards to value of p1, the values seem to vary. The values of CC+PN and CC+PN+& SH0ES
are not tight-constrained, however, as soon as the BAO is included the p1 value becomes
well-constrained. In this case, the p1 parameter is also found to be within 1σ of ΛCDM
value (i.e p1 = 0).

Overall, it is evident that the purple contours demonstrate substantially tighter con-
straints, indicating a more precise value. This implies that the PN+& SH0ES dataset sig-
nificantly contributes to the accuracy of the model. The subsequent section, Sec. 7.3 will
provide a more detailed statistical analysis of these findings, including a comparison with
the ΛCDM model.

7.2.3 | Square-Root Exponential Model: PN vs PN+
The second cosmological model considered is the Linder Model, explained in more detail
in Sec. 3.4.2 and having the Friedmann Equation as Eq. 3.57. The posterior distributions
and confidence levels for the constrained parameters of the Linder model are illustrated in
Fig. 7.3.

This model exhibits trends similar to those observed in the first model. However, the
constraints are notably tighter when the PN+& SH0ES samples are included, particularly for
the Hubble constant H0. The inclusion of BAO data further refines these constraints, result-
ing in the most precise parameter constrained when the combined CC+PN+& SH0ES+BAO
dataset is utilised (H0 = 70.79 ± 0.71 km s−1Mpc−1). This highlights the significant impact
of including the SH0ES data, which provided the local measurement of the Hubble constant
(R22), thereby reducing the overall uncertainty.

Table 6.4 provides the exact numerical values of the parameters derived from the Linder
model using various dataset combinations. These parameters include the Hubble constant
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Figure 7.3: Confidence contours and posteriors for f2CDM for the parameters H0, Ωm,0 and
1
p2

. The blue and green contours represent dataset combinations that include PN dataset,
while the red and purple contours show combinations that also include the PN+ & SH0ES
datasets.

Data sets H0 [km s−1 Mpc−1] Ωm,0
1
p2

M

CC + PN 68.7+1.8
−1.7 0.298+0.031

−0.036 0.11+0.22
−0.11 −19.433+0.117

−0.083

CC + PN + BAO 66.9+1.5
−1.6 0.294 ± 0.016 0.22+0.12

−0.15 −19.38+0.22
−0.35

CC + PN+ & SH0ES 71.86+0.97
−0.99 0.269+0.046

−0.065 0.39+0.29
−0.25 −19.287+0.048

−0.032

CC + PN+ & SH0ES + BAO 70.79 ± 0.71 0.328+0.013
−0.012 0.052+0.104

−0.038 −19.322+0.026
−0.033

Table 7.3: Results for the f2CDM (Linder) model, where the first column lists the datasets
used to constrain the parameters. The second to fourth columns display the constrained
parameters, namely H0, Ωm,0, and 1

p2
, while the last column shows the nuisance parameter

M.
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(H0), the matter density parameter (Ωm,0), and the parameter 1
p2

from the model’s exponen-
tial term, alongside the nuisance parameter M. The values of H0 obtained from this model
are comparable to those from the Power Law model. Notably, this model is explicitly de-
signed to account for an accelerating Universe in the late-time regime, which is reflected
in the slightly lower inferred values of Ωm,0 compared to the first model. For instance, the
combination of CC+PN+& SH0ES yields the lowest Ωm,0 value of 0.269+0.046

−0.065. Concurrently,
this combination provides the highest H0 value at 71.86+0.97

−0.99 km s−1Mpc−1.

The 1
p2

parameter in this model allows for a more flexible description of the Universe’s
expansion history. This second model also ensures that the parameter 1

p2
remains posi-

tive. Compared to the previous model, this model’s parameters tend to fall within 2σ of
the ΛCDM values, rather than within 1σ. This indicates that while the Linder model does
not strongly support the ΛCDM model, it is still within reasonable proximity, highlighting
its viability as an alternative. In addition, the anti-correlation remains evident between the
Ωm,0 and the mode parameter 1

p2
, in particular for the datasets that include the PN+& SH0ES

catalogue.

Incorporating the PN+& SH0ES dataset significantly influences the MCMC runs and the
resulting parameter estimates. Although the outcomes remain consistent with those derived
from the PN dataset alone, the uncertainties in the parameters, especially H0, are consider-
ably reduced. This makes the PN+& SH0ES dataset invaluable for comparative purposes
with the ΛCDM model. The detailed statistical comparisons and analyses with the ΛCDM
model are further elaborated in Section 7.3.

7.2.4 | Exponential Model: PN vs PN+
The third model evaluated is the Exponential Model, also referred to as a Variant of the
Linder Model, as detailed in Sec. 3.4.3. The core of this model is the Friedmann Equation,
represented by Eq. 3.61.

The behaviour of the this model parallels that of the second one. It is a variant of the
Linder model, with a significant modification: the removal of the square root term, which
substantially impacts the constraints, particularly for the matter density parameter Ωm,0 as
showcased in Fig. 7.4. This figure also illustrates the posterior distributions and confidence
levels for all constrained parameters of the Exponential model. Unlike previous models, this
model shows no significant degeneracy between the parameters H0 and Ωm,0. Instead, the
correlation between Ωm,0 and 1

p3
is emphasised.

Table 7.4 presents the precise numerical values of the parameters constrained within the
Exponential model, based on various dataset combinations. Notably, the highest H0 value is
derived from the CC+PN+& SH0ES dataset combination, with H0 = 71.80± 0.89 km s−1Mpc−1.

165



166 Chapter 7. Updating late-time f (T) cosmology with Pantheon+ catalogue

CC + PN
CC + PN + BAO
CC + PN+ & SH0ES
CC + PN+ & SH0ES + BAO

0.
12

0.
18

0.
24

0.
30

0.
36

0.
42

0.
48

Ω
m
,0

64 66 68 70 72 74 76

H0 [km s−1 Mpc−1]

0.
04

0.
08

0.
12

0.
16

0.
20

0.
24

0.
28

1 p 3

0.
12

0.
18

0.
24

0.
30

0.
36

0.
42

0.
48

Ωm,0

0.
04

0.
08

0.
12

0.
16

0.
20

0.
24

0.
28

1
p3

Figure 7.4: Confidence contours and posteriors for f3CDM for the parameters H0, Ωm,0 and
1
p3

. The blue and green contours represent dataset combinations that include the PN dataset,
while the red and purple contours show combinations that also include the PN+ & SH0ES
datasets.

Data Sets H0 [km s−1 Mpc−1] Ωm,0
1
p3

M

CC + PN 69.6+1.9
−2.0 0.286 ± 0.022 0.065+0.082

−0.050 −19.367+0.054
−0.057

CC + PN + BAO 67.35+0.94
−0.97 0.289 ± 0.013 0.043+0.101

−0.026 −19.441+0.032
−0.031

CC + PN+ & SH0ES 71.80 ± 0.89 0.307+0.020
−0.026 0.201+0.045

−0.114 −19.302+0.033
−0.021

CC + PN+ & SH0ES + BAO 70.80+0.70
−0.66 0.329 ± 0.012 0.086+0.035

−0.081 −19.259 ± 0.077

Table 7.4: Results for the f3CDM model, where the first column lists the datasets used to
constrain the parameters. The second to fourth columns display the constrained parameters,
namely H0, Ωm,0, and 1

p3
, while the last column shows the nuisance parameter M.



7.3. Comparative Analysis using PN and PN+ Data Sets

The value of H0 obtained from the this dataset combination in the Exponential model is
consistent with corresponding values from previous models. However, the discrepancy be-
tween H0 values for the CC+PN+& SH0ES and CC+PN+& SH0ES+BAO combinations is
slightly larger in the this model than in the Power Law model, indicating a marginally lower
H0 value when BAO data is included. Regarding the p3 parameter, the resulting values are
closer to the ΛCDM limit compared to previous models. Nevertheless, the uncertainties
indicate a deviation at the 2σ level from the ΛCDM model.

In general, the third model, a variant of the Linder model, exhibits unique behaviour due
to the removal of the square root term, which significantly impacts parameter constraints.
These results will be further analysed and statistically compared with the ΛCDM model in
the subsequent section.

7.3 | Comparative Analysis using PN and PN+ Data Sets
In this section, the constrained parameters from the ΛCDM model will be compared with
those from various f (T) models, using both the PN and PN+& SH0ES datasets. A detailed
discussion will highlight the differences, strengths, and implications of each model based
on the results obtained from these datasets.

To compare the performance of various models using different combinations of datasets,
the differences in AIC and BIC are calculated between each model and the ΛCDM model.
Using ΛCDM as the standard model of cosmology and as the reference model allows for
a clear comparison between each model and this benchmark. Smaller values of ∆AIC and
∆BIC indicate a model’s performance is more comparable to the ΛCDM model, suggesting
better fit.

The comparison values for all models using the CC+PN datasets with those using the
CC+PN+& SH0ES datasets are tabulated in Table 7.5, while Table 7.6 compares the models
using the CC+PN+BAO datasets with those using the CC+PN+ & SH0ES+BAO datasets.

Upon initial examination, the results indicate that the PN+ & SH0ES datasets yield signif-
icantly lower values of ∆AIC and ∆BIC, despite a higher χ2

min due to the increased number
of data points. It is notable that the χ2

min values for the f (T) models considered are slightly
lower than those of the ΛCDM model for the CC+PN+& SH0ES datasets. However, these
f (T) models are penalised by the AIC and BIC due to the larger dataset size. Addition-
ally, the values of ∆AIC and ∆BIC for the CC+PN+& SH0ES datasets are very close to each
other, indicating a strong dataset with constrained parameters similar to each other. While
CC+PN observations generally support the ΛCDM model, the inclusion of PN+& SH0ES
data does not provide strong evidence in favour of the ΛCDM model over the f (T) cos-
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Model CC + PN CC+ PN+ & SH0ES

χ2
min ∆AIC ∆BIC χ2

min ∆AIC ∆BIC

ΛCDM 1041.49 0 0 1548.30 0 0

Power Law 1040.94 1.44 6.43 1546.64 0.34 5.80

Square-root Exponential 1041.49 2.00 6.98 1546.67 0.37 5.82

Exponential 1045.04 5.54 10.53 1546.77 0.47 5.93

Table 7.5: Results for each model, including χ2
min, AIC, BIC, and their differences rela-

tive to the ΛCDM model (i.e., ∆AIC and ∆BIC). The left side of the table presents the re-
sults obtained from the CC+PN datasets, while the right side shows the results from the
CC+PN+ & SH0ES datasets.

Model CC+ PN + BAO CC+ PN+ & SH0ES + BAO

χ2
min ∆AIC ∆BIC χ2

min ∆AIC ∆BIC

ΛCDM 1057.46 0 0 1560.68 0 0

Power Law 1057.13 1.68 6.68 1559.24 0.55 6.02

Square-root Exponential 1056.52 1.06 6.06 1560.68 1.99 7.46

Exponential 1060.55 5.09 10.09 1560.68 1.99 7.47

Table 7.6: Results for each model, including χ2
min, AIC, BIC, and their differences relative

to the ΛCDM model (i.e., ∆AIC and ∆BIC). The left side of the table presents the results
obtained from the CC+PN+BAO datasets, while the right side shows the results from the
CC+PN+ & SH0ES+BAO datasets.

mological models, given that both ∆AIC and ∆BIC are statistically comparable. Incorpo-
rating the BAO dataset reveals a similar trend, albeit to a lesser extent. For the Exponen-
tial (i.e the third) model, however, the values of both ∆AIC and ∆BIC are higher for the
CC+PN+& SH0ES+BAO combination, indicating less support for this model compared to
ΛCDM.

Figure 7.5 further supports this analysis by comparing the constrained H0 values from
the f (T) models to those from the ΛCDM model, using Eq. 4.1. This radar plot compares
the constraints on parameters from different dataset combinations in relation to the ΛCDM
model. The plot shows the relative spread for four different data combinations: CC + PN
(blue),CC + PN + BAO (red), CC + PN+& SH0ES (green), CC + PN+& SH0ES + BAO (pur-
ple). The shaded regions represent the distances in σ units for each dataset combination,
with the ΛCDM model as the reference point. On the horizontal axis, the radial distances
indicate the level of difference between the H0 value for each specific dataset combination
and the ΛCDM model, expressed in σ units. Larger radial distance reflect a higher σ value,
meaning a larger difference between the obtained H0 value and the ΛCDM value.
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Figure 7.5: Distances, in units of standard deviations (σ), between the constrained values
of H0 and the ΛCDM value for different combinations of datasets, represented by different
colours.
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Figure 7.7: Values of the constrained model parameter pi, corresponding to p1 for f1CDM,
1
p2

for f2CDM, and 1
p3

for f3CDM. Each colour represents a different dataset combination,
while the orange line represents the ΛCDM value, i.e., pi = 0.

For each dataset combination, represented by different colours, the H0 values obtained
from the f (T) models are within 1σ of the corresponding ΛCDM values. This visualisation
illustrates the variations in H0 estimates across different datasets, with greater distances
indicating larger discrepancies between the constrained and ΛCDM values of H0. Thus, the
plot suggests that the H0 values obtained using the f (T) models are comparable to those
obtained using the ΛCDM model.

In contrast, Figure 7.6 displays the differences in σ units between the constrained H0 val-
ues obtained from the MCMC analysis and the Planck 18 value of HP18

0 = 67.4± 0.5 km s−1Mpc−1

[16]. In this case, the PN+& SH0ES dataset alone is also considered, with constrained H0

values for each model shown in Table B in Appendix B 9. The plot clearly illustrates the

9An MCMC analysis was run for the PN+& SH0ES dataset only for which the tabulated results are shown
in Appendix B as indicated above.
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5σ tension between the PN+& SH0ES dataset and the P18 value under the ΛCDM model.
However, the inclusion of the CC dataset at late times reduces the tension to around 3 − 4σ

for all models. The inclusion of the BAO dataset significantly reduces this tension, as ex-
pected, since the BAO data captures early Universe effects in agreement with the Planck
CMB dataset.

Finally, Figure 7.7 illustrates the effects of the PN+& SH0ES dataset on the model param-
eter pi. The results indicate that the use of PN+& SH0ES leads to a more tightly constrained
estimate of pi compared to other methods. Notably, the CC+PN and CC+PN+BAO methods
produce pi values that fall within 1σ of the ΛCDM value. However, for CC+PN+& SH0ES,
the estimated pi values do not consistently fall within 1σ of the ΛCDM value, indicating a
deviation from the standard model.

7.4 | Conclusion
In this chapter, a constraints analysis was conducted to examine the behaviour of cosmolog-
ical parameters using the PN+& SH0ES dataset compared to the PN dataset. Three promi-
nent models in f (T) gravity were evaluated, assessing their performance against three com-
binations of observational datasets. The primary aim was to compare the outcomes derived
from the PN+& SH0ES datasets with those from the PN catalogue, focusing on the differ-
ences in results and their impact on the performance of the f (T) gravity models under in-
vestigation.

For each model, an MCMC analysis was performed, obtaining observational constraints
on the cosmological parameters for all data combinations. Additionally, the performance
of each model and dataset was compared against the standard model of cosmology using
statistical indicators such as AIC and BIC as in Sec. 7.3. Furthermore, the increasing tensions
between cosmological observations were addressed by comparing the H0 value with the
corresponding ΛCDM value and the P18 value.

The performance of three models, namely Power Law Model, Square-root Exponential
Model and the Exponential Model, was evaluated, where a continuous ΛCDM component
is present, and a specific setting of an additional model parameter recovers a constant cos-
mological constant contribution. For all models, the posteriors and confidence contours re-
vealed that the PN+& SH0ES dataset produced tighter constraints on the model parameters
compared to the PN dataset. Additionally, the PN+& SH0ES dataset consistently yielded
higher values of H0, consistent with previous SH0ES team results (R22). This is due to its
composition of the PN+& SH0ES catalogue and the SH0ES Cepheid host distance anchors.

Consistent H0 values were obtained across all models and data combinations. However,
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for the Ωm,0 parameter, both Exponential models produced lower values than the Power
Law model. The additional model parameter pi, for the PN dataset, mostly fell within 1σ of
the ΛCDM model. However, for the PN+& SH0ES dataset, they were mostly outside the 1σ

but within the 2σ range.
In Sec. 7.2.1, the results obtained from the ΛCDM model are presented, which were used

for statistical comparisons. The analysis in Sec. 7.3 indicated that the models under con-
sideration are generally consistent with the ΛCDM model. The statistical indicators clearly
show that the PN+& SH0ES is a stronger dataset, as the constrained parameters are close to
those produced by the ΛCDM model. Additionally, the information criteria ∆AIC and ∆BIC
suggest that the CC+PN data support the ΛCDM model, whereas the PN+& SH0ES dataset
does not provide strong evidence favouring the ΛCDM model over the f (T) cosmological
models, as indicated by their relatively small values.

Finally, incorporating the CC data with the PN+& SH0ES dataset reduces the H0 tension
to around 3 − 4σ (as illustrated in Fig. 7.6). Additionally, including the BAO dataset im-
pacts the H0 values, slightly reducing them due to the early Universe effects. However, the
contour plots in the triangular plots reveal an interesting point: when the BAO dataset is
included, the degeneracy between the parameters H0 and Ωm,0 is broken, as shown by the
green and purple contours. Instead, a correlation between these parameters is revealed. The
core source of the correlation between these parameters stems from how the matter density
of the Universe correlates with the expansion velocity.

In conclusion, insights into the behaviour of the PN and the PN+& SH0ES datasets and
the performance of different models in f (T) gravity were provided in this analysis. The
results suggest that the PN+& SH0ES dataset produces tighter constraints on model param-
eters and higher values of H0 compared to the PN dataset, and the inclusion of the CC and
BAO datasets has a significant impact on parameter degeneracies and H0 tension. Overall,
the analysis suggests that the f (T) gravity models considered in this study provide a valu-
able framework for further investigations of modified gravity theories and highlights the
importance of incorporating varied datasets to achieve more precise and reliable cosmolog-
ical parameter estimations.

Moving forward, in the next chapter, the focus will be on exploring f (T) cosmology us-
ing RSD data by including density fluctuations. By incorporating RSD data, it will be possi-
ble to further constrain the model parameters and assess their compatibility with large-scale
structure observations. The inclusion of scalar perturbations will provide a better under-
standing of the growth of cosmic structures and also give insight into the S8,0 tension with
the f (T) framework. This approach will offer deeper insights into the viability of f (T)
gravity as a potential alternative to the standard ΛCDM model and its implications for the
evolution of the Universe.
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8

Model constraints using Growth of
Structures through RSD data

In the preceding chapters, the focus was on incorporating late-time datasets into the MCMC
analyses. These analyses included combinations of CC, PN+& SH0ES and BAO datasets,
which provided valuable insights into the behaviour of the f (T) framework. However, to
achieve a more thorough understanding of this framework and the models within it, it is
essential to extend the testing to more robust and extensive datasets. This expansion will
enable a more detailed investigation into critical cosmological parameters, specifically the
H0 tension and in this chapter the S8,0 parameter as well [63, 57]. By utilising a broader range
of data, the goal is to obtain and refine the constraints on these parameters and assess the vi-
ability of the f (T) models in explaining the current discrepancies observed in cosmological
measurements. This chapter will, therefore, build on the previous findings by integrating
additional datasets and exploring their implications for f (T) cosmology.

Whilst the status of the S8,0 tension is less clear than that of the H0 tension, the discrep-
ancy between the values of the amplitude of matter fluctuations derived from observations
of the late-time Universe and those predicted by the standard model of cosmology, based
on the CMB as previously described, is still evident. It is important to note, however, that
while this discrepancy is evident from a data perspective, from a model perspective, the H0

tension can push S8,0 either up or down, impacting its consistency with the data. This is
precisely why such analyses remain essential, as they explore the interplay between these
tensions and their implications for cosmological models.

The above discrepancy, known as the S8,0 tension, relates to the clustering of matter in
the Universe [18]. Specifically, the values obtained from cosmic shear surveys are found to
be lower than those predicted by the ΛCDM cosmology. Recently, KiDS reported the value
of SKiDS

8,0 = 0.766+0.020
−0.014 [142] a ∼ 3σ tension with Planck value, SP18

8,0 = 0.834 ± 0.016 [16].
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Chapter 8. Model constraints using Growth of Structures through RSD data

As detailed in Chapter 2, addressing this tension is crucial for understanding the LSS of the
Universe and therefore constraining values for S8,0 parameter in f (T) gravity becomes one
of the primary goals.

The S8,0 parameter, defined as S8,0 ≡ σ8(Ωm,0/0.3)1/2, where σ8 represents the amplitude
of matter density fluctuations on an 8 Mpc/h scale, can be probed through various observa-
tional techniques. One effective method for determining the value of this growth parameter
combination is through the use of RSD data [272, 273, 274, 112, 144], which will be discussed
in detail in the subsequent sections .

In this chapter, which builds upon the work which has been presented and published
in Ref.[190], the f (T) framework is constrained using RSD data, providing insights into the
large-scale structure of the Universe. By analysing RSD data, the growth rate of cosmic struc-
tures is examined, serving as a crucial test for the viability of f (T) gravity. This approach
aims to evaluate the framework’s consistency and robustness in describing the distribution
and dynamics of matter on cosmic scales. This investigation will not only contribute to our
understanding of the H0 tension but also address the S8,0 discrepancy, thereby offering a
better assessment of the f (T) proposal within the context of modern cosmology.

8.1 | Growth Rate Data
The peculiar velocities of galaxies lead to characteristic distortions in the observed large-
scale structure of the Universe when measured through spectroscopic redshifts. On small
scales, high-density regions such as galaxy clusters appear elongated along the line of sight
due to the increased velocity dispersion of galaxies within these clusters. Conversely, on
larger scales, the gravitational infall of galaxies into overdense regions causes these areas
to appear flattened in the line of sight. These anisotropic distortions arise because the mea-
sured redshifts of galaxies combine both the Hubble expansion and their peculiar velocities.
Consequently, redshift-space maps of galaxies show deviations from the true isotropic distri-
bution of galaxies in real space, a phenomenon known as Redshift Space Distortion (RSD).
This important probe of Large Scale Structure (LSS) provides critical insights into the dy-
namics of cosmic structure formation and can be used to constrain the growth rate of cosmic
structures [275, 276, 277].

Indeed, RSD data is sensitive to measurements of the growth rate of matter density per-
turbations f (z), which can be estimated using RSD cosmological probes as a way to con-
strain cosmological models [278, 279, 280]. The growth rate of structure f , which depends
on the theory of gravity, is defined as in Eq. 2.36.

However different, LSS surveys such as the 2-degree Field Galaxy Redshift Survey (2dFGRS)
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[281], eBOSS [282], WiggleZ Dark Energy Survey (WiggleZ) [283] and Galaxy and Mass
Assembly (GAMA) [229] surveys, amongst others, typically report a value for f σ8(z) ≡
f (z)× σ8(z) [112], which as a reminder is defined as

f σ8(z) = −(1 + z)
σ8,0

δ0
δ′(z) . (8.1)

Furthermore, the Alcock-Paczyński effect [284] must also be acknowledged. This effect
occurs because converting redshifts into distances requires the assumption of a specific cos-
mological model. However, recent research, including the findings in Ref. [285], has shown
that the impact of this effect is minimal, allowing it to be safely disregarded in our studies.

The final RSD data compilation used in this work is presented in Table II of appendix A
in Ref. [286]. The corresponding χ2

min is given by

χ2
RSD = ∆Q(zi, Θ)TC−1

RSD∆Q(zi, Θ) , (8.2)

where Q(zi, Θ) = ( f σ8(zi, Θ)theo − f σ8obs(zi)) and C−1
RSD is the inverse covariance matrix.

This covariance matrix is assumed to be a diagonal matrix except for the WiggleZ subset
data which can be found in Table 2 of Ref. [287]. Hence, the total covariance can be written
as

CRSD =


σ2

1 0 0 . . .

0 CWiggleZ 0 . . .

0 0 . . . σ2
N

 , (8.3)

where CWiggleZ is the corresponding covariance matrix and σi are the uncertainties of the
remaining RSD observational values.

The expression for f σ8(zi, Θ)theo in Eq. 8.2, which represents the theoretical predictions
for specific f (T) models, can be derived using Eq. 8.1 (as detailed in Chapter 2) in combina-
tion with the solution to δ′ in Eq. 2.66, which as a reminder reads

δ′′(z) +
(

H′(z)
H(z)

− 1
1 + z

)
δ′(z) =

3
2

Geff(z)
GN

(
H0

H(z)

)2

Ωm,0 (1 + z) δ(z) , (8.4)

where Geff(z) = 1
1+ fT(z)

for f (T) and for which δ0 was obtained from Ref. [285].
The three f (T) models analysed in this chapter are the Power Law Model, Square-root

Exponential Model, and Exponential Model. Indeed, Fig. 8.1 illustrates how the growth
rate f σ8 varies with redshift for each of these models, for different values of the model pa-
rameters, pi. Alongside these functions, the dotted represents the Planck18/ΛCDM model
for comparison. The data points with error bars represent observational f σ8 values. The
colour gradient indicates the parameter pi as shown in the colour bar, providing a visual
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Figure 8.1: Plots of f σ8 for the growth rate dataset for the three different models, that is
Power Law Model, Linder Model and Exponential Model, respectively. The black dashed
line in all figures correspond to the Planck18/ΛCDM models, whilst the error bars represent
the f σ8 data used.

representation of how different parameter values affect the predictions of the f (T) models.
These three sub-figures give an indication and validate the values of the model parameters
pi chosen for the MCMC prior range.

Furthermore, certain differences between the models, in Fig. 8.1 become apparent. The
Power Law Model exhibits the most variation in shape, as the parameter p1 has a significant
impact on the curve’s behaviour. In contrast, the Linder Model shows a notable turning
point around redshift 0.4, after which the range of curves expands moderately. The Expo-
nential Model, however, appears more constrained, with its parameter having a less pro-
nounced effect on the overall shape. Despite these differences, it is worth noting that all
models bear a close resemblance to the shape predicted by Planck, suggesting a positive
alignment with ΛCDM.

Therefore, this approach enables for the use of the above RSD data to constrain cos-
mological parameters for these three models, particularly σ8,0. In turn, constraining such
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parameter facilitates for the exploration of the [288, 289, 290, 291, 292, 293, 294]

S8,0 ≡ σ8,0
√

Ωm,0/0.3 . (8.5)

8.2 | Constraining parameters using RSD data
As demonstrated throughout the chapters, constraining cosmological parameters is a piv-
otal aspect of modern cosmology. It enables the testing of theoretical models against obser-
vational data, refining our understanding of the Universe’s fundamental properties. This
section focuses on constraining the parameters of various f (T) gravity models using RSD
data. By comparing the theoretical predictions of these models with observational data,
their viability can be evaluated and potentially uncover new insights into the nature of cos-
mic acceleration and structure formation.

The primary objective is to evaluate how well the f (T) models can reproduce the ob-
served growth rate of cosmic structures, encapsulated in the quantity f σ8. Indeed, Fig. 8.1,
already gives a positive indication. This process involves solving Eq. 8.1, together with
Eq. 8.4 and fitting these predictions to the RSD data using MCMC analysis. By continuing
rigorously testing these models against observations with the RSD dataset, our understand-
ing of the Universe’s large-scale structure and the underlying physics driving its evolution
can be enhanced.

8.2.1 | ΛCDMModel
In this section, the ΛCDM model is presented as a reference point to facilitate comparisons
with the f (T) models. The posterior distributions and confidence regions resulting from
the MCMC analysis for the ΛCDM model are illustrated in Fig. 8.2. In addition to the stan-
dard cosmological parameters for this model, namely H0 and Ωm,0, the inclusion of the RSD
dataset allows for the constraint of σ8,0.

The purple, red, and orange contours, which incorporate RSD data in their dataset com-
binations, demonstrate the ability to constrain σ8,0 effectively, as shown in Fig. 8.2. Con-
versely, the blue and green contours, which exclude RSD data, highlight the impact of
growth rate data on the constraints.

The precise parameter values for the different dataset combinations are detailed in Ta-
ble 8.1, providing information on H0, Ωm,0, σ8,0 and M. Additionally, the constraints on σ8,0

and Ωm,0 facilitate the exploration of the S8,0 tension through Eq. 8.5. Indeed, the results and
posterior distributions for the parameter S8,0 are presented in Fig. 8.3 and Table 8.2, respec-
tively, which will allow for direct comparison of the values. Notably, the highest value is

178



8.2. Constraining parameters using RSD data

CC + BAO
CC + BAO + RSD
PN+&SH0ES + RSD
CC + PN+&SH0ES + BAO
CC + PN+&SH0ES + BAO + RSD

0.
24

0.
27

0.
30

0.
33

0.
36

0.
39

0.
42

Ω
m
,0

64 66 68 70 72 74 76

H0 [kms−1 Mpc−1]

0.
68

0.
72

0.
76

0.
80

0.
84

0.
88

0.
92

σ
8,

0

0.
24

0.
27

0.
30

0.
33

0.
36

0.
39

0.
42

Ωm,0

0.
68

0.
72

0.
76

0.
80

0.
84

0.
88

0.
92

σ8,0

Figure 8.2: Confidence contours and posterior distributions for the ΛCDM model parame-
ters, including H0 and Ωm,0. In cases where the RSD data is incorporated (purple, red, and
yellow contours), the σ8,0 parameter is also displayed.

observed when PN+& SH0ES is combined with RSD data, bringing it closer to the P18 esti-
mate. For comparison, the values derived from RSD data alone are also provided, showing
a result on the lower end of the spectrum, indeed, even lower than the value obtained by
KiDS-1000. Therefore, the values derived from these different dataset combinations exhibit
some variation but remain consistent with those reported in the literature.

In fact, the values obtained for this model are found to align well with those reported by
Nunes et al. in Ref. [295], which presents results for the ΛCDM model using the CC+PN+BAO+RSD
dataset combinations. The primary difference between the results in Table 8.1 and those in
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Data Sets H0 [km s−1 Mpc−1] Ωm,0 σ8,0 M

CC + BAO 67.8 ± 1.1 0.308+0.032
−0.029 – –

CC + BAO + RSD 68.77+0.71
−0.67 0.276+0.013

−0.014 0.789+0.035
−0.033 –

PN+ & SH0ES + RSD 73.71+0.97
−1.06 0.298+0.011

−0.012 0.814+0.037
−0.034 −19.249+0.027

−0.032

CC + PN+ & SH0ES + BAO 69.47+0.59
−0.63 0.304+0.015

−0.014 – −19.375 ± 0.017

CC + PN+ & SH0ES + BAO + RSD 69.84+0.55
−0.56 0.288+0.010

−0.010 0.815+0.030
−0.033 −19.369+0.016

−0.017

Table 8.1: Exact results for ΛCDM model that include the parameters H0 and Ωm,0. The σ8,0
parameter and the nuisance parameter M, are provided for datasets that include RSD or
PN+ & SH0ES, respectively otherwise, they are left empty.

Nunes et al. is attributed to the update from the PN dataset to the PN+& SH0ES dataset.
This change allows for a direct comparison between the two sets of results. Additionally,
the H0 parameter is included in the current analysis, providing a broader context for the
constrained parameters derived from the dataset combinations. This inclusion offers a more
comprehensive perspective on the results and enhances the overall understanding of the
constrained values. Specifically, the parameters Ωm,0, σ8,0, and S8,0 obtained in this work are
within less than 1σ of those reported by Nunes et al., considering the only difference being
the updated PN+& SH0ES dataset used in this study.
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Figure 8.3: Posterior distribution for the
S8,0 parameter in the ΛCDM model. Leg-
end: Grey denotes the RSD data, pur-
ple corresponds to CC+BAO+RSD data,
red represents the PN+ & SH0ES + RSD
dataset, while orange indicates CC +
PN+ & SH0ES + BAO + RSD data.

Model S8,0

RSD 0.729+0.053
−0.059

CC + BAO + RSD 0.758+0.046
−0.047

PN+ & SH0ES + RSD 0.809+0.050
−0.042

CC + PN+ & SH0ES + BAO + RSD 0.797+0.038
−0.042

Table 8.2: Exact S8,0 values corresponding
to various datasets for the ΛCDM model.
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8.2.2 | Power Law Model: f1CDM
Throughout the chapters, the Power Law Model, or f1CDM model, has been a prominent
focus, utilising Eq. 3.54 as its Friedmann Equation. In this context, apart from the three stan-
dard parameters, the mass fluctuations σ8,0 can also be constrained when the RSD data is
incorporated into the dataset combinations. The contour plots and posterior distributions
for this model are presented in Fig. 8.4. Here, the blue and green contours represent the
CC+BAO and CC+PN+& SH0ES+BAO datasets, respectively, while the remaining colours
include the RSD data. These contours align with previous results, demonstrating continu-
ity in the findings. However, a prominent feature from the posteriors is the impact of the
RSD data. The posteriors show tighter constraints, which is further confirmed in Table 8.3,
detailing the precise values corresponding to each dataset.

The posteriors and the values in the table confirm that the PN+& SH0ES+RSD combina-
tion achieves the highest H0 value at 73.7 ± 1.0 km s−1 Mpc−1. The lowest H0 value, consis-
tent with previous results, is found with the CC+BAO combination, yielding 68.1+1.4

−1.2 km s−1 Mpc−1.
Additionally, the anti-correlation between the Hubble parameter H0 and the matter density
Ωm,0, evident in previous results, is even more pronounced with the PN+& SH0ES+RSD
data, indicating that the Universe predominantly manifests as an effective dark energy
driven by an elevated H0 parameter. This relationship is further supported by the values
in Table 8.3.

Regarding the model parameter p1, it is crucial to remember that as p1 approaches 0, the
model converges to the standard cosmological model. The resultant values of p1 are close
to 0, and this limit falls within the 1σ range. Furthermore, the inclusion of the new dataset
leads to tighter constraints on the p1 parameter. This effect is not exclusive to p1 but extends
to other parameters as well, as evidenced by both the contour plots in Fig. 8.4 and the error
margins in Table 8.3.

The RSD data has been instrumental in constraining σ8,0. At first glance, there appears
to be a correlation between the Hubble parameter H0 and the mass fluctuations σ8,0. How-
ever, the contour plots reveal a more complex and degenerate relationship between these
parameters.

Given that the growth rate f σ8 depends on the matter perturbation δ(z), which can be
obtained using Eq. 2.66, it is important to note that this equation depends on Geff. For f (T)
gravity, Geff can be defined as in Eq. 2.65 [285]. Specifically, for the Power Law Model, this
equation becomes

Geff =
GN

1 − α1 p1(−T)p1−1 , (8.6)

where specific values for the free parameters can be extracted from the table. Under these
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Figure 8.4: Confidence contours and posterior distributions for the f1CDM model (Power
Law Model) parameters, including H0, Ωm,0, and p1. In cases where the RSD data is incor-
porated (purple, red, and yellow contours), the σ8,0 parameter is also displayed.

Data sets H0 [km s−1 Mpc−1] Ωm,0 p1 σ8,0 M

CC + BAO 68.1+1.2
−1.4 0.314+0.034

−0.033 −0.09+0.24
−0.30 – –

CC + BAO + RSD 69.17 ± 0.81 0.287+0.016
−0.020 −0.09+0.17

−0.20 0.785 ± 0.035 –

PN+ & SH0ES + RSD 73.7 ± 1.0 0.290+0.019
−0.018 0.076+0.075

−0.102 0.817+0.037
−0.035 −19.252+0.029

−0.030

CC + PN+ & SH0ES + BAO 69.45+0.69
−0.58 0.316+0.028

−0.029 −0.06+0.19
−0.22 – −19.375 ± 0.017

CC + PN+ & SH0ES + BAO + RSD 69.90 ± 0.58 0.289+0.016
−0.018 0.014+0.091

−0.125 0.810+0.036
−0.033 −19.367+0.016

−0.017

Table 8.3: Exact results for f1 model that include the parameters H0, Ωm,0 and p1. The σ8,0
parameter and the nuisance parameter M, are provided for datasets that include RSD or
PN+ & SH0ES, respectively otherwise, they are left empty.
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conditions, Geff approximates GN .
Additionally, the values for the S8,0 parameter, derived from the Ωm,0 and σ8,0 parame-

ters, are presented in Table 8.4, while the posterior distributions are depicted in Fig. 8.5. The
highest observed value for S8,0, consistent with the values obtained for σ8,0, was achieved
with the PN+& SH0ES+RSD combination, measuring S8,0 = 0.801+0.052

−0.046. It is noteworthy
that values for the RSD dataset alone are also provided to isolate the impact of RSD data on
this parameter. In this case, the value for the RSD dataset reaches a minimum. Furthermore,
it is evident that the constraints for S8,0 across all datasets are notably tight.

The effect of the model parameter on the S8,0 parameter is also important to investigate,
in order to check if the value of the model parameter impacts on the value of S8,0. There-
fore, the relationship between these two parameters is examined, and depicted in Fig.C.1 in
Appendix C. A significant anti-correlation between these two parameters is observed, sug-
gesting that changes in the power-law exponent p1 may directly impact the amplitude of
mass fluctuations S8,0.
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Figure 8.5: Posterior distribution for the
S8,0 parameter in the f1CDM model. Leg-
end: Grey denotes the RSD data, pur-
ple corresponds to CC+BAO+RSD data,
red represents the PN+ &,SH0ES + RSD
dataset, while orange indicates CC +
PN+ & SH0ES + BAO + RSD data.

Data sets S8,0

RSD 0.718+0.061
−0.060

CC + BAO + RSD 0.761+0.049
−0.046

PN+ & SH0ES + RSD 0.801+0.052
−0.046

CC + PN+ & SH0ES + BAO + RSD 0.792+0.047
−0.043

Table 8.4: Exact S8,0 values corresponding
to various datasets for the f1CDM model.
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8.2.3 | Linder Model: f2CDM
The second model under consideration, as examined in other works, is the Linder model,
or f2CDM model, with its Friedmann equation represented by Eq. 3.57. The posterior dis-
tributions and confidence levels for the constrained parameters are illustrated in Fig. 8.6.
Similar to the Power Law model, the highest value for the H0 parameter is obtained when
combining PN+& SH0ES with RSD data, as indicated by the precise values in Table 8.5. In
contrast, the lowest H0 value, specifically H0 = 66.5+2.2

−1.3 km s−1Mpc−1, is observed for the
CC+BAO+RSD combination. Overall, in this scenario, the parameter values trend slightly
lower compared to the f1CDM model.

Regarding the Ωm,0 parameter, a similar trend to that of the H0 parameter is observed,
with lower values being reported. The consistent pattern persists, where datasets that in-
clude RSD values yield lower values for Ωm,0 compared to those that do not incorporate RSD
data. The anti-correlation between the H0 parameter and the Ωm,0 parameter remains vis-
ible. However, compared to the f1CDM model, the anti-correlation between Ωm,0 and the
model parameter is less pronounced, resulting in a higher degree of degeneracy between
these two parameters.

The values obtained for the 1/p2 parameter are slightly higher than those in the f1CDM
model. Additionally, in contrast to the previous model, the ΛCDM limit does not fall within
the 1σ region, indicating a slight deviation from the ΛCDM model. This deviation suggests
that the Linder model might exhibit characteristics distinct from the standard ΛCDM model.

The parameter σ8,0 continues to exhibit the same trend observed previously, with consis-
tently lower values. A correlation between this parameter and Ωm,0 is observed across all
datasets, while the degeneracy between σ8,0 and H0 remains valid in this model. Similar to
the previous model, the trend in Geff is observed, where Geff ≈ GN as given by

Geff =
GN

1 + 1
2 α2 p2

√
T0
T Exp

[
−p2

√
T
T0

] . (8.7)

Data Sets H0 [km s−1 Mpc−1] Ωm,0
1
p2

σ8,0 M

CC + BAO 67.2+1.2
−1.6 0.302+0.035

−0.030 0.00+0.37
−0.00 – –

CC + BAO + RSD 66.5+2.2
−1.3 0.286+0.016

−0.015 0.39+0.21
−0.22 0.784+0.038

−0.032 –

PN+ & SH0ES + RSD 73.2 ± 1.0 0.287 ± 0.013 0.359+0.077
−0.071 0.770+0.042

−0.039 −19.26+0.33
−0.31

CC + PN+ & SH0ES + BAO 69.35+0.61
−0.63 0.299+0.017

−0.021 0.167+0.080
−0.154 – −19.40+0.21

−0.16

CC + PN+ & SH0ES + BAO + RSD 69.38+0.67
−0.68 0.282 ± 0.011 0.275+0.083

−0.096 0.793 ± 0.035 −19.37+0.31
−0.30

Table 8.5: Exact results for f2 model that include the parameters H0, Ωm,0 and 1
p2

. The σ8,0

parameter and the nuisance parameter M, are provided for datasets that include RSD or
PN+ & SH0ES, respectively otherwise, they are left empty.
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Figure 8.6: Confidence contours and posterior distributions for the f2CDM model (Linder
Model) parameters, including H0, Ωm,0, and 1

p2
. In cases where the RSD data is incorporated

(purple, red, and yellow contours), the σ8,0 parameter is also displayed.

When RSD data is included, the quantity S8,0 is calculated, yielding slightly different
results compared to the previous model, as shown in Table 8.6 and Fig. 8.7. Similar re-
sults are obtained for the CC+BAO+RSD datasets, but a lower value is observed for the
PN+& SH0ES+RSD combination. Conversely, higher values are obtained for the RSD dataset
alone and for the CC+PN+& SH0ES+BAO+RSD combination, with the maximum value
achieved for the former dataset, whereas previously it exhibited the minimum value.

Finally, the correlation between the parameters p and S8,0 is examined. The degener-
acy in the RSD data persists; however, when the PN+& SH0ES data is combined with the
RSD data, an anti-correlation is now evident. These findings are visually represented in
Appendix C, specifically in Fig. C.2.
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Figure 8.7: Posterior distribution for the
S8,0 parameter in the f2CDM model. Leg-
end: Grey denotes the RSD data, pur-
ple corresponds to CC+BAO+RSD data,
red represents the PN+ &,SH0ES + RSD
dataset, while orange indicates CC +
PN+ & SH0ES + BAO + RSD data.

Data sets S8,0

RSD 0.784+0.061
−0.065

CC + BAO + RSD 0.765+0.052
−0.046

PN+ & SH0ES + RSD 0.753+0.054
−0.051

CC + PN+ & SH0ES + BAO + RSD 0.768+0.045
−0.046

Table 8.6: Exact S8,0 values corresponding
to various datasets for the f2CDM model.

8.2.4 | Exponential Model: f3CDM
The next model considered in this chapter is the Exponential Model, or f3CDM model, char-
acterised by the Friedmann Equation given in Eq. 3.61. This model behaves similarly to the
Linder Model, approaching the ΛCDM limit as p3 → ∞. To maintain numerical stability,
the analyses are conducted using 1/p3, consistent with the approach used for the previous
model. In this context, Geff is defined as

Geff =
GN

1 + α3 p3Exp
[
−p3

T
T0

] , (8.8)

demonstrating a similar trend to the previously discussed models.

The confidence levels and posterior distributions of the constrained parameters are shown
in Fig. 8.8, with the exact constrained values detailed in Table 8.7. Notably, removing the
square root component has significantly affected the constraints, particularly on the param-
eter σ8,0. This model reports significantly higher σ8,0 values compared to the f2CDM model.

Consistent with the f1CDM model, the f3CDM model achieves the highest constrained
value for H0 using the PN+& SH0ES+RSD data combination. Specifically, H0 is constrained
to 73.2+1.1

−1.14 km s−1 Mpc−1, while the lowest value is obtained from the CC+BAO data combi-
nation, yielding H0 = 67.5+1.7

−2.3 km s−1 Mpc−1. Similarly, the density parameter Ωm,0 reaches
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Figure 8.8: Confidence contours and posterior distributions for the f3CDM model (Expo-
nential Model) parameters, including H0, Ωm,0, and 1

p3
. In cases where the RSD data is

incorporated (purple, red, and yellow contours), the σ8,0 parameter is also displayed.

Data Sets H0 [km s−1 Mpc−1] Ωm,0
1
p3

σ8,0 M

CC + BAO 67.5+1.7
−2.3 0.311+0.039

−0.034 0.058+0.182
−0.056 – –

CC + BAO + RSD 68.6+1.3
−1.9 0.276+0.016

−0.015 0.026+0.214
−0.025 0.798+0.040

−0.036 –

PN+ & SH0ES + RSD 73.2+1.0
−1.1 0.280+0.014

−0.015 0.232+0.027
−0.031 0.793+0.038

−0.039 −19.25 ± 0.11

CC + PN+ & SH0ES + BAO 69.34+0.65
−0.64 0.300+0.017

−0.016 0.160+0.029
−0.126 – −19.34+0.24

−0.31

CC + PN+ & SH0ES + BAO + RSD 69.54+0.64
−0.66 0.282 ± 0.012 0.197+0.038

−0.092 0.807 ± 0.032 −19.38+0.20
−0.19

Table 8.7: Exact results for f3 model that include the parameters H0, Ωm,0 and 1
p3

. The σ8,0

parameter and the nuisance parameter M, are provided for datasets that include RSD or
PN+ & SH0ES, respectively otherwise, they are left empty.
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Figure 8.9: Posterior distribution for the
S8,0 parameter in the f3CDM model. Leg-
end: Grey denotes the RSD data, pur-
ple corresponds to CC+BAO+RSD data,
red represents the PN+ &,SH0ES + RSD
dataset, while orange indicates CC +
PN+ & SH0ES + BAO + RSD data.

Data Sets S8,0

RSD 0.744+0.079
−0.066

CC + BAO + RSD 0.762+0.059
−0.052

PN+ & SH0ES + RSD 0.765+0.053
−0.052

CC + PN+ & SH0ES + BAO + RSD 0.782 ± 0.043

Table 8.8: Exact S8,0 values corresponding
to various datasets for the f3CDM model.

its highest value for CC+BAO, where Ωm,0 = 0.311+0.039
−0.034. Including RSD data leads to tighter

constraints on these parameters, particularly on the density parameter.

The model parameter, 1/p3 has a range within the 1σ and 2σ confidence intervals is nar-
rower compared to the f2CDM model. Here, the 2σ interval extends from 0 to a maximum
of 0.5, but, similar to f2CDM, it remains within 2σ of the ΛCDM limit.

A significant difference in this model is observed in the σ8,0 parameter, which reports a
higher value. Additionally, a correlation between Ω8,0 and σ8,0 is now evident, unlike in the
f1CDM model but similar to the f2CDM model. The degeneracy between the H0 and σ8,0

parameters remains consistent with previous observations.

The highest value for S8,0 is obtained for the CC+PN+& SH0ES+BAO+RSD combina-
tion, yielding S8,0 = 0.782 ± 0.043, as detailed in Table 8.8 and illustrated in Fig. 8.9. Con-
versely, reflecting the values obtained for σ8,0 the lowest value for S8,0 is achieved with the
PN+& SH0ES+RSD data combination, as shown in the tables presenting the σ8,0 and S8,0

values, respectively. Consistent with previous models, the value for S8,0 obtained using the
RSD data alone is relatively low, similar to the f1CDM model.

Additionally, the final analysis for the f3CDM model is depicted in Fig. C.3 in Ap-
pendix C. This figure illustrates a degenerate relationship between the parameters p3 and
S8,0, which transitions into an anti-correlation at higher values of p3. This effect is particu-
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larly noticeable for datasets that incorporate BAO measurements, highlighting the complex
interplay between these parameters under different data combinations.

8.3 | Analysis and Tension metrics
To evaluate the effectiveness of these three cosmological models using different dataset com-
binations, the differences in the AIC and BIC between each model ( fiCDM) and the reference
ΛCDM model are calculated, as has been previously done. These differences, represented
as ∆AIC and ∆BIC defined by Eqs. 3.71,3.72, help determine how closely each model aligns
with the standard model. And as has been indicated multiple times throughout the chapters,
lower values of ∆AIC and ∆BIC suggest that a model, along with its dataset, better approx-
imates the ΛCDM model, indicating improved performance. Table 8.9 provides a compari-
son of these metrics, together with the χ2

min for the CC+BAO and CC+BAO+RSD datasets,
in order to highlight the effect of the RSD dataset on these statistical indicators. Similarly,
Table 8.10 allows for a comparison of ∆AIC and ∆BIC values across three dataset combina-
tions: PN+& SH0ES+RSD, CC+PN+& SH0ES+BAO, and CC+PN+& SH0ES+BAO+RSD.

Table 8.9 demonstrates that the CC+BAO dataset typically has a lower χ2
min, indicating

a better fit in the absence of RSD. However, the ∆AIC values for CC+BAO+RSD show a
notable decrease, suggesting the increased suitability of this dataset in some instances. The
∆BIC values for CC+BAO+RSD are slightly higher due to the inclusion of additional data
points. In terms of overall model performance, the f2CDM model consistently has the lowest
∆AIC and ∆BIC values, highlighting its dependable performance. The f1CDM and f3CDM
models also perform well, demonstrating their suitability for this dataset.

Table 8.10 offers intriguing insights. For the PN+& SH0ES+RSD dataset combinations,
the models are preferred over ΛCDM, as indicated by negative AIC and BIC values. This
preference is not consistently observed across all models for the CC+PN+& SH0ES+BAO
dataset but reappears for CC+PN+& SH0ES+BAO+RSD, especially for the f2CDM and f3CDM
models. This highlights the effect that the RSD had on these three models and suggests
that these two models, within the CC+PN+& SH0ES+BAO+RSD dataset, are favoured over
ΛCDM. However, the evidence is not strong enough to definitively favour these models
over ΛCDM. To further emphasise this point, one can look at the BIC values, where al-
though not negative, the values are close to zero, indicating an inconclusive preference.

Further support for this analysis is provided by Fig. 8.10, which compares the H0 values
obtained from fi(T)CDM (i = 1, 2, 3) models to those from the ΛCDM model for the same
datasets, as detailed in Sec. 8.2.1 using Eq. 4.1. This visualisation highlights the variations
in H0 across different datasets, expressed in σ units, with each dataset represented by a

190



8.3. Analysis and Tension metrics

CC+BAO CC+BAO+RSD

χ2
min ∆AIC ∆BIC χ2

min ∆AIC ∆BIC

ΛCDM 20.93 0 0 37.14 0 0

f1CDM 20.87 1.94 1.61 37.04 1.91 3.15

f2CDM 20.93 2.00 1.66 35.41 0.28 1.52

f3CDM 20.93 2.00 1.66 37.21 2.08 3.32

Table 8.9: Comparison of χ2
min and differences in AIC and BIC between the models and

ΛCDM (i.e ∆AIC and ∆BIC). On the left-hand side, results are presented for CC+BAO, while
the right-hand side includes RSD.

PN+ & SH0ES+RSD CC+PN+ & SH0ES+BAO CC+PN+ & SH0ES+BAO+RSD

χ2
min ∆AIC ∆BIC χ2

min ∆AIC ∆BIC χ2
min ∆AIC ∆BIC

ΛCDM 1550.20 0 0 1572.60 0 0 1590.71 0 0

f1CDM 1549.52 1.32 2.56 1572.56 1.96 1.78 1590.56 1.85 3.10

f2CDM 1541.46 −6.74 −5.50 1572.50 1.89 1.72 1587.49 −1.21 0.04

f3CDM 1543.13 −5.07 −3.84 1572.31 1.71 1.53 1588.33 −0.37 0.88

Table 8.10: Comparison of χ2
min and differences in AIC and BIC between the mod-

els and ΛCDM (i.e ∆AIC and ∆BIC). On the left-hand side, results are presented for
PN+ & SH0ES+RSD, whilst in the middle CC+PN+ & SH0ES+BAO. On the right-hand side
the results for CC+PN+ & SH0ES+BAO+RSD are displayed.

distinct colour. For each f (T) model, the H0 values fall within 1σ of the corresponding
ΛCDM values, indicating consistency with the ΛCDM model.

The discrepancy between the locally measured expansion rate of the Universe and val-
ues inferred from CMB observations prompted further investigation into the performance
of these models with different H0 values. Specifically, the P18 value and the R22 value [4]
were considered, as shown in Fig. 8.11, which includes the ΛCDM values from Sec. 8.2.1.
In Fig. 8.11, on the left, the H0 values are within 3.5σ of the P18 value, except for the
PN+& SH0ES+RSD dataset. The high σ value for the PN+& SH0ES+RSD dataset is ex-
pected, as it is included within the R22 value itself. On the right, the H0 values are within
approximately 3.5σ of the R22 value, suggesting that the H0 values obtained from this anal-
ysis fall roughly midway between the P18 and R22 values.

Since, the parameters Ωm and S8,0 were constrains, the next goal was to quantify the
agreement (or disagreement) between the dataset combinations and the S8,0 values from the
Planck Collaboration (SP18

8,0 = 0.834± 0.016) [16] or the KiDS-1000 value (SKiDS
8,0 = 0.766+0.020

−0.014)
[142]. This concordance (or discordance) between these values was evaluated in a similar
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Figure 8.10: Distances measured in standard deviations (σ units) between the constrained
H0 values obtained from the f1−3CDM models and their corresponding values in the ΛCDM
model. Different colours represent different datasets.

Figure 8.11: Distances measured in standard deviations (σ units) between the constrained
H0 values obtained from the f1−3CDM models together with ΛCDM and the HP18

0 value
on the left-hand side and HR22

0 on the right-hand side. Different colours represent different
datasets.

fashion as the H0 distance values, where

TS8,0 ≡
S80,i − S80,j√
σ2

S80,i
+ σ2

S80,j

, (8.9)

for inferred values of S8.
The S8,0 values in the f1 − f3CDM models are compared with those in ΛCDM using

different dataset combinations, as shown in Fig. 8.12. Additionally, a comparison of SP18
8,0

and SKiDS
8,0 with values derived from f1−3CDM models in σ units is presented in Fig. 8.13. To

provide more context, the RSD dataset values are included in these figures. On the left-hand
side of Fig. 8.13, there is a maximum discrepancy of 2σ between the values derived from
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Figure 8.12: Distances measured in standard deviations (σ units) between the constrained
S8,0 values obtained from the f1−3CDM models and their corresponding values in the
ΛCDM model. Different colours represent different datasets.

Figure 8.13: Distances measured in standard deviations (σ units) between the constrained
S8,0 values obtained from the f1−3CDM models together with ΛCDM and the SP18

8,0 value on
the left-hand side and SKiDS

8,0 on the right-hand side. Different colours represent different
datasets.

ΛCDM and the fi(T)CDM models when compared to SP18
8,0 , primarily when considering the

RSD dataset alone. However, this discrepancy diminishes as more datasets are included,
particularly CC+PN+& SH0ES+BAO+RSD.

On the right of Fig. 8.13, where a comparison with SKiDS
8,0 is made, the discrepancy is

further reduced to 1σ, indicating that the values obtained from this analysis are closer to
the KiDS measurements than the Planck values. Notably, the CC+PN+& SH0ES+BAO+RSD
dataset performs well, significantly reducing the σ values. Thus, the combination of avail-
able datasets and the f1−3(T) models appears to help in mitigating tensions between CMB
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Figure 8.14: A whisker plot illustrating the constrained values of S8,0 as derived from the
f1−3CDM models. The cyan and purple vertical bands depict the respective 1σ ranges of
SP18

8,0 and SKiDS
8,0 , whilst the coloured error bars illustrate the inferred model dependent 1σ

constraints from each respective dataset.

and locally determined values, particularly for S8,0. It is also noteworthy that these findings
align with results reported in the literature, such as those presented by [295].

To provide additional context and a clearer visualisation of the S8,0 values, Fig. 8.14 of-
fers a detailed summary of the results, demonstrating the influence of different datasets on
the models. This figure uses a whisker plot to depict the variability and distribution of S8,0

values, showcasing how each dataset contributes to the overall performance and compari-
son of the models. The whisker plot effectively highlights the range and deviations in S8,0

values, allowing for a comprehensive understanding of how the datasets impact the model
outcomes and their alignment with the ΛCDM model.
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8.4 | Conclusion
Despite the substantial success of the ΛCDM model, persistent hints in the form of cosmo-
logical tensions suggest that this model might be encountering limitations. However, before
definitively claiming new hints of physics and cliaming that TG is the pathway to go, it is
crucial to determine if these hints persist when examined from different perspectives.

To this end, in addition to assessing the H0 tension as discussed in previous chapters, this
study investigates the S8,0 discrepancy between values obtained from CMB data and those
derived from weak lensing probes of the amplitude of matter fluctuations. This discrepancy,
or tension, is further examined through the lens of RSD data, specifically measurements of
the growth rate, particularly f σ8. Additionally, the analysis incorporates baseline local data
using combinations of CC, PN+& SH0ES, and BAO datasets. These datasets are not only
highly populated and precise but also span a wide range of redshifts, which is crucial for
constraining Ωm,0 to obtain S8,0. Notably, the PN+& SH0ES sample represents the largest
SNe Ia collection in the literature and serves as a principal late-time indicator of the cosmic
tension problem concerning the Hubble constant. The RSD data, which are sensitive to the
growth of structure formation, have been employed to constrain the matter perturbative
sector of the models under consideration, thereby obtaining S8,0.

A full MCMC analysis was performed for each model and dataset combination to obtain
constraints on all cosmological parameters. Additionally, the performance of each model
was compared to the standard ΛCDM model using the χ2

min, AIC, and BIC statistical indi-
cators. In light of the increasing tension reported by various studies regarding the value of
the Hubble constant, this study not only investigates its constrained value but also exam-
ines how the parameters such as the Hubble constant, the matter density parameter and the
model parameter impact parameters related to the growth of structure formation, namely
σ8,0 and S8,0.

For reference, the ΛCDM constraint values for each of the considered dataset combina-
tions are provided first. These values are essential for estimating the statistical indicators
in the model sections. The analysis generally indicates consistency with ΛCDM, although
some differences do emerge, which may become more pronounced as measurement pre-
cision improves. The PN+& SH0ES sample continued to prove to be the strongest dataset
in the analysis as has been indicated in the previous chapter, consistently reducing statisti-
cal errors for any baseline dataset. Conversely, the statistical metrics demonstrate that the
expansion data combination of CC+PN+& SH0ES+BAO supports ΛCDM, while the inclu-
sion of RSD data suggests a marginal preference for the f (T) model under consideration.
Additionally, these models offer best fits for cosmic parameters more aligned with a higher
Hubble constant. The S8,0 parameter values obtained are largely consistent with the most
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recent reports in the literature.
In more detail, the statistical analysis involving AIC and BIC indicators revealed that cer-

tain f (T) models can closely mimic the performance of ΛCDM. However, it was observed
that the inclusion of RSD data tends to marginally favour the f (T) models, indicating a
warrant for further investigation. The use of the PN+& SH0ES datasets, which are pivotal
in understanding late-time cosmic acceleration, significantly sharpens the constraints on
the Hubble constant and other parameters, underscoring the importance of comprehensive
dataset combinations.

The robustness of the models was then tested by comparing the constrained values of
the Hubble constant against the established P18 and R22 values. This comparison illustrated
that the models’ predictions for H0 fall between these two reference values, suggesting that
while the models align with observed trends, they also highlight the ongoing tension be-
tween different measurement approaches. The impact on the S8,0 parameter, reflecting the
amplitude of matter fluctuations, was similarly examined, with results indicating general
consistency with both the Planck Collaboration’s findings and the KiDS-1000 results, albeit
with slight variations that could hint at new physics or unaccounted systematic effects.

The findings from this analysis provide precise insights into the behaviour of TG models
and their viability in explaining observed cosmic phenomena. The results suggest that these
models hold promise as frameworks for modified cosmological scenarios, offering potential
pathways to reconcile current tensions in cosmological measurements.

In summary, this chapter explored the impact of RSD data, combined with other obser-
vational datasets, on cosmological parameters and, in particular, the Hubble and S8,0 ten-
sions. This investigation underscored the significance of further constraining cosmological
models, especially in the early and perturbative stages of the Universe. Moving forward,
the next chapter will shift focus to a different approach for addressing these cosmological
tensions and constraining parameters. Attention will be directed towards Horndeski in the
Cosmic Linear Anistropy Solving System (HiCLASS), a Boltzmann code designed to evalu-
ate cosmological models across both early and late cosmology. Specifically, the focus will be
on tensor perturbations, expanding the investigation to primordial gravitational waves and
their impact on CMB anisotropies and B-mode polarisation. Through the use of HiCLASS,
this chapter aims to gain a better understanding of whether cosmological f (T) models can
provide a viable alternative to current models in explaining the fundamental dynamics of
the Universe.
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9

Confronting Primordial Gravitational
Waves with f (T) gravity

Building on the analysis of previous chapters, this chapter delves deeper into f (T) gravity
by extending the analysis beyond late-time cosmology, reaching into the early Universe.
While prior focus has been on its implications at later cosmic stages, particularly through
the lens of parameter constraints at late redshifts, this chapter shifts toward earlier epochs.
In addition, the previous inclusion of RSD significantly enhanced the understanding of the
theory’s effects on large-scale structure. The findings indicated that f (T) gravity could serve
as a promising framework for explaining observational data and exploring the evolution of
the Universe at later stages

Therefore, this broader exploration is essential, in which f (T) gravity’s analysis is ex-
tended to earlier cosmic epochs. In this context, the CMB holds within it delicate and
profound signals that date back to the Universe’s beginning [296]. These signals offer a
unique opportunity to investigate the early conditions and dynamics that shaped the cos-
mos. Primordial perturbations, which encompass both scalar and tensor modes, provide
a fundamental framework for understanding these early conditions, with primordial GWs
(arising from tensor perturbations) emerging from the inflationary period shortly after the
Big Bang. These waves are predicted by inflationary theory to have a specific spectrum char-
acterised by their wavelength and amplitude [16]. Detecting primordial GWs, particularly
through their B-mode polarisation imprinted in the CMB, offers an unparalleled opportu-
nity to explore the inflationary era and test underlying gravitational theories [297]. Ongoing
experiments like BICEP/Keck are dedicated to detecting these signals, which could provide
significant insights into the inflationary process and the physics of the early Universe [49].

In addition to the focus on primordial GWs, this chapter will provide an updated analy-
sis of late-time cosmological datasets, with particular emphasis on the BAO measurements
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from Dark Energy Spectroscopic Instrument (DESI) and the most recent CC data. The inclu-
sion of these revised datasets is essential for refining our understanding of f (T) gravity’s
behaviour across both early and late epochs. By examining the revised CC and BAO data
alongside the study of primordial GWs, this chapter aims to present an investigation that
bridges early- and late-time cosmology within the f (T) framework.

Through this approach, the Power Law model in f (T), This approach allows for a thor-
ough evaluation of the Power Law model in f (T) gravity, which, based on prior analyses,
strikes a balance between simplicity and yet, a strong model, making it a compelling can-
didate for further investigation. This study will assess the model’s influence on both late-
time cosmological phenomena and the primordial gravitational wave spectrum. By expand-
ing upon previous analyses, this broader investigation aims to provide deeper insights into
the applicability of f (T) gravity across various cosmic epochs, from the Universe’s earliest
stages to its ongoing expansion.

9.1 | Primordial Perturbations and Tensor Modes in f (T)
Gravity

Primordial perturbations are the seeds from which cosmic structure grows, and their effects
are captured and analysed through the use of power spectra. These spectra provide a quan-
titative description of how the amplitude of perturbations, whether scalar or tensor, varies
with scale, offering insight into the early Universe’s dynamics. Typically, the power spec-
tra are expressed as a power law, which reflects the distribution of power across different
wavelengths or spatial scales.

For scalar perturbations, which drive the formation of large-scale structures like galaxies
and clusters, the power spectrum Ps(k) is given by [15]

Ps(k) = As

(
k
ks

)ns−1

, (9.1)

where As is the amplitude of the scalar perturbations at the pivot scale ks, and ns is the
scalar spectral index that describes how the amplitude changes with wavenumber k, which
corresponds to different scales in the Universe. A spectral index ns = 1 would imply a
scale-invariant spectrum, meaning that the strength of the perturbations is uniform across
all scales. However, observational data, particularly from the CMB experiments such as the
Planck satellite, show that the scalar spectral index is slightly less than 1, with ns = 0.9665±
0.0038 [16]. This deviation from scale invariance implies that fluctuations are slightly stronger
on larger scales than on smaller ones.
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On the other hand, the power spectrum for tensor perturbations (which describe the
power of primordial GWs), Pt(k), is described similarly by [298]

Pt(k) = At

(
k
kt

)nt

, (9.2)

where At is the amplitude of the tensor perturbations at the pivot scale kt, and nt is the
tensor spectral index. In the context of inflationary cosmology, the tensor spectral index
nt is predicted to be slightly negative, suggesting that the amplitude of primordial GWs
decreases at smaller scales (i.e. larger wavenumbers). This power law form encodes how
the energy carried by GWs—produced during inflation—changes with the wavelength of
the perturbation.

The power spectrum of both scalar and tensor perturbations is crucial for understanding
the initial conditions of the Universe and the physics of inflation. In a power law spec-
trum, the wavenumber k corresponds to the inverse of the wavelength, meaning that larger
k values represent smaller scales. The power spectra, therefore, tell us how much power (or
amplitude) the perturbations have at different physical scales [299].

■ For scalar perturbations, this is directly linked to the formation of large-scale struc-
tures, such as galaxies, by gravitational collapse.

■ For tensor perturbations, the power spectrum provides information about the strength
of primordial GWs, which can be probed indirectly through the B-mode polarisation
of the CMB.

One of the key observational parameters that connects scalar and tensor perturbations is
the tensor-to-scalar ratio, r. This ratio compares the amplitude of GW (tensor perturbations)
to the amplitude of scalar perturbations [298, 300]

r =
Pt(k)
Ps(k)

. (9.3)

This parameter is particularly important in inflationary cosmology because it provides in-
sights into the energy scale at which inflation occurred.

Since this chapter focuses on GWs (tensor perturbations), it is necessary to consider how
they evolve in the context of f (T) gravity. The evolution of tensor perturbations in modified
gravity theories, such as f (T), is governed by an equation that generalises the standard
propagation equation for GWs. In f (T) gravity, the equation for tensor perturbations can be
written as in Eq. 2.67, where both αm and αT are involved.
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In the Power Law model of f (T) gravity, GWs are predicted to propagate at the speed of
light, implying αT = 0. The parameter αm, on the other hand, takes the form

αm =
1
H

ḟT

fT
=

−12H′ fTT

a fT
, (9.4)

where, as a reminder, fT and fTT represent the first and second derivatives of the f (T)
function with respect to the torsion scalar T, and the prime denotes differentiation with
respect to redshift z. Specifically, for the Power Law model, these derivatives are given by

fT = −1 − α1 p1(−T)p1−1 (9.5)

fTT = α1 p1(p1 − 1)(−T)p1−2, (9.6)

where α1 and p1 are parameters of the model that dictate how the torsion scalar contributes
to the gravitational action.

By incorporating these modifications into the tensor perturbation equation, the evolution
of GWs can be analysed in f (T) gravity compared to standard GR. In particular, the Power
Law model introduces a non-trivial dependence of the perturbations on redshift, allowing
for a more complex evolution of GWs over cosmic time. This provides a potential avenue
for distinguishing f (T) gravity from GR through the observation of primordial GWs and
their effects on the CMB polarisation.

9.2 | Revised Datasets
Having established the necessary theoretical framework, attention is now directed toward
the revised datasets. In this case, the latest CC and Dark Energy Spectroscopic Instrument
(DESI) data (which is an updated dataset for the BAO) have been incorporated to improve
constraints on cosmological parameters. Additionally, to constrain the tensor-to-scalar ratio
r and the spectral index nt, the BB spectrum from BICEP/Keck has been included. This, in
turn, necessitates an updated likelihood analysis for these datasets, ensuring that the most
recent observational data are accurately reflected in the parameter estimations.

9.2.1 | Revised CC Likelihood
The first dataset utilised is the CC dataset. It is important to note that the likelihood function
for the CC dataset implemented in the code required updating to reflect the most recent data.
Specifically, the covariance matrix for the CCs, as introduced by Moresco et al. [208], rep-
resents a significant advancement. Their work incorporated a full covariance matrix, CH(z)

to account for systematic uncertainties affecting the CC method, enhancing the precision of
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the likelihood computation. This update replaced the previously used χ2
H(z) in Eq. 3.43 such

that,

χ2
H(z) = ∆R(zi, Θ)TC−1

H(z)∆R(zi, Θ) , (9.7)

where R(zi, Θ) = (H(z)theo(zi ,Θ) − H(z)obs(zi)) and C−1
H(z) is the inverse covariance matrix.

10

9.2.2 | Incorporation of Pantheon+ and Revised BAO Likelihoods
The PN+ likelihood, as described in Sec. 7.1, is the next likelihood utilised in this chapter.
Furthermore, the commencement of Stage IV cosmology has been marked by the release
of the latest BAO measurements from the DESI. The Stage IV surveys represents a signifi-
cant advancement in the field of observational cosmology, characterised by a suite of next-
generation surveys and experiments designed to explore the Universe with unprecedented
precision and depth. This includes DESI [301, 302, 303], Euclid [304], and the anticipated
launches of several CMB missions [122, 305, 306], which are expected to revolutionise our
understanding of the Universe.

The most recent DESI BAO dataset has been incorporated into this study. This dataset
provides updated measurements of BAO in galaxies, quasars, and the Lyman-α forest from
the initial year of DESI observations. Precise measurements of the transverse comoving
distance and the Hubble rate, or their combination, relative to the sound horizon, have
been obtained across seven redshift bins from over 6 million extragalactic objects within
the redshift range 0.1 < z < 4.2. These measurements are derived from various Large Scale
Structure (LSS) tracers, such as galaxies [201].

The DESI BAO data include measurements from different LSS tracers: the Bright Galaxy
Sample (BGS) at an effective redshift zeff = 0.295, three Luminous Red Galaxy (LRG) sam-
ples at zeff = 0.510, 0.706, 0.930, two Emission Line Galaxy (ELG) samples at zeff = 0.930, 1.317,
the Quasar (QSO) sample at zeff = 1.491, and the Lyman-α (Lyα) forest sample at zeff = 2.330.
Some of the LRG and ELG samples have been combined, as detailed in Table 1 of Ref. [303],
which provides the statistics for the DESI DR1 BAO measurements. The revised dataset in-
cludes values for DM/rd, DH/rd, and DV/rd, with detailed equations found in Sec. 3.3. For
correlated measurements, the coefficient r is provided, from which the covariance matrix
can be calculated and the minimum χ2 determined using Eq. 3.51. 11

10https://gitlab.com/mmoresco/CCcovariance
11https://github.com/cosmodesi/desilike/tree/hmc/desilike/likelihoods
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9.2.3 | BICEP/Keck 2014 Dataset
The BICEP/Keck 2014 dataset, commonly known as BK14, represents a pivotal set of ob-
servations from the BICEP and Keck Array collaborations, designed to probe the B-mode
polarisation of the CMB. The data, derived from the 2014 observing season, are detailed in
the publication by the BICEP2 collaboration [49]. This dataset plays a crucial role in con-
straining key cosmological parameters related to primordial GWs.

BK14 provides high-precision measurements of the B-mode polarisation power spec-
trum. As has been said, B-mode polarisation, characterised by a specific pattern in the CMB,
is a signature of primordial GWs generated during the inflationary epoch. The dataset cap-
tures detailed observational data that are instrumental in evaluating the power spectrum
of these B-modes, which is crucial for understanding the inflationary dynamics of the Uni-
verse.

The BK14 dataset is specifically valuable for its ability to constrain the tensor-to-scalar
ratio r and the tensor spectral index nt. As a reminder, the tensor-to-scalar ratio r is a key
parameter in cosmological models as it reflects the ratio of primordial GWs to scalar per-
turbations in the early Universe. On the other hand, the tensor spectral index nt provides
additional details about the nature of these GWs across different scales.

9.3 | Boltzmann Code Architecture and MCMC integra-
tion

To investigate primordial GWs and explore f (T) gravity further with the revised datasets,
a Boltzmann code is employed, which encompasses the equations of motion for various
components such as photons, neutrinos, CDM, baryons, and more. This code is primarily
written in the C programming language, with the most commonly used code in the preci-
sion cosmology community being the publicly available Cosmic Linear Anistropy Solving
System (CLASS) 12 code [307, 308, 309, 310]. An advanced extension of CLASS, known as
Horndeski in the Cosmic Linear Anistropy Solving System (HiCLASS)13 [311, 312], has been
developed specifically to handle models involving Horndeski gravity.

Horndeski models are a class of theories that extend GR by introducing a scalar field
with specific interactions to modify gravitational dynamics while avoiding instabilities. In
this case, the focus is on f (T) gravity and this is based on teleprallelism, which is a specific
case within the broader Horndeski framework, known as teleparallel Horndeski Models

12https://github.com/lesgourg/class_public
13https://github.com/miguelzuma/hi_class_public
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[81]. A useful visual representation of how f (T) gravity fits into the broader context of
teleparallel Horndeski models can be found in Ref. [66], Fig. 11.

CLASS is widely utilised for computing both the background evolution and the linear
perturbations of cosmological models. The integration of Horndeski models into CLASS,
achieved through HiCLASS, enables the examination of a broad range of scalar-tensor the-
ories that extend beyond GR. This integration allows for the exploration of various modifi-
cations to gravity while maintaining theoretical consistency and compatibility with obser-
vational data. HiCLASS facilitates the investigation of different models by leveraging the
dynamics described in terms of α functions, as illustrated in Eq. 2.70.

HiCLASS was designed with a common routine for all Horndeski models, offering the
flexibility to choose specific models. In this context, the focus will be on the power-law
model in f (T), in particular on the GW propagation, which were not previously imple-
mented in HiCLASS for f (T) and thus, certain modifications had to be made to the code
in order to implement this model. However, the use of α functions as specified in Eq. 2.67
allows for a more straightforward and smoother integration of this model into the code. Ul-
timately, this process involves describing the cosmological background evolution and em-
ploying the α functions for a broader analysis.

The general workflow of HiCLASS begins with the background module, which com-
putes the background evolution of the Universe. This module iteratively solves for the
evolution after specifying which background parameters are to be varied. The code then
assesses stability conditions and checks for consistency before moving on to the perturba-
tions module. HiCLASS is particularly advantageous because it retains the full dynamics
across cosmic history without resorting to further simplifications when solving the linear
perturbation equations.

Following this overview of the HiCLASS architecture and its capabilities in accommo-
dating various cosmological models, it is important to discuss the principal modifications
made to the codebase to support the analysis of f (T) gravity models.

1. Theoretical Input [source]: This segment of the code encompasses all theoretical in-
puts essential for defining and implementing the cosmological model. Consequently,
both the background and perturbations modules required substantial modifications.
Specifically, the background.c file was updated to integrate the Friedmann equations
for the f (T) Power Law Model, by using Eqs. 2.56,2.57. perturbations.c was modified to
include the gravitational wave equation, Eq. 2.67, where the forms of the α functions
are explicitly defined. As has been mentioned in Sec.2.4.2, αT for f (T) gravity is 0,
whilst for αm is defined as in Eq. 2.69, which turns out to be dependant on background
equations and the p1 parameter as will be shown in subsequent sections. Addition-
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ally, changes were made to the input.c file to explicitly define the power parameter,
specifying the nature and type of the parameter within the model.

2. Parameter Information [include]: This part of the architecture manages the definitions
of cosmological parameters. To incorporate the f (T) Power Law Model, new param-
eters related to this model were introduced into the system (which include the b pa-
rameter. These additions were primarily made in the background.h file, ensuring that
the newly defined parameters were properly integrated into the model’s framework.

Following the in-depth discussion of HiCLASS and its integration of various cosmological
models, it is crucial to emphasise the role of MontePython, a sophisticated Python wrapper
designed for use with both CLASS and HiCLASS. MontePython 14 significantly augments
the functionality of HiCLASS by offering a high-level interface for executing MCMC anal-
yses and performing advanced statistical computations. This wrapper streamlines the pa-
rameter estimation process, enabling the exploration of parameter spaces and fitting cosmo-
logical models to observational data with greater ease. It complements the computational
power of CLASS and HiCLASS, extending their capabilities and providing a valuable tool
for modern cosmological research. MontePython is particularly advantageous for extracting
precise cosmological parameters from complex models, as it includes the likelihoods for the
latest experimental data.

The workflow and the integration process between HiCLASS and MontePython is de-
picted in Fig. 9.1. Initially, specific modifications are made to the modules in HiCLASS, as
highlighted in red, which are crucial for adapting the code to handle the new cosmologi-
cal model. These modifications enable HiCLASS to compute the necessary background and
perturbation data. The resulting outputs are then processed by MontePython, which per-
forms MCMC analyses to generate the parameter chains and log likelihoods. The diagram
also shows the data surveys and corresponding likelihoods utilised by MontePython. This
integrated approach ensures a streamlined process from theoretical model adjustments to
statistical analysis and result interpretation.

Following this integration, significant updates were made to ensure accurate representa-
tion of the latest observational data. Specifically, advancements documented by Moresco et
al. [313] necessitated the implementation of an updated covariance matrix, which was not
initially available in MontePython. This led to the full implementation and integration of
the updated likelihood functions with HiCLASS, ensuring precise and current analyses.

Additionally, the likelihood function for DESI was not originally included in MontePython.
Thus, its integration into HiCLASS was crucial for accurately reflecting and analysing the

14https://github.com/mtristram/montepython_public/tree/3.6/montepython
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Figure 9.1: This diagram depicts the integration of HiCLASS with MontePython. Modi-
fications to the red-highlighted HiCLASS modules lead to computations that are fed into
MontePython. MontePython then performs MCMC analyses to generate chains and log
probabilities. The bottom of the diagram shows the data surveys and likelihoods used in
MontePython.

latest data. In MontePython, the BK14 dataset is integrated through its B-mode polarisation
likelihood function, known as the BB likelihood. This integration enhances MontePython’s
capability to incorporate high-precision constraints from BK14, improving the parameter
estimation process and refining the estimates of the tensor-to-scalar ratio r and the spectral
index nt. The inclusion of these datasets, therefore, significantly advances our ability to test
and validate theoretical models such as the f (T) power-law model.

Regarding the convergence of chains, the Gelman-Rubin test, commonly referred to as
the R − 1 statistic, is employed to assess the convergence of MCMC simulations [314]. This
method compares the variance within each chain to the variance between different chains
to determine whether the chains have converged to a stationary distribution. For reliable
parameter estimation, convergence is typically indicated when R− 1 is less than a threshold,
commonly 0.01, while values significantly above this value suggest that further iterations are
necessary. This test is vital for ensuring that the MCMC chains have sufficiently explored
the parameter space, leading to robust and trustworthy estimates.

The final step in this process involves visualising the parameters through corner plots,
which offer insights into the posterior distributions and confidence levels of the parame-
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ters. This visualisation was accomplished using the GetDist code 15 [315], a Python pack-
age specifically designed for analysing and visualising the results from MCMC analyses.
GetDist provides a suite of tools for interpreting MCMC chains, such that results can be
presented in a clear and accessible manner. Its capabilities for generating detailed plots
and statistical summaries are essential for understanding the parameter estimates and their
implications within the context of cosmological models.

9.4 | Integrating Late-Time Acceleration Data and Gravi-
tational Wave Observations: Results from CC, PN+,
DESI, and Gravitational Waves

In this section, an integrated analysis of late-time acceleration data and GW constraints is
conducted. Revised datasets from CC, PN+& SH0ES and DESI are utilised, alongside data
from GW observations (BK14). This combined approach facilitates a thorough evaluation of
cosmological models, assessing their compatibility with current observational data and their
alignment with theoretical predictions. The results provide insights into the effectiveness of
these models in describing the Universe’s expansion history and primordial GWs.

The goal of this analysis is not only to assess f (T) gravity with the newly revised datasets
but also, as previously mentioned, to examine two additional parameters that describe B-
mode polarisation. These include the tensor-to-scalar ratio, r, which quantifies the ampli-
tude of primordial tensor perturbations at a reference scale, and the spectral tilt, nt, which
captures the scale dependence of the primordial tensor spectrum. In essence, the tensor
power spectrum is parameterised similarly to the scalar spectrum as a power law, as dis-
cussed in Eq. 9.2.

9.4.1 | Constraints in f (T) gravity: Exploring revised late-time data
Given the recent updates to the late-time datasets, it is crucial to examine their individual
contributions and assess the constraints they provide. Fig. 9.2 presents the results from var-
ious combinations of these datasets: CC+PN+& SH0ES (blue), PN+& SH0ES+DESI (red),
and the full combination of CC+PN+& SH0ES+DESI (green). As illustrated, the blue con-
tours corresponding to the CC+PN+& SH0ES combination are noticeably broader, indicat-
ing that these datasets alone offer less stringent constraints. This highlights the significant

15https://getdist.readthedocs.io/en/latest/intro.html
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Figure 9.2: The 68% and 95% confidence level intervals, along with the posterior distribu-
tions for the parameters H0, Ωm,0, p1, and M for the Power Law Model are presented. These
results are based on the analysis of late-time data, including the CC, PN+&SH0ES, and DESI
datasets.

influence of the DESI dataset, which, when included, leads to much tighter parameter con-
straints.

Consistent with previous analyses, a degeneracy between H0, Ωm,0, and p1 is observed
in the blue contours, with these parameters being strongly correlated. However, once the
DESI BAO data is incorporated, this degeneracy is substantially reduced, leading to more
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Data Sets H0 [km s−1 Mpc−1] Ωm,0 p1

CC + PN+ & SH0ES 73.40 ± 0.96 0.300+0.036
−0.052 0.32 ± 0.38

PN+ & SH0ES + DESI 73.2+1.3
−0.97 0.320 ± 0.012 −0.081+0.049

−0.058

CC + PN+ & SH0ES + DESI 73.1+1.1
−0.92 0.318 ± 0.012 −0.081+0.049

−0.0.54

Table 9.1: Cosmological parameters derived using late-time datasets, highlighting the effect
of updating BAO data with DESI. The combinations include CC, PN+&SH0ES, and DESI.
Shown are the Hubble constant (H0), matter density (Ωm,0), and dark energy parameter (p1),
with uncertainties reflecting the impact of including DESI data.

precise constraints and an enhanced anti-correlation between these parameters. In particu-
lar, the inclusion of DESI data markedly tightens the anti-correlation between Ωm,0 and p1,
demonstrating the impact of DESI on resolving parameter uncertainties.

The constraints on H0 across the different dataset combinations remain relatively similar,
indicating that the inclusion of DESI has a more pronounced effect on the matter density pa-
rameter, Ωm,0. This effect is particularly noticeable, as DESI provides stronger constraints on
Ωm,0, with a higher value but significantly reduced uncertainties. In addition, the parameter
distributions are clearly consistent with the findings from the previous chapter, especially
regarding the degeneracy between H0 and Ωm,0. The relationship between H0 and p1 also
aligns with earlier results for the Power Law Model, and the slight anticorrelation between
Ωm,0 and p1 is similarly evident. These consistencies underscore the reliability of the results.

The exact results are summarised in Table 9.1, which presents the exact parameter values
and uncertainties for each dataset combination (Since this section focuses on the impact of
the DESI likelihood, the values of M has been omitted from the tables, although the posteri-
ors are still presented in the plots). The table highlights the critical role of DESI in tightening
the constraints, especially on the matter density, while the H0 parameter remains largely
consistent across different combinations. The notable improvement in constraints with the
DESI dataset reaffirms its importance in late-time cosmological analyses, providing a more
refined picture of the Universe’s expansion and matter distribution.

9.4.2 | Constraints in f (T) gravity: Exploring r & nt

Following the exploration of the revised datasets in late-time cosmology, the BICEP/Keck
Array dataset will be utilised to constrain two additional parameters at kt = 0.01 Mpc−1

[120]: the tensor-to-scalar ratio r and the spectral tilt nt. Two scenarios will be considered:
the first in which nt is fixed at a specified value, and the second in which nt is treated as
a free parameter. This approach facilitates an extensive exploration of the parameters and
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their impacts on both individual outcomes and their interrelationships.

9.4.3 | Case 1: Scale-invariant tensor spectrum nt = 0

Several studies and models frequently set nt = 0 as a simplification, particularly within
the framework of slow-roll inflation [49, 120]. This choice is often justified by the fact that,
during slow-roll inflation, the tensor spectral index nt is predicted to be small or nearly zero.
(Slow-roll inflation describes a phase of accelerated expansion in the early Universe, driven
by a scalar field known as the inflaton. During this phase, the potential energy of the inflaton
dominates its kinetic energy, leading to a gradual, slow evolution of the field.)

Fixing nt = 0 is a practical assumption, especially in contexts where precision constraints
on the amplitude of tensor modes are more critical than resolving the scale-dependence of
the tensor power spectrum. In the literature, such an approach has been used in studies
like those from the BICEP/Keck Array, which set nt = 0 to focus on constraining other
cosmological parameters like the tensor-to-scalar ratio r without the added complexity of
a free nt parameter and studies have shows a strong pull toward a scale-invariance tensor
spectrum [298, 300]. This simplification helps to reduce the number of free parameters in the
analysis, allowing for clearer constraints on the tensor contribution to the CMB polarisation.

In this analysis, nt = 0 is fixed, while other relevant parameters—such as H0, Ωm,0,
p1, and r (apart from nuisance parameters)—are left free to vary. Fig. 9.3 and Table 9.2
illustrate the resulting constraints, providing the 68% and 95% confidence intervals for these
parameters, along with their exact values and uncertainties (at 68%).

To assess the impact of the updated DESI dataset, various combinations of data are
tested: CC + PN+ & SH0ES + BK14 (gray colour in Fig. 9.3), and CC + PN+ & SH0ES +
DESI + BK14 (teal colour). Consistent with previous findings, the most significant impact
of the DESI dataset is observed on the matter density parameter Ωm,0 and the model pa-
rameter p1. The Hubble constant H0, though primarily influenced by the PN+ & SH0ES
dataset, is indirectly affected by the constraints on Ωm,0 due to the interdependence of these
parameters. As shown in Fig. 9.3, while the contour shapes for the 2D parameter space re-
main similar across the different data combinations, the inclusion of DESI leads to noticeably
tighter constraints, particularly in the H0 and Ωm,0 parameters.

The value of H0 for both data combinations that include DESI aligns closely with previ-
ous results, falling in the range of approximately 73 km s−1 Mpc−1. This suggests that while
the primary driver of H0 remains the PN+ & SH0ES dataset, the inclusion of DESI provides
additional support by significantly reducing uncertainties, further confirming the robust-
ness of the results. The effect of DESI is most pronounced in the matter density parameter
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Figure 9.3: The 68% and 95% confidence level intervals, along with the posterior distribu-
tions for the parameters H0, Ωm,0, p1, and M in the Power Law Model are displayed. These
results are derived from the analysis of late-time data sets, including CC, PN+&SH0ES,
DESI, and the BB spectrum from BK14, where nt was set to 0.



9.4. Integrating Late-Time Acceleration Data and Gravitational Wave Observations: Results from CC,
PN+, DESI, and Gravitational Waves

Data Sets H0 [km s−1 Mpc−1] Ωm,0 p1 r

CC + PN+ & SH0ES + BK14 73.16+1.23
−0.96 0.315+0.028

−0.023 0.07+0.20
−0.17 0.045+0.011

−0.044

CC + PN+ & SH0ES + DESI + BK14 73.21 ± 0.95 0.320 ± 0.012 −0.08+0.047
−0.0.48 0.043+0.012

−0.042

Table 9.2: Cosmological parameters derived from dataset combinations, with the tensor
spectral index fixed at nt = 0. The datasets include CC, PN+&SH0ES, DESI, and BK14.
The parameters shown are the Hubble constant (H0), matter density (Ωm,0), model parame-
ter (p1), and tensor-to-scalar ratio (r) at 68% confidence level, with associated uncertainties.

Ωm,0, where the inclusion of this dataset not only shifts the central value but also dramati-
cally tightens the constraints, as demonstrated in both the Fig 9.3 and Table 9.2 provided.

The values of the model parameter p1 are found to be close to the ΛCDM limit, with
the parameter lying within 1 to 2 sigma of the ΛCDM value in both cases. As observed
in previous results, the inclusion of the DESI dataset exerts a significant influence, shifting
the parameter from a slightly positive value to a marginally negative one. However, the
constraints tighten considerably when combining CC + PN+ & SH0ES + DESI + BK14, as
reflected in the parameter contours shown in Fig. 9.3. This figure also highlights the correla-
tions between p1 and other cosmological parameters. A noticeable anti-correlation between
p1 and H0, seen in earlier dataset combinations, remains evident here. Additionally, a similar
correlation is observed between p1 and Ωm,0, reinforcing the trend seen with the other data
combinations. The improved constraints offered by the DESI dataset significantly impact
both H0 and Ωm,0, contributing to a more precise understanding of the model’s parameter
space.

Turning to the value of r0.01 at the 68% confidence level (CL), the analysis shows that for
the combination of CC + PN+ & SH0ES + BK14, the value is r0.01 = 0.0455+0.0091

−0.046 , with an
upper limit of r0.01 < 0.12 at 95% CL. In contrast, when DESI data is added to the combina-
tion (CC + PN+ & SH0ES + DESI + BK14), the value is slightly lower at r0.01 = 0.043+0.012

−0.042,
with an upper bound of r0.01 < 0.11 at 95% CL.

When these results are compared to recent findings from Galloni et al. [298], which
use new and revised datasets and multiple combinations, including the BICEP/Keck array,
Planck 3 and 4, and collaborations like LIGO-Virgo-Kagra, our results offer a slightly higher
upper bound on r0.01 at the 95% CL. Galloni et al. provide some of the most stringent con-
straints on the tensor-to-scalar ratio r and the tensor spectral index nt, yet despite the higher
upper limit found here, the results remain in line with other data combinations.

It is important to note that Galloni et al.’s work combines multiple datasets to derive
these limits, which could explain the tighter constraints. In contrast, the analysis presented
here relies on fewer datasets, specifically Bicep/Keck array which likely accounts for the
relatively higher upper bound. Nevertheless, these findings are a significant step toward
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constraining r0.01, and they align with the general trend in the literature towards more pre-
cise bounds. The inclusion of future datasets and further refinements to the analysis will
likely continue to push the upper limits lower, providing even more stringent tests of infla-
tionary models.

In addition, these results are in agreement with the upper bound on r0.001 < 0.076 pro-
vided by Akrami et al. (Planck 2018) [120] when combining both CMB and GW data. This
consistency further highlights the reliability of the constraints derived here and underscores
the importance of combining diverse observational data to improve the precision of cosmo-
logical parameter estimates.

9.4.4 | Case 2: nt free parameter
In the second scenario, greater flexibility is introduced by allowing the spectral tilt nt to
vary as a free parameter. The same two dataset combinations are analysed, and the 68%
and 95% confidence levels are illustrated in Fig. 9.4. The grey contours correspond to the
combination of CC+PN+& SH0ES+BK14, while the teal contours represent the addition of
the DESI dataset, i.e., CC + PN+& SH0ES+DESI+ BK14. These results exhibit trends similar
to those observed in the previous fixed nt case.

For instance, the value of H0 is found to remain on the higher end of the spectrum,
primarily driven by the PN+& SH0ES data, which consistently pushes the value upwards.
Conversely, Ωm,0 is more sensitive to the inclusion of different datasets, reflecting the in-
fluence of DESI, as seen in earlier analyses. The tighter constraints on the matter density
parameter are evident in the results, particularly in Table 9.3, where the combination CC
+ PN+& SH0ES+BK14 yields Ωm,0 = 0.317+0.035

−0.048, while CC+PN+& SH0ES+DESI+BK14 pro-
vides a significantly more constrained Ωm,0 = 0.318± 0.011. This demonstrates the substan-
tial impact of the DESI dataset in tightening the bounds on the matter density parameter.

Moreover, the relationship between H0 and Ωm,0 shifts between the two combinations.
Initially, the first dataset combination shows a more degenerate correlation, which transi-
tions to a stronger anti-correlation when DESI is included, as anticipated and in line with
previous interpretations. A similar, yet more pronounced effect, is observed with the model
parameter p1. In the case of CC+PN+& SH0ES+BK14, p1 is positive, albeit with large un-
certainties that encompass the ΛCDM limit, specifically p1 = 0.13+0.20

−0.17. However, upon the
inclusion of DESI, the constraint on p1 tightens significantly, shifting to the negative region,
with a value of p1 = −0.082 ± 0.049. In this scenario, BK14 appears to have a limited in-
fluence on the constraints for p1, while DESI plays a critical role in refining the parameter
space. The 2D confidence levels presented in Fig. 9.4 exhibit consistency with the trends
identified in previous chapters, particularly in the slight anti-correlation between Ωm,0 and
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Figure 9.4: The 68% and 95% confidence level intervals, along with the posterior distribu-
tions for the parameters H0, Ωm,0, p1, and M in the Power Law Model are displayed. These
results are derived from the analysis of late-time data sets, including CC, PN+&SH0ES,
DESI, and the BB spectrum from BK14, where nt was left as a free parameter.
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Data Sets H0 [km s−1 Mpc−1] Ωm,0 p1 r nt

CC + PN+ & SH0ES + BK14 73.41 ± 0.95 0.317+0.035
−0.048 0.13+0.20

−0.17 0.0410+0.008
−0.040 −0.35+0.94

−0.81

CC + PN+ & SH0ES + DESI + BK14 73.08 ± 0.92 0.318 ± 0.011 −0.082 ± 0.049 0.0415+0.01
−0.041 −0.230.99

−0.70

Table 9.3: Cosmological parameters derived from various dataset combinations, including
CC, PN+&SH0ES, DESI, and BK14. The table shows the Hubble constant (H0), matter den-
sity (Ωm,0), model parameter (p1), tensor-to-scalar ratio (r), and tensor spectral index (nt),
with associated uncertainties at 1 σ.

p1, and the relationship between H0 and p1.

On the other hand, the inclusion of the BK14 dataset now enables both nt and r to be
constrained and evaluated alongside other cosmological parameters. The exact values, as
shown in Table 9.3, indicate a slight reduction in the r0.01 value within the 68% confidence
levels for both dataset combinations. For instance, in the case of CC+PN+& SH0ES+BK14,
r0.01 is constrained to 0.041+0.0082

−0.04 (with r0.01 < 0.113 at 95% CL). However, the inclusion
of DESI does not significantly impact the constraints on r, as shown by the result r0.01 =

0.0415+0.010
−0.041 (with r0.01 < 0.112 at 95% CL) for CC+PN+& SH0ES+DESI+BK14. These results

remain consistent with those previously obtained in the literature, particularly with the find-
ings from Planck18 [120] and the corresponding values from different dataset combinations
referenced in Ref. [298]. Furthermore, they align with recent research by Galloni et al. [300],
which reports r0.01 < 0.030 and −1.35 < nt < 3.40 (at 95% confidence level using multiple
datasets), closely matching the bounds obtained in this study. The constraints on r in both
cases are well-aligned with current cosmological limits, further reinforcing the reliability of
this Power Law Model in f (T) gravity.

In this case, nt is treated as a free parameter, in which the BK14 dataset allows for
its constraint alongside the tensor-to-scalar ratio r. As shown in Fig. 9.4, the inclusion
of BK14 consistently demonstrates that it has minimal effect on the shape of the poste-
rior distribution and the contour plots for nt, provided that BK14 is included. The pre-
cise values, as presented in Table 9.3, are nt = −0.35+0.94

−0.81 (with −1.7 < nt < 1.0 at the
95% confidence level) for the combination CC+PN+& SH0ES+BK14. For the combination
CC+PN+& SH0ES+DESI+BK14, nt is constrained to −0.23+0.99

−0.70 (with −1.7 < nt < 1.1 at the
95% confidence level). In addition, Eq. 9.2, shows that a negative nt implies that the power
spectrum at larger scales will have lower amplitude. On the other hand when one looks
at GWs, the ones on smaller scales are stronger or have higher amplitude tan the ones on
larger scales.

While these results exhibit a broader range—particularly with the higher upper bounds—they
remain largely consistent with those reported in the literature. Planck18, for instance, con-
strained nt within the range −0.76 < nt < 0.52, and Fig. 2 of Ref. [298] presents a range of

214



9.5. Conclusion

nt values from various dataset combinations that overlap with the findings of this analysis.
Despite the slightly larger uncertainty in this study, this is attributable to the fact that the
BK14 dataset is not as constraining as Planck18, which results in looser bounds, particularly
in the upper limits of nt. Nevertheless, these results still provide valuable insight into the
behaviour of nt when constrained by current BB polarisation data. Indeed, these results also
confirm that the scale-invariant scenario remains well within the obtained range, further
reinforcing the case presented in the previous section.

9.5 | Conclusion
In this chapter, a thorough investigation was undertaken to constrain primordial GWs within
the framework of f (T) gravity, utilising both early- and late-time cosmological datasets.
One of the objectives was to confront the theoretical predictions of f (T) gravity with obser-
vational data, particularly focusing on the B-mode polarisation of the CMB and its associ-
ated parameters: the tensor-to-scalar ratio r and the spectral tilt nt. This was achieved by
modifying parts of HiCLASS to incorporate the power law in f (T) gravity.

In parallel, revisions to key late-time cosmological datasets were incorporated to refine
the parameter space. The CC dataset, reflecting the expansion history of the Universe, was
reviewed, and the BAO dataset was enhanced through the inclusion of the DESI likelihood.
The inclusion of these revised datasets allowed for more accurate constraints on cosmologi-
cal parameters at late times, complementing the constraints derived from early-time obser-
vations. These refinements were necessary to capture the dynamics of the f (T) model more
accurately, as it modifies both the background expansion and the evolution of cosmological
perturbations.

To constrain the two additional parameters—r and nt—that characterise the B-mode po-
larisation, the BICEP/Keck Array (BK14) [49] dataset was employed. This dataset, which
is sensitive to the primordial GWs, was crucial in constraining the tensor perturbations of
the Universe. The analysis involved two case studies: one where the spectral tilt nt was
fixed to zero, and another where nt was treated as a free parameter, allowing for a broader
exploration of its impact on the model.

The theoretical framework of f (T) gravity was implemented using the Boltzmann code,
HiCLASS [311, 312], which was adapted to account for both the background evolution and
the linear perturbations under the Horndeski models. The code was modified to accom-
modate for the power law model in f (T) gravity at both the background and tensor per-
turbation levels, in which a detailed workflow was provided in Fig. 9.1. The modifications
allowed for the exploration of how the f (T) model behaves under different parameter con-
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straints, leading to a more comprehensive understanding of its predictions.
MontePython was employed as the MCMC tool to perform parameter constraints. The

MCMC algorithm allowed for the exploration of the posterior distributions of the model
parameters, providing constraints on r, nt, and other cosmological parameters such as H0,
Ωm,0 and p1. A Gelman-Rubin convergence criterion of less than 0.01 was used, ensuring
that the chains were well converged and that the resulting parameter estimates were reli-
able. This level of precision was particularly important for the exploration of the late-time
datasets and also at the perturbative level.

The results of the analysis demonstrated that the inclusion of these datasets, such as
DESI, led to tighter constraints on the cosmological parameters. Specifically, the addition
of DESI played a critical role in refining the bounds on Ωm,0, providing clearer insights into
the matter content and expansion rate of the Universe. Otherwise, the parameters were
well constrained and remained consistent with previous results obtained in the previous
chapters.

In this chapter the use of both early- and late-time data in conjunction provided a more
extensive picture of the f (T) framework and the Universe’s evolution. Indeed, the BK14
dataset was then added to these late-time combinations in order to provide more insight. In
the case where nt was fixed to zero, the BK14 dataset allowed for the constraint of the tensor-
to-scalar ratio r < 0.11 (at 95% confidence level) for the dataset CC+ PN+& SH0ES + DESI
+ BK14, providing results that were consistent with those reported in the literature. The
constraints obtained in this analysis were found to be in agreement with the results from
Planck18, confirming the reliability of the approach. The inclusion of BK14 also demon-
strated that the dataset’s ability to constrain r was comparable to other studies, despite
the broader uncertainty range observed due to the limited sensitivity of BK14 compared
to Planck18 [120, 298].

In the second case, where nt was treated as a free parameter, the analysis allowed for
a deeper exploration of the possible deviations from the scale-invariant scenario. The pos-
terior distributions for nt and r showed that the inclusion of BK14 provided meaningful
constraints on both parameters, although the upper bounds were less stringent than those
provided by Planck18 [120] and Galloni et al. [298]. The results obtained in this case demon-
strated that the scale-invariant scenario was well within the allowed range, further reinforc-
ing the findings from previous case. The impact of including different dataset combinations
on the posterior distributions was also minimal, as long as BK14 was included, confirming
the dataset’s validity in constraining the primordial tensor modes.

The results also highlighted the importance of using both the CC and DESI datasets in
combination with the BK14 likelihood. While the DESI dataset did not directly impact the
constraints on r and nt, it significantly improved the constraints on Ωm,0, which in turn
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influenced the overall cosmological model and its compatibility with the f (T) framework
both at late-time and early-times. The tighter constraints on Ωm,0 provided by DESI allowed
for a more accurate exploration of how the f (T) model behaves under different assumptions
for nt.

Overall, the results of this chapter have provided a detailed exploration of the interplay
between early- and late-time cosmological data in constraining primordial GWs within the
f (T) framework, specifically the power law model. By utilising the HiCLASS Boltzmann
code and MontePython for MCMC sampling, it was possible to derive reliable constraints
on the tensor-to-scalar ratio r and the spectral tilt nt, while also refining the constraints on
late-time parameters such as H0,Ωm,0 and the model parameter p1. The analysis demon-
strates the power of combining the revised datasets with the BK14 likelihood to probe the
fundamental properties of the Universe, and it lays the groundwork for future studies in-
volving additional BB spectrum datasets to further tighten the constraints on nt and r.
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10

Conclusion

Modifications to gravity theories beyond General Relativity (GR) provide new perspectives
on the fundamental nature of gravitational interactions. In particular, Teleparallel Grav-
ity (TG) introduces torsion as the primary geometric quantity, replacing curvature. In this
framework, the Einstein-Hilbert Lagrangian of GR is replaced by the torsion scalar T. A key
formulation within this context is the Teleparallel Equivalent of General Relativity (TEGR),
where the field equations are dynamically equivalent to those in GR. The distinction be-
tween TEGR and GR lies in a boundary term, B, which separates the curvature scalar from
the torsion scalar, expressed as

◦
R = −T + B. Extending this framework, one can generalise

the action to include arbitrary functions of the torsion scalar and the boundary term, leading
to f (T) and f (T, B) gravity.

Given the ongoing challenges in cosmology—particularly the H0 and S8,0 tensions—torsion
gravity provides a compelling avenue for exploration. Indeed, this study mainly focuses on
f (T) gravity, examining whether this approach can resolve the pressing cosmological dis-
crepancies observed today, while remaining aligned with existing observational data. This
research marks one of the most extensive investigations into the f (T) gravity model as a
strong alternative to the ΛCDM framework. Through in-depth analysis and comparison
with observational data, it highlights the potential of f (T) gravity to offer new insights into
both early and late-time cosmological phenomena.

Central to this investigation is the application of GPs, which allows for the non-parametric
reconstruction of the Hubble parameter H(z). GP analysis is a powerful tool that facilitates
the reconstruction of underlying cosmological functions without imposing a prior form on
them. One key parameter reconstructed through this method is the Hubble constant, H0,
which has drawn significant attention due to the observed mismatch between early- and
late-Universe measurements within the ΛCDM scenario.

In a cosmological context, GP techniques can reconstruct arbitrary Lagrangian functions
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beyond the standard cosmological model, relying solely on observational datasets with-
out prior assumptions about their functional form. However, the accuracy of these recon-
structions hinges on the choice of kernel function. In this study, four kernel functions were
considered: squared exponential, Cauchy, Matérn, and rational quadratic, each tested for
dependency. The analysis confirmed, at the 1σ confidence level, that kernel selection can
moderately influence results, but are still consistent with each other.

The GP analysis incorporated various datasets, including CC, CC+sn, and CC+SN+BAO,
alongside three different H0 priors (R19, HW, and TRGB). The reconstruction of H(z), illus-
trated in Figs. 4.1 – 4.4, indicated that theCC+SN+BAO dataset combination consistently
produced lower H0 values, while the highest H0 estimates arose from datasets that included
the R19 prior.

Diagnostic tests were conducted to assess deviations from the ΛCDM model. The di-
agnostic redshift function, O(1)

m (z), indicated consistency between the dataset combinations
and ΛCDM predictions, though slight deviations were observed at higher redshifts. These
deviations became more pronounced in the analysis of the derivative of O(1)

m (z), denoted
as L(1)

m (z). Furthermore, a reconstruction of the deceleration parameter allowed for the
estimation of the transition redshift zt, the point at which the Universe transitioned from
deceleration to acceleration. Consistent with the H0 results, the Riess prior (R19) yielded the
lowest zt values, while the CC+SN+BAO dataset combination resulted in the highest values.

These reconstructions of the Hubble parameter provided a foundation for model-independent
evaluations of f (T) gravity. The assessment of numerical propagation, alongside the initial
conditions, facilitated the construction of the arbitrary Lagrangian. Consequently, the func-
tional form of f (T) as a function of the torsion scalar T for each kernel and dataset combi-
nation was presented in Figs. 4.5 – 4.8. In these figures, the ΛCDM scenario was overlaid
on the reconstructed regions, demonstrating that ΛCDM lies well within the reconstructed
range. Moreover, f (T) exhibited a slight decrease at higher redshifts, a feature that could
inform the development of future f (T) models.

This groundwork enabled a probabilistic evaluation of model parameters against obser-
vational data using MCMC analysis, which allows for exploration of parameter space and
quantification of uncertainties in a probabilistic framework. Thus, the MCMC technique
was employed throughout various analyses, building on one another. Five different models
within the f (T) framework were evaluated: Power Law, Square-root Exponential, Exponen-
tial, Logarithmic, and Hyperbolic-tangent models, to assess their performance in explaining
cosmic acceleration and later on structure growth. These models were rigorously compared
to the ΛCDM model to evaluate their alignment with the latest observational data, continu-
ally revising the datasets to remain current.

The results of our analysis in Chapter 5 indicate that f (T) gravity models can indeed
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serve as alternatives to the ΛCDM model in describing the evolution of the Universe. Among
the models tested, the Power Law and Linder models (including the variant of the Lin-
der Model), as well as a variant of the Linder model, performed particularly well, closely
replicating the predictions of the ΛCDM model, especially at low redshifts. These models
showed good agreement with the CC and PN observations, suggesting that they can effec-
tively describe the late-time accelerated expansion of the Universe.

Conversely, the Logarithmic and Hyperbolic tangent models exhibited a notable distinc-
tion in that they do not possess a ΛCDM limit. The previous models all had a ΛCDM limit
for specific values of their parameters, namely p1, 1

p2
, and 1

p3
. While these last two models di-

verged slightly from the ΛCDM limit, the divergence was not pronounced. Their behaviour
at different epochs of cosmic history could provide insights into how f (T) might influence
the Universe’s expansion and structure formation over time.

In addition to the CC, PN, and BAO datasets, priors were incorporated in this chapter,
specifically the R19, HW, and TRGB priors, to demonstrate the impact of these priors on f (T)
cosmological models and their parameters. A summary of these findings is presented in
Fig. 5.7, where the influence of each prior on different parameters is immediately observable,
along with the impact of each dataset used.

The statistical indicators carried out using the AIC and the BIC enabled a quantitative
comparison between these f (T) models and ΛCDM. Most f (T) models performed compa-
rably well with ΛCDM, as quantified using the Jeffreys’ scale, while the last two models
without a ΛCDM limit demonstrated slight discrepancies, particularly with the inclusion of
additional priors, and therefore the focus shifts mainly to the first three models.

Given the relationship between the torsion scalar and the Ricci scalar, it was logical to ex-
tend f (T) gravity to include f (T, B). Chapter 6 explored the performance of f (T, B) gravity
models in comparison to the ΛCDM model, focusing on three specific models: the Power
Law Model, Square-Root Exponential Model, and Logarithmic Model. The analysis, con-
ducted using the MCMC algorithm, was applied to baseline datasets such as CC and PN,
later supplemented with BAO data to incorporate early Universe effects. Additionally, pri-
ors from R21 (SH0ES) and F21 (TRGB Calibration), summarised in Table 3.1, were applied to
assess their impact on key cosmological parameters, including the Hubble constant, matter
density, and the model parameters pi.

The results were visualised through the whisker plot, illustrating the influence of differ-
ent datasets and priors on the models’ performance in Fig. 6.5. While the R21 prior slightly
elevated H0 values, the F21 prior brought values closer to the prior’s range. In general, the
models closely aligned with ΛCDM, especially for the first two models when specific values
of pi reduced to the ΛCDM limit, whereas the Logarithmic Model presented an intriguing
alternative, deviating more from the ΛCDM framework. However, f (T, B) models exhib-
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ited limitations in comparison to the f (T) framework, evidenced by higher BIC values and
less well-defined joint probability regions, indicating a stronger preference for ΛCDM.

Therefore, the analysis of the f (T, B) models has highlighted both their potential and
limitations. While this framework offers intriguing alternative to the ΛCDM framework,
these f (T, B) cosmological models consistently exhibit weaker statistical performance com-
pared to f (T) models. The f (T) framework emerges as a more robust alternative to ΛCDM,
characterised by better-defined probability regions and more favourable statistical indica-
tors. As a result, subsequent investigations prioritised the f (T) models, extending the ex-
plored redshift range and incorporating additional observational datasets to further con-
strain the model parameters.

As time progresses, datasets undergo regular revisions, which necessitated a thorough
analysis of the PN and PN+& SH0ES datasets within the f (T) framework, as discussed in
Chapter 7. These two datasets were compared and three f (T) gravity models—Power Law,
Square-root Exponential, and Exponential were evaluated using MCMC analysis. This anal-
ysis revealed that the PN+& SH0ES dataset provided tighter constraints on model param-
eters and consistently yielded higher H0 values than the PN dataset, corroborating previ-
ous results from the SH0es Collaboration. Additionally, the inclusion of complementary
datasets, such as CC and BAO, further refined the constraints and enabled a more detailed
examination of the H0 tension. Importantly, the incorporation of the BAO dataset effectively
broke the degeneracy between H0 and Ωm,0, revealing a correlation between these parame-
ters.

While the f (T) models demonstrated a general agreement with the ΛCDM model, the
analysis indicated that the PN+& SH0ES dataset slightly weakened support for ΛCDM in
favour of f (T) models, as quantified by the AIC and BIC. This study continues to under-
score the potential of f (T) gravity as a viable alternative framework to address the H0 ten-
sion. The capability of the PN+& SH0ES dataset to produce tighter constraints and elevated
H0 values suggests that integrating diverse datasets enhances the accuracy and reliability
of cosmological models. Furthermore, the incorporation of late-time datasets significantly
impacted parameter degeneracies, emphasising their importance for extending the redshift
range under scrutiny and future investigations.

In addressing the extension of the redshift range, Chapter 8 introduced the inclusion of
RSD datasets, which are particularly sensitive to the growth of structure formation. This
analysis allowed for a comprehensive exploration of S8,0 alongside constraints on cosmo-
logical parameters such as H0, Ωm,0, and σ8,0. The role of the PN+& SH0ES dataset, being
the largest collection of supernovae, proved crucial in constraining the Hubble constant
and addressing late-time cosmic tensions. An extensive MCMC analysis was performed to
evaluate the Power Law, the Square-Exponential and the Exponential models and dataset
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combination (that include CC, PN+& SH0ES, BAO, RSD), with results compared against the
ΛCDM model using statistical indicators. The findings showed that while ΛCDM remains
largely consistent with most datasets, certain f (T) gravity models, such as the power law
model, exhibited marginally superior performance in the presence of RSD data, indicating
a potential preference for these models. Notably, the PN+& SH0ES dataset proved effec-
tive in sharpening constraints, especially for H0, aligning values more closely with higher
estimates, such as those from R22.

Additionally, the S8,0 values obtained were consistent with current findings in the litera-
ture, including results from P18 and KiDS-1000. The radar plots in Fig. 8.13, demonstrate the
differences in σ units between the models’ H0 values and those from early-time P18 com-
pared to late-time KiDS-1000 values, revealing a slight diminution in the σ values for the
models.

Thus, it can be seen that certain f (T) models can closely replicate the performance of
ΛCDM while offering insights into resolving cosmological tensions. The findings indicate
that incorporating RSD data and other late-time datasets, such as PN+& SH0ES, enhances
the constraints on cosmological parameters, which could potentially address the H0 and S8,0

tensions. These models may serve as promising frameworks for tackling ongoing discrepan-
cies in cosmological observations. The importance of comprehensive dataset combinations
to reduce uncertainties and provide more precise cosmological constraints is further empha-
sised.

Consequently, a more in-depth analysis was warranted to ensure that f (T) gravity is not
constrained solely to late-times but also incorporates modifications to include the CMB B-
mode spectrum for constraining gravitational wave parameters and examining their effects
on f (T) parameters, particularly the Power Law model. Thus, Chapter 9 presents an in-
depth investigation into primordial GWs within the f (T) gravity framework, utilising both
early- and late-time cosmological datasets. This chapter focused on confronting theoretical
predictions of f (T) gravity with observational data, by using HiCLASS Boltzmann code to
model both background evolution and linear perturbations, which was modified for f (T)
gravity.

The study incorporated revisions to key late-time datasets, including the CC and BAO
datasets, enhanced by the DESI likelihood, to improve constraints on cosmological parame-
ters. The analysis utilised the BICEP/Keck Array (BK14) dataset alongside late-time datasets
to not only constrain the standard previous parameters but also to introduce additional pa-
rameters that characterise B-mode polarisation, specifically the tensor-to-scalar ratio r and
the tensor spectral index nt. Two case studies were conducted: one in which nt was fixed
at zero, and another where nt was treated as a free parameter, thereby allowing for a more
comprehensive exploration of its influence on the model.
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Using MontePython as the MCMC tool, robust constraints on cosmological parameters,
such as r, nt, H0, and Ωm,0, were obtained. The results indicated that the inclusion of up-
dated datasets, particularly DESI, played a critical role in refining the bounds on Ωm,0 and
improving overall parameter constraints.

When nt was fixed to zero, the BK14 dataset constrained r to be less than 0.11 at a 95%
confidence level, aligning with previous results. When nt was allowed to vary, the analy-
sis provided meaningful constraints on both r and nt, and also had consistent results with
previous results in literature, although with a broader range.

This chapter underscores the importance of combining early- and late-time datasets to
achieve more precise constraints on cosmological parameters. While the DESI dataset did
not directly impact r and nt, it significantly improved the constraints on Ωm,0, influencing
the overall model compatibility within the f (T) framework. The analysis demonstrated that
the f (T) gravity model remained consistent with current observational data, particularly in
constraining primordial GWs, thus offering a valuable framework for future studies.

Therefore, the analysis conducted in this work spans both early and late-time cosmol-
ogy, aiming to bridge the gap between these two epochs and uncover their interconnected
physical implications. At early times, the focus was primarily on the inflationary phase,
utilizing datasets from primordial GW signals to probe the underlying physics of the early
Universe. In contrast, late-time analyses shifted attention to cosmic acceleration, leveraging
datasets like CC, PN+& SH0ES, BAO, and RSD to investigate the present expansion rate and
the growth of large-scale structures.

The combination of early and late-time cosmological analyses highlights the promise
of f (T) gravity in resolving current tensions in cosmological data. This framework not
only offers a compelling alternative to ΛCDM but also provides deeper insights into the
Universe’s evolution from its earliest moments to the present day. By connecting these early
and late-time analyses, this work provides a unified view of how modifications to gravity
influence the entire cosmic history.

The physical implications of this work lie in the ability of the Power Law model within
f (T) to consistently describe gravitational phenomena across both early and late times,
matching well with observational data throughout cosmic history. In particular, the Power
Law model showcases the flexibility and predictive power of f (T) gravity in capturing both
inflationary phenomena and late-time cosmic acceleration, providing a consistent explana-
tion that aligns with a broad range of observational constraints.

In conclusion, the results of this study highlight f (T) gravity as a promising and viable
alternative to ΛCDM, with significant potential to address key cosmological tensions. The
persistent discrepancies, such as the H0 and S8,0 tensions, suggest that f (T) models could
provide a more comprehensive explanation for late-time cosmic acceleration, the growth of
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cosmic structures, and the amplitude of matter fluctuations. This study has demonstrated
that f (T) gravity is not merely a theoretical framework; it provides concrete, observation-
ally consistent solutions, including predictions for primordial GWs. By integrating datasets
such as CC, PN+& SH0ES, DESI, and BK14, the models have shown a remarkable ability
to accurately capture both early- and late-time cosmic phenomena. These findings under-
score the necessity for further investigation into f (T) gravity, as it presents a compelling
alternative to ΛCDM as discussed in the next points.

10.1 | Future works
As highlighted above this study opens several avenues for future research and exploration
in the realm of f (T) gravity. The following points highlight key areas for further investiga-
tion:

■ Improving Cosmological Analysis Through Dataset Expansion

In this work, the impact of various datasets has been explored, including measure-
ments from CC, PN+& SH0ES, and BAO. Additionally, density fluctuation data from
RSD and tensor sector data from the BK14 dataset have been incorporated. However,
to enhance the extensiveness and completeness of the research on tensor perturba-
tions, further extension of the dataset is deemed essential.

Future studies are expected to benefit from the inclusion of data from the Planck Re-
lease 3 (PR3) [316], which provides comprehensive CMB data, including high-resolution
temperature and polarisation maps, as well as a variety of likelihood functions cru-
cial for constraining cosmological parameters. Recently, the Planck Collaboration has
released Planck Release 4 (PR4) [317, 318, 319], which includes updated CMB maps
with improved calibrations and noise reductions, along with new analyses from the
HiLLiPOP and LoLLiPoP projects [320, 321]. Notably, the LoLLiPoP dataset contains
significant information regarding B-modes, which are pivotal for understanding the
tensor modes of primordial gravitational waves.

Another critical aspect of future work is expanding the observational datasets to in-
clude next-generation surveys like Euclid [304] and the JWST [322], which will pro-
vide unprecedented precision in measuring cosmic parameters at both low and high
redshifts.

By expanding the dataset to include these new releases, refinements in the constraints
on both background and tensor perturbations are anticipated, allowing for the assess-
ment of the viability of the f (T) gravity model in comparison to the standard ΛCDM
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model. This comprehensive approach will enable a critical evaluation of the effec-
tiveness of TG in describing cosmic phenomena and provide a more extensive under-
standing of the underlying physics governing the Universe’s evolution. Ultimately,
the integration of these datasets will facilitate a more rigorous analysis of the tension
between different cosmological observations and contribute to ongoing efforts to rec-
oncile them within the framework of modified gravity.

■ Integrating Scalar Perturbation Frameworks in HiClass for Improved Cosmological
Constraints

Another extension of the current work involves the adaptation of HiCLASS to incor-
porate modifications to the scalar perturbations. This approach necessitates a thor-
ough examination of all modes from the PR3 and PR4 datasets, specifically focus-
ing on the temperature-temperature (TT), temperature-polarisation (TE), and electric
polarisation-electric polarisation (EE) spectra. Such an integration is expected to yield
stronger constraints on critical cosmological parameters, particularly the current rate
of expansion of the Universe, as derived from the TT spectrum, as well as the total
matter density.

In addition to these parameters, this modified analysis will facilitate the extraction of
primordial power spectrum parameters, including the spectral index (ns), and provide
stronger constraints on the tensor-to-scalar ratio (r). Furthermore, the overall shape
and amplitude of the primordial power spectrum can be analysed, leading to a more
comprehensive understanding of the initial conditions of the Universe.

To achieve these advancements, the necessary adaptations to HiCLASS must first be
implemented. This development will allow for a complete understanding of the early
Universe, encompassing both the inflationary phase and the late-time evolution within
the framework of f (T) gravity, particularly in the context of the power law model. By
systematically integrating these scalar perturbation modifications, the insights gained
will contribute significantly to our understanding of cosmological dynamics and the
underlying physics governing the Universe’s expansion.

■ A Broader Look at f (T) Gravity and Teleparallel Horndeski Models

The preceding chapter primarily focused on the f (T) power law model. However,
for a more detailed analysis of f (T) gravity, the investigation can be extended to en-
compass other models, integrating the insights discussed in the previous two points.
This extension will necessitate further adaptations to HiCLASS to accommodate the
specific characteristics and requirements of the models under consideration.
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Additionally, this analysis can be generalised through the incorporation of Teleparallel
Horndeski models, which represent the teleparallel analogue of Horndeski theories,
which is the most general scalar-tensor theory of gravity. In this framework, f (T)
gravity is situated within a broader context. The exploration of Teleparallel Horndeski
models will not only enhance our understanding of f (T) gravity but also facilitate a
deeper investigation into the diverse behaviours of modified gravity theories.

By expanding the scope of the analysis in this manner, a richer and more nuanced un-
derstanding of the gravitational dynamics in cosmology can be achieved, contributing
to the ongoing discussion on the implications of modified gravity in the evolution of
the Universe.

In closing, this study has established f (T) gravity as a formidable contender to the con-
ventional ΛCDM model, adeptly addressing significant cosmological tensions such as the
H0 and S8,0 discrepancies. By leveraging diverse observational datasets, including super-
novae, baryon acoustic oscillations, and gravitational wave data, this research not only
highlights the model’s observational consistency but also its potential to offer deeper in-
sights into the universe’s evolution and the nature of gravity itself. As new astronomical
discoveries are anticipated, the framework of f (T) gravity is seen to pave the way for inno-
vative explorations into the cosmos, encouraging the scientific community to deepen their
understanding of fundamental physics in the pursuit of unlocking the universe’s mysteries.
Future work will involve the exploration of additional datasets and refined modelling tech-
niques to further validate the implications of f (T) gravity and to investigate its impact on
galaxy formation and large-scale structure. Through these efforts, a more comprehensive
understanding of the cosmos may be achieved, encouraging continued investigation into
modified gravity theories.
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A

Gaussian Process reconstruction of
w(z), O(1)

m (z), L(1)
m (z) and q(z)

In this appendix, the GP reconstructions of the dark energy equation of state, the O(1)
m (z),

L(1)
m (z) and the deceleration parameter are shown. First the GP reconstructions of the w(z)

are shown based on Eq. 4.3.
The next two reconstructions (O(1)

m (z), L(1)
m (z)) are related with each other as L(1)

m (z) is
the derivative of O(1)

m (z) and thus, they have the same general behaviour. At lower redshifts
there is a strong agreement with the ΛCDM scenario, however the situation changes for
higher redshift where a considerable divergence is featured. An exception to this, are the
R19 and HW priors as some deviation also exists at low redshift.

The last reconstruction includes the deceleration parameter which are based on Eq. 4.6.
This reconstruction provides a good indication for the transition redshift as it is denoted
by the point where the q(z) curve goes from a positive value to a negative one. The corre-
sponding transition redshifts are shown in Table 4.5. It is clear that when the BAO data set is
included, q(z) evolves similarly to ΛCDM. This is mostly due to its influence from the early
Universe.
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m (z) and q(z)
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Figure A.1: GP reconstructions of w(z) with the squared exponential (left) and Cauchy
(right) kernel functions, along with the ΛCDM prediction.
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Figure A.2: GP reconstructions of w(z) with the Matérn (left) and rational quadratic (right)
kernel functions, along with the ΛCDM prediction.
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m (z) and q(z)

Figure A.3: GP reconstructions of O(1)
m (z). Left: using the squared exponential kernel; Right:

using the Cauchy kernel. The reconstructions are complemented with the ΛCDM predic-
tion.
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Figure A.4: GP reconstructions of O(1)
m (z). Left: using the Matérn kernel; Right: using the ra-

tional quadratic kernel. The reconstructions are complemented with the ΛCDM prediction.
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m (z) and q(z)

Figure A.5: GP reconstructions of L(1)
m (z). Left: using the squared exponential kernel; Right:

using the Cauchy kernel. The reconstructions are complemented with the ΛCDM predic-
tion.
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Figure A.6: GP reconstructions of L(1)
m (z). Left: using the Matérn kernel; Right: using the ra-

tional quadratic kernel. The reconstructions are complemented with the ΛCDM prediction.
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m (z) and q(z)

Figure A.7: GP reconstructions of the deceleration parameter, q(z). Left: using the square
exponential kernel; Right: using the Cauchy kernel. The reconstructions are complemented
with the ΛCDM prediction and q(z) = 0.
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Figure A.8: GP reconstructions of the deceleration parameter, q(z). Left: using the Matérn
kernel; Right: using the rational quadratic kernel. The reconstructions are complemented
with the ΛCDM prediction and q(z) = 0.





B

PN+& SH0ES Results

This section presents the results obtained for the PN+& SH0ES data set, which enriches
the comparative analysis between PN and PN+. This investigation assesses the impact of
different data set combinations on the H0 tension and allows for the deviation in units of σ

between the resulting H0 values for each model and each data set combination, compared to
the P18 value using only the PN+& SH0ES data set, as depicted in Fig. 7.6. The constrained
parameter values for each model, derived from the MCMC analysis, are detailed in the table
below.

Model H0 [km s−1 Mpc−1] Ωm,0 pi M

ΛCDM 73.4 ± 1.1 0.334+0.021
−0.020 – −19.247 ± 0.033

f1CDM 73.3 ± 1.0 0.331+0.044
−0.070 0.28+0.22

−0.37 −19.248+0.030
−0.029

f2CDM 73.2+1.1
−1.0 0.318+0.023

−0.102 0.33+0.32
−0.26 −19.259+0.044

−0.021

f3CDM 73.2 ± 1.1 0.308+0.032
−0.099 0.33+0.34

−0.24 −19.225+0.040
−0.085

Table B.1: Results for the constrained parameters using the PN+ & SH0ES data set for each
model considered in the analysis section.
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C

Model parameter pi versus S8,0 plots

In this section, the posteriors together with their confidence regions of the pi and S8,0 pa-
rameters are presented in order to investigate the correlation between the two.
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Figure C.1: Contour plots showing the relationship between the p1 parameter and the S8,0
parameter for the f1CDM model (Power Law Model).
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