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ABSTRACT

Calculations of the type II string vacuum amplitude using the picture chang-
ing prescription have been shown to lead, in general, to a positive cosmological
constant. We show that there is a global obstruction to the choices of gauge slice
for superteichmuller space that lead to such measures. We discuss the general
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lations. We also discuss the relation of the functional determinant and conformal
field theory versions of the path integral measure, and show that, at arbitrary
genus and in arbitrary backgrounds preserving tree level N = 1 supersymmetry,
the measure is an exact differential. We evaluate the boundary integrals of this
total derivative at genus two in two ways for target space RI1° to show that the
integrals are zero. Finally, we use the factorization hypothesis to show that in
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1. Introduction

There has recently been some confusion in the subject of superstring perturbation
theory. Three issues in particular have caused trouble. First, there are several approaches
ﬁo writing d6w1_1 the super'measure on supermoduli sp';ace. There is the approach through
gauge fixed path integrals, the approach through conformal field theory and picture chang-
ing operators, and the approach through algebraic supergeometry [1]]2}[3][4][5](6]]7][8][9].
While very similar, the equivalence of the resulting measures is not obvious. Second, the
correct siatement of holomorphic factorization has been in question. Third, recent cal-
cula,tic.ons [10][11] have indicated that there are many subltleties involved in applying the
picture changing formalism of[1][12][6] to the calculation of higher loop superstring ampli-
tudes. Ambiguities involved in the choice of location for picture changing operators were
discovered in [6] and interpreted in {10] to be due to an intrinsic ambiguity in defining
integration over the variables of the grassman algebra [13]. A prescription for handling the
ambiguities inherent in the choice of location of picture changing operators was given in
[10] for the genus two case. In [11] it was shown that for a (standard) choice of gauge slice
the measure for the two loop vacuum amplitude of the type II string is positive definite
and fails to be modular invariant. The relevant choices of gauge slice are those which lead
to a measure factorized in the contributions of left- and right- movers where the supercon-
formal ghost correlator is computed only in terms of picture changing operators. One of
the purposes of this paper is to resolve some of the problems pointed out in [11].

The heart of t.he matter is the validity of the choice of gauge slice for supermoduli
space. In section two we discuss the issues involved in choosing a gauge slice. In particular,
we note {in subsections C and F) that certain standard results from teichmuller theory
imply that it is impossible to choose a gauge slice for which gravitinos have é-function
support and the measure is manifestly positive definite. Furthermore we analyze the
specific choice made in calculations on hyperelliptic curves and show that the gauge slices

used in the past cannot be everywhere transverse to the gauge action. Finally, we note that,
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in contrast to the bosonic string, in superstring theory modular invariance puts constraints
on allowed gauge slices. The choice made in hyperelliptic calculations {14][15]{16][17][11]
does not satisfy these conditions.

| in the rémé.ining sections we show that a good choice of gauge in fact leads to a van-
ishing two-loop cosmological constant for the type II string (in appropriate backgrounds)
as is physically reasonable. In section three we discuss the appropriate formula for the
measure, and in particular the relation between the formulae derived from the functional
determinant and conformal field theory approaches. In the course of this treatment we
give a component version proof of the holomorphic factorization of ghost determinants,
confirming the calculations of [7][5] for this case. We do not address the more subtle
question of the matter superdeterminants in any detail. In section four we show, using
the formalism of conformal field theory, that the type II measure is a total derivative on
modauli space, to all orders of perturbation theory and in arbitrary backgrounds preserving
tree level N = 1 supersymmetry. In section five we evaluate the boundary integrals for the
case c;f. genus two. In the first two subsections we consider the case of flat space. We first
use the factorization hypothesis and show that no operators of the relevant dimension and
ghost .charge can be exchanged. We then confirm the arguments with an explicit calcula-
tion in terms of theta. functions. In subsection C we again use the factorization hypothesis
to show that the boundary integrals vanish for spacetimes preserving tree level N = 1
supersymmetry 'except for theories which could develop Fayet-lliopoulos D-terms at one
loop [29][30]. For these backgrounds we find that the two loop cosmological constant is
proportional to the square of the Fayet-Iliopoulos D-terms (if any) induced at one loop.
Several technical points are treated in the appendices. Appendix A reviews elements of
- teichmuller theory relevant to the choice of slice and appendix B contains proofs of some

assertions needed in section two. Appendix C gives an understanding of why concentrating

! Examples of vacuua preserving N = 1 tree level supersymmetry in type II string

theory can be found in [18][19][20][21][22][23][24][25][26][27)(28]
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gravitino support at the Weierstrass points leads to a point-by-point vanishing measure.
The remaining appendices contain technical details on manipulation of the formula for the

superstring measure,

2. Global issues in the choice of slice
A. Supermodult space

We begin with a brief review of the differential-geometric approach to supermod-
uli space [31][32][2][3]{4][5]{33]{34][35]. Supermoduli space can be thought of in algebro-
geometric terms as the moduli space of super riemann surfaces [36](37][38] or in terms of
. teichmuller space for deformations of superfuchsian groups [39][40]. We mostly use the
superdifferential geometry approach, which emulates the fiber bundle approach to teich-
muller theory [41] since this is most closely connected with the gauge-fixed path integral.
Thus, instead of constructing a universal family of superriemann surfaces, from which
all other families are obtained by pullback, we consider a fixed supermanifold and the
spdce of certain structures on that supermanifold. We then define an equivalence relation
on these structures and define superﬁloduli space to be the set of resulting equivalence
classes. The appropriate structures in this case are frames Ep? in WZ gauge satisfying
the torsion constraints of two-dimensional supergravity [31] and the equivalence relation
is just equivalence by superlorentz superweyl and superdiffeomorphism transformations.

More precisely, consider a C real 2-surface £. We choose

a.) an open covering {U,},

b.) a complex structure with holognorphic cotangent bundle Ky

)
L1
¢.) Two spin bundles, K and K,
)

d.) Nonvanishing C* sections
1
B €T (Uq, KE)

i
0o € T (Ua, K2)
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such that (#2)* = 52.
Note that e, = 62 and its conjugate defines a frame, which specifies a metric, which
i
induces the complex structure Kp. Of course, there are no global sections of K2, but we

may choose 8, so that . :
balp) = €22P)g5(p)

Ba(p) = e ¥=+ P14 (p)

for p € U, N Up with e2'? = ¢2*¥ defining the transition functions of the complexification

(2.1)

of the tangent space TX @ C. Having made these choices we form the supermanifold
5 = (X, 4) where 4 is the sheaf of algebras A(U,) = O(U,) ® A*(84,0,) [42]. Here O is
the structure sheaf of the reduced manifold (i.e. to each open set it assigns the abelian
group of C° functions on that set) and A* is the exterior algebra with the indicated
generators. A frame is a basis for the sheaf of derivations of A as an A-module. We will
consider frames which transform diagonally across patches, and hence may be specified in
terms of tangent space indices 4 = 2z,%Z,+,—. Objects with an upper + index transform
as e"%’ etc. A frame is denoted by E4 and its dual by E4. To obtain an interesting
geometry one imposes the torsion constraints {31]. As explained in [33] some of the forsion
constraints are conveniences, some ensure that the frame defines a complex structure and
some ensure that the frame defines a superconformal structure. Thus a frame satisfying
the torsion constraints defines a superriemann surface.

One can remove certain trivial degrees of freedom in the superdiffeomorphism and
superweyl groups to specify that the frame be in WZ gauge 2. WZ gauge is really a partial
fixing of allowed coordinate systems. Howe shows that a frame in WZ gauge is uniquely
specified by the -independent parts, e,%, of E?, ET. Since we will consider families of
structures on a fixed supermanifold, and not families of supermanifolds this prescription

- is unambiguous. It follows that there is a one-one correspondence between frames in WZ

2 Qur definition of WZ gauge is related to Howe's definition of WZ gauge by using
superweyl transformations to set his auxiliary field A and the spin-% componenis of the
gravitino to zero.



gauge satisfying the torsion constraints and pairs (e, %), where e = €7 is a C'™ section of

[~

Ky and ¥ is a € section of the C* bundle Kﬁ_ 2 g K. Specifically, referring ¥ to the
orthonormal frame e, 8, so that ¥ = Y3 we have [31][34]
E*=e—df-0+e0%
(2.2)
Et = df + 1e(ibw + 00Dx) + Le(i6w + x)
where w is the usual spin connection. E?, E~ are obtained formally by conjugation. Since
E~ has a different spin structure from ET this conjugation is only formal. Note thai we
obtain a family of frames by varying e, %, holding the transition functions implied by the
frame indices A, and the meaning of # fixed. We could further specify complex coordinates
for the reduced manifold u,%, which are compatible with the complex structure at the
basepoint Kp. Hence, (2.2) is just the supersymmetric analog of the representation of all
frames on a manifold by e* = due, * + die; * = e?(du + udz), where the frame indices 2, 2
and coordinates u, % are held fixed and the complex structure varies with u, the beltrami
differential.
'i‘he set of pairs ¥ = {(e,X)} is an infinite dimensional manifold. The action of local
weyl and lorentz symmetries can be combined into a set of maps {fo : Uy — C*} which

agree on overlaps, and form a group C, acting by

e — fe
(2.3)

In passing to WZ gauge, the §-dependent part of superdiffeomorphism symmetries have
been fixed [31]. What remains are ordinary diffeomorphisms acting by pullback and su-

pergravity transformations, specified by an anticommuting (—%,0) form ¢, and acting by

68 =20
58 = €30
_ (2.4)
6% = 20¢
dx =0



Denoting by D the set of superdiffeomorphisms, we find that the commutators of the
infinitesimal actions of C x D close and exponentiate to form an infinite-dimensional su-
pergroup.

. We define supermoduli space M in terms of frames in WZ gauge as the set of equiv-
alence classes of frames (e,X) € ¥ under the action of the symmetries C x D. This is
the space of interest for computation of the Polyakov path integral. It has not been com-
pletely proven that it is the moduli space of super riemann surfaces in the sense of algebraic
geometry, although some steps in this direction have been taken in [33].

Similarly, superteichmuller space T is obtained by dividing just by the diffeomor-
phisms connected to the identity Do. The set F/C can be thought of as the space of
~ sections of a homogeneous manifold, analogous to GL{2,R)/C"* in the bosonic case, and
can probably be topologized in such a way that the theory of [41] can be repeated in this
setting. We have not done this, but will assume it can be done and proceed. From the
index theorem applied to the operator 3 acting on vector fields and {—1/2,0) forms we see
that supermoduli space is a real superspace of dimension (6g — 6|4g — 4). In fact, it is a

complex superspace [40][5|[34] of dimension (3¢ — 3|2¢ — 2). This completes our review.
B.Slices and total derivative ambigutties

Amplitudes for the superstring are integrals of volume forms over supermoduli spaces
(perhaps with punctures). In contrast to the bosonic siring, superstring densities are
made from a cotangent space which has an even and an odd part. Existing computations

-of superstring amplitudes typically begin by integrating out first the odd moduli to obtain
a density on ordinafy moduli space. The final integrand suffers from an ambiguity because
it changes by a total derivative in the moduli under a change in the choice of slice [6]. The
ambiguity has its origin [10] in an intrinsic ambiguity in defining integra.tioﬁ over elements

~ of a grassman algebra [13] and may be illustrated by the following simple example. Let us

consider the integral

f dzd0d F(z,0, $) (2.5)
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where z is an even element of the grassman algebra, and #, ¢ are the odd elements. In

order to define the integral, we need to express z as,
r=y+200 (2.6)

where y and z are real numbers, and choose a contour in the (y, z} plane:

2 = h(y) (2.7)

where h is a single-valued function of y. The integral (2.5) may then be writien as,

[ dty + hw)os)anas iy + h(s)94,0,9) (2.8)

It is not difficult to see that if we take a different function A’(y}, the difference is a total
derivative in y. The point to note here is that although y + 28¢ and y + 2’0¢ are two
different points in the z plane {for z # 2'), we do not include both these points in the
domain of integration. Instead, for each y, we choose one and only one value of z given by
z = h(y).

Let us now consider the case where the z space is taken to be compact. More specifi-
cally, let us take two points z and Z to be equivalent if Z = z + 1. This, of course, makes
sense if the function F to be integrated is invariant under such a transformation. At this
point, note that in order for the integral {2.8) to be well defined (i.e., in order that the
~value of the integral does not depend oﬁ which fundamental domain in y space we choose),

the function hA{y) must satisfy,
Ay +1) = h3) (2.9)

Furthermore, notice that given two such functions h{y) and A'(y), both satisfying (2.9),
the difference in contribution to (2.8) will be a total derivative, and after integration will
give equal and opposite boundary contribution at the two ends of the y integral. Thus the

value of the integral is independent of the choice of A{y) as long as it satisfies (2.9).
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Let us now return to the case where the variables of integration are the graviton and
the gravitino, defining some even and odd variables of a grassman algebra. There are two
different approaches that can be pursued for computing the superstring vacuum diagram.
fn the first approach, one ‘treats the even and odd coordinates of the supermoduli space
on an equal footing, and expresses the superstring partition function as an integral over
the supermoduli space with a certain measure. The computation of the measure, in turn,
requires us to choose a gauge fixing slice. In this scheme, a slsce is just a map from a region

R € ¢39-3120-2 45 frame space: f: R — F. It is useful to keep the following picture in

mind:
7
/
R L (2.10)
N
T

A good slice is one for which wo f : R — T is one to one and onto a region in T. If is often
useful to distinguish between local and global properties on T, so we reserve the term
global slice for g = 7 o f which are onto T. For a good slice, the image of f is transverse
to the action of the gauge group and hence defines a local cross-section of the fibration
¥ — T. Conversely, if we are given a one-one map ¢ : R — T and if s is a cross-section,
then so g is a good slice. Finally, the space 7/C can be identified with the space of pairs
{{1, x)}, which has a natural complex structure, so we can speak of a holomorphic slice.
This is a holomorphic map C?¢~3%-2 7. Superteichmuller space also has a complex
-structure, and the map 7 is holomorphic, so if f is a holomorphic slice then ¢ = 7o f :
C39-3129-2 , T is.holomorphic. Holomorphic slices are useful in the computation of the
string amplitudes because for such slices the Fadeev-Popov determinant factorizes into a
contribution for the left and right movers, which is important to holomorphic factorization.
" From the well-known theorems that T is Stein and topologically trivial, [43] together with
Grauert’s theorem that holomorphic bundles on topologically trivial Stein manifolds are

holomorphically trivial [44] , it follows from the Bers embedding that 7 is isomorphic to a
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region R C C39—312—2, This does not mean that there exists a good global holomorphic
slice. In fact, already in the case of ordinary teichmuller space, a theorem of Earle [45]
asserts that there is no global holomorphic section of the space of conforinal structures over
teichmuller spate 2. Thus we cannot work with a global holomorphic slice. This, however,
does not prevent us from choosing slices which are holomorphic on local coordinate patches
in K.

In this way of doing the computation, we have not introduced any ambiguity in defining
the integration measure so far. But at this point, in carrying out the integration over the
elements of the grassman algebra, we have to invoke eq.(2.8) for defining integration over
the even elements. As a result we get a total derivative ambiguity, due to the ambiguity
in choosing the function h{y).

In the second way (which has proved to be of more practical use so far, and which
is the method we shall use in later sections of this paper) one proceeds as before, but
carries out integration over the odd variables of the grassman algebra before attempting
to calculate an expression for the measure in the supermoduli space. As should be clear
from the example quoted above, one must choose the analog of the section h{y) in eq.(2.7)
before carrying out the integration over the odd variables. In this case the role of the
variable y is played by the 6g — 6 real (3¢ — 3 complex) coordinates t™ of the moduli space
of an ordinary genus g surface, whereas the role of 4, ¢ is played by 4¢ — 4 odd elements
of the grassman algebra C°129—2. Locally, the space spanned by (t”,¢?) is isomorphic to
a subset of a vector space: R C C39-310 g C020-2, In order to carry out the integral, we
" need a map to a supermanifold h: R — R C C393120-2 The map h is analogous to the
map (y,8,4) € RiIO ® R%2 - (y + h(y)8¢,8,¢) € R'? that we needed in the previous

example. The situation is best explained by extending the diagram (2.10) as follows:

7
h /
R - R = (2.11}
N
T

3 For completeness we sketch the idea of the proof of Earle’s theorem in appendix A
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Note that we must distinguish between the spaces R and R. The even elements of R have
no even nilpotent part, and are analogs of the variable (y,8, ¢} in the previous example.
On the other hand elements of R have even nilpotent parts, and are the analogs of the
x?é.riables (z,8,$) in the previous example. If f : R <> ¥ is the map defined previously,
then we get a new map 7 : R — ¥ from (2.11) as 7+ = h o f. Thus given any point
(¢7,¢*) € R, the mapping 7 gives a specific configuration of the zweibein e(i,¢",¢*) and
gravitino x{#,t", ¢%), ¥ denoting coordinates on the genus g surface in some fixed coordinate
system. In the present formalism, it is the map 7 (i.e. specifying e{%,t", ¢%), x(%,%",¢®) for
every point on R) that is defined to be a gauge slice. 7 thus contains information about A

as well as f, in fact for a given 7, both f and h are uniquely determined using the local
isomorphism ¢ between K and T.

It is then clear that choosing the slice (e, x) not only amounts to choosing a specific
point on a fiber containing gauge equivalent configurations, but also a specific choice of
contour out of many gauge non-equivalent contours, through the map h. It is thus hardly
surprising that when we make a different choice of slice 7, In general we have made a
different choice of the map h, and the final integrand changes by a total derivative as a
consequence. By the same token, since the moduli space is obtained from the teichmuller
space by identifying various points related to each other by the action of the modular
group, the choice of the slice 7 must satisfy constraints analogous to the constraint (2.9).
In particular, if ¢ and ¢ are two points in the teichmuller space related to each other by a
‘modular transformation, and (e, x), (€, X) are the corresponding points on the slice above
(t,£), then (€,%) must be related to (e,x) by a combination of (global) diffeomorphism
and supergravity transformations. For given {e,x) this means that if we fix x and the

reduced part of €, the even nilpotent part of € is completely determined. {In this form the
| constraint is manifestly of the form of eq.(2.9) for when the reduced part of z is one then
the even nilpotent part of z is determined in terms of 8, ¢, and h(1), which, in turn, is

determined by kh{0), i.e. the the value of z at y = 0.) On the other hand, if we fix both,
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the reduced and the nilpotent parts of €, then ¥ is determined by this constraint in terms
of €, e and x. We shall discuss the implication of these constraints for a special class of
slices in subsection D.

| Finally, ‘note that even if the map f gives a holomorphic slice on local coordinate
patches in R, the map 7 = A o f may not be holomorphic i h is not holomorphic. In fact,
as we shall show in subsection G, we cannot find a map 7 which is holomorphic in each
local coordinate patch in R, and can be patched together globally in a way that the string
integrand is well-defined (i.e. takes the same value in the two coordinate patches) in all the
over]aﬁ regions. Even if we do not work with a holomorphic slice, it is still useful to use
complex coordinates on supermoduli space since these help distinguish the contributions

of left and right- movers to the measure.
C. Derwvatives of slices

In order to carry out computation with a given gauge slice, or to determine if a
giv.en:slice is a good slice, we need to define tangents to the space of slices. Choose
coordinates {f",¢%) with r = 1,...,6§ —8,a=1,...,49~4for Rand aslice f:R— ¥
with f(Z,¢) = (e{f,¢),%(f,¢)). (Note that we have used the variables f™ to indicate that
they denote even elements of the grassman algebra, rather than real numbers.) Then the

tangents are defined as,

LI S kr11 a =

Nz = (eE affem)

A a

Raz — (e?@ oy

- 3 —_

lrs’ = 22X
(2.12)

ﬁ + — iy

az aga

. 2]

nrz - 8£rx

o _ 0

Naz = 3§“



where e™ = (e, el") is the inverse of the matrix (eZ,,e%). If (t",¢?) denote coordinates

for R, then given the map 7 : R — ¥ we may define the tangents to R as

m 2 z
.7 = ez ét_”em)
m 2 z
Naz = (ez agaem)
a _
nr2+ - atrx
p (2.13)
+_ 9 _
naf - 6§a
3
Nrz = W
_ d
na,z = agax

which may be obtained from the #’s using the chain rule of differentiation using the map
h:R — R.

In order to give proper meaning to eq.(2.13) we must first define what is meant by
differentiation of a slice with respect to moduli. If we are given a family of frames with
fixed :tra.nsition functions, as in the family (2.2) then we simply differentiate patchwise.
However, sometimes we may be given- a family of frames in which the transition functions
implied by the tangent space indices also vary. We will need to discuss how to define the
derivative of frames in that case.

The definition of differentiation relies on the fact that differentiable C* bundles and
U{1) bundles are classified up to isomorphism by their first Chern class. Using the isomor-
| phisms between K1/2 and Ké/ ? we may consider e, x to be families of sections of a fixed
bundle, which may be differentiated in an obvious way. We now recall the proof of some
standard facts which make this possible [46]. We will denote by Ac-, AR, ... the sheaf of
. differentiable C'*, R...-valued functions. Isomorphism classes of differentiable C* bundles

may be thought of as elements of H!(A¢-). From the exponential sequence

0—Z— Ac— Ace — 0 (2.14)
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and the fact that H?(45) = O for ¢ > 0, *we learn from the long exact sequence that
HYAc Y= H*(Z)=Z (2.15)

where the connecting hombmorphism is given by the Chern class. Similarly, from the map
f — f/|f| we obtain

0— Ap — Ac- — ﬁU(l) —0 (2.18)

giving H'(Ac-) = H'(Ay(qy). Thus, we may speak interchangeably of C* and U(1)
bundles.

In concrete terms what we have shown is the following. Suppose we have a family of
riemann surfaces over a small open set § C T. We can choose a fixed covering U, of the
topological surface, together with transition functions {g.p(t)} for K;, t € S. From the
above conéiderations we see that for { € § near some point ¢ty € S, there exist C° C*—

valued functions f, () defined on each patch such that

fa(t)/fﬁ(t) = gaﬁ(t)/gaﬁ(to) (2'17)

Using the trivialization {f,(t)} we may consider a section e, of K; as a section {f; leq} of
the fixed bundle K, . Thus, to differentiate a family of frames, we refer them to a standard
bundle and differentiate patchwise.

Since we must also differentiate the gravitino with respect to the moduli we must

" actually find a set of C' trivializations {£4(t)} of K /2 S1f we adopt the above definition

4 One may prove this using a partition of unity. Technically, Ac is a fine sheaf [46].
5 The existence of such trivializations does not contradict the fact that there are 229

inequivalent spin bundles. The transition functions of a spin structure kog are U(1)-
valued functions such that k2, are the transition functions of the canonical bundle. A
trivialization of the difference k,/k; of two spin structures requires U(1)- valued functions
fo such that fo/fs = +1 on the overlaps. By contrast, if t; and t; are related by modular
transformations then ko{t1)/kq(to) needn’t be constant. On the contrary, if the spin
structures are inequivalent, they cannot be constant.

14



of differentiation with respect to the moduli, then we must write the gravitino in terms of

these trivializations; the section {x.(p,t)} at t of Ki._l’/2 ® K, is written as the section

{=1(t,p)R*(t, P)%(p,2)} (2.18)

of Kt_el/ 2 ® K;, This choice of slice has the difficulty that the whole construction is ex-
tremely noncanonical. There is a further apparent difficulty because there are points in
T fixed by symplectic modular transformations Sp(2g,Z) C T. At such a point 7* the
squareroot K1/2 is ambiguous. Although two choices of K,lim will be isomorphic as C*
bundlés, the isomorphism must be nontrivial since they are inequivalent spin structures.
~ Thus {(r*,p)}o are ill-defined, and this ambiguity will lead to discontinuities in the sec-
tion (2.18). However, these discontinuities occur on manifolds of high codimension so they
shouldn’t matter ®. In any case, as we shall see in subsection D, the x(t,p) appearing in
eq.(2.18) drop out completely from our calculation, and hence the final result is free from
any ambiguity that occurs in choosing «(t, p).

" One fairly concrete realization of the above procedure is provided by the uniformiza-
tion theorem. Recall that in the bosonic case every riemann surface T may be regarded as
the quotient of the upper half plane U by a fuchsian group I'. Furthermore, U has a unique
complex structure. Thus, if two riemann surfaces Xo, ¥ are represented by ng : U — g

and 7 : U — ¥ we know that there is a2 quasiconformal map w such that

v Y v
_’
mo | T (2.19)
20 - =

commutes. In terms of metrics ¢, ¢ inducing the complex structures, if we arrange that

- wggo = e®|dul? then w*n*g = e?|du + pda|? where p is a beltrami differential for T'. In

€ It is only for the hyperelliptic locus at ¢ = 3 that the discontinuities occur on a
codimension one subvariety. In this case the nontrivial diffeomorphism is the hyperelliptic
involution which does not change the homology basis and therefore fixes the spin structure.
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this way we can map a family of riemann surfaces to a family of metrics on the fixed
coordinate system provided by a fundamental domain for I’ in U. Also, in this way we see
the correspondence between beltrami differentials and tangents to the gauge-fixing slice
m the Polyakov path integral. Note that the choice of w is not unique since a metric
and its diffeomorphic image define the same riemann surface. Hence, even in this more
restricted and concrete setting provided by the uniformization theorem, the meaning of
differentiation is highly noncanonical.

In the super case we will use the old uniformization theorem to pull back frames ¥
to frames on the upper half plane: e~ %/28 pulls back to a (not necessarily holomorphic)
automorphic form for I" of weight —1 and multiplier system specified by the spin structure.
Thus, transition functions identifying the boundary of a fundamental region are of the form
z — 48 and e79/20 — (cz+d)~'e~%/26. This should not be confused with superfuchsian
uniformization.

One advantage of this viewpoint is that we can use it fo give a simple criterion for a

good slice. This is done with the help of the simple and well-known

Lemma: A necessary and suﬁicie-nt condition for the slice f(i,¢) to be a good slice is

that for all (f,¢) € R the matrices:
(A (), #°(2))
(#:(0), ¢ ()

“are tnvertible, where 97, v® are nondegenerate bases for H(K?) and HO(K3/?), respec-

(2.20)

tively.

Proof: We obtain a good slice iff for all (f,¢) the map d{m o f) : TRz s — Ty is

invertible. Splitting tangent vectors into even and odd components we have

a L] o~
f(g?) = anz © ’?ri_i_
; (2.21)
df( ) = ﬁa2+ & ﬁaéz




Furthermore, (TT)* = H°(K?) @ H°(K?3/?), and, given v = vo @ v; € T(K-1 @ K) @
MK~ Y2 K)and ¢ = ¢ ® ¥; € H°(K?) @ HO(K%) we have the dual pairing

(v,9) = [ votho + f vith (2.22)

Thus, g = 7 o f is invertible iff
(A, %) (flar¥?)
Ber ( (ﬁr,f/b] (ﬁa,f/b) #0 {2.23)

which is true iff the matrices

(ﬁa(f),ub(f))

_ (2.24)
(ﬁt' ({) ) ¢J (ﬂ)

" are invertible. g
Note that the matrices (2.24) are invertible if and only if they are invertible after
reduction by nilpotents. Furthermore, the n’s differ from the #’s by nilpotent terms.
Hence the criteria for v to be a good slice is that the matrices
UNGRAG)
| (2.25)
(n:(2), 9’ (t))
are invertible.
The condition for a holomorphic slice is also conveniently phrased in this language.
We use a set of holomorphic coordinates for R, (2,17, ¢%, gg) where 1,7 runs from 1 to 3g—3

and £, runs from 1 to 2g — 2. When there is no need for distinction we write these indices

‘as {r,e) to stand for r = (s,%) and a = {£,£). The condition for a holomorphic slice is
fk_z — qi_'i_ — nZiz — nz__-i_ =0 (2.26)

One of the most important consequences of the integration ambiguity is that the
positivity properties of the supersiring measure depend on the holomorphy of the slice.
In the bosonic string the measure is positive definite. If we choose a holomorpic slice the

measure is in fact a square-modulus of a holomorphic form (up to factors of detImr) [47].
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If we do not choose a holomorphic slice the measure is not naturally an absolute square,

but the change of variables (on the cotangent space)

ds? = dt*(n,.", ¥2,) + dt (n", ¥L) (2.27)
on the (analog of ) R shows that the measure

Monwu(0g) G0) e

which is not manifestly positive, is in fact just ][] ds* A ds?, which is manifestly positive.

In the superstring this argument fails because of the integration ambiguity. For a
holomorphic slice the measure is still positive semidefinite in the supersymmetric case, as
we will see in section III. However we cannot relax the holomorphy condition, for even if
we choose a slice with

1?;2—!' = 7]2.‘; = "'E; =0 (2.29)

if 7,5* # O the superanalog of ¢ contains even nilpotent terms and the superanalog of the
change of variables (2.27) alters the measure by the addition of a total derivative. Thus, in
superstring theory Earle’s theorem has the important consequence that we cannot choose
a good global slice for which the measure is manifesily positive semidefinite This, by itself,
does not mean that the measure is not positive semidefinite, since one could try to choose
holomorphic slices on local coordinate patches, in 2 way that on the region of overlap the
two slices give the same answer for thé string integrand. As we shall see in subsection G,

in some cases it is even impossible to choose such a set of local holomorphic slices.
D. Special slices and b-function graviting

We now discuss a class of slices that we shall be using in our computation. These

slices are characterized by two conditions, the first of which is,

af
sgga =0 (2.30)
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i.e. the even nilpotent part of the metric is taken to be zero. This, in particular means
that 7 = n,# = 0. The second condition is that ¥ have é-function support. We shall
discuss this is some defail now. First some notation: In earlier subsections we have
iﬁtroduced a fixed coordinate system (u,%) = @ on the riemann surface. In particular @
could be taken to be the coordinate system such that at a specific point ¢o in teichmuller
space g¥% = g%¥% = 0, the corresponding frame indices were denoted by 2,2, +,—. It is
convenient at this stage and for later analysis to define a new family of coordinate systems.
This is done as follows: Let v# = (v, 7;) be the coordinate system such that the metric
components g*¥ = ¢g°¥ at the point ¢ in teichmuller space vanish. In other words (v, 5;)
for a given t is defined to be the coordinate system that diagonilizes the metric on the
riemann surface at the point ¢ in teichmuller space. By definition the (u,&) coordinate
system is just (vs,,0:,). We should also associate with the (v¢,3;) coordinate system the
compatible frame indices (2, % ,‘+¢, —¢). However in order to avoid cluttering our formulae
below we shall suppress the subscript ¢ on all frame indices and ocassionally we do the
same thing with the subscript on the coordinates (v¢,9¢). No confusion should arise, the
precise meaning should be clear from the context.

A convenient choice of slice for the gravitino is given by:

s (ve,t) = D ¢*6 (v — ve(ga(t)) (2.31)

for every ¢, where v;(gq(t)) are the coordinates in the v; system of some set of poinis
{4a(t) : @ =1,---,2¢g — 2} where the gravitino has its support on the riemann surface. A
similar expression can be written for x,~ with a support at {g.{t) :a =2¢g—1,---,4g—4}.
These points in general will be allowed to move as we change . We now apply the remarks
of subsections B and C to this specific class of slices.

We first discuss the differentiation of é-function slices. As explained in subsection C
one way to give a meaning to slice differentiation when the slice is defined in a “moving

coordinate system” (as is the case in {2.31) ) is to pull back ¢, (vs,¢) for every ¢ to a fixed
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coordinate system, say the u system (this gives a family of sections ¥ ;’ (u,t) parametrized
by t, of one fixed bundle) and then differentiate the resulting family patchwise in the
obvious way. More concretely to compute %3;1 at some point ¢ we pull back both x{v¢, 1)
éu;ad )Z(vt+5t,“t + 6t) to the u coordinates and then take the obvious difference. However
for computational purposes, it may be more convenient to pull back only x(vits:,t + 6t)
to the v; coordinate system and then take the infinitesimal difference with x{vs,t). ( This
is of course equivalent to computing the difference in the u coordinate system and then
pulling the result back again to the v; coordinates). X(veis:,t + 6t) expressed in the v,

coordinates takes the following form:

kTHE+ 6E)RE(t + 8t)  O(ve,Ty)

ot = 1480) = 365 oem{aalt+51) |

: (2.32)
where the jacobian factor comes from the transformation of the § function. For a delta
function slice all the manipulations that we shall carry out below can be shown to be

manifestly invariant under a change 62 (v — v,) — f(t)6¥ (v — v,) of the basis, where

f(t) is an arbitrary function of £. In other words, in calculating %QE we may ignore a’;(:)

term. "Therefore we may ignore the factors of k in the transformation law, and the basis

given in eq.(2.32)is equivalent to a basis where,

Ko, t +88) = Y ¢*8 (v, — ve(qalt + 81))) (2.33)
a
"and so,
X i {x(ve,t + 6t) — x(ve, 1))
— = llm
ot §t—0 &t

ok (2.34)
— Zga%‘s@}(ut _ Ut(qa(t))a 3 (aqta(t)) .

7 This may be seen as follows. The only place where %?;C appear in our formulae, is
in % [ d?vfe ()63 (v — v,)B(v), where 8 is a commuting ghost. Each such term is also
multiplied by a factor of §(8). Thus all terms where the % operator acts on f(i) vanish
identically, being proportional to 8{v,)6{8{vs)).
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where,

i (ga®)) _ | [vi‘(qa(H&)) —vi‘(qa(t))]

— 2.35
at 5t &t ( )

In particular, the choice %‘-;C = { corresponds to aqTi't(tl_-_: 0, i.e. the points do not move on
the riemann surface for this choice. As mentioned in subsection C, a useful way to compute
dv /8t throughout teichmuller space is provided by the uniformization theorem. We will
use that point of view in subsection F. In a similar way we we can work out differentiation
with respect to odd moduli.

It is not obvious that the gravitino slice {2.31) (which partially specifies the map f in
(2.10) ) defines a good slice. By the above lemma, a necessary condition for a slice with

;22‘ =3 . g“8(2)(v — v,) to be transverse to the gauge directions is simply
detv®{t,v3) # 0 (2.36)

for all ¢, where v* (t,p) is a basis of holomorphic 3/2 differentials. As explained below
eq. (210) we know that we can find a globally defined basis v*(¢,p) of holomorphic 3/2
differentials. For such a basis the condition that {2.36} hold for all t € T is the condition
for a good slice.

When the condition (2.36) is fulfilled then, given any X7, we may find a gauge trans-

formation parameter € such that,

%5 =) ¢*Ras6@ (v —vy) + 93¢ (2.37)
ab
where,
= / 2v'G(v, v')xE (v') (2.38)
and,
PRy = (v (z)) ! fdzv’uc(v')zb;'(v') (2.39)



G(v,v') € K72, ® K3?%|, is the parametrix for the operator 8 acting on (—1/2,0)

forms, satisfying,

3sG(v,v') = 6(2)(1) L Z 5(2)(1; —.‘vb)v“ (v') (% (vs)) L. (2.40)
’ a,b ;

Thus we can always pass to a §-function supported gravitino slice as long as (2.36) is

satisfied.

E. Constraints of Modular Invarsance: Implications of the Integration Ambigusty

We now attempt to clarify the role of modular invariance in the choice of slice. Again,
we shall confine our discussion to the specific class of slices defined by egs.(2.30) and
- {2.31). We have been describing a slice for superteichmuller space, but string amplitudes
are obtained by integration over supermoduli space, obtained by dividing T by the action
of the modular group D/Do. Recall that if {{e,X}] € T and v = [¢] € D/ Do then this action
is defined by - [(e,X)} = [¢ - (¢,X)] where ¢ acts by pullback. In the case of the boscnic
stri.ng_., where the measure is completely slice-independent, modular invariance provides no
additional restrictions on a slice. Recall that if £, { € R map to points g(t),g(ﬂ eET
related by a modular transformation: «y - g(t) = g(t} for ¥ € D/Dg then, if we represent
4 by a particular global diffeomorphism ¢ € D, the action of ¢ will take the frame f(t)
to another frame ¢ - f(¢) which needn’t be equal to f{f). By the definition of a slice, the
frames ¢ - f(t) and f(t) are related to one another by the action of gauge transformations
connected to the identity. Thus, an anomaly free measure p computed in two ways with
" the aide of one slice passing through ¢- f(t) and another passing through f(#) will yield the
same volume form at ¢ € T'; indeed this is what is meant by “anomaly free.” In the bosonic
string the question of modular invariance is the question of whether ')f*(,ug(gj) = pg(¢) for

all v € D/Do. This is a nontrivial condition on the measure, and not on the slice. Since
| ig(t) is completely specified in a given theory, this, in furn, is a constraint on the theory.

In the superstring the above argument is not valid because of the infegration ambi-

guity, and modular invariance gives a constraint on the slice, as discussed in subsection B.
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Given two points t7,1" in teichmuller space which are related by a modular transformation,
we know from the previous discussion that the slice (e, x) at (t,¢) should be related to the
slice (&,%) at (t,¢) by a gauge transformation. Gauge transformations in general include
'&iffeomorphisms and supergravity transformations. But the supergravity transformations
(2.4) lead to even nilpotent terms in the metric. Thus if we want to work in the gauge
(2.30) where the even nilpotent part of the metric is zero at every point ¢ in the teichmuller
space, the slice (e, x) at t must be related to (¢, %) at { purely through a diffeomorphism.
Since the global diffeomorphism ¢ representing ~ is not unique one might ask if there are
further conditions on the choice of slice. The answer is no. As we show in appendix F the
measure is invariant under change of slice by diffeomorphisms connected to the identity.
~ Thus the above condition on the slice is both necessary and sufficient. The condition of
modular invariance is the analog of the condition (2.9). We will call a slice r = ho f a
modular invariant slice it it satisfies this criterion. With such a choice of slice, the con-
dition v*(k4(5y) = Hg(r) on the measure is automatically satisfied in a modular invariant
theor__y, as long as + is a pure diffeomorphism.

We now analyze how the condition of modular invariance constrains the é-function
slices satisfying (2.30). Although any two 8-function supported gravitinos are related by
a supergravity transformation, the condition of modular invariance requires that x and ¥
at ¢, must be related by a diffeomorphism. In addition e and ¢ must also be related by
the same diffeomorphism. If we consider diffeomorphisms as active transformations then
we consider a family of frames eZ (¢, %) in a fixed coordinate system #, as in subsection C.
| In the coordinate system % the gravitino support is located at @, (t) = ©(q,(t)). If t=r-t
then, having chosen e(t) and e(f) there is a unique 3¢, with [¢] = ~, and ¢*(e(t)) = ().

The condition of modular invariance then includes

¢~ 8, {t) = @alf) (2.41)

This is true except at the orbifold points of the moduli space where ¢*?(t) has
isometries. In this case the points #,{t) must be taken to be at the fixed points of the
isometry of g®P(t)[6].

8
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The physical outcome of imposing the constraint of modular invariance is the following.
After integration over the odd variables, we may express the partition function as an
integral over the teichmuller parameters with a certain measure. In order for the answer
£§ make sense, the measure must be modular invariant. However, as we discussed earlier,
under a shift of the points @,, the integrand changes by a total derivative in the moduli.
Hence if t and ¢ are two points in the teichmuller space related to each other by a modular
transformation, then, for arbitrary choice of the @,(t) and #,(f) the integrands cannot be
related to each other by modular transformation. What the constraint (2.41) does is to
determine i, (f) for given #,(t) in a way that ensures that the integrand at £ is indeed the
- modular transform of the integrand at .

In fact, the constraint that the #,’s are chosen so as to satisfy the requirement (2.41)
will be crucial for our analysis. In sec.IV we shall show that the superstring partition
function may be expressed as f 11, dt” 8’;{' , where MT is some known correlation function
of operators inserted at the points #,. If we represent the moduli space as a fundamental
domain in the teichmuller space, then the domain, in general, has many boundaries which
are identified with each other by modular transformation. In order that the integral over
t" does not receive contribution from these boundaries, M” must transform like a vector
density under modular transformation. Again, since M" depends on the choice of the
points @, this is not going to happen if @,(t) and #,(t) are chosen arbitrarily. Again,
the constraint (2.41) chooses #,(¢") for a given #,{t”) in such a way as to ensure the M”
“transforms like a vector density in the moduli space. In this case [ ], dt"% receives
coniribution only from true boundaries of the moduli space, namely, when the surface
degenerates into two lower genus surfaces. In appendix G we show that when (2.41) is
satisfied M" transforms correctly.

Even after a good global modular invariant slice is chosen, the ambiguity may not be
completely resolved. The ambiguity is a total derivative and the constraint of modular

invariance only ensures that this total derivative yields mutually cancelling contributions
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at the boundaries of the fundamental domain in teichmuller space. If moduli space were
truly compact that would be the whole story. However moduli space has a boundary
describing riernann surfaces that degenerate into two lower genus surfaces. Compaciifying
ﬁ-loduli spa.ceﬂ does not help since the integrand could dévelop a pole on that hypersurfacein
moduli space. Consequently, in general, as was shown in {10] for heterotic string theories
( equally valid conclusion holds for the type II string ) the ambiguity is present, even
after integrating over the moduli because of non-vanishing contibutions from the total
derivative in the integrand at that boundary. In this case it seems that one has to invoke
the constraint of BRST invariance in order to determine the correct choice of slice. At
~ genus ¢ = 2 this was enough to eliminate this ambiguity [10] for the vacuum amplitude {see
sec. 5). It is not known at this moment whether BRST invariance at higher genera (or for
higher point functions j will be equally powerful, or whether one needs to invoke additional
principles. We again emphasize that the ambiguity is not related to the fact that we have
carried out the integration over the odd coordinates before the even ones. The ambiguity
is pre:s,ent even in the formalism where we treat the even and the odd coordinates on equal
footing, only it appears at a later stage. In short, the ambiguity comes from an ambiguity

in choosing the domain of integration, not in choosing the measure|10].
F. Applications to hyperelliptic calculations

The discussion in the previous section may be made more concrete by working in the
hyperelliptic representation of g = 2 curves.®In this context we shall also critically examine
a further condition on the choice of slice that has been used in the past, besides those given

in egs.(2.30) and {2.31). This constraint is,

)
5= 2.42
5 X =0 (2.42)

® Calculation of the vacuum amplitude in hyperelliptic coordinates for flat space string
theories has been carried out by many authors. See for example [48][14][15][16][17][49][11].
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As we will see in section III it is this constraint which leads to the insertion only of picture
changing operators.

Let us begin our discussion by noting that any (affine) ¢ = 2 curve can be written in
h-yperelliptic" coordinates: {50][14][15][16]

Se={{v,2) € C*ly* = [[(z — e} (2.43)

i=1
where x is the projection to C and the hyperelliptic involution is j{y,z) = (—y,z). We
may fix three branch points using projective transformations, say eq4, €5, €5, at 0,1, 00. The

remaining branch points live in the space
& ={ec C®e; #0,1,¢; # ¢} (2.44)

At g = 2 this is a finite (720-fold) covering of moduli space, and teichmuller space is its
universal cover. Fort € T we also denote the curve with branch points e;(¢) by S;. Because
F/ C — T is topologically trivial we can find a {real-analytic} family of quasiconformal maps
wg.: 5‘0 — S, for all § € T which commute with the hyperelliptic involution, wij = jw;

and thus induce a family of maps w; : C — C such that the diagram

wh

So _. St
mo | ™ (2.45)
c U <

 commutes. The w; are not holomorphic, for a metric inducing the holomorphic structure
on S; will be of the form 7} ({e?|dz|?) and will pull back under 1, to a metric 73(e?|dz +
pedz|?) which is not diagonal. Notice further that since w:j = jw¢, w; takes branch points

to branch points, since these are the fixed points of 7. In particular @;(e;{0)) = e:(t). I

we are given a family of gravitinos on §;

%> H() = 1 (Z 50z~ xa(t))) (2.46)
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where z,(t) € C, we can pull them back and differentiate. Dropping multiplicative factors

as usual we have

(aa:i %)(2) =75 (Z ¢ ‘3?;:5 UG 1(~-"3a(t)))) (2.47)

which is to be considered as a gravitino field on Sp.

We may now discuss the meaning of the constraint (2.42) in this coordinate system.
Because of the natural projection 7; : S; — C a choice of gravitino slice which might seem
natural is to consider (2.46) with z, € C held constant. Although it might seem natural to
say th.is family has constant support, recall that the family w; is undetermined up to the
- small diffeomorphismos Dif fo(So) of So, and for generic choices of w: we see that in fact
2% ~ 2wy za(t)) # O even if 28 = 0, in the sense in which we have defined it. Thus
there are two notions of constant gravitino support. On the one hand we could demand
Ta(t) = 2.(0) = constant, on the other hand we could demand that the RHS of (2.47)
va.n_isl_l. That there is a choice of family w; for which the second notion coincides with the

first is a consequence of the following 1°

Theorem 1: Given a family of points z,(t) € C,t €T, a = 1,...n with z,(t} # zs(t)
for a # b, define
T =T — {t|z.(t) = eit)}
IfW C T' is connected and simply connected then there exists a family of quasiconfor-

mal maps w; :© So — 83, t € W, commuting with the hyperelliptic involution, such that

4 (24(0)) = za(t).

We give the proof of this theorem in appendix B 11, In plain english this simply says

(with n = 2) that if the é-function support generically avoids branch points then we can

10 For the present discussion we only need this theorem for the case where the family is

z4{t) = 2,(0}. We will need the more general statement below.
11 We thank C. Earle for his very generous assistence in proving this theorem.
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use small diffeomorphisms fo gauge transform the gravitino to have constant support, as
viewed from the fixed coordinate systemn of Sp.

We now apply the ideas of subsections C, D and E to determine the constraints on
d;,a(t) from transversality condition (2.36) and the modular invariance constraint {2.41).
In this context we shall show that the choice of slice with z,(t) held constant cannot be
a good gauge slice. !20n hyperelliptic curves we can write a basis of holomorphic 3/2-
differentials quite explicitly. Choosing an even spin structure amounts to choosing three
special branch points, which we may call A,, the remaining three will be called B;. The
degreé g — 1 = 1 divisor of the even spin structure will be 4, + A, — Ag. *Holding eg = B3
| fixed, permutation of the remaining 5 points yields the (g) = 10 even spin structures

[14][15](16][17]. We may then take

dz3/2
11, (x)_é%_
y3/%(2) (2.48)
o dr3/2
= B(x) y3,;2(z)
wheré we define
4(z) =, [[[(z— 4)
' (2.49)
Np(z) = [[[(z - B:)
i
Therefore, if the determinant (2.36) vanishes then
1% (z1) 1} (22) — M4 (22) 115 (21) = 0 (2.50)

12 The constraints on z,(t) that we shall derive, are independent of the choice of wy,
since at no stage w: will enter the discussion. It is only when we try to see the implication

of these constraints on —’( that the choice of w; becomes relevant.
13 Recall that the d1v1sor of a meromorphic function has class zero and that that of

an abelian differential is the canonical class K. Examining the meromorphic functions
(z — €;)7! and y we learn that ooy + 002 —2¢; ~ 0 and ey + -+ + eg ~ 3{0c0; + 002},
while div{y~'dz) = oo; + 0oz is in the class K. Thus A; + Az + As ~ By + By + Bz and
Ai + As + As = Ay + Aa — Az + 243 is in the class K1/2 @ K.
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Considered as an equation in the branch points for fixed z; this has the trivial solutions
when two branch points coincide with the z,. These solutions describe a subvariety of
complex codimension two, whereas (2.50) has solutions on a subvariety of codimension
ane. Actually (2.49) are not well-defined on the space of branch points but on its universal
cover. The existence of solutions of {2.50) implies that there are solutions of detv®{z;) =0
on T other than the trivial ones. Thus, the constant support, 6-function basis, in the sense
that we keep z,(t} fixed, is not a good slice. These considerations may be generalized to
the hyperelliptic locus at any genus. If the z, are fixed the determinant condition reduces
to an algebraic equation on the branch points which in general has solutions other than
the trivial ones.

Since the slice {2.46} with z, constant becomes singular in moduli space the matrix
R, in (2.39) becomes singular and it is possible that taking g—t)‘( can induce é-function
singularities. However, in the measure such singularities always multiply §(3)8 which is
formally zero (see section III), so an unambiguous and correct answer must be obtained by
a limiting procedure. We will avoid this issue by choosing a slice for which (2.50) is never
satisfied by choosing z, to be appropriate functions of the branch points. We now show
that such a choice is always possible. Recall we have used SL(2,C) to set eg = Bs {which

is the same for all 10 even spin structures) to co. Then we may let, for example,

5
ry=1+ Z |es]
. i=1

- which never coincides with a branch point. Plugging in this equation for zi, {2.50) can
be viewed as a set of 10 third order polynomial equations in zs which have at most 30
distinct solutions. Clearly we can choose z3 to depend continuously on e; so that it avoids
e, 21 and these solutions. Combining such a gravitino slice with a good global slice e(t}
for bosonic moduli space we see that the conditions of the above lemma are satisfied and
we therefore have a good global slice for superteichmuller space in which ¢ is independent

of ¢, and ¥ has (moving) delta function support.
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In the above argument we have excluded the possibility that the delta function support
of the gravitino is located at the branch points. In fact, with the above (noncanonical!)
choice of wy, if we take z; = e, for some branch point e;, then, strange as it may seem:
'%6(5 — @, Te1(t)) = Z6(z — e1(0)) = 0, since Wy Hei(t)) = ei{0). If we take z; — e,
and z; — e; in such a way that our gravitino satisfies ¥ = 77 (¢16(z — e1) + ¢26'(z — 1))
then %Y = 0 everywhere in moduli space. The condition for transversality is then satisfied

since

by i _ i
det(nq,v°) = e 1_[?=2(81 o) (2.51)

never vanishes in moduli space. Note that this is the choice of gauge which iead to the

- pointwise vanishing vacuum amplitudes in [15][16][17][11][51]. Still, this slice is not without
other difficulties, as we will see soon.

Let us now consider the implications of modular invariance for hyperelliptic cal-
culations. The difficulties with modular invariance caused by gravitino slices with
Za(t) =constant have been pointed out in [11]. We can now use the above considera-
tions to find the origin of the problem. To begin we must understand how the modular

group acts on the space of branch points £. An isomorphism {y,z) — (¥, Z) of the carves

(2.52)

* will project to an isomorphism of ', which must therefore be 7 = ::—ig. Thus we see that

we must have
6é; — B
—vé€: +

{ec} ={ } | (2.53)

as unordered sets. As a special case let us fix e4, €5, €5 t0 0,1, 00 and take Z = éx, together

with a permutation of points one and five. This induces the modular transformation

o 1 o €2 . ez
€ = —,; €2=— €3= — (2'54)
€1 €y €1
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In terms of the coordinates on C, the constraint of modular invariance on the gravitino
supports is just that £,(€,, &2, €3) must be the image of z,{e1, 2, €3) under the isomorphism

= %, le.
. €

. o 1 '
z(é1,82,83) = ama(ehez,es) (2.55)

It follows that if we choose z, to be independent of the branch points then we will have a
conflict with (2.55) and hence with modular invariance. Also, in passing to the gravitino
slice x = 7} (¢16(z — A1) + ¢26'(z — A1), the limit z, — A, is not modular invariant. For
example, if we choose z1({e;}) — e1 then we also require z;({€;}) — € = é However,
- modular invariance (2.55) requires z;{{&;}) — éel = 1. This is another reflection of the
loss of modular invariance inherent in the choice of special point R, in [15][16][17][11].
As noted in [11] it is difficult to see how the prescription can lead to modular invariant
nonvanishing string integrands. In the case of uncompactified superstring theory in ten
- dimensions, the integrand of the vacuum amplitude calculated with this choice of basis
turns out to vanish identically [15][16]{17]{11] [51] and hence we do not have any problem
in defining the integral. But in other cases, (where the cosmological constant is expected
to be non-zero) this prescription probably will not lead to a sensible answer.
QOur discussion so far has shown that the image under m; of the points g, on C (i.e.
z,) cannot be held fixed as a function of ¢. One might ask if, when these images z,(t)
move so as to satisfy the conditions of transversality and modular invariance, a family w;
can be chosen so that % in (2.47) vanishes. We can apply the above theorem once more
to answer this in the affirmative.
We have seen that the choices of (e, x) are in one-one correspondence with choice of
families {z,(t),w:) a = 1,2 ¢ € T. The theorem states that for generic choices of z,(t) we

can choose a family w; so that for almost all ¢t € T (i.e. everywhere in T except possibly
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on a subvariety of real codimension one. %)

By (za(t)) = 7a(0)
(2.56)
e(t) ~ @} (dz) ~ dz + pdz
111 this way a; tr_ansverse and modular invariant slice ca.n be put into a form which satisfies
{2.42). Combining this discussion with our previous remarks we see that there exists an
almost global good slice satisfying (2.42).

For the reader who, perchance, has lost his way in the thicket of mathematical termi-
nology we suminarize the situation. Let us work in a fixed coordinate system on the rie-
mann surface, and assume that we have found one consistent choice of the slice {e(t), x(t))
| which is consistent with the the requirements of modular invariance, as well as transvarsal-
ity to the gauge directions. Let g,(¢) denote the trajectory of the points ¢, in this coor-
dinate syst_:em. Using the freedom of local diffeomorphism, we can, for every value of ¢,
bring the point ¢, (¢} back to a fixed point g,{0), as long as we change the metric accord-
ingly. With this choice of slice, %V*; = 0 everywhere in the moduli space. The section e{t)
obtained in the above way will not be a holomorphic section. That e(t) is not a global

holomorphic section is a consequence of Earle’s theorem 15,

G. Local Slices

So far we have been discussing global slices, and we have used theorems on global

slices, like Earle’s theorem. In the bosonic string theory, the same theorem prevents us

14 This is not completely satisfactory, since a subvariety of real codimension one, even
- though naively a set of measure zero on the teichmuller space, may give a finite contribution
to the superstring functional integral, if, for example, the metric changes discontinuously
across the surface so that the tangents #.?%, n,.* have delta function singularities. We
shall rectify this state of affairs in subsection G by choosing local slices, and patching

them together.
15 More precisely, by Earle’s theorem any global slice cannot be holomorphic and the

modifications of the slice involved in the proof of theoremn theorem 1 cannot restore holo-
morphy. We have no proof of this intuitively obvious statement. Note however that if w,
is in fact defined on the complement of a complex codimension one, (= real codimension
two), subvariety then by Earle’s theorem and Hartog’s theorem w; cannot be holomorphic.
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from choosing a global holomorphic section as well. However, in the bosonic string theory
we can choose a holomorphic slice in each local coordinate patch in the teichmulier space
and compute the partition function. In the region of overlap of two patches the slices
m the two pé,tc}les will be related by a gauge transfo}mation, and the partition function
computed with the two slices will be identical, since it is gauge invariant. In other words,
the partition function may be expressed as a holomorphic square (up to factors of detImr)
at each point in the teichmuller space.

Once again, the above argument fails in fermionic string theory because of the integra-
tion azﬁbiguit.y, since if we choose local slices then on the overlaps they will be related by
- gauge transformations which, in general, include supergravity transformations. This does
not prevent us from choosing local slices related purely by small diffeomorphisms. Thus
we may choose a set of slices 7,(t,¢) = (e*(¢,¢), x*(t,¢)) for t € U,, relative to an open
covering {Uq} of T such that for t € U, NUp, 7, is related to 75 by small diffeomorphisms.
There is no local obstruction to choosing holomorphic families w§* of quasiconformal maps
[43]. Thus, it would appear to be possible to choose in this way a set of good local slices
satisfying conditions {2.30) and (2.42) and differing on overlaps by small diffeomorphisms.
For such a set of slices the remarks of [11] would apply and we would have a positive
semidefinite measure, which, for generic choices of gravitino support, would be positive
definite. We now show that there is a global obstruction to choosing a set of such holo-
morphic slices 7, for an entire covering U, of teichmuller space. We begin by quoting a

| powerful theorem from teichmnuller theory: [52][53]

Hubbard’s theorem: There s no global holomorphic section of the universal teich-

muller curve except for the Wetersirass poinis at g = 2.

The universal teichmuller curve is simply the fiber space over teichmuller space where
the fiber over t € T is just a copy of the riemann surface defining the point t. A slightly

more formal description can be found in appendix A and in {43]. Hubbard’s theorem
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implies that exactly those slices which could lead to positive definite measures in fact do

not exist. This is a consequence of the following

Theorem 2: A set of holomorphic slices 7o, with §-function supported gravitinos, defined
for an open covering U, of T, differing on overlaps by di'ﬁ'eomorph:’sms and satisfying (2.42)

defines a holomorphic section of the universal teichmuller curve.

The reason for this is simple. We may describe the local slices by the pairs
(x2{t), w) where w{ is quasiconformal, and ¢t € U,. The condition that the slices be
related on overlaps purely by diffeomorphisms is the condition that for t € U, N U,
((B¢) = (z2(t)), dz + pFdz) is related to ((87)1(28(t)),dz + ufdz) through a diffeomor-
- phism. Furthermore, the condition (2.42) means that z,(t) = @¢(z,(0)) in both patches.
Thus the z,(t} vary holomorphically with £. The unique choice of diffeomorphism re-
lating the two slices is (w§)~1(wf) as can be seen by comparing the metrics. By as-
sumption this diffeomorphism must also relate gravitino supports. Thus we must have
z2(0) = (D)~ (wF)28(0), i.e. z2(t) = zP(¢). In other words, the points zo(t) are globally
deﬁné-.d, and depend holomorphically on £. Such a set of points defines a global holomor-
phic section of the universal teichmuller curve. A more formal discussion of these matters
is given in appendix B.

Note that the crucial difference from the bosonic string theory is that in that case w
and wf} are completely free, whereas, in the present case, they must satisfy the constraint
(ﬁ?)_lrﬁf:cg(()) = z2{0} at every point ¢ in the overlap region. This is the constraint
that prevents w; from being holomorphic. We may, instead, relax this constraint on w;y,
and choose z,(t) in a way that the two slices are related by appropriate diffeomorphism
in the overlap region. In this case, there is no obstruction to choosing local holomorphic
slice for e(t), but %At: will not vanish any more. In general both the holomorphic and the
antiholomorphic derivatives of @; 'z, (t} will be non-vanishing. This can be interpreted as a
further (but more specialized) obstruction to holomorphic factorization above and beyond

the coupling of the zero modes of the scalar fields. In the computation in the following
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sections, we shall work with a general choice of slice, and assume neither holomorphy, nor
%%f = 0. We can use the above observations to explain why the hyperelliptic calculations
lead to point-by-point vanishing when the gravitinos are supported on Weierstrass points.

This is done"in_appendix C.

3. Measure for Supermoduli

At present the best way of studying multiloop string amplitudes is through the “con-
formal field theory” of first order ghost systems [1]. An alternative approach makes use of
¢-function regulated functional determinants. While far more awkward, the latter approach
has the advantage of being mathematically well-defined. In this section we will indicate
the relation between the two approaches. Perhaps the most fruitful point of view is that
the functional determinants give rigorous meaning to the quantities and manipulations of
conformal field theory.

-~ We begin by reviewing the gauge fixing approach which was pursued in [2] for the
heterotic string and in {4] for the type II string. We will focus on the type II case although
the formulae are easily adapted to the heterotic case.®In WZ gauge the action for the

type II string is:

s = / (aXEX 4 B + PO + XX + xBBX + %11:%(7) (3.1)

where 8 = %(63c — 1dy) on a flat world-sheet, and is the appropriate cauchy-riemann op-

erator coupled to 0-forms X, and (},0) and (0, ) -forms ¢ and ¢. Superdiffeomorphisms

18 Both [2] and [4] contain important errors in the formula for the supermoduli correction.

The measure in [2] omits the contribution of the matter supercurrent, while that of [4]
~ omits the ghost supercurrent. Neither contribuiion can be left out. This is clear simply
on grounds of superconformal invariance. It is only for the sum of the ghost and matter
supercurrents that the conformal anomaly term in the operator product expansion cancels.
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defined by an even vector field will be called “ordinary” diffeomorphisms, while odd dif-

feomorphisms are referred to as supergravity transformations. The action of ordinary

diffeomorphisms is 7

68 = EB
§8=0
6X = —£3X
6 = —£dY (3-2)
5 = —(E09 + 38&)
5% = —9(£x)
6x = —E0x + 19&x
where £ is an even vector field (i.e. a (0,—1) form).

The supergravity transformations are:

63=20

59 = ex0

8% = 28¢

6x=0 (3.3)
6X = —etp

o = %ex@ + edX

§ =0

for a supersymmetry transformation by an anticommuting parameter ¢ (a (—1/2,0) form).

In (3.2) and (3.3} we have only displayed the (£, ¢) dependence. The analogous expressions

with (£,& can be obtained from (3.2) and (3.3) by interchange of barred and unbarred

quantities.

17 We have actually taken a linear combination of a diffeomorphism, and appropriate

lorentz and weyl transformations for convenience.
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From the transformation laws (3.2) and (3.3) we see that if we define kY = e7(6eb))

then the change of variables from the original fields to the gauge transformation parameters

and the (super-)}moduli is,!3

where the various tangents 7 have been defined in sec. I1. Here (#*,#, ¢¢, ¢¢) where 1,7 runs

3
¢
I >3 N
—(@x)+3ix8 @ €
g \ /68 (34)
£z
ﬁ—_+ 6§£
5.7 |\ O
ng /N6

from 1 to 3g —3 and £, ¢ runs from 1 to 2g — 2 are complex coordinates on superteichmuller

space. When there is no need for distinction we write these indices as (r,a) to stand for

r = (1,7) and e = (¢, 2).

At this point we can choose the map & discussed in section 2. This allows us to express

the last term in (3.4) in terms of the variables (£, %, ¢4, ¢f), where ¢* and t* are complex
¢

coordinates without nilpotent parts. Equation (3.4) then takes the form:

18

Qo ey

X

¢
£
A>3 R K
—-{dx) + %x()‘ 3 3
Nas 6t (85)
z
7,7 8¢t |
5 # 65_ -
qE:_ 6§e —

In writing down (3.4) we have actually redefined € by ¢ — ¢ — ¥ to remove off

diagonal terms in the fluctuation matrix. Furthermore we have rescaled ¢ by %
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As mentioned in section two a holomorphic slice satisfies

Nz = ’?rz+ = '?z; = 7I~2+ =0

For a holomorphic slice, the transformation (3.5) becomes block diagonal, corresponding to
the decoupling of left and right-moving modes of the ghosts. For the reasons explained ear-
lier we will not, in general, choose a holomorphic slice. Even if we do not use a holomorphic
slice it is still convenient to use complex coordinates (&*, %, ¢¢, gg).

In changing variables from k; %, k%, x;  and x, ~ to &, ¢, &, & (t*,%F) and (¢4, ¢9)
we pick up a jacobian factor. Let ¢* (i = 1,---,N) denote the original field variables, z*
(@ = 1,--+,n) denote the gauge transformation parameters, and y™ (m = n+ 1,---,N)
' the coordinates (t*,¢%) and (¢4, ¢%). (Thus here N and n are infinite, although N — n is
finite). Let us write,

84" = Ajabz® + Airby™ (3.6)

where A is the matrix displayed in eq. (3.5). Then the jacobian for the change of variables
is simply given by sdet{A). There are two ways of interpreting this quantity as we now
describe.

A.Gauge fizsng with ghosts

We shall now express the jacobian factor in terms of a functional integral over the
ghost fields. Let us introduce variables BY, C® with the property that B* and C* have
exactly the opposite statistics of the variables ¢* and = respectively. Thus, for example,

 B* is anti-commuting if ¢* is commuting. Then it can be shown that,

' N n N
sdet(A) = / [ B [] dcezp(B 4iaC™) J[ 6(Bidim) (3.7)
=1 a=1 m=n+1

One way to prove this formula is to define auxiliary variables,
Co = B'Aiq

D, = B'Ajm, (3.8)
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With the above change of variables, we may express the right hand side of eq. {3.7) as,

sdet(A) / [[¢cdCu || dDmezp(CaC®) [ ] 6(Dm) = sdet(a) (3.9)

'f;hus proving eq.(3.7). Note that the reason that what appears in eq. (3.9) is sdet{A}, and
not (sdet(A))~! is that C,, D, and B; have exactly the opposite statistics of z, y™ and
¢* respectively. Since sdet(A) was defined for the change of variables given in eq. (3.6),
the jacobian factor appearing in the change of variables given in eq. (3.8) is sdet{4)~!.

The relevant matrix Ao, A;m in our case may be read directly from eq. (3.5). Intro-
ducing the B ghosts b.,, bzz, 82+ and Sz_, and the C ghosts ¢®, &%, vT and 5~ we may
express the jacobian factor as,

Gg—6 4g9—4

sdet(A) = / dbdedbdedBdvdBdvezp(—Sgn) [ (n-B) [[ 6((ne,B)) (3.10)

r=1

where,
Sgh. = [(bﬁc + B3+ X( by + 2 08¢+ B(Be)) + b3e + Bd7 + x(Lby + L 30e + 8(Be)) (3.11)
and we define scale-factor-independent pairings by,

(nraB) - /nrizbzz+/nr2+ﬂz+ +[nrz£b22+fﬂrz_ﬁf—
(nas B) :/ azzbzz'i'/na§+ﬁz++/na22622+/’?az“ﬁf—

(3.12)

In writing down eq. (3.10} we have replaced 6({n;, B)) by (n:, B}, since this is an anti-
- commuting object. Adding the matter action to the ghost action we see that the gravitino

field ¥ couples to the full supercurrent,
P3X + by + 3189c + 3(Bc) | (3.13)

The above ghost supercurrent differs slightly from that in [1]. The difference is entirely
due to a difference in convention for the kinetic terms for . We now proceed to the second

way to make sense of sdet A.
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B. Gauge fizing with functional determinants
We leave conformal field theory briefly and describe now the approach that uses ¢-
function regulated functional determinants. Returning to (3.4) we introduce operators P

and # so that (3.4) becomes

Shy*? £ Tk
bxzt | _ € , | 8¢
s | =Pl ]+l o (3.14)
Sx, £ 8¢t

Introducing the obvious °L? inner products on each component we can define adjoint
operators. (This involves a choice of metric.) For g > 1 the operator P has no zero modes,
but the operator P has zero modes. When expanding in nilpotents 3¢ — 3 zero modes
begin with holomorphic quadratic differentials ¢2_, 3g — 3 with antiholomorphic quadratic
differentials 1!)25, while 2g — 2 zero modes begin with holomorphic 3/2-differentials ¥7, ,

and 2g — 2 with anti-holomorphic 3/2 differentials ¥ . We may arrange these zero modes

into 2 4 X 4 matrix ¥, defined by

¥l oP
¥ = - Yz 3.15
v, (319

In general we cannot take the tangents to be identical with these zero modes. Accounting

for this in the usual way [55][56|we obtain for the jacobian

sdetPtP ) 1/2

a
sdet (¥ ’m)(sdet((‘lf'f),r,‘lfﬁ) (3.16)
The inner product matrix (¥, ;) is defined as,
(W0 = [(U2ine™ + ¥80s* + 92 0p, ™ + 9200 Y) (3.17)

19 Actually, it is not so obvious. The chief difference between the component formalism
and the superfield formalism enters at this stage. In the superfield formalism one uses the
metric introduced in [54]for fluctuations of superfields. These are not the same metrics on
field space.
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where o stands for the indices 3,7(= 1,...3¢ — 3), p,p(= 1,...2¢ — 2}, and I stands for
the indices 1,7{=1,...3¢9 — 3), £,#(= 1,...2¢g — 2). The quantity (¥1); involves a metric,
turning {¥*)* into a beltrami differential.

| Again at this point, by a choice of the map h of section 2 we can express the jacobian

as

sdetPtpP )1/2

sdet(¥*, n‘r)(sdet((‘l’?)h‘pﬁ)

(3.18)

where we now integrate over (t*,t7, ¢¢, ¢£). Note that the matrix P, as well as ¥ has block
diagonal form, reflecting decomposition into holomorphic and anti-helomorphic paris. This
is, however, not manifestly true for the matrix {¥%,57), due to the fact that we have not
- chosen the tangents n compatible with the complex structure in moduli space. Any further
manipulations in this subsection can be carried out in either representation {one formally
can go from one to the other by replacing {,% by t, 5 and vice versa). For practical purposes
we shall only exhibit our fomulae from now on in the second representation.

- The above expressions are still formal. For example, it is not obvious how to take
th'é s;;uareroot in (3.18). The proper definition will emerge when we expand (3.18) in
nilpotents. This exercise is also useful because it allows us to define all quantities rigorously.

Write the operator P as the sum of its zeroth order and nilpotent part: P = D+ 4, where

0 ~2X
—(3%) + ix8 0O
q4- | @0+ 3x . L (3.19)
o . 2
—{ox)+ixé O

Making this separation for the superdeterminant we find

sdetPtpP = sdez"ﬁfﬁsdem + _—izﬂfﬁ + Tl_ﬁ"ﬂ + _i—__ﬁ_fﬂ) (3.20)
D'D D'D D'D

With a little algebra one may write the second superdeterminant on the RHS as

|sdet(1 + zij"ﬁfﬂ)fsdet(l + ' Lﬂ‘fnoﬂ) (3.21)

J— _1- —
D'D (1+ == AD)(1+ =D A)D' D

|

o]
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where

Mo =1- D'—_%ET (3.22)
DD

is the projector on the zero modes of “DJF. We compare this with the square norm of the

zero modes of Pt. Since

(D' + Ahw =0 (3.23)

we can write W = v 4 69 where ¢ is zeroth order in ¥ and can be written in terms of

“ordinary” zero modes as:

% = ;o (3.24)

X

0 i,
we can further split 6% = 641 according to the number of odd moduli it contains.

Writing the zero mode equation order by order in x, ¥ and solving recursively gives

1

U = _ W (3.25)
1
(1+ D%r_ﬁﬂf)
Thus
sdet(U1, ¥) = sdet (41, [1 — L - ! : _A_LAT];&) (3.26)
1+ A==D")(1+ D=4} P'D
D'D
Using the identities
1 S — 1
— D= =
(1 + D= At} {1+ =L_AtD)
D'D i
. 1 (3.27)
(TL’T,[ — D]qﬁ) —_(wf’[ﬂ p— ]45)
(1+ﬁﬁD) 1+ﬁDﬂ)
(for any matrix ¢), we see that the ratio
t p'D _
sdetP1P sdet D |sdet(1 + —— D' 4)|? (3.28)

sdet(UT, W)~ sdet(9f, ) o]
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is manifestly factorized in the supermoduli. Therefore, the jacobian will be

_T—
sdetD D y172 gor(1 + D4 (3.29)

sdet(‘?,ﬂ)(sdet(‘w,w) D D

The ratio ;%%‘;Eg—% in {3.29) may be defined using g;function regularization. As is well-
known, if the ¢ vary holomorphically, then the ratio of these superdeterminants is a holo-
morphic square up to the usual liouville factor [47]{57][58]{59][60][61]. When the anomalies

cancel we may ignore this factor and take the holomorphic squareroot. The last factor

may be written as

1 —n
—st —(B™ 3.30
ezp( srzzn(B +87)) (3.30)
where o . .
SO N EP S T 0
B — ( 289X63;3( aX+2X ) 1 B . 1_) (3.31)
0 ~3,,. Xt X955 X

is an operator on C™ sections B : T(K~ '@ K~V/2) 5 T(K~! & K~1/2) and 3, ete. are
defined by

(3.32)

Since 8 is nilpotent the sum in (3.30) terminates after a finite number of terms. For
smooth ¥ the traces are well-defined and give a rigorous definition of the last factor in
(3.29). Similarly, we can define (3.25) and hence the first factor in {3.29) rigorously. In
this way we can define carefully the jacobian (3.29).

We note here that a corollary of the above derivation is the superholomorphic factor-
ization of ghost superdeterminants which has been addressed in different ways in [62][7](5].
We have explicitly shown factorization in the supermoduli in (3.29). As we will see in the
next subsection, the first and third faciors are not holomorphic in the moduli, but their

product is, provided the slice is holomorphic. The corresponding definition of the matter
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superdeterminant is straightforward, although the corresponding discussion of holomorphic

factorization is not, and must be left to future work. {See, however, [5][32].)
C. Definung ghost correlators

We can now define the quantities in (3.10). We expand the ghost quantum fields in

terms of the zero modes ¥ and the orthogonal eigenmodes of PPT:

bpp = ‘l’; + ‘I’a_;_ﬁo
(3.33)
Bzt = WL 05+ W5, 05 +
where the ellipsis refers to orthogonal modes. Similarily for the antiholomorphic ghosts,
Then the basis-independent measure for the ghost zero-modes is
(sdet(w1, )"/ T dbpdpe (3.34)
r.a

and one may evaluate

[ T asease TL G ) T 6((nas B
| =/Hdbgdﬁgﬂ(m,B)H6(((na, P85 + (1a, ¥7)bG + - --))

/Hdbodet (712, ©9) H(((m,\yr) - (m,xya)(na,@b)-l(%xyr))bg +)

= sdet(¥,n)
(3.35)

using the definition in (3.12) and properties of the Dirac delta function. The orthogonal
‘modes lead to (sdet’PTP)%, thus reproducing (3.18).

While this diséussion suffices to define the ghost path integral, the expansion (3.33)
is difficult to work with because of the dependence of ¥ on ¥. From the point of view
of conformal field theory it is more natural to expand in modes of D'D and DD'. For

example, separating B into its zeromode and nonzero mode pieces

B=Bs+ B,
(3.36)
= szabg + BL
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we have

dBo = (sdet(yf,))~/2 | | dbtdB5dbgdfE (3.37)

so it is clear that we will obtain the middle factor in (3.29) after integration over B,.
The last factor, written as {3.30) may be interpreted as correlation functions of the ghost

supercurrent where we identify the parametrices with the ghost correlators through:

8232
11

i —

T —Y

i _
=B = ——agm(m,y} € K12, ® K%/,

_f —
63/233/2
i1

.~ —

TL—Y

(e(@)b(y)) s = ——Bi(z,) € K. @ K,

(3.38)

with similar relations involving the antiholomorphic ghosts. We see that we just obtain
the correlators of the ghost supercurrent.

- These correlators are not convenient for use in conformal field theory. For example,
they are not meromorphic on the riemann surface. In conformal field theory we must com-
pute correlators in the presence of insertions of operators soaking up background charge.
These latter correlators are meromorphic. We now show that the factor sdet(¥,n) can
be interpreted as a correction changing the correlators (3.38) into those of conformal field
theory. To do this we return to the ghost expression (3.10). Defining an index {I} = {7,a}

we may rewrite {3.10) as

/dBdC’ H&((m,B))e(B’PC) (3.39)

since §{b) = b for an anticommuting object. Using the integral representation for the delta

"= function we get

/ d,\dedcemp(z'Z M(ng,b) + (B,PC)) (3.40)
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We again expand the quanium fields in a basis of eigenmodes. However this time not in
eigenmodes of (PTP) but of D'D.

We may then shift B, C in the action o obtain
/dAIdBdC’emp(z'bS‘(d;a, (1— AP V)" + (BL,PC)) (3.41)

where P~1 : (kerE?)L — T(K~!® K~1/?) is defined by

. 1 1
o 1 i awts
14 __D—fﬁD ADD

p-! D

(3.42)

and satisfies ((1 —Mg)P)P~! =1 - Tlp. The integral over 8], X! exactly reproduces the
~factor sdet(¥,n}, and we have already obtained the other two factors in (3.29).

The important point here is that all the (valid) manipulations of superconformal ghost
systems can in principle be rigorously justified through manipulations of parametrices of
differential operators. One irivial example of this is the set of OPE’s of b,¢, 3, which
follow from (3.38). Similarly, the holomorphy of the correlators of 8, and b, ¢ in the pres-
ence of background charges shows the validity of the use of the equations of motion—and
hence of contour deformation—as long as no two operators have coinciding arguments. A

slightly less trivial example is the pair of OPE’s
B(2)6(B(w)) ~(z — w)B'(w)6(B(w))
1(2)6(B(w)) ~(2 — w) ™18 (B(w)) (3.43)

These follow from the OPE of § with ~, together with the general properties of the §-
function, which in turn may be derived {rom the integral representation used in (3.40).
Finally, through the manipulations that lead from (3.40) to (3.29) we may justify {3.43)
_ using rigorous operator techniques.

D. Spectal Slices

Having indicated how the methods we will use could be made rigorous we will proceed

in the rest of the paper using the techniques of CFT. As meniioned, the traces in, e.g.,
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(3.30) are well-defined for smooth ¥. If we allow ¥ to have é-function support then the
individual terms do not behave well, but the expressions in CFT seem to make sense,
i'r_ldicating that the whole expression for the measure has a good limit. Therefore, we
éhoose a goo-;d élobal slice, or set of slices of the kind;‘discussed in section 2.F, assume it
can be chosen to be modular invariant, and simply substitute into (3.10). In particular,
we take g to be independent of ¢, so that n,7 = n,7 = 0, and we take the gravitinos to

be linear in the supermoduli and to have delta function support:

2g—2
X: "= D 6@ (v —vy)
a=1
49—4 3.44
x: "= Y 6P —vy) 1)
a=2g—1

where v, = vi{qa{t)). Thenn, " =6 (v—v,) (a=1,---,2¢g—2),and 5,,” = § @ {v —v,)
{a=2¢g—1,.--,4g — 4). Taking the support of x, X to be different, the quartic term in the

action (3.1) can be ignored.?Using (3.10) the partition function becomes after integration

over ¢¢,
6g—0 . dg—4 44 3 Gg-—6
A =/ Il ¢pixBCle= [] 5(g(va))[ 1 @F + aga) 11 (m,B)] (3.45)
i=1 a=1 a=1 ral {s==0}

where So denotes (3.1) with x = ¥ = 0, and é(va)(’f‘p(va)) is defined to be B{ve)(Tr(vs))
| fora=1,---,2¢ ~2, and B{vy)(Tr(ve)) for @ = 2g — 1, -+ ,4g — 4. The formula (3.45) was
the starting point in the important paper [6].

At this point we must find the proper CFT interpretation of the operators 6(3), 6(f)
" and give a prescription for calculating correlation functions of such operators on any rie-

mann surface [6] . For this we use the bosonization prescription of Friedan, Martinec and

20 One can take the limit pea2 — po (@ = 1,2) to recover the formulae in [11].
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Shenker [1]. It was shown by these authors that on the sphere, the 3,~ system may be
replaced by a pair of free fermions £,7, and a free boson ¢, with the identification,

B =0¢te™?

v =ne? ‘ (3.46)

From this we may derive the operator products,

ﬁ(z)eQ¢(w) ~ (2 — w)qaf(w)e(q-—l)qﬁ(u})

(2)ed?) ~ (7 — w) 9T 100y (1) (3.47)

.- On the other hand, we have seen in the previous subsection that we have the operator
products (3.43). Thus we see that §{(8) develops the same singularities near § and = as
e?{w)

On higher genus surfaces, the bosonization prescription given in eq.{3.46) is no longer
true if we interprete ¢, {, n as independent free fields. However, if we define the operators
e99 through their operator product expansion(3.47), then the correlators involving products
of the operators €%, 8 and «y are completely determined [63](64] via the stress tensor
method [65)[66](67]. Thus comparing egs.(3.47)and (3.43)we see that we may identify §(8)
with e? for calculation of any correlation function involving §{8). A similar identification
may be made for the 3, ¥ system.

We should mention at this stage that the operator e?{#) develops a pole near Tr(w)
due to the presence of a term proportional to &{w)vy{w) in the ghost stress tensor. Thus
we must define this. operator product through a particular normal ordering prescription.
We choose the prescription of {1} to define a BRST invariant normal ordering prescription.

Namely, we define,
: e Ty =Y {(2) = {@5,&(2)}

=cOE + ePTTotter éanez‘pb — éa(newb) (3.48)
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where I is the BRST charge. Y{z} is BRST invariant, since @4 = 0. A justification
for choosing this particular normal ordering prescription may be given by noting that,

formally,

5(8)Tr = 6(8)|Q5, 8] = G5, H(B)] (3.49)

where H is the Heaviside step function. Thus the operator §(8)Tr is formally BRST
invariant, and we preserve this feature in the regulated theory by defining it as in eq.(3.48).
Comparing (3.48}and (3.49)we see that £ may be identified with H{3)[6].

Finally, we see what happens when we further specialize the measure to the slice

(2.42). This means #,;7 =5_,~ = 0. Then we have

3d
d¢e

(n,,B) =0 (3.50)

and the integrand reduces to (] Y(2,)). If we choose complex coordinates to describe the

moduli space, and take 7,,7 = n,;° = 0, only the zero-modes of the X-field do not split

chi.ral:ly. Since the correlator
<3X1§X3><8X2§X4> =y - (Im‘r)"’l - gy - (Imf)_l Sy (3,51)

(where w are normalized abelian differentials and 7 is the period matrix on the riemann
surface) is a positive measure in the limit p3 — p1,ps — p2, we find that in this limit the
path integral measure is positive semidefinite. More specifically if we choose a holomorphic
slice it is a sum of absolute squares |A|% + |B}*. As shown in [11], for generic choices of
points p1, p2 these semidefinite terms are in fact positive definite and thus appear to lead to
a nonvanishing cosmological constant. We are now ready to begin rectifying this alarming
state of affairs.

We have argued in the previous section that a holomorphic slice satisfying (2.42)

connot even be defined by local patching if we only allow diffeomorphisms across the
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patches of moduli space. If we insist upon using é§-function gravitinos and a choice of the

metric that gives n,,% = %;;* = 0, we must let the points ¢, move. So:

duk
Nyt = Sha"éﬁa#a(?)(u - Ua) (3.52)

where u* = (u{g.(t)), @{ga(t))) is the image of ¢, in the u coordinate system and %‘:‘;— is
computed with the prescription of section IL. If the points g, move then (n;, B) will have
terms proportional to ¢*{a = 1...4), and the measure is no longer positive semidefinite.

In fact, it may be shown to have the general form
|A]2 + | B2 — |C|? — | D|* + Re(E) (3.53)

where C, D, E are proportional to du?/dt'. (3.53} is not positive, and, in the following
sections we show that it is in fact a total divergence with zero boundary integral for
appropriate spacetimes. {These include R*°.) On the other hand using reparametrization
invariance we can always set Bu¥/8t* = 0 but this in general will lead to nonvanishing
nwé a,;ad n:z-. As we discussed in section I1.C, if the holomorphy constraint is relaxed the

integrand is not positive semideﬁnite,-even if duk /ot = 0.

4. The Vacuum Amplitude as an Exact Differential

In this section we show that, for any genus and any tree level supersymmetry preserv-
ing background the cosmological constant is the integral of a total divergence.
As we have seen in the last section, after integration over the supermoduli our density

on moduli space takes the compact form

[ 1T (Ya+ e";“%) H {n:, B) (4.1)

a=1

For the special choice of basis of the super-beltrami differentials given in {3.44) we can

make this more explicit by noting that
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7 v

1) ozF v
e gea (10 B) = 5 Oullza) = Bids (4.2)

~ where $°(£2) stands for ¢(2o)(£(ze)), @ = 1,---,2¢ — 2, and ¢(2.)(&(24)), @ = 29 —
1,---,4¢g — 4. In deriving (4.2) we have assumed that.a%% = (.21

A significant simplification of the algebra that follows can be accomplished by defining

&
6(ni,b)

which is to be considered as an operator on antisymmetric polynomials in (7;,b}; where

D;

(4.3)

(ni,6) = (0, B){ca=0y. Note that D; is purely a book-keeping device, which, acting on
 some expression, removes a factor of (n;,b) if it is present, otherwise annihilates it. For
manipulations that we shall carry out below it is useful at this stage to note that this
operator satisfies the following simple properties

1) {DyD;} =0

2.) By definition, D, (3';{‘ ,b) = 0, similarly, D;(nx,{Qg,b}) = 0, where Qg = § 75
is thé BRST operator. (This is true for any other operator as well). Thus, trivially,
[D:,8;] = {D:i,@QB} =0, where 8; = 8t3

3.) Note also that the operator § jp acting on polynomials in (#:,5) is equivalent to
EJ.(?}J-,T)DJ-, since §prsT(n:,b) = (n:,T). Similarily J; acting on polynomials in (;,5)
is equivalent to (igf—,b)D (The implicit dependence of & on moduli is accounted for by
an insertion of {n;,T) as we shall see below).

With the above definitions and properties in mind the cosmological constant {3.45) is

most conveniently written as

69—6 4g—4 6g—6
f H dt‘[D[XBC]e_SU [T 7. + 6:220,.82D3) [] (:,0) (4.4)
a=1 i=1

21 Gince in the remainder of the paper we do not make essential use of frame indices,

we shall change to a more standard notation and adopt z as the coordinate system which
we previously defined as v;. In this notation z, is nothing other than v;(g,(¢)).
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If we explicitly evaluate the above correlator with the help of {5.30) and {5.31) below
we shall find that the correlator has poles whenever 2, = z(a, b =1,:--,29 —2) (or a,b =
© 2g—1,---,4g — 4) or when 15‘[6](22?___12 2y — 2.&) = 0 ( similarily when ﬂ[é](zii_z‘;_l Zy —
2;&) = 0). The condition detv® (zp) # O discussed in Section I1, is precisely the condition
that ensures that the trajectory of g, () avoids these singularities. This can be readily seen
from the bosonization formulae [68](69][70][71](72].

We are now ready to show that the measure is a total derivaiive in moduli. The
argument has three parts.

A. The “dilaton trick”

We use the method introduced in [73][74] to calculate the vacuum amplitude in the
heterotic string theory. We shall see here that this same method can be used to show that

the measure {(4.4) for the superstring is also a {otal derivative on the moduli space.

Consider the following amplitude??

[ = dyexreaxt) (4.5)
E—{z} D—{z,}

where { ) stands for the functional integral as defined in (4.4). In this notation the cos-
mological constant is just given by { 7 ), with I the identity operator. As indicated the y
integration runs over the riemann surface ¥ excluding the points {2, : ¢ = 1,---4¢ — 4}
where the gravitino has support.

The self contraction of ¥V above gi\;es aw(y) - (Imr)~*-@(y)d{ I }, which upon integra-
tion over y is just gd{ I } on a genus g surface, where d is the dimension of uncompactified
space-time. If this were the only contribution to (4.5) then up to an overall numerical

constant one would write the cosmological constant as

A= /2 _{za}dzy / [ E[l d'(0X ()X () [ (Yo + 8:240,8D:) [[ (n:,B)  (4.6)

a=1 i=1

22 Tn our conventions throughout the rest of the paper, d%z = %dz AndzZ = ;ir—dzdy.
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To ensure that (4.6} is true we must therefore verify that the contractions of V with
the other fields in the measure {e.g. Y {z;)) yield no coniribution. Consider first the
contractions of V with ¥,,Y; for ¢,b holomorphic indices (i.e. a,b = 1,---,2¢g — 2). Then

the y-dependent terms are of the form

(0X(y)0X (2a)) (0X(¥)0X(2:)} = 9,[ ( X(¥)0X(2)) (BX(¥)0X (2a))]
L L L 1 (4.7)
The total derivative in (4.7) could contribuie at the boundary of the y integation only if
the correlator within the square brackets develops a singularity of the form (§—%,) 7! Itis
not difﬁcult to verify that no such singularity exists. Similarly, no contribution arises when
. a,b are both antiholomorphic indices. When ¢ is holomorphic and & is antiholomorphic we

find two contractions:

(08X (¥)0X(2.)) (OX ()8 X (2)) + (8X(¥)8 X (20)) (0X (¥)8X (2a))
L L . L (4.8)

The second term is nonsingular, and the integral over y gives
rw(zg) - (Imr)~1 - @(zs) (4.9)

The first term may be written as

3, ( X(¥)0X(24)) 8X (¥)3X (2))] (4.10)

In this case the correlator involved possesses a simple pole in ¥ at 2. The boundary
integral consequenﬂy has a contribution near y = z;, given by the residue of the simple

pole. More explicitly it is given by

_ﬂﬁw)((za) ~ —mw(zg) - (Im7)~1 - @(z) (4.11)

which exactly cancels the contribution (4.9). This establishes the validity of (4.6).

B. SUSY contour deformation
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The advantage of the representation (4.6) for the cosmological constant is that it
enables us to express A as a contour integral of the right-handed space-time supersymmetry
current J, around some veriex operator: (A set up which, as we shall see, is very useful

for calculating A). More specifically, we shall proceed :by rewriting (4.6) at this stage as

2 dz
sia= [ i SEeevie) (4.12)

where

1. .
Jalz) = e72%5% S, (4.13)

- and ]
Vely) =X (1) P[e?8X" (1,) 5,877
+ 2efPnb8 8, 1+ ek lim (w - )T (w)§(2)]
w—z {4.14)

[sv]

E(ﬁ”)aéb—X“i}ﬁ

In f,hi; expression, S,, Sy are four dimensional spin fields of positive and negative chirality
and $* are the internal spin flelds which exist if space-time supersymmetry in 4-d exists.
(In the free case—uncompactified internal space— $§% reduce to eTH#'+67+¢°)/2 yhere
¢* are related to the internal fermions through standard bosonization ¥° ~ e"‘f"). Finally
Ty (w) is the super partner of the world-sheet stress tensor of the internal theory. ( In flat
space Tr ~ 9'9X"*). The contour integl;a.l of J4(z) around the first term in (4.14) gives the
required 3X#3X* term after using the fact that (9X#JX¥) ~ §#¥{ }. The contour integral
around the second and the third term in {4.14) on the other hand vanishes since J,{z) is
non-singular around these operators. These have been included in V*{y) in érder to make it
a BRST invariant (up to total derivatives) vertex operator. It is important to emphasize

that in writing (4.14) we took into consideration the fact that we shall be working on

general string vacuua which possess at least the space-time supercurrents J, = e‘%g"'Sa

54



and Jy = e_%S"Sd of positive and negative 4-dimensional chirality respectively. 23Ten
dimensional flat space time is then viewed as a special case of this general vacuum setting.

Substituting the expressions of Jo(z) and V*(y) in (4.6) we may explicitly evaluate
the relevant correlators as functions of z, the argumeﬁ't of Jo{z). After summing over spin
structures, the correlators may be shown to be periodic on the riemann surface as functions
of z, and have a pole at z = y, as expected from the operator product expansion. If this
were the only pole, then in (4.12) we would deform the z contour and shrink it to 2 point,
thereby showing that the right hand side of (4.12) vanishes. From the operator product
expansion of J,{z) with Y (z,) no singularities are expected at {z,} and none are found by
explicit calculation. However, as was first pointed out in ref. [6], the same kind of explicit
calculations reveal that the supercurrent J,(z) has in general spurious poles, i.e. poles
not dictated by the operator product expansion.??In the present case these poles occur at
the zeros éf the function f(z) = [, #[6](34 — 52+ 32972 7, — 2A) (see eq. (5.30)). Let
us call this set of points {r;}. On a genus g > 2 riemann surface there are 229~ 2¢ such
points [73]. A consequence of the presence of these spurious poles is that (4.12) can now

be written as a sum of residues:

22§ 2

- /d2 j{ 2V (y)) (4.15)

I=1
where no sum over « is implied. (We adopt this convention throughout the paper.)
What we shall show next is that the residues in (4.15) are total derivatives on the
moduli space, following a treatment similar to the one used in [6]. To do that let us first
consider & new correlator { ) which is defined in the same way as { }, except that in eqn.
(4.6} z1 is replaced by some other point 2;. Then {(Jo{z)V*(y)})’ as a function of z will

have spurious poles at the zeros of f(z) = [[;9[8](37 — 38+ 21 + Za";lz Z, — 24). Let

23 Note that we are assuming the existence of only holomorphic supersymmetry cur-
rent in the compactified theory. In other words, we only need the existence of N =

supersyminetry.
%4 An interpretation of the origin of these poles has been given in ref. [73].
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us call these points {r}}. For a general Z;, {ri} N {ryy} = 0 and {J.{(z)V*(y))’ does not
possess any poles near {r;}. Thus we may express the cosmological constant {4.15) equally

well as

229 2
-3 [ e E v - eveo) (1.16)
C. Demonstration of total derivative

Consider the path integral in (4.16). This may be written as,

g2e—2g4 Gg—06

Z / H dt‘/D[XBC fd2 —e_S"J (z)V > (y)€(20) E(20)

tot . (4.17)
(Y1 =Y+ 86— €)DD) [] (Yo +8:8.D0) [] (nis)
a7l i=1

In {4.17) we have explicitly exhibited é(z0), £(20) needed to soak up the ¢, £-zero modes

in the reducible algebra. To calculate (4.17) we first notice that, by definition,

Y{z1) - Y (%) = {@5,¢(z1) — £(51)} (4.18)

Although at this stage we can choose @ g to be the BRST charge associated with the right
handed { holomorphic } sector, for later convenience we shall take it to be the sum of the
BRST charges associated with the right and left handed sectors. Expressing {Qp, £(z1) —
&(Z1)} as a contour integral of the BRST current around the points z; and z;, we may
deform the BRST contour and express the partition function as a sum of residues at the
various poles of the BRST current. The poles of 75 can be inferred from the following
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commutation relations

(@p,Y (z)] =0
- {Q5,8:6(2)} =8:Y (2a)
| o - {@Qs, (n:,5)} =(m:|T)

38

=~ 35 (4.19)

@8, Ja(2)} =8:(c(z)Jalz))

{@5,V°} =0V (y) + 3, V5 ()
where
VE(y) = (€0X" + 39#)(1,) %V (4.20)
- with ff"ﬁ deﬁned in eq. {4.14) and

Vi) = (1,)*# X4 (y) lim {Y(W)C(y)e_%"6(”)5‘_(3;)55(31)} (4.21)

- Atter deforming the BRST contour and using the above relations for jp, we find that

the expression for cosmological constant (4.17) takes the following form:

229-2%2g 696
. i dz — 55 o Ffz
s== X [ [T [ oixsel [ @ f 2o s @veweeoie
= 6g—6
[(51 ~ &) 8YeD; [] (Vo +8:8.0:) [ (ne.b)
b#1 i k=1
4g—4 T B6g—6
+ 9;(& — &) Dy H (Y, + 8:€.D:) H (M, b) (4.22)
: a=2 =
45—4 = 6g—6
+ (6 - &)Q_ ;D)D) [] e+ a:iéeDy) T (nk,b)]
i a=2 ket

+ W,

where W, is the residue of the BRST current at V*(y}. From (4.19) this is 2 total

derivative in y and §. In appendix C the explicit expression for W, is exhibited. There we
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also prove that W, is a total derivative in the moduli. The residue of the BRST current at
&(z0) and &(2zo) vanishes. This is due to the fact that nowhere in the resulting expression
does there exist any £ factor that could be used to soak up the ¢ zero mode and hence the
iésidue vanishes identically by the ¢ zero mode. An insertion of (n;,T) in the correlator
generates a factor of —%%Q. Turning our attention to the rest of the terms in (4.22) we
can use properties (1-3) of the D; listed above, and the identity 2% (3;nx,8) = (9x7:,b),
to see that they all combine to form a total derivative on moduli space. More specifically

the partition function in {4.22) can finally be written as:

A =/ 11 dt"z (%Mi + %Fj) (4.23)
)

where M; is the density

z [ pixsoies [ V] st a2V ()
« D; T[ (V(z0) + 9:(22)D2) [T (1)
a=2 k=1
(4.24)

and F; is the contribution of the residue of the BRST charge at V(y) and has been

calculated explicitly in Appendix € with the result:

Z Z 7( dz / D|XBC|E(20)€(21)¢(51) ()
ERES! .
4g—4 69—6 (4.25)
*(20) Dy H (2a) + O f(za) i) H (17, b)
k=1

25 This identity is proved in appendix F.
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with Ve = 1(y,)2h(zdX* + ﬁgﬁ“)e%%g_sﬁ. In writing down (4.24) and (4.25) we have

used the independence of the measure on 2g to set zg = 2;.

In going from {4.22) to {4.23} we had to pass aat" through vertex operators which have
no explicit (iepe_andence on {t'} e.g. V*(y), Jal(z) a.ndi.f(zg). Nevertheless these operators
have an implicit dependence on {t} and hence further explanation is needed before we
can arrive at (4.23). To be more precise, the implicit dependence on {t} comes from the
fact that the coordinate system which diagonalizes the metric { and in which our vertex
operators are exhibited ) is £ dependent. Let z be the coordinate system that diagonalizes
the métric at t and w that that diagonalizes it at a nearby point ¢ + §¢ in moduli. Consider

- then a correlation function of a set of vertices ([, V(2x)): (for simplicity here V is a

dim (0,0) operator}. The net change in the correlator as we go from ¢ to ¢ + 6¢ is not

(1 V(ze))ees: — (I, V(2x))¢) but is given by:

S(J IV (ze)ye = (J] V(wi)yewse — (J[ V(20))e (4.26)
k

k k

which involves explicit (¢ — t + 6t) as well as implicit {(2x — wi) change. In appendix F

we show that the RHS of (4.26) is given by:

~ (8¢ (e, T) [ [ V (26))e (4.27)

k

where T is the stress tensor on the world-sheet. This means that the insertion of the stress
tensor in a correlator not only accounts for the explicit change in the moduli in a correlator
but also encompasées the implicit moduli dependence of the vertices. Consequently one
can pass the derivative with respect to the moduli through any operator that has only
implicit moduli dependence within a given correlator,

The equations (4.23) (4.24) and (4.25) can be given a more invariant form. One
regards correlation functions with & insertions of & as k-forms on moduli space. Then

(4.23) is the statement that the measure is the exterior derivative of a 6g — 7 form. Notice

59



that no particular metric on moduli space is needed in making this assertion. It would be

interesting to see if the differential form w defined by

p= dw (4.28)
where p is the measure, is 2 naturally defined form on moduli space. That w transforms
as a 6g — 7-form is proven in appendix G.

We can make the expression for the density M; more explicit by carrying out the
action of D; using the properties listed earlier. The answer is most conveniently expressed
in a holomorphic coordinate system (¢*,¢*) for the moduli space with a holomorphic slice
for the graviton, thus 7,,” = n,;* = 0. Here we shall only exhibit the explicit form of the
density M; = (M,, Mz : 1,7 = 1,2,3) at g = 2. Similar concrete expressions can be worked

 out readily from (4.24) and (4.25) at arbitrary genus:

M, —Z / DIXBC) [ &y § ST 5o E(a)e(a) e Tal)V ()

=) (829
~ 3 3 3
+Y(22)(Y(23) H (fhr,b) Z(_)J'*’lajg(,&g) H (?}5, b) + 25 — 24)]
ok 7=t o

and

(4.30)
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where we have dropped terms that would vanish by (5,5, 4, ¢) ghost charge conservation.
At g = 2 the terms FV in (4.25) vanish by ghost charge.

To sum up, the above analysis shows that the partition funciion at arbitrary genus in
é,-rbitrary baékg_rounds preserving at least N = 1 four dimensional supersyminetry can be
exhibited as a total derivative in the moduli of a definite correlation function. It is worth
pointing out that a simple consequence of this is that the terms spoiling holomorphic fac-
torization on moduli space due to X* zero modes[15|[16][17| (which come from the part of
the picture changing operator involving the matter supercurrent ) are always total deriva-
tives: Those terms can always be written as correlators involving the full picture changing
. operator minus correlators involving the ghost part of Y(2). The earlier correlators are just
total derivatives as we have seen while the latter do not spoil holomorphic factorization
on moduli space since the ghost determinants factorize as in section 3. However it is also
important to keep in mind that the lack of holomorphic factorization due to the reasons
discussed in detail in section 2 ( see in particular subsection G} still remains.

| In the next section we shall evaluate the total derivative at genus two in flat ten

dimensional space as well as in general compactified vacua.

5. Evaluation of Boundary Terms

Of course, it does not suffice simply to show that the measure is a total derivative.
The real issue is whether or not the boundary terms contribute. In this section we analyse
these boundary terms for the type Il string at genus 2. We shall see that in flat space-time
the boundary terms are indeed zero while on a compaciified background, they yield, as
they should, to a nonvanishing cosmological constant induced by Fayet-Iliopoulos D-terms
(if any) arising in these compactified type II models. The anologous calculation for the
heterotic string was carried out in ref. [73|. This section is divided into three subsections.

In the first two we evaluate the boundary integrals by factorization and also by explicit
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computation for strings in R'® using genus two 9-functions. In the last subsection we
evaluate the boundary integrals for compactified strings using factorization.

Before proceeding with the calculations we must discuss two preliminaries. First we
'd.escribe the relevant boundary of moduli space and second we discuss the dependence of
the path integral on the location of {2,} where the gravitino has its support.

In our analysis below we shall examine some correlators in the neighborhood of the
boundaries of the moduli space. There are two boundaries of moduli space: Ay describes
riemann surfaces where a nontrivial homology cycle shrinks to zero, leaving behind a torus
with two marked points, and A, describes riemann surfaces where a trivial homology cycle
shrinks to zero, leaving behind two tori Ty and T joined at a node. A good parametrization
of the neighborhood of both boundaries is given by the plumbing fixture variable £, with
t — O corresponding to the boundary. Here we shall recall some of the main features of
this well-known parametrization.

A family of riemann surfaces near the boundary A; of moduli space of a genus ¢
riemann surface may be modelled by gluing an annulus 4 with modulus ¢ onto two surfaces
%7 of genus g1 and /7 of genus g—g; at points p1, pz. For a genus two surface, 51 denotes a
torus 71 with modular parameter 7y and ¥y a torus T, with parameter 75. More precisely,

we may choose coordinate patches and local uniformizers:

Ur:{ulluj< B} in XI

(5.1)
Upr: {v|lv] < R} in T

for some finite B. Then we may identify the regions
(V2 < fu—pi| <2} C U;
(12 < o — pu| < €2} € Uy
- with the annulus A (1£1Y2 < jw] < |£]71/2) via
e el <a

LT € (5.3)

_ v —p2 3_1/2
= 7z 1<|w|<|£|

w =
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where € is an arbitrarily small but fixed real number. The final result is independent of
€. In what follows we shall denote by 7} the surface Ty with the region |Ju — py| < 6%
removed. Similarily 7Y will denote the surface Ty with the region v — p2| < e% removed.

| If we parametrize our moduli space by the genus'two period matrix 7;;. Then in the

neighborhood of A; we have [75]:

e 711 712 _ 71 0 0 (24 2
Tu(m m)_(o T2>+a(a O)+O(t) (5.4)

{where « is some known constant). So in a sufficiently small neighborhood around A, we
may choose as our moduli B2 = ¢, 71 = 71,72 = 73.

The abelian differentials on the genus 2 surface to leading order in t can be taken to

be
wy ~ du
o 1 du (5.5)
SENCEFNE
on Uy and
: o , dv
o~
(v — p2)? (5.6)
w;; ~ dU

on Uy;. In terms of the w-coordinates we have

172 4w
w? (5.7)
wy ~ 124y

w1~t

Finally we shall construct a set of beltrami differentials {, n,,,%-,) dual to the moduli
(dt,dri,dr2) inleading order ast — 0. One easy way to do that is to start from the following

standard result [75]:

ar;;

ate ] Npwily (5.8)
and apply it to t? = (7r1,72,712 = af) with the period matrix as given in (5.4) and the

abelian differentials listed above. This implies a set of equations on the dual beltrami

differentials. Those equations can be solved by taking (n,,9-,,n¢) of the form:
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1 g
[ d = 4
1 B J ,
M = (Im'rg)dz ® 3z ° €Ty (5.9)
lw 1

To leading order in ¢, the support of #,,,7,, ¢ is on T{ and T} respectively while that of
n: is on the annulus A.

Now let us briefly consider Ag. If we shrink the nontrivial homology cycle a; — 0
then the abelian differentials w;,w; are, to leading order in ¢|75]:

$1{z — p1)
#1{z — p2) (5.10)

1
wy — ——dz0log
2m
wg — dz

for z away from the nodes p;, ps. The period matrix 7 then becomes

! logt
T1] — ——
1 2m g
Pz
Tiz — dz
Ps
while 75 is the modular parameter of the remaining torus. Again we can apply {5.8) to

find the beltrami differentials corresponding to % etc. In particular we must have

11 3 [ o
—— ~ —T = w
271 t Btl e

We will take, for a fixed radius r,

1 \ 3
me~ (2= p1)*6(lz —pa| - r)dz @ - (5.11)

One can write down 7,,,,7,, so that we satisfy (5.8) to leading order in {. We will not
need the explicit expressions for these other beltrami differentials in our analysis.
The second issue we have to clarify before starting is the dependence of the path

integral on the location of the insertion points {z,}. Using manipulations similar to those
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in ref. [6][10], it may be shown that under a shift in the points 2z, the integrand in (4.29)
changes by a total derivative in the moduli space. Such total derivatives are not necessarily
vanishing on the boundary A, [10]. In other words, the final value of the path integral
.c;iepends on the choice of points {z,} at the boundary of moduli space. This is just a
manifestation of the fact that because of the integration ambiguity the path integral is not
completely basis independent., We have to determine the correct behaviour of the basis of
the superbeltrami differentials at the boundary of moduli space. For that one may invoke
unitarity or BRST invariance. At genus two this seems to resolve the ambiguity. By
generalizing the analysis given in ref. [10] to the type II string it can be seen that the
- correct prescription at genus two for the choice of points {z,} is to take the points z; and
z3 to coincide with p; and 25 and z4 to coincide with the point py at the boundary Ay of
moduli space.

There are several ways of implementing this constraint on the set {z,:a =1,---,4}:
For example, as the surface degenerates, one could first take z; and zz € T while z; and
z4 € Té Then after extracting the ¢ behaviour of a given correlator, one would take the
limits 21,23 — pi1, and 23,24 — pa. Alternatively one could take z; and 23 (z2 and z4)
€ Ur(Usr) with |22~ 1| ~ |21 — pa| ~ O(t7) (|24 —pa] ~ |z2=pa| ~ O(t2) ). Consequently
in the w coordinate we have to keep in mind that {w{z,) : @ = 1,---,4} will have absolute
value of order one. It is a matter of convenience which way we choose to implement the
constraint in our calculations. In subsections A and C we will work with the first way
while in B we adopt the latter.

In order to evaluate the boundary term at ¢ = 0, we must carefully determine the
relative sign between the contributions from difierent spin structures. This is most easily
done by introducing a pair of fields P*(z) = e‘%.§'+S°‘(z) and P~ {w) = egg“Sa(w) in
a given amplitude, and defining the original amplitude as a residue at the pole at 2 = w,
By translating z along various homology cycles, we may initerpolate between different

spin structures and hence determine the relative phases between the contributions from
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different spin structures [76][12]. This prescription can always be implemented in the
holomorphic sector which has a conserved supersymmetry current P*{z). In the case
of uncompactified superstring theory, {or compactified theories which have a left handed
Supersymmefry_current as well} this prescription may élso be used to determine the relative
phases between different spin struciures in the anti-holomorphic sector. Note that this
procedure may be implemented at any stage during the calculation, before, or after taking
the ¢ — G limit.

A. Evaluation of boundary terms through factorization:flat space

We now evaluate the boundary terms in (4.29) assuming the factorization hypothesis
. for correlation functions of a conformal field theory near the boundary of moduli space.

First consider the behavior near Ag. Near the boundary the measure behaves like
- 1
oMy + OfMy ~ diNdt ————(P{t,1) + - -- 5.12
vl + O UOgltl_l)S( ( _)+ ) ( )

where P is a Laurent expansion in ¢,# and the ellipsis indicates terms suppressed by higher
powers of Im 1. It follows that AM; and M; have similar expansions. We can only obtain

nonzero boundary contributions from terms of the form

_ 1 1
/d“\dta‘((zog|¢|—1)5 tﬁiﬁﬂ) (5.13)

and this can only contribute for 8 > 0. By the physical factorization hypothesis the

measure near the boundary can be expanded as

2

ds _m?
s—sz&nze 2 (5.14)

where §m? are one-loop mass corrections. A term with 8 > 0 would correspond to the
propagation of a tachyon along the long handle. However as is well known the sum over spin
structures on the genus two surface allows only states which survive the GSO projection

to propagate along the handle. { An explicit demonstration of how this happens will be
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given in subsection B.) Thus we conclude that the only terms thai occur in an expansion
of M, M; are the ones with 8 < 0. As a result there is no boundary contribution at Ag.

We now concentrate on Aj. In the region of that boundary we use the parametriza-
tion described in detail above and analyse the correlators in (4.29) and {4.30) as t — 0.
Furtheremore only derivatives with respect to 1,# can contribute, so we need only consider
B%Mt + %M{. There can be boundary contributions only if, in an expansion in ¢,{ near
t =0, M; has a term ~ % or Mj has a term ~ -1- We shall first examine M;.

t

Consider the first term in (4.29) given by

MO =3 [y § 2 pixpole e i@V W)

(5.15)
Y (22)¥ (23} (24) [ [ (m:,0) ] (m7.8)
1t F=1

We only need to extract the % term in the neighborhood of A;. A quick way to analyse
the behaviour of the correlator in (5.15) in this neighborhood is to use the factorization
hypothesis.

To implement factorizaiion it is more convenient to transform further our coordinate

system described by the annular coordinate w in (5.3) into the cylindrical coordinate w’:

w' = i lnw (5.18)

In these coordinates our genus two surface near A, is degenerating into two tori 77 and
T2 connected by a long cylinder C. Writing ¢ = €2%%°, the length of the cylinder is Im s
and the twist in C is Re s. Using this picture and the beltrami differentials {5.9) we can

see that in the £ — 0 limit the expression

TL6re.5) = 20, rr,,8) (5.17)
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where by denotes the zero mode of the b ghost on the cylinder C (i.e. relative to the w'-
coordinates where b = Y. bre~""% (dw’)?). Notice because of the support of 7’s chosen
in (5.9} the ghost factors (vs,,5) and (57,,b) will lie on T} and T} respectively.

. In applying factorization we introduce a completef‘set of states at the two boundaries of
the cylinder and calculate the various correlators of these states with the operators on tori
Ty and T5. Since inserting a state @ at the boundary of the disc defined by |u — p3| < e%
on 71 is equivalent to inserting an operator eh"*méﬁ"*/zq)(pl) on Ty and similarily for T3,

and since the propagation of such a state on the cylinder gives a facior of (%)h*'* (%)E“‘, we

get:%'
3 3
(TToENTT 0P D) [Tt [T )
¥ 7 1#£d =1

~ et (TT O () (01, 0) (70, B)8(m1) 1, (0l @TB0¥[0),, (5.18)

(¥ (p2) H O (2 (m2,) (712.8) ),

where OEI)(zfl)), 0_5-2)(2_7(2)) are any set of operators which go to T and T, respectively
in the limit ¢ — 0 and (hg¢,he) = (hy,hy) are the conformal dimensions of (®, ¥). Note
that in order for (0|§)T50\If|0>c to be nonvanishing ® and ¥ must have the same conformal
dimension. A simple consequence of the explicit ¢ factor in (5.18) is that in order to get a

L

 contribution from M; of order =

we need to find operators ¢, ¥ of conformal dimension
(0,0) that have non-vanishing matrix elements in (5.18).
For the matrix elements to be non-vanishing the operators ® and ¥ must have appro-

priate ghost factors so as to conserve the various ghost charges on 71 and T and on C.

We also need one factor of € and £ on each 7} and C in order to absorb the ¢, € zero mode.

26 1In this section { ) denotes an ordinary functional integral; (O{4)) = [[d¢]O(¢)e=5#)
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This imposes severe constraints on the operators that could possibly go through. Let
us first examine the constraints imposed by ghost charge conservation in the left-handed
(anti-holomorphic) sector. Recall, in the process of factorizing (5.15) ¥ (z3) and Y {24) will
]'i-e on Ty and T, respectively. For definiteness we shall take Zp to lie on T3 although the
final result is independent of where it lies. Also since J,(z) and V *{y) have no factors
involving anti-holomorphic ghosts, they will not affect any of the anti-holomorphic ghost
charges regardless of where they lie. Consequently to examine the constraints of the anti-
holomorphic ghost charge conservation we need only consider the various factors in Y{2,)
and the explicit b factors in (5.18). For example, in calculating the matrix element on 75
- we need to consider the contribution from each individual term in V{z4). An explicit ex-
pression for Y {z) was given in (3.48). The term ¢9¢ by ghost charge conservation requires

Ui{(p2) to be of the form:

Wt (ps) = E(p2)i(p2) : Ulp2) (5.19)

where £ is needed to absorb the ¢ zero mode. U is an operator of dimension (0, ~1) which
is neutral under all anti-holomorphic ghost charges. It is not difficult to see that no such
operator exists. As a maiter of fact-this analysis is true for the compactified theory as
well, since it is based on the structure of the antiholomorphic ghost sector which is the
same in all backgrounds. For the term proportional to 5(8255??) or d7e2%5 in Y {z4) ghost

charge conservation constrains @T(pg) to

‘I’T(Pz) = &(p2)Be(p2)e2P2) E(p2)BE(p2) f (p2) (5.20}

where f is an operator of dimension (0,0) and is neutral under the anti-holomorphic ghost
charges. It is therefore independent of the antiholomorphic ghosts. The conjugate of this
. operator is Eﬁf where again f is ghost independent. However a state of this form cannot

propagate on the cylinder because of the b zero mode. More precisely

boén fl0) =0 (5.21}
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since ¢(0}]0) = €3]0} and 5,{0) = 0 { In our convention {0|¢p212-1|0}c = 1}. As a result
the net contribution from this term also vanishes. Note that this argument is also equally
true for the compactified theory.

| At this stage we are left with the term in 17(24)i‘proportinal to eb(z) Tynatter (5] In
flat space this is given by e‘gf‘}“““” = 8‘51,[3”5){“ and the operator which may contribute

to the matrix element on the torus T3 must have the form:

¥ (p2) = E(p2)e(pz)e? 9% (py) x O (5.22)

where O is an operator of dimension {0,0) from the holomorphic sector. The relevant
- correlator involving ¢# and g, fields may be calculated and the sum over spin structures
of the anti-holomorphic sector performed—we find

9[8s](24 — p2)(B[6:](0))* "
-~ (%: ¢62] 6o o) ) (5.23)

( In:(5.23) * denotes complex conjugation.) ¢[b:] = e[‘;;] may be determined to be
exp(2mi(az + b2)) using the interpolating spin field method, as explained earlier in this
section. As a result (5.23) vanishes by a riemann J-identity { for 2 reference on d#-functions
and the riemann identities see [77]]{75].) This proves that Mt(l) yields no boundary coniri-
bution.

Let us next analyse the second term in (4.29). One of the relevant terms is

M)~ (6(51)E(20)E(21) Ja(2)V * ()Y (22) Y (23)05E (24} (01, 6) (m2, ) (711, B) (72, B))  (5.24)

with another term where 23 and z4 are interchanged. Now factorization of the antiholo-

morphic sector leads to
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where we have applied charge conservation on the g = 2 surface to drop irrelevant terms in
Y (23). For convenience we have also dropped operators involving X* and all holomorphic

fields since they do not affect our discussion. From this we find that
®(p1) = cdce 243EU (5.26)

where U is a (0, —1) operator which is ghost charge neutral in the antiholomorphic sector.
Again no such operator exists. This is also true for arbitrary backgrounds. The same
analysis applies to the term with z3 and z4 interchanged, leading to the same conclusion.

In analysing the terms in M, proportional to %ir"% we should keep in mind that %% — 0
~in the £ — 0 limii, since z, — p,. However, since we are taking the z, — p. limit after
t — 0 limit, one might wonder if there is any subtlety in setiing %—fr:‘— to be zero from the
beginning. For example, M; may give divergent boundary contribution in the t — 0 limit
before setting z, = p;, and then the limit will not be well defined. Here we shall show that
such things do not happen. Since it makes sense to take 2; and z3 to be independent of
" To even before we set z1 = 23 = pi, we shall only discuss terms proportional to g—if for
a = 1,3, and g—i; for @ = 2,4. Then, for example, the term in M; proportional to 32 is
given by an expression analogous to (5.24) with 97 replaced by 85,, and (72,5} replaced

by (7:,5). Factorization in the antiholomorphic sector gives the following expression,
e (e (WH{P2)dE(24)) (5.27)

~ where ... denotes terms not relevent for our analysis. In order to get a non-vanishing
boundary contribution ¥! must have antiholomorphic conformal dimension zero or less.
But in order to soak up all the ghost zero modes on T, we need ¥t to contain an operator :
ben € @, which already has conformal dimension two, which is too high. Hence the boundary
contribution vanishes identically. An identical analysis may be carried out for the terms
involving —g—‘;l by looking af the correlator on the torus 7. This argument also is valid for

arbitrary backgrounds.
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Finally we can analyse the terms in {4.30) in a similar fashion. This time we have to
look for % singularities. One can either look at the holomorphic sector and demonstrate
that such a singularity does not exist, or, equally well, one can analyse the antiholomorphic
dependence and try to isolate potential O((£)°) terms. It is easier to do the latter. In
this case after factorization the antiholomorphic correlator is the same as that in {5.25).
We are now interested in operators with hg = 0, so the operators of interest have the
form ®(p;) = &3ee2%3E(Q where O is an operator of dimension (0,0) and contains no
antiholomorphic flelds. Thus &7 = ¢: £7 : 0,%7and since O contains no antiholomorphic
fields the left-moving correlator on Ty is {: &7 : (p2)0&(24)){e{p){n2,8)). The correlator

of the anticommuting ghosts is nonsingular and the remaining correlator can be evaluated

by standard techniques (see subsection B below for more details on the derivation of this.)

We find

; ¢ 19[5](2102“224) 5
s = 22) 2 55 (o —zr) 0 O (5.28)

which is certainly not zero. However, implementing the node prescription 24 — ps and
using-the riemann identities and their derivatives we obtain zero. The term with 23 < 24
can be handled similarly,

This completes our proof of the vanishing of the genus two boundary terms for the
type II supersiring in flat R'© and hence establishes the vanishing of the cosmological
constant in that background. We now confirm these arguments by explicit calculation. In

subsection C we will again use factorization arguments, but in arbitrary backgrounds.
B. Evaluation of boundary terms by explicit calculation: R©

We now return to the formulae (4.29) and (4.30) for the total derivative and examine
through explicit calculations at genus two the behaviour of the correlators near the bound-

ary. We shall start with A,. Again we need only consider %M; + (%-Mt—. Consider first

27 In this case 01 denotes conjugation in a hilbert space without the antiholomorphic

ghost fields. In subsequent analysis T will sometimes stand for conjugation without anti-
holomorphic and/or holomorphic ghost fields. The precise meaning should be clear from
the context.

72



M;. The correlator involving the antiholomorphic fields can be written {after applying

ghost charge conservation ) as a sum of three terms:

My ~A(E(z0)e® eP4) (§# (23) 8" (24)) (DX *(28) DX ¥ (2} - -) (72, 8) (71, B) (772, B))

+ where A, B and C are correlators involving the holomorphic fields. They can be exhibited
explicitly from equation (4.29}). However since we are here only concerned in isolating the
% behaviour of M; we will not need the explicit formulae for A, B and C. Furthermore in
(5.29) the ellipsis - - - signifies insertions of X matter fields from the holomorphic sector.
Again we will not need to know explicitly what they are since they will not affect the %
dep.en:dence.

We now examine the terms in (5..29) more closely:

1.} Consider the first term in {5.29). All correlators can be evaluated explicitly. More

precisely the relevant correlators can be read off from the following general formulae:

ad 23 1 1
i) E et ) T = e (3, 9‘;2} — 24) [l (E(2i, 2))% % [[i{o(2)) 22
(5.30)
(ﬁ b(wi)(dz:)® ﬁ.C(yj)(dyf)”) ZZf%ﬁ(Z Zi— ) — 34)
- ! ) (5.31)

Mis B(or ) Ty Bivs) [1; 0
H 3

[L:; E(zi,y5) ;9°(y5)

1
where Z; ? is the determinant of a chiral scalar and o is the g/2-differential with no

zeros or poles [75] . Because of ghost charge conservation we have Z;N:l g; = 29 — 2 and
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N; — Nz = 3(g — 1) for ¢ > 2. Equation {5.30) can be derived for arbitrary g¢; ( integral
as well as half integral) by applying the stress tensor method. More precisely one first

constructs the greens function

(B(z)(y) TTIL, er#(=)

G JE) =
(xay)z ) {I—I:V:l eq;¢(z;)>

(5.32)

from the knowledge of its analytic properties and {quasi)-periodicity as a function of z and
from the fact that the residue of the simple pole at = = y has to be normalized to one.
From & one can construct T'(z; ;) = (T'(z) Hfil e ®(20Y /({T] e®#{=)}), where T'(2) is the
stress tensor for the superconformal ghosts. First order integrable differential equations
for the correlator of interest in all the z; variables then can be derived by isolating the
simple poles in T'(2;2;) as z — 2z;. The final result can be integrated to give (5.30). For
the special case where all the ¢; are integral this procedure is not needed since one can
derive {5.30) by requiring the right zeros and poles and the correct {quasi}-periodicities for
—%%‘(9‘:‘ + 2) differentials. { For half integral ¢; the correlator is not even quasi-periodic
but transforms into correlators in other spin structures). Equation (5.30) agrees with a
special case of a general formula given in ref. [6].

The correlator in (5.31) can be derived similarily through analyticity and period-
icity contraints. Alternatively it can be read off from the bosonization formulae of

[68](69]70][71][72].

To exhibit the behaviour of the first term in (5.29) near A; we also need to use the

following standard degeneration formulae at genus 2: Let x € T{, y € T4 and w € £, then:

28

28 Eisa{—1/2,—1/2) form. When we write E{z, p) we mean the (—1/2,0) form obtained
by choosing the coordinate system u near p defined in (5.3) and evaluating the second
argument in that coordinate system. The coordinate dependence of { and w guaraniees

that the whole expression is coordinate independent, as it must be.
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1 1

E{z,w) — —E(z,p1jwt” {dw)” 2
L, -1
E(y,w) = Ea(y,p2)t™ 7 (dw) ™2

B(2,9) = Ei(z,p1)Ea(p2,y)t 2
: 1 (5.33)
E{wi,wg) — (wr — wz){dwy) 2(dwy)” 2

(dz)?
(Ei{z,p1))

-1

ofz) —

o(w) — w

and

19[5]2 (D ,+Zn vy —I—Zn w_?—mA)
ﬁ[é]Zn“) Zn(l)p ~ {1+ 7) ’5‘[51271(2).% Zn Pz——(1+f))

(5.34)

For a derivation of these formulae see [75][70].

Thus up to some irrelevant determinanis and numerical factors { independent of ) it

is easy to see that the first term in (5.29) behaves as

é(Ze[aw‘*[al(O) Plal(# — &) ) (5.35)

Haf(zs + 24 — 24)
where * denotes complex conjugation.
We must estimate the sum over spin-structures. Recall first that 2A — 2p where

P = pi1,p2 is the node. {From the point of view of the ¢ = 2 surface these are the same

point.) Next, from {5.7) and the fact that 23,24 must approach the node we have

&y = (23 — z4) = O(t/% (w5 — wy))

(5.36)
Eg = I(Zg + 24 — 2&) = 0(51/2(w3 + w4))
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where I : Picg — Jac is the Abel map. Since we only sum over even spin structures
?[a)(Fz — Z4) = 9[a](0) + L€ E70,4[a}(0) + O(22) (5.37)

and simi]arlj} for the other argument. Finally, from the riemann identities we learn that

> ela9tjal(0) =0
> elo9i5[a)(0)8°[a](0) = 0

(5.38)

From these facts it follows that the spin structure sum is O (£2), so there cannot be a pole

in f.

2.} The second term in (5.29) can be written

(F2)° Jim (2= + 50 [((71,5) (7 B)e(aa)B(ee)) (20} E(2a) (5)e)]  (5.39)

T5— 24

plus a term with 23 < 24. Here Z;/; is the partition function of a weyl fermion. From

(5.31) we learn that the behaviour of the reparametrization ghost correlator, as t — 0, is
roprrt

up to irrelevant factors. In exhibiting the £ dependence in {5.40) we have used the w
coordinate system for z3, 24 and 25 and the fact that w3 ~ wyg ~ ws ~ O(1). Note that
the final answer does not depend on which coordinate system we use to carry out the
calculation since Y(2) is a conformal field of weight zero. The individual terms in ¥ (2)
- {In particular dne?®b and 9(ne?#d)). are not conformal fields. However their sum, which
is what appears in .(3.48) , is a conformal field.

The superghost correlator is more conveniently handled in the 3,« system. We first

notice that,

(E(20)BE(za)i(25)e?P28))
= lim lim (2t — z5) " 12} - za)—l{5(33)7},(35)85(%)6—5(253825(za)>
2‘5—-02‘5 2‘3—.23

(5.41)
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Using (quasi)periodicity and analyticity and eq. (5.30) we find

N

(B(2)3(y) He‘“‘g(z‘))

=1

:(- 1 He)(Z— G+ 3 q:7: — 24)

E(z,w)  92[a](Y ¢:2: — 24) * (5.42)
I (22" 1T (o) M (20) )

Taking the limit indicated in (5.41) on the relevant correlator in (5.42) we finally arrive at

— *
- — _ 7 Gof(225 — 225 + 224 — 2A 1 1
I A e R
192[(1](2:3 —~ 25 + 224 — 2A) E(23,25) g (24)

(5.43)
We can now proceed with an argument similar to that used in the matter case. We must
evaluate the right hand side of (5.43) in the w coordinate system since the reparametriza-
tion ghost correlator has been calculated in this system. The divisors in (5.43} give vectors

of O(#'/2) in the jacobian. Once more (5.38) shows that the spin structure sum is O(f2),
so there is no pole. These remarks are unchanged if we exchange z3 for z4.
3.) The last term in (5.29) can be handled similarly to the second. The ghost correlator

is now only O(f~*). The superghost correlator is once more (5.43) and hence O{f?), so

there is no pole.

Finally, we consider Mj and look for a term ~ % in an expansion in {,{. Rather than

showing that no such pole arises from the correlators of the holomorphic fields we once

again look at the correlators of the antiholomorphic fields: 2°

(€(20) (71, b) (772, b) 3 E(23) (One?#b + B(ne2¢b(24)))) (5.44)

2% Qur findings here are independent of the behaviour of %%1, 3?_1 since the latter can

never worsen the power of divengence in {.
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plus a term with 23 and 24 interchanged. The ghost correlator has order O(1/f) while the
superghost correlator is once again (5.43) and hence Q{i?). Therefore, the expansion in {
begins at {. Hence there is no term ~ %
| We next turn our atiention to the boundary inteéral on Ag. As we have discussed at
the beginning of subsection A the only dangerous terms are of the form (5.13). To see if
such terms arise we must evaluate the correlators as ¢+ — 0.
From the above description of the abelian differentials we see that

Blzy) = ﬂ—lg(g)*y) (dz) ™/ (dy) /2

- in the limit ¢ — 0, as long as z,y are not near the nodes. In particular the limiting behavior
of the prime form involves no powers of ¢. Similarly, o(z), while complicated, involves no

factors of ¢ as long as z is not near the node. On the other hand, in the formula for the

vector of riemann constants [77] ,

Ay = —T—;ﬁ + ex (5.45)

¢, is a vector which has a finite limit as ¢ — 0, but A; ~ —% — —too. Thus, in the

bosonization formula for the chiral scalar determinant

gz _ 90z —w— A) [ E(z, ) [[o{2)
1 detw;{z;) [T E{z:,w)} o(w)

(5.46)

as long as z; are not near the nodes we may estimate the ¢ dependence by setting D =

3" z; — w, a fixed divisor, and evaluating

E eiwn?n—}—?winl(Dl—&;)-&—---

n;,ﬂ.z
; ; J (z'_pl)ﬁi(w“pz)
= expl innir + minymy + 0 In —L\% 4.
n;f;g P( 171 171 1 Z P1{z; — p2)di{w — Pl) (5,47)

P1{z; — p1)9 -
~ (D3 — Ag|r3) +9(Dy — 112 — Az|r2) [| (aiz - i;;ﬁig — p1)
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Here [g;] is the vector in the jacobian for the divisor D). The explicit factors of z; come
from the non-vanishing component of w; on T2. Thus we see that ast — 0 Z; ~ 0{1), i.e.
acquires no powers of ¢. Relating the scalar determinant to the chiral scalar determinant

in the usual ;va_y leads to a factor of

1 1 1
(detImr}s  (Imra)® Qoglt|-1)5

We now turn to the fermionic ghost correlators. The beltrami differentials chosen
above have support at a bounded distance from the node. Thus, in computing b, ¢ corre-
lators the insertion points of the operators forms a divisor D = )~ m,z; with support a

" bounded distance from the node, and, by the bosonization formulae the correlator behaves
like
19(D . 3A) _ Z eirrn%n +2ﬁ£n1(%rl)+n1 Z“ m; In ——l—-—ﬁ—:;i::'::;; 4
iy ,n2

o saap T (D)

#1{z; — p2)

(5.48)
i
as t — 0. Combining this with the dependence n; ~ {7! above we reproduce the famous
¢t~ pole of the bosonic string [47].
We now consider the superconformal ghost system for an even spin structure § =
[a; an

5 52] . From the bosonization formula for the superconformal ghost correlator [6] we see

that we must estimate

9(6)(D — 2A) ~ t71/29(8)( Dz — 245) [ | (M) i a=o0

: 191(2,‘ - 2)
' ? iy (5.49)
~ 17¥59(6,](Dz — 249) [ (iiig - i:;) i e =12

Again D is a divisor determined by the insertion points of the fields £, 7, e9%. The bosoniza-
tion formula involves one more theta function in the denominator than in the numerator

so the contribution of the superconformal ghosts will be the inverse of the powers in {5.49).
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Finally, we consider the correlator of the fermionic matter fields. These do not involve

A so they behave like

B5I(D) ~ 8 Ej (Dirz) + O(12) :_ a1 =0
oo ({3 T35 )
‘ ‘ (5.50)

Combining this with the above estimates we see that the leading order singularity in the

Neveu-Schwarz sector {a; = 0) 1s

1 i i
(loglt|—1)® 13/2 7372

(5.51)

reproducing the well-known result that the Neveu-Schwarz tachyon has a value of m? which
is half that of the bosonic string tachyon. Moreover, we see that in the Ramond sector,
where a; = 1/2, only massless particles can propagate, as expected.

{’\!"e can now explain how the dangerous terms behaving like {5.51) cancel. As has
already been pointed out, the relati\;e sign between the contribution from different spin
structures may be determined by inserting a pair of spin fields P*(2) and P~ {w) in the
correlator, and dragging z around various homology cycles. In this case we want to compare
the contributions from a; = 0,5y = 0 and a3 = 0,86 = % sectors. This may be done by
| taking z and w on T3, and dragging 2 around the node p; or py. By examining the relevant
correlator we can sée that as a function of z it has a square root branch point at py and pz,
due to the []; (g:g%gi%) o factor in {(5.49). As a result, the relative contribution from
the spin structures a; = 0,6; = 0 and a; = 0,6, = % has opposite signs and they cancel
after the sum over spin structures is performed. It is worth remarking that our discussion

of Ag applies at arbitrary genus with only small modifications.

This completes our proof that the boundary terms are indeed zero.
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C. Evaluation of boundary terms through factorszation: arbitrary backgrounds®°

In the above demonstration of the vanishing of the cosmological constant in flat space,
it was sufficient to examine the behaviour of the aantiholomorphic sector. In arbitrary
backgrounds this is not expected to be the case. The reason for this is that by assumption
we are considering backgrounds which preserve only N = 1 supersymmetry. In our case
the space-time supersymmetry comes from a right-handed current J,{z). Since many
correlators are expected to vanish as a consequence of supersymmetry non-renormalization
theore.ms, we don’t expect to arrive at definite results before analysing the holomorphic
- sector. Another thing we shall bear in mind in our arbitrary background calculations is
that the matter sector is now an interacting theory where left and right movers are coupled
ina non—tfivial fashion above and beyond their coupling through zero modes.

We shall start by writing down the densities M; and M; that need to be considered.

As was shown in subsection A the only terms in (4.29) and (4.30) that apriori have the

potential of contributing are given by:

M=y ] Pyf SRV G b))

¥ (e2) (¢ 20) (22) (€ Tr) (20) [] (75,0 (5:52)

=1

30 We would like to emphasize at this point that although we use factorization to

study the behaviour of various correlators near the boundary of moduli space, the ghost
correlator on ¢ = 2 surface may be computed explicitly in terms of theta functions and
the limit ¢ — O of this correlator may be taken. It is only for the interacting part of the
theory involving matter fields that one needs to use the factorization hypothesis. This
was the procedure adopted in ref. [73] in the calculation of the heterotic string two loop

cosmological constant.
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and
My= MY + M + M)

= Z([d2 }( *“"5 (£1)€(21)€(Z0) Ja(2)V *(y)

ri{y) 2ms
X (Y(zz)(m,b)(‘-‘?z,b)[ (23)8:£(24) (??1, )72, 8) + 23 < 24]

+ Y (22){m, 0){(n:, b)Y (23)8r, £(24)(771,5) (772, 0)

+ (22) 10, 8) B (2}, Een) 70, ), ) )

(5.53)

Recall that in arriving at this conclusion in section A we have utilized properties of the
ghost system which are valid in arbitrary backgrounds.

When we calculate (5.52} and (5.53) we must integrate over y and sum over contour
integrals in £ around the poles r;{y). When we consider these expressions on a surface
which has degenerated into tori Ty and T3, there are therefore four distinct terms we must
consider:

lra: yeTi, rey) € Th

i-b:yETl,rg(y) €Ty

2-a:yeTy, re{ly) €T

2:b:ycTy, rely) €T

To see that all cases occur recall that the spurious poles {re(y)} are the zeros of
the function f(z) = [[;9[6](L4 — 22+ 3.2_, % — 2A) where the product runs over all
spin structures 3!, Using the formula 2¢,(z)92(z)93(x)04(z) = #1{22)92(0)F3(0)F4(0) for
g = 1 theta functions we see that if y € Ty, then in the limit t - 0

4
f(x)—’l 1(y — 2+ 221 — 2py |1 ) H olz2 —plre) z€eTh

= . (5.54)
flz) — H da(3y+ 21 — 3m|n)§01(—z + 222 — po|r2)n®(r2) z €T

a=1

31 We are not asserting that all the zeros lead to poles of correlation functions, only that
the poles of correlation functions lie in this set.
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Hence, for y € T3, of the eight zeros {r;(y)}, four degenerate to r;{y} = y + 22; — 2p; on
T7 and four degenerate to ri(y) = 22z — p2 on T3. Similar considerations hold for y € T3.
Thus we must consider all four cases.

" The number of cases listed above can be cut by half by observing that (5.52) and
(5.53} possess a z; «> zz symmetry. To prove this we consider the holomorphic part of
(5.52) and (5.53) { for a fixed value of y) which is essentially the same for both and is given
by:

I~ }{ d—m.(E(El)E(z1)Ja(w)V""(y)Y(zz)(nub)(frs,b) “) (5.55)
ri{y) 27t

for somez and 7 (z # 7}, where the ellipsis denotes suppressed operators which are irrelevant
~ for the present argument. We shall continue to use this notation throughout this section.

At this stage we can replace V*(y) by
Vely) = Vo(y) + d(cte?/28~5,8X* (v#)>P) (5.56)

without changing the answer: The added term has the wrong ghost charge. f}"‘(y) satisfies
Q@ B,V“(y)] = 0 point by point in y, where Qp is the right-handed BRST charge. We

%z—ijBRST(é)f(zg) and deform the BRST contour away from z3

can then write Y (z2) =
and attempt to shrink it to zero. In doing so we pick up the residues at the poles of the
BRST current at the various other vertex insertions. The pole at Z; does not contribute
since the resulting correlator as a function of z has no poles at ri{y). The residue at (7,,d)
on the other hand vanishes by ghost charge conservation. Finally the pole at £(z;) yields
Y {z,}. This means that {5.55) becomes

I~ f & (20 el a2V W)Y ()10, D) (15, 8) ) (5-57)
ri(y) 271 |

where at this stage we have dropped the term in V with the wrong ghost charge. This
establishes the desired symmetry.
We should also notice that the correlator in {5.52) and (5.53) is independent of Z;:

For the z-integration in these expressions to be nonvanishing the poles in the correlator
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have to occur at r;{y) and not at r{{y). The latter happens if £(%;) soaks up the £-zero
mode and hence no dependence on 2; survives.

The 2; « 2z symmetry and the independence of the correlator on 2; impliesa Ty «— T,
éymmetry m fa:ctorization'. This is clearly the case since the only information about T,
and T3 is contained in where 2; 2; and 22 lie in the degeneration limit. This symmetry
relates case 2-a to 1-band 2:-b to 1: e listed above. From now on we only concentrate
onl-aandi-b.

By examining the holomorphic structure in {6.52) and (5.53) we see that there are

two kinds of terms which satisfy ghost charge conservation at g = 2:
I (Ja(2)V ™2 (y)€(21)E(21) (e? Tr) (22) (ms, ) (5, 8) - - )

11 {Ja(z)V 5 (y)€(21)€(21)(One*®b + B(ne**b)(22)) (s, b) (n;,B) )

1
where V3 and V2 are the parts of the dilatino vertex operator with % and % ¢-ghost

charge respectively. More precisely these are given by:
Vs = aXH(v,)°P (Le2tbS—5,) (5.58)

1 — s 1 -
VeZ = 9X*(7,)Pe2%0X¥(v,) 5,87 87 (5.59)

In writing down (5.59) we have dropﬁed the term e%"S‘é limy, o {{w — z)%T}"t(w)g‘(z)
in (4.14). This term does not contribute since it has the wrong charge under the U(1) of
the (2,0) superconformal algebra [78][79][80}[81]. ( Recall the U(1) charge of §* is +2
while Tp = T},f + Ty has charges +1 and —1 respectively.) |

We are now ready to examine {5.52) and (5.53) factorized according to configuration
1.a and 1.5 and using cases I and /1. To facilitate this rather lengthy analysis we have

summarized the result of factorization of all the possible configurations in table (1).
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I-1.4 . I-1-b H-1-a IF-1-6
ViizeTy vize D VizeT VizeT
AR 2(py) = (cBee ek} | B(p1) = (cDee3¢5+55¢)| B(p) =c:nk: D-Terms
N.P. + §.8. N.P. N.P. + 8.5.
,-’H't.m D{p) = (cBee=?E®) | @(p1) = (cBce=3¢5P5-¢)| ®(m)=c:nt: |@(p)= (ce“%"é’fs.,}
D.C. D.C. D.C. n.C.
.’\1}2) Ptps) =1 bc:e™® TtHpr) =1 bc: e 3% UH{py} = (ce™249¢) | ¥i(py) = £ 14c§- 57
D.C. D.C. N.P. N.P. +5.5.
Mt-{s) Ul{p2) = {ce¢y#) ®(p1) = Le- 385152 ®(p;) =: be: B(py} =i be: 7%
N.P. + 8.8. N.P. D.C. D.C.

Table 1: Cases tn the factorization analysss

In this table we identify for every configuration the ghost factors that the operator
®(p1) (or ¥i(p,)) going through the neck must have in order for the resulting matrix ele-
ments on T, and T be nonvanishing. This entails a definite lower bound on the dimension
of ®. Recall however that for Mz to yield any contribution on the boundary it has to behave
like ~ t~1(#)° near A,. For M; on the other hand we need ~ (f)~1¢°. Consequently for a
given configuration to contribute we have to find an operator of the relevant ghost charge
and the relevant dimension. In some cases an operator satisfying these two constraints
does not exist. Consequently these configurations will yield vanishing contribution purely
by dimension count. We denote these cases in the table by D.C.. In other cases there exist
operators which could contribute. In many cases however the resulting matrix element
vanishes by sum over spin structures in the holomorphic sector on T or T or when we
implement the node prescription discussed above (22 — p2,21 — p1). These cases are
denoted in the table by S.S. and/or N.P. respectively. In some cbnﬁgurations U(1) charge
conservation implies the vanishing of the resulting matrix element. One way or another
{see below) all configurations can be proven to be vanishing with the exception of one case

where we find that the resulting matrix element is nothing other than the square of the
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Fayet-Iliopoulos D-term. In what follows we shall present the details of the calculation for
every entry in table (1). We present all the cases for completeness. The reader who trusts
our results can skip over most of them. However there are cases where we feel that the
é.ﬁalysis is instructive. Those we have marked by **.

We shall start the analysis with M é”. In this case we need to look for ¢ of holomorphic

dimension he = —1 with the correct ghost charge.
M. I.1.a

By ghost charge conservation and from the structure of the free spin field correlator,

we find that ®{p,) must be

&(p;) = {cBce ?EP*) x OF(p1)
where O#(p,) is any operator free of holomorphic ghosts with {hp > 0)%2. So he > 0
necessarily and no operator of the required dimension exists.
MMV T.1-b

In this case®3

P(py) = (cace“%¢5‘é§+£)(p1) x O(p1)
hg > 0 = no contribution.

sx M I1-1-a

32 1In this subsection O will stand for an operator neutral under all holomorphic ghost

charges having the appropriate structure and dimension in the antiholomorphic sector. We
shall not exihibit its antiholomorphic part unless our arguments require it. Furthermore

~ since 1t is free of holomorphic ghosts it necessarily has hpo > 0.
33 Note that we are being slightly sloppy here since instead of having an explicit factor

of §* in & we could have taken an operator O which has the required U(1) charge (3/2).
The important point here is that any such operator must have holomorphic conformal
dimension > 3/8 (see discussion right after eq. {5.65)).
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The ghost structure now requires

@(p1) = c(p1) : n(p1)é(p1) : xO

This needs some epra.na.tion. The reason a factor of ¢ is necessary is that in order for
the residue of the J,(z) at ri{y) to be nonvanishing there should be another factor of £ in
the correlator in addition to £(z;) to soak up the {-zero mode. By £, n charge conservation

however we then need another factor of 5. Now ke > 0 = no contribution.
MM IT-1-b

Here
®(p1) = (ce™2%8%8,)(p1) x O(p)

again hg > 0.
This completes the second row in table 1. Next we turn our atiention to the more
delicate configurations in the first row. Now we are factorizing M; and a dimension zerc

operdior of the correct ghost charge is needed.

**Mt(l}-f-l-a

d(p1) = (cace_¢£¢”)(p1) x 0

this could lead to a contribution if ko = 0. On T; the corresponding operator is ¥{p2) =
(ce=%1#)(p2)O0'(p2) where O’ is some conjugate antiholomorphic operator with kg = 0.

Consider now the resulting correlator on Ty,

~ (£(21)(e? Tr)(22) (m2,b) (ce ™ P9*) (p2) O’ (p2) .-} (5.60)

As explained earlier we have to take z; — po. We therefore examine the correlator in that
limit. In this limit the singularities are dictated solely by the operator product expansion.

( In principle we should be more careful in the sector with periodic-periodic boundary
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conditions on the J, v fields since {e~#(P2)e#{#2)) has a spurious (¥1(22 — p2))~! type
singularity. However the contribution from this sector may be seen to vanish identically

due to the zero modes of the free fermions ¢*.)

lim (e®Tr)(z2){e ?9¥*)(p2)O'(p2) ~ 3X*(p2)O'(p2)

&2 — P2

In arriving at the RHS we have used the fact that TE**(2;) cannot develop a singularity

near O'(p2). At this stage (5.60) becomes

~ (&(21)0X*(p2)(n2,b)0' (p2) - - ) (5.61)

We finally prove that after summing over the spin structure in the holomorphic sector this
matrix element vanishes. The proof utilizes techniques developed in ref. {30] to calculate

matrix elements on tori in arbitrary backgrounds. Define the following operators

1 ~
Pt = 2%8t8Fs;

i1, .
P~ =et2%8-5757 (5.62)

Note that PT is just a particular component of the supersymmetry current J,. Further-

more

+{z *w~; .
PP () ~ s (5:63)

While

P*(2)0'(p2)+-- ~ non — singular (5.64)

To see that (5.64) is true we only need to examine the OPE of §+ in P+ with any operator

f of holomorphic dimension zero. In general

(5.65)



Since f is U(1) neutral, the U(1) charge of Oy, is % However any operator of U(1) charge
jo has a lower bound on its dimension given by 1j¢ [78][30]. So dim (O) > 2(3)2 = 3.

Therefore no singularity exists. We can now write {5.61} as

(£(£1)0X*"(p2)(n2,8)0'(p2) -+ )

~ § (P AP (W)E(E)OX (p2) (12,50 (p2) )

27

(5.66)

After summing over spin structures the correlator on the RHS is periodic in z so we can -
deform the contour away from w. Since no other singularity nor spurious poles exist we

can shrink it to zero. It follows that (5.61) is actually zero.
«x MM 115

In this case we find34
®(p1) = (cdce™ 325+ 57¢)(p1) x O(p1)

with the required dimension hg = 0. However in the limit 2y — p; this vanishes. (There
is no '-'p-roblem in this case in taking this limit before the z integration since J,({z) is on
T2. The same argument cannot be used to show for example that M, -I-1-ais vanishing
as z; — p; since in that limit the spurious poles of J,(z) will coincide with the physical

pole. In this case we need to integrate over z first and then take the limit indicated. )
***Mt(l)-II'La
Ghost charge conservation on 7; gives

®(p1) = c(p1) : n(p1)é(m) : O’

this means that on T3 the relevant operator is

UH(p2) = (cBee™2?3¢)(p2) O (p2)

34 Again the result is unchanged if instead of taking the operator §+0 we consider any
other operator of U{1) charge 3/2
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The relevant matrix element on 7% is then given by

L ~ (£(31)(9ne™b + B(ne®b)(z2)) (n2, b) (e 2$¢8cE)(22)O(p2) - )r,  (5:67)

We shall first calculate the ghost correlator in a spin structure v. For that it is more

convenient to exhibit the correlator in question in the following form:

(6(Z:1){(Oneb+8(ne*?b)(22)(nz, b) (e **cBcE)(p2))

= {(n2,b)b{22)¢(p2) De(p2)) E(E(F1 )n(2h)e?* (#2)e~2¢(P2) 8¢ (p3)),

(5.68)
+ {(n2,)@b(22)e(p2)Fc(p2)) (£ (B1)n(22)e*# *) e 720 (P2) 3¢ (p3)),
where the operator E is defined to be
E= lim (20, + 95,) (5.69)

Zh— 2z

Using (5.42) in subsection B above we can easily calculate the superconformal ghost cor-

25

(€(Z1)m(2h)e?? (=220 (P2) 3L (p5)),
94(z2 — p2) F.(2(22 — 25))

relator. The answer is

5.70
P(es~p2) T3(2ez ~ 7 - p2) (10

The key observation at this point is that
B(£(51)n(23)e** 5 e #(P)0¢(py)), = 0 (5.71)

for all even spin structures v. As was remarked earlier we are summing over even spin
~ structures only. In the odd spin structure the answer is vanishing by the $# zero modes.
We can then drop the first term in the RHS of (5.68). Going back to (5.67) and using

(5.70) we see that the amplitude on T; now has the form:
L ~{{nz,b)8b(22)¢(p2)dec(p2)) 91 (22 — p2)

Z,,:f“(——“"agﬁ”(o) JICARDY (5.72)

(32 - Pz)

35 ¢, is what we previously denoted as #]6]
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1



where (O{p2) -- ), involves purely antiholomorphic fields {so ko = 0), which can include
both matter and ghosts. In ref. [30]the expectation value {0}, of any antiholomorphic

field in the holomorphic spin structure v was shown to be given by:
(0(p2)) = K9y (— A1)9,(~ B1)9, (—C1)92(0) (5.73)

for any arbitrary background admitting right handed supersymmetry. In (5.73) K, 4, B1,C;
are unknown constants which contain all the background dependence. In our analysis we
shall not need to know what they are, we will only need to know that they satisfy the
following constraint [30]

AA+B,+C; =0 (574)

Substituting (5.73) into (5.72) we can then carry out the sum over spin structures in the

limit of interest using the riemann theta identity:

. 1 .
zll_l}})g ; fymﬁp(—Al)ﬂy(—B])ﬂy(_CI)ﬂy(0)

= 91(A1 + By + C1)91(— A1)91(B1)#1(C1) (5.75)

+ O((22 — p2)?)

The first term on the RHS vanishes because of (5.74). So the leading order in the spin
structure sum is actually O({(z2 — p2)?). Finally we should notice that the b,¢ correlator
can have at most a triple pole as z — p>. However the superconformal ghost correlator
together with the leading term in the sum over spin structures develops a fourth order zero
in (5.72). The net result is that the matrix element vanishes after sum over spin structures

and taking 2, — p2.
sxx MO I1-1-b
In this case we find nonvanishing matrix elements of Fayet-Iliopoulos D-terms. The

analysis for this case is presented below, after we prove that all the other configurations

lead to no nonvanishing contribution.
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We now proceed with the third row in table (1). In analysing Mt-(z) we have a factor of
(7:,6) which yields ~ % Any dimension zero operator with the right ghost charges could

potentially contribute to factorization.
MP.I1-a

For this factorization the operator must be:
Ui(py) =:bc: e ?x 0

since there are no other factors of b or ¢ needed to soak up the b,¢ ghost zero modes on

2

the torus. However hy > 3

so the dimension is too large.
MP.I1-8
For the same reason as in the preceeding case:
Tt(ps) =: be : =3 x 0
hg =1+ g > 0 = no contribution.
MP . II-1-a

For this configuration

UH(pz) = (ce™?98¢)(pz) X O(p2)

which has the right dimension and ghost charge. However in the limit z; — p; the matrix
element on Ty vanishes since we must use ¢(p2) and the factor of b from Y (z;) to absorb

the b, ¢ zero modes on T5.
sx M) . IT-1-b

The analysis in this case is more intricate than the other cases in this category. The

relevant matrix element that needs to be calculated on T3 is

I~ (£(E1)e™ 293 (2) S ) (One?®b + B(n€2#5)) (22) T (p2)) (5.76)
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with

i (pa) = €(p2)e 5472 e(p3) 3~ (92)S7(p2) X O(p2)

where in this case O turns out to be ¢ : £77 : as is easily verified. {To arrive at the factor
of £ in ¥! above form one needs to consider T) as well). We can rewrite (5.76) in the

following convenient form:

1
I~ B(¢(21)n{es)e 28 (Pe?¥lmnle 36 ()

(87 (2)Sa(2) 8 (p2) S (p2)) (b(22)c(p2)) (5.77)

We now show that the correlator {5.77) vanishes in the limit 22 — p2. However in this case
we cannot take the limit before we carry out the z-integration as was explained earlier.
Thus we examine the superconformal ghost correlator in a given spin structure v. The

answer can be easily seen to be given by:

i 1 3
(&(31)n(2) e 2#(2)28(=2) g 28(p2) ¢(p,))
( Fu(~225 + 2 — gz + 222 — 1pa) )
(2 — zp + 2z — %-’K - %pz)ﬂu(—z; + 225 — %z - %pg)

(5.78)

( 91(51 — p2)d1(z — 22)9% (22 — p2) )
F1(21 — 24)91(pz — 24)(91(z — p2)) %

In carrying out the z-integration we pick up the residue of the supercurrent J,(z) at the

point r;. From (5.78) we see that the spurious pole is located at

i

LT
|11

T =220 — 25 — %pz + A, : (5.79)

where A, is any one particular half period on the torus. (notice that depending on the
relative positions of 2z and p; the function ¢,{—25 +22; — %:z — %pg) develops a zero only

in one particular spin structure v). In the 23 — p; limit it is not difficult to see from the
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above equations with z given by (5.79) that the superconformal ghost correlator behaves

as
- (32 - 92)2
(-‘62 —Pz)%

The behaviour of the spin field correlator can be inferred from the the general expression

(30}(76]
(5 (2)Sa(z)8 (p2)S(p2)) ~

1 z P2 T —p2 g —p2 ~ T —p2
(191(2:—;)2))%63(5 B 3)61’( 2 — A1)dy( 9 — By)d.( —Cy)

(5.80)
Substituting for -%:c using (5.79} we see that in the relevant spin structure the spin field

correlator behaves as
— '9%(32 - P2)
(B1(22 — p2))%

Finally putting all factors together and counting powers of (z; — p2) we discover that the

matrix element vanishes in the limit 22 — p; as advertised. Notice we could not have
coﬁclﬁded this until after we carried out the z-integration.

This completes our analysis for tﬁe third row in table {1}). We next turn our attention
to the last row. Again from (5.53) we see the presence of a factor of (n:,b) which yields

~ % Now any operator of dimension zero and correct ghost charge could contribute.

M®.I1-q

U (p2) = (ce™*¥*)(p2) x O(p2)
which yields a vanishing matrix element by the same analysis as for Mt(l) I-1-a.
M3 .T-1-b
In this configuration there exists an operator

®(p1) = (¢e732575%)(p1) x O(p1)
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However the matrix element vanishes in the limit z; — p;.
M® .II-1-a

The only operators that can propagate through the neck are of the form

B(p1) = be : (p1) x O(p1)
which however have high conformal dimensions.
M® . qr-1-%

Similarily, the only operators that conserve ghost charge and absorb the b,c ghost

zero modes, are of the form:

O(p1) = (: be : e~ 2%)(p1) x O(p1)

with dimension hg > % and hence cannot contribute to the boundary term.

This completes our analysis of all the entries of table (1) except for M, - IT-1.b. All
terms considered so far have been carefully proven to yield no boundary contribution. This
last case however turns out to give rise to a non-vanishing boundary term. We analyse

this next.
Fayet-Thopoulos D-Terms

Applying factorization to {5.52) for the configuration II-1-b we arrive at the following

expression:

M, ~thogho—1

(V“’% () (1, ) (71, B) € (21) (20} (? T ) (22) @ (1) ), (0|215,%(0),,

(5.81)
(U (p2) T (2) (9nE?8b + B(ne*#8)) (22) (¥ T ) (4) €(51) (12, b) (72, 0))r,

By ghost charge conservation in the antiholomorphic sector on T3, the relevant operator

@1 has the form
U1 (p2) ~ e(pa)e=##) 12 (p,) (5.82)
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with f(®)(p;) an operator of dimension (0, %) and does not contain any ghost fields in
the antiholomorphic ghost sector. Applying ghost charge conservation on the cylinder we

arrive at the conclusion that © on T, has to be:
& ~ E(pl)e_é(?‘ )f(a) (Pl) (5.83)

where f(2) is the operator of dimension (0, 1) conjugate to f{*) with no factors of anti-

holomorphic ghost fields,
As discussed previously we must implement the node prescription, and take the limit
24 — pz and zz — p1.%%Define,
F(@(py) = z‘li_l.l},z(& — p2)Tr(24) f1¥ (p2)

F@(py) = lim (25 — p1)Te(2s)/ (p1) (5.84)

so that F(@) F() are dimension (0,1) operators free from any anti-holomorphic ghosts,

and are conjugates of each other. {5.81) may then be written as
1, a1 e . i
My ~ ?<V ’2(y)(”hsb)(ﬂh5)5(21)E(ZG)F(G)(M)C(PI))TI

(@(p2) F*) (p2)Ja(2) (Bne?%b + B(ne??8)) (22)6(21) (m2, B){72,B) ),

The above expression is identical to the one obtained in the case of the heterotic string

(5.85)

theory {73, and may be analysed in the same way. In particular the operators F(2)(F(2))

that give a non-vanishing contribution to (5.85) are of the form:

F() =c8ct§ 8, S5 e 320(@)

F) =c§+5}5te 34U (5.86)

38 8o far in our analysis in this subsection we have always taken the 2, — py, 23 — p2
- limit before taking 23 — pa, 24 — ps limit., We may continue to do that here if we replace
F() in subsequent discussion by (e?(#)Tr(z)e=¢(P)f(2)(p)). Using this we may arrive at
eq. (5.87) (5.88) below with U(%) in (5.88) replaced by e#(2)Tx(z)e~%(P)u(®)(p) where u(®)
is related to f(¢)(p) through f{®) = cacfg'_S_;Ss_e*%¢u(“). At this stage we may take
the limit 23 — p; and z4 — p2 to recover {5.87) and (5.88).
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where U(%) is a dimension (0, 1) operator constructed out of the operators of the conformal
field theory describing the compact dimensions. ( In principle I/ (¢) may also be constructed
from the fields ¢¥* as ¥#¢¥, but the corresponding matrix element may be seen to vanish
611 Ty and T: seperately in every spin structure). The corresponding matrix elements may
be calculated in the same way as for the heterotic string and the contribution to A may

be shown to be:

A~ Z e(lele) (5.87)
where,

@) o ((U))pp = [ Dy*DED3Dpe SU{®) (5.88)

 stands for the fields describing the conformal field theory. associated with the compact
dimensions. In evaluating (5.88) we sum over all spin structures in the anti-holomorphic
sector, but only over those spin structures in the holomorphic sector which give a periodic
boundary condition on the holomorphic fermionic stress tensor Tr(2z). This matrix element

in turn may be evaluated in the same way as in the heterotic string theory following [30]

with the final result,

a) _ g MOy
) = Toam ;nﬂs hy (5.89)

where n; is the number of massless fermions carrying U{®){1) charge qE“) and helicity A;,
g is the four dimensional gauge coupling constant.

Thus we conclude that the final answer for the two loop partition function of the
type II string compactified on arbitrary backgrounds is given by (5.87) with ¢{2) given by
(5.89): The vacuum amplitude is just the square of the Fayet-Iliopoulos D-term induced
at one loop, just as it turned out in the heterotic string theory [73]. It is worth mentioning
that so far there is no known type II vacuum which possesses anomolous U(1) factors
(i.e. with {2} in (5.89) nonzero). This means that for all the known four dimensional

type II vacua which preserve tree level supersymmetry, our result in this section shows
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that the cosmological constant vanishes at two loops. However at this point there is no
general reason to believe that Fayet-Iliopoulos D-terms cannot be generated in any type

II model.37If this happens then the vacuum is destabilized at two loops as we can see from

(5.87).

6. Conclusion

In this paper we have discussed some global issues involved in choosing a gauge slice
in superstring theories. Working with a specific class of gauge slices in which the metric
is ind.ependent of the odd coordinates of the supermoduli space, and the gravitino has
delta function support, we have shown that the requirement of modular invariance and
transversality of the slice to the gauge directions {a good modular invariant slice) prevents
us from choosing a holomorphic slice. We have further shown that given a good, modu-
lar invariant slice, the superstring partition function calculated with this slice is a total
divergence in the moduli space. This result is true for superstring theories formulated on
Rm,'—.as well as compactified superstring theories with at least an N = 1 supersymmetry
in four dimensions. Thus the cosmological constant may be expressed purely in terms of
boundary integrals. The final answer is independent of how we choose the slice away from
the boundary, but does, in general, depend on the choice of the slice at the boundary.
At genus two, the correct choice of the slice at the boundary may be determined by us-
ing BEST invariance. With this choice of slice we can calculate the genus two partition
function. The relevant boundary that contributes turns out to be A,, where the genus
two surface breaks up into two genus one surfaces. The boundary contribution is shown
to vanish for uncompactified superstring theory, and is proportional to the square of the
Fayet-Iliopoulos D-term induced at one loop {if any) for the compactified theory.

We would also like to mention some open problems and speculations. First, although

we have shown that the partition function is independent of the choice of slice {except

37  We wish to thank L. Dixon for a discussion on this point

98

b



at the boundary) as long as it is 2 good modular invariant slice, we have not explicitly
constructed, or even shown the existence of such a slice. {(We have shown that all conditions
cher than modular invariance can be simultaneously satisfied.) Since we have relaxed the
;:riterion of liolc;morphy of the slice, we expect that it ';;hould be possible to construct such
a slice, unless there is a purely topological obstruction. We hope that this gap will soon
be filled in. A more serious problem concerns the choice of the slice at the boundary.
At genus two, a prescription for choosing such a slice at the boundary is obtained by
demanding BRST invariance, although an understanding of this prescription based on a
more éeometrica.l notion would certainly constitute progress. For g > 3 we do not yet have
a prescription for choosing the slice at the boundary, and hence we cannot calculate the
partition function. In short, although we can express the partition function as a sum of
boundary terms, these depend on the choice of the slice at the boundary, and hence are
ambiguous.

In fact, we do not even have to go beyond genus two surfaces to see the origin of
the problem. It already exists in the computation of higher point functions on genus two
surfaces. There are two ways of seeing this problem. First, we may regard the n-point
function on a genus two surface as a functional integral over a punctured (super)-riemann
surface. In this case the natural vertex operators to be used are the ones in the —1 or —%
picture depending on whether they are bosonic or fermionic. Each extra bosonic vertex
operator, or pair of fermionic vertex operators, introduces an extra supermodulus, {12][82]
which, in turn, introduces extra factors of picture changing operators Y (w;) (if we use delta
function basis for these extra super-beltrami differentials). The answer for the correlator
then not only depends on how we choose the points z, {associated with the original super-
beltrami differentials) at the boundary of the moduli space, but also how we choose the
w; at the boundary. Furthermore, the boundary now not only includes the one where the

genus two surface breaks up into two genus one surfaces, but also where the punctures
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collide. A particulariy dangerous boundary is the one where all the punctures approach
each other.

Another prescription for calculating amplitudes involving physical external states is
irhplicit in the work of Friedan, Martinec and Shenker {1] on picture changing. According
to this formalism, the same physical state may be represented by any member of an infi-
nite set of vertex operators, related to each other by picture changing operators. In order
to compute an amplitude, we pick up one representative vertex operator for each of the
external states in such a way that the total ghost charge of all the vertex operators adds
up to the right amount so as to conserve the ghost charge. In order for this prescription
to make sense, we must ensure that the final result is independent of which representative
vertex operator we choose for a given state. This may be shown using BRST contour defor-
mation arguments, but these leave total derivative terms, which include total derivatives
in the moduli, as well as total derivatives in the location of the vertex operators. These
are precisely the terms that give rise to an ambiguity in the final answer.

' Thus we see that we must develop a general framework which allows us to determine
the right choice of basis for the super-beltrami differentials at the boundary of the moduli
space. Unless this problem is solved, there is no hope for computing amplitudes or higher
loop partition functions in fermionic string theory. The situation may not be any better
in string field theory. It is conceivable that similar ambiguities exist within this formalism
and that a careful analysis of “global issues” would expose such subleties. Also, it will
be interegiring 1o see if there is a connection between these subleties and the contact
interactions discussed in ref. [83]( see also [84][85}.)

On the more speculative side, we should mention that there have been suggestions
that the ambiguities in string perturbation theory arise from the {conjectured) nonsplit
nature of supermoduli space. It is well-known that superteichmauller space is split, and
supermoduli space is the quotient of superteichmuller space by the action of nontrivial

diffeomorphisms. If we use the fiber bundle definition of supermoduli space, then, since
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in WZ gauge diffeomorphisms act on (e,x) by pullback and do not mix O(x?) terms
into the metric, one might expect that supermoduli space is also split, at least before
compactification. It is quite possible that this argument is too naive and contains a flaw;
“—fhether or not this is the case must be left to future work.

Finally it must be clear to the reader that the present formalism, while efficient enough
to allow some limited computation, cannot be the best one. The result that the superstring
measure is a total derivative suggests that it might be some kind of characteristic class.
(A relation to BRS cohomology is suggested in [86].) If this is the case, the most beautiful
proof of the vanishing of the cosmological constant would be the demonstration of the
vanishing of a certain characteristic class, based entirely on the geometry of supermoduli

space.

Note added: After completion of this work we received a paper [87] in which some

related issues are discussed from another point of view.
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Appendix A. The theorems of Earle and Hubbard

In this appendix we merely sketch some of the ideas that lie behind some of the
theorems used in the text. Let us begin by reviewing a little teichmuller theory [43][88].

The space of frames modulo weyl and lorentz groups is just the space of beltrami
differentials. If we uniformize $§ = U/I with a fuchsian group T we may pﬁll the belirami
* differentials up to U and therefore identify the space of beltrami differentials on § with

the space

MIT)={p:U—>Cluovy /v =p Vy€T,and || plle< 1}
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Here || p ||co= sup{|u(2}] : 2 € U}. The condition || i |co< 1 arises from the requirement
that the metric |dz + udz|? be nonsingular. Thus, the space of conformal structures may
- be thought of as an infinite dimensional generalization of the open unit disk A. The
g-roup Dif fo of diffeomorphisms of S homotopic to one acts on the beltrami differentials
on S by puliback. We can obtain the equivalent action on M(T') by pulling back small

diffeomorphisms on S to diffeomorphisms of U/. This is accomplished by the following

Lemma: For § = U/T, let Do(S) be the group of diffeomorphisms homotopic to one,
and Do(T) be the group of diffeomorphisms U — U commuting with T. Then Do(I') =

Do(8S) are isomorphic as topological groups.

For a proof of this lemma see [88] and references therein. We will simply describe the
idea of the correspondence. If f : § — S is homotopic to one we may lift it to f U - U
and by the covering homotopy theorem we can lift the homotopy. Since foy = ' o f and
T is discrete it follows that v = 4" and f commutes with T'. Suppose on the other hand
that we have a map f: U — U commuting with I'. Consider the geodesics in the poincare
metri;: connecting z to f(z). Since f commutes and since I' is a group of isometries of
this metric we can construct a homotopy by flowing for a fractional distance ¢ along the
geodesics, This homotopy commutes with ' and hence descends to a homotopy of the
projection of f to 1.

The action of Dg(T') allows us to define an equivalence relation g ~ v if there is an

f € Do(T) with # = f*(v). The set of equivalence classes [¢] is teichmuller space 7.
| Denote by ® : M(T') — T, the projection g — [u]. We can now describe the idea of Earle’s

theorem, which states that

Theorem{Earle): When dimT > 2 then ® : 7/C — T has no holomorphic cross-

" section.

If there were a cross-section ¢ : T = M then s = 0® : M — M is a self-map

and, by changing the group T appropriately we can arrange that s{0) = 0. Thus we
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may apply Schwarz’s lemma. Recall that this states that if f : A — A is a holomorphic
function satisfying f(0) = 0, then {f(0)] < 1. In our case we learn that the operator
P = 4§(0) : TM — TM satisfies || Pp [|o<|| & ||oo- {Note that TM is itself a space
of beltrami differentials with the condition | # Jloo< 1 removed.) Moreover, since ¢ is a
cross-section, 62 = ¢, so P? = P, Moreover, kerP is just the fiber above ¢ = 0, i.e. ker P
consists of beltrami differentials which are pure gauge transformations of the metric on Sg.
Let us rephrase this last condition.

The holomorhic quadratic differentials on Sy can also be pulled back to U and consist

of holomorphic functions 1 : U — C such that ¢({y-z)(7/(2))? = ¥(z) for all v € T together

19 1= [ Voo <o

Denote the space of such ¢ by A(T'). A(T) is naturally isomorphic to the cotangent space

with the condition

of T at Sg. We can characterize ker P as the space of u for which

(b, 1) = fw =0 Vpe A(T) (A.1)

Thus, a holomorphic section defines an operator P : TM - TM such that

1. P2=P

2. ker P is pure gauge

3N Puefloo=<| # lleo

The next part of the proof shows that no such operator exists. A crucial role is played

by the teichmuller differentials. These are the phases of quadratic differentials:
p(2) = klp(2)l/p(z) k>0 ¢ e A(T) | (A.2)

Teichmuller differentials satisfy two useful properties {for a proof see [45] and references
therein ). The first property is that they are of minimal norm in their gauge orbit, i.e.

| 642 ||oo<|| # oo, if A is pure gauge. The second property will be described below. Using
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the first property and properties {1-3} of P above one finds Py = p for all teichmuller
differentials.
H dimT > 2 then dimA(T'} > 2 so, choosing linearly independent quadratic differen-

tials ¥, s we can find points z;, 22 such that

1 (20) 2 (22) # ¥ (22)02 (21) (A.3)

The second usefu! property of teichmuller differentials is that we can find feichmuller

differentials 1, g, 1 such that, for all ¢ ¢ A(T),

Y(z1) = (¥, 1)
¥(22) = (¥, p2) {A.4)
Ylz1) +9¥(22) = (¢, 1)
Note that ,@:, being a teichmuller differential is of the form {w(21) + w(22))|w(2)|/(z) for
some ©(z) € A(T}. It is clear from (A.4) that u— p; —u2 is pure gauge, so Pu = Pu,+Ppa,
but these are teichmuller differentials, so 4 = p1 + p2. This means |g + p2| is a constant,
since u, being a teichmuller differential is a pure phase. But u;, 7 = 1,2 are also teichmuller
differentials so u;(z) = ©;(2:)|wi(2)|/w:{z), and the relative phase of u; and u, is just the
phase of v1(2z)/p2{z), which must be constant. Since the p;(z) are holomorphic this means
p1(z) = cpg{z), but this means that ¥(z1) = ¢¢(z9) for all ¢ € A(T), contradicting (A.3).
This concludes the argument.
Hubbard’s theorem is a stronger -version of Earle’s theorem and may be related to

it as follows. Consider the subgroup Diffo(z) ¢ Diffo of diffeomorphisms fixing z:
f(z) = z. Then Dif fo/Dif fo(z) is in bijective correspondence with the surface S through
[f] < f(z). We thus have the diagram:

M(T)
7

M/ Dif fo(z) I (A.5)
™ T
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M/Dif fo(z) can be endowed with a complex structure so that it becomes the universal
teichmuller curve. Earle’s theorem states that the vertical arrow has no holomorphic cross-
section. Hubbard’s theorem states that (with the exception of the six Weierstrass sections
.at g=2)in --fac_t, no holomorphic cross-section of M/bz’ffo(z) exists.

The above characterization of the universal curve makes clear the relation to Earle’s
theorem, but obscures the holomorphic structure. Thus we give another description of the
universal curve [43] which we will use in the following subsection.

The equivalence relation ¢ ~ v used above has another useful characterization, which
is based on the fact that all f € Do(I') extend to the real line and are the identity f(z) =z
there [88]. Given u € M(T) we can construct w# : ¢ — C by solving the beltrami equation
Jdw# = pdw# in U and w* = 0 in U, the lower half plane. The equivalence relation can
now be pflrased wH* ~ w¥ if w¥ = w¥ on the real axis. The particular mapping w#
depends on which p we choose, but the region w#{U) and the group w*I'(w#)~! (called
a quasiconformal deformation of T') depend only on the equivalence class ®(u). The Bers

fiber space may therefore be defined by
F(To) = {{®{u),2) € T(Ty) x Clp € M(Tp), 2 € w*(U)} (A.6)

The definition makes sense since w#{I/) only depends on the equivalence class of 4. Finally,
To acts on F, namely, v - (®(u),z) = -[@(,u),'y“[z)) where v* = wh~y{w#) 1. For fixed p
the quotient by the group action is just a copy of the curve with complex structure ®{u).
The universal curve is defined to be V{(I') = F(T')/T, and F(T) is its universal cover.

The proof of Hubbard’s theorem again relies on the absence of ceftain projection
operators dictated by the geometry of the Banach spaces of quadratic and beltrami differ-
entials, and makes essential use of Royden’s theorem equating the teichmuller metric with

the Kobayashi metric.
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Appendix B. Some theorems on quasiconformal maps

In this appendix we prove the theorem used in section I1.D. The proof of theorem A.1

was suggested by C. Earle, who also helped with the proof of theorem A.2.
| First weﬂesi‘:ablish some notation. Let Hy C T, be the hyperelliptic locus. Fort € H we
have the corresponding hyperelliptic curve y? = J[(z — e;(¢)) with projection 74 : Sy — C
and involution 3. If w : 51 — S; is a quasiconformal map commuting with the involution
it induces a map @ on the plane. For a hyperelliptic curve there is a fuchsian group G
containing I' as a subgroup of index two. G has elliptic transformations of order two,
and the fixed poinis are the Weierstrass poinis. One can prove that any quasiconformal
~ deformation of I' comes from one of G. U/G is a sphere with six branch points of order

two. In this way one establishes the isomorphism 73,9 &= Ty ,6. We begin with

Theorem A.1: Let p(t) € C be any family of points p: Hy — C. Define
H, = {t € Hylp(t) # es{t),i = 1,...2¢9 + 2}

For cmy connected and simply connected subsei W C H/ there is a continuous family of

quasiconformal maps wy : So — S, t € W, commuting with the hyperelliptic involution,

such that w:(p(0}) = p(¢).

Proof:

a.) By a standard lifting criterion, since W is simply connected, we can lift

F(Go)

| (B.1)
W — H,xC

where the bottom arrow is ¢ — (¢, p(t)).
b.}) Since M{Gg) — T(Go) has a real analytic cross section there is a real-analytic
family wt(l) c U - wHe (U).
| ¢.) Thus (wgl))_l(;ﬁ(t)) = ph(t) is a family of points in U. We need a diffeomorphism
wf € Do(Go) satisfying wf(ﬁ(O)) = ph(t). It will then descend to the appropriate small

diffeomorphism with which to modify wt(l).
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d.} To find this consider the fibration ¢ : Do(Gs) — U defined by the evaluation
map:p(f) = f(#(0)). One can show that tm¢ is open, and that its complement is open, so
since U is connected it is onto. Also it is continuous, and locally trivial, so we do have a
ﬁbration. The group of the fibre bundle is Dg(Go,F{0)), i.e. those diffeomorphisms fixing
the specified point. Since the bundle is trivial there exists a continuous cross-section o:
z +— 0,. Since o, = z we see that the desired map is obtained by defining wE = opi(t). B

Remark: This only shows that wg depends continuously on £, but we should be able
to strengthen this to real-analytic dependence.

Next we prove

_ Theorem A.2: Let po(t) € C, a = 1,...n be any family of points for t € H, with
pa(t) # polt) for a #b. Define

Hy={te Hylpa(t) # &i(t),i=1,...2¢ +2,a=1,...n}

For any connected and simply connected subset W C H| there is a continuous family of
quasiconformal maps w;y : Sg — Sy t € W, commuting with the hyperelliptic involution,

such that Wi(p.(0)) = pa(t).

Proof: We proceed by induction on n. Theorem A.1 is the case n = 1. Let us assume
the theorem is true up to n — 1. Again we may lift ¢ — (¢,p.(t)), and choosing wtm
as before we may define (wt(l))_l(ﬁa(t)) = pi(t) for a = 1,...n. We can find w! with
wi($pa(0)) = ph{t) @ = 1,...n — 1 by the induction hypothesis. Now let (w?)~!{pl(£)) =
7% (t). We seek w! with in the subgroup Do{Go;$1(0),...,Pn—1(0)) of Do{Go) fixing the
indicated points such that w!(7,(0)) = p5{t). We now let © be the evaluation map at

p»(0) and obtain a fibration

Do(Go; 51{0),- ., Brn1(0)) 2U — Go - {$1(0), ... Hn_1(0)} (B.2)

Again one can argue that this is a fibration. Note that the base of the fibration is not

topologically trivial. On the other hand if is known, for example for n = 2 |41] that the
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total space is topologically trivial. Thus the fibration is nontrivial and no cross-section
exists. However, we can take the universal cover U — U — G - {§:(0),...Pn—1(0)} and
pull the bundle back to this space. The base is now trivial and a cross-section o exists.
This means that 6,(p,(0)) = 7(2). Fort € W we can lift the map ¢ — % (t) along the

bottom row of

U

| (B.3)
W — U-=Go-{p1(0),...pn-1(0)}

to ¢t > b (t), again because W is simply connected. Thus we choose w! = oz (1) Which
satisfies the required properiies.

Finally we prove “theorem 2” of section 2.F. Aciually, all we have {o do is formulate
- the statement more precisely; its truth will then be evident. We uniformize the basepoint
riemann surface Sp = U/T as usual. We are now considering any riemann surface at any
genus. Consider an open covering U, of T and a set of compatible slices (e*{t}, x*{¢,¢)).
The frame e*(t) defines a family of beltrami differentials uf € M(T') and these, in turn,
define maps w® = w#: as in appendix A. For each ¢ we may think of the gravitino
suppc;rts as a set of points pg () € w(U}/T§ where I'¢ is the quasiconformal deformation
of T described previously and these lift to a discrete set of points ps it} € wi(U). For
t € UyNUg, w(U) = w? (U) and T¢ = T'? since these only depend on the equivalence class
of e(t). Thus the maps (w§) ™ w} make sense for t € U, NUps. As mentioned in section 2.F
the condition that 7, and 75 be related by a diffeomorphism means that (wtﬁ)"l(p‘:'i(t)) =
(wf)_l(p’f’i (t)) so pg;(t) = pa‘s)i(t). Moreover, since p3 ;(t) = wi{p§ ;(0)), by the condition
(2.42) , and since wi* varies holomorphically p§ () vary holomorphically so t — (¢,p3 (t})
are holomorphic seétion of V(T') over U,. We have just seen that they patch together to

make a global holomorphic section.

Appendix C. Weierstrass sections and pointwise vanishing

In this appendix we give an explanation of why the choice of slice where we take

the points z, to a Weierstrass point gives a measure in uncompactified superstring theory
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which vanishes pointwise, even though this choice does not give a modular invariant slice.
Let T be the teichmuller space, M the modular group, and &G a subgroup of the modular
group that leaves a particular Weierstrass point (say e; in the notation of subsection F)
'i-nvariant (in the sense of eq.{2.41)). Let us now choose a holomorphic slice § given by
the Weierstrass section e;. Also, instead of defining the integration over ¢™ to be over the
fundamental region T /M, let us take it to be over the domain T/G. (This is equivalent
to summing over prescriptions discussed in {11]). Then, following the steps of sec.IV we
may calculate the measure for this particular choice of slice, and show that it is a total
derivative in the teichmuller space. Let us denote this by aTﬂf;:. Following the analysis of
appendix G we can show that M” is a globally defined vector density on the space T/G,
| since the choice of slice §, while not modular invariant, is invariant under the subgroup G
of M. Henpe dispensing with Ag in the usual way, fT;G % will receive coniribuiion only
from the boundary where the genus two surface degenerates into two genus one surfaces.
(There will be many copies of this boundary in T'/G but that is irrelevant).
At the boundary, the point 23 and 24 (as well as 2; and 2;) either all lie on the torus
Ty or all lie on the torus T3, since they all approach the same Weiersirass point. {The six

Weirstrass points on the ¢ = 2 surface in the { — 0 limit are the points 5, 5 and 11 on

1
2 z

the torus T, and 1,2 and £ on the torus T, taking the origin at the nodes p; and
p2 on the tori T7 and T respectively.) Let us, for definiteness, take the points z, to lie
on the torus Ty. Let us also, for definiteness, insert the operator £(2o) on T3. (The final
answer is independent of zp). We now need to evaluate the contribution to M; defined in

eq.{4.29), M; vanishes for a holomorphic section. The contribution of M; may be analyzed

by using the factorization hypothesis (5.18). In order to get a non-vanishing boundary

contribution, M; must be at least of order %, and this happens if the operator \Iff{pg) in
{5.18) has antiholomorphic conformal dimension 0 or less. The relevant correlator on Ty

involving the antiholomorphic fields is,

(OH(p2)&(20)(72,8) . s (€.1)
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where ... denote a possible X#(y) term coming from V*(y) if y € T:. The relevant
operators Ul are &, e3X, ep*¢¥ and €5$. Matrix elements of each of these operators on
T2 may be shown to vanish after summing over spin structures in the anti-holomorphic
sector.

Thus we see that fo,G 8M” must vanish. On the other hand, since the slice .5 is holo-
morphic, the measure is positive semidefinite (see sec.IIl). Combining these two results we

see that the measure calculated with this slice must vanish at every point in the teichmuller

space.

Appendix D.

In proving that the partition function is a total derivative in moduli in section (4) we
encountered additional terms which are total derivatives in y. These arise from commut-
ing the BRST current through the dilatino vertex operator. In order to prove that the
complete superstring partition function is a total derivative in the moduli space, we must
show that these additional terms also integrate to total derivatives in the moduli space.
In this appendix we shall give the careful analysis needed to show that.

A. The terms in question arise in the process of deforming the BRST contour and in

particular from
(@8, V] = 85V*(y) + 8, V5 (v) (D.1)

as defined in (4.20) and (4.21). The contribution from these terms is of the form {taking

20 = él):
Gg—0G
/ I] a / Py(d5 Ky + 8, K2) (D.2)
i=1 Z—{z.}
where,

KF; je( 2‘% / DIXBC|E(5)€(21)€(51) u(2)V.E (1)

ri(y)
4g9—4 s ) Gg—=6 (D3)
I (V(za) + 0:€(za) D3) [T (n,8)
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In writing down (D.3) we have taken 8y, 95 operators outside fn(y) dz. This is not a
completely obvious step, since the locations of r;{y) depend on y. To see how this can be
done note that at any point yo in the y plane the z integral in (D.3) may be taken to be
along any contour C enclosing the points ri{yo), but not the points rj{yo) (as defined in
sec.IV) and yo. As long as none of the rj{yo) or yo is close to any of the r{ys), we may take
the contour C to be a finite distance away from the points r;(yo), r}{yo) and yo. Ii then
follows that there exists a local neighborhood U in the y plane around the point yo, such
that the same contour C will enclose the points r;{y), and exclude the points ri(y) and y
for y € U. Since the position of the contour C is independent of y for y € U, we can surely
 take the 9y, 8y operators outside fc dz. This, in turn, may be repeated in every local patch
in the y plane. In the region of overlap of two such patches, the corresponding contours C
and C’ may not match, but may be deformed continuously to each other without hitting
any singularities, and hence give the same value of K;{y) (i = 1,2).

~ This procedure breaks down if either y, or one of the points rj(y) approaches one of
the points r;(y) for any value of y, since then it is not possible to deform the contour
C a finite distance away from the points r;{y) without hitting any of the ri(y} or y.
However, as we shall show now, this can never happen. First of all, note that 2; is
chosen in a way so that none of the poles r}{y) coincide with any of the r;(y). (This may,
in turn, require 2; to be a function of y, and one may worry about taking the 9y, Jy
terms outside the £(Z;) term in egs.(D.2), (D.3). However, note that if we replace £(2;)
by 3,6(%) = 35(5;)8&1 (or 8£(2,)8g%1) in {D.3), the resulting correlator has no pole
at ri(y), and vanishes after = integration.} In order to see that the point Yy can never
approach 71(y), let us remember that ri(y) is the zero of 9[6](1(y — %) + 3292 7, — 24)
in the z plane. Thus if y = 7(y) at any value of y, 9{6](3°29 % 7, — 2A) must vanish.
As we have remarked after eq.{4.4), the transversality condition {2.36) on the points 2z,

precisely guarantees that 19[6](229' 2 Z, — 2A) never vanishes at any point in the moduli
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space. This justifies taking the &y, 85 operators outside §c dx in writing down egs.(D.2),
{D.3).

B. Without too much effort we can see that the contribution of the term 8, K> is iden-
tfcaily zero: Such a term may receive contribution frof the boundary of the y-integration
only if the correlator involving V, has a simple pole {(§ — 2;) 1. However the only 7 de-
pendence comes from the 8X(y) term inside V; and in the rest of the terms X appears
through the combination dX(z,) or 8X(2,}). Consequently in any contraction the only
possible singularity as a function of § is of the form 8X(y)8X (24} ~ (¥ — Z,) "%+ non-
singular terms; i.e there are no simple poles as a function of . As a result the total

derivative in y vanishes identically after the y-integration.
| C. The analysis of the dgK,; term is more intricate. In this case K must develop
singularities of the form (y — yo) ™! at some point yo in the y plane for it to contribute at
the boundé.ry of the y integral. Looking at eq.(DD.3) we see that for fixed z, y can develop
poles either at z, 2o (@ = 1,...2¢ — 2) or at the zeros of 9[6](3(¥ — Z) + Zzg':_f Z, — 2A),
6)(3(7 — ) + 292 Z, + 21 — 2A). But the z contour in (D.3) is chosen in a way so as
to avoid the points at z = y, as well as all configurations for which either 15‘[6](%(3}' —I)+
522972 5, ~ 2A) or B(6)(2(§ — 2) + 322937 7, + 5, — 2A) vanishes. The possible poles in y
are then at 2y, 2, and at 2z, {a@ # 1). Therefore, after performing the y integration we have

a double sum

D> R AR EREEALEN

? )2m
Yo =21.:21,2,
. , et (D.4)
H(Ya+8££aDi) H (nkabp
a=2 k=1

where Res denotes the residue at the argument of the dilatino vertex. Let us now consider
in turn the contribution of z; ,z; and z,.
(7.)*P (€8X* +

D. The part of V*(y) which can develop poles near £(2) is 1
"iz/;“]e%¢nb§_55 and the residue is %(’7”)“&(55)(“ + ?1[!”)6%%5"5;3- = V<. First of all if
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we consider the residue at 3; it can easily be seen that the resuliing correlator as a func-
tion of z has poles at {r}{(2:}}, but not at {r;{Z;)} and hence vanishes after the z-contour
integral is performed. The residue at z; on the other hand, has poles at {r;(21)}, but not
at {r}{z1)}. Wé may now deform the z-contour away-from the points {ri{21)} and try to
shrink it to a point. The only possible obstruction comes from deforming the z contour
past z;. To see if this contributes we examine the OPE Ja(m)ﬁ’“ (z1), and this is given
{up to irrelevant factors) by

1 ” 3 fd
e"2¢2) 8+ (1) 8, (2)e 24 5 (21) S 4(=1)

IS (D-3)

(z— z1)

2
4

~ [z — 2)

Thus there is no singularity and the resulting contribution vanishes.
E. Finally we have to worry about possible poles near {z,,a = 2,...2¢g — 2} in the y

plane. Since Y (z,) = {@5,£(2.}} we may write

V(W)Y (z2) = — (@5, V*(W)]é(za) + {@B, V7 (¥)(2a)} @=2,...2¢-2. (D)
where Qp is the the full BRST charge ( of the left and right movers). Now,

@5, VE)] = 3y[(68X* + 59#) (1) lim {Y(W)C(y)e_%‘“”)5*(9!)5;;(.0)}] (D.7)

Ww—y

we may calculate {(D.7) explicitly using the known expression for Y. But the main point
here is that the right hand side of (D.7) is a total derivative in y. As a result, near £(2q)
it never develops a single pole, since the term inside the bracket in {(D.7) never develops
logarithmic singularities near £(2,). On the other hand, the second term on the right
hand side of (D.6) has a (y — 2,)~" pole with a residue {QB,V*(2a)} where, as before,

Ve

%(qrp)a‘é(égX'“ + izﬁ“)e%‘f’bé_sﬁ.

We also have,

1

Y= Zq

VE(y)0E(zs) ~ W%z) a=2,...2¢ — 2, (D.8)
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and hence after y integration we get a residue of Bff"(za).

¥. Combining all the terms together, we may express the result of y integration in

(D.2) as,
. -~ 65—6 2g—2

[ e XS § o5 [ prsortodeee e

E] i r (zb)

) . 4g—4 5 . 5 Gg—6 (Dg)
({QB, Vo (2)} + 0:V(25) ;) [ (¥ (2a) + 8:(2a) Di) [ ] (14.8)
a=13 k=1

Now we try to deform away the BRST contour in {D.9). Deformation through the products
of picture changing-and (7, b)-insertions produces a total derivative in the moduli in the
usual way. Since Jo(z) is BRST invariant up to a total derivative and since J,(z) is
being integrated over a closed confour we need only worry about the BRST residues at
£(20)€{21)€(Z1). The residue at £{Zo) is Y{Zo), and this vanishes since nothing remains to
soak up the £ zero mode. We are left with {Qg5, £{z1)€(21)} = Y{21)€(21) — &{z1)Y (%1).
The correlator involving ¥ (Z;) has no poles at 7:{2;) as a function of z and hence vanishes
after :}Jhe z integration. The correlation involving Y {2}, on the other hand, has poles in
z only at r;(2), since, as we have seen there is no singularity in the OPFE of J,(z) with
Vo(z). The sum of the residues at the poles 7/{z3) can be seen to vanish, because we
can deform back the supersymmetry (z-contour } integral, and there are no singularities
of Jo(z) at f/“(zb),f’(za) or Bié(za). Thus after these contour deformations we can write

the final contribution to (D.9) as:

Gg-—06

/ II A (o Fy — G) (D.10)
where,
292 dz -
by = - | DIXBC|¢(20)é(21)€(21)alz)

Py Zi:r;(ji) 27 / )

49-4 5 6g—8 (D.11)
Ve(zs) Dy [ (¥ (2) + 8:(2a) D) ] ()

a=2 k=1
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G=Y Y § o= [ DIXBCIE)@;€n)e(E) + 6061 ala)
. b=2 I . =1 i (z) .
. gy y 6 (D.12)
Ve(z)D; ] (¥(za) + 8:€(2a) D) [ (7, 8)
e=2 k=1

Again, the term involving 8;&{zy) = &;2,8€(2) in (D.12) has no pole at z = ri{2), and
vanish;es after z integration. The term involving 8;£(Z;), on the other hand, has poles
only at 7;(2) in the z plane, and hence may be shown to vanish by deforming back the z
contour as before. Consequently G is identically zero. This completes our proof of section
(4) that the partition function is indeed a total derivative in the moduli space. Note also

that F; defined in (D.11) vanishes at genus two by ¢-ghost charge conservation.

Appendix E.

In this appendix we shall show that the cosmological constant A as defined in eq.(4.4)

is invariant under. simultaneous transformations of 8;2%, n,* and n,* induced by a

reparametrization v#:
8(8:z8) = BivH(za)
6(n%;) = 0:d:v*

i ) (E.1)
§{ni,) = 8:8:0°
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Under these transformations A changes to,

N =TI(Va+ > 8:288,8D; + Y 0:v*(2,)0,.8° D)
Gg—6

H ((T}J, b) + / d2'&‘.U(amajvwbww + awajv'bb —ﬁj))
=1
=1J(¥e + D 0:220,8°Di + + > 0iv#(20)8,8°Dx) (E.2)
a P i
G6g—96 Gg—06
[Ha+ / d*w (B0 by + 0wy Tban) D) || (17.5)
k=1 37=1

In each term in the second product we may now do the w integration by parts. If receives

" contribution only from the regions where b, b have poles, namely, near the locations z,.

Noting that,

3&(z,) (a=2¢9—1,---,4g — 4) (E.3)

we may evaluate the contribution from the residues at z,. The result may be expressed in

the compact form,

Gg--6

A= H (j}a + ZagzgapgaDg + Zawﬁ(za)apffa})i — Zakvy(za)ap,gapk) H (n_-,-’,b)
a H F P i

(E.4)

but this is just A, thus we see the invariance of A under reparametrizations connected to
the identity. One consequence of this invariance is that by choosing appropriate v#* we

may set 9;2# = 0, at the cost of changing the n’s.

Appendix F.

In this appendix we shall sketch how the insertion of the siress tensor in given cor-

relator accounts for the full variation of the correlator in moduli, i.e. variation due to
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explicit dependence but also to implicit dependence on the moduli. These matters have
already been discussed in [12] and in [89][90]; here we take a point of view which ties in
vi_dt.h the treatment in sections 2 and 4. As explained in sec. 4 the latter dependence
is due to tht; fa;ct that the coordinate system in whi::h we are exhibiting our vertex op-
erators, which is the coordinate system that diagonalizes the metric at a given point in
moduli space, changes as we move in moduli. Let ¢ be a specific point in the moduli space,
while z denotes the coordinate system in which the metric at ¢ is diagonal, and set Vi(2x)
{k = 1,...N) to be several vertex operators inserted at points zx on the riemann surface
such that %‘l = 0 in the sense defined in section two. We shall first assume that all the

vertex operators are of dimension (0,0}, since this is the simplest case. Let us now consider

the correlator,

(H Vilze) (9., T 6t /dzz( H Vilze)(n,5 *Toz + 1., “T55)6¢" > (F.1)

Let gd‘e(z, t+48t) be the metric at the point ¢+ 8¢ in the teichmuller space in the 2z coordinate
system, and w be the coordinate system which makes the metric at ¢ + é¢ diagonal. Then

there exists a quasi-conformal map,
w=z+v? wW=2z+7° (F.2)

where the vector field v* is disconiinuous on the riemann surface. In particular, we may
represent the riemann surface at ¢ as a region in the complex 2 plane bounded by some
curve C, with various parts of C identified with each other. The disconiinuity in v# is then
- reflected in the fact that »% on two different parts of C which are identified do not maich.

In terms of v?,v? we may write,

226 = —8s07, 7, Bt = 8,07 (F.3)
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Substituting (F.3) in {F.1) we may do the z integral by parts, picking up residues from

the poles in z,Z at 2;. The final answer is,

H Vi(2k)(nr, T)687), (Z H Vie(zk) zJ)av(zJ) + (ZJ)BV(ZJ)))t

J k#;

_ i,((f dzv* (2)T(2) + ?{dév"?(z)f(z)) MTvie), &

2m
C c

We may now compare it with the difference,

(1] vilwi)), 50 — H Vi(21)) H (F.5)

Since %it‘“ = 0, wx = zx + v*(zx). Both these correlators may be identified with the

correlators in field theories defined on the complex plane with diagonal metric, but with
different bﬁundary conditions on the fundamental fields in the theory. In calculating { )4,
the relevant boundary conditions on the fields are obtained by identifying various parts
of the curve C with each other. On the other hand, in calculating { };y s, the relevant
boundary conditions are obtained by identifying various parts of the curve C’ with each
other, where C’ is the image of the curve C in the w plane under the map (F.2). Thus
the difference between the two terms in (F.5} may be written as a sum of two terms. One
reflects the fact that wy, regarded as a complex number, is not the same as zx, but differs
from it by v#(zx). This term may be easily identified with the first term in (F.4}. The
second difference is due to the fact that the curve C' constituting the boundary in the
w plane differs from the curve C by (v®,v?) evaluated on C. It can be shown that the
effect of the second term in (F.4) is precisely to move the boundary from C to C’. *¥Thus
(F.4) is the same as (F.5), showing that the insertion of a factor of {5,,7) in a correlator

generates a derivative of the correlator with respect to ¢,

38 More precisely, the effect of §{d2v*T(z} + dzv®T(2)) is to convert the boundary
condition on various fields obtained by identifying various parts of C with each other to
those obtained by identifying various parts of C’ with each other.
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If some of the vertex operators (say Vi(21}) are of dimension {1,1) instead of {0,0),
the operator product of T(z), T(z) with V1{z;) will have exira terms, and as a result, {F.4)

will have extra terms on the right hand side. Using these extra terms we can show that,

.3'1( H Vk zk ‘n,-, 5t 'w1< H Vk wk >t+6t 221< H Vk(zk))t (Fﬁ)

Hence as long as all dimension {1,1) operators are integrated over the riemann surface
{(and similarly all dimension (1,0) operators are integrated over a contour) the insertion
of (n,,T) in a correlator generates a derivative of the correlator with respect to ¢".

We now come to the case of correlators with insertions of ghosts. As is well known,
these should be regarded as differential! forms on moduli space. For example, if v;,...,
are vector fields on M, represented by beltrami differentials v; = [n;], then we can define

the {-form §1 by
Qvis- o) = {Bym) -+ (b,m0) [T Vielzx)) (F.7)

By the equations of motion the RHS indeed defines a differential form on M. Choosing a

good slice so that gc%: = [n:] we have

0 = {{b, e, )de™ -+ (b, 760 T Vi(aa) (7.9)

The insertion of the stress-tensor now defines the exterior derivative

A = ((T,ns)dt®(b,ns, )dt™ -+ (b,mi; )dt™ [ ] Vielza)) (F.9)

To prove this we expand

{6y, (8 + 628)) - - (B, m, (¢ + 6¢)) H Vi{zx)) t+st (F.10)

in 6t. First expand the 7. If we compute tensors in a fixed frame-index and coordinate

- system then we may regard the frame e, as a matrix A(t) and then n; = A~} %A Since

A™! = A¥ we have 5{” = —7;. Thus although

2

diny = A1
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is not symmetric in ¢, 7, it ts true that
trbdin; = trbo;n;

éince b is syfﬁrr;etric when regarded as a 2 X 2 matri)é in a fixed coordinate system. The
analogous identity (8;n;,T) = (8;1:, T') occurs in the proof that [8;, 3;] = O when acting on
correlation functions. Therefore, if we expand 7;{t + 6t) = n;(t) + 6t°3sn; the contraction
with dt® A dt* gives no correction term. If we express tensors in the coordinate system
diagonalizing the metric at ¢ then 7;(¢) only has a {d2)~? ® dz component so we need only

consider the (dz)? term in the pullback of 4. This is:
b(z + v){d(z + v))% = b(2)(dz)? + (vOb + 28vb)(dz)% + - --

where v is as in (F.2). On the other hand, writing once more (T, 7n,)6t® = (T,8v) + (T, 97)
we see that the OPE of T with b accounts for the above change in b, exactly as in the

previous cases. Putting these facts together we arrive at (F.9).

Appendix G.

In this appendix we shall sketch a proof that the M” defined in eq.(4.24) are indeed
the components of a globally defined 6g — 7-form on moduli space. (Equivalently, this can
be thought of as a vector density.) What we must prove is that given any two points ¢, ¢
in the moduli space related by a modular transformation, we need to show that,

ot

——latr 2
S} M) (G1)

M™(#) = {det
(8) = {de -

Although this analysis may be carried out for the general expression given in (4.24), we
may, without any loss of generality, set %—‘:;& to be 0 in M7, provided we do not impose
any restrictions on 7,’s. This is a consequence of reparametrization invariance discussed

in appendix E. Using transformation {E.1), which can be shown to be an exact symmetry
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of M" following steps similar to those in appendix E, we may set —g%} = 0 ai each point
t in the teichmuller space. In this scheme, if @ denotes a fixed coordinate system on
the riemann surface, then ,(t) is independent of ¢. Furthermore, if ¢, ¢ are points in
fhe teichmuller space related to each other by a modular transformation, and g*P(a,1),
g®P(i,t)the representative metrics at these points, then the global diffeomorphism D (¢}
which takes g*#(#,t) to g*P(,{) leaves i, fixed. This is true for every point ¢ in the
teichmuller space.

The modular transformation properties of A" may be determined by studying the
transformation properties of various terms in the correlator in (4.24) under the global
diffeomorphism D. Since Y are dimension (0,0) operators they remain invariant under
diffeomorphism D, as long as their arguments go to their images under 2. Similarly,
since Jo{z) and V*(y) are dimension {1,0) and (1,1) operators respectively, ¢ dz.Jq(z)
and f d2yV°‘(y) are invariant under diffeomorphism. Thus we only need to study the

transformation laws of (n,,b) under t — t. If we can show that,

(??f’b) |E dt™ = (7?7', b) It dt” (G.Q)

then {n,,b) transforms as a contravariant vector, and so,

TT0r005) = 7605 (1, B) .. (1t o8 (©.3)
sEr

will transform as a 6g — 7 form. This would, in turn, prove that M™ is a globally defined
6g — 7 form in the moduli space.

In order to study the transformation law of (n,,b), let us express all the relevant
correlators in the ﬁxed coordinate system. Then we may write,

Hg>F
BT 8t7bop (U, 1) = / dzﬂ'\/&gaﬁ(i,t + 6t)bo g, t) (G.4)

(np,b) |¢ 6¢7 = /d%\/a

where b, s{t) denotes that in writing down the ghost action we use the metric g*#(t), and

use the constraint g®#(t)byg(t) = 0. Similarly,
(10,0 | 67 = [ 50 G + 60 (D) (©5)
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where ¢ + 6¢ is the image of ¢t + §¢ under modular transformation. Now we may write,

g*P (1) = (D1(t))2F 97 (1) (G.6)

where D; is the operator representing the action of D oni g. We may write a similar equation

at ¢ + 6t. Since byp transforms in the same way as gog, we have,

bap(f) = (D7 (1)) 15045 () (G.7)

Using (G.6) and (G.7) we get,

/ PS5+ 68)bap(@,D) = f 427 /GaP (¢ + 88) (O (0)D1t + 6)) bas(irt) (G.8)

Since Dy '(t)Di(t + 6t) represents an infinitesimal diffeomorphism, we may express (G.8)

as,
/ d2d\/ggP(t + 6t)bap(t) + [ 2 /G(VovP + VPu*)bap(i, t). (G.9)

The first term gives {(nr,8) |t 6t". The second term may be made to vanish by doing
intégl;.ation by parts and using equations of motion of bop{V¥bys = Vﬁbag = (), except
for possible poles in the argument of -ba,@. These may occur at the points @, since f’(&'a)
contains factors of ¢*(@,). Note, however, from the requirement of modular invariance,
and from the independence of u,’s on ¢, D(t) as well as D{t + 6t) leaves u, fixed. As a

result v*(#,) must vanish identically, showing the vanishing of the second term in (G.9).

This proves the required relation,
(r,0) |¢ 68" = (n,,b) |7 6 (G.10)

and consequently proves that M7" is a globally defined 6g — 7 form in the moduli space.
A similar analysis can be used to show that F™ defined in appendix D is also a globally
defined 6¢g — 7 form on moduli.

Note that if we had not worked in this special choice of gauge where 3;2, = 0, then we

would get non-vanishing residues from the points 2z, while trying to integrate the second
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term in (G.9) by parts. In this case, however, we would also be left with some non-vanishing
contribution when we try to transform 8é(z,) or d£(z,) appearing in the expression for
M under a global diffeomorphism, since these are dimension (1,0} or {0,1) operators, and
hénce no longer invariant under diffeomorphism. These two effects would then cancel each
other. This may be verified by explicit computation, however, there is no need to do so,
due to the reparametrization invariance of M7 discussed in appendix E, Finally we would
like to mention that at least for ¢ = 2, M, remains a globally defined 6¢g — 7 form if
modular transformations do not take the points ¢, to the images in the sense of eq. {2.41)
but instead permutes them. This is because as showed in sec. 5.C the final expression for

M, is explicitly invariant under z; < 2.
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