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ABSTRACT 

Calculations of the type II string vacuum amplitude using the picture chang- 

ing prescription have been shown to lead, in general, to a positive cosmological 

constant. We show that there is a global obstruction to the choices of gauge slice 

for superteichmuller space that lead to such measures. We discuss the general 

restrictions on gauge slices appropriate for use in explicit fermionic string calcu- 

lations. We also discuss the relation of the functional determinant and conformal 

field theory versions of the path- integral measure, and show that, at arbitrary 

genus and in arbitrary backgrounds preserving tree level N = 1 supersymmetry, 

the measure is an exact differential. We evaluate the boundary integrals of this 

total derivative at genus two in two ways for target space R1’ to show that the 

integrals are zero. Finally, we use the factorization hypothesis to show that in 

-3. appropriate compactified spacetimes the boundary integrals continue to vanish. 
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1. Introduction 

- 
There has recently been some confusion in the subject of superstring perturbation 

theory. Three issues in particular have caused trouble. First, there are several approaches 

. to writing down the supermeasure on supermoduli space. There is the approach through 

gauge fixed path integrals, the approach through conformal field theory and picture chang- 

ing operators, and the approach through algebraic supergeometry [1][2][3][4][5][6][7][8][9]. 

While very similar, the equivalence of the resulting measures is not obvious. Second, the 

correct statement of holomorphic factorization has been in question. Third, recent cal- 

culations [lO][ll] h ave indicated that there are many subltleties involved in applying the 

picture changing formalism of[ l] [ 12][6] to th e .. calculation of higher loop superstring ampli- 

tudes. Ambiguities involved in the choice of location for picture changing operators were 
- 

discovered in [6] and interpreted in [lo] to b e d ue to an intrinsic ambiguity in defining 

integration over the variables of the grassman algebra [13]. A prescription for handling the 

ambiguities inherent in the choice of location of picture changing operators was given in 

[lo] for the genus two case. In [ll] ‘t 1 was shown that for a (standard) choice of gauge slice 

the measure for the two loop vacuum amplitude of the type II string is positive definite 

and fails to be modular invariant. The relevant choices of gauge slice are those which lead 

to a measure factorized in the contributions of left- and right- movers where the supercon- 

formal ghost correlator is computed only in terms of picture changing operators. One of 

the purposes of this paper is to resolve some of the problems pointed out in [II]. 

The heart of the matter is the validity of the choice of gauge slice for supermoduli 

space. In section two we discuss the issues involved in choosing a gauge slice. In particular, 

we note (in subsections C and F) that certain standard results from teichmuller theory 

imply that it is impossible to choose a gauge slice for which gravitinos have &function _ .= 
support and the measure is manifestly positive definite. Furthermore we analyze the 

specific choice made in calculations on hyperelliptic curves and show that the gauge slices 

used in the past cannot be everywhere transverse to the gauge action. Finally, we note that, 
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in contrast to the bosonic string, in superstring theory modular invariance puts constraints 

on allowed gauge slices. The choice made in hyperelliptic calculations [14][15][16] [17][11] 

does not satisfy these conditions. 

In the rkm&ining sections we show that a good choice of gauge in fact leads to a van- 

ishing two-loop cosmological constant for the type II string (in appropriate backgrounds) 

as is physically reasonable. In section three we discuss the appropriate formula for the 

measure, and in particular the relation between the formulae derived from the functional 

determinant and conformal field theory approaches. In the course of this treatment we 

give a’component version proof of the holomorphic factorization of ghost determinants, 

confirming the calculations of [7][5] for this case. We do not address the more subtle 

question of the matter superdeterminants in any detail. In section four we show, using 
- - 

the formalism of conformal field theory, that the type II measure is a total derivative on 

moduli space, to all orders of perturbation theory and in arbitrary backgrounds preserving 

tree level N = 1 supersymmetry. In section five we evaluate the boundary integrals for the 

case of genus two. In the first two subsections we consider the case of flat space. We first 

use the factorization hypothesis and show that no operators of the relevant dimension and 

ghost charge can be exchanged. We then confirm the arguments with an explicit calcula- 

tion in terms of theta functions. In subsection C we again use the factorization hypothesis 

to show that the boundary integrals vanish for spacetimes preserving tree level N = 1 

supersymmetrylexcept for theories which could develop Fayet-Iliopoulos D-terms at one 

loop [29][30]. For these backgrounds we find that the two loop cosmological constant is 

proportional to the square of the Fayet-Iliopoulos D-terms (if any) induced at one loop. 

Several technical points are treated in the appendices. Appendix A reviews elements of 

‘+’ _ teichmuller theory relevant to the choice of slice and appendix B contains proofs of some _x 

assertions needed in section two. Appendix C gives an understanding of why concentrating 

1 Examples of vacuua preserving N = 1 tree level supersymmetry in type II string 
theory can be found in [18][19][20][21][22][23][24][25][26][27][28] 
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gravitino support at the Weierstrass points leads to a point-by-point vanishing measure. 

The remaining appendices contain technical details on manipulation of the formula for the 

superstring measure. 

2. Global issues in the choice of slice 

A. Supermoduli space 

We begin with a brief review of the differential-geometric approach to supermod- 

uli space [31][32][2][3][4][5][33][34][35]. S u p ermoduli space can be thought of in algebro- 

geometric terms as the moduli space of super riemann surfaces [36][37][38] or in terms of 

teichmuller space for deformations of superfuchsian groups [39][40]. We mostly use the 

superdifferential geometry approach, which emulates the fiber bundle approach to teich- - 
muller theory [41] since this is most closely connected with the gauge-fixed path integral. 

Thus, instead of constructing a universal family of superriemann surfaces, from which 

all other families are obtained by pullback, we consider a fixed supermanifold and the 

space of certain structures on that supermanifold. We then define an equivalence relation 

on these structures and define supermoduli space to be the set of resulting equivalence 

classes. The appropriate structures in this case are frames ~~~ in WZ gauge satisfying 

. the torsion constraints of two-dimensional supergravity [31] and the equivalence relation 

is just equivalence by superlorentz superweyl and superdiffeomorphism transformations. 

More precisely, consider a Coo real 2-surface C. We choose 

a.) an open covering {Ua}, 

b.) a complex structure with holoyorphic cotangent bundle Ko 
1. 

c.) Two spin bundles, Kz and 2: 

d.) Nonvanishing Coo sections 
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such that (Bi)* = 3:. 

Note that e, = 6: and its conjugate defines a frame, which specifies a metric, which 
1. - 

induces the complex structure Ko. Of course, there are no global sections of Kz, but we 
.’ 

may choose 8, so that 
. O,(p) = eivaa(P)Op(p) 

3, (p) I emiGa@(P)Bp (p) 
(2-l) 

for p E U, n Up with e2ip = e2i* defining the transition functions of the complexification 

of the tangent space TC @  C. Having made these choices we form the supermanifold 

2 = @,A) where A is the sheaf of algebras A(Uar) = O(U,) @I A*(0,,8,) [42]. Here 0 is 

the structure sheaf of the reduced manifold (i.e. to each open set it assigns the abelian 

group of Coo functions on that set) and A* is the exterior algebra with the indicated - 

- generators. A frame is a basis for the sheaf of derivations of A as an A-module. We will - 

consider frames which transform diagonally across patches, and hence may be specified in 

terms of tangent space indices A = z, B, +, -. Objects with an upper + index transform 

as eifQ -etc. A frame is denoted by EA and its dual by EA. To obtain an interesting 

geometry one imposes the torsion constraints [31]. As explained in [33] some of the torsion 

constraints are conveniences, some ensure that the frame defines a complex structure and 

some ensure that the frame defines a superconformal structure. Thus a frame satisfying 

the torsion constraints defines a superriemann surface. 

One can remove certain trivial degrees of freedom in the superdiffeomorphism and 

superweyl groups to specify that the frame be in WZ gauge 2. WZ gauge is really a partial 

fixing of allowed coordinate systems. Howe shows that a frame in WZ gauge is uniquely 

specified by the o-independent parts, e, X, of E”, E +. Since we will consider families of 

structures on a fixed supermanifold, and not families of supermanifolds this prescription 

e=- is unambiguous. It follows that there is a one-one correspondence between frames in WZ -- 

2 Our definition of WZ gauge is related to Howe’s definition of WZ gauge by using 
superweyl transformations to set his auxiliary field A and the spin-i components of the 
gravitino to zero. 
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gauge satisfying the torsion constraints and pairs (e,x), where e = ez is a Coo section of 
1 

Ko and x is a C” section of the C* bundle Ko -z 8 Ko. Specifically, referring x to the 

- orthonormal frame e, 8, so that 5~ = x$ we have [31] [34] 
i 

. 
(2.2) 

where w is the usual spin connection. E”, E- are obtained formally by conjugation. Since 

E- has a different spin structure from E + this conjugation is only formal. Note that we 

obtain a family of frames by varying e,X, holding the transition functions implied by the 

frame indices A, and the meaning of 8 fixed. We could further specify complex coordinates 

for the reduced manifold U,B, which are compatible with the complex structure at the 

basepoint Ko. Hence, (2.2) is just the supersymmetric analog of the representation of all - - 
frames on a manifold by ez = due, z + dtie, z = e4(du + pdti), where the frame indices z, z 

and coordinates u,a are held fixed and the complex structure varies with ~1, the beltrami 

differential. 

The set of pairs 3 = { (e,x)} is an infinite dimensional manifold. The action of local 

weyl and lorentz symmetries can be combined into a set of maps {fa : 27, + C’} which 

agree on overlaps, and form a group C, acting by 

In passing to WZ gauge, the O-dependent part of superdiffeomorphism symmetries have 

been fixed [31]. What remains are ordinary diffeomorphisms acting by pullback and su- 

pergravity transformations, specified by an anticommuting (-i, 0) form E, and acting by 

6x = 0 
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Denoting by D the set of superdiffeomorphisms, we find that the commutators of the 

infinitesimal actions of C x D close and exponentiate to form an infinite-dimensional su- 

pergroup. 
.’ 

We define supermoduli space M in terms of frames in WZ gauge as the set of equiv- 

alence classes of frames (e,$ E 3 under the action of the symmetries C x D. This is 

the space of interest for computation of the Polyakov path integral. It has not been com- 

pletely proven that it is the moduli space of super riemann surfaces in the sense of algebraic 

geometry, although some steps in this direction have been taken in [33]. 

Similarly, superteichmuller space 7 is obtained by dividing just by the diffeomor- 

phisms connected to the identity Do. The set 3/C can be thought of as the space of 

sections of a homogeneous manifold, analogous to GL(2,R)/C* in the bosonic case, and 

- : can probably be topologized in such a way that the theory of [41] can be repeated in this 

setting. We have not done this, but will assume it can be done and proceed. From the 

index theorem applied to the operator a acting on vector fields and (-l/2,0) forms we see 

that supermoduli space is a real superspace of dimension (6g - 6149 - 4). In fact, it is a 

complex superspace [40][5][34] of dimension (39 - 3129 - 2). This completes our review. 

BSlices and total derivative ambiguities 

Amplitudes for the superstring are integrals of volume forms over supermoduli spaces 

(perhaps with punctures). In contrast to the bosonic string, superstring densities are 

made from a cotangent space which has an even and an odd part. Existing computations 

of superstring amplitudes typically begin by integrating out first the odd moduli to obtain 

a density on ordinary moduli space. The final integrand suffers from an ambiguity because 

it changes by a total derivative in the moduli under a change in the choice of slice [6]. The 

ambiguity has its origin [lo] in an intrinsic ambiguity in defining integration over elements 
_ _z 

of a grassman algebra [13] and may be illustrated by the following simple example. Let us 

consider the integral 

/ 
dxdOd4F(x, 8, cj) P-5) 
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where x is an even element of the grassman algebra, and 8, r#~ are the odd elements. In 

order to define the integral, we need to express x as, 

.’ x = y + zefp 

where y and z are real numbers, and choose a contour in the (y, z) plane: 

z = h(Y) 

where h is a single-valued function of y. The integral (2.5) may then be written as, 

I d(~ + %&%WWF(y + h(y)&4 6 4) 
J 

(2.6) 

P-7) 

(2.8) 

- : It is not difficult to see that if we take a different function h’(y), the difference is a total - 

derivative in y. The point to note here is that although y + z&j and y + .z’&j are two 

different points in the x plane (for z # z’), we do not include both these points in the 

domain- of integration. Instead, for each y, we choose one and only one value of z given by 

z = h(y). 

Let us now consider the case where the x space is taken to be compact. More specifi- 

cally, let us take two points x and j?: to be equivalent if 5 = x + 1. This, of course, makes 

sense if the function F to be integrated is invariant under such a transformation. At this 

point, note that in order for the integral (2.8) to be well defined (i.e., in order that the 

value of the integral does not depend on which fundamental domain in y space we choose), 

the function h(y) must satisfy, 

h(y + 1) = h(y) (2.9) 

Furthermore, notice that given two such functions h(y) and h’(y), both satisfying (2.9), - _ .= 
the difference in contribution to (2.8) will be a total derivative, and after integration will 

give equal and opposite boundary contribution at the two ends of the y integral. Thus the 

value of the integral is independent of the choice of h(y) as long as it satisfies (2.9). 
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- 

Let us now return to the case where the variables of integration are the graviton and 

the gravitino, defining some even and odd variables of a grassman algebra. There are two 

different approaches that can be pursued for computing the superstring vacuum diagram. 

In the first approach, one treats the even and odd coordinates of the supermoduli space 

on an equal footing, and expresses the superstring partition function as an integral over 

the supermoduli space with a certain measure. The computation of the measure, in turn, 

requires us to choose a gauge fixing slice. In this scheme, a slice is just a map from a region 

R c pg-wg-2 to frame space: f : R ---) 3. It is useful to keep the following picture in 

mind: . 
3 

7 
R ln (2.10) 

\ - 7 
A good slice is one for which r o f : R + 7 is one to one and onto a region in 7. It is often 

useful to distinguish between local and global properties on 7, so we reserve the term 

global slice for g = z o f which are onto 7. For a good slice, the image of f is transverse 

to the action of the gauge group and hence defines a local cross-section of the fibration 

3 + 7. Conversely, if we are given a one-one map g : R + 7 and if s is a cross-section, 

then s o g is a good slice. Finally, the space 3/C can be identified with the space of pairs 

((~1, x)1, which h as a natural complex structure, so we can speak of a holomorphic slice. 

This is a holomorphic map C3gw312gs2 + 3. Superteichmuller space also has a complex 

structure, and the map z is holomorphic, so if f is a holomorphic slice then g = z o f : 

C3g-312g-2 + 7 is holomorphic. Holomorphic slices are useful in the computation of the 

string amplitudes because for such slices the Fadeev-Popov determinant factorizes into a 

contribution for the left and right movers, which is important to holomorphic factorization. 
_ .= 

From the well-known theorems that T is Stein and topologically trivial, [43] together with 

Grauert’s theorem that holomorphic bundles on topologically trivial Stein manifolds are 

holomorphically trivial [44] , it follows from the Bers embedding that 7 is isomorphic to a 
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region R c C 39--3k?--2. ‘J’h’ d 1s oes not mean that there exists a good global holomorphic 

slice. In fact, already in the case of ordinary teichmuller space, a theorem of Earle [45] 
- asserts that there is no global holomorphic section of the space of conformal structures over 

teichmuller space 3. Thus we cannot work with a global holomorphic slice. This, however, 
. 

does not prevent us from choosing slices which are holomorphic on local coordinate patches 

in R. 

In this way of doing the computation, we have not introduced any ambiguity in defining 

the integration measure so far. But at this point, in carrying out the integration over the 

elements of the grassman algebra, we have to invoke eq.(2.8) for defining integration over 

the even elements. As a result we get a total derivative ambiguity, due to the ambiguity 

L in choosing the function h(y). 

- In the second way (which has proved to be of more practical use so far, and which 

is the method we shall use in later sections of this paper) one proceeds as before, but 

carries out integration over the odd variables of the grassman algebra before attempting 

to calculate an expression for the measure in the supermoduli space. As should be clear 

from the example quoted above, one must choose the analog of the section h(y) in eq.(2.7) 

before carrying out the integration over the odd variables. In this case the role of the 

variable y is played by the 6g - 6 real (3g - 3 complex) coordinates tr of the moduli space 

of an ordinary genus g surface, whereas the role of 6, 4 is played by 4g - 4 odd elements 

of the grassman algebra C”12g- 2. Locally, the space spanned by (t’, c”) is isomorphic to 

a subset of a vector space: R c C3ge3!0 $ C”12g- 2. In order to carry out the integral, we 

need a map to a supermanifold h : R -+ R c C3g-312g-2. The map h is analogous to the 

map (y, 6,4) E R1lo $ Rot2 + (y + h(y)64,6,4) E ~~~~ that we needed in the previous 

example. The situation is best explained by extending the diagram (2.10) as follows: 

3 
_ .= h / 

R--+R 1~ 
I 

7 

(2.11) 

- 

-. 

3 For completeness we sketch the idea of the proof of Earle’s theorem in appendix A 
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Note that we must distinguish between the spaces R and R. The even elements of R have 

no even nilpotent part, and are analogs of the variable (y, 6,~$) in the previous example. 

On the other hand elements of R have even nilpotent parts, and are the analogs of the 

variables (x, b, 4) in the previous example. If f : R I, 3 is the map defined previously, 

then we get a new map r : R ---) 3 from (2.11) as r = h o j. Thus given any point 

(t’, c”) E R, the mapping r gives a specific configuration of the zweibein e(C, t’, c”) and 

gravitino x(C, t’, ca), u’ denoting coordinates on the genus g surface in some fixed coordinate 

system. In the present formalism, it is the map r (i.e. specifying e(u’, t’, c”), x(C, t’, s”) for 

every point on R) that is defined to be a gauge slice. r thus contains information about h 

as well as f, in fact for a given 7, both f and h are uniquely determined using the local 

isomorphism g between R and 7. 
- - 

It is then clear that choosing the slice (e,~) not only amounts to choosing a specific 

point on a fiber containing gauge equivalent configurations, but also a specific choice of 

contour out of many gauge non-equivalent contours, through the map h. It is thus hardly 

surprising that when we make a different choice of slice 7, in general we have made a 

different choice of the map h, and the final integrand changes by a total derivative as a 

consequence. By the same token, since the moduli space is obtained from the teichmuller 

2. 

space by identifying various points related to each other by the action of the modular 

group, the choice of the slice r must satisfy constraints analogous to the constraint (2.9). 

In particular, if t and t” are two points in the teichmuller space related to each other by a 

modular transformation, and (e, x), (Z, 2) are the corresponding points on the slice above 

(t,t”), then (E,?) must be related to (e,~) by a combination of (global) diffeomorphism 

and supergravity transformations. For given (e, x) this means that if we fix 2 and the 

reduced part of e”, the even nilpotent part of e” is completely determined. (In this form the .- 
.= 

constraint is manifestly of the form of eq.(2.9) for when the reduced part of x is one then 

the even nilpotent part of x is determined in terms of 6, 4, and h(l), which, in turn, is 

determined by h(O), i.e. the the value of x at y = 0.) On the other hand, if we fix both, 
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the reduced and the nilpotent parts of e”, then r?: is determined by this constraint in terms 

of e”, e and x. We shall discuss the implication of these constraints for a special class of 
- slices in subsection D. 

Finally,..note that even if the map f gives a holomorphic slice on local coordinate . 
patches in R, the map r = h o j may not be holomorphic if h is not holomorphic. In fact, 

as we shall show in subsection G, we cannot find a map r which is holomorphic in each 

local coordinate patch in R, and can be patched together globally in a way that the string 

integrand is well-defined (i.e. takes the same value in the two coordinate patches) in all the 

overlap regions. Even if we do not work with a holomorphic slice, it is still useful to use 

. . complex coordinates on supermoduli space since these help distinguish the contributions 

of left and right- movers to the measure. - 

C. Derivatives of slices 

In order to carry out computation with a given gauge slice, or to determine if a 

given slice is a good slice, we need to define tangents to the space of slices. Choose 

coordinates (t^‘, s”) with r = 1,. . . ,6g - 6, a = 1 ,...,4g -4 for R and a slice f : R + 3 

with f(t^, <) = (e(t^, s),x(t^, c)). (Note that we have used the variables t^’ to indicate that 

they denote even elements of the grassman algebra, rather than real numbers.) Then the 

tangents are defined as, 

a Sr+ = at;” 
a ++r- az 

ap” 

(2.12) v 

9rz- = $X 

a (i,, = - 
dpX 
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where em z (em z , er) is the inverse of the matrix (eZ,, e&). If (t’, 5”) denote coordinates 

for R, then given the map T : R -+ 3 we may define the tangents to R as 

. q,E = (epaek) 
asa 

a 
rlrZ+ = STY 

a 
(2.13) 

q-+=-- az dy x 
a 

rl -=gyx rz 

a 
q -=- az dpX 

which may be obtained from the 4’s using the chain rule of differentiation using the map - - 
h:R+R. 

- 
i 

In order to give proper meaning to eq.(2.13) we must first define what is meant by 

differentiation of a slice with respect to moduli. If we are given a family of frames with 

fixed .transition functions, as in the family (2.2) th en we simply differentiate patchwise. ; 

However, sometimes we may be given a family of frames in which the transition functions 

implied by the tangent space indices also vary. We will need to discuss how to define the 

derivative of frames in that case. 

The definition of differentiation relies on the fact that differentiable C* bundles and 

U(1) bundles are classified up to isomorphism by their first Chern class. Using the isomor- 

phisms between K1i2 and Kij2 we may consider e, x to be families of sections of a fixed 

bundle, which may be differentiated in an obvious way. We now recall the proof of some 

standard facts which make this possible [46]. We will denote by A c-, A R; . . . the sheaf of 

_ .= differentiable C*, R...-valued functions. Isomorphism classes of differentiable C* bundles ._ 

may be thought of as elements of H1 (A c*). From the exponential sequence 

0 --+ 2 + ff(y --+ AC* -+ 0 (2.14) 
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and the fact that Hq((Ac) = 0 for q > 0, 4we learn from the long exact sequence that 

Hl(Ac*) E H2(Z) z 2 (2.15) 

.’ 

. where the connecting homomorphism is given by the Chern class. Similarly, from the map 

f + f/If] we obtain 

0 + AR + Ac* + AU(l) + 0 (2.16) 

giving Hl(Ac*) E @(Au(r)). Thus, we may speak interchangeably of C* and U(1) 

bundles. 

In concrete terms what we have shown is the following. Suppose we have a family of 

riemann surfaces over a small open set S C T. We can choose a fixed covering U, of the 

- topological surface, together with transition functions {gap(t)} for Kt, t E S. From the 

above considerations we see that for t E S near some point to E S, there exist C” C*- 

valued functions fa(t) defined on each patch such that 

f&)/fp(t) = SC&)/g,&) (2.17) 

Using the trivialization {fey (t)} we may consider a section e, of Kt as a section {f;le,} of 

the fixed bundle Kt, . Thus, to differentiate a family of frames, we refer them to a standard 

bundle and differentiate patchwise. 

Since we must also differentiate the gravitino with respect to the moduli we must 

actually find a set of Coo ‘I2 trivializations {K,(t)} of Kt . 51f we adopt the above definition 

4 One may prove this using a partition of unity. Technically, A c is a fine sheaf [46]. 
5 The existence of such trivializations does not contradict the fact that there are 22g 

inequivalent spin bundles. The transition functions of a spin structure k,p are U(l)- 
are the transition functions of the canonical bundle. A _T valued functions such that k& 

trivialization of the difference ICI/k2 of two spin structures requires U(l)- valued functions 
fa such that fa/fp = fl on the overlaps. By contrast, if tl and to are related by modular 
transformations then na(tl)/Ka(to) needn’t be constant. On the contrary, if the spin 
structures are inequivalent, they cannot be constant. 
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of differentiation with respect to the moduli, then we must write the gravitino in terms of 

these trivializations; the section {xa(p, t)} at t of Ky1’2 @  Et is written as the section 

c {IC-l(tlP)lE2(t,P)X(P,t)} (2.18) 

of Kt;‘12 @I ii;, This choice of slice has the difficulty that the whole construction is ex- 

tremely noncanonical. There is a further apparent difficulty because there are points in 

T fixed by symplectic modular transformations Sp(2g,Z) c T. At such a point r* the 

squareroot K1j2 is ambiguous. Although two choices of K,, 1’2 will be isomorphic as C* 

bundles, the isomorphism must be nontrivial since they are inequivalent spin structures. 

Thus {+*,~))a are ill-defined, and this ambiguity will lead to discontinuities in the sec- 

tion (2.18). H owever, these discontinuities occur on manifolds of high codimension so they 
- 

shouldn’t matter e. In any case, as we shall see in subsection D, the n(t,p) appearing in 

eq.(2.18) drop out completely from our calculation, and hence the final result is free from 

any ambiguity that occurs in choosing rc(t,p). 

One fairly concrete realization of the above procedure is provided by the uniformiza- 

tion theorem. Recall that in the bosonic case every riemann surface C may be regarded as 

the quotient of the upper half plane U by a fuchsian group I. Furthermore, U has a unique 

complex structure. Thus, if two riemann surfaces Co, C are represented by ?ro : U + CO 

and z : U --+ C we know that there is a quasiconformal map w such that 

u w u 
To 1 7r 1 (2.19) 

CO --+ c 

commutes. In terms of metrics go,g inducing the complex structures, if we arrange that 

’ e= $jgc = e41du12 then w*z*g = e+ldu + pdfi12 where ,U is a beltrami differential for I. In 

6 It is only for the hyperelliptic locus at g = 3 that the discontinuities occur on a 
codimension one subvariety. In this case the nontrivial diffeomorphism is the hyperelliptic 
involution which does not change the homology basis and therefore fixes the spin structure. 
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this way we can map a family of riemann surfaces to a family of metrics on the fixed 

coordinate system provided by a fundamental domain for T in U. Also, in this way we see 

i 
- the correspondence between beltrami differentials and tangents to the gauge-fixing slice 

: 
in the Polyakov path integral. Note that the choice’of w is not unique since a metric 

and its diffeomorphic image define the same riemann surface. Hence, even in this more 

restricted and concrete setting provided by the uniformization theorem, the meaning of 

differentiation is highly noncanonical. 

In the super case we will use the old uniformization theorem to pull back frames 3 

to frames on the upper half plane: e -4/26 pulls back to a (not necessarily holomorphic) 

automorphic form for I’ of weight -1 and multiplier system specified by the spin structure. 

Thus, transition functions identifying the boundary of a fundamental region are of the form 
- z + s and e-di26 + (c,~+d)-le-+/~6. This should not be confused with superfuchsian 

uniformization. 

One advantage of this viewpoint is that we can use it to give a simple criterion for a 

good slice. This is done with the help of the simple and well-known 

Lemma: A necessary and suficient condition for the slice f (t^, <) to be a good slice is 

that for all (t^, <) E R the matrices: 

are invertible, where $J~,v~ are nondegenerate bases for H”(K2) and H”(K3/2), respec- 

tively. 

Proof: We obtain a good slice iff for all (t^,E) the map d(z o f) : TR(i,{) + T7g(,-,iI is 

invertible. Splitting tangent vectors into even and odd components we have _ .= 

(2.21) 
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Furthermore, (TT)* E! H”(K2) $ H”(K3j2), and, given v = vo $ vr E I’(K-’ @I I?) $ 

r(K-‘/2 @I IT) and T/J = $0 $ $1 E H”(K2) $ HO(Kq) we have the dual pairing 
- 

(d) = J vo+o + / v# (2.22) 

Thus, g = 7r o f is invertible iff 

~~~ (9r9 +j) (7ja9 Iroj> # 0 

( (Gr, vb) (ria, vb) ) 
(2.23) 

which is true iff the matrices 

’ are invertible. m 

- Note that the matrices (2.24) are invertible if and only if they are invertible after 

reduction by nilpotents. Furthermore, the q’s differ from the 4’s by nilpotent terms. 

Hence the criteria for r to be a good slice is that the matrices 

are invertible. 

(rlaCt)9 vb(t)) 
(T%(t), tij(t>) 

(2.25) 

The condition for a holomorphic slice is also conveniently phrased in this language. 

We use a set of holomorphic coordinates for R, (t”, t’, c$, sz) where 2, z runs from 1 to 3g - 3 

and .&E runs from 1 to 2g - 2. When there is no need for distinction we write these indices 

as (r, a) to stand for r = (2,~) and a = (-J?, 4. Th e condition for a holomorphic slice is 

q,,z = qw+ = q&Z = qzz+ = 0 (2.26) 

One of the most important consequences of the integration ambiguity is that the _ _z. 
positivity properties of the superstring measure depend on the holomorphy of the slice. 

In the bosonic string the measure is positive definite. If we choose a holomorpic slice the 

measure is in fact a square-modulus of a holomorphic form (up to factors of detImT) [47]. 
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If we do not choose a holomorphic slice the measure is not naturally an absolute square, 

but the change of variables (on the cotangent space) 

ds3 = dt’(rlrsz, +Z,) + dt’(qnz, I&) 

on the (analog of ) R shows that the measure 

rI dt” A dt”det hEZ, Gz) hzz, Icliz) 

a (rlzzE, ti;i (rlrzB, tih, > 

(2.27) 

(2.28) 

which is not manifestly positive, is in fact just n ds’ A dsr, which is manifestly positive. 

In the superstring this argument fails because of the integration ambiguity. For a 

holomorphic slice the measure is still positive semidefinite in the supersymmetric case, as _ 

we will see in section III. However we cannot relax the holomorphy condition, for even if ~- - 
we choose a slice with 

q-+ = qssz = q--+ = 0 
58 tZ f?Z 

(2.29) 

if vrs: # 0 the superanalog of II, contains even nilpotent terms and the superanalog of the 

change of variables (2.27) alters the measure by the addition of a total derivative. Thus, in 

superstring theory Earle’s theorem has the important consequence that we cannot choose 

a good global slice for which the measure is manifestly positive semidefinite This, by itself, 

does not mean that the measure is not positive semidefinite, since one could try to choose 

holomorphic slices on local coordinate patches, in a way that on the region of overlap the 

two slices give the same answer for the string integrand. As we shall see in subsection G, 

in some cases it is even impossible to choose such a set of local holomorphic slices. 

D. Special slices and 6-junction gravitini 

_ _ _T. We now discuss a class of slices that we shall be using in our computation. These 

slices are characterized by two conditions, the first of which is, 

(2.30) 
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i.e. the even nilpotent part of the metric is taken to be zero. This, in particular means 

that qaz = r],sz = 0. The second condition is that x have b-function support. We shall 

i 
- discuss this is some detail now. First some notation: In earlier subsections we have 

: 
introduced a fixed coordinate system (u, ai) G u’ on the riemann surface. In particular u’ 

could be taken to be the coordinate system such that at a specific point to in teichmuller 

space guu = g”” = 0, the corresponding frame indices were denoted by z, 8, +, -. It is 

convenient at this stage and for later analysis to define a new family of coordinate systems. 

This is done as follows; Let VP = (vt,~) be the coordinate system such that the metric 

components guu = g”s at the point t in teichmuller space vanish. In other words (vt, @t) 

for a given t is defined to be the coordinate system that diagonilizes the metric on the 

riemann surface at the point t in teichmuller space. By definition the (u,ti) coordinate 
- 

system is just (vt,,,~,). We should also associate with the (vt,~) coordinate system the 7 

compatible frame indices (zt, .~t, +t, -t). However in order to avoid cluttering our formulae 

below we shall suppress the subscript t on all frame indices and ocassionally we do the 

same thing with the subscript on the coordinates (vt,~). No confusion should arise, the 

precise meaning should be clear from the context. 

A convenient choice of slice for the gravitino is given by: 

Xz+(Vt,t) = C Caht2)(Vt - Vt(qa(t)) 
a 

(2.31) 

for every t, where vt(qa(t)) are the coordinates in the vt system of some set of points 

{Qa Ct> : a = I,... ,2g - 2) where the gravitino has its support on the riemann surface. A 

similar expression can be written for xz- with a support at {qa(t) : a = 2g - 1,. s a ,4g - 4). 

These points in general will be allowed to move as we change t. We now apply the remarks 

of subsections B and C to this specific class of slices. 
.- 

We first discuss the differentiation of &function slices. As explained in subsection C 

one way to give a meaning to slice differentiation when the slice is defined in a “moving 

coordinate system” (as is the case in (2.31) ) is to pull back xs’(vt, t) for every t to a fixed 
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i 
- 

coordinate system, say the u system (this gives a family of sections J&+(u, t) parametrized 

by t, of one fixed bundle) and then differentiate the resulting family patchwise in the 

obvious way. More concretely to compute 3 at some point t we pull back both ~(vt,t) 

and ~(vt+~t,t + 6t) to the u coordinates and then take the obvious difference. However 
. 

for computational purposes, it may be more convenient to pull back only ~(vt+~t,t + 6t) 

to the vt coordinate system and then take the infinitesimal difference with x(vt,t). ( This 

is of course equivalent to computing the difference in the u coordinate system and then 

pulling the result back again to the vt coordinates). X(vt+st,t + 6t) expressed in the vt 

coordinates takes the following form: 

ut=ut(qo(t)) 
(2.32) 7 

where the jacobian factor comes from the transformation of the 6 function. For a delta 

function slice all the manipulations that we shall carry out below can be shown to be 

manifestly invariant under a change 6t2)(v - va) --) f(t)Sc2)(v - va) of the basis, where 

f(t) is an arbitrary function of t. In other words, in calculating $$ af(t) ” we may ignore at 

term . 7Therefore we may ignore the factors of K in the transformation law, and the basis 

and so, 

given in eq.(2.32)is equivalent to a basis where, 

x(vt,t + q = c s”d2)(vt - v&a@ + q)) 
a 

3 = lim (x(w + q - j&t)) 
at i?t+o 6t 

= 
c 

a 
sa &Jf 

Ls(2)(Vt - Vt(qa(t)) 
avt”(!7a(t>) 

dt 

_ , _T. 
7 This may be seen as follows. The only place where $$ appear - 

(2.33) - 

(2.34) 

in our formulae, is 
in & s d2vfa(t)bf2)(v - v,)@(v), where p is a commuting ghost. Each such term is also 
multiplied by a factor of S(p). Th us all terms where the & operator acts on f(t) vanish 
identically, being proportional to ,f3(va)G(/3(va)). 
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where, 

auf (Qa Ct)) = $mo [ 
VB(!la(t + bt>> - Vf(!7aCt>) 

at + 6t I 
(2.35) 

In particular, the choice $$ = 0 corresponds to w,= 0, i.e. the points do not move on 
. the riemann surface for this choice. As mentioned in subsection C, a useful way to compute 

dv/iS throughout teichmuller space is provided by the uniformization theorem. We will 

use that point of view in subsection F. In a similar way we we can work out differentiation 

with respect to odd moduli. 

It is not obvious that the gravitino slice (2.31) (which partially specifies the map f in 

(2.10) ) defines a good slice. By the above lemma, a necessary condition for a slice with 

j&’ = Ca ~a6(2)(v - va) t o e b t ransverse to the gauge directions is simply 
- 

detva(t,va) # 0 (2.36) 

for all j, where va(t, p) is a basis of holomorphic 3/2 differentials. As explained below 

eq. (2.10) we know that we can find a globally defined basis va(t, p) of holomorphic 3/2 

differentials. For such a basis the condition that (2.36) hold for all t E 2’ is the condition 

for a good slice. 

When the condition (2.36) is fulfilled then, given any x:, we may find a gauge trans- 

formation parameter E such that, 

where, 

_ , _x 

and, 

-& = c caRabd2)(v - Vb) + c% 
0 

(2.37) 

E = 
J 

d2v’G(v, v’)& (v’) (2.38) --~ 

cbRba = (va(zc))-’ / d2~‘~C(v’)&+(v’) (2.39) 
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G(v, v’) E K-1/21u 8 K3j21 ,,l is the parametrix for the operator a acting on (-l/2,0) 

forms, satisfying, 

,30G(v,v’) = d2)(v - v’) - c d2)(v - v~)v”(v’)(v”(v~))-‘. 
0 

(2.40) 

. 

Thus we can always pass to a &function supported gravitino slice as long as (2.36) is 

satisfied. 

E. Constraints of Modular Invariance: Implications of the Integration Ambiguity 

We now attempt to clarify the role of modular invariance in the choice of slice. Again, 

we shall confine our discussion to the specific class of slices defined by eqs.(2.30) and 

. . (2.31). W e h ave been describing a slice for superteichmuller space, but string amplitudes 

are obtained by integration over supermoduli space, obtained by dividing 7 by the action - 
of the modular group D/Do. R ecall that if [(e,x)] E 7 and 7 = [4] E D/Do then this action 

is defined by 7 . [(e,x)] = [c$. (e,x)] where 4 acts by pullback. In the case of the bosonic 

string, where the measure is completely slice-independent, modular invariance provides no 

additional restrictions on a slice. Recall that if t, t” E R map to points g(t),g(f) E 7 

related by a modular transformation: 7. g(t) = g(o for 7 E D/Do then, if we represent 

7 by a particular global diffeomorphism 4 E D, the action of C$ will take the frame j(t) 

to another frame ~~5s j(t) w lc h’ h needn’t be equal to j(t”). By the definition of a slice, the 

frames 4. j(t) and j(f) are related to one another by the action of gauge transformations 

connected to the identity. Thus, an anomaly free measure p computed in two ways with 

the aide of one slice passing through 4. j(t) an d another passing through j(t”> will yield the 

same volume form at t” E 7; indeed this is what is meant by “anomaly free.” In the bosonic 

string the question of modular invariance is the question of whether 7*(p,(f)) = pgct) for 

all 7 E D/Do. This is a nontrivial condition on the measure, and not on the slice. Since _ , .T. 
pStt) is completely specified in a given theory, this, in turn, is a constraint on the theory. 

In the superstring the above argument is not valid because of the integration ambi- 

guity, and modular invariance gives a constraint on the slice, as discussed in subsection B. 
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Given two points t*, t”* in teichmuller space which are related by a modular transformation, 

we know from the previous discussion that the slice (e, x) at (t, $) should be related to the 
- slice (Z, 2) at (f, <) by a gauge transformation. Gauge transformations in general include 

i 
‘diffeomorphisnis and supergravity transformations. But the supergravity transformations 

(2.4) lead to even nilpotent terms in the metric. Thus if we want to work in the gauge 

(2.30) where the even nilpotent part of the metric is zero at every point t in the teichmuller 

space, the slice (e, x) at t must be related to (Z, 2) at t” purely through a diffeomorphism. 

Since the global diffeomorphism 4 representing 7 is not unique one might ask if there are 

further conditions on the choice of slice. The answer is no. As we show in appendix E the 

measure is invariant under change of slice by diffeomorphisms connected to the identity. 

Thus the above condition on the slice is both necessary and sufficient. The condition of 

- modular invariance is the analog of the condition (2.9). We will call a slice r = h o j a 

modular invariant slice it it satisfies this criterion. With such a choice of slice, the con- 

dition ~*(P,(Q) = pg(t) on the measure is automatically satisfied in a modular invariant 

theoryi as long as 7 is a pure diffeomorphism. 

We now analyze how the condition of modular invariance constrains the b-function 

slices satisfying (2.30). Although any two b-function supported gravitinos are related by 

a supergravity transformation, the condition of modular invariance requires that x and 2 

at t, t” must be related by a diffeomorphism. In addition e and e” must also be related by 

the same diffeomorphism. If we consider diffeomorphisms as active transformations then 

we consider a family of frames ez(t, c) in a fixed coordinate system 3, as in subsection C. 

In the coordinate system ri the gravitino support is located at Ca(t) E il(qa(t)). If t” = 7 - t 

then, having chosen e(t) and e(f) there is a unique *c$, with [4] = 7, and r,b*(e(t)) = e(f). 

The condition of modular invariance then includes 

_ , _T. 4-liZa = iia(t”) (2.41) 

8 This is true except at the orbifold points of the moduli space where g‘@(t) has 
isometries. In this case the points u’s(t) must be taken to be at the fixed points of the 
isometry of g@(t)[6]. 

-. 
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The physical outcome of imposing the constraint of modular invariance is the following. 

After integration over the odd variables, we may express the partition function as an 

integral over the teichmuller parameters with a certain measure. In order for the answer 

to make sense, the measure must be modular invariant. However, as we discussed earlier, 

under a shift of the points Ca, the integrand changes by a total derivative in the moduli. 

Hence if t and t” are two points in the teichmuller space related to each other by a modular 

transformation, then, for arbitrary choice of the Ca(t) and Ca(o the integrands cannot be 

related to each other by modular transformation. What the constraint (2.41) does is to 

determine Ca(fl f or g’ lven iZa(t) in a way that ensures that the integrand at t” is indeed the 

modular transform of the integrand at t. 

In fact, the constraint that the Za’s are chosen so as to satisfy the requirement (2.41) 
- 

will be crucial for our analysis. In sec.IV we shall show that the superstring partition 

function may be expressed as s n,. dt’g , where M* is some known correlation function 

of operators inserted at the points Za. If we represent the moduli space as a fundamental 

domain in the teichmuller space, then the domain, in general, has many boundaries which 

are identified with each other by modular transformation. In order that the integral over 

tr does not receive contribution from these boundaries, M’ must transform like a vector 

density under modular transformation. Again, since M’ depends on the choice of the 

points Za, this is not going to happen if u’s(t) and Ca(fl are chosen arbitrarily. Again, 

the constraint (2.41) chooses Ca(P) for a given ila(tr) in such a way as to ensure the Mr 

transforms like a vector density in the moduli space. In this case s n,. dt’w receives 

contribution only from true boundaries of the moduli space, namely, when the surface 

degenerates into two lower genus surfaces. In appendix G we show that when (2.41) is 

satisfied M’ transforms correctly. _ , .T. 
Even after a good global modular invariant slice is chosen, the ambiguity may not be 

completely resolved. The ambiguity is a total derivative and the constraint of modular 

invariance only ensures that this total derivative yields mutually cancelling contributions 
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at the boundaries of the fundamental domain in teichmuller space. If moduli space were 

truly compact that would be the whole story. However moduli space has a boundary 

describing riemann surfaces that degenerate into two lower genus surfaces. Compactifying 

moduli space does not help since the integrand could develop a pole on that hypersurface in 

moduli space. Consequently, in general, as was shown in [lo] for heterotic string theories 

( equally valid conclusion holds for the type II string ) the ambiguity is present, even 

after integrating over the moduli because of non-vanishing contibutions from the total 

derivative in the integrand at that boundary. In this case it seems that one has to invoke 

the constraint of BRST invariance in order to determine the correct choice of slice. At 

genus g = 2 this was enough to eliminate this ambiguity [lo] for the vacuum amplitude (see 

sec. 5). It is not known at this moment whether BRST invariance at higher genera (or for 

higher point functions ) will be equally powerful, or whether one needs to invoke additional 

principles. We again emphasize that the ambiguity is not related to the fact that we have 

carried out the integration over the odd coordinates before the even ones. The ambiguity 

is present even in the formalism where we treat the even and the odd coordinates on equal 

footing, only it appears at a later stage. In short, the ambiguity comes from an ambiguity 

in choosing the domain of integration, not in choosing the measure[lO]. 

-. 

F. Applications to hyperelliptic calculations 

The discussion in the previous section may be made more concrete by working in the 

hyperelliptic representation of g = 2 curves.gIn this context we shall also critically examine 

a further condition on the choice of slice that has been used in the past, besides those given 

in eqs.(2.30) and (2.31). This constraint is, 

.T. -&O (2.42) 

’ Calculation of the vacuum amplitude in hyperelliptic coordinates for flat space string 
theories has been carried out by many authors. See for example [48] [14][15] [16][17] [49][11]. 
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As we will see in section III it is this constraint which leads to the insertion only of picture 

changing operators. 
- Let us begin our discussion by noting that any (affine) g = 2 curve can be written in 

hyperelliptic.cobrdinates: -[50][14][15][16] 

S,-= {(y,x) E C21y2 = fi(x - ei)} 
i=l 

(2.43) 

where x is the projection to C and the hyperelliptic involution is j(y,x) = (-y,x). We 

may fix three branch points using projective transformations, say e4, es, es, at 0, 1,oo. The 

remaining branch points live in the space 

& = {ICE C31ei # 0,1, ei # ej} (2.44) - 

At g = 2 this is a finite (720-fold) covering of moduli space, and teichmuller space is its 

universal cover. For t E T we also denote the curve with branch points ei(t) by St. Because 

3/C --+ T is topologically trivial we can find a (real-analytic) family of quasiconformal maps 

wt : So -+ St for all t E T which commute with the hyperelliptic involution, wtj = jwt 

and thus induce a family of maps 2Zlt : C + C such that the diagram 

so 
wt 
+ St 

*o 1 rt 1 (2.45) 

C 6 C + 

commutes. The ‘LZt are not holomorphic, for a metric inducing the holomorphic structure 

on St will be of the form r~(e~ldx12) and will pull back under Gt to a metric r~(e~ldx + 

ptdz12) which is not diagonal. Notice further that since wtj = jwt, wt takes branch points 

to branch points, since these are the fixed points of j. In particular Gt(ei(O)) = ei(t). If --~ .T. 
we are given a family of gravitinos on St 

&+(z) = 7r; ( C <"bc2)(X - Xa(t)) 
) 

(2.46) 
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where xa(t) E C, we can pull them back and differentiate. Dropping multiplicative factors 

as usual we have 
- 

i (2.47) 

which is to be considered as a gravitino field on So. 

We may now discuss the meaning of the constraint (2.42) in this coordinate system. 

Because of the natural projection 7rt : St + C a choice of gravitino slice which might seem 

natural is to consider (2.46) with xa E C held constant. Although it might seem natural to 

say this family has constant support, recall that the family wt is undetermined up to the 

. . small diffeomorphisms Di jjc (So) of S o, and for generic choices of wt we see that in fact 

&ii- &(GtlXa(t)) # 0 even if % = 0, in the sense in which we have defined it. Thus - 
there are two notions of constant gravitino support. On the one hand we could demand 

Xa(t) = Xa(0) = constant, on the other hand we could demand that the RHS of (2.47) 

vanish.~ That there is a choice of family wt for which the second notion coincides with the 

first is a consequence of the following lo 

Theorem 1: Given a family of points xa(t) E C, t E T, a = 1,. . . n with xa(t) # xb(t) 

for a # b, define 

T’ = T - {tlxa(t) = ei(t)} 

If W c T’ is connected and simply connected then there exists a family of quasiconjor- 

ma1 maps wt : SO + St, t E W, commuting with the hyperelliptic involution, such that 

G(Za(O)) = Xa(t)- 

We give the proof of this theorem in appendix B ll. In plain english this simply says 

*--.=- (with n = 2) that if the &function support generically avoids branch points then we can 

lo For the present discussion we only need this theorem for the case where the family is 
xa(t) = ~~(0). We will need the more general statement below. 

l1 We thank C. Earle for his very generous assistence in proving this theorem. 
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use small diffeomorphisms to gauge transform the gravitino to have constant support, as 

viewed from the fixed coordinate system of So. 
- We now apply the ideas of subsections C, D and E to determine the constraints on 

‘ia from transversality condition (2.36) and the modular invariance constraint (2.41). 
. 

In this context we shall show that the choice of slice with xa(t) held constant cannot be 

a good gauge slice. 120n hyperelliptic curves we can write a basis of holomorphic 3/2- 

differentials quite explicitly. Choosing an even spin structure amounts to choosing three 

special branch points, which we may call Ai, the remaining three will be called Bi. The 

degree g - 1 = 1 divisor of the even spin structure will be Al + A2 - A3. 13Holding es = Bs 

fixed, permutation of the remaining 5 points yields the 
5 

0 
2 = 10 even spin structures 

[14][15][16][17]. We may then take 

22 = l-i,(x) 
dx3i2 

Y3’2(X) 

Y2 = II,(x) 
dx312 

Y3’2 (x) 

(2.48) 

where we define 

HA(X) E n(X - Ai) 
i 

(2.49) 

H,(X) E n(X - Bi) 

i 

Therefore, if the determinant (2.36) vanishes then 

l-t~(xl)rI;(52) - H352)rr&(51) = 0 (2.50) 

l2 The constraints on xa(t) that we shall derive, are independent of the choice of wt, 
since at no stage wt will enter the discussion. It is only when we try to see the implication 
of these constraints on g, that the choice of wt becomes relevant. 

l3 Recall that the divisor of a meromorphic function has class zero and that that of , _T. 
an abelian differential is the canonical class K. Examining the meromorphic functions 
(x - ei)-’ and y we learn that 001 + 002 - 2ei - 0 and er + . .. + es - 3(oor + ooz), 
while div(y-‘dx) = 001 + 002 is in the class K. Thus A1 + A;! + A3 - B1 + B2 + B3 and 
Al + A2 + A3 = Al + A2 - A3 + 2A3 is in the class K1j2 @ K. 
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Considered as an equation in the branch points for fixed xi this has the trivial solutions 

when two branch points coincide with the xa. These solutions describe a subvariety of 

complex codimension two, whereas (2.50) h as solutions on a subvariety of codimension 

one. Actually (2.49) are not well-defined on the space of branch points but on its universal 

cover. The existence of solutions of (2.50) implies that there are solutions of deba = 0 

on T other than the trivial ones. Thus, the constant support, &function basis, in the sense 

that we keep xa(t) fixed, is not a good slice. These considerations may be generalized to 

the hyperelliptic locus at any genus. If the xa are fixed the determinant condition reduces 

to an algebraic equation on the branch points which in general has solutions other than 

the trivial ones. 

Since the slice (2.46) - with xa constant becomes singular in moduli space the matrix 
- R,b in (2.39) b ecomes singular and it is possible that taking &R can induce &function 7 

singularities. However, in the measure such singularities always multiply S(p)p which is 

formally zero (see section III), so an unambiguous and correct answer must be obtained by 

a limiting procedure. We will avoid this issue by choosing a slice for which (2.50) is never 

satisfied by choosing xa to be appropriate functions of the branch points. We now show 

that such a choice is always possible. Recall we have used SL(2, C) to set es = Bs (which - 

is the same for all 10 even spin structures) to 00. Then we may let, for example, 

Xi = 1 + 2 leil 

i=l 

which never coincides with a branch point. Plugging in this equation for xl, (2.50) can 

be viewed as a set of 10 third order polynomial equations in x2 which have at most 30 

distinct solutions. Clearly we can choose x2 to depend continuously on e; so that it avoids 

c;, x1 and these solutions. Combining such a gravitino slice with a good global slice e(t) L _ , _T. 
for bosonic moduli space we see that the conditions of the above lemma are satisfied and 

we therefore have a good global slice for superteichmuller space in which g is independent 

of <, and x has (moving) delta function support. 
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In the above argument we have excluded the possibility that the delta function support 

of the gravitino is located at the branch points. In fact, with the above (noncanonical!) 
- choice of wt, if we take x1 = er, for some branch point er, then, strange as it may seem: 

&6(x - GEle;(t)) = &.6(x - el(0)) = 0, since tEt’(ei(t)) = ei(0). If we take x1 -+ er 

and x2 + er in such a way that our gravitino satisfies x = 7rt(<‘6(x - er) + c26’(x - er)) 

then &ST = 0 everywhere in moduli space. The condition for transversality is then satisfied 

since 

det(v,, v*) = (2.51) 

never vanishes in moduli space. Note that this is the choice of gauge which lead to the 

.. pointwise vanishing vacuum amplitudes in [ 15][ 16][ 17][ 11][51]. Still, this slice is not without 

other difficulties, as we will see soon. 
- 

Let us now consider the implications 

culations. The difficulties with modular 

xa(t) =constant have been pointed out in 

tions’to find the origin of the problem. To begin we must understand how the modular 

group acts on the space of branch points E. An isomorphism (y,x) + (6,5) of the curves 

of modular invariance for hyperelliptic cal- 

invariance caused by gravitino slices with 

[ll]. We can now use the above considera- 

6 

Se :y2 = n(X - t?i) 

i=l 

me_ :~2 = fI(~ - zi) 

i=l 

(2.52) 

will project to an isomorphism of c, which must therefore be L = s. Thus we see that 

we must have 

(2.53) 

c- 

_T. as unordered sets. As a special case let us fix e4, es, es to 0, 1,oo and take 5 = &x, together ., 

with a permutation of points one and five. This induces the modular transformation 

1 
e”1= -, g2 = !2 z3 = e3 

el el el 
(2.54) 
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In terms of the coordinates on C, the constraint of modular invariance on the gravitino 

supports is just that za(e”r, e”2, Es) must be the image of z,(er, e2, es) under the isomorphism 

S = 5, i.e. 

. Xa(gl, g2, z3) = ix,(,,, e2, e3) (2.55) 

It follows that if we choose xa to be independent of the branch points then we will have a 

conflict with (2.55) and hence with modular invariance. Also, in passing to the gravitino 

slice x = zT(<lG(x - AC) + c26’(x - Al)), th e 1 imit za + Al is not modular invariant. For 

example, if we choose x1 ({ei}) + er then we also require x1({&}) + e”r = 5. However, 

: modular invariance (2.55) requires xr({Zi}) + -&er = 1. This is another reflection of the 

- : loss of modular invariance inherent in the choice of special point R, in [15] [16] [17] [ll]. 

As noted in [ll] ‘t 1 is difficult to see how the prescription can lead to modular invariant 

- 

nonvanishing string integrands. In the case of uncompactified superstring theory in ten 

dimensions, the integrand of the vacuum amplitude calculated with this choice of basis 

turns out to vanish identically [15][16][17][11] [51] and h ence we do not have any problem 

in defining the integral. But in other cases, (where the cosmological constant is expected 

to be non-zero) this prescription probably will not lead to a sensible answer. 

Our discussion so far has shown that the image under zt of the points qa on C (i.e. 

xa) cannot be held fixed as a function of t. One might ask if, when these images xa(t) 

move so as to satisfy the conditions of transversality and modular invariance, a family wt 

can be chosen so that g in (2.47) vanishes. We can apply the above theorem once more 

to answer this in the affirmative. 
_ _ _z. 

We have seen that the choices of (e, x) are in one-one correspondence with choice of 

families (xa(t), wt) a = 1,2 t E T. The theorem states that for generic choices of xa(t) we 

can choose a family wt so that for almost all t E T ( i.e. everywhere in T except possibly 
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on a subvariety of real codimension one. 14) 

Gtl (Xa(t)) = Xa(O) 

- (2.56) 
e(t) - 2zlt* (dx) - dx + ptdz 

In this way a transverse and modular invariant slice can be put into a form which satisfies . 
(2.42). Combining this discussion with our previous remarks we see that there exists an 

almost global good slice satisfying (2.42). 

For the reader who, perchance, has lost his way in the thicket of mathematical termi- 

nology we summarize the situation. Let us work in a fixed coordinate system on the rie- 

mann surface, and assume that we have found one consistent choice of the slice (e(t), x(t)) 

which is consistent with the the requirements of modular invariance, as well as transvarsal- 

ity to the gauge directions. Let qa(t) d enote the trajectory of the points qa in this coor- 
- dinate system. Using the freedom of local diffeomorphism, we can, for every value of t, 

bring the point qa(t) back to a fixed point qa(0), as long as we change the metric accord- 

ingly. With this choice of slice , g = 0 everywhere in the moduli space. The section e(t) 

obtained in the above way will not be a holomorphic section. That e(t) is not a global 

holomorphic section is a consequence-of Earle’s theorem 15. 

G. Local Slices 

So far we have been discussing global slices, and we have used theorems on global 

slices, like Earle’s theorem. In the bosonic string theory, the same theorem prevents us 

l4 This is not completely satisfactory, since a subvariety of real codimension one, even 
though naively a set of measure zero on the teichmuller space, may give a finite contribution 
to the superstring functional integral, if, for example, the metric changes discontinuously 
across the surface so that the tangents rliET, rliEE have delta function singularities. We 
shall rectify this state of affairs in subsection G by choosing local slices, and patching 
them together. 

_ _ .Y. l5 More precisely, by Earle’s theorem any global slice cannot be holomorphic and the 
modifications of the slice involved in the proof of theorem theorem 1 cannot restore holo- 
morphy. We have no proof of this intuitively obvious statement. Note however that if wt 
is in fact defined on the complement of a complex codimension one, (= real codimension 
two), subvariety then by Earle’s theorem and Hartog’s theorem wt cannot be holomorphic. 
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from choosing a global holomorphic section as well. However, in the bosonic string theory 

we can choose a holomorphic slice in each local coordinate patch in the teichmuller space 
- 

and compute the partition function. In the region of overlap of two patches the slices 

in the two patches will be related by a gauge transformation, and the partition function 

computed with the two slices will be identical, since it is gauge invariant. In other words, 

the partition function may be expressed as a holomorphic square (up to factors of detlmT) 

at each point in the teichmuller space. 

Once again, the above argument fails in fermionic string theory because of the integra- 

tion ambiguity, since if we choose local slices then on the overlaps they will be related by 

gauge transformations which, in general, include supergravity transformations. This does 

not prevent us from choosing local slices related purely by small diffeomorphisms. Thus 
- - 

we may choose a set of slices ~~(t, 0 = (e*(t, <), xa(t, <)) for t E U,, relative to an open 

covering {Uor} of T such that for t E U, n Up, ro, is related to rp by small diffeomorphisms. 

There is no local obstruction to choosing holomorphic families wr of quasiconformal maps 

[43]. Thus, it would appear to be possible to choose in this way a set of good local slices 

satisfying conditions (2.30) and (2.42) and differing on overlaps by small diffeomorphisms. 

For such a set of slices the remarks of [ll] would apply and we would have a positive 

semidefinite measure, which, for generic choices of gravitino support, would be positive 

definite. We now show that there is a global obstruction to choosing a set of such holo- 

morphic slices r, for an entire covering U, of teichmuller space. We begin by quoting a 

powerful theorem from teichmuller theory: [52] [53] 

Hubbard’s theorem: There is no global holomorphic section of the universal teich- 

muller curve except for the Weierstrass points at g = 2. 
_ _ .T. 

The universal teichmuller curve is simply the fiber space over teichmuller space where 

the fiber over t E T is just a copy of the riemann surface defining the point t. A slightly 

more formal description can be found in appendix A and in [43]. Hubbard’s theorem 
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implies that exactly those slices which could lead to positive definite measures in fact do 

not exist. This is a consequence of the following 

- 
Theorem 2: A set of holomorphic slices ra with S-junction supported gravitinos, defined 

. for an open kking U, oj!F, difiering on overlaps by k’feomorphisms and satisfying (Z.&?) 

defines a holomorphic section of the universal teichmuller curve. 

The reason for this is simple. We may describe the local slices by the pairs 

(x:(t), wf) where wr is quasiconformal, and t E U,. The condition that the slices be 

related on overlaps purely by diffeomorphisms is the condition that for t E U, n Up, 

((Gr)-'(x:(t))& + "d-) pt x is related to ((Gf)-l(xf(t)), dx + pfdz) through a diffeomor- 

. . phism. Furthermore, the condition (2.42) means that xa(t) = ‘lZlt(xa(0)) in both patches. 

Thus the xa(t) vary holomorphically with t. The unique choice of diffeomorphism re- - 
lating the two slices is (wr)-‘(wf) as can be seen by comparing the metrics. By as- 

sumption this diffeomorphism must also relate gravitino supports. Thus we must have 

x”(O) = (~Zp)-~(@)xp(O) i.e. x”(t) = xP(t). In other words, the points xa(t) are globally a a , a a 

defined, and depend holomorphically on t. Such a set of points defines a global holomor- 

phic section of the universal teichmuller curve. A more formal discussion of these matters 

is given in appendix B. 

Note that the crucial difference from the bosonic string theory is that in that case wr 

and wf are completely free, whereas, in the present case, they must satisfy the constraint 

CGjta)- wt xa( ’ Mp p 0) = x:(O) at every point t in the overlap region. This is the constraint 

that prevents wt from being holomorphic. We may, instead, relax this constraint on wt, 

and choose xa(t) in a way that the two slices are related by appropriate diffeomorphism 

in the overlap region. In this case, there is no obstruction to choosing local holomorphic 

_ slice for e(t), but 3 will not vanish any more. In general both the holomorphic and the 
, _T. 

antiholomorphic derivatives of 6; ‘xa (t) will be non-vanishing. This can be interpreted as a 

further (but more specialized) obstruction to holomorphic factorization above and beyond 

the coupling of the zero modes of the scalar fields. In the computation in the following 
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sections, we shall work with a general choice of slice, and assume neither holomorphy, nor 

g = 0. We can use the above observations to explain why the hyperelliptic calculations 

i 
- lead to point-by-point vanishing when the gravitinos are supported on Weierstrass points. 

This is done-.in-appendix C. 
. 

3. Measure for Supermoduli 

At present the best way of studying multiloop string amplitudes is through the “con- 

formal field theory” of first order ghost systems [l]. A n alternative approach makes use of 

c-function regulated functional determinants. While far more awkward, the latter approach 

has the advantage of being mathematically well-defined. In this section we will indicate 

- the relation between the two approaches. Perhaps the most fruitful point of view is that 

the functional determinants give rigorous meaning to the quantities and manipulations of 

conformal field theory. 

.. We begin by reviewing the gauge fixing approach which was pursued in [z] for the 

heterotic string and in [4] for the type II string. We will focus on the type II case although 

the formulae are easily adapted to the heterotic case. 161n WZ gauge the action for the 

type II string is: 

(34 

where a = i(az - ia,) on a flat world-sheet, and is the appropriate cauchy-riemann op- 

erator coupled to O-forms X, and (i, 0) and (0, 3, -forms T,LJ and $. Superdiffeomorphisms 

l6 Both [2] and [4] contain important errors in the formula for the supermoduli correction. 

_ The measure in [2] omits the contribution of the matter supercurrent, while that of [4] Go , .T. 
omits the ghost supercurrent. Neither contribution can be left out. This is clear simply 
on grounds of superconformal invariance. It is only for the sum of the ghost and matter 
supercurrents that the conformal anomaly term in the operator product expansion cancels. 
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defined by an even vector field will be called “ordinary” diffeomorphisms, while odd dif- 

feomorphisms are referred to as supergravity transformations. The action of ordinary 
- 

diffeomorphisms is l7 
sa=a(@ : 

. 
sa=o 

6X = -tax 

- : where f is an even vector field (i.e. a (0, -1) form). 

The supergravity transformations are: 

6d = 0 

6x = 0 

(3.2) 

(3.3) 

- 

6X = -u+!J 

for a supersymmetry transformation by an anticommuting parameter E (a (-l/2,0) form). 

In (3.2) and (3.3) we have only displayed the (t, e) dependence. The analogous expressions 
- 

_ with (I, F) can be obtained from (3.2) and (3.3) by interchange of barred and unbarred -- 
_ _T. 

quantities. 

r7 We have actually taken a linear combination of a diffeomorphism, and appropriate 
lorentz and weyl transformations for convenience. 
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. 

- 

From the transformation laws (3.2) and (3.3) we see that if we define hi = er(beb) 

then the change of variables from the original fields to the gauge transformation parameters 

and the (super-)moduli is,l* 

where the various tangents +j have been defined in sec. II. Here (9, t!, ce, c”) where 2, z runs 

from 1 to 3g - 3 and .JZ, .$! runs from 1 to 2g - 2 are complex coordinates on superteichmuller 

space. When there is no need for distinction we write these indices as (r,a) to stand for 

r=.(z,~) anda=(&q. 

At this point we can choose the map h discussed in section 2. This allows us to express 

the last term in (3.4) in terms of the variables (t”, tr, ce, $), where t* and t” are complex 

coordinates without nilpotent parts. Equation (3.4) then takes the form: 

‘* In writing down (3.4) we have actually redefined E by c + e - EX to remove off 
diagonal terms in the fluctuation matrix. Furthermore we have resealed E by $. 
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As mentioned in section two a holomorphic slice satisfies 

For a holomorphic slice, the transformation (3.5) b ecomes block diagonal, corresponding to 

the decoupling of left and right-moving modes of the ghosts. For the reasons explained ear- 

lier we will not, in general, choose a holomorphic slice. Even if we do not use a holomorphic 

slice it is still convenient to use complex coordinates (t’, t”, ce, ~3. 

In changing variables’ from h, =, h, s, xz + and xz - to I, E, E, c, (t”,F) and (se, $) 

we pick up a jacobian factor. Let 4i (i = 1, ... , N) denote the original field variables, za 

(cx = 1, - - - , n) denote the gauge transformation parameters, and ym (m = n + 1,. . . , N) 

the coordinates (t”,t”) and ({l,~‘). (Th us h ere N and n are infinite, although N - n is 

- 1 finite). Let us write, 

Sq+ = A;,Gx” -I- Ai,Gym (3.6) 

where A is the matrix displayed in eq. (3.5). Then the jacobian for the change of variables 

is sim$ly given by sdet(A). Th ere are two ways of interpreting this quantity as we now 

describe. 

A.Gauge fixing with ghosts 

We shall now express the jacobian factor in terms of a functional integral over the 

ghost fields. Let us introduce variables Bi, CQ with the property that Bi and C” have 

exactly the opposite statistics of the variables 4’ and xa respectively. Thus, for example, 

Bi is anti-commuting if r$i is commuting. Then it can be shown that, 

sdet(A) = 
J 

fi dBi fi dC” exp(BiAiaCa) 1; G(BiAim) (3.7) 
i=l a=1 m=n+l 

One way to prove this formula is to define auxiliary variables, 

fim = BiAim P-8) 
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With the above change of variables, we may express the right hand side of eq. (3.7) as, 

- sdet(A) 
/ 

n dCadE”, n dfim exp(E,P) n b(fim) = sdet(A) (3.9) 
a m m 

‘thus proving eq.(3.7). Note that the reason that what appears in eq. (3.9) is sdet(A), and 

not (sdet(A))- ’ is that C,, fi), and Bi have exactly the opposite statistics of xa, y* and 

& respectively. Since sdet (A) was defined for the change of variables given in eq. (3.6), 

the jacobian factor appearing in the change of variables given in eq. (3.8) is sdet(A)-l. 

The relevant matrix Ai,, Aim in our case may be read directly from eq. (3.5). Intro- 

ducing the B ghosts b,,, bZE, pz+ and ps-, and the C ghosts cz, us, q+ and T’- we may 

express the jacobian factor as, 

- sdet(A) = J 
6g-6 49-4 

dbdcd6dzdpdydpdTexp(-Sgh) rl[ (+,B) n b((Va,B)) (3.10) ~- 
r=l a=1 

where, 

sgh.= (bac+pdy+TS(~by+~pac+a(pc))+iac+pa~+x(~6r+~paE+a(p~)) (3.11) 
.- s 

and we define scale-factor-independent pairings by, 

(rid) = / rlr%bzz + / rlr+Pz+ + / qrz%i + /- qrz-Pz- 

(qa,B) = J J J az’bzl+ / qaz-PE- qaibzz + qa+Pz+ + q 
(3.12) 

In writing down eq. (3.10) we have replaced S((qi, B)) by (vi, B), since this is an anti- 

commuting object. Adding the matter action to the ghost action we see that the gravitino 

field x couples to the full supercurrent, 

$3X + +br + +@a, + a@) (3.13) 9c 

The above ghost supercurrent differs slightly from that in [l]. The difference is entirely 

due to a difference in convention for the kinetic terms for $. We now proceed to the second 

way to make sense of sdetA. 
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B. Gauge fixing with functional determinants 

We leave conformal field theory briefly and describe now the approach that uses <- 
- function regulated functional determinants. Returning to (3.4) we introduce operators P 

i 
and +j so that (3.4) becomes 

. 
6hZ = 
6x1+ 
6h, E 
6x, - 

)=P($+$) (3.14) 

Introducing the obvious lgL2 inner products on each component we can define adjoint 

operators. (This involves a choice of metric.) For g > 1 the operator P has no zero modes, 

but the operator Pt has zero modes. When expanding in nilpotents 3g - 3 zero modes 

begin with holomorphic quadratic differentials II, i,, 3g - 3 with antiholomorphic quadratic 
- differentials T/J&, while 2g - 2 zero modes begin with holomorphic 3/2-differentials T,LJ,“+, 

and 2g - 2 with anti-holomorphic 3/2 differentials T/J!-. We may arrange these zero modes 

into a 4 x 4 matrix \k, defined by 

(3.15) 

In general we cannot take the tangents to be identical with these zero modes. Accounting 

for this in the usual way [55][56]we obtain for the jacobian 

sdet(QT 61) ( 
sdetPtP 

> 
l/2 

sdet((W)l, W) 
(3.16) 

The inner product matrix (Xl!‘“, 7jl) is defined as, 

_ _ _z. 

lg Actually, it is not so obvious. The chief difference between the component formalism 
and the superfield formalism enters at this stage. In the superfield formalism one uses the 
metric introduced in [54]for fluctuations of superfields. These are not the same metrics on 
field space. 
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where CY stands for the indices 3, J(= 1,. . .3g - 3), p,p(= 1,. . .2g - 2), and I stands for 

the indices 2, u(= 1,. . .3g - 3)) -t, i!(= 1,. . . 2g - 2). The quantity (\kt)l involves a metric, 

- turning (KP) * into a beltrami differential. 
i 

Again at this point, by a choice of the map h of section 2 we can express the jacobian 
. 

as 

sdet(‘C rlr) ( 
sdetPtP 112 

sdet((qt)I, ‘kP> > (3.18) 

where we now integrate over (t”, ti, ce, cZ). Note that the matrix P, as well as 9 has block 

diagonal form, reflecting decomposition into holomorphic and anti-holomorphic parts. This 

is, however, not manifestly true for the matrix (?P, q’), due to the fact that we have not 

. . chosen the tangents q compatible with the complex structure in moduli space. Any further _ 

manipulations in this subsection can be carried out in either representation (one formally - - 

can go from one to the other by replacing t^, 6 by t, q and vice versa). For practical purposes 

we shall only exhibit our fomulae from now on in the second representation. 

The above expressions are still formal. For example, it is not obvious how to take 

the squareroot in (3.18). The proper definition will emerge when we expand (3.18) in 

nilpotents. This exercise is also useful because it allows us to define all quantities rigorously. 

Write the operator P as the sum of its zeroth order and nilpotent part: P = I’j+ A, where 

A= ( 
-(ax)O+ +p -p -- 

ix 
-(&)O+ fx3 0 1 (3.19) - 

Making this separation for the superdeterminant we find 

sdetPtP = sdetDtBsdet(l + - IL AD+ 
Zi% 

--btJ4 + ‘-AtA) 
D% DtB 

(3.20) 
wz 

With a little algebra one may write the second superdeterminant on the RHS as 

I ( sdet 1+ LBtA)12sdet(l + 
327 

(3.21) 
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where 

(3.22) 

i is the projector on the zero modes of ot. We compare this with the square norm of the - 

. zero modes of Pt. Since 

(79 + At)* = 0 (3.23) 

we can write Q = $J + S$J where V,!J is zeroth order in 35 and can be written in terms of 

“ordinary” zero modes- as: 

(3.24) 

we can further split S$ = x6$(i) according to the number of odd moduli it contains. 

Writing the zero mode equation order by order in x, x and solving recursively gives 

Q= 
(1 +&It)” 

(3.25) .’ 
: 

Thus 

sdet(Qt, XI!) = sdet ($t, l- 
1 1 

l 
(1+ &Lot) (1+ D&4 q 

D- 
DtB 

At ti) 
I 

(3.26) 

D’D 

Using the identities 

1 
(1+A&# 

(for any matrix d), we see that the ratio 

sdetPtP sdetD% 
sdet(Qt, ii?) = sdet($t, 4) 

Isdet(1 + $$~tff)~2 
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is manifestly factorized in the supermoduli. Therefore, the jacobian will be 

- sdet(8,q)(s~f~~$~I)1’2sdet(1 + ---&o’ff) 
2 

(3.29) 

. The ratio s&t($t +) sdetD+T in (3.29) may be defined using c-function regularization. As is well- 

known, if the $J vary holomorphically, then the ratio of these superdeterminants is a holo- 

morphic square up to the usual liouville factor [47] [57] [58] [59] [60] [61]. When the anomalies 

cancel we may ignore this factor and take the holomorphic squareroot. The last factor 

may be written as 

ev(-str C $(Bn + 8”)) P-30) _ 

- where - 
-IL- 1 0 

B= 
2 a a xr((-az + @) 

3/a 

0 -&(-a~+ $xa)+$x 
(3.31) 

2 

is an operator on C” sections B : I’(K-’ $ K-‘i2) + I’(K-l $ K-1/2) and 3,’ etc. are 

defined by 
1 -= 1 $ 

32 - $a, 2 
1 1 - = 

d3/2 
--t - at 

d3/2d3/2 
312 

(3.32) 

Since B is nilpotent the sum in (3.30) terminates after a finite number of terms. For 

smooth x the traces are well-defined and give a rigorous definition of the last factor in 

(3.29). Similarly, we can define (3.25) and hence the first factor in (3.29) rigorously. In 

this way we can define carefully the jacobian (3.29). 

We note here that a corollary of the above derivation is the superholomorphic factor- 

ization of ghost superdeterminants which has been addressed in different ways in [62][7][5]. L _ 
- .T. 

We have explicitly shown factorization in the supermoduli in (3.29). As we will see in the 

next subsection, the first and third factors are not holomorphic in the moduli, but their 

product is, provided the slice is holomorphic. The corresponding definition of the matter 
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superdeterminant is straightforward, although the corresponding discussion of holomorphic 

factorization is not, and must be left to future work. (See, however, [5][32].) 

- 
C. Defining ghost correlators i 

. We can now define the quantities in (3.10). We expand the ghost quantum fields in 

terms of the zero modes Q and the orthogonal eigenmodes of PPt: 

where the ellipsis refers to orthogonal modes. Similarily for the antiholomorphic ghosts. 

Then the basis-independent measure for the ghost zero-modes is 

- 
(sdet(Qt, Q))-1’2 n db:dpg 

r,a 
(3.34) 

- 

and one may evaluate 

= 
sn 

db; ’ n(((qi,Q’) - (qi,~a)(qa,~b)-l(l?b,~r))b;; + ***) 

I det(qa, Qb) i 

= sdet(Q,q) 
(3.35) 

using the definition in (3.12) and properties of the Dirac delta function. The orthogonal 

modes lead to (sdet’PtP)i, thus reproducing (3.18). 

While this discussion suffices to define the ghost path integral, the expansion (3.33) 

is difficult to work with because of the dependence of Q on x. From the point of view 

of conformal field theory it is more natural to expand in modes of oto and DDt. For 2 
_ _ .Y. 

example, separating B into its zeromode and nonzero mode pieces 

(3.36) 
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we have 

dBo = (sdet($Jt, $))-‘j” n db~d@d@@~ (3.37) 
- 

i so it is clear. that we will obtain the middle factor in (3.29) after integration over Bl. 

. The last factor, written as (3.30) may be interpreted as correlation functions of the ghost 

supercurrent where we identify the parametrices with the ghost correlators through 

l (c(x)b(y))l = - a5 &,Y) E K-ll, @ K21y 
2 2 

1 1 N-- 
7rx-y 

(7w3(Y)L = -t 1_ 
d3/2d3/2 

$,z(X,Y) E K-‘/21z cQK3’21y 

11 N-- - 
7rx-y 

(3.38) 

with similar relations involving the antiholomorphic ghosts. We see that we just obtain 

the correlators of the ghost supercurrent. 

These correlators are not convenient for use in conformal field theory. For example, 

they are not meromorphic on the riemann surface. In conformal field theory we must com- 

pute correlators in the presence of insertions of operators soaking up background charge. 

These latter correlators are meromorphic. We now show that the factor sdet(Q,q) can 

be interpreted as a correction changing the correlators (3.38) into those of conformal field 

theory. To do this we return to the ghost expression (3.10). Defining an index {I} = {i, a} 

we may rewrite (3.10) as 

since 6(b) = b f or an anticommuting object. Using the integral representation for the delta 

._ function we get 

s dX’dBdCexp i c AI(qI, b) + (B, PC) 
> 
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We again expand the quantum fields in a basis of eigenmodes. However this time not in 

eigenmodes of (PtP) but of otD. 
- 

We may then shift B 1, C in the action to obtain 

. 
s 

dXIdBdCexp ibg($,, (1 - AP-‘)qr)X’ + (Bl, PC) 
> 

(3.41) 

where Pm1 : (kerDt)l + I’(K-’ @3 K-‘j2) is defined by 

p-l = (3.42) 

and satisfies ((1 - lTo)P)Pml = 1 - IIc. The integral over bi, X1 exactly reproduces the 

factor sdet (Q, q), and we have already obtained the other two factors in (3.29). 

The important point here is that all the (valid) manipulations of superconformal ghost 
- 

systems can in principle be rigorously justified through manipulations of parametrices of 

differential operators. One trivial example of this is the set of OPE’s of b, c, /3,7 which 

follow from (3.38). S imilarly, the holomorphy of the correlators of /3,7 and b, c in the pres- 

ence of background charges shows the validity of the use of the equations of motion-and 

hence of contour deformation-as long as no two operators have coinciding arguments. A 

slightly less trivial example is the pair of OPE’s 

Pc4w4) -k - 4P’Ww4) 

r(‘+Q(w)) -(z - wP’(P(w)) (3.43) 

-. 

These follow from the OPE of ,0 with 7, together with the general properties of the S- 

function, which in turn may be derived from the integral representation used in (3.40). 

Finally, through the manipulations that lead from (3.40) to (3.29) we may justify (3.43) 
2 

_ using rigorous operator techniques. _ .x. 

D. Special Slices 

Having indicated how the methods we will use could be made rigorous we will proceed 

in the rest of the paper using the techniques of CFT. As mentioned, the traces in, e.g., 
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I 

(3.30) are well-defined for smooth X. If we allow x to have b-function support then the 

individual terms do not behave well, but the expressions in CFT seem to make sense, 

i 

- 
indicating that the whole expression for the measure has a good limit. Therefore, we 

choose a good global slice, or set of slices of the kind. discussed in section 2.F, assume it . 

can be chosen to be modular invariant, and simply substitute into (3.10). In particular, 

we take g to be independent of c, so that qazz = qazz = 0, and we take the gravitinos to 

be linear in the supermoduli and to have delta function support: 

- 

29-2 

x-+ - z - c 
<"d2)(w - TJa) 

a=1 
49-4 (3.44) . 

xz- = c 
(a6(2)(W - Wa) 

a=2g-1 - 

where V, = vt(qa(t)). Then v,~’ = 6(2)(~-~a) (a = 1,..*,2g-2), and qaz- = 6(2)(~-~a) 

(CL” 2g-1,.-m, 4g - 4). Taking the support of X,X to be different, the quartic term in the 
-. 

action (3.1) can be ignored. 20Using (3..10) the partition function becomes after integration 

over <“, 

A= (3.45) 
{ca=Ol 

where Se denotes (3.1) with x = 2 = 0, and p(va)(?F(va)) is defined to be p(Va)(TF(Va)) 

for a = l,... ,2g - 2, and p(w,) (TF (va)) for a = 2g - 1,. . . ,4g - 4. The formula (3.45) was 

the starting point in the important paper [6]. 

At this point we must find the proper CFT interpretation of the operators S(p), 6@) 

-= and give a prescription for calculating correlation functions of such operators on any rie- -- 

mann surface [6] . For this we use the bosonization prescription of Friedan, Martinet and 

2o One can take the limit pa+2 -+ pa (a = 1,2) to recover the formulae in [ 111. 
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Shenker [l]. It was shown by these authors that on the sphere, the p, 7 system may be 

replaced by a pair of free fermions [, q, and a free boson 4, with the identification, 
- p =qe-4 

i 
7x+ : (3.46) 

. 

From this we may derive the operator products, 

~(++GJ) N (z - q~~(+J”-‘M4 

7(z)e44bJ) N (z - w)-qe(P+ww)~(w) (3.47) 

. . On the other hand, we have seen in the previous subsection that we have the operator _ 

products (3.43). Thus we see that S(p) d evelops the same singularities near p and 7 as ~- - 
,c4. 

On higher genus surfaces, the bosonization prescription given in eq.(3.46) is no longer 

true if we interprete 4, e, q as independent free fields. However, if we define the operators 

end-&rough their operator product expansion(3.47), then the correlators involving products ;. 

of the operators e Q+, p and 7 are completely determined [63][64] via the stress tensor 

- method [65] [66] [67]. Th us comparing eqs.(3.47)and (3.43) we see that we may identify S(p) 

with e4 for calculation of any correlation function involving S(p). A similar identification 

may be made for the 0, 7 system. 

We should mention at this stage that the operator cd(z) develops a pole near TV 

due to the presence of a term proportional to b(w)7(w) in the ghost stress tensor. Thus 

we must define this operator product through a particular normal ordering prescription. 

We choose the prescription of [l] t o d fi e ne a BRST invariant normal ordering prescription. 

Namely, we define, 
_ ,_2. 

: e+TF :=Y(z) z {QB, l(z)} 

(3.48) 
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where QB is the BRST charge. Y(z) is BRST invariant, since Q& = 0. A justification 

for choosing this particular normal ordering prescription may be given by noting that, 
- 

formally, 

. ‘$P)G = W>[QB,P] = [&d(P)] (3.49) 

where H is the Heaviside step function. Thus the operator &(,f3)T~ is formally BRST 

invariant, and we preserve this feature in the regulated theory by defining it as in eq.(3.48). 

Comparing (3.48)and (3.49) we see that E may be identified with H(P) [6]. 

Finally, we see what happens when we further specialize the measure to the slice 

(2.42). This means qTZ+ = qTz- = 0. Then we have 

- &T$) = o (3.50) - 

and the integrand reduces to (n Y (z~)). If we choose complex coordinates to describe the 

moduli space, and take qZzE = qrZz = 0, only the zero-modes of the X-field do not split 

chirally. Since the correlator ,- 

(aXldX3)(dX2dX4) = W1 * (ImT)-l - CJ3W2 - (I?TLT)-l * 04 (3.51) - 

(where w are normalized abelian differentials and r is the period matrix on the riemann 

surface) is a positive measure in the limit p3 -+ ~1, p4 t ~2, we find that in this limit the 

path integral measure is positive semidefinite. More specifically if we choose a holomorphic 

slice it is a sum of absolute squares IAl2 + IB12. A s s h own in [ 111, for generic choices of 

points pr,p2 these semidefinite terms are in fact positive definite and thus appear to lead to 

a nonvanishing cosmological constant. We are now ready to begin rectifying this alarming 
_ _ .2. 

state of affairs. 

We have argued in the previous section that a holomorphic slice satisfying (2.42) 

connot even be defined by local patching if we only allow diffeomorphisms across the 
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patches of moduli space. If we insist upon using b-function gravitinos and a choice of the 

metric that gives qZZZ = qrZZ = 0, we must let the points qa move. So: 
- 

rliz + - - I aza,6(2)(u 7 Ua) 

where ug = (u(qa(t)),ii(q,(t))) is th e image of qa in the u coordinate system and $$ is 

computed with the prescription of section II. If the points qa move then (qi, B) will have 

terms proportional to <“(a = I.. .4), and the measure is no longer positive semidefinite. 

In fact, it may be shown to have the general form 

IAl + IB12 - ICI2 - lOI + Re(E) (3.53) 

where C,D,E are proportional to &f/dti. (3.53) is not positive, and, in the following ~- - 
sections we show that it is in fact a total divergence with zero boundary integral for 

appropriate spacetimes. (These include RI’.) On the other hand using reparametrization 

invariance we can always set dui/dti = 0 but this in general will lead to nonvanishing 

qzzi and qrZz. As we discussed in section II.C, if the holomorphy constraint is relaxed the 

integrand is not positive semidefinite, even if duf/dti = 0. 

;. 

4. The Vacuum Amplitude as an Exact Differential 

In this section we show that, for any genus and any tree level supersymmetry preserv- 

ing background the cosmological constant is the integral of a total divergence. 

As we have seen in the last section, after integration over the supermoduli our density 

on moduli space takes the compact form 

_ _ .2. 

[ 

49-4 

II( 
a=1 

?a + eJa 6) 6fj6(%, B)] (5 =o) 
i=l a 

(4.1) 

For the special choice of basis of the super-beltrami differentials given in (3.44) we can 

make this more explicit by noting that 
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(4.2) 
- 

i where Ja(ta-) stands for 4(Za)([(Za)), a = 1,.**,2g - 2, and $(Za)(E(Za)), u = 29 - 

. 1,m.m ,4g - 4. In deriving (4.2) we have assumed that ‘-$$ = 0.21 

A significant simplification of the algebra that follows can be accomplished by defining 

which-is to be considered as an operator on antisymmetric polynomials in (vi, b); where 

(qi,b) = (v~,B)(~~=~). Note that Dj is purely a book-keeping device, which, acting on 

; some expression, removes a factor of (vi, b) if it is present, otherwise annihilates it. For - 

- manipulations that we shall carry out below it is useful at this stage to note that this - 

operator satisfies the following simple properties 

1.) {D;, Dj} = 0 

2.) By definition, Dj ($$+, b) = 0, similarly, Dj (T,Ik, {QB, b}) = 0, where QB = f Jo 

is the BRST operator. (This is true for any other operator as well). Thus, trivially, 

[D;, ai] = {Di, QB} = 0, where dj = &. 

3.) Note also that the operator $ j, acting on polynomials in (vi, b) is equivalent to 

Cj(qjyT)Dj, since SBRST(V~,~) = (qi,T). S imilarily di acting on polynomials in (qj, b) 

is equivalent to ($$,b)Dj. (Th e implicit dependence of b on moduli is accounted for by 

an insertion of (qi,T) as we shall see below). 

With the above definitions and properties in mind the cosmological constant (3.45) is 

most conveniently written as 

- ,_T. 

49-4 6g-6 

D[XBC]e-So n (Pa + d;zfdpi”D;) n (r~i,b) 
a=1 i=l 

(4.4) 5 

21 Since in the remainder of the paper we do not make essential use of frame indices, 
we shall change to a more standard notation and adopt z as the coordinate system which 
we previously defined as it. In this notation z, is nothing other than vt(qa (t)). 
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If we explicitly evaluate the above correlator with the help of (5.30) and (5.31) below 

we shall find that the correlator has poles whenever za = Zb (a, b = 1,. . . ,2g - 2) (or a, b = 
- 

2g-l,*y4g-4) or when ti[S](C%!J” z’, - 2i) = 0 ( similarily when #[6](C~~~~-, z’, - _ 
i 

iL) = 0). 75-l - e condition ddetVa(Zb) # 0 discussed in section II, is precisely the condition 
. 

that ensures that the trajectory of qa(t) avoids these singularities. This can be readily seen 

from the bosonization formulae [68] [69] [70] [71] [72]. 

We are now ready to show that the measure is a total derivative in moduli. The 

argument has three parts. 

A: The “dilaton trick” 

We use the method introduced in [73] [74] t o calculate the vacuum amplitude in the 

heterotic string theory. We shall see here that this same method can be used to show that 
- - 

the measure (4.4) for the superstring is also a total derivative on the moduli space. 

Consider the following amplitude22 

s d2y(V) G (4.5) : 
C--{za> J 

d2y(~Xp(y)=‘(y)) 
C--{za) 2 

where ( ) stands for the functional integral as defined in (4.4). In this notation the cos- 

mological constant is just given by ( I ), with I the identity operator. As indicated the y 

integration runs over the riemann surface C excluding the points {za : a = 1,. . * 4g - 4) 

where the gravitino has support. 

The self contraction of V above gives ?TIS(Y). (Iuz~)-~ .i;j(y)d( I ), which upon integra- 

tion over y is just gd( I ) on a genus g surface, where d is the dimension of uncompactified 

space-time. If this were the only contribution to (4.5) then up to an overall numerical 

constant one would write the cosmological constant as 

49-4 6g-6 

dt’](dX(y)aX(y)) n (pa + dizfdpi”Di) n (vi, B) 

a=1 i=l 
(4.6) 

22 In our conventions throughout the rest of the paper, d2z = &dz A dz 2 $dzdy. 
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To ensure that (4.6) is true we must therefore verify that the contractions of V with 

the other fields in the measure (e.g. Y(za)) yield no contribution. Consider first the 

- contractions of V with Y,,Yb for a, b holomorphic indices (i.e. a, b = 1, ... ,2g - 2). Then 

the y-dependent terms are. of the form 

(dX(Y)dX(Za)) @X(Y)dX(zb)) = a,[ ( X(Y)dX(Za)) (dX(Y)dX(Za))] 
I I I I L I I I w 

The total derivative in (4.7) could contribute at the boundary of the y integation only if 

the correlator within the square brackets develops a singularity of the form (g - za)-l. It is 

not difficult to verify that no such singularity exists. Similarly, no contribution arises when 

a, b are both antiholomorphic indices. When a is holomorphic and b is antiholomorphic we 

find two contractions: 
- 

(dX(Y)dX(za)) (dX(Y)dX(zb)) + (ax(y) (dX(y)dX(za)) 
I I I I I I I I (4.8) 

The second term is nonsingular, and the integral over y gives 

-. 

The first term may be written as 

(4.9) 

(4.10) 

In this case the correlator involved possesses a simple pole in y at Bb. The boundary 

integral consequently has a contribution near y E Zb, given by the residue of the simple 

pole. More explicitly it is given by 

-dx( zb) ax( Za) - -TbJ(za) ’ (Im’T)-l * w(zb) 
I I (4.11) 

which exactly cancels the contribution (4.9). This establishes the validity of (4.6). 

B. SUSY contour deformation 
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The advantage of the representation (4.6) for the cosmological constant is that it 

enables us to express A as a contour integral of the right-handed space-time supersymmetry 
- 

current J, around some vertex operator: (A set up which, as we shall see, is very useful 

. for calculating A). More specifically, we shall proceed by rewriting (4.6) at this stage as 

where 

Jol(s) = e-f+i+S cx 

(4.12) 

(4.13) 

- 

(4.14) 

In this expression, S,, 57~ are four dimensional spin fields of positive and negative chirality 

and S* are the internal spin fields which exist if space-time supersymmetry in 4-d exists. 

(In the free case-uncompactified internal space- Ij* reduce to e*i(d’++2+43)/2 where 

4i are related to the internal fermions through standard bosonization lcli - eidi). Finally 

T$?(w) is the super partner of the world-sheet stress tensor of the internal theory. ( In flat 

space TF - ?,bidXi). Th e contour integral of J,(z) around the first term in (4.14) gives the 

required dXpaXp term after using the fact that (aX~8XY) - 6p”( ). The contour integral 

around the second and the third term in (4.14) on the other hand vanishes since Ja(z) is 

non-singular around these operators. These have been included in Va(y) in order to make it 
_ _ _T. 

a BRST invariant (up to total derivatives) vertex operator. It is important to emphasize 

that in writing (4.14) we took into consideration the fact that we shall be working on 

general string vacuua which possess at least the space-time supercurrents J, = e-f ,?+S, 

-. 
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and Jh = e-f ,$-S’h of positive and negative 4-dimensional chirality respectively. 23Ten 

dimensional flat space time is then viewed as a special case of this general vacuum setting. 
- 

i 
Substituting the expressions of J&(x) and Va(y) in (4.6) we may explicitly evaluate 

the relevant correlators as.functions of x, the argument of J,(Z). After summing over spin 

structures, the correlators may be shown to be periodic on the riemann surface as functions 

of x, and have a pole at x = y, as expected from the operator product expansion. If this 

were the only pole, then in (4.12) we would deform the x contour and shrink it to a point, 

thereby showing that the right hand side of (4.12) vanishes. From the operator product 

expansion of J, (z) with Y (Za) no singularities are expected at {za} and none are found by 

explicit calculation. However, as was first pointed out in ref. [6], the same kind of explicit 

calculations reveal that the supercurrent Ja(z) has in general spurious poles, i.e. poles . 

- not dictated by the operator product expansion. 241n the present case these poles occur at 7 

the zeros of the function f(x) = n, ti[&]($-- fZ + EiE<” Za - 2A) (see eq. (5.30)). Let 

us call this set of points {Q}. On a genus g 2 2 riemann surface there are 22g-2g such 

points -[ 731. A consequence of the presence of these spurious poles is that (4.12) can now 

be written as a sum of residues: 

A=- (4.15) 

where no sum over CY is implied. (We adopt this convention throughout the paper.) 

What we shall show next is that-the residues in (4.15) are total derivatives on the 

moduli space, following a treatment similar to the one used in [6]. To do that let us first 

consider a new correlator ( )’ which is defined in the same way as ( ), except that in eqn. 

(4.6) zr is replaced by some other point 51. Then (Ja(x)Va(y))’ as a function of x will 

have spurious poles at the zeros of f(x) = nIs G[S]($y’- +Z + 51 + Ci”,-,” z’, - 2L). Let -Z 
_ _ _T. 

23 Note that we are assuming the existence of only holomorphic supersymmetry cur- 
rent in the compactified theory. In other words, we only need the existence of N = 1 
supersymmetry. 

24 An interpretation of the origin of these poles has been given in ref. [73]. 
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us call these points {ri}. For a general 21, {TI} r~ {rot} = 0 and (Jor(x)V”(y))’ does not 

possess any poles near {rr}. Thus we may express the cosmological constant (4.15) equally 
- 

i well as 

. 

pb7-2g 

A = c d2y 
I=1 J f TI $+-ds)Vp(~)) - (J&)Vp(y))‘} 

C. Demonstration of total derivative 

Consider the path integral in (4.16). This may be written as, 

(4.16) 

- 

49-4 69-6 

(Yl - Yi + ai(tl - ti)Di) n (pa + di$aDi) I-J (qi,b) 
a#1 i=l 

(4.17) 

In (4.17) we have explicitly exhibited c(zo), I needed to soak up the E, f-zero modes 

in the reducible algebra. To calculate (4.17) we first notice that, by definition, 

y(zl> - Y(~I) = {QB, E(a) - t(G)} (4.18) . 

Although at this stage we can choose QB to be the BRST charge associated with the right 

handed ( holomorphic ) sector, for later convenience we shall take it to be the sum of the 

BRST charges associated with the right and left handed sectors. Expressing {QB, e(zr) - ~ 

_ _ - 
‘.--- ((51)) as a contour integral of the BRST current around the points zr and 21, we may -- 

deform the BRST contour and express the partition function as a sum of residues at the 

various poles of the BRST current. The poles of jB can be inferred from the following 
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commutation relations 

[QB 3 Y(Za)I =O 

{QB, ait( =aiY(Za) 

{QB, (vi, b)} =(q;IT) ‘- 

aso =- 
dti 

{QB, Ja(x)} =aZ(c(x)Ja(x)) 

(4.19) 

{QB?) =~,V:(Y) + &v;(y) 

where 

v;(y) = (E8XP + rd”)(r,ybF~ (4.20) - 

- with cb defined in eq. (4.14) and 
- 

V;(y) = (yp)aB3Xp(y) liliy{Y(w)c(y)e~fmcy)Sos,(y)} (4.21) 

After deforming the BRST contour and using the above relations for jB, we find that 

the expression for cosmological constant (4.17) takes the following form: ,. 

4g-4 69-6 

(El - Ci)xajiibDj n (pa +d;{aDi) n (qk,b) 

b#l a=2 
a#b 

k=l 

49-4 6g-6 

+ aj(El - ti)Dj n (pa + 8iiaDi) IJ (Qk,b) 
a=2 k=l 

49-4 6g-6 

+ ([I - ti)(C(Oj,T)Dj) n (pa + di{aDi) JJ (r]k,b) 

i a=2 k#j I 

+w2 

(4.22) 

where W2 is the residue of the BRST current at Va(y). From (4.19) this is a total 

derivative in y and y. In appendix C the explicit expression for W2 is exhibited. There we 
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also prove that W2 is a total derivative in the moduli. The residue of the BRST current at 

((~0) and ((~0) vanishes. This is due to the fact that nowhere in the resulting expression 
- 

does there exist any E factor that could be used to soak up the e zero mode and hence the 

residue vanishes identically by the e zero mode. An insertion of (vi, 2’) in the correlator 
. 

generates a factor of -s. Turning our attention to the rest of the terms in (4.22) we 

can use properties (l-3) of the Di listed above, and the identity 25 (&qk, b) = (dk?ji, b), 

to see that they all combine to form a total derivative on moduli space. More specifically 

the partition function in (4.22) can finally be written as: 

A=/6h6dtiC($kfj+$Fj) 
i=l i 

(4.23) 

- where Mj is the density - 

p9-2g 

Mj=- C DIXBC]e-So d2y 
I=1 J f 

II ~F(ro)Ek)~(;l)J,(x)v”(y) 

49-4 6g-6 

x Dj n (P(Za) + aii(z,)Di) l--J (qk, b, 

a=2 k=l 

(4.24) 

and Fj is the contribution of the residue of the BRST charge at V(y) and has been - 

calculated explicitly in Appendix C with the result: 

F’ =222X f s/D[XBC]F(zo)E(zl)E(;l)Ja(z) 
b=2 1 

71 (zb) 

49-4 6g-6 

Pa(Zb)Dj rl[ (P(Za) + aii(za)Di) n (qkyb) 
a=2 
afb 

k=l 

(4.25) z 

25 This identity is proved in appendix F. 
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with ?a = i(rP)““(~aXp + =yt,P)e%4b,$-Sb. In writing down (4.24) and (4.25) we have 

used the independence of the measure on zo to set ze = Zr. 
- 

i 
In going from (4.22) to (4.23) we had to pass & through vertex operators which have 

no explicit dependence on {ti} e.g. V*(y), Ja(x) and-E(zo). Nevertheless these operators . 

have an implicit dependence on {t} and hence further explanation is needed before we 

can arrive at (4.23). To b e more precise, the implicit dependence on {t} comes from the 

fact that the coordinate system which diagonalizes the metric ( and in which our vertex 

operators are exhibited ) is t dependent. Let z be the coordinate system that diagonalizes 

the metric at t and w that that diagonalizes it at a nearby point t + 6t in moduli. Consider 

., then a correlation function of a set of vertices (n,C V(Zk))t (for simplicity here V is a 

dim (0,O) operator). The net change in the correlator as we go from t to t + 6t is not 
- 

((& v(Zk))t+St - (nk V(Zk))t) but is given by: 

h(n V(Zk))t = (n v(Wk))t+6t - (n V(zk))t 
k k k 

(4.26) 

which involves explicit (t -+ t + bt) as well as implicit (Zk -+ Wk) change. In appendix F 

we show that the RHS of (4.26) is given by: 

- (bt’(?‘r, T) n V(Zk))t 
k 

(4.27) 

where T is the stress tensor on the world-sheet. This means that the insertion of the stress 

tensor in a correlator not only accounts for the explicit change in the moduli in a correlator 

but also encompasses the implicit moduli dependence of the vertices. Consequently one 

can pass the derivative with respect to the moduli through any operator that has only 

implicit moduli dependence within a given correlator. _ - _T. 
The equations (4.23) (4.24) and (4.25) can be given a more invariant form. One 

regards correlation functions with k insertions of b as k-forms on moduli space. Then 

- 

(4.23) is the statement that the measure is the exterior derivative of a 6g - 7 form. Notice 
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that no particular metric on moduli space is needed in making this assertion. It would be 

interesting to see if the differential form w defined by 

- p = dw (4.28) 

. where /..A is the measure, is a naturally defined form on moduli space. That w transforms 

as a 6g - 7-form is proven in appendix G. 

We can make the expression for the density Mj more explicit by carrying out the 

action of Di using the properties listed earlier. The answer is most conveniently expressed 

in a holomorphic coordinate system (t”, t”) for the moduli space with a holomorphic slice 

for the graviton, thus qzzz = vrzz = 0. Here we shall only exhibit the explicit form of the 

density Mj = (M,, MC : 2, z = 1,2,3) at g = 2. Similar concrete expressions can be worked 

’ out readily from (4.24) and (4.25) at arbitrary genus: 

;-,’ [Y(ra)F(rJ)Y(rr) fi (r/33) fi (f&d) 
3=1 
32’ 

3’=1 (4.29) 

- 

+y(zd (ii fi (w,b) ~(-)~+‘a&) fj (rjJ,6) + z3 t--) z4)l 
a'=1 J=l 3'=1 ' J 
I'#% f'f7 

and 
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where we have dropped terms that would vanish by (b, 6, c$, 4) ghost charge conservation. 

At g = 2 the terms Fj in (4.25) vanish by ghost charge. 
- 

To sum up, the above analysis shows that the partition function at arbitrary genus in 

arbitrary backgrounds preserving at least N = 1 four’dimensional supersymmetry can be 
. 

exhibited as a total derivative in the moduli of a definite correlation function. It is worth 

pointing out that a simple consequence of this is that the terms spoiling holomorphic fac- 

torization on moduli space due to Xp zero modes[15][16] [17] (which come from the part of 

the picture changing operator involving the matter supercurrent ) are always total deriva- 

tives: Those terms can always be written as correlators involving the full picture changing 

Th e earlier correlators are just ., operator minus correlators involving the ghost part of Y(z). 

total derivatives as we have seen while the latter do not spoil holomorphic factorization 
~- - 

on moduli space since the ghost determinants factorize as in section 3. However it is also 

important to keep in mind that the lack of holomorphic factorization due to the reasons 

discussed in detail in section 2 ( see in particular subsection G) still remains. 

In the next section we shall evaluate the total derivative at genus two in flat ten 

dimensional space as well as in general compactified vacua. 

5. Evaluation of Boundary Terms 

Of course, it does not suffice simply to show that the measure is a tota .l derivative. 

The real issue is whether or not the boundary terms contribute. In this section we analyse 

these boundary terms for the type II string at genus 2. We shall see that in flat space-time 

the boundary terms are indeed zero while on a compactified background, they yield, as 

they should, to a nonvanishing cosmological constant induced by Fayet-Iliopoulos D-terms _ - _T. 
(if any) arising in these compactified type II models. The anologous calculation for the 

heterotic string was carried out in ref. [73]. Th is section is divided into three subsections. 

In the first two we evaluate the boundary integrals by factorization and also by explicit 
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computation for strings in RIO using genus two &functions. In the last subsection we 

evaluate the boundary integrals for compactified strings using factorization. 

- Before proceeding with the calculations we must discuss two preliminaries. First we 

describe the-.reIevant boundary of moduli space and second we discuss the dependence of 

the path integral on the location of {za} where the gravitino has its support. 

In our analysis below we shall examine some correlators in the neighborhood of the 

boundaries of the moduli space. There are two boundaries of moduli space: Ao describes 

riemann surfaces where a nontrivial homology cycle shrinks to zero, leaving behind a torus 

with two marked points, and Al, describes riemann surfaces where a trivial homology cycle 

shrinks to zero, leaving behind two tori Tl and 7’2 joined at a node. A good parametrization 

of the neighborhood of both boundaries is given by the plumbing fixture variable t, with 

- t -+ 0 corresponding to the boundary. Here we shall recall some of the main features of 

this well-known parametrization. 

A family of riemann surfaces near the boundary Al of moduli space of a genus g 

riemann surface may be modelled by gluing an annulus A with modulus t onto two surfaces 

C1 of genus gr and C II of genus g-g1 at p oints pr , ~32. For a genus two surface, CI denotes a 

torus 7’1 with modular parameter rr and Cl1 a torus T2 with parameter 72. More precisely, - 

we may choose coordinate patches and local uniformizers: 

UI : {ullul < R} in CI 
(54 

UII : {vllvl < R} in C” 

for some finite R. Then we may identify the regions 

w2 < Iu-p1I <E+}CuI 

w2 <lv-pll<~~}Cu~l 

_ _ _2. with the annulus A (l$/1/2 < IwI < lfl--1/2) via 

t1/2 
w=- 

u - Pl 
15/l/2 < [WI < 1 

(5.2) 

(5.3) 
v - P2 

W=t’/2 1 < IWI < [f/-1/2 
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where E is an arbitrarily small but fixed real number. The final result is independent of 

E. In what follows we shall denote by Ti the surface ?“r with the region ]U - pr] < E$ 
- 

removed. Similarily Ti will denote the surface T2 with the region ]ZI - p2 ] < E+ removed. 

If we parametrize our. moduli space by the genus-two period matrix rii. Then in the 
. 

neighborhood of Al we have [75]: 

r= (::: :;;) = (; ;) +t(z ;) +0(P) (54 

(where QI is some known constant). So in a sufficiently small neighborhood around Ar we 

may choose as our moduli y = t, 711 = rr,722 = 72. 

The abelian differentials on the genus 2 surface to leading order in t can be taken to 

be 
- Wl - du 

w2 - t (u d2lpl)’ 
(5.5) 

on U, and 

Wl - t 
(v dvpzp (5.6) 

W2 - dv 

on UII. In terms of the w-coordinates we have 

Wl - t’/e! 
W2 

(5.7) 

w2 - t ‘12dw 

Finally we shall construct a set of beltrami differentials (qt, qrl, qTz) dual to the moduli 

(dt,drl,d r2 m ea in ) - 1 d’ g d or er as t -+ 0. One easy way to do that is to start from the following 

standard result [ 751: 
dTij - = 
atp s 

rlpwiwj (5.8) 
_ _ _T. 

and apply it to tP = (rr,r2,712 = at) with the period matrix as given in (5.4) and the 

abelian differentials listed above. This implies a set of equations on the dual beltrami 

differentials. Those equations can be solved by taking (qT1, vrz, qt) of the form: 
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(5.9) 

To leading order in t, the support of qr,, qr2 t is on T{ and Ti respectively while that of 

qt is on the annulus A. 

Now let us briefly consider Ao. If we shrink the nontrivial homology cycle al + 0 

then the abelian differentials wr , w2 are, to leading order in t[75]: 

- 

w1 -+ &dza,Zog fil(Z - Pl) 

fil(Z - P2) 

w2 -+ dz 
(5.10) - 

- 

for z away from the nodes pr, ~2. The period matrix r then becomes 

1 
Tll --f &?It 

s 

P2 

712 -+ dz 
Pl 

while 72 is the modular parameter of the remaining torus. Again we can apply (5.8) to - 

find the beltrami differentials corresponding to -& etc. In particular we must have 

11 d 
~t-C&Tl= 

/ 
WJJ:: 

We will take, for a fixed radius r, 

rlt - +‘d26(lz-pl[ -r)dz@ -& (5.11) 

One can write down qr12, qr2 so that we satisfy (5.8) to leading order in t. We will not GL _ _ _T. 
need the explicit expressions for these other beltrami differentials in our analysis. 

The second issue we have to clarify before starting is the dependence of the path 

integral on the location of the insertion points {za}. Using manipulations similar to those 
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in ref. [6][10], ‘t I may be shown that under a shift in the points za the integrand in (4.29) 

i 

- 
changes by a total derivative in the moduli space. Such total derivatives are not necessarily 

vanishing on the boundary Ai [lo]. I n other words, the final value of the path integral 

depends on -the choice of. points {za} at the boundary of moduli space. This is just a 
. 

manifestation of the fact that because of the integration ambiguity the path integral is not 

completely basis independent. We have to determine the correct behaviour of the basis of 

the superbeltrami differentials at the boundary of moduli space. For that one may invoke 

unitarity or BRST invariance. At genus two this seems to resolve the ambiguity. By 

generalizing the analysis given in ref. [lo] to the type II string it can be seen that the 

correct prescription at genus two for the choice of points {za} is to take the points zi and 

2s to coincide with pi and 22 and z4 to coincide with the point pa at the boundary Ai of 
- 

moduli space. 

There are several ways of implementing this constraint on the set {za : a = 1, - - - ,4}: 

For example, as the surface degenerates, one could first take zi and 2s E 7’: while z2 and 

z4 -E 7’;. Then after extracting the t behaviour of a given correlator, one would take the 

limits zi,zs -+ pi, and ~2~~4 -+ ~2. Alternatively one could take zr and zs (~2 and ~4) 

E UI(&I) with Ia-plI - Izl-pll - o(tf) (Iz4-p2[ - Iz2-p2/ - o(t+) ). consequently 

in the w coordinate we have to keep in mind that {w(za) : a = 1, - - - ,4} will have absolute 

value of order one. It is a matter of convenience which way we choose to implement the 

constraint in our calculations. In subsections A and C we will work with the first way 

while in B we adopt the latter. 

In order to evaluate the boundary term at t = 0, we must carefully determine the 

relative sign between the contributions from different spin structures. This is most easily 

done by introducing a pair of fields P+(z) = e-fS+S,(z) and-P-(w) = efS-Sol(w) in _ - _T. 
a given amplitude, and defining the original amplitude as a residue at the pole at z = w. 

By translating z along various homology cycles, we may interpolate between different 

spin structures and hence determine the relative phases between the contributions from 
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different spin structures [76][12]. This p rescription can always be implemented in the 

holomorphic sector which has a conserved supersymmetry current P+(z). In the case 

of uncompactified superstring theory, (or compactified theories which have a left handed 

supersymmetry current aswell) this prescription may also be used to determine the relative 

phases between different spin structures in the anti-holomorphic sector. Note that this 

procedure may be implemented at any stage during the calculation, before, or after taking 

the t + 0 limit. 

A. Evaluation of boundary terms through factorization.$at space 

We now evaluate the boundary terms in (4.29) assuming the factorization hypothesis 

for correlation functions of a conformal field theory near the boundary of moduli space. 

- 
First consider the behavior near A 0. Near the boundary the measure behaves like 

- 

(5.12) 

where P is a Laurent expansion in t, f and the ellipsis indicates terms suppressed by higher 

powers of Im 7. It follows that Mt and ME have similar expansions. We can only obtain 

nonzero boundary contributions from terms of the form 

(5.13) 

and this can only contribute for 0 > 0. By the physical factorization hypothesis the 

measure near the boundary can be expanded as 

ds 
s5 c 

(5m2e-+ (5.14) 

where 6m2 are one-loop mass corrections. A term with p > 0 -would correspond to the L _. - _T. 
propagation of a tachyon along the long handle. However as is well known the sum over spin 

structures on the genus two surface allows only states which survive the GSO projection 

to propagate along the handle. ( An explicit demonstration of how this happens will be 
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given in subsection B.) Thus we conclude that the only terms that occur in an expansion 

of Mt, Mf are the ones with ,f3 I: 0. As a result there is no boundary contribution at Ae. 

We now concentrate on Ar . In the region of that boundary we use the parametriza- 

tion described in detail above and analyse the correlators in (4.29) and (4.30) as t -+ 0. 

Furtheremore only derivatives with respect to t, t can contribute, so we need only consider 

&Mt + $MF. There can be boundary contributions only if, in an expansion in t, f near 

t = 0, Mt has a term - $ or ME has a term - $. We shall first examine Mt. 

Consider the first term in (4.29) given by 

- (5.15) : 

Y(z2)9(z3)y(z4)~(~1.b) fibr,‘) 

z#t f=l 

We only need to extract the i term in the neighborhood of Al. A quick way to analyse 
2. 

the behaviour of the correlator in (5:15) in this neighborhood is to use the factorization 

hypothesis. 

To implement factorization it is more convenient to transform further our coordinate 

system described by the annular coordinate w in (5.3) into the cylindrical coordinate w’: 

1 
W’= -1nw 

2lri 
(5.16) 

In these coordinates our genus two surface near Ai is degenerating into two tori Y’i and 

T2 connected by a long cylinder C. Writing t = e 2ris, the length of the cylinder is Im s 

and the twist in C is Re s. Using this picture and the beltrami differentials (5.9) we can L _ _ _T. -- 
see that in the t --+ 0 limit the expression 
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where ?& denotes the zero mode of the 6 ghost on the cylinder C (i.e. relative to the w’- 

coordinates where b = C, bneminw’ (dw’)2). Notice because of the support of v’s chosen 

- 
in (5.9) the ghost factors (qrl ‘6) and (~7~~6) will lie on 2’: and Ti respectively. 

In applying factorization we introduce a complete’set of states at the two boundaries of 

the cylinder and calculate the various correlators of these states with the operators on tori 

Tl and T2. Since inserting a state @ at the boundary of the disc defined by Iu - piI < E$ 

on Tl is equivalent to inserting an operator ~~*/~&~~fD(pl) on Tl and similarily for T2, 

and since the propagation of such a state on the cylinder gives a factor of ($)“a (:)“a, we 

get:26’ 

- (n o?) (zi”‘) j--J 2 
i j 

O$“‘(zj”‘) f&is b) fi (r/~, 6))g=2 
z#t f=l 

- tho8--l( r]: O,c”(zi(“)(~l, b)(fjl,b)@(pl))Tl (Ol@+boQIO), 
i 

(Q+(P2) n 03(2)(z~2))(~2’b)(q2’6))~~ 
j 

(5.18) 

where O!l)(z!l)) Ot2)( c2) 
2 z ’ 3 

zj ) are any set of operators which go to Tl and T2 respectively 

in the limit t + 0 and (h@, &,) = (h@, LQ) are the conformal dimensions of (Q, Q). Note 

that in order for (Ol@tboQIO)c t o b e nonvanishing <I, and Q must have the same conformal 

dimension. A simple consequence of the explicit t factor in (5.18) is that in order to get a 

contribution from Mt of order $, we need to find operators @, Q of conformal dimension 

(0’0) that have non-vanishing matrix elements in (5.18). 

For the matrix elements to be non-vanishing the operators Q, and Q must have appro- 

_ priate ghost factors so as to conserve the various ghost charges on Tl and T2 and on C. _ _T. 

We also need one factor of [ and c on each Ti and C in order to absorb the 6, c zero mode. 

26 In this section ( ) denotes an ordinary functional integral; (O(4)) = J[dqS]O(4)e-s(d) 
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This imposes severe constraints on the operators that could possibly go through. Let 

us first examine the constraints imposed by ghost charge conservation in the left-handed 

(anti-holomorphic) sector. Recall, in the process of factorizing (5.15) Y(zs) and Y(z4) will 

lie on Tl and 1’2 respectively. For definiteness we shall take zo to lie on Tl although the 

final result is independent of where it lies. Also since Ja(x) and Va(y) have no factors 

involving anti-holomorphic ghosts, they will not affect any of the anti-holomorphic ghost 

charges regardless of where they lie. Consequently to examine the constraints of the anti- 

holomorphic ghost charge conservation we need only consider the various factors in Y(z~) 

and the explicit 6 factors in (5.18). F or example, in calculating the matrix element on T2 

we need to consider the contribution from each individual term in Y(z4). An explicit ex- 
-- 

pression for Y(z) was given in (3.48). The term cat by ghost charge conservation requires 
- 

Qt(p2) to be of the form: 

Q+(Pz) =: F(P2)fT(P2) : U(P2) (5.19) 

where E is needed to absorb the E zero mode. U is an operator of dimension (0, -1) which 

is neutral under all anti-holomorphic ghost charges. It is not difficult to see that no such 

operator exists. As a matter of fact this analysis is true for the compactified theory as 

well, since it is based on the structure of the antiholomorphic ghost sector which is the 

same in all backgrounds. For the term proportional to a(e2Jzq) or @en46 in Y(z4) ghost 

charge conservation constrains $t(pz) to 

- 

-. 

-- 
Q+bz) = ~(P2)Wp2)e-26(P2)$(p2)d[(p2) f (p2) (5.20) 

where f is an operator of dimension (0’0) and is neutral under the anti-holomorphic ghost 

charges. It is therefore independent of the antiholomorphic ghosts. The conjugate of this 
c 

_ _2. operator is ~qf where again f” is ghost independent. However a state of this form cannot -- 

propagate on the cylinder because of the 6 zero mode. More precisely 

bocjif”l0) = 0 (5.21) 
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since E(O)]O) = ~l]0) and &IO) = 0 ( I n our convention (O]E~E~E-~]O)C = 1). As a result 

the net contribution from this term also vanishes. Note that this argument is also equally 

- 
true for the compactified theory. 

At this--stage we are left with the term in Y(Q) “proportinal to e$(z4)!@atter (zq). In 
. 

flat space this is given by e6?$Patter = ei$‘8Xp and the operator which may contribute 

to the matrix element on the torus T2 must have the form: 

Q+(P2) = F(p2)C(p2)e-6(P2)$V(p2) x 0 (5.22) 

where 0 is an operator of dimension (0,O) from the holomorphic sector. The relevant 

. . correlator involving $p and B,r fields may be calculated and the sum over spin structures 

of the anti-holomorphic sector performed-we find - 

6[62](24 - p2)(29[b2](0))4 

fl[b2] (z4 - p2) 
(5.23) 

( In i(5.23) * denotes complex conjugation.) E[&] E E[::] may be determined to be 

exp(2ni(a2 + b2)) using the interpolating spin field method, as explained earlier in this 

section. As a result (5.23) vanishes by a riemann G-identity ( for a reference on &functions 

and the riemann identities see [77][75].) This proves that M,(l) yields no boundary contri- 

bution. 

Let us next analyse the second term in (4.29). One of the relevant terms is 

with another term where zs and z4 are interchanged. Now factorization-of the antiholo- 

_ _ _z. morphic sector leads to 

Mj2) - t’“” 
(t(zo)(a(~e2”@ + ese2”6)(z3)(ii1,6)m(pl))T1 (mt(p2)(~)~~(Z4)(12,~))~~ 

(5.2;) 
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where we have applied charge conservation on the g = 2 surface to drop irrelevant terms in 

y (~3). For convenience we have also dropped operators involving Xp and all holomorphic 
- 

fields since they do not affect our discussion. From this we find that 
.’ 

. @(PI) = S3Ee-24f3@J (5.26) 

where U is a (0, -1) operator which is ghost charge neutral in the antiholomorphic sector. 

Again no such operator exists. This is also true for arbitrary backgrounds. The same 

analysis applies to the term with zs and z4 interchanged, leading to the same conclusion. 

In analysing the terms in Mt proportional to % we should keep in mind that s -+ 0 

in the t --+ 0 limit, since z, -+ pa. However, since we are taking the z, -+ p, limit after 

t -+ 0 limit, one might wonder if there is any subtlety in setting % to be zero from the 
- 

beginning. For example, Mt may give divergent boundary contribution in the t --+ 0 limit 

before setting za = p;, and then the limit will not be well defined. Here we shall show that 

such things do not happen. Since it makes sense to take zi and zs to be independent of 

72 -even before we set zi = zs = ~1, we shall only discuss terms proportional to 2 for 1. 
a = 1,3, and 2 for a = 2’4. Th en, for example, the term in Mt proportional to z is 

- given by an expression analogous to (5.24) with a, replaced by dr2, and (~2,s) replaced 

by (fd). F ac t orization in the antiholomorphic sector gives the following expression, 

where . . . denotes terms not relevent for our analysis. In order to get a non-vanishing 

boundary contribution Qt must have antiholomorphic conformal dimension zero or less. 

But in order to soak up all the ghost zero modes on T2 we need Qt to contain an operator : 

bcvc :, which already has conformal dimension two, which is too high. Hence the boundary G _ _ _z. 
contribution vanishes identically. An identical analysis may be carried out for the terms 

involving s by looking at the correlator on the torus Tl. This argument also is valid for 

arbitrary backgrounds. 
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i 

Finally we can analyse the terms in (4.30) in a similar fashion. This time we have to 

look for t singularities. One can either look at the holomorphic sector and demonstrate 

- that such a singularity does not exist, or, equally well, one can analyse the antiholomorphic 

dependence and try to isolate potential O((q’) terms. It is easier to do the latter. In 

this case after factorization the antiholomorphic correlator is the same as that in (5.25). 

We are now interested in operators with K Q = 0, so the operators of interest have the 

form @((PI) = z8ze-2J8t0 h w ere 0 is an operator of dimension (0,O) and contains no 

antiholomorphic fields. Thus @+ = E : cv : 0 +,27and since 0 contains no antiholomorphic 

fields the left-moving correlator on T2 is (: c?i : (P~)~~(z~))(E(JI) (r/2,6)). The correlator 

of the anticommuting ghosts is nonsingular and the remaining correlator can be evaluated 

” by standard techniques (see subsection B below for more details on the derivation of this.) 

We find - - 

(5.28) 

which is certainly not zero. However, implementing the node prescription z4 --+ p2 and 

using;the riemann identities and their derivatives we obtain zero. The term with 2s t--) z4 

can be handled similarly. 
1. 

This completes our proof of the vanishing of the genus two boundary terms for the - 

type II superstring in flat RIO and hence establishes the vanishing of the cosmological 

constant in that background. We now confirm these arguments by explicit calculation. In 

subsection C we will again use factorization arguments, but in arbitrary backgrounds. 

B. Evaluation of boundary terms by explicit calculation: R1’ 

We now return to the formulae (4.29) and (4.30) for the total derivative and examine 

through explicit calculations at genus two the behaviour of the correlators near the bound- 

ary. We shall start with Al. Again we need only consider &Mt + $M?. Consider first -G 
_ - _Y. 

27 In this case O+ denotes conjugation in a hilbert space without the antiholomorphic 
ghost fields. In subsequent analysis + will sometimes stand for conjugation without anti- 
holomorphic and/or holomorphic ghost fields. The precise meaning should be clear from 
the context. 
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Mt. The correlator involving the antiholomorphic fields can be written (after applying 

ghost charge conservation ) as a sum of three terms: 

i 
r;/r, ~A(~(zo)e~ei4)(~~(z3)~1/(z4))(~X~(z3)~XV(z4)~...)((ijt,~)(ql,6)(ij2,6)) 

. 

-!j! (f(zo)c8F(z3)(&je2+b + a(~e2Jb))(z4)(77t,~)(G1,~)(f72,6)) + z3 ++ z4 
[ 1 (5.29) 

-z (t(z0)(8qe246+ 8(~e2m6))(z4)8~(z3)~~j((751,~)(42,~)) +Z3 ++ Z4] 
[ 

: where A, B and C are correlators involving the holomorphic fields. They can be exhibited 

explicitly from equation (4.29). However since we are here only concerned in isolating the _ - 

$ behaviour of Mt we will not need the explicit formulae for A, B and C. Furthermore in 

(5.29) the ellipsis .. . signifies insertions of X matter fields from the holomorphic sector. 

Again we will not need to know explicitly what they are since they will not affect the $ 

dependence. 

We now examine the terms in (5.29) more closely: 

1. 

1.) Consider the first term in (5.29). All correlators can be evaluated explicitly. More 

precisely the relevant correlators can be read off from the following general formulae: 

e4id(zi) (dzi)-4i(qi+2)/2) = 

i=l 
(5.30) 

(2 b(xi)(dxi)2 fi c(yj)(dyj)-‘) =Z;‘29(C Zi - C 6 - 3A) 
i=l j=l 

ni<j E(xi,xj) IJi<j E(Yi, Yj> ni a3(xi) (5.31) 

ni,j E(xi, Yj) Ilj O3 (Yj) 
-kz 

1 

where 2F2 is the determinant of a chiral scalar and o is the g/2-differential with no 

zeros or poles [75] . B ecause of ghost charge conservation we have xy=, qi = 2g - 2 and 
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IV1 - N2 = 3(g - 1) for g 2 2. Equation (5.30) can be derived for arbitrary qi ( integral 

as well as half integral) by applying the stress tensor method. More precisely one first 
- 

constructs the greens function 
i 

. 
G(x) y; zi) G (P(x)r(~) IX& eqidczi)) 

(nr=, eqi4Czi)) 
(5.32) 

from the knowledge of its analytic properties and (quasi)-periodicity as a function of x and 

from the fact that the residue of the simple pole at x = y has to be normalized to one. 

From G one can construct T(z; Zi) E (T(z) n:, eqi@(“i))/((fl eqi$(zi))), where T(z) is the 

stress tensor for the superconformal ghosts. First order integrable differential equations 

for the correlator of interest in all the zi variables then can be derived by isolating the 

- 
simple poles in T(z;zi) as z --+ zi. The final result can be integrated to give (5.30). For 

the special case where all the qi are integral this procedure is not needed since one can 

derive (5.30) by requiring the right zeros and poles and the correct (quasi)-periodicities for 

-$qi(qi + 2) differentials. ( For half integral qi the correlator is not even quasi-periodic 

but transforms into correlators in other spin structures). Equation (5.30) agrees with a 

special case of a general formula given in ref. [6]. 

The correlator in (5.31) can be derived similarily through analyticity and period- 

icity contraints. Alternatively it can be read off from the bosonization formulae of 

PI PI w4 Pll WI * 
To exhibit the behaviour of the first term in (5.29) near Al we also need to use the 

following standard degeneration formulae at genus 2: Let x E Ti, y E Ti and w E A, then: 

28 

_ 

_ _T. 

28 E is a (-l/2, -l/2) f orm. When we write E(x, p) we mean the (-l/2,0) form obtained 

by choosing the coordinate system u near p defined in (5.3) and evaluating the second 

argument in that coordinate system. The coordinate dependence of t and w guarantees 

that the whole expression is coordinate independent, as it must be. 
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E(x,w) -+ -El(x,pl)wt-:(dw)-i 

E(y,w) + E2(y,p2)t-+(d&)-+ 

E(x,Y) -+ El(x,pl)Ez(pz,y)t-+ 

E(wl,wz) -+ (WI - w2)(dw1)-+(dw2)-i 

(dx) + 

a(x) --+ (El &PI)) 

a(w) -+ w-l 

(5.33) 

and 
- - 

S[b](C n;(l) LZi+i + C ni2)cj + C  T?,j3)tiij - mz) ---+ 

i i j 

ti[6](C n!‘)x; - 
i 

C ni’)pl - y (1 + 7))19[6](x ?2i2)yi - C ni2)p2 - T(l + 7)) 
i i i 

(5.34) +. 

For a derivation of these formulae see [75] [70]. 

Thus up to some irrelevant determinants and numerical factors ( independent of E) it 

is easy to see that the first term in (5.29) behaves as 

(5.35) - 

We must estimate 

_ 

where t denotes complex conjugation. 

the sum over spin-structures. Recall first that 2A + 2p where 

(From the point of view of the g = 2 surface these are the same -: 

) and the fact that zs,z4 must approach the node we have -- 

p = pl,p2 is the node. 

_ eX- point.) Next, from (5.7 

El = I(z3 - z4) = 0 p2 (w3 - w4)) 

c2 = I(z3 + z4 - 2A) = 0 (t1’2 (~3 + ~4)) 

(5.36) 
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where I : Pica + Jac is the Abel map. Since we only sum over even spin structures 

- O[a](& - 24) = O[OL](O) + $["(jSij[OJ](O) + O(i?) (5.37) 

and similarly for the other argument. Finally, from the riemann identities we learn that 
. 

c E[Q]f+k!](O) = 0 

C E[a]fiij[a](0)293[a](O) = 0 

(5.38) 

From these facts it follows that the spin structure sum is 0 (t”), so there cannot be a pole 

inf. . 

2.) The second term in (5.29) can be written 

- 
(35 z;@z4(2g- + - 

-- 

1” 5 
&) [((751,~)(a2,~)~(z3)b(Zq))(FoaS(Z3)77(z5)e2~(z4))l (5.39) 

plus a term with zs ++ ~4. Here Z1j2 is 

(5.31) we learn that the behaviour of the 

the partition function of a weyl fermion. From 

reparametrization ghost correlator, as t --+ 0, is 

(5.40) 1. 

up to irrelevant factors. In exhibiting the C dependence in (5.40) we have used the w 

coordinate system for zs, z4 and zs and the fact that wg - w4 - ws - 0 (1). Note that 

the final answer does not depend on which coordinate system we use to carry out the 

calculation since Y(z) is a conformal field of weight zero. The individual terms in Y(z) 

(In particular dve24b and a(qe2@b)). are not conformal fields. However their sum, which 

is what appears in (3.48) , is a conformal field. 

The superghost correlator is more conveniently handled in the ,B,r system. We first 

notice that, 
_ , _T_ 

(F(Z0)L3~(z3)75(z5)e24cz4)) 

= lim lim (zk - z5) 
z;+zg z;+13 

-l(zi _ z3)-l (~(z3)~(z5)e6(zS)e-~(z~)e2~(z4)) 

(5.41) 
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Using (quasi)periodicity and analyticity and eq. (5.30) we find 

- 

i i=l 

I- 1 . = 
( - 

S[cY](,c ij+ Cq& - 2Li) 

E(z, w) ti2[O!](C QiZi - 25) 
* 

(5.42) 

Taking the limit indicated in (5.41) on the relevant correlator in (5.42) we finally arrive at 

We can now proceed with an argument similar to that used in the matter case. We must 

evaluate the right hand side of (5.43) in the w coordinate system since the reparametriza- 

tion ghost correlator has been calculated in this system. The divisors in (5.43) give vectors 

of O(t1/2) in the jacobian. Once more (5.38) h s ows that the spin structure sum is 0 (t”), 

so there is no pole. These remarks are unchanged if we exchange zs for ~4. 

3.) The last term in (5.29) can be handled similarly to the second. The ghost correlator 

is now only O(t’-l). The superghost correlator is once more (5.43) and hence O(P), so 

there is no pole. 

Finally, we consider ME and look for a term - t ’ in an expansion in t, t. Rather than 

showing that no such pole arises from the correlators of the holomorphic fields we once 

again look at the correlators of the antiholomorphic fields: 2g 
-mc 

-_ 
(‘i(Zo)(rll,T;)(~2,b)d~(z3)(arle2~b + d(qe2+b(z4)))) (5.44) -- 

2g Our findings here are independent of the behaviour of %, % since the latter can 

never worsen the power of divengence in t. 
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plus a term with zs and z4 interchanged. The ghost correlator has order 0 (l/o while the 

superghost correlator is once again (5.43) and hence O(P). Therefore, the expansion in f 

- begins at t. Hence there is no term - f . 

. 
We next turn our attention to the boundary integral on Ao. As we have discussed at 

the beginning of subsection A the only dangerous terms are of the form (5.13). To see if 

such terms arise we must evaluate the correlators as t --+ 0. 

From the above description of the abelian differentials we see that 

E(XYY) + ‘l~~~o)y) (dx)-1/2(dy)-1/2 
1 

., in the limit t + 0, as long as x, y are not near the nodes. In particular the limiting behavior 

of the prime form involves no powers of t. Similarly, a(x), while complicated, involves no 
- 

factors of t as long as x is not near the node. On the other hand, in the formula for the 

vector of riemann constants [77] , 

&=-y+Ck (5.45) 

- 

-. 

ck is a vector which has a finite limit as t + 0, but Al - -3 --+ -ice. Thus, in the 

bosonization formula for the chiral scalar determinant 

~3/2 = d(c zi - w - A) n E(zi,Zj) n a(%) 
1 detwi(zj) I’I E(zi, w> O(W) 

(5.46) _ 

as long as zi are not near the nodes we may estimate the t dependence by setting D = 

C zi - w, a fixed divisor, and evaluating 

c ei7rn~~~+2ninI (Dl -A,)+... 

n1,n2 c 

- ,_T. 
= imaTr1 + ninlrl + 721 c 

In wi - Pl)wJ - P2) + . . . 

i h(Zi - P2)&(W - p1) (5.47) -- 



Here [$ is the vector in the jacobian for the divisor D. The explicit factors of zi come 

from the non-vanishing component of wr on T2. Thus we see that as t -+ 0 21 - 0 (1)) i.e. 

c 

- 
acquires no powers of t. Relating the scalar determinant to the chiral scalar determinant 

in the usual way leads to a factor of . 

(det:mi)s = (ImL2)5 (lag/:/-1)5 + ” ’ 

We now turn to the fermionic ghost correlators. The beltrami differentials chosen 

above have support at a bounded distance from the node. Thus, in computing b, c corre- 

lators the insertion points of the operators forms a divisor D = C rnizi with support a 

’ bounded distance from the node, and, by the bosonization formulae the correlator behaves - 

(5.48) 

as t --+ 0. Combining this with the dependence qt - t-l above we reproduce the famous 

te2 pole of the bosonic string [47]. 

We now consider the superconformal ghost system for an even spin structure 6 = 

[t: ::I. From the bosonization formula for the superconformal ghost correlator [6] we see 

that we must estimate 

_ . ..-- 
-- Again D is a divisor determined by the insertion points of the fields I, 7, eq’#‘. The bosoniza- 

tion formula involves one more theta function in the denominator than in the numerator 

so the contribution of the superconformal ghosts will be the inverse of the powers in (5.49). 
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Finally, we consider 

A so they behave like 

the correlator of the fermionic matter fields. These do not involve 

Combining this with the above estimates we see that the leading order singularity in the 

Neveu-Schwarz sector (al = 0) is 

-- (h&)5 t3:2 $2 
(5.51) 

- 
reproducing the well-known result that the Neveu-Schwarz tachyon has a value of m2 which 7 

is half that of the bosonic string tachyon. Moreover, we see that in the Ramond sector, 

where al = l/2, only massless particles can propagate, as expected. 

%Ve can now explain how the dangerous terms behaving like (5.51) cancel. As has 

already been pointed out, the relative sign between the contribution from different spin 

structures may be determined by inserting a pair of spin fields P+(z) and P-(W) in the 

correlator, and dragging z around various homology cycles. In this case we want to compare 

the contributions from al = O,bl = 0 and al = O,bl = $ sectors. This may be done by 

taking z and w on 7’2, and dragging z around the node pr or pp. By examining the relevant 

correlator we can see that as a function of z it has a square root branch point at pr and ~2, 

. 

due to the l-Ii factor in (5.49). A s a result, the relative contribution from 

the spin structures al = 0,bl = 0 and al = O,bl = i has opposite signs and they cancel 4 
_ . _ - 

‘.--- after the sum over spin structures is performed. It is worth remarking that our discussion 

of Ao applies at arbitrary genus with only small modifications. 

This completes our proof that the boundary terms are indeed zero. 
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C. Evaluation of boundary terms through factorization: arbitrary backgrounds30 

- In the above demonstration of the vanishing of the cosmological constant in flat space, 

it was sufficient to examine the behaviour of the antiholomorphic sector. In arbitrary 
. 

backgrounds this is not expected to be the case. The reason for this is that by assumption 

we are considering backgrounds which preserve only N = 1 supersymmetry. In our case 

the space-time supersymmetry comes from a right-handed current J,(Z). Since many 

correlators are expected to vanish as a consequence of supersymmetry non-renormalization 

theorems, we don’t expect to arrive at definite results before analysing the holomorphic 

. . sector. Another thing we shall bear in mind in our arbitrary background calculations is 

- that the matter sector is now an interacting theory where left and right movers are coupled - 

in a non-trivial fashion above and beyond their coupling through zero modes. 

We shall start by writing down the densities Mt and ME that need to be considered. 

As- w&s shown in subsection A the only terms in (4.29) and (4.30) that apriori have the 

potential of contributing are given by: 

M,(l) = k( /- d2y j6 , \ ~E(il)E(Zl)~~(~)V’(Y)(lll,b)(oz,b) 

-, 

(5.52) 

3o We would like to emphasize at this point that although we use factorization to 
study the behaviour of various correlators near the boundary of moduli space, the ghost 
correlator on g = 2 surface may be computed explicitly in terms of theta functions and G _ _ - 

‘.--- the limit t + 0 of this correlator may be taken. It is only for the interacting part of the -- 
theory involving matter fields that one needs to use the factorization hypothesis. This 
was the procedure adopted in ref. [73] in the calculation of the heterotic string two loop 
cosmological constant. 
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and 
Mf = A$” + M”’ + M;“’ 

. X Y(zzj(rll,b)(92,b)[P(z3)atF(z4)(fS1,6)(q2,6)+ z3 t+ a] (5.53) 

+ Y(~2)(rll,b)(rlt,b)Y(zs)d,~(z4)(ql,~)(q2,~) 

+ Y(z2)(st,b)(~2rb)y(z4)ar~F(l.)(~l,~)(r71,6))) 

Recal! that in arriving at this conclusion in section A we have utilized properties of the 

ghost system which are valid in arbitrary backgrounds. 

When we calculate (5.52) and (5.53) we must integrate over y and sum over contour 

integrals in x around the poles q(y). Wh - en we consider these expressions on a surface 

which has degenerated into tori 2’1 and 2’2, there are therefore four distinct terms we must 

consider: 

1 : a : Y E E, re(Y) E Z 

1. b : y E TI, q(y) E T2 

2 - a : y E T2, re(y) E Tl 

2 - b : y E 2’2, re(y) E 2’2 

To see that all cases occur recall that the spurious poles {re(y)} are the zeros of 

the function f(x) = jj6 6[6](+; - +Z + xi=, z’, - 2d) where the product runs over all 

spin structures 31. using the fOrI-I-lUh 28,(X)ti,(X)d,(X)ti,(X) = ~,(~X)~,(~)~,(~)~,(~) for 

g = 1 theta f unctions we see that if y E Tr, then in the limit t + 0 

f(x) + +h(Y - X + 221 - 2PllQ?3(~1) fI &&2 - 472) x E Tl 
a=1 

---,._ f(x) + fi t9&y + Zl - $+1)gh(-2 + 222 - P2172)V3(T2) x E 572 

- 

(5.54) & 

31 We are not asserting that all the zeros lead to poles of correlation functions, only that 
the poles of correlation functions lie in this set. 
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i 

Hence, for y E Tr, of the eight zeros {q(y)}, f our degenerate to rl(y) = y + 221 - 2pl on 

2’1 and four degenerate to q(y) = 2 zz - pa on 7’2. Similar considerations hold for y E 2’2. 
- Thus we must consider all four cases. 

The number of cases -listed above can be cut by half by observing that (5.52) and 

(5.53) possess a zr t+ z2 symmetry. To prove this we consider the holomorphic part of 

(5.52) and (5.53) ( f or a fixed value of y) which is essentially the same for both and is given 

by: 

I- (5.55) 

for some z and 3 (z # 3)) w h ere the ellipsis denotes suppressed operators which are irrelevant 

for the present argument. We shall continue to use this notation throughout this section. 

At this stage we can replace Va(y) by 
- 

P”(y) = Va(y) + a(CEe-~/24-SBBX~(r~)uB) (5.56) 

without changing the answer: The added term has the wrong ghost charge. Fa(y) satisfies 

[QiP(Y,l = 0 point by point in y, where QB is the right-handed B&ST charge. We 

can then write Y(z2) = f &~BRsT(~)E(z~) and d e f orm the BRST contour away from zz 

and attempt to shrink it to zero. In doing so we pick up the residues at the poles of the 

BRST current at the various other vertex insertions. The pole at 21 does not contribute 

since the resulting correlator as a function of x has no poles at q(y). The residue at (vr, b) 

on the other hand vanishes by ghost charge conservation. Finally the pole at [(zr) yields 

Y(zr). This means that (5.55) becomes 

(5.57) 

where at this stage we have dropped the term in ? with the wrong ghost charge. This - ,_2. 
establishes the desired symmetry. 

We should also notice that the correlator in (5.52) and (5.53) is independent of ,Zr: 

For the x-integration in these expressions to be nonvanishing the poles in the correlator 
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have to occur at Q(Y) and not at r;(y). The latter happens if c(,Zr) soaks up the e-zero 

mode and hence no dependence on 21 survives. 
- 

The zr * z2 symmetry and the independence of the correlator on Zr implies a Tr t) 2’2 
i 

symmetry in factorization. This is clearly the case s’ince the only information about 7’1 . 

and T2 is contained in where zr Er and z2 lie in the degeneration limit. This symmetry 

relates case 2 . a to 1 s b and 2 . b to 1 . a listed above. From now on we only concentrate 

on 1. a and 1. b. 

By examining the- holomorphic structure in (5.52) and (5.53) we see that there are 

two kinds of terms which satisfy ghost charge conservation at g = 2: 

- I : (Jcl(x)V”~~(Y)E(zl)E(~l)(e~TF)(z2)(rlr,b)(r13,b) -) 

where -Va~g and Vapi are the parts of the dilatino vertex operator with $ and $ +-ghost 

charge respectively. More precisely these are given by: 

(5.58) 

(5.59) 

In writing down (5.59) we have dropped the term e2 Sb limcu-+Z((w - z)~~~~(w),$-(z) % 

in (4.14). This term does not contribute since it has the wrong charge under the U(1) of 

the (2,0) superconformal algebra [78][79][80][81]. ( Recall the U(1) charge of S* is &c 

while TF = T$ + TF has charges +l and -1 respectively.) . 
- ,_2. 

We are now ready to examine (5.52) and (5.53) f ac t orized according to configuration 

- 

1.a and 1.b and using cases I and II. To facilitate this rather lengthy analysis we have 

summarized the result of factorization of all the possible configurations in table (1). 
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- 

; 

. 
I.1.6 I-l.6 II . 1 . :a II.1.b 

V:;z E Tl V:;z E T2 Vb;z E Tl Vf;z~ T2 

,hf,(‘) @(pl) = (c&e-~&P) @(PI) = (c~Yce-~~i+S~~) @(PI) = c : q[ : D-Terms 

N.P. + S.S. N.P. N.P. + S.S. 
I 1  

Ml’) @(pl) = (ci?ce-~[$~) @(PI) = (c&e-S6SBS-~) 
1 

t @(PI) = c : rl[ : @(PI) = (ce-Z4S+S,) 

I D.C. 
I I D.C. D.C. I D.C. 

I I 

,1P) t *+(pz) =: bc : e-0 \k+(p2) =: bc : e-fb Q’t(P2) = (cc -2”a() 9+(p2) = [e-$dcf?-sY 

1 . D.C. 1 D.C. I N.P. I N.P. +S.S. 

MJ3) *+(p,) = (ce-#tjp) ‘0 
t @(PI) = et?-4G+sa @(pl) =: bc : @(PI) =: bc : e-3 

N.P. + S.S. N.P. D.C. D.C. 

- Table 1: Cases in the factorization analysis 

In this table we identify for every configuration the ghost factors that the operator 

Q(pr) (or ‘kt(p2)) going through the neck must have in order for the resulting matrix ele- 

ments on TI and 2’2 be nonvanishing. This entails a definite lower bound on the dimension 

of @. Recall however that for ME to yield any contribution on the boundary it has to behave 

like - t-l(f)’ near Al. For Mt on the other hand we need - (f)-ltO. Consequently for a 

given configuration to contribute we have to find an operator of the relevant ghost charge 

and the relevant dimension. In some cases an operator satisfying these two constraints 

does not exist. Consequently these configurations will yield vanishing contribution purely 

by dimension count. We denote these cases in the table by D.C.. In other cases there exist 

operators which could contribute. In many cases however the resulting matrix element 

vanishes by sum over spin structures in the holomorphic sector on Tl or T2 or when we 

implement the node prescription discussed above (~2 + ~2, z1 + ~1). These cases are 

_ _ .T. denoted in the table by S.S. and/or N.P. respectively. In some configurations U(1) charge 

conservation implies the vanishing of the resulting matrix element. One way or another 

(see below) all configurations can be proven to be vanishing with the exception of one case 

where we find that the resulting matrix element is nothing other than the square of the 

-. 
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Fayet-Iliopoulos D-term. In what follows we shall present the details of the calculation for 

every entry in table (1). We present all the cases for completeness. The reader who trusts 
- 

our results can skip over most of them. However there are cases where we feel that the 

analysis is instructive. Those we have marked by **. ‘- . 
We shall start the analysis with Mi”. In this case we need to look for @  of holomorphic 

dimension ha = -1 with the correct ghost charge. 

Mil).I.l.a t 

By ghost charge conservation and from the structure of the free spin field correlator, 

we find that Q(pr) must be 

- @(PI) = (c&e -wJP) x WPl) 

where O“(pl) is any operator free of holomorphic ghosts with 

necessarily and no operator of the required dimension exists. 

j@).I.l.b t 

In this caseas 

@(Pi) = (cace-~4SaS+()(pl) x O(pl) 

ha 2 0 + no contribution. 

**Mi’)-II-l-a t 

(ho 2 O)32. So ha 2 o 

32 In this subsection 0 will stand for an operator neutral under all holomorphic ghost 
charges having the appropriate structure and dimension in the antiholomorphic sector. We 
shall not exihibit its antiholomorphic part unless our arguments require it. Furthermore 

- -2. since it is free of holomorphic ghosts it necessarily has ho 2 0. . 
33 Note that we are being slightly sloppy here since instead of having an explicit factor 

of ,!$+ in Q we could have taken an operator 0 which has the required U(1) charge (3/2). 
The important point here is that any such operator must have holomorphic conformal 
dimension 2 3/8 ( see discussion right after eq. (5.65)). 

- 
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The ghost structure now requires 

- Q(Pl) = C(Pl) 

i 

: rl(Pl)E(Pl) : x0 

. This needs some explanation. The reason a factor of’-vt is necessary is that in order for 

the residue of the Jar(x) at q(y) t o b e nonvanishing there should be another factor of e in 

the correlator in addition to E(zr) t o soak up the E-zero mode. By E, r] charge conservation 

however we then need another factor of Q. Now ha 2 0 + no contribution. 

j&) . II. 1. b .i! 

Here 

@ (Pi) = (ce++S+S&.b) x o(pl) 

- 
again ho 2 0. 

This completes the second row in table 1. Next we turn our attention to the more 

delicate configurations in the first row. Now we are factorizing Mt and a dimension zero 

operator of the correct ghost charge is needed. 

@(PI) = (c~ce-%F)(p~) x 0 

this could lead to a contribution if ho -= 0. On T2 the corresponding operator is KP(p2) = 

(ce-‘#W‘) (m) o’(p ) 2 w h ere 0’ is some conjugate antiholomorphic operator with hot = 0. 

Consider now the resulting correlator on T2. 

- (E(kl)(e~TF)(z2)(r/2,b)(ce-d~~)(p2)O’(p2) -> (5.60) 5 

AS explained earlier we have to take z2 + ~2. We therefore examine the correlator in that 

limit. In this limit the singularities are dictated solely by the operator product expansion. 

( In principle we should be more careful in the sector with periodic-periodic boundary 
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conditions on the p, 7 fields since (e-+(p2)e+(a2)) h as a spurious (6r(z2 - ~2))~~ type 

singularity. However the contribution from this sector may be seen to vanish identically 
- 

due to the zero modes of the free fermions tip.) 
i 

. 
lim (e~TF)(Z2)(e-~1CI')(P2)~'(P2) N axp(p2)o’(p2) 

z2-P2 

In arriving at the RHS we have used the fact that Tp'( zz cannot develop a singularity ) 

near O’(pp). At this stage (5.60) becomes 

- (~(~l)aXcl(p2)(r/2,b)O’(p2)...) (5.61) 

We finally prove that after summing over the spin structure in the holomorphic sector this 

- matrix element vanishes. The proof utilizes techniques developed in ref. [30] to calculate - 

matrix elements on tori in arbitrary backgrounds. Define the following operators 

Note that P+ is just a particular component of the supersymmetry current Ja. Further- 

more 

p+w-(4 - (z: w) (5.63) 

While 

P+(z) O’(p2) . . . N non - singular (5.64) 

To see that (5.64) * t 1s rue we only need to examine the OPE of S *+ - m P+ with any operator G 
- -2. 

f of holomorphic dimension zero. In general 

‘+(‘)f(“) - (z _ Zq;3/34 
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Since f is U(1) neutral, the U(1) charge of oh is !. However any operator of U(1) charge 

ju has a lower bound on its dimension given by i jz [78] [30]. So dim (oh) 2 i ($)” = i. 

Therefore no singularity exists. We can now write (5.61) as 

(r(al)aX~(p2)(r12,b)O’(p2) -> ’ . 
-f u) ~(P+(z)P-(w)E(;l)aXr(pz)(rlz,b)o’(pz)...) (5.66) 

After summing over spin structures the correlator on the RHS is periodic in z so we can l 

deform the contour away from w. Since no other singularity nor spurious poles exist we 

can shrink it to zero. It follows that (5.61) is actually zero. 

**Mt(‘)+l-b 

In this case we find34 
- 

@(Pi) = (cace-~sS+S~~)(P1) x o(p,) 

with the required dimension h@ = 0. However in the limit zr + pr this vanishes. (There 

is no ‘problem in this case in taking this limit before the x integration since JoL(x) is on 

T2. The same argument cannot be used to show for example that Mt - I - 1. a is vanishing 

as zr --+ pl since in that limit the spurious poles of Ja(x) will coincide with the physical 

pole. In this case we need to integrate over x first and then take the limit indicated. ) 

***M,(l)-II-l-a 

Ghost charge conservation on Tl gives 

Q(P1) = 4Pl) : rl(PMPl) : 0’ 

this means that on T2 the relevant operator is 
- -7. 

xDt (~2) = (cdcem2QE) (p2) 0 (p2) 

-. 

J 

34 Again the re sult is unchanged if instead of taking the operator $+O we consider any 
other operator of U(1) charge 3/2 
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The relevant matrix element on T2 is then given by 

- 
L N (t(~d(%e24b + a(se24b)(z2))(m,b)(e-24caca[)(p2)0(p2). . .)T2 (5.67) 

i ,We shall first calculate the ghost correlator in a spin structure u. For that it is more 

. convenient to exhibit the correlator in question in the following form: 

(E(k)(%e24b+a( w2’#‘b)(z2)(a2, b)(e-2dc~cX)(m)) 

= ((~2,b)b(z2)c(p2)~c(p2))~(~(~l)~(z~)e2~(z2)e-2~(p2)~~(~2))u 

+ ((~2,b)ab(z2)c(p2)ac(p2))(~(~l)~(z2)e2~(z2)e-2~(p2)~~(p2))u 
(5.68) 

where the operator B is defined to be 

B = lim (2a,; + a,,) 
z;-+zz 

(5.69) 

- 
Using (5.42) in subsection B above we can easily calculate the superconformal ghost cor- 

relator. The answer is35 

(~(&)~(z~)e2~(z2)e-24~p2)Ll~(p2))V 

9+2 - P2) &$qz2 - 4)) N 
qz; - P2)q$Z2 -z: -P2) 

(5.70) 

The key observation at this point is that 

(5.71) 

- for all even spin structures v. As was remarked earlier we are summing over even spin 

structures only. In the odd spin structure the answer is vanishing by the @ ‘ zero modes. 

We can then drop the first term in the RHS of (5.68). Going back to (5.67) and using 

(5.70) we see that the amplitude on T2 now has the form: 

L ~((rlz,b)db(za)c(pz)ac(pa)>s:(zz - ~2) c 

CC 
6, (0) 

E” lq( > (0 (P2) - - ->u 
Y z2 -P2) 

(5.72) -, 

35 6, is what we previously denoted as 6[6] 
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where (O(p2) .-s)~ involves purely antiholomorphic fields (so ho = 0), which can include 

both matter and ghosts. In ref. [30]the expectation value (O), of any antiholomorphic 

- field in the holomorphic spin structure Y was shown to be given by: 
i 

. (O(p2))v = KS,(-A~)~,(-B,)19,(-C~)~~(O) (5.73) 

for any arbitrary background admitting right handed supersymmetry. In (5.73) K, Al, B1, Cl 

are unknown constants which contain all the background dependence. In our analysis we 

shall not need to know what they are, we will only need to know that they satisfy the 

following constraint [30] 

Al + HI+ Cl = 0 (5.74) 

Substituting (5.73) into (5.72) we can then carry out the sum over spin structures in the 
- limit of interest using the riemann theta identity: 

- 

lim c 1 
z2-P2 Ev q(z2 - P2) 

6u(-A1)9u(-B1)29Y(-C1)93y(o) 
u 

= gl(Al + HI + C,)291(-A1)291(B1)191(c1) 

+ w-72 - P2)2) 

(5.75) 

The first term on the RHS vanishes because of (5.74). So the leading order in the spin 

structure sum is actually 0(( z2 - ~2)~). Finally we should notice that the b, c correlator 

can have at most a triple pole as z2 + ~2. However the superconformal ghost correlator 

together with the leading term in the sum over spin structures develops a fourth order zero 

in (5.72). Th e net result is that the matrix element vanishes after sum over spin structures 

and taking z2 -+ ~2. 

**tMt(l)-II+b 
- -2. 

In this case we find nonvanishing matrix elements of Fayet-Iliopoulos D-terms. The 

analysis for this case is presented below, after we prove that all the other configurations 

lead to no nonvanishing contribution. 

c 
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We now proceed with the third row in table (1). In analysing M$” we have a factor of 

(qt , b) which yields - t. Any dimension zero operator with the right ghost charges could 
- potentially contribute to factorization. 

. M12).I.l.a 
t 

For this factorization the operator must be: 

XP+(pp) =: bc : e-4 x 0 

since there are no other factors of b or c needed to soak up the b, c ghost zero modes on 

the torus. However hw 2 $ so the dimension is too large. 

M12).I.l.b t 
- For the same reason as in the preceeding case: 

\E+(pz) =: ‘4 bc :e-2 x 0 

hq.=;l- + i > 0 =S no contribution. 

Ml21 . II. 1. u 
t 

For this configuration 

Q+(p2) = (ce- 2"w(P2) x 0 (P2) 

which has the right dimension and ghost charge. However in the limit z2 + pp the matrix 

element on T2 vanishes since we must use c(p2) and the factor of b from Y(zp) to absorb 

the b, c zero modes on T2. 

**id2).II.1.b t 

- -2. The analysis in this case is more intricate than the other cases in this category. The 

relevant matrix element that needs to be calculated on T2 is 

I N (E(;1)e-~~‘“‘~‘(x)Sa(x)(arle2db + a(ve2+b))(z2)Q+(p2)) (5.76) 
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with 

- 

Q+(P2) = E(p2)e-% 4(p2)c(P2)~- (p2)S7(p2) x 0 (p2) 

where in this case 0 turns out to be E : cq : as is easily verified. (To arrive at the factor 

. of e in Xl?+ above form one needs to consider Tr as well). We can rewrite (5.76) in the 

following convenient form: 

I - Z(~(iZl)q(z~)e-- : +(z)e24(22)e-~4b2) E(p2)) 

(~+(z)Sa(~)B-(P2)SP(Pz)>(b(Z2)C(P2)) (5.77) 

.. We now show that the correlator (5.77) vanishes in the limit zz + ~2. However in this case 

we cannot take the limit before we carry out the z-integration as was explained earlier. _ - 

Thus we examine the superconformal ghost correlator in a given spin structure Y. The 

answer can be easily seen to be given by: 

( 
294-22; + iz1 - ax + 222 - 1 2p2 1 

- 29v(& - z; + 222 - ix - ;p+9,(-4 + 222 - ix - +p2) ) 
(5.78) 

( w5 - P2)&(X - 429322 - p2) 

Wl - 4>91(p2 - z;)(th(x-p2))i 1 

In carrying out the x-integration we pick up the residue of the supercurrent Ja(z) at the 

point rl. From (5.78) we see that the spurious pole is located at 

$7, c ix = 222 - 2; - +p2 + Av (5.79) 
5 

_ -7. 

where A, is any one particular half period on the torus. (notice that depending on the 

relative positions of zz and p2 the function 6,( -2: + 222 - ix - $pz) develops a zero only 

in one particular spin structure Y). In the 22 + pa limit it is not difficult to see from the 
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above equations with x given by (5.79) that the superconformal ghost correlator behaves 

as 
- - (22 -P2)2 

i (22 -P2)$ 

. The behaviour of the spin field correlator can be inferred from the the general expression 

PO1 WI 

(5.80) 

Substituting for ax using (5.79) we see that in the relevant spin structure the spin field 

correlator behaves as 
- 

- w2 - P2) 

(h(z2 - P2)) s 

Finally putting all factors together and counting powers of (22 - ~2) we discover that the 

matrix -element vanishes in the limit 22 + pa as advertised. Notice we could not have 

concluded this until after we carried out the x-integration. 

This completes our analysis for the third row in table (1). We next turn our attention 

to the last row. Again from (5.53) we see the presence of a factor of (qt,b) which yields 

- $. Now any operator of dimension zero and correct ghost charge could contribute. 

Mi3).I.l.a t 

*+(p2) = (ce+V*) (p2) x 0 (~2) 

which yields a vanishing matrix element by the same analysis as for M,(l) . I. 1 . a. 

M13).I.l.b 
.z 

- ,_T. t 

In this configuration there exists an operator 

@(PI) = (FQ4S+Sa)(pl) x 0 (PI) 
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However the matrix element vanishes in the limit zr -+ pr. 

- 
Ml31 . II. 1. a t 

The only operators that can propagate through the neck are of the form 

. 
@(PI) =: bc : (pl) x qpl) 

which however have high conformal dimensions. 

Mi3).II.l.b 
t 

Similarily, the only operators that conserve ghost charge and absorb the b,c ghost 

zero modes, are of the form: 

%‘I) = (: bc : e-id)(pl) x o(pl) 
- 

with dimension ho 2 $j and hence cannot contribute to the boundary term. 

This completes our analysis of all the entries of table (1) except for Mt . II. 1. b. All 

terms considered so far have been carefully proven to yield no boundary contribution. This 

last case however turns out to give rise to a non-vanishing boundary term. We analyse 

this next. 

Fayet-lliopoulos D-Terms 

Applying factorization to (5.52) for the configuration II. 1. b we arrive at the following 

expression: 

Mt ~~~~@r1 

(5.81) 

c 

By ghost charge conservation in the antiholomorphic sector on T2, the relevant operator 

!I!+ has the form 

‘k+(p2) - E(p2)e-d(Pa)f(a)(p2) (5.82) 
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with f(“) (~2) an operator of dimension (0, i) and does not contain any ghost fields in 

the antiholomorphic ghost sector. Applying ghost charge conservation on the cylinder we 

- arrive at the conclusion that Q on Tr has to be: 

. @  N “(pl)e-i(Pl 1 jta) (pl) (5.83) 

where f(a) is the operator of dimension (0, i) conjugate to f(“) with no factors of anti- 

holomorphic ghost fields. 

As discussed previously we must implement the node prescription, and take the limit 

z4 --+ p2 and zs + pr.36Define, 

3’9~2) =a!$pz(z4 - ~2)%‘(~4)f@)(P2) 

i(“)(pl) = lim (23 - fll)T~(Z3)j(~)(p1) 
ZQ-+Pl 

(5.84) 

- 

so that F(a),F(a) are dimension (0,l) operators free from any anti-holomorphic ghosts, 

and are conjugates of each other. (5.81) may then be written as 

Mt 7 ~(V-~f(y)(~l,b)(~l,~)E(zl)~(~~)~(a)(pl)~(pl))~l 

(~(p2)F(a)(P2)J,(z)(arle24b + a(19e2”b))(z2)E(21)(~2,b)(iiz,b))T, 

(5.85) 

The above expression is identical to the one obtained in the case of the heterotic string - 

theory [73], and may be analysed in the same way. In particular the operators F(a)(k(a)) 

that give a non-vanishing contribution to (5.85) are of the form: 

(5.86) 

36 So far in our analysis in this subsection we have always taken the zr -+ pr, z2 + p2 
limit before taking zs --+ ps, z4 + p4 limit. We may continue to do that here if we replace 

5 
- ,_T. 

Fta) in subsequent discussion by (e~(Z)~~(z)e-~(P)f(a)(p)). Using this we may arrive at 
eq. (5.87) (5.88) below with U(“) in (5.88) replaced by e~(Z)TF(z)e-j(P)U(“)(p) where u(“) 
is related to fta)(p) through f(“) = c&[,!?-S~S,e-~‘#‘u(a). At this stage we may take 
the limit zs + pi and z.4 + p2 to recover (5.87) and (5.88). 
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where U(“) is a dimension (0,l) operator constructed out of the operators of the conformal 

field theory describing the compact dimensions. ( In principle U(“) may also be constructed 
- from the fields T,@ as T,@‘@ ‘, but the corresponding matrix element may be seen to vanish 

: 
on 2’1 and Ti seperately in every spin structure). The:corresponding matrix elements may 

be calculated in the same way as for the heterotic string and the contribution to A may 

be shown to be: 

where, 

A N c ,(a),(4 
a 

(5.87) 

eta) cc ((U(“)))pp = 
/ 

Dt,?PDflD=yDpemSU(“) (5.88) 

cp stands for the fields describing the conformal field theory associated with the compact 

- dimensions. In evaluating (5.88) we sum over all spin structures in the anti-holomorphic - 

sector, but only over those spin structures in the holomorphic sector which give a periodic 

boundary condition on the holomorphic fermionic stress tensor TF (z). This matrix element 

in turn may be evaluated in the same way as in the heterotic string theory following [30] 

with the final result, 

,ta) = ?- c n;qi(‘l& 
1927r2 i 

(5.89) 

where ni is the number of massless fermions carrying U(“) (1) charge qia) and helicity hi, 

g is the four dimensional gauge coupling constant. 

Thus we conclude that the final answer for the two loop partition function of the 

type II string compactified on arbitrary backgrounds is given by (5.87) with cc”) given by 

(5.89): The vacuum amplitude is just the square of the Fayet-Iliopoulos D-term induced 

at one loop, just as it turned out in the heterotic string theory [73]. It is worth mentioning LL A- _Y. 
that so far there is no known type II vacuum which possesses anomolous U(1) factors 

( i.e. with c(“) in (5.89) nonzero). This means that for all the known four dimensional 

type II vacua which preserve tree level supersymmetry, our result in this section shows 
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that the cosmological constant vanishes at two loops. However at this point there is no 

general reason to believe that Fayet-Iliopoulos D-terms cannot be generated in any type 
- II model.371f this happens then the vacuum is destabilized at two loops as we can see from 

(5.87). -- - 

6. Conclusion 

In this paper we have discussed some global issues involved in choosing a gauge slice 

in superstring theories; Working with a specific class of gauge slices in which the metric 

is independent of the odd coordinates of the supermoduli space, and the gravitino has 

delta function support, we have shown that the requirement of modular invariance and 

transversality of the slice to the gauge directions (a good modular invariant slice) prevents 
- 

us from choosing a holomorphic slice. We have further shown that given a good, modu- 

lar invariant slice, the superstring partition function calculated with this slice is a total 

divergence in the moduli space. This result is true for superstring theories formulated on 

R*‘,:as well as compactified superstring theories with at least an N = 1 supersymmetry 

in four dimensions. Thus the cosmological constant may be expressed purely in terms of 

boundary integrals. The final answer is independent of how we choose the slice away from 

the boundary, but does, in general, depend on the choice of the slice at the boundary. 

At genus two, the correct choice of the slice at the boundary may be determined by us- 

ing BRST invariance. With this choice of slice we can calculate the genus two partition 

function. The relevant boundary that contributes turns out to be Al, where the genus 

two surface breaks up into two genus one surfaces. The boundary contribution is shown 

to vanish for uncompactified superstring theory, and is proportional to the square of the 

Fayet-Iliopoulos D-term induced at one loop (if any) for the compactified theory. 
- _Y. 

We would also like to mention some open problems and speculations. First, although 

we have shown that the partition function is independent of the choice of slice (except 

-. 

5 

37 We wish to thank L. Dixon for a discussion on this point 
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at the boundary) as long as it is a good modular invariant slice, we have not explicitly 

constructed, or even shown the existence of such a slice. (We have shown that all conditions 
- 

i 
other than modular invariance can be simultaneously satisfied.) Since we have relaxed the 

criterion of holomorphy of the slice, we expect that it should be possible to construct such . 

a slice, unless there is a purely topological obstruction. We hope that this gap will soon 

be filled in. A more serious problem concerns the choice of the slice at the boundary. 

At genus two, a prescription for choosing such a slice at the boundary is obtained by 

demanding BRST invariance, although an understanding of this prescription based on a 

more geometrical notion would certainly constitute progress. For g 2 3 we do not yet have 

a prescription for choosing the slice at the boundary, and hence we cannot calculate the 

partition function. In short, although we can express the partition function as a sum of _ - 

boundary terms, these depend on the choice of the slice at the boundary, and hence are 

ambiguous. 

In fact, we do not even have to go beyond genus two surfaces to see the origin of 

the problem. It already exists in the .computation of higher point functions on genus two 

surfaces. There are two ways of seeing this problem. First, we may regard the n-point 

function on a genus two surface as a functional integral over a punctured (super)-riemann 

surface. In this case the natural vertex operators to be used are the ones in the -1 or -i 

picture depending on whether they are bosonic or fermionic. Each extra bosonic vertex 

operator, or pair of fermionic vertex operators, introduces an extra supermodulus, [12][82] 

which, in turn, introduces extra factors of picture changing operators Y (wi) (if we use delta 

function basis for these extra super-beltrami differentials). The answer for the correlator 

then not only depends on how we choose the points za (associated with the original super- -z 
. ~ _T. 

beltrami differentials) at the boundary of the moduli space, but also how we choose the 

wi at the boundary. Furthermore, the boundary now not only includes the one where the 

genus two surface breaks up into two genus one surfaces, but also where the punctures 
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collide. A particularly dangerous boundary is the one where all the punctures approach 

each other. 
- Another prescription for calculating amplitudes involving physical external states is 

implicit in the work of Friedan, Martinet and Shenker [l] on picture changing. According 

to this formalism, the same physical state may be represented by any member of an infi- 

nite set of vertex operators, related to each other by picture changing operators. In order 

to compute an amplitude, we pick up one representative vertex operator for each of the 

external states in such~a way that the total ghost charge of all the vertex operators adds 

up to the right amount so as to conserve the ghost charge. In order for this prescription 

to make sense, we must ensure that the final result is independent of which representative 

vertex operator we choose for a given state. This may be shown using BRST contour defor- 

mation arguments, but these leave total derivative terms, which include total derivatives 

in the moduli, as well as total derivatives in the location of the vertex operators. These 

are precisely the terms that give rise to an ambiguity in the final answer. 

Thus we see that we must develop a general framework which allows us to determine 

the right choice of basis for the super-beltrami differentials at the boundary of the moduli 

space. Unless this problem is solved, there is no hope for computing amplitudes or higher 

loop partition functions in fermionic string theory. The situation may not be any better 

in string field theory. It is conceivable that similar ambiguities exist within this formalism 

and that a careful analysis of “globalissues” would expose such subleties. Also, it will 

be interestring to see if there is a connection between these subleties and the contact 

interactions discussed in ref. [83]( see also [84][85].) 

On the more speculative side, we should mention that there have been suggestions 

that the ambiguities in string perturbation theory arise from the (conjectured) nonsplit ._ ~ -3. 
nature of supermoduli space. It is well-known that superteichmuller space is split, and 

supermoduli space is the quotient of superteichmuller space by the action of nontrivial 

diffeomorphisms. If we use the fiber bundle definition of supermoduli space, then, since 
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- 

in WZ gauge diffeomorphisms act on (e,~) by pullback and do not mix 0(x2) terms 

into the metric, one might expect that supermoduli space is also split, at least before 

compactification. It is quite possible that this argument is too naive and contains a flaw; 

whether or not this is the case must be left to future work. 

Finally it must be clear to the reader that the present formalism, while efficient enough 

to allow some limited computation, cannot be the best one. The result that the superstring 

measure is a total derivative suggests that it might be some kind of characteristic class. 

(A relation to BRS cohomology is suggested in [86].) If th is is the case, the most beautiful 

proof of the vanishing of the cosmological constant would be the demonstration of the 

vanishing of a certain characteristic class, based entirely on the geometry of supermoduli 

space. 

Note added: After completion of this work we received a paper [87] in which some 

related issues are discussed from another point of view. 
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Appendix A. The theorems of Earle and Hubbard 

In this appendix we merely sketch some of the ideas that lie behind some of the 

theorems used in the text. Let us begin by reviewing a little teichmuller theory [43][88]. 

The space of frames modulo weyl and lorentz groups is just the space of beltrami 

differentials. If we uniformize S = U/I’ with a fuchsian group l? -we may pull the beltrami c 
_- 

- -2- differentials up to U and therefore identify the space of beltrami differentials on S with 

the space 

M(I’) = {p : U -+ C]p o r~‘/r’ = ,U ‘v’/r E I’,and II P Ilw< 11 
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- 

Here ]I /..J Iloo= sup{l~(z)I : z E U}. The condition ]] /J ]lm< 1 arises from the requirement 

that the metric ]dz + ,!,&I2 be nonsingular. Thus, the space of conformal structures may 

be thought of as an infinite dimensional generalization of the open unit disk A. The 

group Diffd of diffeomorphisms of S homotopic to one acts on the beltrami differentials 

on S by pullback. We can obtain the equivalent action on M(I’) by pulling back small 

diffeomorphisms on S to diffeomorphisms of U. This is accomplished by the following 

Lemma: For S = U/I’, let Do(S) be the group of difleomorphisms homotopic to one, 

and Do(r) be the group of difeomorphisms U -+ U commuting with I?. Then Do(r) E 

Do(S) are isomorphic as topological groups. 

For a proof of this lemma see [88] and references therein. We will simply describe the 

- idea of the correspondence. If f : S + S is homotopic to one we may lift it to f : U -+ U _ 

and by the covering homotopy theorem we can lift the homotopy. Since f” o y = 7’ o f” and 

I’ is discrete it follows that 7 = 7’ and f” commutes with I’. Suppose on the other hand 

that we have a map f : U -+ U commuting with I. Consider the geodesics in the poincare 

metric connecting z to f(z). S ince f commutes and since I is a group of isometries of 

this metric we can construct a homotopy by flowing for a fractional distance t along the 

geodesics. This homotopy commutes with I and hence descends to a homotopy of the 

projection of f to 1. 

The action of Do(r) 11 a ows us to define an equivalence relation /J - ZJ if there is an 

f E Do(r) with p = f*(y). Th e set of equivalence classes [p] is teichmuller space T. 

Denote by @ : M(I’) --+ T, the projection p --+ [p]. We can now describe the idea of Earle’s 

theorem, which states that 

-. 

Theorem(Earle): When dimT > 2 then Q : 3/C -+ T has no holomorphic cross- 5 
A- 

-ST- section. 

If there were a cross-section cr : T + M then s = a@ : M -+ M is a self-map 

and, by changing the group I’ appropriately we can arrange that s(0) = 0. Thus we 
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may apply Schwarz’s lemma. Recall that this states that if f : A -+ ?. is a holomorphic 

function satisfying f(0) = 0, then If’(O)1 5 1. I n our case we learn that the operator 
- 

P = s’(0) : TM + TM satisfies II P/..L lloo<ll ,X IIcx). (Note that TM is itself a space 

of beltrami differentials with the condition II /J IIm< ‘1 removed.) Moreover, since o is a 
. 

cross-section, o2 = o, so P2 = P. Moreover, kerP is just the fiber above t = 0, i.e. ker P 

consists of beltrami differentials which are pure gauge transformations of the metric on SO. 

Let us rephrase this last condition. 

The holomorhic quadratic differentials on SO can also be pulled back to U and consist 

of holdmorphic functions II, : U --+ C such that $J(~.z)(~‘(z))~ = $(z) for all 7 E I together 

with the condition 

- 
Denote the space of such $J by A(r). A(I’) is naturally isomorphic to the cotangent space 

of T at So. We can characterize ker P as the space of p for which 

Thus, a holomorphic section defines an operator P : TM -+ TM such that 

1. P2 = P 

2. ker P is pure gauge 

The next part of the proof shows that no such operator exists. A crucial role is played 

by the teichmuller differentials. These are the phases of quadratic differentials: 

/-J(Z) = kIcp(z)l/cp(z) k > 0 cp E A(r) (A-2) WE 
_ . - _T. 

Teichmuller differentials satisfy two useful properties (for a proof see [45] and references 

therein ). The first property is that they are of minimal norm in their gauge orbit, i.e. 

II PfX IMI P IL if X is pure gauge. The second property will be described below. Using 
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the first property and properties (l-3) of P b a ove one finds Pp = p for all teichmuller 

differentials. 

- If dimT 2 2 then dimA > 2 so, choosing linearly independent quadratic differen- 

tials +I, $9 we can find points zi, z2 such that Y 

~1(4742(z2) # $1 (z2)$2 (a) (A4 

The second useful property of teichmuller differentials is that we can find teichmuller 

differentials /.L~,,u~,,u such that, for all $J E A(r), 

ti(z1) = (h-h) 

$,(z2) = (ti’,Puz) (A.4 

- $44 + $(Z%) = (dw) 

Note that /J, being a teichmuller differential is of the form (cp(zi) + (P(z~))]~(z)]/(P(z) for 

somecp(z) E A(r). It is clear from (A.4) that /.L-,LL~ -,u2 is pure gauge, so Pp = Ppu,+Pp2, 

but these are teichmuller differentials, so ,U = /..L~ + ~2. This means ]pl + p2] is a constant, 

since /J, being a teichmuller differential is a pure phase. But pi, i = 1,2 are also teichmuller 

differentials so pi(z) = cpi(zi)]cpi(z)]/cpi(z), an d the relative phase of ~1 and ,u2 is just the 

phase of PI (Z)/CPZ (4, w K h’ h must be constant. Since the pi(z) are holomorphic this means 

PI(Z) = w2(4, but th is means that $(zi) = cti(z2) for all $J E A(r), contradicting (A.3). 

This concludes the argument. 

Hubbard’s theorem is a stronger version of Earle’s theorem and may be related to 

it as follows. Consider the subgroup Diffo(x) c Diffo of diffeomorphisms fixing z: 

f(z) = x. Then Diffo/Diff 0 x is in bijective correspondence with the surface S through ( ) 

[f] ++ f(x). We thus have the diagram: 
_ - _T. 

M(r) 
k/ 

M/Diffo (5) b (A4 
I 

T 
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M/Diffo(x) can be endowed with a complex structure so that it becomes the universal 

teichmuller curve. Earle’s theorem states that the vertical arrow has no holomorphic cross- 
- 

section. Hubbard’s theorem states that (with the exception of the six Weierstrass sections 

. at g = 2) in-fact, no holomorphic cross-section of M/biffo(x) exists. 

The above characterization of the universal curve makes clear the relation to Earle’s 

theorem, but obscures the holomorphic structure. Thus we give another description of the 

universal curve [43] which we will use in the following subsection. 

T-he equivalence relation /J - Y used above has another useful characterization, which 

is based on the fact that all f E Do(r) extend to the real line and are the identity f(x) = x 

there [88]. Given ,u E M(I’) 
A A 

we can construct wp : C -+ C by solving the beltrami equation 

- dwfi = ,~dwp in U and &U p = 0 in u, the lower half plane. The equivalence relation can 

now be phrased WJ~ - wV if wp = wV on the real axis. The particular mapping wp 

depends on which ,U we choose, but the region w’-‘(U) and the group wpI’(wp)-l (called 

a quasiconformal deformation of I’) depend only on the equivalence class a(p). The Bers 

fiber space may therefore be defined by 

To) = -w(P),4 E Wo) x q/-J E M(ro),Z E w”(U)} (A-6) 

The definition makes sense since w”(U) only depends on the equivalence class of p. Finally, 

To acts on F, namely, 7. (@(p),z) = -(@(/~),yp(z)) where rp = wan-‘. For fixed ,u 

the quotient by the group action is just a copy of the curve with complex structure a(,~). 

The universal curve is defined to be V(r) = F(I’)/I’, and F(T) is its universal cover. 

The proof of Hubbard’s theorem again relies on the absence of certain projection 

operators dictated by the geometry of the Banach spaces of quadratic and beltrami differ- 

entials, and makes essential use of Royden’s theorem equating the teichmuller metric with 

the Kobayashi metric. 
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Appendix B. Some theorems on quasiconformal maps 

- 
In this appendix we prove the theorem used in section 1I.D. The proof of theorem A.1 

was suggested by C. Earle, who also helped with the proof of theorem A.2. 

. First we establish some notation. Let H, c T, be the hyperelliptic locus. For t E H we 

have the corresponding hyperelliptic curve y2 = n(z - ei(t)) with projection 7r/Tt : St -+ C 

and involution j. If w : Sr --+ S2 is a quasiconformal map commuting with the involution 

it induces a map 6 on the plane. For a hyperelliptic curve there is a fuchsian group G 

containing I’ as a subgroup of index two. G has elliptic transformations of order two, 

and the fixed points are the Weierstrass points. One can prove that any quasiconformal 

deformation of I’ comes from one of G. U/G is a sphere with six branch points of order 

two. In this way one establishes the isomorphism TZ,O g To,G. We begin with 
- 

Theorem A.1: Let p(t) E C be any family of points p : Hg --+ C. Define 
- 

HL = {t E H,Ip(t) # e;(t),; = 1,. . .2g + 2) 

For a&y connected and simply connected subset W C HL there is a continuous family of 
I 

quasiconformal maps wt : SO + St, t E W, commuting with the hyperelliptic involution, 

such that Ct(p(O)) = p(t). 

Proof: 

a.) By a standard lifting criterion, since W is simply connected, we can lift 

Jvw 
I W) 

W -+ H,xC 

where the bottom arrow is t H (t,p(t)). 

b.) Since M(Go) --+ T(Go) has a real analytic cross section there is. a real-analytic 

family wt(l) : u --+ w”*(U). 
..-- 

c ) Thus (w;“)-‘@(t)) = pu(t) . is a family of points in U. We need a diffeomorphism 

wj E Do(Go) satisfying wi(j(O)) = pn(t). It will then descend to the appropriate small 

diffeomorphism with which to modify wt(‘). 
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d.) To find this consider the fibration cp : Do(Go) + U defined by the evaluation 

maw(f) = f(iW)). 0 ne can show that imcp is open, and that its complement is open, so 

- since U is connected it is onto. Also it is continuous, and locally trivial, so we do have a 

nbration. The group of the fibre bundle is Do(Go,p”(Oj), i.e. those diffeomorphisms fixing 

the specified point. Since the bundle is trivial there exists a continuous cross-section B: 

z H oz. Since cpa, = z we see that the desired map is obtained by defining wi E apd(t). 1 

Remark: This only shows that wj depends continuously on t, but we should be able 

to strengthen this to real-analytic dependence. 

Next we prove 

Theorem A.2: Let p,(t) E C, a = 1,. . . n be any family of points for t E Hg with 

pa(t) # n(t) for a # b. Define 
- 

Hi={t~H,lpa(t)#e;(t),i=~,... ~g+~,a=l,... n} 

For any connected and simply connected subset W c Hi there is a continuous family of 

quasiconformal maps wt : SO -+ St t E W, commuting with the hyperelliptic involution, 
z. 

such that &(pa(0)) = p,(t). 

Proof: We proceed by induction on n. Theorem A.1 is the case n = 1. Let us assume 

the theorem is true up to n - 1. Again we may lift t H (t,p,(t)), and choosing wt(‘) 

as before we may define (w,“))-‘(fia(t)) = pi(t) for a = 1,. . . n. We can find wk with _ 

wk(fia(0)) = pi(t) a = 1,. . . n - 1 by the induction hypothesis. Now let (wi)-l(pi(t)) = 

p:(t). We seek wj with in the subgroup Do(Go;fi1(0),... ,fi,+l(O)) of Do(Go) fixing the 

indicated points such that wp(& (0)) = p:(t). W e now let cp be the evaluation map at 

fin(O) and obtain a fibration 

c 
_ . ..-- Do(Go;h(O),. . . ,~,-l(O))~U--o.{~1(0),...~,-1(0)} (B.2) --c 

Again one can argue that this is a fibration. Note that the base of the fibration is not 

topologically trivial. On the other hand it is known, for example for n = 2 [41] that the 
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total space is topologically trivial. Thus the fibration is nontrivial and no cross-section 

exists. However, we can take the universal cover U t U - Go . {cl(O), . . . fin-l(O)} and 

pull the bundle back to this space. The base is now trivial and a cross-section IS exists. 

This means that az(fin(0)) = r(z). For t E W we ca’n lift the map t I-+ pi(t) along the 

- 

bottom row of 
U 
I (B.3) 

W -+ u-Go.{p”1(0),...~,-1(0)} 

to t t-+ c:(t), again because W is simply connected. Thus we choose wt Ii = q\(t) which 

satisfies the required properties. a 

Finally we prove “theorem 2” of section 2.F. Actually, all we have to do is formulate 

., the statement more precisely; its truth will then be evident. We uniformize the basepoint 

riemann surface So = U/I’ as usual. We are now considering any riemann surface at any 
- 

genus. Consider an open covering U, of T and a set of compatible slices (eQ(t), X” (t, 5)). 

The frame e”(t) d e fi nes a family of beltrami differentials pr E M(r) and these, in turn, 

define maps wr = wfir as in appendix A. For each t we may think of the gravitino 

supports as a set of points p:(t) E wp(u)/rr where I? is the quasiconformal deformation 

of I described previously and these lift to a discrete set of points pE,i (t) E w?(U). For 

t E U,nUp, W?(U) = wf(U) and I?; = I’f since these only depend on the equivalence class 

of e(t). Thus the maps (wp)-‘wf make sense for t E U, n Up. As mentioned in section 2.F 

the condition that 7, and IZ;O be related by a diffeomorphism means that (wf)-’ (pE,i(t)) = 

(wf)-‘(p!,+(t)) so pE,i(t) = p$(t). Moreover, since p:,,(t) = ~p(p:,~(O)), by the condition 

(2.42) , and since wr varies holomorphically pz,i(t) vary holomorphically so t H (t,pz(t)) 

are holomorphic section of V(r) over U,. We have just seen that they patch together to 

make a global holomorphic section. 

Appendix C. Weierstrass sections and pointwise vanishing 

In this appendix we give an explanation of why the choice of slice where we take 

the points z, to a Weierstrass point gives a measure in uncompactified superstring theory 
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- 

which vanishes pointwise, even though this choice does not give a modular invariant slice. 

Let T be the teichmuller space, M the modular group, and G a subgroup of the modular 

group that leaves a particular Weierstrass point (say el in the notation of subsection F) 

invariant (in the sense of.eq.(2.41)). L t e us now choose a holomorphic slice S given by 

the Weierstrass section el. Also, instead of defining the integration over t’ to be over the 

fundamental region T/M, let us take it to be over the domain T/G. (This is equivalent 

to summing over prescriptions discussed in [ll]). Th en, following the steps of sec.IV we 

may calculate the measure for this particular choice of slice, and show that it is a total 

derivative in the teichmuller space. Let us denote this by s. Following the analysis of 

appendix G we can show that M’ is a globally defined vector density on the space T/G, 

since the choice of slice S, while not modular invariant, is invariant under the subgroup G 

- of M. Hence dispensing with A0 in the usual way, STIG w will receive contribution only MY 

from the boundary where the genus two surface degenerates into two genus one surfaces. 

(There will be many copies of this boundary in T/G but that is irrelevant). 

At the boundary, the point zs and z4 (as well as zi and ~2) either all lie on the torus 

Tl or all lie on the torus T2, since they all approach the same Weierstrass point. (The six 

Weirstrass points on the g = 2 surface in the t -+ 0 limit are the points $, 9 and T on - 

the torus Tl, and 1; 12 2,2 and- on the torus T2, taking the origin at the nodes p1 and 

p2 on the tori TI and T2 respectively.) Let us, for definiteness, take the points za to lie 

on the torus Tl. Let us also, for definiteness, insert the operator ~(~0) on T2. (The final 

answer is independent of ~0). We now need to evaluate the contribution to Mt defined in 

eq.(4.29), ME vanishes for a holomorphic section. The contribution of Mt may be analyzed 

by using the factorization hypothesis (5.18). I n order to get a non-vanishing boundary 

contribution, Mt must be at least of order i, and this happens if the operator Qt(p2) in 

_ ,e-- (5.18) has antiholomorphic conformal dimension 0 or less. The relevant correlator on T2 

involving the antiholomorphic fields is, 
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where . . . denote a possible (3Xp(y) t erm coming from Va(y) if y E 2’2. The relevant 
-- 

operators Qt are E, 8X, &,@$” and ~34. Matrix elements of each of these operators on 

- T2 may be shown to vanish after summing over spin structures in the anti-holomorphic 

sector. -. - 
. 

Thus we see that j’T,G s must vanish. On the other hand, since the slice S is holo- 

morphic, the measure is positive semidefinite (see sec.111). Combining these two results we 

see that the measure calculated with this slice must vanish at every point in the teichmuller 

space. 

Appendix D. 

In proving that the partition function is a total derivative in moduli in section (4) we 

- encountered additional terms which are total derivatives in y. These arise from commut- J 

ing the BRST current through the dilatino vertex operator. In order to prove that the 

complete superstring partition function is a total derivative in the moduli space, we must 

show:that these additional terms also integrate to total derivatives in the moduli space. 

In this appendix we shall give the careful analysis needed to show that. I 

A. The terms in question arise in the process of deforming the BRST contour and in 

particular from 

[QB?] = &V?(Y) + ~,V;(Y) P.1) 

as defined in (4.20) and (4.21). Th e contribution from these terms is of the form (taking 

where, 

d2@,K1 + 4~2) 

49-4 6g-6 

P-2) 

P-3) 
a=2 k=l 
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In writing down (D.3) we have taken d,, 8, operators outside $,.(yJ dx. This is not a 

completely obvious step, since the locations of Q(Y) depend on y. To see how this can be 
- 

done, note that at any point ye in the y plane the x integral in (D.3) may be taken to be 

. along any contour C enclosing the points rl(ye), but not the points ri(yc) (as defined in 

sec.IV) and yo. As long as none of the rf(ye) or ye is close to any of the rl(ye), we may take 

the contour C to be a finite distance away from the points rl(ye), rf(ye) and ye. It then 

follows that there exists a local neighborhood U in the y plane around the point ye, such 

that the same contour C will enclose the points Q(Y), and exclude the points r;(y) and y 

for y E U. Since the position of the contour C is independent of y for y E U, we can surely 

. . take the d,, ag operators outside $c dx. This, in turn, may be repeated in every local patch 

- in the y plane. In the region of overlap of two such patches, the corresponding contours C 

and C’ may not match, but may be deformed continuously to each other without hitting 

any singularities, and hence give the same value of Ki (y) (; = 1,2). 

This procedure breaks down if either y, or one of the points r;(y) approaches one of 

the points rl(y) f or any value of y, since then it is not possible to deform the contour 

C a finite distance away from the points rl(y) without hitting any of the r:(y) or y. - 

However, as we shall show now, this can never happen. First of all, note that z”r is 

chosen in a way so that none of the poles r;(y) coincide with any of the rl(y). (This may, 

in turn, require ,5r to be a function of y, and one may worry about taking the d,, ag 

terms outside the e(Zr) term in eqs.(D.2), (D.3). H owever, note that if we replace ((51) 

by aye = dt(Zr)d,Zr (or dJ(Zr)d,Zr) in (D.3)) the resulting correlator has no pole 

at rl(y), and vanishes after x integration.) In order to see that the point y can never 

approach rl(y), let us remember that rl(y) is the zero of ti[b](+(y’- 5) + xi;;” z’, - 2L) 
_ _ _T. 

in the x plane. Thus if y = rl(y) at any value of y, ti[~](C~~<” z’, - 2z) must vanish. 

c 

As we have remarked after eq.(4.4), the transversality condition 

precisely guarantees that 29[&](C$??2 z’, - 2s) never vanishes at 
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space. This justifies taking the d,, d, operators outside $c dx in writing down eqs.(D.2), 

(D.3). 

- B. Without too much effort we can see that the contribution of the term d&z is iden- 
;. tlcally zero: such a term may receive contribution from the boundary of the y-integration 

only if the correlator involving V2 has a simple pole (y - za)-‘. However the only y de- 

pendence comes from the 8X(y) term inside V2 and in the rest of the terms X appears 

through the combination 8X(2,) or 8X(za). C onsequently in any contraction the only 

possible singularity as a function of y is of the form aX(y - (y - ,z~)-~+ non- 

singular terms; i.e there are no simple poles as a function of y. As a result the total 

derivative in y vanishes identically after the y-integration. 

C. The analysis of the d,Kr term is more intricate. In this case K must develop 

- singularities of the form (y - ye)-’ at some point ye in the y plane for it to contribute at ~; 

the boundary of the y integral. Looking at eq.(D.3) we see that for fixed x, y can develop 

poles either at x, sa (a = 1,. . .2g - 2) or at the zeros of ti[S](i(f- 2) + ~~~~” z’, - 2A), 

s[q*(y’- 2) + E;cl;” z’, + 5; - 2i). But the x contour in (D.3) is chosen in a way so as 

to avoid the points at x = y, as well as all configurations for which either 29[S]( i(y’- Z) + 

xi:;” z’, - 2/Z) or #[6](+(y-- Z) + C%LY” 27, + 5; - 2A) vanishes. The possible poles in y - 

are then at zr, Zr and at za (a # 1). Th erefore, after performing the y integration we have 

a double sum 

- g cf 
yo=z1 ,Zl ,&l 1 

~~(y~,~~~s(J,j,)~~~Yo~~(~o,F(il)F(~l) 

6g-6 

n (pa + 8itaDi) n (r]k, b)) 

a=2 k=l 

(D-4 

where Res denotes the residue at the argument of the dilatino vertex. Let us now consider - 
- ,_2. 

in turn the contribution of 21 ,zr and z,. 

D. The part of V?(y) which can develop poles near t(z) is $ (yP)Olb ($Xj‘ + 

+P)eS”qb>-Sj and the residue is $(~~)~fi($Xp + y$p)e4+&-Sb G PO. First of all if 
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we consider the residue at ,?r it can easily be seen that the resulting correlator as a func- 

tion of x has poles at {ri(.Zr)}, but not at {rl(Zr)} and hence vanishes after the x-contour 

- integral is performed. The residue at zr on the other hand, has poles at {rl(zr)}, but not 
i 

it (ri(z1)). IV e may now -deform the x-contour away-from the points {q(zr)} and try to 
. 

shrink it to a point. The only possible obstruction comes from deforming the x contour 

past zr. To see if this contributes we examine the OPE Ja(x)pa (zr), and this is given 

(up to irrelevant factors) by 

- (x-zl)~(x’ )” -m 
21 4 

(D-5) 

Thus there is no singularity and the resulting contribution vanishes. 
- 

E. Finally we have to worry about possible poles near {za, a = 2,. . .2g - 2} in the y 

plane. Since Y (za) = {QB, f(.za)} we may write 

~Vr(y)Y(z~) = -[QB,VF(y)][(Za) + {QB,Vy(Y)J(Za)} a = 2,-*-2g -2. P.6) 

I-. 

where QB is the the full BRST charge ( of the left and right movers). Now, 

[QB,Vy(Y)] = Cly[(8Xp + =j$-‘)(yp)“b lim {Y(w)c(Y)e-~~‘y’S-(Y)Sg(Y)}l (D-7) 
W-Y 

we may calculate (D.7) explicitly using the known expression for Y. But the main point _ 

here is that the right hand side of (D.7) is a total derivative in y. As a result, near t(za) 

it never develops a single pole, since the term inside the bracket in (D.7) never develops 

logarithmic singularities near [(za). On the other hand, the second term on the right 

hand side of (D.6) h as a (y - z,)-’ pole with a residue {QB,QQ(z,)} where, as before, 

ca = +(y,)afi(~~X~ + =y$+)e4+~~-Sfi. 
5 

_ ,_2. 

We also have, 

v,“(Y)dt(za) - --&-at--(,,) a = 2,. . .2g - 2, 
a 

P-8) 
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and hence after y integration we get a residue of LIPa( 

F. Combining all the terms together, we may express the result of y integration in 

- (D.2) as, 
c 

. / ‘f dti g T 
i=l 

f 2 /- D[xBc]((zo)((~~)[(~~)~,(x) 
r1 (zb) 

49-4 6g-G 

({QB,?~(z~)} + aiPa(Zb)Di) n (p(Za) + aii(za)o;) n (Vky b, 
P.9) 

a=2 
a#b 

k=l 

Now we try to deform away the BRST contour in (D.9). D e f ormation through the products 

of picture changing-and (q, b)- insertions produces a total derivative in the moduli in the 

usual way. Since Jar(x) is BRST invariant up to a total derivative and since Ja(x) is 

being integrated over a closed contour we need only worry about the BRST residues at ~- - 

t(~o)E(zl)t(k). Th e residue at I is Y(z~), and this vanishes since nothing remains to 

soak up the f zero mode. We are left with {QB, [(zr)c(tr)} = Y(zr)e(z”r) - t(zr)Y(z”r). 

The correlator involving Y (21) has no poles at rl(zb) as a function of x and hence vanishes 

after the x integration. The correlation involving Y(zr), on the other hand, has poles in 1. 

x only at rl(zb), since, as we have seen there is no singularity in the OPE of Ja(x) with 

ca (zb). The sum of the residues at the poles rl(zb) can be seen to vanish, because we 

can deform back the supersymmetry (x-contour ) integral, and there are no singularities 

of Ja(x) at Pa(sb),Y(za) or ai{( Th us after these contour deformations we can write 

the final contribution to (D.9) as: 

dt”($F, - G) (D.lO) 

where, 

F’ =2F2c j 2 SDixsciF(zo)F(rl)F(il)J~(x) 
b=2 1 

71 (zb) 

49-4 6g--6 

pO(zb)Dj n (p(za) + ai$(za)oi) n (qk,b) 
a=2 k=l 
afb 

5 

(D.11) 
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and, 

- Gx2k2fg6 f g/ [ D X~C]~(zo)(~jI(z1)~(~1> + t(~d~jt(h>)Jdx> 

z b=2 1 . j=l 
rI(zb) 

. 49-4 

Pa(Zb)Dj n (p(Za) + di{(za)Di) fi (vk, b) 

(D.12) 

a=2 
afb 

k=l 

Again, the term involving ait = aiZbdt(Zb) in (D.12) has no pole at x = rl(Zb), and 

vanishes after x integration. The term involving ait( on the other hand, has poles 

only at Tl(Zb) in the x plane, and hence may be shown to vanish by deforming back the x 

- - 
contour as before. Consequently G is identically zero. This completes our proof of section 

(4) that the partition function is indeed a total derivative in the moduli space. Note also 

that J’j defined in (D.ll) vanishes at genus two by &ghost charge conservation. 

Appendix E. 

In this appendix we shall show that the cosmological constant A as defined in eq.(4.4) 

is invariant under simultaneous transformations of ais{, viz2 and qiZZ induced by a 

reparametrization 2/p: 

(E.1) 
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Under these transformations A changes to, 

- 
A’ = n(pa + C diztdpi”Di + C aiTIp(za)apjaDi) 

a i i 

i 

. 

= n(pa + C dizfdpi”Di + + C diV’l(za)dp{“Di) 

‘$(l + ; d2w(&dkvwb 

i 
Bg-6 

ww + dwdk’7-‘mbtDa)Dk) r]: (Qj,b) 
k=l j=l 

(E-2) 

In each term in the second product we may now do the w integration by parts. It receives 

. . contribution only from the regions where b, 6 have poles, namely, near the locations za. 

Noting that, - - 

l bww(w)Y(za) - ___ w - za 
Lq(za) (a= l,y2g-2) 

Zca(W)i;r(Za) - &af(Za) (a = 29 - 1, ’ ’ ’ y 4g - 4) W) 
a 

we may evaluate the contribution from the residues at z,. The result may be expressed in 

the compact form, 

” = n (?a f C aid!api”Di f C div’(za)dp$aDi - c ak~~‘(z,)a,$,D~) 6h6(vj,b) 
a i i k j=l 

(E.4) - 

but this is just A, thus we see the invariance of A under reparametrizations connected to 

the identity. One consequence of this invariance is that by choosing appropriate VP we 

may set d;zE = 0, at the cost of changing the Q’S. 

_ ,_2. 

Appendix F. 

In this appendix we shall sketch how the insertion of the stress tensor in given cor- 

relator accounts for the full variation of the correlator in moduli, i.e. variation due to 
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explicit dependence but also to implicit dependence on the moduli. These matters have 

already been discussed in [12] and in [89][90]; h ere we take a point of view which ties in 
- 

with the treatment in sections 2 and 4. As explained in sec. 4 the latter dependence 

. is due to the fact that the coordinate system in which we are exhibiting our vertex op- 

erators, which is the coordinate system that diagonalizes the metric at a given point in 

moduli space, changes as we move in moduli. Let t be a specific point in the moduli space, 

while z denotes the coordinate system in which the metric at t is diagonal, and set vk(Zk) 

(k = 1,. . . N) to be several vertex operators inserted at points Zk on the riemann surface 

such that % = 0 in the sense defined in section two. We shall first assume that all the 

’ vertex operators are of dimension (O,O), since this is the simplest case. Let us now consider 

- the correlator, - 

( fi vk(zk)(&., T)bt’), = /- d2z( fi vk(zk)(r],z “Tz.z + 77,~ ZT-)Gt’) 

k=l k=l 
W) 

Let g”p(z, t+bt) be the metric at the point t+6t in the teichmuller space in the z coordinate 

system, and w be the coordinate system which makes the metric at t + 6t diagonal. Then 

there exists a quasi-conformal map, 

w = z + vz, a=z+g (Jw 

where the vector field vz is discontinuous on the riemann surface. In particular, we may 

represent the riemann surface at t as a region in the complex z plane bounded by some 

curve C, with various parts of C identified with each other. The discontinuity in vz is then 

__ reflected in the fact that vz on two different parts of C which are identified do not match. -. _ ,_2. 

In terms of v”,vs we may write, 
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Substituting (F.3) in (F.l) we may do the z integral by parts, picking up residues from 

the poles in z, z at zi. The final answer is, 

- 
N N 

.-( n vk(Zk)(Vra T)Gt’), =.( c n vk(zk) (vz(zj)av(zj) + vz(zj)aV(zj)))t 

k=l j k#j . 

- -&#! dzv”(z)T(z) + f dzV”(Z)T(z))~Vk(zk))t (F*4) 

C C k 

We may now compare it with the difference, 

( fi T/k(wk))t+6t - ( fi Vk(Zk& = 6t(fi vk(Zkh 

k=l k=l k=l 

(F.5) 

’ since $ff = 0, Wk = Zk f ‘Zf(Zk). Both these correlators may be identified with the 

- correlators in field theories defined on the complex plane with diagonal metric, but with 

different boundary conditions on the fundamental fields in the theory. In calculating ( )t, 

the relevant boundary conditions on the fields are obtained by identifying various parts 

of the -curve C with each other. On the other hand, in calculating ( )t+6t, the relevant 

-. boundary conditions are obtained by identifying various parts of the curve C’ with each 

other, where C’ is the image of the curve C in the w plane under the map (F.2). Thus - 

the difference between the two terms in (F.5) may be written as a sum of two terms. One 

reflects the fact that Wk, regarded as a complex number, is not the same as zk, but differs 

from it by Vz(Zk). This term may be easily identified with the first term in (F.4). The 

second difference is due to the fact that the curve C’ constituting the boundary in the 

w plane differs from the curve C by (vZ,vE) evaluated on C. It can be shown that the 

effect of the second term in (F.4) is precisely to move the boundary from C to C’. 38Thus 

(F.4) is the same as (F.5), h s owing that the insertion of a factor of (qr, T) in a correlator ~ 
_ . 

_ ,-_- generates a derivative of the correlator with respect to t’. 

38 More precisely, the effect of $(dz+T(z) + d,%?l’(z)) is to convert the boundary 
condition on various fields obtained by identifying various parts of C with each other to 
those obtained by identifying various parts of C’ with each other. 

118 



I 

If some of the vertex operators (say Vl(z1)) are of dimension (1,l) instead of (O,O), 

the operator product of T(z), T(Z) with Vl(zl) will h ave extra terms, and as a result, (F.4) 

will have extra terms on the right hand side. Using these extra terms we can show that, 

-iv - 
d2zl( n vk(zk)($%,T)bt’) = d2w( fi vkcwk));+at - d2q( fi vk(zk))t P.6) 

k=l k=l k=l 

Hence as long as all dimension (1,1) operators are integrated over the riemann surface 

(and similarly all dimension (1,0) operators are integrated over a contour) the insertion 

of (qr, T) in a correlator generates a derivative of the correlator with respect to t’. 

We now come to the case of correlators with insertions of ghosts. As is well known, 

these should be regarded as differential forms on moduli space. For example, if 71,. . . ,rr 

’ are vector fields on M, represented by beltrami differentials ri = [vi], then we can define 

the Z-form n by 

q-Y,,... A> = ((bm) -a- cb, VZ) n vk(zk)) (F-7) 

By the equations of motion the RHS indeed defines a differential form on M. Choosing a 

good slice SO that & = [qi] we have 

R = ((b,qil)dtil .a * (by Vil)dtir I-J vk(zk)) 

The insertion of the stress-tensor now defines the exterior derivative 

(F.8) _ 

(F.9) . 

To prove this we expand 

((b, vi1 (t + bt)) * * * (b, qil (t + st)) n vk (zk)) t+fit (F.lO) 

in St.  First expand the vi. If we compute tensors in a fixed frame-index ‘and coordinate 5 

..y- system then we may regard the frame eg as a matrix A(t) and then vi = A- ‘&A. Since -- 

A-? = Atr, we have vi’ = -vi. Thus although 
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is not symmetric in i,j, it is true that 

- trbaiqj = trbdjqi 

. since b is symmetric when’ regarded as a 2 x 2 matrix in a fixed coordinate system. The 

analogous identity (diqj, T) = (djvi, T) occurs in the proof that [ai, aj] = 0 when acting on 

correlation functions. Therefore, if we expand qi(t + 6t) = qi(t) + Gt”d,qi the contraction 

with dt” A dti gives no correction term. If we express tensors in the coordinate system 

diagonalizing the metric at t then vi(t) only has a (dz)-1 @ dz component so we need only 

consider the (dz)2 term in the pullback of b. This is: 

b(z + v)(d(z + v))~ = b(z)(dz)2 + (vi3b + 28vb)(dz)2 + --- 

- 

where v is as in (F.2). On the other hand, writing once more (T, q,)W = (T,dv) + (T, &) 

we see that the OPE of T with b accounts for the above change in b, exactly as in the 

previous cases. Putting these facts together we arrive at (F.9). 

Appendix G. 

In this appendix we shall sketch a proof that the M’ defined in eq.(4.24) are indeed 

the components of a globally defined 6g - 7-form on moduli space. (Equivalently, this can 

be thought of as a vector density.) What we must prove is that given any two points t, t” 

in the moduli space related by a modular transformation, we need to show that, 

M’(i) = {det g j-’ gM’(t) (G.1) 

Although this analysis may be carried out for the general expression given in (4.24), we 
_ _z. 

may, without any loss of generality, set $+ to be 0 in Mr, provided we do not impose 

any restrictions on 7,‘s. This is a consequence of reparametrization invariance discussed 

in appendix E. Using transformation (E.l), which can be shown to be an exact symmetry 
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of M’ following steps similar to those in appendix E, we may set s = 0 at each point 

t in the teichmuller space. In this scheme, if u’ denotes a fixed coordinate system on 
- the riemann surface, then ila(t) is independent of t. Furthermore, if t, t” are points in 

the teichmuller space related to each other by a modular transformation, and g”p(G, t), 

g”p(C, t”)the representative metrics at these points, then the global diffeomorphism D(t) 

which takes g@(Ut, t) to g@(G, i) leaves iia fixed. This is true for every point t in the 

teichmuller space. 

The modular transformation properties of M’ may be determined by studying the 

transformation properties of various terms in the correlator in (4.24) under the global 

diffeomorphism D. Since p are dimension (0,O) operators they remain invariant under 

’ diffeomorphism D, as long as their arguments go to their images under D. Similarly, 

- 1 since Ja(x) and Va(y) are dimension (1,0) and (1,l) p o erators respectively, $ dx J, (x) 

and s d2yVa(y) are invariant under diffeomorphism. Thus we only need to study the 

transformation laws of (qr, b) under t + t”. If we can show that, 

(q,., b) 1; dP = (Vr,b) It dtr (G.2) 

then (74) t ransforms as a contravariant vector, and so, 

r]: (r/s, b) = @2***z6g-6 (rllz, b) . . - (q/6g-6, b) (G.3) 
s#r 

will transform as a 6g - 7 form. This would, in turn, prove that M’ is a globally defined 

6g - 7 form in the moduli space. 

In order to study the transformation law of (qr, b), let us express all the relevant 

correlators in the fixed coordinate system. Then we may write, 

(qr, b) It 6t’ = 
s 

d2il&$krbap(i,, t) = / d2u’&g”P(i’T, t + St)bap(il, t) (G.4 

---.-= where hap(t) d enotes that in writing down the ghost action we use the metric g@(t), and 

use the constraint g@(t)b,p(t) = 0. Similarly, 

(qr,b) Ii 6fr = 
s 

d2il&gap(t”+ Gt”)b,&‘) (G.5) 
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where t”+ St” is the image of t + 6t under modular transformation. Now we may write, 

sap(i) = (Dl(t));$Y6(t) (G-6) - 

where D1 is the operator representing the action of D on g. We may write a similar equation 

at t + 6t. Since b,p transforms in the same way as g&p, we have, 

h&t”) = (D;‘(t));;b&) 

Using (G.6) and (G.7) we get, 

(G-7) 

/- d2ii,,hjgap(t”+ c@b,,+-i,i) = /- d2ii,/?jg @ ( t + st)(Dl-‘(t)Dl(t + 6t));;b+(iQ) (G.8) 

Since 0~’ (t)Dl (t + Jt) re P resents an infinitesimal diffeomorphism, we may express (G.8) 
- 

as, 

s 
d2U'&g@(t + 6t)b,p(t) + 

s 
d2u’&(V%P + V&“)baa(z-Z, t). (G-9) 

The first term gives (qr,b) It 6t’. The second term may be made to vanish by doing 

integration by parts and using equations of motion of bolp(V”b,p = Vpb,p = 0), except 

for possible poles in the argument of b,p. These may occur at the points Ca since ?(Ca) 

contains factors of ca(Ca). Note, however, from the requirement of modular invariance, 

and from the independence of C’a’s on t, D(t) as well as D (t + fit) leaves Ca fixed. As a 

result va(C’a) must vanish identically, showing the vanishing of the second term in (G.9). 

This proves the required relation, 

(qr, b) It 6t’ = (vr,b) Ii 6t”r (G.10) 

and consequently proves that Mr is a globally defined 6g - 7 form in the moduli space. 

A similar analysis can be used to show that F’ defined in appendix D is also a globally LZ __ ..y- 
defined 6g - 7 form on moduli. 

Note that if we had not worked in this special choice of gauge where diza = 0, then we 

would get non-vanishing residues from the points za while trying to integrate the second 
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c 

- 

term in (G.9) by parts. In this case, however, we would also be left with some non-vanishing 

contribution when we try to transform a[(~,) 
-- 

or a[(~,) appearing in the expression for 

M’ under a global diffeomorphism, since these are dimension (1,O) or (0,l) operators, and 

hence no longer-invariant under diffeomorphism. These two effects would then cancel each 

other. This may be verified by explicit computation, however, there is no need to do so, 

due to the reparametrization invariance of M’ discussed in appendix E. Finally we would 

like to mention that at least for g = 2, M, remains a globally defined 6g - 7 form if 

modular transformations do not take the points qa to the images in the sense of eq. (2.41) 

but instead permutes them. This is because as showed in sec. 5.C the final expression for 

M, is explicitly invariant under zr t+ ~2. 
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