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CHAPTER 1

INTRODUCTION

1.1 Prologue

Our personal universe is the one we observe interact with daily; to do so without de-

manding a deeper comprehension of the governing mechanics only leads us to an existence

causally determined by the unknown. Countless hours, years, and “lives” have been spent

deepening this understanding for the benefit of all; and in the last year of my Ph.D, with

the discovery of “a” Higgs-like particle, can we confidently claim that our model is complete.

Or rather that it explains the majority of the physics of the Universe, sans gravity. Assum-

ing of course we’re not discussing why any of the fermions, including neutrinos, have their

respective masses, or why there are exactly 3 generations of fermions; and it goes without

mentioning that by “the Universe” we mean the 4.9% of the universe that is constituted by

visible matter. The remainder is built from what we believe to be 26.8% Dark Matter(DM)

and 68.3% Dark Energy[1, 2], and we have only hints at what the former could be comprised

of. Dark Energy has a gravitationally repulsive effect and this fraction is enough to explain

both the observed cosmological expansion[1, 2] and the flatness of our universe. Further

detail regarding Dark Energy is beyond the scope of this thesis.

Due to not interacting with electromagnetism, dark matter is by nature difficult to detect.

We have a drive in the field to model DM candidates and to calculate their experimental

signatures. As their observability is expected to be small, we use decays and processes where

DM participates that are otherwise suppressed in the standard model. Due to this suppres-

sion it becomes imperative that the calculation of the process, as well as all experimental

background contributions, are as accurate as possible. The objectives of the calculations

that follow in this thesis attempt to demonstrate these separate ideas: a DM-influenced de-
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cay and its constraints; a background contribution to a suppressed SM decay, and possible

intermediate contributions to a SM decay.

1.1.1 The Standard Model

The Standard Model(SM) of particle physics [3, 4, 5] is our current relativistic quantum

field theory used to describe the electroweak and strong interactions. It is comprised of

two groups of particles; the half-integer spin quarks (u, d, s, c, b, t), (e, µ, τ) leptons and the

lepton neutrinos(νe, νµ, ντ )) and the fundamental spin-1 gauge bosons that mediate their

interactions (W±, Z0, bosons, the photon γ and the gluon g). All known matter is formed

by bound states of these particles and the forces produced by their various interactions.

The electromagnetic interaction is mediated by the photon, and is a representation of

a U(1) gauge symmetry. The electroweak interaction is composed of an additional SU(2)

symmetry coupled to electromagnetism, and is mediated by the three Wi bosons. The strong

interaction is mediated by the gluon. It has eight “color” charges and is represented by an

SU(3) symmetry.

The quarks and leptons are each split into 3 generations with the same quantum numbers

but varied masses as seen in Table 1.1.1.

For each given symmetry Noether’s Theorem dictates that there should be an associated

conserved current, with a respective generator of the symmetry group. The conservation of

a current of a U(1) gauge symmetry gives rise to the electromagnetic charge for example,

and the photon. When the symmetry is broken, non-zero masses for the gauge bosons arise

(as we see very massive W and Z bosons as seen in Table 1.1.2. The Englert-Brout-Higgs-

Guralnik-Hagen-Kibble [6, 7, 8] mechanism is a way to have spontaneous breaking of the

electroweak SU(2)× U(1) gauge symmetry. This causes the original U(1) gauge boson and

three Wi SU(2) bosons to mix into the photon and the massive electroweak W± and Z0

bosons. A byproduct of this is of course the recently discovered spin-0 particle, the Higgs
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Particle Symbol Mass (MeV) Charge (e)

up quark u 2.3+0.7
−0.5 2/3

down quark d 4.8+0.7
−0.3 −1/3

electron e 0.510999 −1
electron neutrino νe ≈ 0 0

charm quark c 1, 275± 25 2/3
strange quark s 95± 5 −1/3
muon µ 105.658371 −1
muon neutrino νµ < 0.17 0

top quark t (175.5± 0.6± 0.8)× 103 2/3
bottom quark b 4180± 30 −1/3
tau lepton τ (1, 776.82± 0.16) −1
tau neutrino ντ < 15.5 0

Table 1.1.1: Standard Model Fermionic Catalog

boson. This mechanism can also give masses to the quarks and leptons through Yukawa

couplings though does not give the dominant contribution to baryon(proton and neutron)

masses.

Boson Symbol Mass (GeV) Charge
photon Aµ 0 0
gluon g 0 0
Z Boson Z0 91.188 0
W Boson W± 80.385 ±1
Higgs Boson H ≈ 125 0

Table 1.1.2: Standard Model Bosonic Catalog

1.1.2 Quantum Chromodynamics

Quantum Chromodynamics(QCD) is the quantum field theory describing the strong in-

teraction of quarks. There is a SU(3) color symmetry and the mediating gauge boson is the
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gluon, g, meaning color-charged fields are invariant under transformations

q → eiτ
i

q, (1.1)

where τ i are the generators of the symmetry. The quarks are the only fermions that partic-

ipate in the strong interaction.

The Lagrangian is

LQCD = iq̄fγ
µDµqf −

1

4
Ga
µνG

aµν , (1.2)

where “f” denotes the flavor of quark “q” and repeated indices are summed over. The

covariant derivative is defined as

Dµ = ∂µ −
i

2
gsλ

iGi
µ, (1.3)

where the λi are the eight generators of SU(3), and G are the gluon fields. QCD is an

unbroken symmetry in the standard model, and thus the gauge bosons (gluons) are massless.

We define the coupling αs = g2s
4π

. To obtain the matrix element for a transition we can treat

the coupling constant as a small parameter and can expand our theory perturbatively. This

is referred to as Perturbative QCD (pQCD). Each perturbative contribution can be described

by Feynman Diagrams, a set of topological diagrams constructed using the Feynman rules

derived from the Lagrangian, which contain the parameters for the vertices and legs.

The loop momenta are not observable, and are internally integrated over all momenta.

This leads to a divergence. The process by which we remove these divergences is called

Renormalization [9] where the divergences are canceled by redefining masses and coupling

constants to include both the “bare” parts from the original Lagrangian, as well as the diver-

gent pieces. This introduces a dependence of the coupling constant on the renormalization
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scale which is defined as the scale at which higher-order terms are absorbed,

Q2∂α (Q2)

∂Q2
= β (α) . (1.4)

The β function is a property of the theory and is a power series in α with βLO = −β0α,

where β0 depends on the number of particles involved in the loops at a given scale. Solving

this equation gives the Q2 dependence of our theory,

α
(
Q2
)

=
α(µ)

1 + β0α(µ2) logQ2/µ2
. (1.5)

For QCD the value of β0 is

βQCD0 =
11CA − 2nf

12π
, (1.6)

where CA = 3 is from the SU(3) gluon virtual corrections, and nf is the number of active

fermion flavors with mass less than Q2. In the standard model with maximally 6 interaction

flavors this yields β0 >
7

4π
. The most recent average of the coupling constant evaluated at

the weak scale is

αs(mZ) = 0.1184(7). (1.7)

This also lets us calculate

αs(mD) = 0.3039. (1.8)

It can be shown then that the positive nature of this term leads (1.5) to vanish at higher

energies, making quarks unaffected by QCD. This is knows as asymptotic freedom [10]. In

the limit that Q2 → 0 we see that the coupling constant goes to infinity. The most important
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aspect of this is that below ≈ 1 GeV, the coupling constant is no longer a good expansion

parameter. This is the energy where confinement allows hadrons, bound states of QCD

partons, and we must turn to other phenomological methods to calculate our amplitudes.

Thus quarks and gluons are confined, in that they are not seen as free particles in nature.

Only “color-neutral” hadronic bound states, mesons and baryons, are the particles that can

be observed. While QCD can be calculated perturbatively in high energy regimes (greater

than ≈ O(1 GeV)), low energy theory contains both perturbative and non-perturbative

effects which are difficult to calculate. One method of simplifying calculations is to look

for natural factorization scales that can split our theory into multiple energy regions. The

heavy quarks that create bound states (charm and bottom), provide a natural scale to

calculate the perturbative effects and to factor out “hard” physics and “soft” physics. When

calculating low-energy physics and long-distance effects we now must also become concerned

with electroweak contributions.

1.1.3 Important Decays for NP Searches

Electroweak decays of bound-state particles are of particular interest in the search for NP

due to the rarity of some of the decay channels. It is logical to assume NP occurs at or below

the probability of these SM-suppressed decays. This alone is not enough to be interesting; if

the decay channel is unobservable experimentally then there is not much point to pursue the

calculation. Luckily some experimentally-clean decay processes such as heavy meson decays

to leptonic final states, are also SM-suppressed. This is where the focus of this work will be;

using these experimentally available, SM suppressed decays to constrain contributions from

DM and other NP.

The first is the leptonic decay of the charged B±(5280) meson, where we have noted the

mass in MeV in parenthesis. The upper limits of the electron and muonic channels, and the
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observed Branching Ratio(BR) of the tau weak channel are

Br(B± → e±ν̄e) < 9.8× 10−7, (1.9)

Br(B± → µ±ν̄µ) < 1.0× 10−6, (1.10)

Br(B± → τ±ν̄τ ) = (1.64± 0.34)× 104. (1.11)

These decays are helicity suppressed in the SM. This is due to the necessary spin flip to

account for a spin-0 particle decaying to a state of two spin-1
2

particles, introducing a pro-

portionality to the mass of the final state fermion. This is one of the reasons the tau channel

has been observed while the other two are are still only limits.

Another possible group SM-suppressed decays those involving Flavor Changing Neutral

Currents(FCNC). These arise in the SM when a quark undergoes a change of flavor without

changing charge, (b→ (s, d), c→ u), which do not exist at tree-level in the standard model.

They occur only at one loop and are thus more difficult to produce. This may be interesting

because many NP theories that involve more massive particles produce effects that will only

be seen at one-loop and thus can compete with SM contributions. A specific example of a

FCNC process is the annihilation of a heavy meson composed of the quark pair (bs̄, bd̄, cū),

representing the mesons B0
s , B

0, and D0 respectively. Both leptonic and semi-leptonic final

states of these decays are can constrain the effects of new physics.

1.1.4 New Physics : Dark Matter

So now we turn our attention beyond the 4.9%, baryonic, standard model, visible uni-

verse, to the remainder. There are a variety of cosmological sources that give evidence for

dark matter [11, 12]. Rotational velocity distributions of galaxies [13, 14, 15], the cosmic

microwave background(CMB) fluctuation spectrum [16], gravitational lensing and the evolu-

tion of large-scale cosmological structures [17] all point to a distributed density of DM that
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is much larger than that of visible matter, and cannot be explained by any SM particles.

Recent efforts have been quite exhaustive theoretically to model possible scenarios of DM,

and many experiments [18, 19] have been proposed, built and completed with significant

results constraining the cross-sections/masses of DM candidates through direct detection.

While the presence of DM is firmly established, its basic properties are still subject of a

debate. If dark matter is comprised of some fundamental particle, experimentally-measured

properties, such as its relic abundance or production cross-sections can be predicted. Ex-

perimental measurements of the abundance ΩDMh
2 ∼ 0.12 by WMAP collaboration [2] can

be used to place constraints on the masses and interaction strengths of those DM particles.

Indeed, the relation

ΩDMh
2 ∼ 〈σannvrel〉−1 ∝ M2

g4
, (1.12)

with M and g being the mass and the interaction strength associated with DM annihila-

tion, implies that, for a weakly-interacting massive particle (WIMP) of DM, the mass scale

should be set around the electroweak scale. Yet, difficulties in understanding of small-scale

gravitational clustering in numerical simulations with WIMPs may lead to preference being

given to much lighter DM particles. Particularly there has been interest in studying models

of light dark matter particle with masses of the keV range [20, 21]. According to Eq. (1.12),

the light mass of dark matter particle then implies a superweak interaction between the dark

matter and standard model (SM) sector [22, 23] . Several models with light O(keV-MeV)

DM particles, or super-WIMPs, have been proposed [20, 21].

One of the main features of the super-WIMP models is that DM particles do not need to

be stable against decays to even lighter SM particles [20]. This implies that one does not need

to impose an ad-hoc Z2 symmetry when constructing an effective Lagrangian for DM inter-

actions with the standard model fields, so DM particles can be emitted and absorbed by SM

particles. Due to their extremely small couplings to the SM particles, experimental searches

for super-WIMPs must be performed at experiments where large statistics is available. In
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addition, the experiments must be able to resolve signals with missing energy [24, 25, 26].

But before we can begin to discuss what New Physics(NP) governs these unknown sectors

we must be confident that our SM calculations are both correct, and complete.

In Chapter 2 I will overview the methods and structure of the underlining models and

approaches to our calculations. Chapter 3 will focus on possible contaminants to the popular

rare decay channels that are currently in use for constraining new physics [27]. Chapter 4

will describe their application to constraining parameters found in two specific models of

light Super-WIMP Dark Matter [28]. Chapter 5 will look at rare leptonic charm decays and

possible contributions from previously uncalculated two-particle unitary intermediate states.



10

CHAPTER 2

FRAMEWORK FOR CALCULATIONS

2.1 Effective Field Theory

Due to the vast variety of physical phenomena it is often profitable to work in a region

of energy where only certain degrees of freedom are relevant. One must then construct

methods to separate out the relevant interactions from those that can be neglected for

that given “scale”. Usually a natural scale can be constructed from the relevant masses or

interaction energies, and thus can define some small parameter in terms of which one can

set up a perturbative expansion. A simple case is one of a two-particle theory with vastly

separated masses; a light mass m and a heavy mass M then can be used to define your scale

parameter Λ = m
M

. It is also possible to define parameters through expansions of momenta

about specific projection vectors, i.e. “collinear” and “transverse” momenta.

Using this gap between two different scales is the core of Effective Field Theory (EFT).

By factorizing out physics at one scale into effective coefficients, we can parameterize a

theory order-by-order in effective operators at another scale.

Operator Product Expansion

The Wilsonian [29] method of Operator Product Expansion (OPE) allows us to build

a framework of effective interactions that are described by separating out the long range

physical local operators and the short range, non-local Wilson coefficients.

The weak decays of hadrons are executed through the weak decay of their constituent

quarks, who form a bound state through the strong interaction at energy scales roughly to

order O(1GeV ). This scale is much less than the electroweak scale, O(MZ,W ≈ 80−90GeV ),

and the strong coupling is no longer a perturbative parameter. An electroweak decay such
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as cs̄ → ud̄ is mediated at tree level by the exchange of a massive W boson as seen in

Figure 2.1.1.

s̄

u

d̄

W+

c

Figure 2.1.1: Leading EW Contribution to cs̄→ ud̄.

The amplitude for this diagram is

A(cs̄→ cd̄) =

(
g√
2

)2

VcsV
∗
ud[s̄γµPLc]

−i
(
gµν − PµP ν

M2
W

)
P 2 −M2

W

[d̄γνPLu], (2.1)

where PL = 1
2
(1− γ5). If we expand in powers of P 2

M2
W

we have obtained the Fermi theory for

four-quark weak interactions,

A(cs̄→ cd̄) = i
GF√

2
VcsV

∗
ud(s̄c)V−A(d̄u)V−A +O(

P 2

M2
W

), (2.2)

where

(q1q̄2)V−A = q1γµ(1− γ5)q̄2. (2.3)

This is the basic idea of OPE, where a product of two currents at two different space-time

points can be expanded as a series of local effective operators weighted by effective coupling

constants. In this case, there is no scale-dependent coupling and so the Wilson coefficient

is 1, and the W boson has been ”integrated out” and is no longer a dynamical degree of

freedom. The propagator connecting the two space-time points has been collapsed into a

single local four-quark operator.
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If we now add short distance QCD corrections we must include more operators to this

effective interaction,

Heff =
GF√

2

∑
i

V i
CKMCi(µ

2)Oi(µ). (2.4)

At any order the Wilson Coefficients, Ci(µ
2) can be calculated by matching the effective

theory with the full theory at the given order in the perturbative expansion.

This is a method that allows the combining of higher-order interactions into lower-order

effective operators to ease calculations by focusing on only the operators and coefficients

specific to the concerned process.

2.1.1 Chiral Perturbation Theory (χPT)

One example of a phenomenologically successful effective field theory is Chiral Perturba-

tion Theory (χPT) [30]. This is the application of the EFT method to QCD. While QCD

is a beautiful, renormalizable theory, its applications are less that satisfactory. At very high

energies asymptotic freedom allows us to calculate QCD effects perturbatively, at low ener-

gies we are faced with numerous challenges. Firstly, QCD is a theory of a strong interaction,

meaning gs
4π
≈ 1 at low energies. This denies us the use of perturbative methods. Another

obstacle is that experimental observables are derived from observation of QCD hadronic

bound states, rather than the QCD degrees of freedom, quarks and gluons. In order to

make a connection between the two one must analyze all symmetries and scales to create an

effective theory with the proper behavior.

Chirality is defined through the use of projection operators, PL/R = 1
2
(1∓γ5). The QCD

Lagrangian can be expanded in terms of the left and right projection operators as

LQCD = q̄ (i 6D −mq) q = q̄Li 6DqL + q̄Ri 6DqR − q̄LmqqR − q̄RmqqL. (2.5)
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In the case of three quarks, (u, d, s), and in the massless limit mq → 0, we observe an exact

SU(3)L × SU(3)R chiral symmetry invariance by letting

qL → gLqL, qR → gRqR, (2.6)

with g†LgL = g†RgR = 1. The covariant derivative is diagonal in flavor space and so

q̄Lg
†
L 6DgLqL → q̄L 6DqL. (2.7)

The mass term

q̄Lg
†
LmqgRqR − q̄Rg†RmqgLqL 6= 0 ∀ mq 6= 0. (2.8)

As quarks have small masses in the SM this symmetry must be broken, and this results

in an octet of light pseudo-Goldstone pseudoscalar meson [31]. We are working at a scale

where the momenta of these QCD effects are small compared to the large hadronic scale

' 1GeV , and we have the ability to expand in derivatives and masses of these pseudoscalar

fields [32].

We group these pseudo-Goldstone bosons into a 3× 3 matrix Σ ∈ SU(3) that transforms

under the chiral SU(3)L ⊗ SU(3)R as

Σ→ gLΣg†R, (2.9)

which is represented by

Σ = ξ2 = exp

(
2iπiλi

f

)
, (2.10)

where f ≈ fπ ≈ 130 MeV, and the sum over the 8 generators yield the hermitian and
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traceless matrix

πiλi =


π0
√

2
+ η√

6
π+ K+

π− − π0
√

2
+ η√

6
K0

K− K̄0 −
√

2
3
η

 . (2.11)

From this we can begin to write an exhaustive Lagrangian for each order in both mass and

momentum of the mesons. The lowest order, the kinetic term, is given by

L =
f 2

8
Tr
[
∂µΣ∂µΣ†

]
, (2.12)

where the factor of 8 has been chosen to normalize the kinetic terms to a form similar to

scalar field theory. Higher order terms appear in the expansion in momenta, p
ΛX

where p is

a typical momentum scale in the process and ΛX ≈ 1 GeV is the chiral symmetry breaking

scale.

As defined in (2.10) ξ(x) is a coset field with the chiral transformation property

ξ(x)→ gLξ(x)U †(x) = U(x)ξ(x)g†R, (2.13)

where U(x) is a member of the SU(3)V unbroken subgroup. As this is a local, space-

dependent matrix we must define covariant derivatives and gauge fields to be able to con-

struct an invariant kinetic term and derivative couplings. This is done by the vector current

definition,

Vµ =
1

2

(
ξ†∂µξ + ξ∂µξ

†) , (2.14)
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which transforms under (2.13) as

Vµ → UVµU † + U∂µU
†. (2.15)

We will also now define an axial current,

Aµ =
i

2

(
ξ†∂µξ − ξ∂µξ†

)
, (2.16)

that transforms as

Aµ → UVµU †. (2.17)

We can now introduce electromagnetic interactions, a U(1) symmetry, with the covariant

derivative definition

Dµξ = ∂µξ + ieBµ[Q, ξ], (2.18)

where Q = diag(2
3
,−1

3
,−1

3
).

As we have mentioned, the chiral symmetry is not exact, and is broken by the quark

mass term

∑
i=u,d,s

q̄im̂ijqj, (2.19)

where mij is the light mass matrix

m̂ij =


mu 0 0

0 md 0

0 0 ms

 . (2.20)
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This breaking can be implemented at first order in the quark masses by the additional term

Lm̂ = λ0Tr
(
m̂Σ + Σ†m̂

)
+O(m̂2). (2.21)

This breaking leads to the different masses of the octet mesons as well as additional contri-

butions to relevant form factors.

This completes our building blocks of the light portion of our effective theory, and we

can write our LO Lagrangian in derivatives and mass

LLO =
f 2

8
DµΣabD

µΣ†ba + λ0Tr
(
m̂Σ + Σ†m̂

)
+O((∂Σ)3) +O(m̂2). (2.22)

Here we have set up a method of expanding the effective Lagrangian in powers of the chiral

momenta, ∂Σ as well as the symmetry-breaking mass terms m̂. Contributions from the

leading order Lagrangian with chiral loops can be considerable, and must be checked for

validity when performing both expansions. It should be noted that it is often acceptable

when performing to perform calculations at leading order and one loop without explicit

quark-mass corrections, but rather substituting the relevant masses and form factors. This

completes our leading order description of the soft portion of our effective theory.

2.1.2 Heavy Quark/Meson Effective Theory

Another natural scale appearing in the standard model is the ratio of ΛQCD to the mass

of the heavy quarks, µ =
ΛQCD
mQ

. Using this as our expansion parameter one can expand to

obtain a theory describing the heavy quarks at leading order as static gluon sources, rather

than dynamical degrees of freedom [33]. This is similar to a static proton in the hydrogen

atom. In the limit of mQ → ∞ the heavy quark spin decouples from the gluon field. This

means that it can be rotated from a 0− → 1− state without changing the physics. In this

limit the two states would also be degenerate in mass and have identical properties. Allowing
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some large mass M the hyperfine splitting between the spin states will be O(Λ2
QCD/M). We

can take advantage of this spin freedom to develop many relations between the heavy-hadron

form factors, simplifying phenomenological calculations greatly [33].

If we consider a meson H composed of one heavy(c or b) and one light(u, d, s) quark, Q̄q,

we can factor the heavy quark momenta into both static and dynmaic parts as [34],

pQ = mQv + k, (2.23)

where k is the residual momentum of the order ΛQCD. We can extract the heavy part of the

field through the redefinition into small and large respective components

Qv(x) = exp(imQvx)Q(x) = hv(x) +Hv(x), (2.24)

where the small component H is O(1/mQ). These field satisfy the projections

6vHv = −Hv, 6vhv = hv. (2.25)

At tree-level one simply plugs in the new field and solves the equation of motion for the light

field H. Reinserting into the lagrangian we obtain after some algebra and an expansion in

1/mQ the tree-level kinetic term

L(0) = h̄v (iv ·D)hv. (2.26)

This decomposition is not unique, as we can reparameterize the momenta definition (2.23)

as

v → v +
q

mQ

, k → k − q, (2.27)
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where v · q = 0 to have v2 = 1, must yield the same physical observables. This provides a

constraint on the coefficients of the next-order lagrangian terms, as they must maintain this

reparameterization invariance.

We now construct physical states using the above mentioned symmetries. It is common

use and well defined in literature to use the matrix representation for the spin-degenerate

negative parity doublet

Ha =
1+ 6v

2
(P ∗aµγ

µ − Paγ5), H̄a = γ0(Ha)
†γ0, (2.28)

to describe the heavy meson pseudoscalar and vector fields. Here the indices a nd b reflect

the light quark flavor indices, v is the velocity of the heavy quark and the P can be either a

B or D meson. The operators P satisfy the normalization conditions

〈0|Pq|Qq̄(0−)〉 =
√
MH , 〈0|P ∗µq |Qq̄(1−)〉 = εµ

√
MH ,

where MH is the mass of the heavy meson in question.

As the heavy meson is composed of one heavy quark Q = (Qc, Qb) and one light quark

qa = (qu, qd, qs), the field Ha transforms as 3̄ under the chiral transformation, such that

Ha → HbU
†
ba, where U was seen in (2.13).

2.1.3 Heavy Meson Chiral Perturbation Theory

Knowing the transformation properties of both the light and heavy fields we can now

construct all C,P,T and Lorentz invariant lagrangians at a given order in 1/M , the mass of

the heavy meson.

The leading order lagrangian is [30]

L(0) = iT r
[
Hbv ·DbaH̄a

]
+ igTr

[
Hbγµγ

5AµbaH̄a

]
+
f 2

8
DµΣabD

µΣ†ba. (2.29)
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This leads to the propagator for both P and P ∗ to be i
2v·k . The NLO contribution from the

1/M expansion is

L1/M =
λ2

M
Tr[H̄aσµνHaσ

µν ]

+
g1

M
Tr
[
Hbγµγ

5AµbaH̄a

]
(2.30)

+
g2

M
Tr
[
γµγ

5AµbaHbH̄a

]
.

These will lead to corrections to the leading order constant g for V V and PV interactions,

g → gP ∗P ∗ = g +
1

M
(g1 + g2)

g → gPP ∗ = g +
1

M
(g1 − g2). (2.31)

Additionally, if we define λ0 = −M∆/2 = −M/2(MP ∗−MP ) we see a shift of the respective

P and P ∗ propagators,

i

2(v · k + 3
4
∆)

,
−i (gµν − vµvν)
2(v · k − 1

4
∆)

(2.32)

We can also now incorporate an interaction with the previously introduce U(1) electro-

magnetic gauge boson, with the definition

Dµ
abHb = ∂µHa + ieBµ

(
Q′QH −HQ

)
a
−HbVµabHb, (2.33)

having now defined Q′Q = (2
3
,−1

3
) depending on the flavor of the heavy quark. Following

[35] we also introduce a contact term

Lβ = −βe
4
Tr
[
Hbσ

µνFµνQ
ξ
baH̄a

]
− e

4mQ

Q′QTr
[
H̄aσ

µνHaFµν
]
, (2.34)

where Qξ = 1
2

(
ξ†Qξ + ξQξ†

)
. The first term describes the interaction of the photon with
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πa πa
= i

p2−m2

P ∗
b P ∗

a = i
2(v·k+ 3

4∆)

P ∗
a P ∗

a = −i(gµν−vµvν)
2(v·k− 1

4∆)

Pb

πba

P ∗
a

= 2MP

fπ
g(q · ǫ∗b)(πiλi)ba

P ∗
b

πba

P ∗
a

= −2MP

fπ
g(πiλi)baǫµναβǫ

∗µ
a ǫνbq

αvβ

Figure 2.1.2: Feynman Rules for HMχPT

the light degrees of freedom contained inside of the heavy meson, while the second term

describes the interaction with the heavy quark, and is therefor suppressed by 1/mQ. Though

this is suppressed at leading order, we will see that it is actually important when considering

certain transitions, as it can have cancellation effects with one-loop corrections to transition

amplitudes.

Our leading order Lagrangian with the electromagnetic interaction is thus the combina-

tion of (2.34) and (2.29). This gives us the following Feynman diagrams for the interaction

between the heavy and chiral meson fields in Figure 2.1.2.

2.1.4 Unitary Conditions

In order to maintain conservation of probability the Hamiltonian should be Hermetian,

H† = H. This implies that the S-matrix is unitary[36],

S†S = 1. (2.35)
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An implication of this condition is what is known as the optical theorem. Given the S-matrix

as

S = 1 + iT, (2.36)

we recall that Feynman diagrams are elements of this transition matrix defined as

〈f |T |i〉 = (2π)4δ4 (pi − pf )M(i→ f). (2.37)

We can now show a very useful relation,

1 = S†S = (1− iT †)(1 + iT ) = 1− i(T † − T ) + T †T, (2.38)

⇒ i(T † − T ) = T †T. (2.39)

Applying initial and final states, and on the right hand side inserting a complete set of states

and integrating over the Lorentz-invariant phase space (LIPS) we arrive at

〈f |i(T † − T )|i〉 =
∑
X

∫
dΠX

LIPS〈f |T †|X〉〈X|T |i〉. (2.40)

This implies, from our original unitary condition, the Generalized Optical Theorem

M(i→ f)−M(f → i)† = i
∑
X

∫
dΠX

LIPS(2π)4δ4 (pi − pf )M(i→ X)M(X → f)†.

(2.41)

Assuming Time reversal invariance, this implies [36]

M(i→ f)−M(f → i)† = 2ImM(i→ f). (2.42)
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Thus the imaginary part of the intermediate-state contribution will be part of the final

amplitude.

2.1.5 Cutting Rules and Dispersion Relations

Cauchy’s integral theorem provides that given the imaginary part of a complex function

and knowledge of the function behavior at infinity, one can reconstruct the entire function

using a suitable dispersion relation(DR). This is particularly useful as given an amplitude

containing loops one can directly calculate the imaginary part of the amplitude at an arbi-

trary invariant mass, s, by means of Cutkosky’s rule [37], which is a result of unitarity.

We can construct a DR by considering some complex function, f(s), where s is complex.

Assuming that ∀ s < m2 : f(s) ∈ R, f(s) has a branch cut for real s > M2, and f(s) ∈ C

everywhere else, we can show, with the use of Schwartz’s reflection principle, that

f(s+ iε) = Re[f(s)] + iIm[f(s)], ε > 0

f(s− iε) = Re[f(s)]− iIm[f(s)], ε > 0 (2.43)

This implies

f(s+ iε) + f(s− iε) = 2iIm[f(s)]. (2.44)

We now employ Cauchy’s theorem,

f(M2) =
1

2πi

∮
C
ds

f(s)

s−M2
,

=
1

2πi

(∫ ∞
m2

ds
f(s+ iε) + f(s− iε)

s−M2
+

∮
|s|=∞

ds
f(s)

s−M2

)
, (2.45)

=
1

π

∫ ∞
m2

ds
Im[f(s)]

s−M2 − iε +
1

2πi

∮
|s|=∞

ds
f(s)

s−M2
.
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If the limit on the edge of the contour vanishes at infinity we are left with the unsubtracted

DR,

f(M2) =
1

π

∫ ∞
m2

ds
Im[f(s)]

s−M2 − iε . (2.46)

It is easy to show, using the relation

∫
s

g(s)

1− s± iε = P
[∫

s

g(s)

1− s

]
+∓iπ

∫
s

g(s)δ(1− s), (2.47)

where P is the Principal Value of the integrand, that the real part of f(s) is

Re[f(s)] =
1

π
P
∫ ∞
m2

ds
Im[f(s)]

s−M2
. (2.48)

Unfortunately, when dealing with SM loop calculations, the behavior at ∞ does not always

tend to zero on the contour. The integral can still be performed by subtracting from (2.45)

the function at some real point q2
0 < m2,

f(M2) = f(q2
o) +

M2 − q2
0

π

∫ ∞
m2

ds

s− q2
0

Im[f(s)]

s−M2 − iε

+
M2 − q2

0

2πi

∮
|s|=∞

f(s)

(s− q2
0)(s−M2)

. (2.49)

If the boundary integral vanishes, we have the once-subtracted dispersion relation,

f(M2) = f(q2
o) +

M2 − q2
0

π

∫ ∞
m2

ds

s− q2
0

Im[f(s)]

s−M2 − iε . (2.50)

This method of subtraction can be used multiple times to regularize the boundary integral.
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CHAPTER 3

FAKING B0
s → µ+µ−

This work was published in reference [27].

3.1 Introduction

The rare leptonic decay of the B0
s into a dimuon pair, B0

s → µ+µ−, is an example of a

flavor-changing neutral current (FCNC) process. Studies of such decay processes not only

play an important role in determining electroweak and strong interaction parameters of the

standard model (SM) of particle physics, but also serve as sensitive probes of possible physics

beyond the standard model [38]. While recent evidence for observation of B0
s → µ+µ− from

LHC-b collaboration, as well as an earlier result from CDF [39] preclude any spectacular new

physics (NP) effect, there is still room for NP to influence this decay. It is then important

to have a firm evaluation of B(B0
s → µ+µ−) in the SM [40, 41] and a firm understanding

that the experimentally-observed branching ratio

BLHCb(B0
s → µ+µ−) = (3.2+1.5

−1.2)× 10−9

BCDF (B0
s → µ+µ−) = (1.8+1.1

−0.9)× 10−8 (3.1)

actually corresponds to the B0
s → µ+µ− transition.

It is well known that the B0
s → µ+µ− decay is helicity suppressed in the SM by m2

µ/m
2
Bs

due to the left handed nature of weak interactions [42]. This effect arises from the necessary

spin flip on the outgoing back-to-back lepton pair in order to conserve angular momentum

since the initial state meson is spinless.

This suppression is absent in B0
s decays where the muon pair is produced with one or

more additional particles in the final state that can carry away a unit of angular momentum,
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such as B0
s → µ+µ−γ or B0

s → µ+µ−νµν̄µ. This means that, in general, those processes

could have sizable total branching ratios, comparable to that of B0
s → µ+µ−, despite being

suppressed by other small parameters (such as αEM for B0
s → µ+µ−γ) [43]. If, in addition,

the final state photon or νν̄ is undetected, while the invariant mass of µ+µ− pair is close to

mB0
s
, then the experimentally-measured branching ratio would correspond to

Bexp(B0
s → µ+µ−) = B(B0

s → µ+µ−)

[
1 +

∑
X

B(B0
s → µ+µ−X)|m(µ+µ−)≈mBs )

B(B0
s → µ+µ−)

]
, (3.2)

where X is an undetected particle or a group of particles. The contribution of B0
s → µ+µ−X

would depend on how well X could be detected in a particular experiment, as well as on

whether B0
s → µ+µ−X has any kind of resonance enhancement that is not well modeled

by background models chosen by a particular experiment in a given window of m(µ+µ−),

as well as the size of that window. For example, for X = γ, most current searches use

di-lepton energy cuts that would correspond to an allowable soft photon of up to 60 MeV1.

For B → `ν` transition and X = γ similar effects were discussed in [44, 45, 46], and for X

being light particles – in [28]. In the following we shall concentrate on the amplitudes that

are non-vanishing in the mµ → 0 limit.

3.2 B0
s → µ+µ−γ transition

Due to higher backgrounds in hadron collider experiments soft photons emitted in B0
s →

`+`−γ could be hard to detect, so this background could be quite important. These decays

were previously analyzed in [43, 47, 48, 49, 50], where multiple models have been considered.

The analysis presented in [43] was mainly geared towards kinematical regimes where the

photon is sufficiently hard to be detected; in fact, low-energy cut-offs were introduced on

photon energies. Similarly, perturbative QCD-related approaches of [47, 48, 49, 50] cannot

1This cut would almost exclude the possibility of missing a π0 or heavier neutral particles.
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adequately describe the soft photon region. In this paper, we apply a model-independent

approach that incorporates both heavy quark symmetry for hadrons containing a heavy

quark with mass mQ >> ΛQCD, and chiral SU(3)L × SU(3)R symmetries in the mq → 0

limit [51, 52] suited for this kinematical region. We organize our calculations in terms of an

expansion in 1/mb and examine the contribution of terms up to leading order in O(1/mb).

Similarly to B → `ν`γ [45], the decay amplitude for Bs → µ+µ−γ transition can be broken

into two generic parts containing internal bremsstrahlung (IB) and structure dependent (SD)

contributions. The bremsstrahlung contributions are still helicity suppressed, while the SD

contribution contain the electromagnetic coupling α but are not suppressed by the lepton

mass. Phenomenologically, the origin of that can be understood as follows. When the soft

photon in emitted from the Bs meson, heavy intermediate states including the JP = 1−

B∗s vector meson state become possible. This lifts helicity suppression since the lepton pair

couples directly to the spin 1 meson. In the kinematic regime where the photon is soft, we

expect that significant contribution comes only from the vector B∗s resonance for reasons

analogous to the B∗ pole dominance in B → π`ν at near zero pionic recoil energies [53]:

in the large mb limit the B∗s and Bs become degenerate and the residual mass splitting is

mB∗ −mB ∼ O(1/mb) [54]. Therefore, excitation of the B∗s does not require much energy.

There are two diagrams containing an intermediate B∗s as seen in Fig. 3.2.1. In the kinematic

region of interest where Eγ < 60 MeV, Fig. 3.2.1 (b) is neglected. This can be easily seen

considering it is a contribution from an off-shell intermediate B∗s that decays to an on-shell

soft photon in a vector-meson-dominance fashion via b→ sγ transition. Since the photon is

on mass shell, the Bs propagator makes it (1/M2
B0
s
) suppressed. In the effective field theory

language this diagram corresponds to a higher-dimensional operator whose contribution is

suppressed by powers of MB. Similarly, a contribution of Fig. 3.2.1 (c) is also (1/M2
B0
s
), so

it too will be neglected in what follows.

The calculation of soft photon effects should carefully deal with soft divergences. Those
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Bs B∗
s

(a)

Bs B∗
s

(b)

Bs φ(1020)

(c)

Bs φ(1020)

(d)

Figure 3.2.1: Resonant contributions to Bs → µ+µ−γ. The dark grey vertices represent the
b→ s effective Hamiltonians in Eqs. (3.10, 3.15). Light grey vertices are SM neutral currents
while the white circle in (a) is defined in Eq. (3.4).

are canceled between one-loop radiative corrections to Bs → µ+µ− and Bs → µ+µ−γ.

We employ Heavy Meson Chiral Perturbation Theory (HMχPT) to calculate Fig. 3.2.1

(a).

To evaluate diagram Fig. 3.2.1 (a) we need an amplitude for a B → B∗γ transition as

M[Bs→B∗sγs→µ+µ−γs] = Mµ
B∗s→µ+µ−

× gµα
M2

B∗s

×Mα
Bs→B∗sγ, (3.3)

The amplitude for B → B∗γ is conventionally parameterized as

MBs→B∗sγ = −ieµη∗αvβkµε∗νεµναβ, (3.4)

where k is the 4-momentum of the photon, v the velocity of the decaying heavy meson, η is the

vector meson polarization, and ε is the photon polarization. The strength of the transition is

described by the magnetic moment, µ, which receives contributions from the photon coupling

to both heavy and the light quark components of the electromagnetic current [55],

µ = µb + µ`. (3.5)
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Bs B−∗
u B∗

s

K+

Figure 3.2.2: One loop corrections to magnetic moment µ. The double lines denote the
heavy mesons B and B∗ while the single line denotes the goldstone bosons

The bottom quark contribution is fixed by heavy quark symmetry to be µb = Qb/mb =

−1/(3mb), while the light quark contribution can be computed, to one loop, in HMχPT.

The relevant effective Lagrangian is [35, 55]

Lβ =
βe

4
Tr(H̄aHbσ

µνFµνQ
ξ
ba) +

ig

2
Tr
(
H̄aHbγµγ5(ξ†∂µξ − ξ∂µξ†)ba

)
, (3.6)

where Tr is a trace over the Dirac indices, and β is a coupling constant parameterizing a local

contribution to the light quark magnetic moment. We include the most important one-loop

correction, which is shown in Fig. 3.2.2.

The effective magnetic moment for the Bs → B∗sγ transition is then

µBsγ = − 1

3mb

− 1

3
β + g2 mK

4πf 2
K

, (3.7)

where g is the χPT coupling constant, and mK , fK are the mass and decay constant of

the Kaon respectively. The constants β and g can be extracted from a combination of

the experimental D∗+ branching ratios, B(D∗+ → D+γ) = 0.016 ± 0.004 and B(D∗+ →

D0π+) = 0.677 ± 0.005, and the total width, where the newest preliminary result from

BaBar collaboration is reported to be ΓD∗+ = 83.5± 1.7± 1.2 KeV [56]. The decay widths
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for these processes using the method above are given by

Γ(D∗+ → D+γ) =
αEM

3

(
2

3mc

− 1

3
β + g2 mπ

4πf 2
π

)2

|~k|3, (3.8)

Γ(D∗+ → D0π+) =
g2

6πf 2
π

| ~pπ|3. (3.9)

This yields the approximate values of the coupling constants, g ≈ 0.552 and β ≈ 7.29GeV −1.

With Eq.3.7 this gives us |µeff | ≈ 1.13 GeV−1.

To complete evaluation of Fig. 3.2.1 (a) in Eq. (3.3), we evaluate the B∗s → µ+µ− tran-

sition. The effective Hamiltonian describing the weak b→ s`+`− transition is

Hb→s ¯̀̀ =
GF√

2
VtbV

∗
ts

e2

8π2

[
s̄γµ(1 − γ5)b · ¯̀

[
Ceff

9V (µ, q2)γµ + C10A(µ2)γµγ5

]
`

− 2imb
C7γ(µ

2)

q2
qν · s̄σµν(1 + γ5)b · ¯̀γµ`

]
, (3.10)

where qν = (p`+ + p`−)ν is the momentum of the lepton pair and Ci are scale-dependent

Wilson coefficients. The matrix element for B∗s → µµ̄ is then

MB∗s→µ+µ− = i
GF√

2
VtbV

∗
ts

e2

8π2
fBsMBs

[
η∗µū(pµ+)[C9γ

µ + C10γ
µγ5]v(pµ−)

− 2mb
C7

q2
(ū(pµ+)γµv(pµ−))qν(iε

µναβvαηβ + vµην − vνηµ)

]
, (3.11)

where ηµ and vµ are the polarization and 4-velocity of the vector meson respectively. We

defined 〈0|s̄LγµbL|B∗s 〉 = ηµfB∗s/2, and 〈0|s̄σµν(1 + γ5)b|B∗s 〉 = MBfBs [iε
µναβvαηβ + vµην −

vνηµ], with fB∗s = MBsfBs [30]. This gives for the amplitude of Fig. 3.2.1 (a)

M[Bs→B∗sγs→µ+µ−γs] =
GF√

2
VtbV

∗
ts

e3

8π2
µeff

fBs
q2 −M2

B∗s

(
εµναβε∗µkαqβ

)
×

[(
2C7mb − C9MB∗s

)
[ūp1γνvp2 ]− C10MB∗s [ūp1γνγ5vp2 ]

]
. (3.12)
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The other contribution that is leading the MBs →∞ limit is given in Fig. 3.2.1 (c)

M[B0
s→µµ̄φ→µµ̄γs] =MB0

s→µµ̄φ ×
gµν
m2
φ

×Mφ→γs , (3.13)

Employing vector-meson dominance, and using the definition of the vector meson decay

constant 〈0|s̄γµs|φ〉 = fφmφη
µ
φ , where ηµφ is the polarization of the φ meson, and 〈γ|s̄(−ieQs 6

A)s|φ〉 = (−ieQs)ε
∗
µ〈0|s̄γµs|φ〉,

Mµ
φ→γs =

1

3
e fφmφ ε

∗
µ. (3.14)

Again, we calculate MB0
s→µµ̄φ using (HMχpT). For the short distance contributions we use

the effective Hamiltonian describing b→ s ¯̀̀ transitions in Eq. 3.10, as well as the effective

Hamiltonian for b→ sγ,

Hb→sγ =
GF√

2
VtbV

∗
ts

e

8π2
mbC7γ(µ

2) · s̄σµν(1 + γ5)b · Fµν . (3.15)

In order to bosonize the quark currents found in Eqs. (3.10) and (3.15) we introduce the

light vector octet to the HMχpT [30],

ρµ ≡ i
gV√

2


ρ0√

2
+ ω√

2
ρ+ K∗+

ρ− − ρ0√
2

+ ω√
2

K∗0

K∗− K̄∗0 φ

 . (3.16)

The bosonized currents s̄γµ(1− γ5)b and s̄σµν(1 + γ5)b are, respectively,

Lµ1a = α1〈γ5Hb(ρ
µ)bcξ

†
ca〉,

Lµν1a = iα1

{
gµαgνβ − i

2
εµναβ

}
〈γ5Hb[γα(ρβ)bc − γβ(ρα)bc]ξ

†
ca〉. (3.17)
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A numerical value of α1 = −0.07GeV 1/2 [30] will be used for our calculations. Keeping only

the gauge invariant portion, the amplitude for the decay with an intermediate φ(1020) is

M[B0
s→µµ̄φ→µµ̄γs] = GFVtbV

∗
ts

e3fφgφα1C7mb

24π2
√
MBsmφ(p1 · p2)

ε∗µ

(
(k · (p1 + p2))[ūp1γ

µvp2 ]

− (p1 + p2)µ[ūp1 6 kvp2 ] + iεµναβkα(p1 + p2)β[ūp1γνvp2 ]

)
. (3.18)

We checked that other contributions to the decay are smaller then the ones considered

above. We considered the bremsstrahlung diagrams where a soft photon is emitted from

one of the outgoing leptons. These diagrams will result in an infrared divergence in the soft

region, which has been shown to cancel with the 1-loop QED vertex corrections [57]. The

vertex corrections, as well as the bremsstrahlung contributions, will remain suppressed by a

power of the lepton mass. Therefore the remaining non-divergent contributions from both

the bremsstrahlung and vertex corrections to final states with either an electron or a muon

would not be significant.

The only contribution to the amplitude from the effective Hamiltonian describing the

weak transition in Eq.(3.10) ends up being the O10 operator. This comes from obtaining the

matrix elements for the pseudoscalar meson,

〈0|(s̄γµ(1− γ5)b)|Bs〉 = −ifBP µ
B, (3.19)

〈0|(s̄σµν(1 + γ5)b)|Bs〉 = 0, (3.20)

where fB is the decay constant of the B meson. With these definitions and using the

conservation of the vector current we can arrive at an expression for the amplitude

MBrem = ie
αEMGF

2
√

2
VtbV

∗
tsfBC10mµ

[
µ̄

( 6ε 6PB
pµ− · k

− 6PB 6ε
pµ+ · k

)
γ5µ

]
, (3.21)

where εµ and k are the polarization and momentum of the photon respectively. Just as
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we would expect from the helicity structure involved, the amplitude for the bremsstrahlung

contribution is proportional to the lepton mass. So in the limit m` → 0, this contribution

should be small compared to the non helicity-suppressed contributions.

Each amplitude from Eqs. (3.12, 3.18, 3.21) individually satisfy the Ward identity and

are thus independently gauge invariant. Putting everything together, the distribution of the

decay width as a function of the kinematic variable s = (PBs − k)2/M2
Bs

= q2/M2
Bs

, in the

limit m` → 0,

dΓ

ds
=
dΓ

ds

∣∣∣∣
B∗s

+
dΓ

ds

∣∣∣∣
φB∗s

+
dΓ

ds

∣∣∣∣
φ

, (3.22)

where the decay distributions are given for the two different resonance amplitudes and their

interference.

dΓ

ds
|B∗s = XCKMM

3
Bsf

2
Bsµ

2
eff

[
(|C9|2 + |C10|2)xB∗s + 4C2

7xb − 4C7C9xbxB∗s
] s(1− s)3

(s− x2
B∗s

)2
,

dΓ

ds
|φ = XCKM

[
16C2

7 f
2
φ g

2
φm

2
b α

2
1

9m2
φ

]
(1− s)3

s
, (3.23)

dΓ

ds
|φB∗s = XCKM

[
4
√

2fBsfφgφM
3/2
Bs
mbα1µeff

3mφ

(C7C9xB∗s − 2C2
7xb)

]
(1− s)3

s− x2
B∗s

,

where we have defined XCKM = (G2
F |VtbV ∗ts|2M2

Bs
α3
EM)/(768π4), xb ≡ mb/MBs , and xB∗s ≡

MB∗s/MBs . We use the Wilson coefficients Ci(λ) choosing the scale at λ ' mb ' 5GeV ,

with C7 = 0.312, C9 = −4.21 and C10 = 4.64 [43][58]. The CKM matrix elements are

|VtbV ∗ts| = (4.7 ± 0.8) × 10−2 [59]. With the most recent lattice calculation of fBs is ≈ 228

MeV [60]. Note that, when integrated over the endpoint window the last two terms in

Eq. (3.22) are much smaller than the first one. The interference contribution is destructive
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and is

B(Bs → µ+µ−γE<60)φB∗s = −5.0× 10−17, (3.24)

B(Bs → µ+µ−γE<300)φB∗s = −1.1× 10−14, (3.25)

which are both much smaller than the B∗s contribution alone.

The normalized differential spectrum in s is shown in Fig.(3.2.3). The photon energy

is related to the invariant mass as Eγ = (1 − s)MB/2, so we can integrate the differential

spectrum over the required corresponding kinematic region in photon energy to obtain the

decay width.

Integrating Eq.(3.22) over the kinematic region corresponding to a soft photon cut of

Eγ ∼ 60, 300 MeV we get the respective branching ratios

B(Bs → µ+µ−γE<60) = 1.6× 10−12, (3.26)

B(Bs → µ+µ−γE<300) = 1.1× 10−10, (3.27)

which are quite too low to affect experimental determination of the branching ratio Bs →

µ+µ−, agreeing with the estimates of Ref. [40] where BSM(B0
s → µ+µ−) = (3.23 ± 0.27) ×

10−9.

3.3 B0
s → µ+µ−νµν̄µ transition

Because of the Glashow-Illiopulous-Maiani (GIM) mechanism, the SM loop diagram for

the helicity-suppressed B0
s → µ+µ− decay is dominated by the intermediate top quark despite

being suppressed by the CKM factors |VtbV ∗ts|2. A transition similar to the ones described

above, which on a portion of the available phase space looks like B0
s → µ+µ− is the tree-level

decay B0
s → µ+µ−νν̄. The dominant tree-level contribution for this process is depicted in
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Figure 3.2.3: Normalized differential spectrum in s. The grey shaded region corresponds to
the contribution from a soft photon energy cut at Eγ ∼ 60 MeV.

Figure 3.3.1: Bs → µ+µ−ν̄ν

Fig. 3.3.1. This decay can have a contribution to the background, which appears only

below q2 = M2
Bs

and, if numerically significant, can affect the extraction of B(Bs → µ+µ−).

This process is neither loop-dominated nor is it helicity suppressed. It nevertheless has a

kinematic phase space suppression due to the four-particle final state. For the Bs meson

decay, an intermediate charm quark will give the largest contribution since the intermediate

top quark diagram will be suppressed by the mass of the top quark. Also, the up quark

contribution is suppressed by VubV
∗
us ≈ λ4 whereas the charm contribution is only suppressed

by VcbV
∗
cs ≈ λ2, where λ ≈ 0.22.
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The transition amplitude for this process is simple,

MBs→µ+µ−νν̄ =
G2
F

2
VcbV

∗
cs〈0|s̄γβ(1− γ5)

i(6pc +mc)

p2
c −m2

c

γα(1− γ5)b|Bs〉Lα1Lβ2 , (3.28)

where Lα = µ̄γα(1−γ5)νµ. In the rest frame of the decaying meson we can reduce the phase

space integral’s dependence to five independent Lorentz invariants. In the same fashion as

in [61] we define these invariants as

S12 = (pµ− + pµ+)2, S13 = (pµ− + pν̄)
2, S34 = (pν̄ + pν)

2,

S123 = (pµ− + pµ+ + pν̄)
2 , S134 = (pµ− + pν̄ + pν)

2. (3.29)

Our width then becomes

dΓ =
(2π)4

2M

∫ (
π2

2M2

) |MBs→µ+µ−νν̄ |2

[−∆4(pµ− , pµ+ , pν̄ , pν)]
1/2
dS12dS123dS13dS134, (3.30)

where ∆4 is the symmetric Gram determinant

∆4(q, r, s, t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

q2 q · r q · s q · t

r · q r2 r · s r · t

s · q s · r s2 s · t

t · q t · r t · s t2

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.31)

In order to avoid the divergence of 1/(−∆4)1/2 on the boundary, suitable variable changes

can be made thereby making the singularity integrable. We define

S134 =
1

2a

[
−b+ sin(S̃134)(b2 − 4ac)1/2

]
,

S13 = 4(−a)1/2S̃13 +m2
` , (3.32)
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where a, b and c are the parameters solved by

−∆4(pµ− , pµ+ , pν̄ , pν) = aS2
134 + bS134 + c . (3.33)

The limits of integration are calculated in [61], resulting in our partial width

dΓ

dS12

=
2

(4π)6M3

∫ M2

S12

dS123

∫ ξ

0

dS34

∫ 1

m2
`/S12

dS̃13

∫ π/2

−π/2
dS̃134 |MBs→µ+µ−νν̄ |2 , (3.34)

where ξ = (M2−S123)(S123−S12)/S123. We define the cut on missing energy as Scut12 (Ecut) =

M2−2M(Ecut) which gives us a lower limit on S12 for the final integral in order to obtain the

decay width. The branching ratios for this contribution can then calculated using numerical

phase-space integration for various cuts including the one that corresponds to the invariant

mass range seen at the LHCb.

BR
[
Bs → µ+µ−νν̄

]
Ecut=60MeV

= 1.6× 10−25

BR
[
Bs → µ+µ−νν̄

]
Ecut=300MeV

= 1.4× 10−18. (3.35)

As we can see, the due to enormous phase space suppression (we are only interested in a small

sliver of the available four-particle final state), the possible contribution from this decay is

unimportant for experimental analyses.

3.4 Conclusion

We have seen from the above calculation that addition soft photon contributions can

affect the experimental branching ratio of Bs → µ+µ− by 1 to 3 % depending on the energy

resolution of the detector. While not helicity suppressed, the phase space is quite small and

leads to a small contribution.
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CHAPTER 4

SUPER-WIMPS AND (B,D)→ `ν̄`

This work was published in [28].

4.1 Introduction

There is evidence that the amount of dark matter (DM) in the Universe by far dominates

that of the luminous matter. It comes from a variety of cosmological sources such as the

rotation curves of galaxies [13, 14, 15], gravitational lensing, features of CMB [16] and large

scale structures [17]. While the presence of DM is firmly established, its basic properties

are still subject of a debate. If dark matter is comprised from some fundamental particle,

experimentally-measured properties, such as its relic abundance or production cross-sections

can be predicted. Experimental measurements of the abundance ΩDMh
2 ∼ 0.12 by WMAP

collaboration [2] can be used to place constraints on the masses and interaction strengths of

those DM particles. Indeed, the relation

ΩDMh
2 ∼ 〈σannvrel〉−1 ∝ M2

g4
, (4.1)

with M and g being the mass and the interaction strength associated with DM annihila-

tion, implies that, for a weakly-interacting massive particle (WIMP) of DM, the mass scale

should be set around the electroweak scale. Yet, difficulties in understanding of small-scale

gravitational clustering in numerical simulations with WIMPs may lead to preference being

given to much lighter DM particles. Particularly there has been interest in studying models

of light dark matter particle with masses of the keV range [20, 21]. According to Eq. (4.1),

the light mass of dark matter particle then implies a superweak interaction between the dark
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matter and standard model (SM) sector [22, 23]. Several models with light O(keV-MeV)

DM particles, or super-WIMPs, have been proposed [20, 21].

One of the main features of the super-WIMP models is that DM particles do not need

to be stable against decays to even lighter SM particles [20]. This implies that one does not

need to impose an ad-hoc Z2 symmetry when constructing an effective Lagrangian for DM

interactions with the standard model fields, so DM particles can be emitted and absorbed

by SM particles. Due to their extremely small couplings to the SM particles, experimental

searches for super-WIMPs must be performed at experiments where large statistics is avail-

able. In addition, the experiments must be able to resolve signals with missing energy [24].

Super-B factories fit this bill perfectly.

In this paper we focus on bosonic super-WIMP models [20, 21] for dark matter candidates

and attempt to constrain their couplings with the standard model through examining leptonic

meson decays. The idea is quite straightforward. In the standard model the leptonic decay

width of, say, a B-meson, i.e. the process B → `ν̄, is helicity-suppressed by (m`/mB)2 due

to the left-handed nature of weak interactions [62],

Γ(B → `ν̄) =
G2
F

8π
|Vub|2f 2

Bm
3
B

m2
`

m2
B

(
1− m2

`

m2
B

)2

. (4.2)

Similar formula is available for charmed meson D+ and Ds decays with obvious substitution

of parameters. The only non-perturbative parameter affecting Eq. (4.2), the heavy meson

decay constant fB, can be reliably estimated on the lattice [63], so the branching ratio for

this process can be predicted quite reliably.

The helicity suppression arises from the necessary helicity flip on the outgoing lepton

due to angular momentum conservation as initial state meson is spinless. The suppression

can be overcome by introducing a third particle to the final state that contributes to total

angular momentum [45] (see Fig. 4.1.1). If that particle is a light DM candidate, helicity

suppression is traded for a small coupling strength of DM-SM interaction. In this case, the
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Figure 4.1.1: Diagrams for the super-WIMP emission in B → `ν̄`X. Similar diagrams exist
for D(s) decays. Note that the graph (b) is absent for the vector light dark matter particles
discussed in section 4.4.
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charged lepton spectrum of the 3-body B → `ν̄` + X (with X being the DM candidate)

process will be markedly different from the spectrum of two-body B → `ν̄` decay. Then,

the rate for the process B → ` + /E, with /E being missing energy, can be used to constrain

properties of light DM particles.

We shall consider two examples of super-WIMPs, the “dark photon” spin-1 particle, and

a spin-0, axion-like state. The discussion of the vector dark matter effects is similar to a

calculation of the radiative leptonic decay [45], i.e. the spin of the added DM particle brings

the needed unit of angular momentum. In the case of axion-like DM candidate, there is

a derivative coupling to the SM allowing the pseudoscalar particle to carry orbital angular

momentum and hence overcome helicity suppression as well. As a side note, we add that the

models of new physics considered here are very different from the models that are usually

constrained in the new physics searches with leptonic decays of heavy mesons [64, 65].

This paper is organized as follows. In Section 4.2 we examine the decay width for the

process M → `ν̄` + X for X = a being a spin-0 particle. We consider a particular two-

Higgs doublet model, taking into account DM-Higgs mixing in Section 4.3. In Section 4.4

we consider constraints on a spin-1 super-WIMP candidate. We conclude in Section 4.5.

4.2 Simple Axion-Like Dark Matter

We consider first an ”axion-like” dark matter (ALDM) model, as suggested in [20] and

study the tree-level interactions with the standard model fermions. The most general La-

grangian consists of a combination of dimension-five operators,

La = −∂µa
fa

ψ̄γµγ5ψ +
Cγ
fa
aFµνF̃

µν , (4.3)

where X = a is the DM particle and the coupling constant fa has units of mass. Taking into

account the chiral anomaly we can substitute the second term with a combination of vector
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and axial-vector fermionic currents,

La = −
(

1

fa
+

4πCγ
faα

)
∂µa ψ̄γ

µγ5ψ − imψ

(
8πCγ
faα

)
aψ̄γ5ψ. (4.4)

The feynman diagrams that contribute to the meson decay, for example B → `ν̄` + a, are

shown by Fig 4.1.1. The amplitude for the emission of a in the transition M → `ν̄` + a can

be written as

AM→`ν̄a = A` +Aq, (4.5)

where Aq, the quark contribution, represents emission of a from the quarks that build up the

meson and A`, the leptonic contribution, describe emission of a from the final state leptons.

Let’s consider the lepton amplitude first. Here we can parameterize the axial matrix

elements contained in the amplitude in terms of the decay constant fB such as

〈0|ūγµγ5b|B〉 = ifBP
µ
B, (4.6)

If the mass of the axion-like DM particle is small (ma → 0), the leptonic contribution

simplifies to

A` = i
√

2GFVub
fM
fa
m`

(
m`

2k · p`
[ū` 6 k(1− γ5)vν ]− [ū`(1− γ5)vν ]

)
. (4.7)

Here k is the DM momentum. Clearly, this contribution is proportional to the lepton mass

and can, in principle, be neglected in what follows. The contribution to the decay amplitude

from the DM emission from the quark current is

Aq = i〈0|ūΓµb|B〉[ū`γµ(1− γ5)vν ] (4.8)
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where the current ūΓµb is obtained from the diagrams in Figure 4.1.1 (a) and (c),

Γµ =
GF√
2fa

Vub

[
(6 kγ5)(6 k− 6 pu +mu)γ

µ(1− γ5)

m2
a − 2pu · k

+
γµ(1− γ5)(6 pb− 6 k +mb)(6 kγ5)

m2
a − 2pb · k

]
. (4.9)

Since the meson is a bound state of quarks we must use a model to describe the effective

quark-antiquark distribution. We chose to follow Refs. [66] and [67], where the wave function

for a ground state meson M can be written in the form

ψM =
Ic√

6
φM(x)γ5(6 PM +MMgM(x)). (4.10)

Here Ic is the identity in color space and x is the momentum fraction carried by one of the

quarks. For a heavy meson H it would be convenient to assign x as a momentum fraction

carried by the heavy quark. Also, for a heavy meson, gH ∼ 1, and in the case of a light

meson gL = 0. For the distribution amplitudes of a heavy or light meson we use

φL ∼ x(1− x), (4.11)

φH ∼
[

(m2/M2
H)

1− x +
1

x
− 1

]−2

, (4.12)

where m is the mass of the light quark and the meson decay constant is related to the

normalization of the distribution amplitude,

∫ 1

0

φM(x)dx =
fM

2
√

6
. (4.13)

The matrix element can then be calculated by integrating over the momentum fraction [67]

〈0|Jµ|M〉 =

∫ 1

0

dx Tr [ΓµψM ] . (4.14)
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Neglecting the mass of the axion-like DM particle, the decay amplitude simplifies to

Aq = i

√
3GFVubMB

fa(k · PB)

(
MBΦB

1 −mbΦ
B
0

) [
¯̀ 6 k(1− γ5)ν

]
, (4.15)

where mb is the mass of the b-quark (or, in general, a down-type quark in the decay), and

we defined

ΦM
n =

∫ 1

0

φM(x)

x(1− x)
xndx (4.16)

The total decay width is, then,

ΓB→a`ν` =
G2
Ff

2
B|Vub|2M5

B

64π3f 2
a

[
1

6
(2ρ2 + 3ρ4 + 12ρ4 log ρ− 6ρ6 + ρ8)

+ g2
B Φ(mb,MB)2(1− 6ρ2 − 12ρ4 log ρ+ 3ρ4 + 2ρ6)

]
, (4.17)

where ρ ≡ m`/mB. Also,

Φ(mb,MB) =
mbΦ0 −MBΦ1

fBMB

. (4.18)

Note that Φ(mb,MB) ∝ 1/m, which is consistent with spin-flipping transition in a quark

model, which would explain why this part of the decay rate is not proportional to m`. Similar

results for other heavy mesons, like D+ and D+
s are obtained by the obvious substitution of

relevant parameters, such as masses, decay constants and CKM matrix elements.

Experimentally, the leptonic decays of heavy mesons are best studied at the e+e− flavor

factories where a pair of M+M− heavy mesons are created. The study is usually done by

fully reconstructing one of the heavy mesons and then by finding a candidate lepton track

of opposite sign to the tagged meson. The kinematical constraints on the lepton are then

used to identify the decays with missing energy as leptonic decay.

In the future super-B factories, special studies of the lepton spectrum in M → `+missing

energy can be done using this technique to constrain the DM parameters from Eq. (4.17).

The lepton energy distributions, which are expected to quite different for the three-body
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decays B− → a`−ν̄` are shown (normalized) in Fig. 4.2.1 for each lepton decay process.

However, we can put some constraints on the DM coupling parameters using the currently

available data on M → `ν̄`. The experimental procedure outlined above implies that what

is experimentally detected is the combination,

Γexp(M → `ν̄`) = ΓSM(M → `ν̄`) +

∫
E<E0

dEa
dΓ(M → a`ν̄`)

dEa

= ΓSM(M → `ν̄`) [1 +Ra(E0)] , (4.19)

where E0 is the energy cutoff that is specific for each experiment. Equivalently, cutoff in q2

can also be used. In the above formula we defined

Ra(E0) =
1

ΓSM(M → `ν̄`)

∫
E<E0

dEa
dΓ(M → a`ν̄`)

dEa
. (4.20)

Our bounds on the DM couplings from different decay modes are reported in Table 7.0.1

in the appendix for the cutoff values of E0 = 100 MeV. Note that similar expressions for

the leptonic decays of the light mesons, such as π → a`ν̄ and K → a`ν̄ come out to be

proportional to the mass of the final state lepton. This is due to the fact that in the light

meson decay the term proportional to g vanishes. Thus, those decays do not offer the same

relative enhancement of the three-body decays due to removal of the helicity suppression

in the two-body channel. It is interesting to note that the same is also true for the heavy

mesons if a naive Non-Relativistic Constituent Quark Model (NRCQM), similar to the one

used in Refs. [68, 69] is employed. We checked that a simple replacement

pb =
mb

mB

PB, pu =
mu

mB

PB (4.21)

advocated in [68, 69] is equivalent to use of symmetric (with respect to the momentum

fraction carried by the heavy quark) distribution amplitude, which is not true in general.
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Currently, the SM predictions for the B− → `−ν̄` decay for ` = µ, e are significantly

smaller than the available experimental upper bounds [70, 71], which is due to the smallness

of Vub and the helicity suppression of this process. This, even in the standard model, there is

a possibility that some of the processes B− → γs`
−ν̄`, with γs being the soft photon missed

by the experimental detector. Such photons would affect the bounds on the DM couplings

reported in Table 7.0.1.

The issue of the soft photon “contamination” of B− → `−ν̄` is non-trivial if model-

independent estimates of the contributions are required (for the most recent studies, see

[44]). In order to take those into account, the formal in Eq. (4.19) should be modified to

Γexp(M → `ν̄`) = ΓSM(M → `ν̄`) [1 +Ra(E0) +Rγs(E
′
0)] . (4.22)

In general, the experimental soft photon cutoff E ′0 could be different from the DM emission

cutoff E0. Since we are only interested in the upper bounds on the DM couplings, this issue

is not very relevant here, as the amplitudes with soft photons do not interfere with the

amplitudes with DM emission. Nevertheless, for the purpose of completeness, we evaluated

the possible impact of undetected soft photons using NRCQM as seen in [68, 69]. The results

are presented in Table 7.0.1 in the appendix of this dissertation for different values of cutoff

on the photon’s energy. We present the NRCQM mass parameters in Table 4.2.1 with the

decay constants calculated in [72].

The relevant plots for D (Ds) decays can be obtained upon substitution MB →MD(Ds),

fB → fD(Ds), and Vub → Vcd(cs). Note that there is no CKM suppression for Ds decays.

In order to bound fa we use the experimentally seen transitions B → τ ν̄, D(s) → µν̄, and

Ds → τ ν̄. We note that the soft photon “contamination” can be quite large, up to 10% of

the standard model prediction for the two body decay.

The resulting fits on fa can be found in Table 4.2.2. As one can see, the best constraint

comes from the D± → µ±ν̄µ decay where experimental and theoretical branching ratios are
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Figure 4.2.1: Normalized electron (solid) and muon (dashed) energy distributions for the
heavy (B±, D±, D±s ) meson decay channels.

in close agreement.

4.3 Axion-like Dark Matter in a Type II Two Higgs

Doublet Model

A generic axion-like DM considered in the previous section was an example of a simple

augmentation of the standard model by an axion-like dark matter particle. A somewhat

different picture can emerge if those particles are embedded in more elaborate beyond the

standard model (BSM) scenarios. For example, in models of heavy dark matter of the

“axion portal”-type [74], spontaneous breaking of the Peccei-Quinn (PQ) symmetry leads to

an axion-like particle that can mix with the CP-odd Higgs A0 of a two Higgs Doublet model

(2HDM). For the sufficiently small values of its mass this state itself can play a role of the light
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Quark Constituent Mass

mu 335.5 MeV
md 339.5 MeV
ms 486 MeV
mc 1550 MeV
mb 4730 MeV

Table 4.2.1: Constituent quark masses [73] used in calculations.

Channel fa,MeV

B (B± → τ±ν̄τ ) 12
B (D± → µ±ν̄µ) 236
B (D±

s → µ±ν̄µ) 62
B (D±

s → τ±ν̄τ ) 11

Table 4.2.2: Constraint on fa using the various seen decay channels.

DM particle. The decays under consideration can be derived from the B → `νA0 amplitude.

An interesting feature of this model is the dependence of the light DM coupling upon the

quark mass. This means that the decay rate would be dominated by the contributions

enhanced by the heavy quark mass. This would also mean that the astrophysical constraints

on the axion-like DM parameters might not probe all of the parameter space if this model.

In a concrete model [74], the PQ symmetry U(1)PQ is broken by a large vacuum expec-

tation value 〈S〉 ≡ fa � vEW of a complex scalar singlet Φ. As in [75], we shall work in an

interaction basis so that the axion state appears in Φ as

Φ = fa exp

[
ia√
2fa

]
(4.23)

and A0 appears in the Higgs doublets in the form

Φu =

 vu exp

[
i cotβ√
2vEW

A0

]
0

 , Φd =

 0

vd exp

[
i tanβ√
2vEW

A0

]
 , (4.24)
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where we suppress the charged and CP-even Higgses for simplicity and define tan β = vu/vd

and vEW =
√
v2
u + v2

d ≡ mW
g

. We choose the operator that communicates PQ charge to the

standard model to be of the form1

L = λΦ2ΦuΦd + h.c. (4.25)

This term contains the mass terms and, upon diagonalizing, the physical states in this basis

are given by [75]

ap = a cos θ − A0 sin θ (4.26)

A0
p = a sin θ + A0 cos θ (4.27)

where tan θ = (vEW/fa) sin 2β. Here ap denotes the ”physical” axion-like state. Thus, the

amplitude for B → `νap can be derived from

M(B → `νap) = − sin θM(B → `νA0) + cos θM(B → `νa) (4.28)

In a type II 2HDM [75, 76, 77], the relevant Yukawa interactions of the CP-odd Higgs with

fermions are given by

LA0ff̄ =
ig tan β

2mW

mdd̄γ5dA
0 +

ig cot β

2mW

muūγ5uA
0 (4.29)

where d = {d, s, b} refers to the down type quarks and u = {u, c, t} refers to the up type

quarks. The interaction with leptons are the same as above with d→ ` and u→ ν.

In the axion portal scenario the axion mass is predicted to lie within a specific range of

360 < ma ≤ 800 MeV to explain the galactic positron excess [74]. Using the quark model

1This is the case of the so-called Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) axion, although other forms
of the interaction term with other powers of the scalar field Φ are possible [75].
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introduced in the previous section we obtain the decay width

Γ (B → `ν`ap) =
G2
F |Vub|

2m3
B

256π3(f2a+v2EW sin2 2β)

×
[
cos 2β

(
muΦ

B
1 +mb(Φ

B
0 − ΦB

1 )
)

+ 5
[
mb(Φ

B
1 − ΦB

0 ) +muΦ
B
1

]]2
×
[

12x4
a log(xa)− 4x6

a + 3x4
a + (ρ− 1)4(4(ρ− 2)ρ+ 1)− 12(ρ− 1)4 log(1− ρ)

]
(4.30)

Here we defined xa = ma/mB, and ρ = m`/mB. If we assume fa � vEW sin 2β we can then

provide bounds on fa as seen in Table 4.3.1. Just like in the previous section, the results for

fa(MeV ) fa(MeV ) fa(MeV ) fa(MeV )
Channel tanβ = 1 tanβ = 5 tanβ = 10 tanβ = 20

B (B± → τ±ν̄τ ) 70 340 357 361
B (D± → µ±ν̄µ) 416 2874 3078 3131
B (D±

s → µ±ν̄µ) 532 1380 1499 1529

Table 4.3.1: Constraint on fa using the observed decays for various tan βs.

other decays, such as D(s) → `ν̄`, can be obtained by the trivial substitution of masses and

decay constants.

4.4 Light Vector Dark Matter

Another possibility for a super-WIMP particle is a light (keV-range) vector dark matter

boson (LVDM) coupled to the SM solely through kinetic mixing with the hypercharge field

strength [20]. This can be done consistently by postulating an additional U(1)V symmetry.

The relevant terms in the Lagrangian are

L = −1

4
FµνF

µν − 1

4
VµνV

µν − κ

2
VµνF

µν +
m2
V

2
VµV

µ + Lh′ , (4.31)
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where Lh′ contains terms with, say, the Higgs field which breaks the U(1)V symmetry, κ

parameterizes the strength of kinetic mixing, and, for simplicity, we directly work with the

photon field Aµ. In this Lagrangian only the photon Aµ fields (conventionally) couple to the

SM fermion currents.

It is convenient to rotate out the kinetic mixing term in Eq. (4.31) with field redefinitions

A→ A′ − κ√
1− κ2

V ′, V → 1√
1− κ2

V ′. (4.32)

The mass mV will now be redefined as mV → mV√
1−κ2 . Also, both A′µ and V ′µ now couple to

the SM fermion currents via

Lf = −eQfA
′
µψ̄fγ

µψf −
κeQf√
1− κ2

V ′µψ̄fγ
µψf , (4.33)

where Qf is the charge of the interacting fermion thus introducing our new vector boson’s

coupling to the SM fermions. Calculations can be now carried out with the approximate

modified charge coupling for κ� 1,

κe√
1− κ2

≈ κe. (4.34)

As we can see, in this case the coupling of the physical photon did not change much compared

to the original field Aµ, while the DM field V ′µ acquired small gauge coupling κe. It is now

trivial to calculate the process B → `ν̄VDM , as it can be done similarly to the case of the

soft photon emission in Sect. 4.2. Employing the gauge condition ε · k = 0 for the DM fields,

the amplitudes become in the limit mV → 0

Aq = i
GFVubκeε

∗α

6k · pB
[
Aµα

¯̀γµ(1− γ5)ν` +B ¯̀γα(1− γ5)ν` + Cα ¯̀(1− γ5)ν`,+D
µ ¯̀σµα(1 + γ5)ν`

]
(4.35)
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with the coefficients

Aµα =
[
3
√

2fB − 2
√

3(ΦB
0 + ΦB

1 )
]
kµqα − 2

√
3(ΦB

0 − 3ΦB
1 )iεµασρkσqρ,

B = −
[
3
√

2fB − 2
√

3(ΦB
0 + ΦB

1 )
]

(k · q)− 3√
2
fBm

2
B

− 2
√

3gmB [m2(φ0 − 3φ1) + 2mBφ1] , (4.36)

Cα = 3
√

2fBm`
qαk · p` − pα` k · q

k · p`
,

Dµ = −3
√

2ifBm`
k · q
k · p`

kµ,

and q = p` + pν . Again, we fit the parameter κ using the same data as in the axion-like DM
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Figure 4.4.1: Normalized electron (dashed) and muon (solid) energy distributions for the
heavy {(B±, D±, D±s } meson decay channels.

case. The results are shown in Figure 4.4.1 where the D± → µ±ν̄µV decay can yield the
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best bound. Using the best constraint on κ from the D± → µ±ν̄µV decay we can limit the

Channel
κ−2RV (E0)

E0 = 100 MeV
κ

B (B± → τ±ν̄τ ) 8.8× 10−3 ≤ 11.6
B (D± → µ±ν̄µ) 5.7× 10−1 ≤ 0.31
B (D±

s → µ±ν̄µ) 5.4× 10−2 ≤ 1.49
B (D±

s → τ±ν̄τ ) 1.3× 10−4 ≤ 20.8

B (B± → e±ν̄e) 1.8× 103 ≤ 11.2
B (B± → µ±ν̄µ) 1.0× 10−1 ≤ 4.17
B (D± → e±ν̄e) 1.5× 103 ≤ 0.83
B (D± → τ±ν̄τ ) 1.8× 10−4 ≤ 36.4
B (D±

s → e±ν̄e) 5.2× 102 ≤ 1.37

Table 4.4.1: Constraints on κ using various decay channels. All other values are the same
as in appendix Table 6.0.1.

contribution to yet-to-be-seen decays in Table 4.4.2.

As we can see, the constraints on the kinetic mixing parameter κ are not very strong,

but could be improved in the next round of experiments at super-flavor factories.

4.5 Conclusions

We considered constraints on the parameters of different types of bosonic super-WIMP

dark matter from leptonic decays of heavy mesons. The main idea rests with the fact

that in the standard model the two-body leptonic decay width of a heavy meson M =

{B,D(s)}, or Γ(M → `ν̄), is helicity-suppressed by (m`/mB)2 due to the left-handed nature

of weak interactions [62]. A similar three-body decay M → `ν̄`X decay, which has similar

Channel B(κ = 0.31)

B (B± → e±ν̄e) 1.4× 10−9

B (B± → µ±ν̄µ) 3.6× 10−9

B (D± → e±ν̄e) 1.2× 10−6

B (D± → τ±ν̄τ ) 1.7× 10−8

B (D±
s → e±ν̄e) 6.2× 10−6

Table 4.4.2: Contributions to various yet-to-be-seen channels using the the fit on κ in Ta-
ble 4.4.1.
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experimental signature, is not helicity suppressed. We put constraints on the couplings of

such DM particles to quarks. We note that the models of new physics considered here are

very different from the models that are usually constrained in the new physics searches with

leptonic decays of heavy mesons [64].



54

CHAPTER 5

NEW PLAYERS IN RARE CHARM DECAYS

5.1 Introduction

Flavor changing neutral currents are allowed only at loop level in the SM, allowing the

explorationg of effects where the dominant tree level is forbidden. Additional new physics

that arise from additional particles through virtual loops allow a direct test of heir contribu-

tions. Rare decays with FCNCs have been extensively considered in the case of down-type

quarks, B,K mesons. The rare decays of these down-type mesons have already provided

tight constraints on NP. In the charm sector, the lack of an equivalently heavy down-type

quark (mt >> mb) leads to a greater suppression of SM short distance amplitudes. The

rare decays of D mesons therefore are usually dominated by non-perturbative long-distance

effects and are more difficult to calculate.

Additional NP can enhance both short and long distance contributions, and in some

models can be orders of magnitude larger than the SM [78, 79, 80]. In order to take any

constraints on NP seriously it is important to have a very reliable SM prediction.

We consider the SM contribution of two-particle intermediate states to the decay of

D0 → µ+µ−. This decay is suppressed in the standard model, and still outside of current

experimental resolution. The leading contributions are from the unitary contribution of

D0 → γγ → µ+µ−, and is predicted to be Br ≈ O(10−13) [81]. The short distance O(10−18)

and single particle unitary contributions O(10−17) are much smaller [81].

We propose that two-particle unitary contributions may be of significance, and wish to

analyze which intermediate states may be involved.

We split the calculation into four parts: The calculation of the hadronic weak decay

amplitude of D → PP and D → PV ; the integration over the inner-loop momenta using
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Cutkosky rules; the pQCD factorized amplitude of PP (V ) → µ+µ−, and the dispersion

relation to obtain both the real and imaginary parts of the amplitude. We will see that

many states do not contribute at leading order.

5.2 SU(3) Flavor Decays of Charmed Mesons

While pQCD, SCET and QCD factorization are all applicable to hadronic B decays,

the charm case is more difficult. In hadronic decays, the mass of the charm meson, MD ≈

1.5GeV , is too heavy for a proper chiral perturbative expansion and yet too light to create

trustworthy heavy quark expansions. Factorization methods fail to properly describe color-

suppressed decay modes [82]. If one lets Nc become ‘large”, the Fierz transformed terms in

factorization can be neglected and resolves some of the discrepancy between experiment and

theory [83, 84, 85, 86, 87], though this method is not general to both D and B decays.

One valuable method of determining hardronic decay amplitudes of charmed mesons is

based on a model-independent diagrammatic expansion. Topological flavor flow diagrams

expanded in the weak-interaction allows an experimentally-based parametrical fit that in-

cludes all strong interactions. One must assume a base SU(3) flavor symmetry, but broken

symmetry effects can be parameterized and fit depending on experimental data.

The diagrammatic approach separates amplitudes into categories of diagrams: Color-

allowed amplitudes T; Color-suppressed amplitudes C; W-Exchange amplitudes E, and W-

Annhilation amplitudes A. These parameters, as well as relevant strong phases, can be fit

currently to experimental data.

We wish to use this approach to model-independently fit both the real and imaginary

parts of the intermediate-state amplitudes, D0 → PP (V ), in order to use with our dispersive

amplitude approach. The fits have been done in [82], and while SU(3) breaking effects have

been improved in [88], they have not calculated PV amplitudes which are necessary for our

calculation.
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5.2.1 Amplitudes

The amplitudes are fit using the partial decay width

Γ(D → PP ) =
pc

8πM2
D

|A|2. (5.1)

For D0 → PP we use the parameters, in units of 10−6GeV [82]

T = 3.14, C = (2.61)e−i(152±1)◦ , (5.2)

E = (1.53)ei(122±2)◦ , A = (0.39)ei(31+20
−33)◦ , (5.3)

and for the Cabibbo-suppressed decays

T ′ = 1.14, C ′ = (2.36)ei222◦ , (5.4)

E ′ = (1.85)e−i52◦ , A′ = (2.51)ei100◦ . (5.5)

The amplitudes, XPP are given by these are found in Table 5.2.1.

Meson Mode Representation XPP

D0 → π+π− V ∗cdVud (T ′ + E ′) -0.50 + 0.32 i
π0π0 1√

2
V ∗cdVud (C ′ − E ′) 0.45 + 0.02 i

K+K− V ∗csVus (T ′ + E ′) 0.50 - 0.32 i
K0K̄0 V ∗cdVudE

′
s + V ∗csVusE

′

d 0 + 0 i

Table 5.2.1: Cabibbo-suppressed Decay Amplitudes XPP in units 10−6GeV .

The parameters for the PV case are those found in [82] for solutions S and S1. These are

argued to be the most likely solutions as they have the lowest χ2 and several of the others

are ruled out by additional hadronic decays. They are fit using the partical decay width
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definition

Γ(D → PV ) =
pc

8πM2
D

∑
pol

|A|2, (5.6)

where the polarization of the vector meson has been intentionally left in the definition of the

amplitude. This yields the best fit parameters

TP = 3.14+0.29
−0.31, CV = (4.15+0.34

−0.57)ei(177+16
−13)◦ , EV = (1.31+0.40

−0.47)e−i(106+13
−16)◦ ,

TV = 2.15+0.08
−0.09, CP = (2.68+0.14

−0.15)e−i(164±3)◦ , EP = (1.69± 0.06)e−i(103±4)◦ .

(5.7)

These result in the hadronic D0 → PV amplitudes found in Table 5.2.2.

Meson Mode Representation XPP

D0 → π+ρ− V ∗cdVud (T ′V + E ′P ) -0.39 + 0.36 i
π−ρ+ V ∗cdVud (T ′P − E ′V ) -0.61 + 0.28 i
K+K∗− V ∗csVus (T ′V + E ′P ) 0.39 - 0.36 i
K−K∗+ V ∗csVus (T ′P + E ′V ) 0.61 - 0.28 i

Table 5.2.2: Cabibbo-suppressed Decay Amplitudes XPV in units 10−6(ε · PD)GeV .

We now have the complex amplitudes necessary to calculate the dispersive part of the

2PUC amplitude. As we saw in (5.28) only the imaginary component of these amplitudes

will contribute due to the nature of the remaining part of the diagram.

5.2.2 pQCD Form Factors

Perturbative QCD [67] is a large field of diverse methods, applications and approximations

describing the factorization of hard and soft physics of QCD at high energy scales. We use

an elementary version restricted to a leading-order calculation of the neutral-weak transition

amplitude of two light mesons. As such, if the reader is interested in the applicability of
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pQCD to heavy meson decays or other uses there is an abundance of literature to provide

an essential primer [89, 90].

The factorization of an amplitude can be expressed as an intergral over the momentum

fractions of the product of the distribution amplitudes(DA) φP,V (x) and the hard scattering

amplitude (HSA) TH(x, y,Q2).

〈P2|
∑

q=u,d,s

Cq
V q̄γ

µq|P1〉0 =

∫
x,y

φP (x)TH(x, y, s, µ2)φ†P (y), (5.8)

where we have defined the variable s = (p1 − p2)2 = Q2, and the notation

∫
x,y

≡
∫ 1

0

dx

∫ 1

0

dy. (5.9)

First we will consider the pQCD calculation of form factors for PP (V )→ µ+µ− as we will

see it sets a limit on which channels contribute and which are zero at leading order. We can

generally parameterize matrix elements for vector and axial-vector PP and PV transitions,

where m2 ≥ m1 as

〈P (p2)|J µ
V |P (p1)〉 = fPP+ (q2)

[
pµ1 + pµ2 −

m2
2 −m2

1

q2
qµ
]

+ fPP0 (q2)

[
m2

2 −m2
1

q2
qµ
]

〈V (p2)|J µ
V |P (p1)〉 = V PV (q2)

[
2

m1 +m2

εµναβp1νp2αε
∗
2β

]
(5.10)

〈V (p2)|J µ
A |P (p1)〉 = iAPV1 (q2)

[
(m1 +m2)ε∗2µ

]
− iAPV2 (q2)

[
(ε∗2 · p1)

m1 +m2

(pµ1 + pµ2)

]
− i

(
APV3 (q2)− APV0 (q2)

) [2m2

q2
(ε∗2 · p1)qµ

]
,

where q = p1 − p2. Using the BSW parameterization [91], where A0, A1, A2, A3 are related
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through

APV3 =
m1 +m2

2m2

APV1 (q2)− m1 −m2

2m2

APV2 (q2), (5.11)

Here it should be noted that in general these form factors will have a contribution from

each quark current involved in the process. In our case the neutral currents are flavor-

conserving currents of the form q̄γµq and q̄γµγ
5q.

The LO electroweak contributions require the sum of the intermediate states to be flavor-

neutral, that is to say contributions of the form D0 → K+π− → µ+µ− will be neglected,

as they will be higher order in GF due to the electroweak transition required at the lep-

tonic vertex to change flavors. Leading processes will occur through an off-shell Z boson,

as conservation of the leptonic vector current eliminates the contribution from an off-shell

photon. The amplitude will be helicity suppressed by the lepton mass due to the nature

of the decaying particle as explained previously. Thus, only the axial muonic current will

contribute.

The hard scattering amplitude can be calculated by the quark-level diagrams as seen in

Figure 5.2.1. For both the PP and PV cases there are two groups of diagrams; one for

neutral mesons, one for charged mesons.

For neutral initial and final states there are 4 additional diagrams. These annhilation-

type diagrams are 1
Nc

suppressed.

For the charged pseudoscalar meson pairs there are four same-flavor combinations, π± →

π±Z∗ and K± → K±Z∗, that will determine which intermediate states will contribute at

leading order. For one pseudoscalar and one vector meson the possible charged combinations

are π± → ρ±Z∗, K± → K∗±Z∗. As we’re concerned with a rough approximation we take
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Figure 5.2.1: Quark-flow diagrams contributing to the charged-meson hard scattering am-
plitude TH .

the meson wave functions at leading Twist (Twist-2) are defined as [92]

ΦP (P, x) =
1√
2Nc

γ5 6PφP (x) ,

ΦV (P, η, x) =
1√
2Nc

6εLMV φVL (x) , (5.12)

where only the longitudinal component of the vector meson participates at Twist-2. The

parton distribution functions are defined as an expansion in Gegenbauer polynomials and

are [92]

φP (x) =
fP

2
√

2Nc

6x(1− x)(1 + a2PC
3
2
2 [2x− 1] + a4PC

3
2
4 [2x− 1]),

φVL (x) =
fVL

2
√

2Nc

6x(1− x)(1 + a2VC
3
2
2 [2x− 1]). (5.13)
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Here we use the numerical values a2π = 0.35, a4π = −0.015, a2K = 0.35, a4K = 0, a2ρ =

0.15, a2K∗ = 0.18 [93, 94].

The Gegenbauer polynomials used are defined as

C
3
2
1 [t] = 3t, (5.14)

C
3
2
2 [t] =

3

2
(5t2 − 1), (5.15)

C
3
2
4 [t] =

15

8
(21t4 − 14t2 + 1).

PP

Using the above with the hard scattering amplitude we obtain our LO matrix element

for a PP current coupling a SM vector current,

〈P2|
∑

q=u,d,s

Cq
V q̄γ

µq|P1〉0 =

∫
x,y

φP (x)TH(x, y, s, µ2)φ†P (y) (5.16)

=
16παs(µ

2)CF (Cu
V − Cd

V )

s
(P µ

1 + P µ
2 )

∫
x,y

φP (x)φ†P (y)

xy

which is very simply related to the leading order form factor, fPP+ in (5.10). Here CF = N2
c−1

2Nc

and the number of colors Nc = 3. Cq
V are the vector component coefficients of the standard

model neutral current. These are listed in Table 5.2.3.

q Cq
V Cq

A

u i
gW (3−8 sin2 θW )

12 cos θW
−i gW

4 cos θW

d/s i
gW (4 sin2 θW−3)

12 cos θW
i gW

4 cos θW

e/µ i
gW (sin2 θW− 1

4)
cos θW

i gW
4 cos θW

Table 5.2.3: SM vector and axial-vector neutral current coefficients
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Integrating over the momentum fractions using the definitions in (5.13) we have

fPPZ+ (s) =
18παs(µ

2)fP1fP2CF (Cu
V − Cd

V )

Nc

1

s
, (5.17)

The pseudoscalar-vector coupling is a touch more difficult, as at first glance it involves

end-point divergences. This can be resolved by threshold resummation insertion which

smears out the endpoints, allowing a rough calculation.

PV And Threshold Resummation

We use the method of [95] of inserting a threshold resummation factor,

St(x,Q) =
21+2cΓ(3/2 + c)√

πΓ(1 + c)
[x(1− x)]c, (5.18)∫

x,y

φ(x)TH(x, y,Q2)φ†(y) →
∫
x,y

φ(x)S(x, c)TH(x, y,Q2)S(y, c)φ†(y) (5.19)

This factor was derived in [96] at the scale of MB5.28GeV , and is phenomenologically mo-

tivated. We must modify its power-law behavior as for our case Q2 = MD0 ≈ (1860GeV )2.

This method has been first given in [96], where [97] derived the parabolic parameterization

c→ c(Q2) = max(0.04Q2 − 0.51Q+ 1.87, 1 ). (5.20)

where for our case c→ 1. This provides a quick falloff as x→ 0 which removes the divergence

by spreading out the endpoint divergence without the need for Sudakov resummation factors.

Following the same method as before and integrating with the the threshold resummation
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factor we have the vector form factor

V PV (s) =
(
8iπαs(µ

2)CFm2

)
(m1 +m2)(Cu

V + Cd
V )

×
∫
x,y

φP (x)S(x, c)

(
x− 1

x2ys2

)
S(y, c)φ†V (y)

= (32.13)i
παs(µ

2)fP1fV2Lm2(m1 +m2)CF (Cu
V + Cd

V )

Nc

1

s2
. (5.21)

The axial form factors are

APV1 (s) = −
(

8iπαs(µ
2)CF

m2

m1 +m2

)
(Cu

A − Cd
A)

×
∫
x,y

φP (x)S(x, c)

(
1 + x

x2ys

)
S(y, c)φ†V (y)

= (50.13)i
παs(µ

2)fP1fV2Lm2(m1 +m2)CF (Cu
A + Cd

A)

Nc

1

s
, (5.22)

APV2 (s) =
(
4iπαs(µ

2)CFm2(m1 +m2)
)

(Cu
A + Cd

A)

×
∫
x,y

φP (x)S(x, c)

(
1− 3x

x2ys2

)
S(y, c)φ†V (y)

= (7.065)i
παs(µ

2)fP1fV2Lm2(m1 +m2)CF (Cu
A − Cd

A)

Nc

1

s2
, (5.23)

APV3 (s) = −
(
2iπαs(µ

2)CF (Cu
A − Cd

A)
)

×
∫
x,y

φP (x)S(x, c)

(
(2s(x+ 1)− (1− 3x)(m2

2 −m2
1)

x2ys2

)
S(y, c)φ†V (y)

= −(3.53)i
παs(µ

2)fP1fV2LCF (Cu
A − Cd

A)

Nc

5.82s− (m2
2 −m2

1)

s2
, (5.24)
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APV0 (s) = −
(
2iπαs(µ

2)CF (Cu
A − Cd

A)
)

×
∫
x,y

φP (x)S(x, c)

(
(m2

1(1− 3x) +m2
2(3x− 1) + sx+ s)

x2ys2

)
S(y, c)φ†V (y)

= −(3.53)i
παs(µ

2)fP1fV2LCF (Cu
A − Cd

A)

Nc

3.53s− (m2
2 −m2

1)

s2
, (5.25)

5.2.3 Application

We now turn to the application of the Cutkosky rules to our amplitude. We set up our

momenta as seen in Fig. 5.2.2, with the loop integral over the momentum p1.

The absorptive part of our diagram then comes from a cut across the intermediate states,

putting both mesons on mass shell and moving in the forward direction. Here we must be

careful when calculating the absorptive part. We want only the imaginary contributions to

this diagram, and while Cutkosky rules are correct, we must remember that both of the

D → PP (V ) and PP (V )→ µ+µ− vertices may be complex. If we take only the imaginary

part of the propagators, when they’re both on-shell, we will have something real times two

complex numbers.

He were argue that for the PP (V ) → µ+µ− amplitude, we can ignore the real con-

tributions; the PP case only has an imaginary component while the PV case has both.

In the PV case, the real component is due to the form factor V (q2) only which is anti-

symmetric in indices. The first amplitude in our case only has one degree of freedom :

M(D → PV ) ∝ PD · εV , and so after performing the multiplication will remove the V (q2)

term. This leaves the PV case also only imaginary. It should be pointed out that if we were

considering the decay of a vector particle, D∗, there would be an additional term from the

product of the vector pQCD form factor and the real part of the hadronic matrix element.

The amplitude of D → PP (V ), from the SU(3) flavor fit has both real and imaginary
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PD

PD − P1

P1

Figure 5.2.2: Forward momentum configuration for loop integral.

parts. With

M(D0 → PP (V )) = (R1 + iI1),

M(PP (V )→ µ+µ−) = (R2 + iI2)⇒ iI2,∫
d4p2

(2π)4

i

p2
2 −m2

2 + iε

i

(PD − p2)2 −m2
1 + iε

= i2(Re[L] + iIm[L]). (5.26)

We wish to calculate the product of the above, with a Hermitian conjugate on the second

equation. Then we can choose our cutting rules to result in the imaginary part.

iIm[M(D0 → PP (V )→ µ+µ−)] = (R1 + iI1)(iI2)†i2(Re[L] + iIm[L]),

= (iR1I2 − I1I2)(Re[L] + iIm[L]),

= i(R1I2Re[L]− I1I2Im[L]), (5.27)

where we have ignored real contributions. Due to the complex nature of the decay amplitude

we must also consider whether or not the real part of the propagators will participate. This

is of course easy, as one can argue that the real part of a propagator only occurs when the

momenta are off-shell. Once off-shell, there are no poles, and so they are completely real. If

you perform a Wick rotation on the propagators you will pick up an extra i, thus making

them imaginary. This means they must be zero. Our end result is

Im[M(D0 → PP (V )→ µ+µ−)] = −I1I2Im[L]. (5.28)
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We now use Cutkosky rules to cut across both propagators, putting them on-shell with

the replacement

1

p2 −m2 + iε
→ −iπδ

(
p2 −m2

)
Θ[p0]. (5.29)

we can put our propagators on mass shell,

1

p2
2 −m2

2 + iε

1

p2
1 −m2

1 + iε
→(

−iπδ
(
p2

2 −m2
2

)
Θ[E2]

)
(−iπδ ((PD − p2)2 −m2

1) Θ[
√
s− E2]) . (5.30)

We have forced positive energy solutions only with the Heaviside Theta function, Θ. We can

simplify the loop integral with the customary replacements

d4p2

(2π)4
δ
(
p2

2 −m2
2

)
Θ(E2) =

1

(2π)4

d3p2

2E2

,

=
1

(2π)4

1

2
dΩ2

√
E2

2 −m2
2dE2. (5.31)

We now consider each case, D → PP,D → PV respectively.

D → PP

In the case of pseudoscalar mesons consisting of one up-type and one down-type quark we

can write the amplitude including the electroweak neutral coupling constants,

Im[M(D0 → PP → µ+µ−)] =
Im[M(D0 → PP ]

(2π)4

1

2

∫
dΩ2

∫
dE2

√
E2

2 −m2
2

×
(∫ 1

0

dx

∫ 1

0

dy
φP (x)φP (y)

xy

)
× (−4παSgW )

(N2
c − 1)

N2
c

2 sin2 θW − 1

cos θW

1

s

× (pµ1 − pµ2)
igµν
M2

Z

[ūiC`
Aγ

νγ5u]. (5.32)
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Again we recall that only the axial muonic current will participate due to conservation

of the vector current. Rather than perform this calculation completely, we look specifically

at the integral over the loop energy and angle first.

Defining

pµ2 =
√
E2

2 −m2
2

{
E2√

E2
2 −m2

2

, sin θ sinφ, sin θ cosφ, cos θ

}
,

pµ1 =
√
s {1, 0, 0, 0} − pµ2 , (5.33)

we see that the integration over energy and momenta leads to

∫
E2

∫
Ω2

(p1 − p2)µ ∝
(
m2

1 −m2
2

)
. (5.34)

Rather than go further we recall that the only contributing pairs at leading order in the

electroweak expansion are those that have matching pairs of quark flavors, π±π∓, K±K∓,

which are degenerate in mass. Additionally, neutral combinations that have non-degenerate

mass do not contribute as at leading order all diagrams cancel. This makes sense as at tree

level the Z-charge of neutral mesons is zero. This argument will hold for PV states as well.

Thus contributions from all PP states can be ignored for further calculation. While this

seems like a null result, it allowed us to have the simple framework to compute the PV

contributions, where no mass degeneracy exists, and the δm is actually large.

D → PV

The calculation for PV intermediate states is very similar to the PP case. The first

difference we need to address is the vector meson propagator. We recall from the pQCD

discussion that at the leading twist-2 expansion the wavefunction for a light vector meson

has only the longitudinal component. This means that rather than sum over all helicities in

the propagator we will only sum over the longitudinal polarization, εµ3 which we define for
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V being particle 2 as

εµ3 =
E2

m2

{
√
E2

2 −m2
2

E2

, sin θ sinφ, sin θ cosφ, cos θ}, (5.35)

still satisfying p2 · ε3 = 0. The amplitude for D → PV is again parameterized by

M(D0 → PV ) = (RPV
1 + iIPV1 )(PD · εV ),

= (RPV
1 + iIPV1 )(p1 ·

∑
i=1,2,3

εV2i), (5.36)

where we have summed over polarizations. Using (5.33) and (5.35) we have

p1 · εV23 =

√
s (E2

2 −m2
2)

m2

. (5.37)

The simplest way to compute the integral is to separate the PV → µ+µ− amplitude not into

the normal form factors but rather just into the momentum dependent parts, knowing that

the leptonic current, Lµ, will not be dependent on the internal momentum. We ignore the

vector form factor (Levi Civita term) as it does not contribute (and actually integrates to

zero), and p2 · ε3 = 0 to limit our terms.

The explicit momentum dependence of our amplitude allows us to integrate over the

internal loop momentum and angles, giving the replacements

∫
E2

∫
Ω2

(p1 · ε3)εµ3 =
|~P12|3

4πm2
2

√
s
P µ
D, (5.38)∫

E2

∫
Ω2

(p1 · ε3)pµ1 (p1 · ε3) =
|~P12|3(s−m2

1 +m2
2)

8πm2
2

√
s

P µ
D, (5.39)∫

E2

∫
Ω2

(p1 · ε3) pµ2 (p1 · ε3) =
|~P12|3(s+m2

1 −m2
2

4πm2
2

√
s

P µ
D, (5.40)
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where we have defined

|~P12| =
√

(s− (m1 +m2)2)(s− (m1 −m2)2)

2
√
s

. (5.41)

Integration over x, y is trivial and our end result for the non-leptonic part of the decay

amplitude with Nc = 3,

2 Im[A(D0 → µ+µ−)PV ] = (18.28)
παµ2fPfVLm`|~P12|3(m2

2 −m2
1)

m2m2
Z

(Cu
A − Cd

A)C`
A

1

s2
.

(5.42)

We have used the large-mass Z boson propagator igµν/M2
Z , and resolved the leptonic axial

current into helicity states. This allows us two possible relative helicity contributions to the

amplitude. With constructing the D0 momenta from

vµ[ū1γµγ
5v2] =

1√
s
P µ
D[ū1γµγ

5v2],

= 2
mµ√
s

[ū1γµγ
5v2],

= 2
mµ√
s

(
√
s (δ↑↑ + δ↓↓) ,

= 2mµ ×
√

2, (5.43)

where in the last line we have used the fact that the sum over helicity states will give us a

factor of 2 in the final decay width. We expand our amplitude in mass of the lighter meson,

though we keep the first order correction. Our dispersive integral becomes

A(D0 → µ+µ−)PV =
1

π

∫ ∞
(m1+m2)2

ds

s−M2
D − iε

Im[A(D0 → µ+µ−)PV ] (5.44)

We use the masses and decay constants listed in Figure 5.2.3 [98], in addition to the 2012

PDG [59] for universal constants and CKM matrix parameters.
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mπ± 139.6MeV fπ 130MeV
mρ± 775.5MeV fLρ 216MeV
mK± 493.7MeV fK± 156MeV
mK∗± 891.7MeV fLK∗± 220MeV
mD0 1865.9MeV mµ 105MeV

Figure 5.2.3: Meson masses and decay constants

The width if the D0 meson is [59]

Γ(D0) = 1.605× 10−9MeV. (5.45)

The sum of our numerical amplitudes is

A(D0 → µ+µ−)PV = (−2.8 + 5.6i)× 10−11MeV, (5.46)

giving a branching ratio of

Br(D0 → µ+µ−)PV ≈ 2× 10−17. (5.47)

Discussion

While O(10−17) is small compared to the leading di-photon contribution O(10−13) , it is

is larger than all other sub-leading contributions. It has been argued for the pion-photon

transition at low-Q2 that NLO calculations have considerable corrections [99]. Additionally,

our calculation was only LO in SU(3) violation for the D → P (V ) amplitudes, as a fit

to experimental data has not been performed for PV cases, though it has for PP . Our

amplitude is proportional to the SU(3) violation, and thus any improvement may drastically

increase the result. It would be beneficial then to improve both the pQCD transition form

factors by increasing the NLO hard scattering amplitude as well as twist-3 wavefunctions.



71

Due to the contributions at the wavefunction endpoints there may be large corrective effects.



CHAPTER 6

SUMMARY

In this doctoral dissertation I have discussed the possible standard model contributions

to select leptonic heavy meson decay modes. We calculated a 1 − 3% increase in Bs →

µ+µ− from soft photon contributions through select vector resonances is a nearly model-

independent method. We have computed constraints for two super-WIMP dark matter

models from the rare leptonic decays of heavy mesons. While these are not as tight as

constraints from new physics, tighter experimental bounds will allow our calculation to be

refit. Finally I calculated a previously unmentioned two-meson unitary contribution to the

rare decay D0 → µ+µ− as well as calculated LO form factors for P → PZ and P → V Z

light charged mesons. This contribution is O(10−17) while the leading order gamma-gamma

contribution is O(10−13). I believe this work can be continued and a larger contribution

may unfold once the SU(3) violating effects in the PV intermediate state are better fit.

Additionally, a higher-twist and NLO QCD expansion may provide a better description of

the P → V Z form factors.
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