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CHAPTER 1

INTRODUCTION

1.1 Prologue

Our personal universe is the one we observe interact with daily; to do so without de-
manding a deeper comprehension of the governing mechanics only leads us to an existence
causally determined by the unknown. Countless hours, years, and “lives” have been spent
deepening this understanding for the benefit of all; and in the last year of my Ph.D, with
the discovery of “a” Higgs-like particle, can we confidently claim that our model is complete.
Or rather that it explains the majority of the physics of the Universe, sans gravity. Assum-
ing of course we're not discussing why any of the fermions, including neutrinos, have their
respective masses, or why there are exactly 3 generations of fermions; and it goes without
mentioning that by “the Universe” we mean the 4.9% of the universe that is constituted by
visible matter. The remainder is built from what we believe to be 26.8% Dark Matter(DM)
and 68.3% Dark Energy[1, 2], and we have only hints at what the former could be comprised
of. Dark Energy has a gravitationally repulsive effect and this fraction is enough to explain
both the observed cosmological expansion[l, 2] and the flatness of our universe. Further
detail regarding Dark Energy is beyond the scope of this thesis.

Due to not interacting with electromagnetism, dark matter is by nature difficult to detect.
We have a drive in the field to model DM candidates and to calculate their experimental
signatures. As their observability is expected to be small, we use decays and processes where
DM participates that are otherwise suppressed in the standard model. Due to this suppres-
sion it becomes imperative that the calculation of the process, as well as all experimental
background contributions, are as accurate as possible. The objectives of the calculations

that follow in this thesis attempt to demonstrate these separate ideas: a DM-influenced de-



cay and its constraints; a background contribution to a suppressed SM decay, and possible

intermediate contributions to a SM decay.

1.1.1 The Standard Model

The Standard Model(SM) of particle physics [3, 4, 5] is our current relativistic quantum
field theory used to describe the electroweak and strong interactions. It is comprised of
two groups of particles; the half-integer spin quarks (u,d, s, ¢, b,t), (e, u, 7) leptons and the
lepton neutrinos(ve, v, v;)) and the fundamental spin-1 gauge bosons that mediate their
interactions (W=, Z° bosons, the photon 7 and the gluon g). All known matter is formed
by bound states of these particles and the forces produced by their various interactions.

The electromagnetic interaction is mediated by the photon, and is a representation of
a U(1) gauge symmetry. The electroweak interaction is composed of an additional SU(2)
symmetry coupled to electromagnetism, and is mediated by the three W; bosons. The strong
interaction is mediated by the gluon. It has eight “color” charges and is represented by an
SU(3) symmetry.

The quarks and leptons are each split into 3 generations with the same quantum numbers
but varied masses as seen in Table 1.1.1.

For each given symmetry Noether’s Theorem dictates that there should be an associated
conserved current, with a respective generator of the symmetry group. The conservation of
a current of a U(1) gauge symmetry gives rise to the electromagnetic charge for example,
and the photon. When the symmetry is broken, non-zero masses for the gauge bosons arise
(as we see very massive W and Z bosons as seen in Table 1.1.2. The Englert-Brout-Higgs-
Guralnik-Hagen-Kibble [6, 7, 8] mechanism is a way to have spontaneous breaking of the
electroweak SU(2) x U(1) gauge symmetry. This causes the original U(1) gauge boson and
three W, SU(2) bosons to mix into the photon and the massive electroweak W* and Z°

bosons. A byproduct of this is of course the recently discovered spin-0 particle, the Higgs



boson. This mechanism can also give masses to the quarks and leptons through Yukawa

couplings though does not give the dominant contribution to baryon(proton and neutron)

masses.

Particle Symbol Mass (MeV) Charge (e)
up quark u 23707 2/3
down quark d 48707 —1/3
electron e 0.510999 -1
electron neutrino Ve ~0 0
charm quark c 1,275+ 25 2/3
strange quark s 95+5 -1/3
muon W 105.658371 —1
muon neutrino Yy < 0.17 0
top quark t (175.5 £ 0.6 = 0.8) x 103 2/3
bottom quark b 4180 + 30 -1/3
tau lepton T (1,776.82 £ 0.16) -1
tau neutrino vy < 15.5 0

Table 1.1.1: Standard Model Fermionic Catalog

Boson Symbol | Mass (GeV) | Charge
photon A+ 0 0
gluon g 0 0
7 Boson ZY 91.188 0
W Boson W= 80.385 +1
Higgs Boson H ~ 125 0

Table 1.1.2: Standard Model Bosonic Catalog

1.1.2 Quantum Chromodynamics

Quantum Chromodynamics(QCD) is the quantum field theory describing the strong in-

teraction of quarks. There is a SU(3) color symmetry and the mediating gauge boson is the




gluon, g, meaning color-charged fields are invariant under transformations
q— e”iq, (L.1)

where 7¢ are the generators of the symmetry. The quarks are the only fermions that partic-
ipate in the strong interaction.
The Lagrangian is

Lo o 1)

ﬁQCD = ZQf")/MDqu - 4

where “f” denotes the flavor of quark “¢” and repeated indices are summed over. The

covariant derivative is defined as
D, =0, — 593)\ GM, (1.3)

where the A\’ are the eight generators of SU(3), and G are the gluon fields. QCD is an
unbroken symmetry in the standard model, and thus the gauge bosons (gluons) are massless.

We define the coupling a, = %. To obtain the matrix element for a transition we can treat
the coupling constant as a small parameter and can expand our theory perturbatively. This
is referred to as Perturbative QCD (pQCD). Each perturbative contribution can be described
by Feynman Diagrams, a set of topological diagrams constructed using the Feynman rules
derived from the Lagrangian, which contain the parameters for the vertices and legs.

The loop momenta are not observable, and are internally integrated over all momenta.
This leads to a divergence. The process by which we remove these divergences is called
Renormalization [9] where the divergences are canceled by redefining masses and coupling
constants to include both the “bare” parts from the original Lagrangian, as well as the diver-

gent pieces. This introduces a dependence of the coupling constant on the renormalization



scale which is defined as the scale at which higher-order terms are absorbed,

da (@%)
2 —
The S function is a property of the theory and is a power series in a with S0 = —fya,

where [y depends on the number of particles involved in the loops at a given scale. Solving

this equation gives the Q? dependence of our theory,

0 (@) = ELU/ (1.5
1+ Boa(p?) log Q*/ p?

For QCD the value of 3 is

QCD . 110A—2nf

— =7 1.6

where Cy = 3 is from the SU(3) gluon virtual corrections, and ny is the number of active
fermion flavors with mass less than Q2. In the standard model with maximally 6 interaction
flavors this yields £y > %. The most recent average of the coupling constant evaluated at

the weak scale is

as(mz) = 0.1184(7). (1.7)

This also lets us calculate

as(mp) = 0.3039. (1.8)

It can be shown then that the positive nature of this term leads (1.5) to vanish at higher
energies, making quarks unaffected by QCD. This is knows as asymptotic freedom [10]. In

the limit that Q% — 0 we see that the coupling constant goes to infinity. The most important



aspect of this is that below ~ 1 GeV, the coupling constant is no longer a good expansion
parameter. This is the energy where confinement allows hadrons, bound states of QCD
partons, and we must turn to other phenomological methods to calculate our amplitudes.
Thus quarks and gluons are confined, in that they are not seen as free particles in nature.
Only “color-neutral” hadronic bound states, mesons and baryons, are the particles that can
be observed. While QCD can be calculated perturbatively in high energy regimes (greater
than ~ O(1 GeV)), low energy theory contains both perturbative and non-perturbative
effects which are difficult to calculate. One method of simplifying calculations is to look
for natural factorization scales that can split our theory into multiple energy regions. The
heavy quarks that create bound states (charm and bottom), provide a natural scale to
calculate the perturbative effects and to factor out “hard” physics and “soft” physics. When
calculating low-energy physics and long-distance effects we now must also become concerned

with electroweak contributions.

1.1.3 Important Decays for NP Searches

Electroweak decays of bound-state particles are of particular interest in the search for NP
due to the rarity of some of the decay channels. It is logical to assume NP occurs at or below
the probability of these SM-suppressed decays. This alone is not enough to be interesting; if
the decay channel is unobservable experimentally then there is not much point to pursue the
calculation. Luckily some experimentally-clean decay processes such as heavy meson decays
to leptonic final states, are also SM-suppressed. This is where the focus of this work will be;
using these experimentally available, SM suppressed decays to constrain contributions from
DM and other NP.

The first is the leptonic decay of the charged B*(5280) meson, where we have noted the

mass in MeV in parenthesis. The upper limits of the electron and muonic channels, and the



observed Branching Ratio(BR) of the tau weak channel are

Br(B* = e*p,) < 98x1077, (1.9)
Br(B* — p*p,) < 1.0x107, (1.10)
Br(B* — 751,) = (1.64+0.34) x 10" (1.11)

These decays are helicity suppressed in the SM. This is due to the necessary spin flip to
account for a spin-0 particle decaying to a state of two spin—% particles, introducing a pro-
portionality to the mass of the final state fermion. This is one of the reasons the tau channel
has been observed while the other two are are still only limits.

Another possible group SM-suppressed decays those involving Flavor Changing Neutral
Currents(FCNC). These arise in the SM when a quark undergoes a change of flavor without
changing charge, (b — (s,d),c — u), which do not exist at tree-level in the standard model.
They occur only at one loop and are thus more difficult to produce. This may be interesting
because many NP theories that involve more massive particles produce effects that will only
be seen at one-loop and thus can compete with SM contributions. A specific example of a
FCONC process is the annihilation of a heavy meson composed of the quark pair (b3, bd, ct),
representing the mesons BY, B, and D° respectively. Both leptonic and semi-leptonic final

states of these decays are can constrain the effects of new physics.

1.1.4 New Physics : Dark Matter

So now we turn our attention beyond the 4.9%, baryonic, standard model, visible uni-
verse, to the remainder. There are a variety of cosmological sources that give evidence for
dark matter [11, 12]. Rotational velocity distributions of galaxies [13, 14, 15], the cosmic
microwave background(CMB) fluctuation spectrum [16], gravitational lensing and the evolu-

tion of large-scale cosmological structures [17] all point to a distributed density of DM that



is much larger than that of visible matter, and cannot be explained by any SM particles.

Recent efforts have been quite exhaustive theoretically to model possible scenarios of DM,
and many experiments [18, 19] have been proposed, built and completed with significant
results constraining the cross-sections/masses of DM candidates through direct detection.

While the presence of DM is firmly established, its basic properties are still subject of a
debate. If dark matter is comprised of some fundamental particle, experimentally-measured
properties, such as its relic abundance or production cross-sections can be predicted. Ex-
perimental measurements of the abundance Qpyh* ~ 0.12 by WMAP collaboration [2] can
be used to place constraints on the masses and interaction strengths of those DM particles.
Indeed, the relation

M2

QDMh2 ~ <Uannvrel>_1 X ?, (112)

with M and ¢ being the mass and the interaction strength associated with DM annihila-
tion, implies that, for a weakly-interacting massive particle (WIMP) of DM, the mass scale
should be set around the electroweak scale. Yet, difficulties in understanding of small-scale
gravitational clustering in numerical simulations with WIMPs may lead to preference being
given to much lighter DM particles. Particularly there has been interest in studying models
of light dark matter particle with masses of the keV range [20, 21]. According to Eq. (1.12),
the light mass of dark matter particle then implies a superweak interaction between the dark
matter and standard model (SM) sector [22, 23] . Several models with light O(keV-MeV)
DM particles, or super-WIMPs, have been proposed [20, 21].

One of the main features of the super-WIMP models is that DM particles do not need to
be stable against decays to even lighter SM particles [20]. This implies that one does not need
to impose an ad-hoc Z; symmetry when constructing an effective Lagrangian for DM inter-
actions with the standard model fields, so DM particles can be emitted and absorbed by SM
particles. Due to their extremely small couplings to the SM particles, experimental searches

for super-WIMPs must be performed at experiments where large statistics is available. In



addition, the experiments must be able to resolve signals with missing energy [24, 25, 26].

But before we can begin to discuss what New Physics(NP) governs these unknown sectors
we must be confident that our SM calculations are both correct, and complete.

In Chapter 2 I will overview the methods and structure of the underlining models and
approaches to our calculations. Chapter 3 will focus on possible contaminants to the popular
rare decay channels that are currently in use for constraining new physics [27]. Chapter 4
will describe their application to constraining parameters found in two specific models of
light Super-WIMP Dark Matter [28]. Chapter 5 will look at rare leptonic charm decays and

possible contributions from previously uncalculated two-particle unitary intermediate states.
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CHAPTER 2

FRAMEWORK FOR CALCULATIONS

2.1 Effective Field Theory

Due to the vast variety of physical phenomena it is often profitable to work in a region
of energy where only certain degrees of freedom are relevant. One must then construct
methods to separate out the relevant interactions from those that can be neglected for
that given “scale”. Usually a natural scale can be constructed from the relevant masses or
interaction energies, and thus can define some small parameter in terms of which one can
set up a perturbative expansion. A simple case is one of a two-particle theory with vastly
separated masses; a light mass m and a heavy mass M then can be used to define your scale
parameter A = 7. It is also possible to define parameters through expansions of momenta
about specific projection vectors, i.e. “collinear” and “transverse” momenta.

Using this gap between two different scales is the core of Effective Field Theory (EFT).
By factorizing out physics at one scale into effective coefficients, we can parameterize a

theory order-by-order in effective operators at another scale.

Operator Product Expansion

The Wilsonian [29] method of Operator Product Expansion (OPE) allows us to build
a framework of effective interactions that are described by separating out the long range
physical local operators and the short range, non-local Wilson coefficients.

The weak decays of hadrons are executed through the weak decay of their constituent
quarks, who form a bound state through the strong interaction at energy scales roughly to
order O(1GeV). This scale is much less than the electroweak scale, O(Mzw ~ 80—90GeV),

and the strong coupling is no longer a perturbative parameter. An electroweak decay such
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as ¢ — ud is mediated at tree level by the exchange of a massive W boson as seen in

Figure 2.1.1.

W+

Figure 2.1.1: Leading EW Contribution to ¢5 — ud.

The amplitude for this diagram is

: i)
Alcs = cd) = (L) vive sy, P My ) gy P 2.1
el = () Vsl —g gt @)
w

where P, = 1(1—~°). If we expand in powers of ]\5—5 we have obtained the Fermi theory for
w

four-quark weak interactions,

_ _ p?
A(cs - cd) = i%VCS (SO v_aldu)y_a + O(M—I%/), (2.2)
where
(1@)v-a = @av.(1—7")g. (2.3)

This is the basic idea of OPE, where a product of two currents at two different space-time
points can be expanded as a series of local effective operators weighted by effective coupling
constants. In this case, there is no scale-dependent coupling and so the Wilson coefficient
is 1, and the W boson has been ”integrated out” and is no longer a dynamical degree of
freedom. The propagator connecting the two space-time points has been collapsed into a

single local four-quark operator.
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If we now add short distance QCD corrections we must include more operators to this

effective interaction,
_ Gr i 2
Herp = 7 Y Ve Cili®)Oilp). (2.4)

At any order the Wilson Coefficients, C;(u?) can be calculated by matching the effective
theory with the full theory at the given order in the perturbative expansion.

This is a method that allows the combining of higher-order interactions into lower-order
effective operators to ease calculations by focusing on only the operators and coefficients

specific to the concerned process.

2.1.1 Chiral Perturbation Theory (xPT)

One example of a phenomenologically successful effective field theory is Chiral Perturba-
tion Theory (xPT) [30]. This is the application of the EFT method to QCD. While QCD
is a beautiful, renormalizable theory, its applications are less that satisfactory. At very high
energies asymptotic freedom allows us to calculate QCD effects perturbatively, at low ener-
gies we are faced with numerous challenges. Firstly, QCD is a theory of a strong interaction,
meaning = ~ 1 at low energies. This denies us the use of perturbative methods. Another
obstacle is that experimental observables are derived from observation of QCD hadronic
bound states, rather than the QCD degrees of freedom, quarks and gluons. In order to
make a connection between the two one must analyze all symmetries and scales to create an
effective theory with the proper behavior.

Chirality is defined through the use of projection operators, Pr,r = %(1 F7°). The QCD

Lagrangian can be expanded in terms of the left and right projection operators as

Locp =q(i P —mg)q=qri Pqr + qri Pqr — GLmeqr — GrmeqL- (2.5)
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In the case of three quarks, (u,d,s), and in the massless limit m, — 0, we observe an exact

SU(3) x SU(3)g chiral symmetry invariance by letting

qrL = 9r49L, qr — 9rAR: (2.6)

with g]T:gL = g}%gR = 1. The covariant derivative is diagonal in flavor space and so

argt Porar — @ Par. (2.7)

The mass term

QL9 megrar — QrgMagrae #0 ¥ my # 0. (2.8)

As quarks have small masses in the SM this symmetry must be broken, and this results
in an octet of light pseudo-Goldstone pseudoscalar meson [31]. We are working at a scale
where the momenta of these QCD effects are small compared to the large hadronic scale
~ 1 GeV, and we have the ability to expand in derivatives and masses of these pseudoscalar
fields [32].

We group these pseudo-Goldstone bosons into a 3 x 3 matrix ¥ € SU(3) that transforms
under the chiral SU(3), ® SU(3)r as

which is represented by

Y =£=exp (227;N> , (2.10)

where f ~ f. ~ 130 MeV, and the sum over the 8 generators yield the hermitian and
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traceless matrix

A/ + +
vt m K
g Z: - _ﬁ L 0
A T iy S : (2.11)
K- N

From this we can begin to write an exhaustive Lagrangian for each order in both mass and
momentum of the mesons. The lowest order, the kinetic term, is given by

2
L= %Tr [0"£0,5T] (2.12)

where the factor of 8 has been chosen to normalize the kinetic terms to a form similar to

scalar field theory. Higher order terms appear in the expansion in momenta, ﬁ where p is
a typical momentum scale in the process and Ax ~ 1 GeV is the chiral symmetry breaking
scale.

As defined in (2.10) £(x) is a coset field with the chiral transformation property

(x) = g1&(2)U' () = U(x)é(x)gh, (2.13)

where U(z) is a member of the SU(3)y unbroken subgroup. As this is a local, space-
dependent matrix we must define covariant derivatives and gauge fields to be able to con-
struct an invariant kinetic term and derivative couplings. This is done by the vector current

definition,

V. == (€10, 4+ €0,¢1), (2.14)

N —
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which transforms under (2.13) as
V, = UV, U +U3,U". (2.15)
We will also now define an axial current,
A, = % (£70,€ — €0,£1), (2.16)
that transforms as
A, — UV,U". (2.17)

We can now introduce electromagnetic interactions, a U(1) symmetry, with the covariant

derivative definition

D& = 0,8+ ieBu[Qa £l (2.18)

where Q = diag(3,—3, —3).
As we have mentioned, the chiral symmetry is not exact, and is broken by the quark

mass term

Z qimijq;, (2.19)

i=u,d,s

where m;; is the light mass matrix

0 0 ms,



16

This breaking can be implemented at first order in the quark masses by the additional term
Ly = XTr(mE+ ) + O(m?). (2.21)

This breaking leads to the different masses of the octet mesons as well as additional contri-
butions to relevant form factors.
This completes our building blocks of the light portion of our effective theory, and we
can write our LO Lagrangian in derivatives and mass
Lio = fgmzabmz;a + AT (X + Shi) + O((0%)%) + O(m?).  (2.22)
Here we have set up a method of expanding the effective Lagrangian in powers of the chiral
momenta, 9% as well as the symmetry-breaking mass terms m. Contributions from the
leading order Lagrangian with chiral loops can be considerable, and must be checked for
validity when performing both expansions. It should be noted that it is often acceptable
when performing to perform calculations at leading order and one loop without explicit
quark-mass corrections, but rather substituting the relevant masses and form factors. This

completes our leading order description of the soft portion of our effective theory.

2.1.2 Heavy Quark/Meson Effective Theory

Another natural scale appearing in the standard model is the ratio of Agcp to the mass
of the heavy quarks, u = Afn%. Using this as our expansion parameter one can expand to
obtain a theory describing the heavy quarks at leading order as static gluon sources, rather
than dynamical degrees of freedom [33]. This is similar to a static proton in the hydrogen
atom. In the limit of mg — oo the heavy quark spin decouples from the gluon field. This
means that it can be rotated from a 0~ — 17 state without changing the physics. In this

limit the two states would also be degenerate in mass and have identical properties. Allowing
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some large mass M the hyperfine splitting between the spin states will be O (Aéc n/M). We
can take advantage of this spin freedom to develop many relations between the heavy-hadron
form factors, simplifying phenomenological calculations greatly [33].

If we consider a meson H composed of one heavy(c or b) and one light(u, d, s) quark, Qq,

we can factor the heavy quark momenta into both static and dynmaic parts as [34],

po = mou + k, (2.23)

where k is the residual momentum of the order Agcp. We can extract the heavy part of the

field through the redefinition into small and large respective components

Qu(z) = exp(imgur)Q(x) = hy(z) + Hy(z), (2.24)

where the small component H is O(1/mg). These field satisfy the projections

?/Hv = _Hva ?/hv - hv- (225)

At tree-level one simply plugs in the new field and solves the equation of motion for the light
field H. Reinserting into the lagrangian we obtain after some algebra and an expansion in

1/mg the tree-level kinetic term

LY = h, (iv - D) h,. (2.26)

This decomposition is not unique, as we can reparameterize the momenta definition (2.23)

as

v U+ —, k—k—q, (2.27)
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where v - ¢ = 0 to have v? = 1, must yield the same physical observables. This provides a
constraint on the coefficients of the next-order lagrangian terms, as they must maintain this
reparameterization invariance.

We now construct physical states using the above mentioned symmetries. It is common
use and well defined in literature to use the matrix representation for the spin-degenerate

negative parity doublet

1+ . _
Ho = T?/(Pa;ﬂ/u — Pus), H, = VO(Ha)WO» (2.28)

to describe the heavy meson pseudoscalar and vector fields. Here the indices a nd b reflect
the light quark flavor indices, v is the velocity of the heavy quark and the P can be either a

B or D meson. The operators P satisfy the normalization conditions

(0121Qa(07)) = v/ My, (01F1Qa(17)) = /My,

where My is the mass of the heavy meson in question.

As the heavy meson is composed of one heavy quark @ = (Q., Q) and one light quark
da = (Qu,qd,qs), the field H, transforms as 3 under the chiral transformation, such that
H, — H,U!  where U was seen in (2.13).

ba’

2.1.3 Heavy Meson Chiral Perturbation Theory

Knowing the transformation properties of both the light and heavy fields we can now
construct all C,P,T and Lorentz invariant lagrangians at a given order in 1/M, the mass of
the heavy meson.

The leading order lagrangian is [30]

2
Loy =iTr [Hy - DyoH,| + igTr [Hyy, " Aj Hy| + %DuZabD“EZa. (2.29)
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This leads to the propagator for both P and P* to be %Zk The NLO contribution from the

1/M expansion is

A

Ly = MTT[I:LZO'HUHQO'HV]
b D [Hi AL ) (2.30)
+ %Tr [V AL HyH, |

These will lead to corrections to the leading order constant g for V'V and PV interactions,

1
g— gppr =g+ M(gl + g2)

1
9= grp =g+ 5:(91 = g2). (2.31)

Additionally, if we define A\ = —MA/2 = —M/2(Mp+ — Mp) we see a shift of the respective

P and P* propagators,

i —i (g" — vHuY)
2wk +2A) 2w -k —IA)

(2.32)

We can also now incorporate an interaction with the previously introduce U(1) electro-

magnetic gauge boson, with the definition

DY Hy = 0"H, + ieB" (QuH — HQ) — HyV!\ H,, (2.33)

2

having now defined Q, = (3, —%) depending on the flavor of the heavy quark. Following

[35] we also introduce a contact term
56 % & 17 € / [T MV
Lo= 50T [Hba Fu@uM] = 1-QTr [H,0" H,F,,), (2.34)

where Q¢ = % (§TQ§ + 5@5*). The first term describes the interaction of the photon with
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Figure 2.1.2: Feynman Rules for HMyPT

the light degrees of freedom contained inside of the heavy meson, while the second term
describes the interaction with the heavy quark, and is therefor suppressed by 1/m¢g. Though
this is suppressed at leading order, we will see that it is actually important when considering

certain transitions, as it can have cancellation effects with one-loop corrections to transition

amplitudes.

Our leading order Lagrangian with the electromagnetic interaction is thus the combina-

tion of (2.34) and (2.29). This gives us the following Feynman diagrams for the interaction

between the heavy and chiral meson fields in Figure 2.1.2.

2.1.4 Unitary Conditions

In order to maintain conservation of probability the Hamiltonian should be Hermetian,

H'" = H. This implies that the S-matrix is unitary[36],

STS =1.
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An implication of this condition is what is known as the optical theorem. Given the S-matrix

as
S=1+T, (2.36)
we recall that Feynman diagrams are elements of this transition matrix defined as
(fIT]i) = 2m)*6" (i — pp) M(i — f). (2.37)
We can now show a very useful relation,

1=5S=(1—iTH(1+4T)=1—4(T' - T)+T'T, (2.38)

= i(T"—-T)=T'T. (2.39)

Applying initial and final states, and on the right hand side inserting a complete set of states

and integrating over the Lorentz-invariant phase space (LIPS) we arrive at

T =Tl = 3 s 7120 (X1 (2:40)

This implies, from our original unitary condition, the Generalized Optical Theorem

M= £) = MU =0 =15 [ T (20)'6" (= ) MG = XOMX = )"

(2.41)
Assuming Time reversal invariance, this implies [36]

M(i = f) = M(f = i)t =2ZmM(i — f). (2.42)
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Thus the imaginary part of the intermediate-state contribution will be part of the final

amplitude.

2.1.5 Cutting Rules and Dispersion Relations

Cauchy’s integral theorem provides that given the imaginary part of a complex function
and knowledge of the function behavior at infinity, one can reconstruct the entire function
using a suitable dispersion relation(DR). This is particularly useful as given an amplitude
containing loops one can directly calculate the imaginary part of the amplitude at an arbi-
trary invariant mass, s, by means of Cutkosky’s rule [37], which is a result of unitarity.

We can construct a DR by considering some complex function, f(s), where s is complex.
Assuming that Vs < m? : f(s) € R, f(s) has a branch cut for real s > M? and f(s) € C

everywhere else, we can show, with the use of Schwartz’s reflection principle, that

f(s+ie) = Re[f(s)] +iIm[f(s)], €>0

f(s —ie) = Re[f(s)] —iIm[f(s)], €>0 (2.43)
This implies
f(s+ie) + f(s —ie) = 2iIm][f(s)]. (2.44)

We now employ Cauchy’s theorem,

f(MQ) — L d f(S)

; S———
21 Jo o s — M?%’

= l/wd$M+L]{s:md5 f(s)

s s—M? —ie  2mi s— M?

m2
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If the limit on the edge of the contour vanishes at infinity we are left with the unsubtracted

DR,

FOMY) = l/wdSM (2.46)

— 2 _ge’
T Jm2 §— M? —ie

It is easy to show, using the relation

/s% = [/%] +3F”/Sg(8)5(1 — ), (2.47)

where P is the Principal Value of the integrand, that the real part of f(s) is

Relf(s)] = ~p /wds[m[f(s)]. (2.48)

T Jp2 s— M?

Unfortunately, when dealing with SM loop calculations, the behavior at oo does not always
tend to zero on the contour. The integral can still be performed by subtracting from (2.45)

the function at some real point ¢2 < m?,

) MW_@ (> ds  Imlf(s)
fOr) = flg) + —— Ofmzs_qgs_MLie

M - g5 £(s)
e 7{100 (s —ap)(s — M?)’ (2.49)

If the boundary integral vanishes, we have the once-subtracted dispersion relation,

(2.50)

sor) = s+ 8 [ b )

— 2 s — M2 —ic
™ m2 S —q5 s — M?—ie

This method of subtraction can be used multiple times to regularize the boundary integral.
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CHAPTER 3

FAKING BY — utpu~

This work was published in reference [27].

3.1 Introduction

The rare leptonic decay of the B? into a dimuon pair, BY — p™u~, is an example of a
flavor-changing neutral current (FCNC) process. Studies of such decay processes not only
play an important role in determining electroweak and strong interaction parameters of the
standard model (SM) of particle physics, but also serve as sensitive probes of possible physics
beyond the standard model [38]. While recent evidence for observation of B? — p*p~ from
LHC-b collaboration, as well as an earlier result from CDF [39] preclude any spectacular new
physics (NP) effect, there is still room for NP to influence this decay. It is then important
to have a firm evaluation of B(BY — p*p™) in the SM [40, 41] and a firm understanding

that the experimentally-observed branching ratio

Brucy(BY — ptp”) = (3.2513) x 1077

Bepr(BY — ptp™) = (1.8%44) x 1078 (3.1)

actually corresponds to the BY — pu*p~ transition.

It is well known that the B — p*u~ decay is helicity suppressed in the SM by m? /m3%,
due to the left handed nature of weak interactions [42]. This effect arises from the necessary
spin flip on the outgoing back-to-back lepton pair in order to conserve angular momentum
since the initial state meson is spinless.

This suppression is absent in BY decays where the muon pair is produced with one or

more additional particles in the final state that can carry away a unit of angular momentum,
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such as BY — utp~y or BY = p*p v,p,. This means that, in general, those processes
could have sizable total branching ratios, comparable to that of BY — u*u~, despite being
suppressed by other small parameters (such as agys for B — pTu=) [43]. If, in addition,
the final state photon or v7 is undetected, while the invariant mass of p*pu~ pair is close to

mpo, then the experimentally-measured branching ratio would correspond to

BO — N 2 X)’m (ptu—)=mp,)
B(B) — ptp~)

Beap(BY) =y ™) = B(BY = pp”) |1+ Z . (32)

where X is an undetected particle or a group of particles. The contribution of B? — pu*u~X
would depend on how well X could be detected in a particular experiment, as well as on
whether BY — ™~ X has any kind of resonance enhancement that is not well modeled
by background models chosen by a particular experiment in a given window of m(u*pu™),
as well as the size of that window. For example, for X = v, most current searches use
di-lepton energy cuts that would correspond to an allowable soft photon of up to 60 MeV?!.
For B — (v, transition and X = ~ similar effects were discussed in [44, 45, 46], and for X
being light particles — in [28]. In the following we shall concentrate on the amplitudes that

are non-vanishing in the m, — 0 limit.

3.2 BY— uTu v transition

Due to higher backgrounds in hadron collider experiments soft photons emitted in B? —
¢+~ could be hard to detect, so this background could be quite important. These decays
were previously analyzed in [43, 47, 48, 49, 50], where multiple models have been considered.
The analysis presented in [43] was mainly geared towards kinematical regimes where the
photon is sufficiently hard to be detected; in fact, low-energy cut-offs were introduced on

photon energies. Similarly, perturbative QCD-related approaches of [47, 48, 49, 50] cannot

IThis cut would almost exclude the possibility of missing a 7° or heavier neutral particles.
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adequately describe the soft photon region. In this paper, we apply a model-independent
approach that incorporates both heavy quark symmetry for hadrons containing a heavy
quark with mass mg >> Agep, and chiral SU(3), x SU(3)p symmetries in the m, — 0
limit [51, 52] suited for this kinematical region. We organize our calculations in terms of an
expansion in 1/my, and examine the contribution of terms up to leading order in O(1/my).

Similarly to B — v,y [45], the decay amplitude for By — ptp~y transition can be broken
into two generic parts containing internal bremsstrahlung (IB) and structure dependent (SD)
contributions. The bremsstrahlung contributions are still helicity suppressed, while the SD
contribution contain the electromagnetic coupling a but are not suppressed by the lepton
mass. Phenomenologically, the origin of that can be understood as follows. When the soft
photon in emitted from the B, meson, heavy intermediate states including the J* = 1~
B? vector meson state become possible. This lifts helicity suppression since the lepton pair
couples directly to the spin 1 meson. In the kinematic regime where the photon is soft, we
expect that significant contribution comes only from the vector B} resonance for reasons
analogous to the B* pole dominance in B — 7wfr at near zero pionic recoil energies [53]:
in the large my limit the B} and B, become degenerate and the residual mass splitting is
mp- —mp ~ O(1/my) [54]. Therefore, excitation of the B¥ does not require much energy.
There are two diagrams containing an intermediate B} as seen in Fig. 3.2.1. In the kinematic
region of interest where E, < 60 MeV, Fig. 3.2.1 (b) is neglected. This can be easily seen
considering it is a contribution from an off-shell intermediate B that decays to an on-shell
soft photon in a vector-meson-dominance fashion via b — sy transition. Since the photon is
on mass shell, the B, propagator makes it (1 /Még) suppressed. In the effective field theory
language this diagram corresponds to a higher-dimensional operator whose contribution is
suppressed by powers of Mp. Similarly, a contribution of Fig. 3.2.1 (c) is also (1 /Még), SO
it too will be neglected in what follows.

The calculation of soft photon effects should carefully deal with soft divergences. Those
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Figure 3.2.1: Resonant contributions to By — utp~ 7. The dark grey vertices represent the
b — s effective Hamiltonians in Eqs. (3.10, 3.15). Light grey vertices are SM neutral currents
while the white circle in (a) is defined in Eq. (3.4).

are canceled between one-loop radiative corrections to By — ptu~ and By — put ™.

We employ Heavy Meson Chiral Perturbation Theory (HMyPT) to calculate Fig. 3.2.1
(a).

To evaluate diagram Fig. 3.2.1 (a) we need an amplitude for a B — B*y transition as

— © Ipex a
M[BSHB;"YS‘)/L-'—N_'YS] — MB;A),LL-‘—[,L_ X M_2 X M SHB;'Y7 (3.3)
B;

The amplitude for B — B*~ is conventionally parameterized as
Mp, gy = —iepnivgk,ese ™, (3.4)

where k is the 4-momentum of the photon, v the velocity of the decaying heavy meson, 7 is the
vector meson polarization, and e is the photon polarization. The strength of the transition is
described by the magnetic moment, p, which receives contributions from the photon coupling

to both heavy and the light quark components of the electromagnetic current [55],

= fip + p. (3.5)



Figure 3.2.2: One loop corrections to magnetic moment y. The double lines denote the
heavy mesons B and B* while the single line denotes the goldstone bosons

The bottom quark contribution is fixed by heavy quark symmetry to be p, = Qp/mp =
—1/(3my), while the light quark contribution can be computed, to one loop, in HMyPT.

The relevant effective Lagrangian is [35, 55]

Lz = %Tr(HaHbo“”Fw,an) + % Tr (HoHyy,vs(E10M€ — €0MEM,) (3.6)

where Tr is a trace over the Dirac indices, and [ is a coupling constant parameterizing a local
contribution to the light quark magnetic moment. We include the most important one-loop
correction, which is shown in Fig. 3.2.2.

The effective magnetic moment for the B, — B}~ transition is then

. 1 1 9 MKk
Moo = =g = P T (3.7)

where ¢ is the xPT coupling constant, and my, fx are the mass and decay constant of
the Kaon respectively. The constants § and ¢ can be extracted from a combination of
the experimental D** branching ratios, B(D*t — D%*y) = 0.016 £ 0.004 and B(D** —
DO7t) = 0.677 £ 0.005, and the total width, where the newest preliminary result from

BaBar collaboration is reported to be I'p«+ = 83.5 £ 1.7+ 1.2 KeV [56]. The decay widths
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for these processes using the method above are given by

2 1 m 2
[(D*t — Dtry) = 2EM — B4+ 2 )RR 38
( ) 3 \3m. 3B+g In f2 |k|”, (3.8)
2
. g -
0(D*" — D7%) = " ] (3.9)

This yields the approximate values of the coupling constants, g ~ 0.552 and 3 ~ 7.29GeV ~!.
With Eq.3.7 this gives us |pess| & 1.13 GeV 1.

To complete evaluation of Fig. 3.2.1 (a) in Eq. (3.3), we evaluate the B¥ — putpu~ tran-
sition. The effective Hamiltonian describing the weak b — s¢™¢~ transition is

Gr e?

Hb%s@ V;bv;fs 2 ,yﬂ(l - ’75)[) : E Cg‘]:f (:uv qz)’Yu + ClOA (,UQ)’YM/VS 14
/o Vg

Coy (1 _
—  2imy 722“ )q,, 50" (1 4+ 5)b - E'yuﬁ} ,  (3.10)

where ¢, = (pg+ + pe- ), is the momentum of the lepton pair and C; are scale-dependent

Wilson coefficients. The matrix element for BY — pji is then

G * 2 * —
MB;‘—};LJF,LL* - \/g%b‘/tSS 2f SMBS n#u(p,u*)[CQVu + 0107M75]U(p,u7>

07 _ 71 e v v
= 2my g (P )0 (P g (i Pvats + oty —ot) |, (3.11)
where n* and v* are the polarization and 4-velocity of the vector meson respectively. We

defined (0|5,v*br|Bf) = n* fg:/2, and (0|50""(1 + 75)b|B}) = Mp[s, [ie“”o"gvam + vhnY —

v'nt], with fg: = Mp, fp, [30]. This gives for the amplitude of Fig. 3.2.1 (a)

M B, sBryssptu—s] = EVZbV;S@/LeffW (ﬁ“yaﬁEZkaqg)

x| (2Csmy — CoMpy ) [tiy, 71 0p,] — CroMpe [Ty, Y Y50p,] | - (3.12)
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The other contribution that is leading the Mp, — oo limit is given in Fig. 3.2.1 (c)

Guw
<i>

X M¢—>’Y‘57 (313)

M [BY— piip— pafirys) MBO—WW X =3

Employing vector-meson dominance, and using the definition of the vector meson decay
constant (0[57"s|¢) = fymen,, where 7 is the polarization of the ¢ meson, and (y|5(—ieQs /
A)s|¢) = (—ieQs)e;,(0]57"s]¢),

1 *
M(b_)% = §6f¢m¢ 6#' (314)

Again, we calculate Mpo_,,z4 using (HMypT). For the short distance contributions we use
the effective Hamiltonian describing b — sf¢ transitions in Eq. 3.10, as well as the effective

Hamiltonian for b — sv,

Gr

Hb—>3'y = \/— ‘/tb‘/;

sQr meC’h( ) 50’””(1 + 75)() : F#,,. (315)

In order to bosonize the quark currents found in Egs. (3.10) and (3.15) we introduce the

light vector octet to the HMypT [30],

0 w —+ *+
ataoor K
= g_V — 0 w *0
,0#_2\/5 p _\/)/_54_75 K . (3.16)
K*— K*O ¢

The bosonized currents s7#(1 — 75)b and So#(1 4 ;)b are, respectively,

LTa = o <»>/5Hb(pﬂ)bcé‘ia>’

v . o UV /L rox
Ly, = @041{9“ g7 — 56“ 5}<V5Hb[%(05)bc — Y5(pa)belély)- (3.17)
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A numerical value of a; = —0.07 GeV''/? [30] will be used for our calculations. Keeping only

the gauge invariant portion, the amplitude for the decay with an intermediate ¢(1020) is

e fogp01 Crmy,

24n2\/Mp,my(p: - p2)

- (pl + p2)u[a}71 /kvpz] + Z'Guyaﬁka(pl + pQ)B[ﬂP17VUP2])‘ (318)

Moo s = GrVaVi €, ((k (P14 p2)) [Up, 7 Ups |

We checked that other contributions to the decay are smaller then the ones considered
above. We considered the bremsstrahlung diagrams where a soft photon is emitted from
one of the outgoing leptons. These diagrams will result in an infrared divergence in the soft
region, which has been shown to cancel with the 1-loop QED vertex corrections [57]. The
vertex corrections, as well as the bremsstrahlung contributions, will remain suppressed by a
power of the lepton mass. Therefore the remaining non-divergent contributions from both
the bremsstrahlung and vertex corrections to final states with either an electron or a muon
would not be significant.

The only contribution to the amplitude from the effective Hamiltonian describing the
weak transition in Eq.(3.10) ends up being the Oy operator. This comes from obtaining the

matrix elements for the pseudoscalar meson,

(01(s7*(1 = 15)b)[Bs) = —ifpPp, (3.19)

(Ol(50"" (1 4+ 5)b)|Bs) = 0, (3.20)

where fp is the decay constant of the B meson. With these definitions and using the

conservation of the vector current we can arrive at an expression for the amplitude

_.CVEMGF . §/PB_PB§/
MBTem — 2\/— V;fb‘/tszOIOmu |:M (pu Tk Pt - 2 Y5l (321)

where ¢ and k are the polarization and momentum of the photon respectively. Just as
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we would expect from the helicity structure involved, the amplitude for the bremsstrahlung
contribution is proportional to the lepton mass. So in the limit m, — 0, this contribution
should be small compared to the non helicity-suppressed contributions.

Each amplitude from Egs. (3.12, 3.18, 3.21) individually satisfy the Ward identity and
are thus independently gauge invariant. Putting everything together, the distribution of the
decay width as a function of the kinematic variable s = (Pp, — k)*/M3_ = ¢°/Mp_, in the

limit my, — 0,

dF_dF
ds  ds

N dl’
ds

ar

— 22
+ (3.22)

Y
B3 ¢B; ¢

where the decay distributions are given for the two different resonance amplitudes and their

interference.
dl’ s(1 —s)?
% B = XCKMMgSféS,uiff |:(|09|2 + |010‘2>£CB: + 4072£Cb — 407091’},1’3;} ﬁ,

B;

dr (16C2 f2g2m2a?| (1 — )3
— = X 3.23
ds o CKM 9m§5 s ( )
ar —4\/§fBJ g M3/2mb041/~4e 1—s5)?
—lop: = Xcrwum ki B £ (C:Cyzps — 2C3x)) ( 2) :
ds 3mg S — Tps

where we have defined Xcxa = (GH|VVitPME oy,)/(76874), @y = my/Mp,, and xp: =
Mp:/Mp,. We use the Wilson coefficients C;(A) choosing the scale at A ~ m;, ~ 5GeV/,
with 7 = 0.312, Cy = —4.21 and Cjy = 4.64 [43][58]. The CKM matrix elements are
VoVl = (4.7 4 0.8) x 1072 [59]. With the most recent lattice calculation of fp, is ~ 228
MeV [60]. Note that, when integrated over the endpoint window the last two terms in

Eq. (3.22) are much smaller than the first one. The interference contribution is destructive
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and is

B(Bs = p p vp<e0)pp: = —5.0x 107", (3.24)

B(Bs = p i vp<so0)sn: = —1.1x107", (3.25)

which are both much smaller than the B} contribution alone.

The normalized differential spectrum in s is shown in Fig.(3.2.3). The photon energy
is related to the invariant mass as £, = (1 — s)Mp/2, so we can integrate the differential
spectrum over the required corresponding kinematic region in photon energy to obtain the
decay width.

Integrating Eq.(3.22) over the kinematic region corresponding to a soft photon cut of

E, ~ 60,300 MeV we get the respective branching ratios

B(By — putp vpego) = 1.6 x 1072 (3.26)

B(By — utp Yeeson) = 1.1x1071° (3.27)

which are quite too low to affect experimental determination of the branching ratio B, —
™, agreeing with the estimates of Ref. [40] where Bsy(BY — pTu™) = (3.23 £ 0.27) x
1079,

3.3 B?— ptp v,w, transition

Because of the Glashow-Illiopulous-Maiani (GIM) mechanism, the SM loop diagram for
the helicity-suppressed B — pu*pu~ decay is dominated by the intermediate top quark despite
being suppressed by the CKM factors |V, V3|2, A transition similar to the ones described
above, which on a portion of the available phase space looks like B — p 1~ is the tree-level

decay B? — p*pu~vi. The dominant tree-level contribution for this process is depicted in
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Figure 3.2.3: Normalized differential spectrum in s. The grey shaded region corresponds to
the contribution from a soft photon energy cut at £, ~ 60 MeV.
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Figure 3.3.1: B, — putpu v

Fig. 3.3.1. This decay can have a contribution to the background, which appears only
below ¢> = M3 and, if numerically significant, can affect the extraction of B(B, — pu' ™).
This process is neither loop-dominated nor is it helicity suppressed. It nevertheless has a
kinematic phase space suppression due to the four-particle final state. For the By meson
decay, an intermediate charm quark will give the largest contribution since the intermediate
top quark diagram will be suppressed by the mass of the top quark. Also, the up quark
contribution is suppressed by V,;,V.* ~ A* whereas the charm contribution is only suppressed

by Vi Vi &~ A2, where \ = 0.22.
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The transition amplitude for this process is simple,

G i i(Pe + me «
Mo = SEVaV 09600 =99 B (o iB LS LS, (329

c e

where L* = fiy*(1 —5)v,. In the rest frame of the decaying meson we can reduce the phase
space integral’s dependence to five independent Lorentz invariants. In the same fashion as

in [61] we define these invariants as

Si2 = (Pu- +pu+)2, Sis = (pu- +p5)%  Ssu= (pr + )%,

5123 = (pu— +pu+ +p17)2 ’ Sl34 = (pu— + Do +pl/>2' (329)

Our width then becomes

(27T)4 / < w > ‘MB —)u“'u‘uD‘Q
dl’ = : dS12dS123dS13dS) 54, (3.30)
2M 2M? [_A4(pu’7pu+7pl77pu)]1/2

where Ay is the symmetric Gram determinant

Adlg,rst) =] . (3.31)

t-q t-r t-s t?

In order to avoid the divergence of 1/(—A4)'/? on the boundary, suitable variable changes

can be made thereby making the singularity integrable. We define

Sim = o [~ sin(Si) (1 4ac)'?]

2a
513 = 4(—@)1/2513 + mf, (332)
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where a,b and ¢ are the parameters solved by
_A4(p,u’7pu+7p17;pu) = aS%34 +b5134 +c. (333)

The limits of integration are calculated in [61], resulting in our partial width

dl’ 9 M? I3 1 R /2 )
= as / as / s / dSi3a ([ Mp, ot p-vsl” 3.34
dSlQ (47T)6M3 /Sl2 12 0 i m?/slz ' —7'('/2 e | b T | ( )

where & = (M? — S}23)(S123 — S12)/S123. We define the cut on missing energy as S{4(Fe,;) =
M?—2M (E.,;) which gives us a lower limit on Sj, for the final integral in order to obtain the
decay width. The branching ratios for this contribution can then calculated using numerical
phase-space integration for various cuts including the one that corresponds to the invariant
mass range seen at the LHCD.

BR[B, — ptpvw], o = 16x107%

BR[By = pfpvw], e = 14X 107 (3.35)

As we can see, the due to enormous phase space suppression (we are only interested in a small
sliver of the available four-particle final state), the possible contribution from this decay is

unimportant for experimental analyses.

3.4 Conclusion

We have seen from the above calculation that addition soft photon contributions can
affect the experimental branching ratio of B, — p*u~ by 1 to 3 % depending on the energy
resolution of the detector. While not helicity suppressed, the phase space is quite small and

leads to a small contribution.
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CHAPTER 4

SUPER-WIMPS AND (B, D) — (1,

This work was published in [28].

4.1 Introduction

There is evidence that the amount of dark matter (DM) in the Universe by far dominates
that of the luminous matter. It comes from a variety of cosmological sources such as the
rotation curves of galaxies 13, 14, 15], gravitational lensing, features of CMB [16] and large
scale structures [17]. While the presence of DM is firmly established, its basic properties
are still subject of a debate. If dark matter is comprised from some fundamental particle,
experimentally-measured properties, such as its relic abundance or production cross-sections
can be predicted. Experimental measurements of the abundance Qpyh? ~ 0.12 by WMAP
collaboration [2] can be used to place constraints on the masses and interaction strengths of
those DM particles. Indeed, the relation

Qparh? ~ (Tannvre) ' o ]\94—42, (4.1)
with M and ¢ being the mass and the interaction strength associated with DM annihila-
tion, implies that, for a weakly-interacting massive particle (WIMP) of DM, the mass scale
should be set around the electroweak scale. Yet, difficulties in understanding of small-scale
gravitational clustering in numerical simulations with WIMPs may lead to preference being
given to much lighter DM particles. Particularly there has been interest in studying models
of light dark matter particle with masses of the keV range [20, 21]. According to Eq. (4.1),

the light mass of dark matter particle then implies a superweak interaction between the dark
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matter and standard model (SM) sector [22, 23]. Several models with light O(keV-MeV)
DM particles, or super-WIMPs, have been proposed [20, 21].

One of the main features of the super-WIMP models is that DM particles do not need
to be stable against decays to even lighter SM particles [20]. This implies that one does not
need to impose an ad-hoc Z, symmetry when constructing an effective Lagrangian for DM
interactions with the standard model fields, so DM particles can be emitted and absorbed
by SM particles. Due to their extremely small couplings to the SM particles, experimental
searches for super-WIMPs must be performed at experiments where large statistics is avail-
able. In addition, the experiments must be able to resolve signals with missing energy [24].
Super-B factories fit this bill perfectly.

In this paper we focus on bosonic super-WIMP models [20, 21] for dark matter candidates
and attempt to constrain their couplings with the standard model through examining leptonic
meson decays. The idea is quite straightforward. In the standard model the leptonic decay
width of, say, a B-meson, i.e. the process B — (i, is helicity-suppressed by (m,/mp)? due

to the left-handed nature of weak interactions [62],

2\ 2
(B — (v) = F|Vub| fam ?Bmf (1_22@) _ (4.2)
mp

Similar formula is available for charmed meson DT and D, decays with obvious substitution
of parameters. The only non-perturbative parameter affecting Eq. (4.2), the heavy meson
decay constant fg, can be reliably estimated on the lattice [63], so the branching ratio for
this process can be predicted quite reliably.

The helicity suppression arises from the necessary helicity flip on the outgoing lepton
due to angular momentum conservation as initial state meson is spinless. The suppression
can be overcome by introducing a third particle to the final state that contributes to total
angular momentum [45] (see Fig. 4.1.1). If that particle is a light DM candidate, helicity

suppression is traded for a small coupling strength of DM-SM interaction. In this case, the
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Figure 4.1.1: Diagrams for the super-WIMP emission in B — ¢, X. Similar diagrams exist
for Dy, decays. Note that the graph (b) is absent for the vector light dark matter particles
discussed in section 4.4.
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charged lepton spectrum of the 3-body B — fvy + X (with X being the DM candidate)
process will be markedly different from the spectrum of two-body B — fi, decay. Then,
the rate for the process B — ¢ + [, with ' being missing energy, can be used to constrain
properties of light DM particles.

We shall consider two examples of super-WIMPs, the “dark photon” spin-1 particle, and
a spin-0, axion-like state. The discussion of the vector dark matter effects is similar to a
calculation of the radiative leptonic decay [45], i.e. the spin of the added DM particle brings
the needed unit of angular momentum. In the case of axion-like DM candidate, there is
a derivative coupling to the SM allowing the pseudoscalar particle to carry orbital angular
momentum and hence overcome helicity suppression as well. As a side note, we add that the
models of new physics considered here are very different from the models that are usually
constrained in the new physics searches with leptonic decays of heavy mesons [64, 65].

This paper is organized as follows. In Section 4.2 we examine the decay width for the
process M — flpy, + X for X = a being a spin-0 particle. We consider a particular two-
Higgs doublet model, taking into account DM-Higgs mixing in Section 4.3. In Section 4.4

we consider constraints on a spin-1 super-WIMP candidate. We conclude in Section 4.5.

4.2 Simple Axion-Like Dark Matter

We consider first an ”axion-like” dark matter (ALDM) model, as suggested in [20] and
study the tree-level interactions with the standard model fermions. The most general La-

grangian consists of a combination of dimension-five operators,

.a - C -
L, = — ;amﬂ%w + DaF,, (4.3)

where X = a is the DM particle and the coupling constant f, has units of mass. Taking into

account the chiral anomaly we can substitute the second term with a combination of vector
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and axial-vector fermionic currents,

1 4 _
L, = —( + WC”)aua Dy yst) — iy (8;?

L+ )aww. (4.4)

The feynman diagrams that contribute to the meson decay, for example B — (i, + a, are
shown by Fig 4.1.1. The amplitude for the emission of a in the transition M — (v, + a can

be written as

Anr—sopa = Ap + .Aq, (4.5)

where A,, the quark contribution, represents emission of a from the quarks that build up the
meson and Ay, the leptonic contribution, describe emission of a from the final state leptons.
Let’s consider the lepton amplitude first. Here we can parameterize the axial matrix

elements contained in the amplitude in terms of the decay constant fz such as
(OJay"ysb| B) = ifpPp, (4.6)

If the mass of the axion-like DM particle is small (m, — 0), the leptonic contribution

simplifies to

A= i\/ﬁGFVub%mé<2gzpé [@e £(1 =)o) — [we(1 — 75)%])- (4.7)

Here k is the DM momentum. Clearly, this contribution is proportional to the lepton mass
and can, in principle, be neglected in what follows. The contribution to the decay amplitude

from the DM emission from the quark current is

Ay = {0[al”d| B) [y, (1 — v5)v.] (4.8)
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where the current al'*b is obtained from the diagrams in Figure 4.1.1 (a) and (c),

Gr v (Fvs) (k= pu + mu)y"(1 —75) n Y1 —5)(o— &+ mp)( E7s)
ub .

T =
V2f, m2 —2p, - k m2—2py, - k

(4.9)

Since the meson is a bound state of quarks we must use a model to describe the effective
quark-antiquark distribution. We chose to follow Refs. [66] and [67], where the wave function

for a ground state meson M can be written in the form

I
V6

Ve = —=0m(2)v5(Lar + Margu (). (4.10)

Here I. is the identity in color space and x is the momentum fraction carried by one of the
quarks. For a heavy meson H it would be convenient to assign x as a momentum fraction
carried by the heavy quark. Also, for a heavy meson, gy ~ 1, and in the case of a light

meson gr, = 0. For the distribution amplitudes of a heavy or light meson we use

o~ z(l—uz), (4.11)

where m is the mass of the light quark and the meson decay constant is related to the

normalization of the distribution amplitude,

/o oy (x)dr = 210_\1\/% (4.13)

The matrix element can then be calculated by integrating over the momentum fraction [67]

(0|J#| M) = /0 dz Tr [[#4y] . (4.14)
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Neglecting the mass of the axion-like DM particle, the decay amplitude simplifies to

 VBGrVi Mg

A= )

(Ma®F —my@8) [7 A1 —5)0] . (4.15)

where my, is the mass of the b-quark (or, in general, a down-type quark in the decay), and

we defined
1
o = [0l ng, (4.16)
o z(1—2x)
The total decay width is, then,
G%fé|vub|2Mg 1 2 4 4 6 8
e, = 6475 f2 (207 +3p" +12p log p — 6p” + p7)
+ g5 ®(my, Mp)*(1 — 6p° — 12p*log p + 3p* + 2p%)] , (4.17)
where p = my/mpg. Also,
my®o — MpP,
P Mpg) = . 4.18
(me, M) il (4.18)

Note that ®(my, Mp) o< 1/m, which is consistent with spin-flipping transition in a quark
model, which would explain why this part of the decay rate is not proportional to m,. Similar
results for other heavy mesons, like DT and D/ are obtained by the obvious substitution of
relevant parameters, such as masses, decay constants and CKM matrix elements.

Experimentally, the leptonic decays of heavy mesons are best studied at the ete™ flavor
factories where a pair of MM~ heavy mesons are created. The study is usually done by
fully reconstructing one of the heavy mesons and then by finding a candidate lepton track
of opposite sign to the tagged meson. The kinematical constraints on the lepton are then
used to identify the decays with missing energy as leptonic decay.

In the future super-B factories, special studies of the lepton spectrum in M — ¢+missing
energy can be done using this technique to constrain the DM parameters from Eq. (4.17).

The lepton energy distributions, which are expected to quite different for the three-body
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decays B~ — al 1, are shown (normalized) in Fig. 4.2.1 for each lepton decay process.
However, we can put some constraints on the DM coupling parameters using the currently
available data on M — fp,. The experimental procedure outlined above implies that what

is experimentally detected is the combination,

T(M — alp
Poo(M = b)) = FSM(M—>£W)+/ i, d; alvy)
E<Ey a
= Tsu(M = tw) [1+ Ru(Eo)], (4.19)

where Ej is the energy cutoff that is specific for each experiment. Equivalently, cutoff in ¢?

can also be used. In the above formula we defined

1 dP(M — CLED()
W(Eo) = dE, : 4.2
Ro(Ep) Tou(M — () [E<EO dE, (4.20)

Our bounds on the DM couplings from different decay modes are reported in Table 7.0.1
in the appendix for the cutoff values of Ey = 100 MeV. Note that similar expressions for
the leptonic decays of the light mesons, such as 7 — afv and K — afv come out to be
proportional to the mass of the final state lepton. This is due to the fact that in the light
meson decay the term proportional to g vanishes. Thus, those decays do not offer the same
relative enhancement of the three-body decays due to removal of the helicity suppression
in the two-body channel. It is interesting to note that the same is also true for the heavy
mesons if a naive Non-Relativistic Constituent Quark Model (NRCQM), similar to the one

used in Refs. [68, 69] is employed. We checked that a simple replacement
o = —DPp, pu=—D"Pp (4.21)

advocated in [68, 69] is equivalent to use of symmetric (with respect to the momentum

fraction carried by the heavy quark) distribution amplitude, which is not true in general.



45

Currently, the SM predictions for the B~ — ("7, decay for ¢ = pu,e are significantly
smaller than the available experimental upper bounds [70, 71], which is due to the smallness
of V,,» and the helicity suppression of this process. This, even in the standard model, there is
a possibility that some of the processes B~ — (™, with 7, being the soft photon missed
by the experimental detector. Such photons would affect the bounds on the DM couplings
reported in Table 7.0.1.

The issue of the soft photon “contamination” of B~ — ¢~ p, is non-trivial if model-
independent estimates of the contributions are required (for the most recent studies, see

[44]). In order to take those into account, the formal in Eq. (4.19) should be modified to

To(M = 05y) = Tou(M — () [1 + Ro(Eo) + R, (E})] . (4.22)

In general, the experimental soft photon cutoff Ej, could be different from the DM emission
cutoff Fy. Since we are only interested in the upper bounds on the DM couplings, this issue
is not very relevant here, as the amplitudes with soft photons do not interfere with the
amplitudes with DM emission. Nevertheless, for the purpose of completeness, we evaluated
the possible impact of undetected soft photons using NRCQM as seen in [68, 69]. The results
are presented in Table 7.0.1 in the appendix of this dissertation for different values of cutoff
on the photon’s energy. We present the NRCQM mass parameters in Table 4.2.1 with the
decay constants calculated in [72].

The relevant plots for D (D) decays can be obtained upon substitution Mg — Mp(p,),
s = fpowm,), and Vi — Viges)- Note that there is no CKM suppression for D decays.
In order to bound f, we use the experimentally seen transitions B — 7o, D) — pv, and
D, — 7. We note that the soft photon “contamination” can be quite large, up to 10% of
the standard model prediction for the two body decay.

The resulting fits on f, can be found in Table 4.2.2. As one can see, the best constraint

comes from the D¥ — p* 1, decay where experimental and theoretical branching ratios are
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Figure 4.2.1: Normalized electron (solid) and muon (dashed) energy distributions for the
heavy (B*, D%, D) meson decay channels.

in close agreement.

4.3 Axion-like Dark Matter in a Type II Two Higgs

Doublet Model

A generic axion-like DM considered in the previous section was an example of a simple
augmentation of the standard model by an axion-like dark matter particle. A somewhat
different picture can emerge if those particles are embedded in more elaborate beyond the
standard model (BSM) scenarios. For example, in models of heavy dark matter of the
“axion portal”-type [74], spontaneous breaking of the Peccei-Quinn (PQ) symmetry leads to
an axion-like particle that can mix with the CP-odd Higgs A° of a two Higgs Doublet model

(2HDM). For the sufficiently small values of its mass this state itself can play a role of the light
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’ Quark ‘ Constituent Mass

uen
mq
ms
me
my

335.5 MeV
339.5 MeV
486 MeV
1550 MeV
4730 MeV

Table 4.2.1: Constituent quark masses [73] used in calculations.

’ Channel \ fa, MeV ‘
B(B* — m*0,) 12
B(D* = u*i,) 236
B(DE — utv,) 62
B(Df — *1;) 11

Table 4.2.2: Constraint on f, using the various seen decay channels.

DM particle. The decays under consideration can be derived from the B — (v A° amplitude.

An interesting feature of this model is the dependence of the light DM coupling upon the

quark mass. This means that the decay rate would be dominated by the contributions

enhanced by the heavy quark mass. This would also mean that the astrophysical constraints

on the axion-like DM parameters might not probe all of the parameter space if this model.

In a concrete model [74], the PQ symmetry U(1)pq is broken by a large vacuum expec-

tation value (S) = f, > vy of a complex scalar singlet ®. As in [75], we shall work in an

interaction basis so that the axion state appears in ® as

and A° appears in the Higgs doublets in the form

Uy €XP {%AO}

0

o, =

Oy =

Vg €XP |:

(4.23)

0

itan 3 AO
V2vgw

] : (4.24)
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where we suppress the charged and CP-even Higgses for simplicity and define tan 5 = v, /vy
and vpy = /02 + v = mTW. We choose the operator that communicates PQ charge to the

standard model to be of the form!®
L= \0’D, D, + h.c. (4.25)

This term contains the mass terms and, upon diagonalizing, the physical states in this basis

are given by [75]

a, = acosf— A’sind (4.26)
Ag = asinf + A%cosd (4.27)

where tan = (vgpw/f.)sin2p. Here a, denotes the "physical” axion-like state. Thus, the

amplitude for B — fva, can be derived from

M(B — lva,) = —sinM(B — (vA®) + cos§ M(B — (va) (4.28)

In a type II 2HDM [75, 76, 77], the relevant Yukawa interactions of the CP-odd Higgs with

fermions are given by

g ta - ,g cot,
9 nﬁmddfyg,dAO + 292 b

My trysuA’ (4.29)
my myy

‘CAOff:

where d = {d, s,b} refers to the down type quarks and u = {u,c,t} refers to the up type
quarks. The interaction with leptons are the same as above with d — ¢ and u — v.
In the axion portal scenario the axion mass is predicted to lie within a specific range of

360 < m, < 800 MeV to explain the galactic positron excess [74]. Using the quark model

IThis is the case of the so-called Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) axion, although other forms
of the interaction term with other powers of the scalar field ® are possible [75].
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introduced in the previous section we obtain the decay width

GZ | Vaup[*m3y
25673 (f3+v2EW sin? 2,6’)

I'(B — lya,) =
x [cos 28 (m, @8 + my(®F — ®F)) + 5 [mp(PF — ®F) + mu(IDﬂ]Q
x [122log(z,) — 4ag + 32 + (p — 1)'(4(p — 2)p + 1) — 12(p — 1)* log(1 — p)

(4.30)

Here we defined z, = m,/mpg, and p = my/mp. If we assume f, > vgy sin 25 we can then

provide bounds on f, as seen in Table 4.3.1. Just like in the previous section, the results for

fa(MeV) | fa(MeV) | fo(MeV) fa(MeV)

Channel tanf =1 | tanB =5 | tan3 =10 | tan = 20
B(BT — t%0u,) 70 340 357 361
B(D* — piﬂﬂ) 416 2874 3078 3131
B(Df — ﬂiﬂﬂ) 532 1380 1499 1529

Table 4.3.1: Constraint on f, using the observed decays for various tan (s.

other decays, such as D, — {1y, can be obtained by the trivial substitution of masses and

decay constants.

4.4 Light Vector Dark Matter

Another possibility for a super-WIMP particle is a light (keV-range) vector dark matter
boson (LVDM) coupled to the SM solely through kinetic mixing with the hypercharge field
strength [20]. This can be done consistently by postulating an additional U(1)y symmetry.
The relevant terms in the Lagrangian are

1 1

L=~ FuF" —

: (4.31)

2
ViV = SV P+ IV VP 4 Ly,
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where L}, contains terms with, say, the Higgs field which breaks the U(1)y symmetry,
parameterizes the strength of kinetic mixing, and, for simplicity, we directly work with the
photon field A,. In this Lagrangian only the photon A, fields (conventionally) couple to the
SM fermion currents.

It is convenient to rotate out the kinetic mixing term in Eq. (4.31) with field redefinitions

K 1
A A — — V', (. v 4.32
V1—k? V1—k? (4.32)
The mass my will now be redefined as my — \/% Also, both A} and V now couple to
the SM fermion currents via
1 7. o K‘le 17, i
Ly =—eQsA by by — ===V, by Yy, (4.33)

V-2

where () is the charge of the interacting fermion thus introducing our new vector boson’s
coupling to the SM fermions. Calculations can be now carried out with the approximate

modified charge coupling for k < 1,

ke
—— = Ke. 4.34

— (4.34)

As we can see, in this case the coupling of the physical photon did not change much compared
to the original field A, while the DM field V| acquired small gauge coupling xe. It is now
trivial to calculate the process B — ¢vVpy, as it can be done similarly to the case of the
soft photon emission in Sect. 4.2. Employing the gauge condition € -k = 0 for the DM fields,

the amplitudes become in the limit my — 0

,GFVub/fee*a

A= 6k - pp [A’ﬂw(l —75)I/e+Bl7'ya(1 —75)Vg—|—0a(7(1 _75)V47+D“Z0’ua(1+75)w}

(4.35)
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with the coeflicients

A= [3Vass - 2VB(@E + 8F)| " - 2VE(B - 380)ic Py,
3
B = _ [3\/§f3 — 2V3(0F + <I>]19)] (k-q) — EmeQB
— 2V/3gmyg [ma(do — 3¢1) + 2mpdy], (4.36)

Cy, = 3\/§me€(] k~p4—p€k~q7

k - pe
D' = —3\2ifgmy il K,

k - pe

and g = py + p,. Again, we fit the parameter x using the same data as in the axion-like DM

8
6 6
1dr 1dr
T dx I dx
2 2
ok 0 -
0.0 0.1 0.2 0.3 04 0.5 0.0
X
(a) B* = LoV (b) DE > LveVoum
6
1dr
Z
I dx Pt
2 - g \
80 - 0.1 0.2 0.3 04 0.5
X

(C) .Dsi — lvVpum

Figure 4.4.1: Normalized electron (dashed) and muon (solid) energy distributions for the
heavy {(B*, D%, DX} meson decay channels.

case. The results are shown in Figure 4.4.1 where the D* — ;*7,V decay can yield the



best bound. Using the best constraint on x from the D* — y*7,V decay we can limit the
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I€72RV Ey
Channel By =1 00( Me)zv K
B(B* — t%0,) 8.8 x 1073 <11.6
B(D* — u*tp,) 5.7x 107t <0.31
B(D* — u*tp,) 5.4 x 1072 <1.49
B(DF — m*1,) 1.3 x 1074 <20.8
B(BT — e*r,) 1.8 x 10? <11.2
B(B* — u*p,) 1.0 x 1071 <4.17
B(D* — e*1,) 1.5 x 103 <0.83
B(D* — t*1;) 1.8 x 1074 < 36.4
B(DF — e*1.) 5.2 x 102 <1.37

Table 4.4.1: Constraints on s using various decay channels. All other values are the same
as in appendix Table 6.0.1.

contribution to yet-to-be-seen decays in Table 4.4.2.
As we can see, the constraints on the kinetic mixing parameter x are not very strong,

but could be improved in the next round of experiments at super-flavor factories.

4.5 Conclusions

We considered constraints on the parameters of different types of bosonic super-WIMP
dark matter from leptonic decays of heavy mesons. The main idea rests with the fact
that in the standard model the two-body leptonic decay width of a heavy meson M =
{B, D5}, or I'(M — (), is helicity-suppressed by (m,/mg)?* due to the left-handed nature

of weak interactions [62]. A similar three-body decay M — (7, X decay, which has similar

’ Channel | B(k =0.31) |
B(BT —efr.) | 1.4x107°
B(B* — u*p,) | 3.6 x107°
B(D* = e*p,) | 1.2x1076
B(D* — r*p,) | 1.7x1078
B(Df = e*p.) | 6.2x1076

Table 4.4.2: Contributions to various yet-to-be-seen channels using the the fit on « in Ta-
ble 4.4.1.
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experimental signature, is not helicity suppressed. We put constraints on the couplings of
such DM particles to quarks. We note that the models of new physics considered here are
very different from the models that are usually constrained in the new physics searches with

leptonic decays of heavy mesons [64].
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CHAPTER 5

NEW PLAYERS IN RARE CHARM DECAYS

5.1 Introduction

Flavor changing neutral currents are allowed only at loop level in the SM, allowing the
explorationg of effects where the dominant tree level is forbidden. Additional new physics
that arise from additional particles through virtual loops allow a direct test of heir contribu-
tions. Rare decays with FCNCs have been extensively considered in the case of down-type
quarks, B, K mesons. The rare decays of these down-type mesons have already provided
tight constraints on NP. In the charm sector, the lack of an equivalently heavy down-type
quark (m; >> my) leads to a greater suppression of SM short distance amplitudes. The
rare decays of D mesons therefore are usually dominated by non-perturbative long-distance
effects and are more difficult to calculate.

Additional NP can enhance both short and long distance contributions, and in some
models can be orders of magnitude larger than the SM [78, 79, 80]. In order to take any
constraints on NP seriously it is important to have a very reliable SM prediction.

We consider the SM contribution of two-particle intermediate states to the decay of
D® — ptpu~. This decay is suppressed in the standard model, and still outside of current
experimental resolution. The leading contributions are from the unitary contribution of
D® — vy — pFp~, and is predicted to be Br ~ O(1071?) [81]. The short distance O(1071%)
and single particle unitary contributions O(107'7) are much smaller [81].

We propose that two-particle unitary contributions may be of significance, and wish to
analyze which intermediate states may be involved.

We split the calculation into four parts: The calculation of the hadronic weak decay

amplitude of D — PP and D — PV the integration over the inner-loop momenta using
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Cutkosky rules; the pQCD factorized amplitude of PP(V) — p*p~, and the dispersion
relation to obtain both the real and imaginary parts of the amplitude. We will see that

many states do not contribute at leading order.

5.2 SU(3) Flavor Decays of Charmed Mesons

While pQCD, SCET and QCD factorization are all applicable to hadronic B decays,
the charm case is more difficult. In hadronic decays, the mass of the charm meson, Mp ~
1.5GeV, is too heavy for a proper chiral perturbative expansion and yet too light to create
trustworthy heavy quark expansions. Factorization methods fail to properly describe color-
suppressed decay modes [82]. If one lets N, become ‘large”, the Fierz transformed terms in
factorization can be neglected and resolves some of the discrepancy between experiment and
theory [83, 84, 85, 86, 87], though this method is not general to both D and B decays.

One valuable method of determining hardronic decay amplitudes of charmed mesons is
based on a model-independent diagrammatic expansion. Topological flavor flow diagrams
expanded in the weak-interaction allows an experimentally-based parametrical fit that in-
cludes all strong interactions. One must assume a base SU(3) flavor symmetry, but broken
symmetry effects can be parameterized and fit depending on experimental data.

The diagrammatic approach separates amplitudes into categories of diagrams: Color-
allowed amplitudes T; Color-suppressed amplitudes C; W-Exchange amplitudes E, and W-
Annhilation amplitudes A. These parameters, as well as relevant strong phases, can be fit
currently to experimental data.

We wish to use this approach to model-independently fit both the real and imaginary
parts of the intermediate-state amplitudes, D° — PP(V), in order to use with our dispersive
amplitude approach. The fits have been done in [82], and while SU(3) breaking effects have
been improved in [88], they have not calculated PV amplitudes which are necessary for our

calculation.
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5.2.1 Amplitudes

The amplitudes are fit using the partial decay width

Pc
I'(D— PP) = =Y |AJ*. (5.1)
D

For D° — PP we use the parameters, in units of 1075GeV [82]

T = 3.14, C = (2.61)e~1152£D)°, (5.2)

E = (1.53)¢ 122", A = (0.39)e!(3175)° (5.3)
and for the Cabibbo-suppressed decays

T = 1.14, C' = (2.36)e2%2° (5.4)

E' = (1.85)e™ %%, A = (2.51)e00°, (5.5)

The amplitudes, Xpp are given by these are found in Table 5.2.1.

Meson Mode Representation Xpp

DY —  gtn— o Va (T + E') -0.50 4+ 0.32 1
7070 %m;vud (C"— E") 0.45 + 0.02 i
K*{(‘ ViVus (T + E') 0.50-0.321
KK ViViaEL + ViV, By 0+0i

Table 5.2.1: Cabibbo-suppressed Decay Amplitudes X pp in units 107GeV .

The parameters for the PV case are those found in [82] for solutions S and S1. These are
argued to be the most likely solutions as they have the lowest x? and several of the others

are ruled out by additional hadronic decays. They are fit using the partical decay width
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definition

N(D—PV) = M2 > AP, (5.6)

pol

where the polarization of the vector meson has been intentionally left in the definition of the

amplitude. This yields the best fit parameters

Tp=31410%, Oy = (@155 By = (131 )e 10000,
Ty = 2.1579%, Cp = (2.68+014)e—i016428)" Ep = (1.69 % 0.06)¢“(103%4)°,

(5.7)

These result in the hadronic D° — PV amplitudes found in Table 5.2.2.

Meson Mode Representation Xpp

DY — 7tp ViV (T4, + E’ ) -0.39 + 0.36 1
7 pt ViVua (Tp — EY)) -0.61 + 0.28 1
KTK* ViVus (T, + E}) 0.39 - 0.36 1
K-K** ViV (Thp + EY)) 0.61 - 0.28 1

Table 5.2.2: Cabibbo-suppressed Decay Amplitudes Xpy in units 1075(e - Pp)GeV .

We now have the complex amplitudes necessary to calculate the dispersive part of the
2PUC amplitude. As we saw in (5.28) only the imaginary component of these amplitudes

will contribute due to the nature of the remaining part of the diagram.

5.2.2 pQCD Form Factors

Perturbative QCD [67] is a large field of diverse methods, applications and approximations
describing the factorization of hard and soft physics of QCD at high energy scales. We use
an elementary version restricted to a leading-order calculation of the neutral-weak transition

amplitude of two light mesons. As such, if the reader is interested in the applicability of
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pQCD to heavy meson decays or other uses there is an abundance of literature to provide
an essential primer [89, 90].

The factorization of an amplitude can be expressed as an intergral over the momentum
fractions of the product of the distribution amplitudes(DA) ¢py () and the hard scattering
amplitude (HSA) Ty (z,y, Q%).

(Pl Y ClavalPde = [ or(@)Tulo s m)oh0). (5.8)

q=u,d,s

where we have defined the variable s = (p; — p2)? = @?, and the notation

/x’yz/oldx/oldy. (5.9)

First we will consider the pQCD calculation of form factors for PP(V) — ptp~ as we will
see it sets a limit on which channels contribute and which are zero at leading order. We can
generally parameterize matrix elements for vector and axial-vector PP and PV transitions,

where my > my as

(POATAPE) = F7() o+ ot = "2 () |
VEATAPED) = V) | e (5.10)
WEATIPED) = AP [+ ms,] — A8 () [ 22 1)

- AP - AP ) | 2

where ¢ = p; — po. Using the BSW parameterization [91], where Ag, A, Ay, A3 are related
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through

AP = TR AR () - TR AR (), (5.11)

Here it should be noted that in general these form factors will have a contribution from
each quark current involved in the process. In our case the neutral currents are flavor-
conserving currents of the form ¢v,q and ¢v,7°q.

The LO electroweak contributions require the sum of the intermediate states to be flavor-
neutral, that is to say contributions of the form D° — K*n~ — utu~ will be neglected,
as they will be higher order in Gz due to the electroweak transition required at the lep-
tonic vertex to change flavors. Leading processes will occur through an off-shell Z boson,
as conservation of the leptonic vector current eliminates the contribution from an off-shell
photon. The amplitude will be helicity suppressed by the lepton mass due to the nature
of the decaying particle as explained previously. Thus, only the axial muonic current will
contribute.

The hard scattering amplitude can be calculated by the quark-level diagrams as seen in
Figure 5.2.1. For both the PP and PV cases there are two groups of diagrams; one for
neutral mesons, one for charged mesons.

For neutral initial and final states there are 4 additional diagrams. These annhilation-
type diagrams are Ni suppressed.

For the charged pseudoscalar meson pairs there are four same-flavor combinations, 7% —
7t 7Z* and K* — K*Z*, that will determine which intermediate states will contribute at
leading order. For one pseudoscalar and one vector meson the possible charged combinations

are 7t — ptZ* KT — K**Z*. As we're concerned with a rough approximation we take
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Figure 5.2.1: Quark-flow diagrams contributing to the charged-meson hard scattering am-
plitude Ty.

the meson wave functions at leading Twist (Twist-2) are defined as [92]

O (P,x) = ﬁ% Pép (2),
cI)V (P7 U,x) = N §/L MVQZSVL (‘T) ) (512)

where only the longitudinal component of the vector meson participates at Twist-2. The

parton distribution functions are defined as an expansion in Gegenbauer polynomials and

are [92]
_ fp 3 3
qbp (.T) = 2\/2_M6$(1 — .CE)(l -+ ang'2 [21‘ — 1] + CL4PC4 [Q.CB — 1]),
ov, (k) = LGm(l —z)(1+ aQVC’gg 2z — 1]). (5.13)

22N,



61

Here we use the numerical values ag, = 0.35, a4 = —0.015, asx = 0.35, aux = 0, ag, =
0.15, agr+ = 0.18 [93, 94].

The Gegenbauer polynomials used are defined as

C:i] = 3t (5.14)
ci = g(5t2 _, (5.15)
04% t] = %(211&4 — 14¢% +1).

PP

Using the above with the hard scattering amplitude we obtain our LO matrix element

for a PP current coupling a SM vector current,

Bl Y Clara Py = / op(@)Ta (2., 5, 12)0b(v) (5.16)

q:u7d7s

16T (p)Cr(CE — CL) [ bp(@)dh(y)
_ : (P1+P2)/x,y o

N2-1
2N

which is very simply related to the leading order form factor, f£* in (5.10). Here Cp =
and the number of colors N, = 3. C{, are the vector component coefficients of the standard

model neutral current. These are listed in Table 5.2.3.

q Cy Ch
_gw (3—8sin2 Oy ) - ow
U L 12 cos Oy _Z4COSQW
d/S igW (;1251112 9W*3) j_aw
cos Oy 4 cos Oy
Lgw (sin2 9W*i) - gw
e/'u t cos Oy Z4cos Ow

Table 5.2.3: SM vector and axial-vector neutral current coeflicients
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Integrating over the momentum fractions using the definitions in (5.13) we have

PPZ(S) _ 187045(M2)fP1fP20F(C$ - C\%)l
87

" - N (5.17)

The pseudoscalar-vector coupling is a touch more difficult, as at first glance it involves
end-point divergences. This can be resolved by threshold resummation insertion which

smears out the endpoints, allowing a rough calculation.

PV And Threshold Resummation

We use the method of [95] of inserting a threshold resummation factor,

s = = Cr(é/iif) 1= ) (5.15)

/ () Tr (2,9, Q) (y) — / o(2)S (2, )T (2,5, Q1S (. )6 (y)  (5.19)

This factor was derived in [96] at the scale of Mp5.28GeV, and is phenomenologically mo-
tivated. We must modify its power-law behavior as for our case Q? = Mpo ~ (1860GeV ).

This method has been first given in [96], where [97] derived the parabolic parameterization

c — c(Q*) = max(0.04Q* — 0.51Q + 1.87, 1). (5.20)

where for our case ¢ — 1. This provides a quick falloff as z — 0 which removes the divergence
by spreading out the endpoint divergence without the need for Sudakov resummation factors.

Following the same method as before and integrating with the the threshold resummation
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factor we have the vector form factor

VPV(s) = (Siras(p )Cpmg) (my + mg)(C + CL)

/ ¢p(x (2—82> S(y, )i ()

X

u d
N, s
The axial form factors are
APV(s) = — (Sima,(12)Cr—"2 ) (0t — ¢
1 s le T my A A
1+
X / op(x ( 2 ) (?/,C)Qﬂz(y)

(5013 )fPIfV“mQ(n;\} +me) (O + O) é (5.22)
A5V<S) 4Z7TO(S( )Cpmg(ml -+ mg)) (Cz + Cj)
/ op(x < o yjf) S(y. )y (y)

_ (7 065) 71'@8( )fP1fV2Lm2(mj\17 + m2>CF(Ojfl B Oz) 8%’ (523>

APV(s) = 227T0zs( HOR(CY — Cﬁ))
2s(z + 1) — (1 — 3z)(m2 — m?) i
< [ sntarsea (! - ) stk
_ (3 53) 7TCYS( )fplfVQLCF(CZ — Cfl) 5.825 — (m% - m%>7 (524)

N, 52
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AlV(s) = = (2iray(p®)Cr(CY — CF))
(m3(1—3z) +m3(3z — 1)+ sz + s) gl
< [ ormsteo = ) s asi)
_ _(3sein ijQCF(CZ —C4) 8555 iT% —mi) (5.25)

5.2.3 Application

We now turn to the application of the Cutkosky rules to our amplitude. We set up our
momenta as seen in Fig. 5.2.2, with the loop integral over the momentum p;.

The absorptive part of our diagram then comes from a cut across the intermediate states,
putting both mesons on mass shell and moving in the forward direction. Here we must be
careful when calculating the absorptive part. We want only the imaginary contributions to
this diagram, and while Cutkosky rules are correct, we must remember that both of the
D — PP(V) and PP(V) — putu~ vertices may be complex. If we take only the imaginary
part of the propagators, when they’re both on-shell, we will have something real times two
complex numbers.

He were argue that for the PP(V) — p*p~ amplitude, we can ignore the real con-
tributions; the PP case only has an imaginary component while the PV case has both.
In the PV case, the real component is due to the form factor V(¢®) only which is anti-
symmetric in indices. The first amplitude in our case only has one degree of freedom :
M(D — PV) x Pp - €y, and so after performing the multiplication will remove the V(¢?)
term. This leaves the PV case also only imaginary. It should be pointed out that if we were
considering the decay of a vector particle, D*, there would be an additional term from the
product of the vector pQCD form factor and the real part of the hadronic matrix element.

The amplitude of D — PP(V), from the SU(3) flavor fit has both real and imaginary
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Pp — P

Pp

Figure 5.2.2: Forward momentum configuration for loop integral.

parts. With
M(D° — PP(V)) = (R +ilh),
M(PP(V) = ptu™) = (Re+ily) = ils,
d4p2 1 1 .9 .
/ (2m)4 p2 — m3 +ie (Pp — p2)? —m? +ie i“(Re[L] +iIm[L]). (5.26)

We wish to calculate the product of the above, with a Hermitian conjugate on the second

equation. Then we can choose our cutting rules to result in the imaginary part.

iIm[M(D° — PP(V) — u"u™)] = (Ry+ily)(ily)"*(Re[L] 4 iIm[L]),
= (iRyI, — I, I,)(Re[L] 4 iIm[L)]),

= i(RiL,Re|L] — I, [,Im[L)), (5.27)

where we have ignored real contributions. Due to the complex nature of the decay amplitude
we must also consider whether or not the real part of the propagators will participate. This
is of course easy, as one can argue that the real part of a propagator only occurs when the
momenta are off-shell. Once off-shell, there are no poles, and so they are completely real. If
you perform a Wick rotation on the propagators you will pick up an extra i, thus making

them imaginary. This means they must be zero. Our end result is

ImM(D® — PP(V) — utu™)] = —LLIm[L]. (5.28)
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We now use Cutkosky rules to cut across both propagators, putting them on-shell with

the replacement

1

P2 —m?2 + e

— —imd (p° — m?) O[p°). (5.29)

we can put our propagators on mass shell,

1 1
PR mE T e g~ e
(—imd (p§ —m2) O[Es]) (=imd (Pp—pofr —m2) O Bal).  (5.30)

We have forced positive energy solutions only with the Heaviside Theta function, ©. We can

simplify the loop integral with the customary replacements

1 d3p

1 1 /

We now consider each case, D — PP, D — PV respectively.

D — PP

In the case of pseudoscalar mesons consisting of one up-type and one down-type quark we

can write the amplitude including the electroweak neutral coupling constants,

0
ImM(D® = PP — jtp)] = ™ WD — PP /dQQ/dEm/EQ m3
1
(/ dac/ dy—P P ))
0 0 Ty

(N2 —1)2sin®0y — 11
N2 cosby s

X

X  (—4masgw)

L . ”
< (P = h) 32 [@iChy v u). (5.32)
A
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Again we recall that only the axial muonic current will participate due to conservation
of the vector current. Rather than perform this calculation completely, we look specifically
at the integral over the loop energy and angle first.

Defining

E
ph =/ E? —m3 {—2 sin @ sin ¢, sin 0 cos ¢, 0056’},

/T2 2’

we see that the integration over energy and momenta leads to

/Eg /QQ(pl = p2)l" o< (m —m3). (5.34)

Rather than go further we recall that the only contributing pairs at leading order in the
electroweak expansion are those that have matching pairs of quark flavors, 77T, K*KT,
which are degenerate in mass. Additionally, neutral combinations that have non-degenerate
mass do not contribute as at leading order all diagrams cancel. This makes sense as at tree
level the Z-charge of neutral mesons is zero. This argument will hold for PV states as well.
Thus contributions from all PP states can be ignored for further calculation. While this
seems like a null result, it allowed us to have the simple framework to compute the PV

contributions, where no mass degeneracy exists, and the dm is actually large.

D — PV

The calculation for PV intermediate states is very similar to the PP case. The first
difference we need to address is the vector meson propagator. We recall from the pQCD
discussion that at the leading twist-2 expansion the wavefunction for a light vector meson
has only the longitudinal component. This means that rather than sum over all helicities in

the propagator we will only sum over the longitudinal polarization, € which we define for
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V' being particle 2 as

¢ = DpvEom

, sin @'sin ¢, sin 6 cos ¢, cos O},
ma Ey

still satisfying ps - €3 = 0. The amplitude for D — PV is again parameterized by

M(D® = PV) = (RPY +iI’")(Pp - ey),
= B+l Y e
i=1,2,3

where we have summed over polarizations. Using (5.33) and (5.35) we have

s (B3 —mj)

ma

D1 €z =

(5.35)

(5.36)

(5.37)

The simplest way to compute the integral is to separate the PV — pt =~ amplitude not into

the normal form factors but rather just into the momentum dependent parts, knowing that

the leptonic current, L,, will not be dependent on the internal momentum. We ignore the

vector form factor (Levi Civita term) as it does not contribute (and actually integrates to

zero), and p, - €3 = 0 to limit our terms.

The explicit momentum dependence of our amplitude allows us to integrate over the

internal loop momentum and angles, giving the replacements

Pof?
et = Pl P
/EQ /Qz(pl )% 4rmi/s P’

Ppy*(s — m2 +m2)
LLﬁMMMh@ = T it

P 12(s +m? — m3
. H . — ’ 12 1 2Pu
‘Léﬁlwm%EQ pr— D

(5.38)

(5.39)

(5.40)
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where we have defined

V(s = (my +my)?)(s — (mq — mz)Z)‘

Pp| =

(5.41)
Integration over z,y is trivial and our end result for the non-leptonic part of the decay
amplitude with N, = 3,

wap? fo fv, me| Pral*(m3 — m?)

mom?

1
2Im[A(D® — uTu )py] = (18.28) (C4 — Oj)og?

(5.42)

We have used the large-mass Z boson propagator ig"” /M2, and resolved the leptonic axial
current into helicity states. This allows us two possible relative helicity contributions to the

amplitude. With constructing the D° momenta from

_ 1 _
U“[Uﬂ;ﬁsvﬂ = %Pg[uw,ﬂ%z],

= 2%[1417#75“2]7
= 2m—g(¢§<5¢¢+6¢¢>,

NG
= 2m, x V2, (5.43)

where in the last line we have used the fact that the sum over helicity states will give us a
factor of 2 in the final decay width. We expand our amplitude in mass of the lighter meson,

though we keep the first order correction. Our dispersive integral becomes

AD? = )y = l/ L,Im[A(DO —utu)py]  (5.44)
(

— M2 _
T Sy 4me)2 S — Mp — i€

We use the masses and decay constants listed in Figure 5.2.3 [98], in addition to the 2012

PDG [59] for universal constants and CKM matrix parameters.
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Myt

M+
Mg+
M=+

mpo

139.6 MeV
775.5MeV
493.7TMeV
891.7TMeV
1865.9M eV

130MeV
216 MeV
156 MeV
220M eV
105MeV

Figure 5.2.3: Meson masses and decay constants

The width if the D° meson is [59]

(D% = 1.605x 1077 MeV.

The sum of our numerical amplitudes is

AD® = T )py = (2.8 +5.60) x 107" MeV,

giving a branching ratio of

BT(DO — /L+[L_)pv ~ 2 X 10_17.

Discussion

(5.45)

(5.46)

(5.47)

While O(10717) is small compared to the leading di-photon contribution O(10713) | it is

is larger than all other sub-leading contributions. It has been argued for the pion-photon

transition at low-Q? that NLO calculations have considerable corrections [99]. Additionally,

our calculation was only LO in SU(3) violation for the D — P(V) amplitudes, as a fit

to experimental data has not been performed for PV cases, though it has for PP. Our

amplitude is proportional to the SU(3) violation, and thus any improvement may drastically

increase the result. It would be beneficial then to improve both the pQCD transition form

factors by increasing the NLO hard scattering amplitude as well as twist-3 wavefunctions.
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Due to the contributions at the wavefunction endpoints there may be large corrective effects.



CHAPTER 6

SUMMARY

In this doctoral dissertation I have discussed the possible standard model contributions
to select leptonic heavy meson decay modes. We calculated a 1 — 3% increase in By, —
wp~ from soft photon contributions through select vector resonances is a nearly model-
independent method. We have computed constraints for two super-WIMP dark matter
models from the rare leptonic decays of heavy mesons. While these are not as tight as
constraints from new physics, tighter experimental bounds will allow our calculation to be
refit. Finally I calculated a previously unmentioned two-meson unitary contribution to the
rare decay D° — pp~ as well as calculated LO form factors for P — PZ and P — VZ
light charged mesons. This contribution is O(10717) while the leading order gamma-gamma
contribution is O(107!3). T believe this work can be continued and a larger contribution
may unfold once the SU(3) violating effects in the PV intermediate state are better fit.
Additionally, a higher-twist and NLO QCD expansion may provide a better description of

the P — V Z form factors.
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