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Abstract When a measurement of a physical quantity is
reported, the total uncertainty is usually decomposed into
statistical and systematic uncertainties. This decomposition
is not only useful for understanding the contributions to the
total uncertainty, but is also required to propagate these con-
tributions in subsequent analyses, such as combinations or
interpretation fits including results from other measurements
or experiments. In profile likelihood fits, widely applied in
high-energy physics analyses, contributions of systematic
uncertainties are routinely quantified using “impacts,” which
are not adequate for such applications. We discuss the dif-
ference between impacts and actual uncertainty components,
and establish methods to determine the latter in a wide range
of statistical models.
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1 Introduction

Measurement results are usually reported quoting not only
the total uncertainty on the measured values but also their
breakdown into uncertainty components—usually the statis-
tical uncertainty and one or more components of system-
atic uncertainty. A consistent propagation of uncertainties is
of upmost importance for global analyses of measurement
data, for example, for determining the anomalous magnetic
moment of the muon [1] or the parton distribution functions
of the proton [2], and for the measurement of Z boson proper-
ties at LEP1 [3], the top-quark mass [4], or the Higgs boson
properties [5] at the LHC. In high-energy physics experi-
ments, different techniques are used for obtaining this decom-
position, depending on (but not fundamentally related to) the
test statistic used to obtain the results.

The simplest statistical method consists in comparing a
measured quantity or distribution to a model, parameterized
only in terms of the physical constants to be determined.
Auxiliary parameters (detector calibrations, theoretical pre-
dictions, etc.) on which the model depends are fixed to their
best estimates. The measured values of the physical con-
stants result from the maximization of the corresponding

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-024-12877-5&domain=pdf
mailto:andres.eloy.pinto.pinoargote@cern.ch
mailto:zhibo.wu@cern.ch
mailto:fabrice.balli@cern.ch
mailto:nicolas.berger@cern.ch
mailto:Maarten.Boonekamp@cern.ch
mailto:emilien.chapon@cern.ch
mailto:tatsuo.kawamoto@cern.ch
mailto:Bogdan.Malaescu@cern.ch

593 Page2of 15

Eur. Phys. J. C (2024) 84:593

likelihood. The curvature of the likelihood around its maxi-
mum is determined only by the expected fluctuations of the
data and yields the statistical uncertainty of the measure-
ment.! Systematic uncertainties are obtained by repeating
the procedure with varied models, obtained from the varia-
tion of the auxiliary parameters within their uncertainty, one
parameter at a time [6]. Each variation represents a given
source of uncertainty. The corresponding uncertainties in the
final result are usually uncorrelated by construction, and are
summed in quadrature to obtain the total measurement uncer-
tainty.

When using this method, different measurements of the
same physical constants can be readily combined. When all
uncertainties are Gaussian, the best linear unbiased estimate
(BLUE) [7,8] results from the analytical maximization of the
joint likelihood of the input measurements, and unambigu-
ously propagates the statistical and systematic uncertainties
in the input measurements to the combined result.

An improved statistical method consists in parameteriz-
ing the model in terms of both the physical constants and the
sources of uncertainty [9,10], and has become a standard in
LHC analysis. In this case, the maximum of the likelihood
represents a global optimum for the physical constants and
the uncertainty parameters, and determines their best values
simultaneously. The curvature of the likelihood at its max-
imum reflects the fluctuations of the data and of the other
sources of uncertainty, therefore giving the total uncertainty
in the final result.

The determination of the statistical and systematic uncer-
tainty components in numerical profile likelihood fits is
the subject of the present note. Current practice universally
employs so-called impacts [11-13], obtained as the quadratic
difference between the total uncertainties of fits including or
excluding given sources of uncertainty. But while impacts
quantify the increase in the total uncertainty when including
new systematic sources in a measurement, they cannot be
interpreted as the contribution of these sources to the total
uncertainty in the complete measurement. Impacts do not
add up to the total uncertainty, and do not match usual uncer-
tainty decomposition formulas [8] even when they should,
i.e., when all uncertainties are genuinely Gaussian.

These statements are illustrated with a simple example
in Sect. 2. Sections 3 and 4 summarize parameter estimation
in the Gaussian approximation. Sources of uncertainty can
be entirely encoded in the covariance matrix of the mea-
surements (the “covariance representation”), or parameter-
ized using nuisance parameters (the “nuisance parameter

! The curvature of the likelihood around its maximum only provides a
lower bound on the standard deviation of the estimator in the general
case (Cramér—Rao inequality). Much of the discussion in this paper will
be about the maximum likelihood estimator, which is asymptotically
efficient, i.e., for which the equality is reached.
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representation”). The equivalence between the approaches
is recalled, and a detailed discussion of the fit uncertainties
and correlations is provided. A new and consistent method
for the decomposition of uncertainties in profile likelihood
fits is proposed in Sect. 5. The method is general, as it results
from a Taylor expansion of the likelihood, and a proof that it
yields consistent results in the Gaussian regime is given. The
different approaches are illustrated in Sect. 6 with examples
based on the Higgs and W-boson mass measurements and
combinations, which are usually dominated by systematic
uncertainties and where the present discussion is of particu-
lar relevance. Concluding remarks are presented in Sect. 7.

In the following, we understand the statistical uncertainty
in its strict frequentist definition, i.e., the standard devia-
tion of an estimator when the exact same experiment is
repeated (with the same systematic uncertainties) on inde-
pendent data samples of identical expected size. Similarly,
a systematic uncertainty contribution should match the stan-
dard deviation of the estimator obtained under fluctuations of
the corresponding source within its initial uncertainty. Mea-
surements (physical parameters, cross sections, or bins of
a measured distribution) and the corresponding predictions
will be denoted as 7 and 7, respectively, and labeled using
Roman indices i, j, k. The predictions are functions of the
physical constants to be determined, referred to as parame-
ters of interest (POIs), denoted as 6 and labeled P, q.Sources
of uncertainty are denoted as a, and their associated nuisance
parameters (NPs), @, are labeled 7, s, .

2 Example: Higgs boson mass in the di-photon and
four-lepton channels

Let us consider the first ATLAS Run 2 measurement of the
Higgs boson mass, my, in the H — yy and H — 4¢
final states [14]. The measurement results in the yy and 4¢
channels have similar total uncertainty, but are unbalanced
in the sense that the former benefits from a large data sample
but has significant systematic uncertainties from the photon
energy calibration, while the latter is limited to a smaller
data sample but benefits from excellent calibration systematic
uncertainties:

— my, = 124.93+0.40(40.21 (stat) +0.34 (syst)) GeV;
— mag = 124.79 £ 0.37(£0.36 (stat) = 0.09 (syst)) GeV.

The uncertainties in the yy and 4¢ measurements can be
considered as entirely uncorrelated for this discussion. In the
BLUE approach, the combined value and its uncertainty are
then obtained considering the following log-likelihood:

L 2
oz =y (Mo (M)

Oj
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wherei = yy, 4¢,and o), and o4, are the total uncertainties
in the y y and 4¢ channels, respectively. The combined value
Mmcemb and its total uncertainty o.mp, are derived solving

1 2% @
2T oo
Ucmb 8mH

0ln%Z
Jomyg

=0,

My=mMcmb MH=Memb

The solutions can be written in terms of linear combinations
of the input values and uncertainties:

Memb = Z)\i mi, Uczmb = Z )‘1‘2 Giz (€)
i i

with
1/0}

Ai=————5, Ayy +Arge=1 “)

1/03)/ + 1/04,

And the weights 1; minimize the variance in the combined

result, accounting for all sources of uncertainty in the input

measurements. Since the total uncertainties have statistical
: : 2 2

and systematic components, i.e., 0/ = osta“ + Ogystiv the

corresponding contributions in the combined measurement

are simply
2
stat cmb — Z A stat i

In the profile likelihood (PL) approach, or nuisance-
parameter representation, the corresponding likelihood reads

—2InY = Z(ml +Z (o —ap) i — mH)

Ostat,i

2 _ 2 2
Usyst,cmb - Z)‘i asyst,i' )
i

+ (o —ap)?, (6)

where «, is the nuisance parameter corresponding to the
source of systematic uncertainty », and I3, its effect on
the measurement in channel i. Knowledge of the system-
atic uncertainty r is obtained from an auxiliary measure-
ment, of which the central value, sometimes called a global
observable, is denoted as as a,. The parameters «;, and a,
are defined in units of the systematic uncertainty oy, and
a, is often conventionally set to 0. In this example, since the
Osyst,r are specific to each channel and do not generate cor-
relations, 15, = Ogyst,r 8ir. The combined value mcmp and its
total uncertainty are obtained from the absolute maximum
and second derivative of .Z as above; in addition, the PL
yields the estimated value for ¢;-. One finds that m¢mp and
ocmb exactly match their counterparts from Eq. (3) (see also
the discussion in Sect.4).

In PL practice, however, the statistical uncertainty is usu-
ally obtained by fixing all nuisance parameters to their best-
fit value (maximum likelihood estimator) ¢, maximizing the
likelihood only with respect to the parameter of interest. With
fixed o, the second derivative of Eq. (6) becomes equivalent

Table 1 Uncertainty components of my in the y y and 4¢ channels, and
for the combined measurement. The combined uncertainties are given
according to the BLUE result (Eq. (5)) and using impacts (Eq. (7))

Measurement Ogtat Osyst Otot

vy 0.21 0.34 0.40
4¢ 0.36 0.09 0.37
Combined, decomposed 0.22 0.16 0.27
Combined, impacts 0.18 0.20 0.27

to that of Eq. (1), changing only o; for ogtat; in the denomi-
nator, giving

A/Z 2 A 1/0
stat cmb = stat i’ i

stat,i
e @

stat,4€

1/ Gstat vy
which this time differ from Eqgs. (4), (5): here, the coefficients
A/ are calculated from the statistical uncertainties only, and
the combined uncertainty is optimized for this case. The sta-
tistical uncertainty is thus underestimated relative to Eq. (3)).
The systematic error, estimated from the quadratic subtrac-
tion between the total and statistical uncertainty estimate, is
overestimated.

For completeness, numerical values are given in Table 1.
The “impact” of a systematic uncertainty on a measurement
with only statistical uncertainties differs from the contribu-
tion of this systematic uncertainty to the complete measure-
ment. In the impact procedure, the estimated measurement
statistical uncertainty is actually the total uncertainty of a
measurement without systematic uncertainties, i.e., of a dif-
ferent measurement. In other words, it does not match the
standard deviation of results obtained by repeating the same
measurement, including systematic uncertainties, on inde-
pendent data sets of the same expected size.

Finally, extrapolating the y y and 4¢ measurements to the
large data sample limit, statistical uncertainties vanish, and
the asymptotic combined uncertainty should intuitively be
dominated by the 4¢ channel and close to 0.09 GeV. A naive
estimate based on impacts instead suggests an asymptotic
uncertainty of 0.20 GeV.

We generalize this discussion in the following, and argue
that a sensible uncertainty decomposition should match the
one obtained from fits in the covariance representation, and
can be also obtained simply in the context of the PL. The
Higgs boson mass example is further discussed in Sect.6.1.

3 Uncertainty decomposition in covariance
representation

This section provides a short summary of standard results
which can be found in the literature (see e.g. [15]). Gaussian

@ Springer
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uncertainties are assumed throughout this section. The gen-
eral form of Eq. (1) in the presence of an arbitrary number
of measurements m; and POIs 6 is

— 20 L@ = Y (mi = 1:®) €' (m; —1;8)).
i,J
®)
where #; (5) are models for the m;, and C is the total covari-
ance of the measurements:

Cij=Vij+ZFierr, )
r

where V;; represents the statistical covariance, and the sec-
ond term collects all sources of systematic uncertainties.
In general, V;; includes statistical correlations between the
measurements, but is sometimes diagonal, in which case
Vij = crl.25,~ . I represents the effect of systematic source r
on measurement i (see Eq. (6)), and the outer product gives
the corresponding covariance.

Imposing the restriction that the models #; are linear
functions of the parameters of interest, i.e., f; (5) = fy,; +
> p hipOp, according to the Gauss—Markov theorem (see e.g.
Refs. [7,16,17]), the POI estimators with smallest variance
are found by solving 0 In %oy /06, |§:§ = 0, and the corre-
sponding covariance is obtained from the matrix of second
derivatives, 9% 1n Z.ov/ 00,00, }é—é . The solutions are

6, = Z)‘«pi(mi —10,i), (10)
i

cov(By, 0y) = 2piCijhgj, (11)
i

where the weights A ,; are given by

hpi =Y (hT : Sh);; : (hT : S)qi, (12)

q
Sij=Y Vi A-T- Q). (13)
k

-1
0 =Y (1+r7v=r) (v h,. (14)
B rs
In particular, using Eq. (9), the contribution to the uncertain-
ties in the POIs of the statistical uncertainty in the measure-
ments, and of each systematic source r, is given by

covl@l(@g,, 4,) = Z)\pi Vijrgjs (15)
)

cov['](ép, éq) = Z)»pi (L Tjr) dgj- (16)
)

We note that the BLUE averaging procedure, i.e., the unbi-
ased? linear averaging of measurements of a common phys-

2 The word “unbiased” employed here needs to be interpreted with care,
as it actually involves several implicit assumptions about the knowledge

@ Springer

ical quantity, is just a special case of Eq. (8) where the mea-
surements are direct estimators of the POIs. In the case of a
single POL ¢, =6 (o, =0, h = 1).

A detailed discussion of template fits and of the prop-
agation of fit uncertainties was recently given in Ref. [20].
While the above summary is restricted to linear fits with con-
stant uncertainties, Ref. [20] also addresses nonlinear effects
and uncertainties that scale with the measured quantity, i.e.,
Iy o m;.

4 Equivalence between the covariance and nuisance
parameter representations

Similarly, still assuming Gaussian uncertainties, the general
form of Eq. (6) is

—21In %0, q) = Z (m,- —1(0) — Zfir(ar — ar)) ‘/i;I

iJj

x (mj —1j0) =) Ijsles — as)>

+) (ar —ay)’, (17)

The optimum of Z\p can be found by first minimizing
Eq. (17) over a, for fixed 8 (i.e., profiling the nuisance param-
eters a); substituting the result into Eq. (17) (thus obtaining

the profile likelihood In %p (8, @(6)); and minimizing over
0. The profiled nuisance parameters are given by

HOED P (mi =1 @) +a,. (18)

where Q,; was defined in Eq. (14). The expression for the
covariance is

N ~ N —1
cov(&,, &) (@) = (]1 + FTV’IF) . (19)

rs

Substituting Eq. (18) back into Eq. (17), and after some alge-
bra, the profile likelihood can be written as

—21n %Ap (5, 5[(5)) = Z (m; - I;(§)> Sij (mj - Ij(g)) ;

LJ

(20)

Footnote 2 continued

of the input covariance matrix (see e.g. Chapter 7 of Ref. [16]). Indeed,
such covariances generally carry uncertainties themselves, because the
size of the systematic uncertainties and their correlations are never really
measured, but rather estimated. The existence and relevance of such
uncertainties on the uncertainties and on their correlations has been
noted in the context, for example, of «g fits from jet cross section data
[18]. See also the related work in Ref. [19] concerning the uncertainties
on uncertainties.
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where S;; was defined in Eq. (13). Moreover, it can be verified
that

-1
Z Vila-r- Q) = <Vij + anrjr) , ie 2D
k r
Sij = Cij s (22)

so that Egs. (20) and (8) are in fact identical. In other words,
.,S,’éov(é), in covariance representation, can be seen as the
result of maximizing .,Q”Np(é , @) over & for fixed 6: it is the
profile likelihood. Consequently, the best values for the POIs
are still given by Eq. (10) and their uncertainties by Eq. (11),
and the error decomposition of Sect. 3 applies.

The observation above is not new, and has to the authors’
knowledge been discussed in Refs. [21-27] for diagonal sta-
tistical uncertainties, and in Refs. [28,29] in the general case.
It is also briefly mentioned in Ref. [20]. The equivalence
between the covariance and nuisance parameter represen-
tations is recalled here to insist that profile likelihood fits
should obey the uncertainty decomposition usual from fits in
the covariance representation.

For any value of 6, the estimators of the nuisance parame-
ters and their covariance are given by Egs. (18) and (19). The
estimator & is given by the product of the differences between
the measurements and the model, m; — ¢t; (67), and a factor Q
determined only from the initial systematic and experimen-
tal uncertainties. This factor can be calculated from the basic
inputs to the fit. Nuisance parameter pulls (&, ) and constraints
(v/cov(@,, @,)) can thus also be calculated a posteriori in
the context of a POI-only fit in covariance representation,
without explicitly introducing &, a in the expression of the
likelihood, from the same inputs as those defining C.

This procedure can be repeated, first minimizing over 6 for
given @, substituting the result into Eq. (17), and minimizing
the result over the nuisance parameter . This yields the NP
covariance matrix elements as

cov@r a0 = [T+ -1V m] (3)

with

Gj =Y hipppj — 8ij. (24)
p

ppi =y BT VT T vy, (25)
q

while the covariance between the NPs and POI is given by
A -1
,.6,) ==Y [1+¢-DTV¢ D]
cov (4.6, Ylrra-nivie-n]
(P I)ps - (26)

Equations (11), (23), and (26) determine the full covariance
matrix of the fitted parameters.

Importantly, Eq. (26) can be further simplified to
cov (&raép) = _Z)”pirir’ 27
i

which directly provides the systematic uncertainty decompo-
sition. The inner product of Eq. (27) with itself gives the sys-
tematic covariance, Eq. (16), and the statistical uncertainty
can be obtained by subtracting the result in quadrature from
the total uncertainty in 6 p. In other words, the contribution
of every systematic source to the total uncertainty is directly
given by the covariance between the corresponding NP and
the POL.

5 Uncertainty decomposition from shifted observables

While it is a common and relevant approximation, probabil-
ity models are in general not based on Gaussian uncertainty
distributions. Small samples are treated using the Poisson
distribution, and the constraint terms associated to nuisance
parameters can assume arbitrary forms. The best-fit values
of the POI are however always functions of the measure-
ments and the central values of the auxiliary measurements,
ie.f = o »(m, a). Assuming no correlations between these
observables, the uncertainty in ép then follows from linear

error propagation:
2
. 1) ,  (28)

where o; is the uncertainty in m;, the uncer}ainty in a, is
1 by definition of a, and «; (Sect.2), and giy;‘;, % are the
sensitivities of the fitresult to these observables. The first sum
in Eq. (28) reflects the fluctuations of the measurements, i.e.,
the statistical uncertainty (each term of the sum represents
the contribution of a given m;, measurement, or bin), and
the second sum collects the contributions of the systematic
uncertainties.

The contribution of a given source of uncertainty can thus
be assessed by varying the corresponding measurement or
global observable by one standard deviation in the expression
of the likelihood, and repeating the fit otherwise unchanged.
The corresponding uncertainty is obtained from the differ-
ence between the values of 6 p in the varied and nominal fits.

This statement can be verified explicitly for the Gaussian,
linear fits discussed in the previous section. Now allowing for
correlations between the measurements, varying my within
its uncertainty yields the following likelihood:

A~ 2 A
o 28, 38,
cov(ly, 0p) = ) (W 'G’) 2 <8ar
7 r

1
1
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—21In.%,, (6, &)

= Z (mi + Lit — 1;(6) — eri(ar - a’)) VJI

iJ

x (mJ + L/k - t/(é) - erj(as - as))
+> (ar —ar)?, (29)

where L results from the Cholesky decomposition LT L = V
and represents the correlated effect on all measurements m;
of varying my within its uncertainty. In the case of uncorre-
lated measurements, L;; = 0;8;k, and only my is varied, as
in Eq. (28). After minimization, the difference between the
varied and nominal fit results is

A

AQUMY = glmid — 6 =" L. (30)
i

Similarly, the uncertainty in a; can be obtained from the
following likelihood:

—2In.%, (0, &)

= (ml- —1i(0) — ) Driloy — a») V!
i,j r
X (mj — tj(é) — erj(as _as)>

+ ) (e —ar —8)°, (31)

resulting in

A3l = 0191 0, =~ "0l )
i

as in Eq. (27). The differences between the varied and nom-
inal values of 6, match the expressions obtained above for
the corresponding uncertainties. In particular,

Z Aé,[,mk]Aé‘E’"k] = Z Api Vijhgj (33)
k iJ
reproduces the total statistical covariance in Eq. (15), and
AQNIABYY =" i (T Tje) Ay, (34)
ij
is the contribution of systematic source ¢ to the systematic
covariance in Eq. (16).

As in Sect.4, the total uncertainty in the NPs can be
obtained by minimizing the likelihood with respect to 6 for
fixed a, replacing 6 by its expression, and minimizing the
result with respect to &. The contribution of the measure-
ments to the uncertainty in & is

AG) = glmd — G, =" 0, Lir, (35)
i

@ Springer

where
Ori = =3 |1+ @ -mTv-! -1“]_
O Z[ +@-D've-n)|
x[@-nTv] (36)
St
and the systematic contributions are given by

Aal) =lo) —a, =1+ Ve D] 6D

-1
rt
Summing Egs. (35) and (37) in quadrature recovers the total
NP covariance matrix in Eq. (23), as expected.

Finally, the covariance between the NPs and POIs can be
obtained analytically by summing the products of the cor-
responding offsets, obtained from statistical and systematic
variations, that is,

> A AGI 43" Aale] Apl]
k t

==Y [1+@ DV D] D)y 69

which again matches the expression for cov(a;, 6 p) in
Eq. (26).

The identities (33), (34), (37), and (38) can be obtained
analytically only for linear fits with Gaussian uncertainties,
but the uncertainty decomposition through fits with shifted
observables only assumes the Taylor expansion of Eq. (28)
and is therefore general. The covariance and NP represen-
tations are equivalent for Gaussian fits, but this equivalence
breaks down for fits with non-Gaussian uncertainty distri-
butions, and curvatures at the maximum of the likelihood
no longer provide reliable estimates for the variance of the
parameters. Such fits can however still rely on Eq. (28) to
obtain a consistent uncertainty decomposition where each
component directly reflects the propagation of the uncer-
tainty in the corresponding source. In this way, uncertainty
components preserve a universal meaning, regardless of the
statistical method used for a given measurement.

In practice, the uncertainty can be propagated using one-
standard-deviation shifts in m and a as above, or using the
Monte Carlo error propagation method, where m or a are
randomized within their respective probability density func-
tions, and the corresponding uncertainty in the measurement
is determined from the variance of the fit results.®> The lat-
ter method makes the correspondence between uncertainty
contributions and the effect of fluctuations of the correspond-
ing sources (cf. Sect. 1) explicit. It is also more general, and

3 In order to perform the uncertainty propagation in a linear regime,
one can also apply shifts of less than one standard deviation, followed
by a rescaling of the resulting propagated uncertainty. For effectively
probing possible nonlinear effects impacting the tails of the uncertainty
distributions, one can perform a scan of the shifts by e.g. 1, 2,...5
standard deviations.
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(a)

0.5 1.0 15 20 25 3.0 35 4.0
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(b)

Fig. 1 Uncertainty decomposition as a function of a luminosity scaling factor, using CMS Run 2 results [31]. Left: size of the statistical (stat) and
systematic (syst) uncertainties for y y and 4£. Right: decomposition of uncertainties on the combination using either the uncertainty decomposition

or impacts approach

gives more precise results in the case of significant asym-
metries or tails in the uncertainty distributions. In addition,
it can be more efficient when simultaneously estimating the
variance contributed by a large group of sources of uncer-
tainty. Similarly, the present method can be generalized to
unbinned measurements using data resampling techniques
for the extraction of statistical uncertainty components [30].

6 Examples
6.1 Combination of two measurements

Let us consider again the concrete case of the Higgs boson
mass my described in Sect.2, which will serve as a simple
example with only one parameter of interest (my) and two
measurements. We will further assume that both the statisti-
cal and systematic uncertainties are uncorrelated between the
two channels, which is not unreasonable given that they cor-
respond to different events and that the dominant sources of
systematic uncertainty are indeed uncorrelated. We will take
numerical values from the actual ATLAS [14] and CMS [31]
Run 1 and Run 2 measurements, as well as from an imagi-
nary case exaggerating the numeric features of the ATLAS
Run 2 measurement.

For each case, the decomposition of uncertainties between
statistical and systematic components will be compared
between the two approaches—uncertainty decomposition
and impacts. In addition, this is done as a function of a lumi-
nosity factor k, which is used to scale the statistical uncer-
tainty of the inputs by 1/+/k (while systematic uncertainties
are kept unchanged). The published results in the example

under consideration are for k = 1. Though not shown on the
plots, we have also checked numerically that the uncertainty
decomposition (as usually done in covariance representation
methods or BLUE) can be reproduced from a profile likeli-
hood fit with shifted observables (Sect.4), while the impacts
(as usually done in profile likelihood fits) can also be recov-
ered from the BLUE approach, simply by using the statistical
uncertainties alone to compute the combination weights A
asin Eq. (7) (i.e., repeating the combination without system-
atic uncertainties). In addition, both approaches have been
checked to yield to the same total uncertainty in all cases.
CMS results We first study the combination of CMS Run 2
results [31]: stat,, = 0.18GeV, syst,,, = 0.19GeV;
statyy = 0.19GeV, systy, = 0.09GeV. The results of our
toy combination are shown in Fig. 1. This figure, as well as
the following ones, comprises two panels: the inputs to the
combination on the left, and statistical and systematic uncer-
tainties as obtained in either the uncertainty decomposition
or impact approaches on the right. The actual published num-
bers [31] correspond to k = 1 (black vertical line).

With this first simple case, where the two measurements
have relatively comparable uncertainties, little difference is
found between the two approaches, though the uncertainty
decomposition gives a larger statistical uncertainty than the
impact one, as expected. The difference becomes larger for
higher values of the luminosity factor.

ATLAS results We are now considering the ATLAS Run 2
results [14]: stat,, = 0.21GeV, syst,,, = 0.34GeV;
statgy = 0.36GeV, systy, = 0.09GeV. As shown in Fig. 2,
differences between the two uncertainty decompositions are
now more evident, already for the nominal uncertainty but
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Fig. 2 Uncertainty decomposition as a function of a luminosity scal-
ing factor, using ATLAS Run 2 results [14]. Left: size of the statistical
(stat) and systematic (syst) uncertainties for ¥y and 4¢. Right: decom-

even more when extrapolating to larger luminosities (smaller
statistical uncertainties). Again, the uncertainty decomposi-
tion gives a larger statistical uncertainty than the impact one.

Imaginary extreme case Finally, we consider an extreme case,
such that stat,,, = 0.1GeV, syst,,, = 0.5GeV; statyy =
0.5GeV, systy, = 0.1GeV, exaggerating the features of the
ATLAS combination (i.e., combining a statistically domi-
nated measurement with a systematically limited one). Dra-
matic differences between the two approaches for uncertainty
decomposition are observed in Fig. 3: for the nominal lumi-
nosity, while uncertainty decomposition reports equal statis-
tical and systematic uncertainties, the impacts are dominated
by the systematic uncertainty.

6.2 W-boson mass fits

The uncertainty decomposition discussed above is further
illustrated with a toy measurement of the W-boson mass
using pseudo-data, where the results obtained from the pro-
file likelihood fit and from the analytical calculation are com-
pared. Since the measurement of W mass is a typical shape
analysis, in which the fit to the distributions is parameter-
ized by both POI and NPs, the conclusions drawn from this
example can in principle be generalized to all kinds of shape
analyses. While the effect of varying the W mass is param-
eterized by the POI, three representative systematic sources
of a W mass measurement at hadron colliders [32-35] are
parameterized by NPs in the probability model: the lepton
momentum scale uncertainty, the hadronic recoil (HR) reso-
lution uncertainty, and the p%v modeling uncertainty. The W
mass is extracted from the p% or mT spectra, since measure-
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position of uncertainties on the combination using either the uncertainty
decomposition or impacts approach

ments based on these two distributions have very different
sensitivities to certain types of systematic uncertainties.

Simulation

The signal process under consideration is the charged-current
Drell-Yan process [36] pp — W~ — u~v at a center-of-
mass energy of /s =13 TeV, generated using Madgraph,
with initial and final-state corrections obtained using Pythia8
[37,38]. Detailed information regarding the event generation
is listed in Table 2.

Kinematic distributions for different values of the W mass
are obtained in simulation via Breit—Wigner reweighting
[39]. The systematic variations of p%v are implemented using
a linear reweighting as a function of p%v before event selec-
tion, then taking only the shape effect on the underlying pjvy
spectrum.

At the reconstruction level, the pt of the bare muon is
smeared by 2% following a Gaussian distribution. A source
of systematic uncertainty in the calibration of the muon
momentum scale is considered. The hadronic recoil i is
taken to be the opposite of 13?’ and smeared by a constant
6 GeV in both directions of the transverse plane. The second
source of experimental systematic uncertainty is taken to be
the uncertainty in the calibration of the hadronic recoil reso-
lution. The information about the W mass templates and the
systematic variation is summarized in Table 3.

Both the detector smearing and the event selections listed
in Table 4 are chosen to be similar to those of a realistic
W mass measurement. The reconstructed muon pt and mt
spectra in the fit range after the event selection are shown
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Fig. 3 Uncertainty decomposition as a function of a luminosity scaling
factor, using stat,, = 0.1GeV, syst,, = 0.5GeV; statyy = 0.5GeV,
systy, = 0.1GeV. Left: size of the statistical (stat) and systematic

Table 2 Madgraph+Pythia8 [37,38] event generation for MC samples.
Events with an off-shell boson are excluded in the event generation at
the parton level, leading to a total cross section of 6543 pb

Event generator

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Luminosity scale factor

(b)

(syst) uncertainties for yy and 4¢. Right: decomposition of uncertain-
ties on the combination using the uncertainty decomposition or impact
approach

Table 4 Detector smearing and event selection for Madgraph+Pythia8
samples. The cut-flow efficiency of the event selection is about 29%

Detector smearing
Lepton pr resolution 2%

pp —> W™ — u"y, at J/5=13 [TeV] Nominal recoil resolutions 6 [GeV]

Number of events 10,000,000 Event selection

Matrix elements Madgraph at LO ne selection [—2.5,2.5]

Input my 80.419 [GeV] p-lF selection > 25 [GeV]

Input Iy 2.0476 [GeV] ERS selection > 25 [GeV]

Parton shower & QED FSR Pythia8 mT selection > 50 [GeV]
ut selection < 25[GeV]

Table 3 W mass templates and systematic variations for the Mad-
graph+Pythia8 samples

Templates and systematic variations

W mass templates =+ 50 MeV by Breit—Wigner reweighting

w calib. Muon momentum scale £0.5%o

HR calib. Recoil resolutions £5%o

p¥ model w(py) =0.96+8-107*. p¥ [GeV]
(Reweighting)

in Fig.4, along with the relevant templates and systematic
variations.

Uncertainty decomposition

The profile likelihood fit is performed using HistFactory [40]
and RooFit [41]. Its output includes the fitted central values
and uncertainties for all the free parameters. The uncertainty

components of the profile likelihood fit results are obtained
by repeating the fit to bootstrap samples obtained by resam-
pling the pseudo data used to compute the results, or those
of the central values of the auxiliary measurements; then,
computing the spread of offsets in the POI, the analytical
solution of the fit can be calculated following the procedures
in Sect.5. For this exercise, the pseudo-data are chosen to
be the nominal simulation, but with the statistical power of
the data. The effect of changing the luminosity scale factor is
emulated by repeating the fit with an overall factor multiplied
by all the reconstructed distributions. The setups of the fits
for the validation are summarized in Table 5.

Figures 5 and 6 present the uncertainty decomposition
as a function of a luminosity scale factor used to scale the
statistical precision of the simulated sample. The error bars
for the uncertainty decomposition for the profile likelihood fit
reflect the limited number of toys. In general, the uncertainty
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Fig. 4 Reconstructed muon pt and mt distributions of the Madgraph+Pythia8 samples. Top: kinematic spectra. Bottom: the variation to nominal

ratio with statistical uncertainty indicated by the error band

Table 5 Configuration of the my fits. The luminosity scale factor of
1.0 corresponds to 76.42 [pb~']

Full model : 11 calib, HR calib, p}Y model
Stat only (for impacts) : None

Nuisance Parameters

0.1,04,0.7, 1.0, 2.0, 5.0, 10.0

30 < p§ <50 [GeV]
60 < mt < 100 [GeV]

Luminosity factors

Fit ranges

components derived from the numerical profile likelihood fit
and the analytical solution match each other within the error
bars. The discrepancy at certain points can be assigned to
the numerical stability of the PL fit, which shows up when
the uncertainty components becomes too small (typically <
2 MeV). The uncertainty decomposition is summarized in
Table 6, where the total uncertainty is broken down into data
statistic and total systematic uncertainties using the shifted
observable method, and compared with the results using the
conventional impact approach for PL fit. With 10 times higher
luminosity, the statistical uncertainty of the impact approach
decreases by exactly a factor of +/10, while that of the shifted
observable approach introduced in this study decreases more
slowly.

Table 7 shows the analytical systematic uncertainty
decomposition for the mt and p% fits with nominal lumi-
nosity, together with the NP-POI covariance matrix elements
obtained from the numerical profile likelihood fit. This con-
firms that the systematic uncertainty components can be
directly read from the PL fit covariance matrix, as discussed

@ Springer

around Eq. (27). Finally, Fig.7 compares the post-fit NP
uncertainties between the numerical profile likelihood fit and
the analytical calculation. The two methods agree at the 0.1
per-mil level.

6.3 Use of decomposed uncertainties in subsequent fits or
combinations

Uncertainty decompositions obtained with the present
method are meaningful only if the results can be used con-
sistently in downstream applications, such as measurement
combinations or interpretation fits in terms of specific physics
models. In particular, uncertainty components that are com-
mon to several measurements generate correlations which
should be properly evaluated. This happens when measure-
ments are statistically correlated or when they are impacted
by shared systematic uncertainties.

As a final validation of the proposed method, we test the
combination of profile likelihood fits of the same observ-
able. Such a combination can be performed either using the
decomposed uncertainties, or in terms of the PL fit outputs,
i.e., the fitted values of the POIs and NPs and their covariance
matrix.

The combination is performed starting from Eq. (8), which
as noted in Sect. 3 can be applied to linear measurement aver-
aging by adapting the definition of (5). In the case of a single
combined parameter, #; = 6, for a simultaneous combination
of several parameters, #; = ) , Uip0p, where Ujp, is 1 when
measurement 7 is an estimator of POI p, and 0 otherwise [8].
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Fig. 5 Uncertainty decomposition for the muon pr fit compared between the numerical and the analytical PL fit. The total systematic uncertainty

of the profile likelihood fit is the quadratic sum of the three components

This gives

-2 lni’émb(é) = Z (mi — Z Uip9p> Ci;l
p

i,j
x (m./ -y U,,,@,,) : (39)
P

which can be solved as in Sect. 3.

As an illustration, we use the my fits using the p% and mT
distributions described in the previous section. In the case
of a combination based on the uncertainty decomposition,
there are two measurements (the POIs of the p-‘f and m fits),
one combined value, and the covariance C is a 2 x 2 matrix
constructed from the decomposed uncertainties using Eq. (9).

For a combination based on the PL fit outputs, there are
in this example eight measurements (one POI and three NPs
in the pf“; and mr fits), four combined parameters, and C is
an 8 x 8 matrix. The diagonal 4 x 4 blocks are the post-
fit covariance matrices of each fit (p% and mT). The off-

diagonal blocks reflect systematic and/or statistical correla-
tions between the p% and m fits, and can be obtained ana-
lytically following the methods of Sect. 5. For two fits f] and
/2, the covariance matrix elements are

cov (9,{1,9({2) = ZAGI[,mk]‘f' Aegmk]’fz
k
+ZA9£7(1’]J1 AGLEa’]"fZ
t
cov (ot;fl,ocfz) _ ZAOAmk],fl Aa‘gmk]qu
k
la:], fi la:], f2
+ Z Aoy Ao
t
cov (el 0) = Y Aam Al
k

+ZAO[,[~at]’f] Ae}[}“t]vfz

'
cov (91{1, ozrfz) = ZAQI[)mk]»fl Aa}[kafz
k

@ Springer



593 Page 12 of 15 Eur. Phys. J. C (2024) 84:593
%‘ 120; L L \Jg %‘ r L L ]
2 1100 —— numerical E 2. 100 —— numerical N
g E —— analytical E s L —— analytical ]
5 100 — S B i
© - E = 80 —
e 0F 1 o | ]
80E- E 60 .
70 E : ]
60F 3 401~ .
50F = X ]
E 3 20— —
40 = C
El . | . L ol . | . L
10™ 1 10 10™ 1 10
Luminosity scale factor Luminosity scale factor
(a) Total uncertainty. (b) Statistical uncertainty.
= = 450
o 45F _ - > E
= r —— numerical 3 = 40F
; 441 ; — @ F E
§ E = analytlcal 1 ;C: 35; —A— p calib. numerical
0 43 = 5 30; --¥%- u calib. analytical é
> C 3 Qo E 3
w L . C . . .
s 42:— E 5 25? —— HR calib. numerical ,;
2 41:, E g 20; --%- HR calib. analytical é
E ] =S = —— p" model numerical 7
C . 4{7)- 15 T =
40 - > E --%- p% model analytical ]
g ] @ 10t ! =
39 5 E E
C S TR =
38L ! R = oL P P
10™ 1 10 10™ 1 10

Luminosity scale factor

(c) Total systematic uncertainty.

Luminosity scale factor

(d) Breakdown of systematic uncertainties.

Fig. 6 Uncertainty decomposition for the m fit compared between the numerical and the analytical PL fit. The total systematic uncertainty of the

profile likelihood fit is the quadratic sum of the three components

Table 6 Uncertainty decomposition for the muon pfr and m fits, for two different values of the luminosity scale factor, using the shifted observable
method and the impact method for PL fit. The errors arise from the limited number of bootstrap toys. The baseline luminosity is 76.42 [pb~!]

p% fit unc. [MeV]

mr fit unc. [MeV]

Lumi Method Ostat Osyst Otot Ostat Osyst Otot
x 1 Shifted obs. 44.0+0.6 41.0£1.0 60.5 344+04 39.1+£1.0 55.1
x 1 Impact 43.7 41.9 60.5 33.6 43.6 55.1
x 10 Shifted obs. 18.8£0.2 36.2+£0.5 40.7 15.7£0.2 38.6£0.5 41.6
x 10 Impact 13.8 38.3 40.7 10.6 40.2 41.6

(40) Results of this comparison are presented in Fig.8 and

+ZA9,[7a']"f1AOt£at]"f2
t

For each matrix element, the first sum is statistical and typ-
ically occurs when the fitted distributions are projections of
the same data, as is the case for the p!} and mT distributions
in my fits. The second sum represents shared systematic
sources of uncertainty.

@ Springer

Table 8, which summarize the fit precision as a function of the
assumed luminosity. The uncertainty decomposition method
and the combination of the PL fit results agree to better than
0.1 MeV. For completeness, the result of a direct joint fit to
the two distributions is shown as well; slightly more precise
results are obtained in this case, as expected, especially for
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Table 7 Left: list of systematic uncertainty contributions and the total
uncertainty, in MeV, for the mT and p% fits performed in covariance
representation. Center, right: post-fit covariance among the three NPs

associated to these systematic uncertainties and the POI, for the profile
likelihood fits to the mt and p% distribution, respectively

Uncertainty mr Py

U calib. 40.67  39.65 0.99 —0.01 0.00  —40.67 0.99  0.00 —0.03,-39.65

HR calib. 12.15 039 —-0.01 0.70 0.00 ,—12.15 0.00 1.00 0.01 , —0.39
_pf model 249 977 0.00 0.00 099 I —2.49 —0.03 0.01 0.74 1 —=9.77

Total 55.06  60.50 —40.67 —12.15 —2.49'3031.64 —39.65 —0.39 —9.77'3660.35
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Fig. 7 Post-fit NP uncertainties at different values of the luminosity scale factor. The results of the numerical and the analytical PL-fits are compared

in the ratio panel
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Fig. 8 Summary of m7 and pKT PL fit results. Combinations are pro-
duced using the uncertainty decomposition method and using the covari-
ance of the PL fit results

highly integrated luminosities where systematic uncertain-
ties dominate.

We note that a combination of PL fit results based on the
nuisance parameter representation, Eq. (17), as proposed in
Ref. [42], seems difficult to justify rigorously. The princi-
pal reason is that Eq. (17) explicitly relies on the absence of

correlations, prior to the combination, between the sources
of uncertainty encoded in the covariance matrix V and the
uncertainties treated as nuisance parameters. Since the input
measurements result from PL fits, the POI of each input mea-
surement is in general correlated with the corresponding NPs.
One possibility would be to add terms to Eq. (17) that describe
these missing correlations. It could also be envisaged to diag-
onalize the covariance of the inputs and perform the fit in this
new basis, but this would work only if all measurements can
be diagonalized by the same linear transformation, which is
generally not the case.

7 Conclusion

We have studied the decomposition of fit uncertainties in
two often-used statistical methods in high-energy physics,
namely, fits in covariance representation and the profile like-
lihood. We recalled the equivalence between the two meth-
ods in the Gaussian limit and gave a complete set of expres-
sions for the fit uncertainties in the parameters of interest, the
nuisance parameters and their correlations. A direct corre-
spondence was established between the standard uncertainty
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Table 8 Summary of m7 and p‘} PL fit results. Combinations are produced using the uncertainty decomposition method, and using the covariance

of the PL fit results

Total uncertainty in my [MeV]
Luminosity scale factor PL fits Combinations

mr P Joint Unc. decomp. POI+NP covariance
0.1 1154 1447 94.5 94.5 94.5
0.4 69.2 81.1 59.8 59.8 59.9
0.7 59.6 67.1 52.8 52.8 52.9
1.0 55.1 60.5 49.5 49.6 49.6
2.0 48.9 51.4 45.0 452 452
5.0 44.0 44.1 41.1 41.5 414
10.0 41.6 40.7 38.7 39.2 39.2

decomposition in covariance representation and the (POI,
NP) covariance matrix elements in nuisance representation.

Numerical profile likelihood analyses generally define
statistical and systematic uncertainty components from the
results of statistical-only fits and systematic impacts, but this
identification does not hold. The uncertainty of statistical-
only fits underestimates the statistical uncertainty of fits
including systematics, and systematic impacts correspond-
ingly overestimate the genuine systematic uncertainty con-
tributions. Impacts cannot be used as inputs to subsequent
measurement combinations or interpretation fits.

We have introduced a set of analytical and numerical meth-
ods to remove this shortcoming. In Gaussian approxima-
tion, a consistent uncertainty decomposition can be directly
extracted from the PL fit covariance matrix. For general (non-
Gaussian or nonlinear) profile likelihood fits, a consistent
uncertainty decomposition can be rigorously obtained from
fits using shifted observables. We have illustrated these points
by means of simple examples and have shown that profile
likelihood fit results with properly decomposed uncertain-
ties can be used consistently in downstream combinations or
fits.

Data Availability Statement This manuscript has no associated data.
[Author’s comment: Data sharing not applicable to this article as no
datasets were generated or analysed during the current study.]

Code Availability Statement This manuscript has no associated
code/software. [Author’s comment: The code developed for the present
studies is available from the authors on request.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-

@ Springer

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Eur. Phys. J. C
71,1515 (2011). https://doi.org/10.1140/epjc/s10052-012-1874-8
[Erratum: Eur. Phys. J. C 72, 1874 (2012)]

2. S. Amoroso et al., Acta Phys. Polon. B 53(12), A1 (2022). https://
doi.org/10.5506/ APhysPolB.53.12-A1

3. S. Schael et al., Phys. Rep. 427, 257 (2006). https://doi.org/10.
1016/j.physrep.2005.12.006

4. A. Tumasyan et al., Eur. Phys. J. C 83(7), 560 (2023). https://doi.
org/10.1140/epjc/s10052-023-11587-8

5. G. Aad et al,, JHEP 08, 045 (2016). https://doi.org/10.1007/
JHEP08(2016)045

6. D.vanDyk, L. Lyons (2023). https://doi.org/10.48550/arXiv.2306.
05271

7. L. Lyons, D. Gibaut, P. Clifford, Nucl. Instrum. Meth. A 270, 110
(1988). https://doi.org/10.1016/0168-9002(88)90018-6

8. A. Valassi, Nucl. Instrum. Meth. A 500, 391 (2003). https://doi.
org/10.1016/S0168-9002(03)00329-2

9. W.A. Rolke, A.M. Lopez, J. Conrad, Nucl. Instrum. Meth. A 551,
493 (2005). https://doi.org/10.1016/j.nima.2005.05.068

10. S. Schael et al., Phys. Rep. 532, 119 (2013). https://doi.org/10.
1016/j.physrep.2013.07.004

11. R. Barlow, R. Cahn, G. Cowan, F. Di Lodovico, W. Ford,
G. Hamel de Monchenault, D. Hitlin, D. Kirkby, C. Le Diberder,
F.G. Lynch, E. Porter, S. Prell, A. Snyder, M. Sokoloff, R. Waldi,
Recommended Statistical Procedures for BABAR. BABAR Anal-
ysis Document 318 (2002). https://babar.heprc.uvic.ca/BFROOT/
www/Statistics/Report/report.pdf

12. R.A. Fisher, Earth Environ. Sci. Trans. R. Soc. Edinb. 52(2), 399—
433 (1919). https://doi.org/10.1017/S0080456800012163

13. R.A. Fisher, J. Agric. Sci. 11(2), 107-135 (1921). https://doi.org/
10.1017/S0021859600003750

14. M. Aaboud et al., Phys. Lett. B 784, 345 (2018). https://doi.org/
10.1016/j.physletb.2018.07.050

15. O. Behnke, L. Moneta, Parameter Estimation (Wiley, 2013),
chap. 2, pp. 27-73. https://doi.org/10.1002/9783527653416.ch2

16. G. Cowan, Statistical Data Analysis (Oxford University Press,
Oxford, 1998)

17. K. Nakamura et al., J. Phys. G 37, 075021 (2010). https://doi.org/
10.1088/0954-3899/37/7A/075021


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1140/epjc/s10052-012-1874-8
https://doi.org/10.5506/APhysPolB.53.12-A1
https://doi.org/10.5506/APhysPolB.53.12-A1
https://doi.org/10.1016/j.physrep.2005.12.006
https://doi.org/10.1016/j.physrep.2005.12.006
https://doi.org/10.1140/epjc/s10052-023-11587-8
https://doi.org/10.1140/epjc/s10052-023-11587-8
https://doi.org/10.1007/JHEP08(2016)045
https://doi.org/10.1007/JHEP08(2016)045
https://doi.org/10.48550/arXiv.2306.05271
https://doi.org/10.48550/arXiv.2306.05271
https://doi.org/10.1016/0168-9002(88)90018-6
https://doi.org/10.1016/S0168-9002(03)00329-2
https://doi.org/10.1016/S0168-9002(03)00329-2
https://doi.org/10.1016/j.nima.2005.05.068
https://doi.org/10.1016/j.physrep.2013.07.004
https://doi.org/10.1016/j.physrep.2013.07.004
https://babar.heprc.uvic.ca/BFROOT/www/Statistics/Report/report.pdf
https://babar.heprc.uvic.ca/BFROOT/www/Statistics/Report/report.pdf
https://doi.org/10.1017/S0080456800012163
https://doi.org/10.1017/S0021859600003750
https://doi.org/10.1017/S0021859600003750
https://doi.org/10.1016/j.physletb.2018.07.050
https://doi.org/10.1016/j.physletb.2018.07.050
https://doi.org/10.1002/9783527653416.ch2
https://doi.org/10.1088/0954-3899/37/7A/075021
https://doi.org/10.1088/0954-3899/37/7A/075021

Eur. Phys. J. C

(2024) 84:593

Page 150f 15 593

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

B. Malaescu, P. Starovoitov, Eur. Phys. J. C72,2041 (2012). https:/
doi.org/10.1140/epjc/s10052-012-2041-y

M. Schmelling, Phys. Scr. 51, 676 (1995). https://doi.org/10.1088/
0031-8949/51/6/002

D. Britzger, Eur. Phys. J. C 82(8), 731 (2022). https://doi.org/10.
1140/epjc/s10052-022-10581-w

L. Demortier, Equivalence of the best-fit and covariance-
matrix methods for comparing binned data with a model in
the presence of correlated systematic uncertainties. CDF Note
8661 (1999). https://www-cdf.fnal.gov/physics/statistics/notes/
cdf8661_chi2fit_w_corr_syst.pdf

G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, Phys.
Rev. D 66, 053010 (2002). https://doi.org/10.1103/PhysRevD.66.
053010

D. Stump, J. Pumplin, R. Brock, D. Casey, J. Huston, J. Kalk, H.L.
Lai, W.K. Tung, Phys. Rev. D 65, 014012 (2001). https://doi.org/
10.1103/PhysRevD.65.014012

R.S. Thorne, J. Phys. G 28, 2705 (2002). https://doi.org/10.1088/
0954-3899/28/10/314

M. Botje, J. Phys. G 28, 779 (2002). https://doi.org/10.1088/
0954-3899/28/5/305

A. Glazov, AIP Conf. Proc. 792(1), 237 (2005). https://doi.org/10.
1063/1.2122026

R. Barlow, Nucl. Instrum. Meth. A 987, 164864 (2021). https://
doi.org/10.1016/j.nima.2020.164864

B. List, Decomposition of a covariance matrix into uncorre-
lated and correlated errors. Alliance Workshop on Unfolding
and Data Correction, DESY. https://indico.desy.de/event/3009/
contributions/64704/ (2010)

G. Aad et al, JHEP 05, 059 (2014). https://doi.org/10.1007/
JHEP05(2014)059

B. Efron, Bootstrap Methods: Another Look at the Jackknife
(Springer New York, New York, 1992), pp. 569-593. https://doi.
org/10.1007/978-1-4612-4380-9_41

A.M. Sirunyan et al., Phys. Lett. B 805, 135425 (2020). https://doi.
org/10.1016/j.physletb.2020.135425

V.M. Abazov et al., Phys. Rev. Lett. 108, 151804 (2012). https://
doi.org/10.1103/PhysRevLett.108.151804

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

M. Aaboud et al., Eur. Phys. J. C 78(2), 110 (2018). https://doi.
org/10.1140/epjc/s10052-017-5475-4 [Erratum: Eur. Phys. J. C
78, 898 (2018)]

R. Aaij et al,, JHEP 01, 036 (2022). https://doi.org/10.1007/
JHEPO01(2022)036

T. Aaltonen et al., Science 376(6589), 170 (2022). https://doi.org/
10.1126/science.abk1781

S.D. Drell, T.M. Yan, Phys. Rev. Lett. 25, 316 (1970). https://doi.
org/10.1103/PhysRevLett.25.316

J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mat-
telaer, H.S. Shao, T. Stelzer, P. Torrielli, M. Zaro, JHEP 07, 079
(2014). https://doi.org/10.1007/JHEP07(2014)079

T. Sjostrand, S. Mrenna, P.Z. Skands, Comput. Phys. Commun.
178, 852 (2008). https://doi.org/10.1016/j.cpc.2008.01.036

D. Bardin, A. Leike, T. Riemann, M. Sachwitz, Phys.
Lett. B 206(3), 539 (1988). https://doi.org/10.1016/
0370-2693(88)91627-9

K. Cranmer, G. Lewis, L. Moneta, A. Shibata, W. Verkerke, Hist-
Factory: A tool for creating statistical models for use with RooFit
and RooStats. Tech. rep. (New York University, New York, 2012).
https://cds.cern.ch/record/ 1456844

W. Verkerke, D.P. Kirkby, in Proceedings of the 13th Interna-
tional Conference for Computing in High-Energy and Nuclear
Physics (CHEPO3) (2003). http://inspirehep.net/record/634021.
[eConf C0303241, MOLT007]

J. Kieseler, Eur. Phys. J. C 77(11), 792 (2017). https://doi.org/10.
1140/epjc/s10052-017-5345-0

@ Springer


https://doi.org/10.1140/epjc/s10052-012-2041-y
https://doi.org/10.1140/epjc/s10052-012-2041-y
https://doi.org/10.1088/0031-8949/51/6/002
https://doi.org/10.1088/0031-8949/51/6/002
https://doi.org/10.1140/epjc/s10052-022-10581-w
https://doi.org/10.1140/epjc/s10052-022-10581-w
https://www-cdf.fnal.gov/physics/statistics/notes/cdf8661_chi2fit_w_corr_syst.pdf
https://www-cdf.fnal.gov/physics/statistics/notes/cdf8661_chi2fit_w_corr_syst.pdf
https://doi.org/10.1103/PhysRevD.66.053010
https://doi.org/10.1103/PhysRevD.66.053010
https://doi.org/10.1103/PhysRevD.65.014012
https://doi.org/10.1103/PhysRevD.65.014012
https://doi.org/10.1088/0954-3899/28/10/314
https://doi.org/10.1088/0954-3899/28/10/314
https://doi.org/10.1088/0954-3899/28/5/305
https://doi.org/10.1088/0954-3899/28/5/305
https://doi.org/10.1063/1.2122026
https://doi.org/10.1063/1.2122026
https://doi.org/10.1016/j.nima.2020.164864
https://doi.org/10.1016/j.nima.2020.164864
https://indico.desy.de/event/3009/contributions/64704/
https://indico.desy.de/event/3009/contributions/64704/
https://doi.org/10.1007/JHEP05(2014)059
https://doi.org/10.1007/JHEP05(2014)059
https://doi.org/10.1007/978-1-4612-4380-9_41
https://doi.org/10.1007/978-1-4612-4380-9_41
https://doi.org/10.1016/j.physletb.2020.135425
https://doi.org/10.1016/j.physletb.2020.135425
https://doi.org/10.1103/PhysRevLett.108.151804
https://doi.org/10.1103/PhysRevLett.108.151804
https://doi.org/10.1140/epjc/s10052-017-5475-4
https://doi.org/10.1140/epjc/s10052-017-5475-4
https://doi.org/10.1007/JHEP01(2022)036
https://doi.org/10.1007/JHEP01(2022)036
https://doi.org/10.1126/science.abk1781
https://doi.org/10.1126/science.abk1781
https://doi.org/10.1103/PhysRevLett.25.316
https://doi.org/10.1103/PhysRevLett.25.316
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1016/j.cpc.2008.01.036
https://doi.org/10.1016/0370-2693(88)91627-9
https://doi.org/10.1016/0370-2693(88)91627-9
https://cds.cern.ch/record/1456844
http://inspirehep.net/record/634021
https://doi.org/10.1140/epjc/s10052-017-5345-0
https://doi.org/10.1140/epjc/s10052-017-5345-0

	Uncertainty components in profile likelihood fits
	Abstract 
	1 Introduction
	2 Example: Higgs boson mass in the di-photon and four-lepton channels
	3 Uncertainty decomposition in covariance representation
	4 Equivalence between the covariance and nuisance parameter representations
	5 Uncertainty decomposition from shifted observables
	6 Examples
	6.1 Combination of two measurements
	6.2 W-boson mass fits
	Simulation
	Uncertainty decomposition

	6.3 Use of decomposed uncertainties in subsequent fits or combinations

	7 Conclusion
	References


