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Abstract

We have studied the large-scale dynamo forced with helical magnetic energy. Compared to the kinetic forcing
process, the magnetic process is not clearly observed nor intuitive. However, it may represent the actual B field
amplification in the stellar corona, accretion disk, plasma lab, or other magnetically dominated systems where the
strong kinetic effect does not exist. The interaction between the magnetic field and the plasma is essentially
nonlinear. However, when the plasma system is driven by helical energy, whether kinetic or magnetic, the
nonlinear process can be linearized with pseudotensors a, β and the large-scale magnetic field B . Conventionally,
the α effect is thought to be the main dynamo effect converting kinetic energy into magnetic energy and
transferring it to the large-scale regime. In contrast, β effect has been thought to diffuse magnetic energy. However,
these conclusions are not based on the exact definition of α and β. In this paper, instead of the analytic definition of
α and β, we derive a semi-analytic equation and apply it to the simulation data. The half analytic and numerical
result shows that the averaged α effect is not so important in amplifying the B field. Rather, it is the negative β
effect combined with the Laplacian (∇2→−k2) that plays a key role in the dynamo process. Further, the negative
magnetic diffusivity accounts for the attenuation of the plasma kinetic energy EV in large scales. We discuss this
process using the theoretical method and the intuitive field structure model.

Unified Astronomy Thesaurus concepts: Solar dynamo (2001); Magnetohydrodynamics (1964); Magnetic fields
(994); Plasma astrophysics (1261)

1. Introduction

Most celestial plasma systems are constrained by a magnetic
field B. The B field takes energy from the turbulent plasma, and
the amplified field back reacts to the system constraining its
evolution. However, the role of the B field, as well as its
evolving process, is not yet completely understood. Briefly, it
controls the rate of formation of a star and accretion disk
(Balbus & Hawley 1991; Machida et al. 2005). Further, the
balanced pressure between the magnetic field and plasma can
decide the stability of the system (see the sausage, kink, or
Kruskal–Schwarzschild instabilities; see Boyd & Sanderson
2003).

The amplification of the magnetic field (dynamo) includes
the conversion of kinetic energy into magnetic energy and its
transport in the plasma system. The converted B field cascades
toward a large-scale regime or a small-scale one, both of which
are essentially inducing the B field through the electromotive
force (EMF; ∇× (U× B), U: fluidic velocity). The migration
of magnetic energy toward the large-scale regime is called
“inverse cascade” and leads to a large-scale dynamo (LSD),
whereas that toward the small-scale regime is called “cascade
of energy” and leads to a small-scale dynamo (SSD). The
cascade of energy toward the smaller scale is often found in
hydrodynamics (HD) and magnetohydrodynamics (MHD).
However, the inverse cascade of energy requires more
constrained conditions.

Statistically, in the case of (quasi) two-dimensional HD, the
inverse cascade of energy occurs with the conserved kinetic
energy 〈U2〉/2 and enstrophy 〈ω2〉 (ω=∇×U; David-
son 2004). For two-dimensional MHD, the total energy

〈U2+ B2〉/2, cross helicity 〈U ·B〉, and squared vector
potential 〈A2〉 should be conserved. In three-dimensional
MHD, magnetic helicity 〈A ·B〉, which is essentially con-
served, is necessary instead of the vector potential (Mof-
fatt 1978; Krause & Rädler 1980). However, in the decaying
MHD system without any energy source, magnetic energy
migrates to the large-scale regime regardless of the constraints
(Ditlevsen et al. 2004; Brandenburg et al. 2015; Park 2017;
Brandenburg & Kahniashvili 2017, and references therein).
Brandenburg & Kahniashvili (2017) numerically investigated
the motion of kinetic energy in a decaying HD system
compared with that of the (non)helical magnetic energy in
decaying MHD systems. In the HD system, no actual inverse
transfer of kinetic energy was observed. However, in the MHD
system, the magnetic energy was inversely transferred regard-
less of the magnetic helicity. The inverse transfer of the
decaying helical magnetic energy can be explained with the a
effect (Park 2017), but that of the nonhelical case is not yet
clearly understood. Nonetheless, the unusual expansion of the
magnetic scale in the decaying plasma system may explain one
of the origins of the large-scale magnetic fields that
ubiquitously exist in space where no specific energy source
or helicity exist.
In addition to the energy migration, the dynamo can be

categorized into a kinetic forcing dynamo (KFD) and a
magnetic forcing dynamo (MFD) according to the type of
forcing energy. KFD is the conventional dynamo process that
converts kinetic energy into magnetic energy. In MFD,
however, the conversion of kinetic energy to magnetic energy
is not the main process. Instead, the externally supplied
magnetic energy migrates (evolves) in the plasma through EMF
with the help of kinetic energy. Compared with KFD, MFD is
the result of electromagnetic (EM) phenomena that are
ubiquitous in the space plasma system. The evolution of the
magnetic field in the plasma is described by the magnetic
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induction equation derived from Faraday’s law, ∂B/∂t=
−∇×E, and (generalized) Ohm’s law, the J=
E+U×B (+ F) (η: magnetic diffusivity). As these equations
show, the direct supply of electromagnetic energy or any force
such as the Hall effect or radiation that yields a current density
can produce a magnetic field. For example, the origin of a B
field in the plasma lab, including a reversed field pinch (RFP;
Marrelli et al. 2021), is electromagnetic rather than kinetic.
Additionally, the effect of the electric force, gravitational force,
or inhomogeneously distributed B field can yield various drift
motions of the charged particles. In the accretion disk, the
magnetic field not only transfers angular momentum but also
drives the plasma particles through the Lorentz force to induce
nontrivial EMF and subsequent magnetic fields. Turbulent
kinetic energy by itself cannot be transferred to such a huge
distance to keep the shape of the jet in an active galactic
nucleus.

When the field is helical (∇× B= λB), regardless of KFD
or MFD, turbulent EMF 〈u× b〉 can be replaced with

B Ba b-  ´ .1 Conventionally, it has been thought that
the α effect amplifies the magnetic energy and the β effect
diffuses it. However, this conclusion is not based on precise
values of a and β. Strictly speaking, their exact definitions are
not yet known. Only their sketchy representations can be
derived from dynamo theories, such as the mean field theory
(MFT; Moffatt 1978), eddy damped quasi-normal markovia-
nized approximation (EDQNM; Pouquet et al. 1976), or direct
interactive approximation (DIA; Yoshizawa 2011). They
commonly show that α is composed of the current helicity
and kinetic helicity (∼ 〈b ·∇× b〉− 〈u ·∇× u〉). The β effect
is a function of the turbulent energy ∼〈u2〉(+ 〈b2〉). As the
definition of α implies, there is no constraint between the
helical kinetic energy “− 〈u ·∇× u〉” and the helical magnetic
energy “〈b ·∇× b〉” in forcing B . A helical magnetic forcing
dynamo (HMFD) as well as a helical kinetic forcing dynamo
(HKFD) can be feasible independent dynamo processes.
Finding a and β in HMFD is the aim of our work.

In HMFD, there are a couple of things to be made clear. α
should be larger than the dissipation rate for a magnetic field to
arise. If the current helicity is a unique component in the α
effect, the magnetic field grows without stopping. To prevent
this catastrophic amplification, there should be sort of a
constraining effect, such as that of the kinetic helicity, as
HKFD assumes (〈u · ω ∼ 〈j · b〉). However, as the helical
magnetic field nullifies the Lorentz force J× B on average, the
generation of a helical velocity field by the helical B field looks
contradictory. Moreover, there are tricky issues in the
conservation and polarization of helicity. If the system is
forced by right-handed helical kinetic energy, left-handed
magnetic helicity is generated and inversely cascaded. At the
same time, right-handed magnetic helicity is generated in the
small-scale regime to conserve the magnetic helicity in the
system. In HMFD, however, right-handed magnetic helicity is
generated in the entire system (Park & Blackman
2012a, 2012b). The physical influence of magnetic polarization
on the plasma system is not yet well understood.

On the other hand, for the amplification of the B field in the
plasma, the seed magnetic field B0 is not absolutely necessary
in MFD. However, we briefly introduce its origin in space
because B0 is indispensable to KFD and decides the field

profiles in the decaying MHD system. Its cosmological origins
are divided into the era of inflationary genesis and post-
inflationary magnetogenesis. The first inflationary scenario
generates the very-large-scale PMF, but it needs the breaking of
conformal symmetry by the interaction of the electromagnetic
field and the gravitational field. The breaking of the conformal
symmetry is to consider the electromagnetic coupling to the
scalar field (Martin & Yokoyama 2008; Subramanian 2016),
coupling to the modified general relativity theory, coupling to
the pseudoscalar field, and so on. The PMF strength could be
generated by quantum fluctuations and has been estimated to be
10−5−1 Mr (Yamazaki et al. 2012). The generated magnetic
field via the inflation process could in principle be scale-
invariant with P(k)∼ k−3 and more stable on large scales.
However, on scales larger than the Hubble scale, the correlation
cannot be expected by causality. Here, we note that a
superhorizon (inhomogeneous) PMF model generated from
the fluctuations of the magnetic field has been suggested to
explain the Bing Bang nucleosynthesis (Demozziet al. 2009;
Luo et al. 2019).
The second scenario is based on the cosmological quantum

chromo dynamics (QCD) phase transition (∼250 MeV; Cheng
& Olinto1994; Tevzadze et al. 2012) and the electroweak phase
transition (∼100 MeV). The PMF could be generated by the
collision and percolation of some bubbles from the first-order
transition and is estimated to be 10−7 nG by the quark-hadron
and 10−14

–10−8 nG by the electroweak transition. The second
scenario of phase transition includes the violent processes of
separating the charges and yielding the turbulent fluid motion.
First-order phase transition occurs through bubble nucleation,
whose correlation length is finite and a fraction of the Hubble
scale (Ahonen & Enqvist 1998). The scale of the magnetic field
generated at the second-order phase transition would be much
shorter and damped by ohmic dissipation. Therefore, the phase
transition was argued only to explain the small-scale
amplification of the comoving magnetic field and the limited
correlation length scale, not for a large-scale magnetic field
such as the magnetic field in galaxies or clusters of galaxies
(Vachaspati 2021). However, we note that a recent simulation
of the magnetic field employing the decaying turbulence at the
phase (first-order) transition illustrates the appearance of a
strong comoving magnetic field much larger than 1 μG with a
relatively larger correlation length and the possibility of a
gravitational wave signal from the strong turbulent source
(Kahniashvili et al. 2022). The magnetic field produced
through causal processes at phase transitions might serve as a
seed for the fields observed in galaxies and clusters.
The third scenario can occur during or after the epoch of

photon scattering. The PMF can be produced by nonvanishing
vorticity, which arises from the nonzero electron and proton
fluid angular velocities by the different masses of proton and
electron in the gravitational field (Harrison mechanism;
Harrison 1970). The PMF is thought to be about 10−9 Mr.
However, the strength of B0 inferred from these quantum
fluctuations is too small to account for the KFD seed field. So,
another amplification process that connects PMF and KFD
must have existed.
The second and third scenarios are thought to occur on a

correlation scale smaller than the Hubble radius, for which we
expect a suitable field generated by another dynamical effect
such as the Biermann battery mechanism (Schluter 1950).
When the hot ionized particles (plasma) collide, the fluctuating

1 We decomposed field X into the large-scale quantity X and turbulent
quantity x.
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electron density ∇ne and pressure ∇pe (or temperature ∇Te)
can be misaligned. This instability,−∇pe/( nee), can drive
currents to generate magnetic fields. This is a typical example
of a nonhelical magnetic forcing dynamo. Moreover, the
cosmological density fluctuations by second-order couplings
between photons and electrons, which can involve anisotropic
pressure of photons pushing electrons in directions different to
the protons (Ichiki et al. 2006), can produce the large-scale
magnetic fields as well as large-scale structures in the universe.
Further, the neutrino interaction with charged leptons at the
early epoch is thought to have generated primordial magnetic
helicity in addition to the well-known ponderomotive electric
force (Semikoz & Sokoloff 2005). As the electric field in
Faraday’s law is replaced by EMF and current density, the
neutrino–lepton interaction can yield the modified magnetic
induction equation, i.e., it is one of the promising candidates of
magnetic field generation. These two processes are typical
examples of MFD (see the Appendix).

Besides, in space, the guide magnetic field Bext is mixed with
the self-generated B field and affects the overall evolution of
the plasma system. The effect of Bext can be described by the
Elsässer variable (z±= v± b) equation (Elsässer 1950; Bis-
kamp 2005):

z
v z z z

z z f

t
P

1

2

1

2
, 1

A

2 2

· ·

( ) ( ) ( )
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where v BA ext 0 0m r= (μ0: magnetic permeability, ρ0:
density of charged particle) is the Alfvén velocity. The ratio
between vA ·∇z± and zm ·∇z± decides the profile of the energy
spectrum. The strong linear effect due to Bex suppresses the
plasma motion leading to weak turbulence (Galtier et al. 2000).

v z z z k v k b . 2A A· · ( ) 
   

^ ^

(k∥ is the wavenumber parallel to the guide field. k⊥ and b⊥ are
the wavenumber and magnetic fluctuation perpendicular to the
guide field, respectively). In contrast, if the nonlinear effect is
dominant, the effect of turbulence increases (Goldreich &
Sridhar 1995), and if the guide magnetic field is much weaker
than the dynamo-generated magnetic field, the effect of the
guide magnetic field decreases. However, regardless of “vA,”
the effect of turbulence grows in proportion to the wavenumber
k⊥.

So far, we have briefly introduced the type of dynamo
including the a and β effects, seed field effect, and effect of
guiding magnetic field. However, in this paper, we mainly
study α and β in HMFD. We derive their indirect representa-
tions as functions of the large-scale magnetic energy and
helicity (Park 2020). Applying simulation data to the semi-
analytic theory, we study the evolving profiles of α and β.
Followed by this introductory section, the numerical method
and related MHD equations for simulation are discussed in
Section 2. In Section 3, we show the numerical results for the
evolving B field and its inverse cascade to the large-scale
regime. Then, we show the evolving profiles of α and β along
with the growth of the B field and investigate their physical
features and mutual relations. Moreover, we verify the results
with simulation and analytic proof. In Section 4, we discuss the
parameterisations of EMF with α and β and compare them
using numerical data and an analytic approach. Using the field

structure model, we explain the intuitive meaning of theα effect
and how β becomes negative. Then, we rederive the β
coefficient when the field is helical. The β effect also explains
how the plasma velocity field is suppressed when the system is
forced by a helical magnetic field. This work focuses on the
physical mechanism of a helical forcing dynamo, which occurs
in the fundamental level of astroplasma systems. In Section 5,
we summarize our work.

2. Numerical Method

The dynamo phenomenon can be explained with the MHD
model. The basic MHD equations are composed of the
continuity, momentum, and magnetic induction equations as
follows:

U U
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Here, symbols ρ, ν, and η indicate the density, kinematic
viscosity, and magnetic diffusivity. “ U” is in units of the sound
speed, cs, and “ B” is normalized by cs0 0

1 2( )r m (m 0: magnetic
permeability in vacuum. The variables in these equations are
unitless.)
These equations are solved theoretically or numerically. For

the theoretical analysis, Fourier-transformed equations, which
can be solved algebraically, are used for the detailed calculation
of the entire scale. However, in many cases, a simple two- or
three-scale model is often used to investigate the most
characteristic properties. For example, U and B in
Equation (6) are separated into the large-scale fields U and B
and turbulent small-scale fields u and b. Then, the B field
evolves with

B
u b B

t
. 72 ( )h

¶
¶

=  ´ á ´ ñ + 

The forcing function “f” is usually applied to the small-scale
regime so that its effect is included in “u” or “b.” That is, EMF
contains the forcing effect implicitly. Additionally, when the
field is helical, this equation can be represented with a more
simplified form as follows (Pouquet et al. 1976; Park &
Blackman 2012a):

B
B B

t
. 8

J

2( ) ( )  a b h
¶
¶

~  ´ + + 

Physically, this equation means that the magnetic field is
induced by the current density (Ampere’s law) with α and
plasma fluidic diffusion with β. These pseudoscalar tensors can
be derived with MFT, DIA, or EDQNM. However, no exact
theoretical method has been found yet. We do not discuss any
rigorous way to derive the pseudoscalars in this paper. Instead,
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we suggest a detour approach to obtain their temporal evolving
profiles with numerical simulation.

For the numerical simulation, we used the Pencil Code
(Brandenburg 2001) to solve Equations (3)–(5). The Pencil
Code is a sixth-order finite-difference code for compressible
fluid dynamics accounting for the magnetic field. The code
solves for the vector potential “A” in Equation (5) instead of
the magnetic field “B” in Equation (6). Solving for “A,” the
condition of a divergence-free magnetic field (∇ ·B= 0) is met
without numerical manipulation. Moreover, the magnetic
helicity HM(= 〈A ·B〉) as well as the magnetic energy
EM(= 〈B2/2〉) can be calculated free from the gauge issue
with the assumption of the simply connected volume.

To drive a dissipative plasma system, we used a forcing
function like

f

k k e k k e

k e

k t

i t t t t

k t t k t

,

1 1
. 9

mag

2 2 2 2

( )
( ) ( ( ) ˆ) ∣ ( )∣( ( ) ˆ)
( ) ( ( ) · ) ( )

( )l

l
=

´ ´ - ´

+ -

This is the Fourier-transformed function represented by a
wavenumber “k,” helicity ratio controller λ, and arbitrary unit
vector “ê.” Simple calculations show that fmag is solenoidal:
∇ · f→ ik · f= 0 with a unit magnitude, |fmag|= 1. Its second-
order correlation is 1 regardless of λ: 〈f

*

f〉= (a2
+ λ2b2)/c2= 1, where a k k e( ˆ)= ´ ´ , b k ek ( ˆ)= ´ , and

c k ek k1 12 2 2 2( · ˆ)l= + - . Further, if λ is+ (− )1, the
forcing function generates a fully right-handed (left-handed)
helical field: ∇× fmag→ ik× fmag=± kfmag and fmag ·

f kfmag mag
2 ´   . In contrast, λ= 0 yields a nonhelical

forcing field, and 0< |λ|< 1 yields the fractional helical field.
The numerically calculated data from this function are inversely

Fourier transformed, f r f k rt N i t, Re expk tmag,( ) ( [ ( ) ·( )= +
i t( )])f , and attached to Equation (4) (KFD), or Equation (5)
(MFD).2 Here, k(t)= (kx, ky, kz), and f(t) is a random phase
with |f|< π. N is a normalization factor c kc ts s

1 2( )d~ , where
cs and δt are the sound speed and time step, respectively. In
each time step, a k value out of 350 vectors (4.5< |k|< 5.5) is
randomly chosen, and the forcing function becomes delta
correlated in time.3 These features of the forcing function are
reflected in “U” and “B” in the plasma system characterized by
viscosity, magnetic diffusivity, and other physical properties.
We will discuss the helical stochastic effects reflected in α and
β, which are in fact the second-order correlations of “U”
and “B.”

However, this forcing source cannot be compared with the
real forcing source in nature. This function is specified for the
investigation of the effect of helicity on the plasma system. It
can be used as the kinetic forcing source fkin or magnetic
forcing source fmag. In the Appendix, we explained the
theoretical background of MFD with two more realistic
examples of fmag: the Biermann battery effect and neutrino–
lepton interaction. One of the most essential differences
between them is the magnetic helicity, which decides the
direction of magnetic energy transfer.

We gave the helical magnetic field (energy) at the randomly
chosen wavenumber k, which is constrained by 〈k〉ave≡ kf∼ 5.
For both systems we used a unit magnetic Prandtl number

PrM= h/n= 1. h= n= 6× 10−3, and the numerical resolution
is 3203. The systems were forced by Equation (9) with a fully
helical magnetic field (λ=+ 1 or −1 at k= 5). We used the
basic data set of the kinetic energy EV(= 〈U2〉/2), magnetic
energy EM(= 〈B2〉/2), kinetic helicity 〈U ·∇×U〉, and
magnetic helicity 〈A ·B〉. These data are produced by a default
option, whose reliability has been verified. The magnetic vector
potential generating the numerical seed field is of a smoothed
random Gaussian field. It is spatially delta correlated with the
initial profile of E(k)∼ k4 and a decline at large wavenumbers.
Its initial magnitude is 10−4 (Brandenburg 2001).

3. Numerical Results

The system in Figure 1(a), (c) is forced by a fully positive
(right-handed) helical magnetic field (red dashed line; helicity
ratio of forcing energy: fh≡ kf〈a · b〉/〈b

2〉= 1, kf= 5 forcing
wavenumber). In contrast, the system in Figure 1(b), (d) is
forced by a fully negative (left-handed) magnetic helicity
( fh=− 1). The peak speed U is∼ 2× 10−3, and the magnetic
Reynolds number is defined as ULRe 2 3M h pº ~ , where
L = 2 p and h = 6× 10−3. In HMFD, the least amount of
magnetic energy is transferred to the plasma, and energy
dissipation by viscous turbulence is minimum. This eccentric
property leads to a low ratio of advection to diffusion ReM. If
ReM is redefined as “(turbulent) fmag/η∇

2B,” ReM increases.
However, we use the conventional definition in this
manuscript.
In Figure 1(a), the large-scale magnetic energy B 2á ñ (= E2 M ,

k= 1; solid line) grows to be saturated at t∼ 100. Along with
B 2á ñ, the large-scale magnetic helicity A B·á ñ (dashed line)
evolves keeping the relation of A BB k2  ·á ñ á ñ (k= 1).
Moreover, the kinetic energy U 2á ñ in the large scale grows
keeping U UU k2  ·á ñ á  ´ ñ . However, the direction of
the kinetic helicity fluctuates from positive to negative as the
discontinuous cusp line implies in this log-scaled plot.
Similarly, Figure 1(c) shows the evolution of the small-scale
magnetic energy 〈b2〉 and kinetic energy 〈u2〉 with their helical
part 〈u ·∇× u〉/k and k〈a · b〉 (k� 2). The fields grow and get
saturated like the large-scale field, but the saturation occurs
earlier because of their smaller eddy turnover time. The inverse
cascade of magnetic energy from the forcing scale clearly
shows up so that B 2á ñ surpasses 〈b2〉. This is a typical property
of a helical large-scale dynamo.
Figures 1(b), (d) show the growth of the kinetic and

magnetic energies in the system forced by the fully left-handed
magnetic energy. Basically, they evolve consistently in
comparison with Figures 1(a), (c). However, the kinetic
helicity and magnetic helicity are invisible in this logarithmic
plot indicating their left-handed (negative) chirality. The
direction of helicity in the magnetically forced system tends
to be consistent with that of the forcing energy. This is the
opposite tendency of a helical kinetic forcing dynamo (HKFD).
Nonetheless, the practically same growth in energy shows that
the chirality of the forcing energy is not a determinant to the
evolution of the plasma system.
Figure 2 shows the evolving magnetic helicity ratio

fh≡ k〈a · b〉/〈b2〉 and kinetic helicity ratio 〈u ·∇× u〉/k〈u2〉
for k=1, 5, 8. The left and right panels are for the right-handed
forcing case ( fh=1, λ=+1 in Equation (9)) and left-handed

2
“k( = 2π/l)” is inversely proportional to the eddy scale “l.” k = 1 indicates

the largest scale, and the regime with k � 2 is considered as a small-scale
(turbulent) regime.
3 For the detailed properties of the forcing function, please refer to the Pencil
Code manual in http://pencil-code.nordita.org/doc.php.
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one ( fh=−1, λ =−1), respectively. The helicity ratio of the
large-scale B is eventually saturated at fh=+1 (−1), and that
of the small-scale u and b reaches values lower (larger) than “1
(−1).” However, the helicity ratio ofU can be as low as ∼0.25
(−0.25). A magnetic helicity ratio of less than “1” in the small-
scale regime shows that the small-scale magnetic field
substantially accelerates the large-scale plasma motion. Plasma
in the large-scale regime is driven by the Lorentz force J
(p)× B(q), where the wavenumbers are constrained by
p+ q= 1. This implies that the eddies associated with p, q
are very close to each other in the small-scale regime and

nearly out of phase. Helicity ratios smaller than 1 imply that the
Lorentz force driving the large-scale eddy meaningfully grows:
〈j× b〉≠ 0. However, the effect of the large-scale magnetic
field on the plasma is limited: J B 0á ´ ñ ~ . Note that if we
take the average of the Lorentz force in the entire scale,
〈J× B〉∼ 0 due to the relative difference in the amplitude and
eddy turnover time among scales. However, what arouses the
plasma motion is the nontrivial 〈j× b〉. The word “force free”
for the helical field should not be confused.
The saturated helicity ratio “fh= 1” for the large-scale field

indicates that k for B is definitely “1.” Further, the initial

Figure 1. (a) and (c) Logarithmic evolution of the energy and helicity of the system forced with a right-handed helical magnetic field ( fh = + 1).(b),(d)same as (a)and
(c), but the system was forced with a left-handed helical magnetic field ( fh = − 1). In (c), (d), k = 5 indicates the forcing scale eddy, and k = 8 indicates one of the
small-scale ones. The red dashed line marks the magnetic energy 〈b2〉, and the red dotted line denotes its helical contribution k〈a · b〉. Here,u and b represent the
turbulent scale regime. Symbols (B) and (U) indicate the magnetic field and velocity field. In the forcing scale (k = 5), the magnetic energy and its helical part are
practically the same so the corresponding lines overlap. On the other hand, the black solid line indicates the kinetic energy 〈u2〉, and the black dotted line indicates its
helical part 〈u · ∇ × u〉/k (different from (a), (b)). In (a) and (c), the kinetic helicity and magnetic helicity clearly show up, but those in (b) and (d) are not shown
except some part of the large-scale kinetic helicity. This indicates that the polarization of the helicity in HMFD, except for the large-scale velocity, is consistently
decided by the forcing magnetic field.
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largest energy level with “k= 5” implies that the scale with this
wavenumber is forced by an external energy source, which is
consistent with our code setting. Unlike in HKFD, we see that
the polarity of the large-scale magnetic helicity is consistent
with that of the forcing helicity. That is, the polarizability of
induced magnetic helicity in HMFD is the same as that of
externally provided magnetic helicity. We will discuss the
physical reason in Section 4.4.1.

Figure 3 includes the temporally evolving α and β effects
and the large-scale magnetic energy E2 M . The left (right) panel
shows the evolution of EMand the α and β effects for fh = 1
( fh=− 1). The α effect for fh = 1 positively oscillates and
decreases significantly as EM gets saturated. In contrast, the α

effect for fh=− 1 negatively oscillates before it disappears.
Theα effect is quenched much earlier than the slowly evolving
EM. The decreasing oscillation in both cases implies that α does
not play a decisive role in the growth of the large-scale
magnetic field except in the early time regime. Conversely, β
retains the negative value in both cases and has a much larger
size than α. This negative β, combined with the negative
Laplacian∇2→− k2 in the Fourier space, can be considered as
the actual source of the large-scale magnetic field. This is
contradictory to the conventional dynamo theory, which
concludes that β is always positive to diffuse magnetic energy.
We will show that this conventional inference is valid only for
the ideally isotropic system with reflection symmetry. When

Figure 2. Evolution of the helicity ratio fh = k〈A · B〉/〈B2〉 for the magnetic energy and helicity and of the helicity ratio 〈U · ∇ × U〉/k〈U2〉 for the kinetic energy and
helicity (k = 1, 5, 8). (a) It should be noted that the helicity ratio fh of the large-scale magnetic field (red thick line) is not 1 initially. Rather, it begins from a low value
and converges to 1 as the system becomes saturated. (b) The helicity ratio fh of the large-scale magnetic field converges to −1. The constantly saturated magnetic
helicity ratio implies that k for the large-scale field is clearly 1, not 2 . Moreover, the wavenumber does not depend on time with the normalized code data.

Figure 3. α(t), β(t), and B 2á ñ for fh = + 1 and fh = − 1. The small and early quenching of the α effect shows its limited effect on the growth of E2 M . In contrast, the
negative β has a positive effect with ∇2( = − k2). The average of 300 adjacent points are taken for α(t) and β(t).
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the symmetry is broken, “u” in the small-scale regime can yield
the antidiffusing effect of the magnetic field.

In Figure 4, we compared ∇× 〈u× b〉 (black solid line)
with B B( )a b ´ -  ´ (red dashed line) to verify
Equations (6), (31), and (32). As mentioned, the exact range
of the small-scale regime for EMF is unknown. Theoretically,
the entire range for a wavenumber k� 2 in the Fourier space is
supposed to be the small-scale regime, and that for k= 1
corresponds to the large-scale regime. However, if the entire
range of k� 2 is considered to the turbulent EMF, the inferred
growth rate exceeds the actual one, B . Therefore, we compared

B Bt 2n¶ ¶ -  with B B( )a b ´ -  ´ . The former
uses only the simulation data for the large-scale magnetic
energy data E2 M

1 2( ) . The latter requires the data of the large-
scale magnetic helicity HM in addition to EM . They are

coincident in the transient mode (t<∼ 100 and in the range of
10−8− 10−2). In the theoretical part, we analytically show that
they are coincident. Note that Equations (31) and (32) are valid
until the system becomes saturated, where H E2M M~ . As
Figures 1, 2 show, HM is different from E2 M in the transient
state. As the field becomes saturated, EM and HM are so close
that the logarithmic function diverges. For fh=− 1, we used
absolute values for a clear comparison.
Figures 5, 6 show the field structure models. They are

introduced to explain the dynamo process in an intuitive way.
We discuss the mechanism in detail below.
Figure 7 is for the typical kinetic small-scale dynamo. The

nonhelical random velocity field was driven at k= 5. The plot
includes the large-scale kinetic energy EV and magnetic energy
EM. ReM is approximately 80. In comparison to LSD, EM grows

Figure 4. Comparison of ∇ × 〈u × b〉 with B B( ¯ ¯ )a b ´ -  ´ .

Figure 5. j1,upandj1,down are represented as j1 for simplicity. (a) The right-handed ( + ) magnetic helicity yields + |j2 · bind|, − |j3 · bpol|, and right-handed kinetic
helicity + |upol · ∇ × utor|.
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a little bit, and EV is not quenched. Most magnetic energy is
transferred to the small-scale regime, and its peak is located at
k∼ 10. These plots are to be compared with Figure 1(a), (b).

Figure 8 in the Appendix includes the evolving large-scale
magnetic field from HKFD (a) and oscillating solar magnetic
field (b). In Figure 8(a), Equations (3)–(6) were solved
considering the positive kinetic helicity. In addition to the
large-scale magnetic energy (solid line), the negative magnetic
helicity (dashed line) also evolves and gets saturated. Although
we did not include the evolving magnetic helicity in the small-
scale regime, they positively (opposite to the sign of the large-
scale magnetic helicity) evolve and become saturated faster
than the large-scale helicity. In Figure 8(b), the contour plot of
the solar net magnetic field is shown. The horizontal axis
indicates the time, and the vertical one shows the latitude
(northern–southern hemisphere) in the Sun. The different
colors are for the opposite phases of the magnetic field. The
converted timescale of amplification–annihilation–reverse is 22
yr. This is the result of Equations (23) and (24), which are
converted Equation (22) in polar coordinates. This example is
prepared to show how the α and β effects due to the Coriolis
force and turbulence in the solar convection region
(0.7Re< r< Re) are applied to the solar magnetic field.

Figure 8 in the Appendix shows the time evolving 1/3〈u2〉
and 1/6〈u ·∇× u〉. This plot is to ensure that the overall β
effect in HMFD can be negative.

Figure 9 in the Appendix shows the effect of the helical
velocity field on magnetic diffusivity. Fully helical kinetic
forcing is turned off at t∼ 200 followed by nonhelical kinetic
forcing, where 〈u ·∇× u〉= 0. After t∼ 200, turbulent magn-
etic diffusivity becomes positive, which diffuses the magnetic
field in the system. The result shows that β diffusion is negative
with helicity and becomes positive without helicity. It should
be kept in mind that we initially forced the system with a
Gaussian helical turbulent energy. This is to realize the
turbulent system without consideration of the forcing method.
It is easy to separate the effect of magnetic helicity from other

various influences. We will discuss the mechanism in the
analytic section.

4. Discussions on Theoretical Analysis

We first introduce the derivation of α and β based on the
conventional dynamo theory. We then suggest an alternative
practical method to find them from the magnetic energy and
helicity. Finally, we discuss the physical meaning of α and β
using the field structure model, which is based on
electrodynamics.

4.1. Conventional α and β

In the helical dynamo, small-scale EMF 〈u× b〉 can be
replaced with B Ba b-  ´ . This relation is approximately
derived using a function iterative method with some appro-
priate closure theories such as MFT (Park & Blackman
2012a, 2012b), DIA (Yoshizawa 2011), and EDQNM (Pouquet
et al. 1976).
In MFT, u and b are modified as (Maron & Blackman 2002;

Biskamp 2008),

u b
u

b u
b

d d , 10
t t

( )ò òt
t

t
t´ =

¶
¶

´ + ´
¶
¶

B b b u u B B ud d ,

11

t t
· ( · · )

( )
ò òt t~  ´ + ´ -  + 

B b d b u u B B u d .

12

ijk

t

l l j k ijk j

t

l l k l l k( )

( )
ò òt t~  + -  +  

We are looking for ith component of B in the isotropic system
without losing generality. Using 〈xk∂ixj− xj∂ixk〉= 1/3〈x ·
∇× x〉 and 〈u j u l〉= 1/3〈u2〉, we get

u b B B , 13( )a bá ´ ñ ~ -  ´

Figure 6. More detailed field structure based on EMF corresponding to Figure 5(b): ∇ × (U × B) = − U · ∇B + B · ∇U. The left field structure is for the early time
regime while B b< . The right structure is for the magnetic back reaction with B b while B b> . The symbol “ ⊗ ” marks the direction ( ẑ- ) of the induced
current density J ∼ U × B, and its size indicates the relative strength. u and b indicate the turbulent velocity and magnetic field, respectively. We use the symbol B for
the large-scale magnetic field. Conventionally, u B u( · )a ~ ´  and u u B( · ¯ )b ~ ´ -  (omitting ∫dτ).
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where

j b u u d
1

3
, 14

t
( · · ) ( )òa t= á ñ - á  ´ ñ

u d
1

3
. 15

t
2 ( )òb t= á ñ

During the analytic calculation, a couple of turbulent variables
with the triple correlation or higher-order terms are derived.
They are dropped with the Reynolds rule or simply ignored
under the assumption of being small. This may cause the
increasing discrepancy between the real system and MFT as
ReM grows.

In DIA, the first step to finding α and β is similar to that of
MFT, but instead of dropping the higher-order nonlinear terms,
their effects are included in the formal Green function G. Then,
the second-order moment is replaced by the statistical second-
order relation as follows.

X k X k
k k

k
E k

i k

k
H k

2
, 16i j ij
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X

l
ijl X2 2

( ) ( ) ( ) ( ) ( ) ( )dá - ñ = - + 
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Then, α and β are

k j b u ud G G d
1

3
, 17

t

M K( · · ) ( )ò òa t= á ñ - á  ´ ñ

kd G u G b d
1

3
. 18

t

K M
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In DIA, the cross helicity 〈u · b〉 is included and plays a role in
EMF.

k u bd G G d
1

3
. 19

t

M K( ) · ( )ò òg t= + á ñ

The results are quite similar to those of MFT except for GK and
GM and theγ tensor for cross helicity. The representation of
theα coefficient implies its quenching as GM〈j · b〉 approaches
GK〈u ·∇× u〉. However, the β effect depends on “〈u2〉” and

“〈b2〉,” which is distinct from other dynamo theories. As DIA
considers both the kinetic approach and counter-kinetic
(magnetically dominant) approach with Equation (16), the
dependence on the turbulent magnetic energy is inevitable.
DIA is statistically complete, but the practical way to calculate
the Green function G is still unknown.
Another issue in MFT is the effect of the large-scale plasma

motion U . If U× B is averaged over the large scale and
applied with the Reynolds rule, two terms remain:

U B u bx ~ ´ + á ´ ñ, where U B´ is usually excluded
in a Galilean transformation. However, U in simulation and
observation does not disappear. Actually, the large-scale fluid
motion is replaced with the radius r and angular velocity Ω near
the tachocline (∼ 0.7Re) in the solar convection regime.
In addition to MFT and DIA, α and β calculated with the

EDQNM approximation show more or less similar physical
properties, such as quenching of α and energy dependent of β
(Pouquet et al. 1976).

j b u ut dq
2

3
, 20kpq( )( · · ) ( )òa = Q á ñ - á  ´ ñ

¥

t u dq
2

3
. 21kpq

2( ) ( )òb = Q á ñ
¥

Here, the triad relaxation time Θkpq is defined as
t1 exp kpq kpq( ( ))m m- - , and the eddy damping operator

μkpq is exactly found with the direct experiment. However,
note that kpq

1mQ ~ - , const.kpqm = as t→∞ for the stable
system. Moreover, compared to α and β from MFT or DIA,
these coefficients from EDQNM are 2 times larger. This is due
to the second (one more) derivative over time leading to the
fourth-order moment. When quasi-normalization is applied to
the nonlinear moment, more energy and helicity terms are
generated. Theoretically, this effect is modified with Θkpq and
μkpq. In this paper, we will not show how to derive α and β

further using EDQNM. Those who are interested in the detailed
method can refer to the articles of Pouquet et al. (1976),

Figure 7. Nonhelical kinetic forcing small-scale dynamo. The nonhelical velocity field was given to k = 5. η = ν = 0.001, and the magnetic Reynolds number ReM is
∼80. The left panel shows the temporal evolution of EV and EM. The right panel shows their spectra at t = 100, 240, 1600. The peak of EM is located between the
forcing scale and dissipation scale.
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McComb (1990), Park & Cheoun (2022), and references
therein.

Besides, the exact scale regime for EMF 〈u× b〉 used in
MFT, DIA, and EDQNM is not well defined. It is simply
inferred from X X- , which is supposed to be in the range of
k� 2 in the Fourier space. However, the range participating in
the amplification of the large-scale field is much narrower. Our
previous work to find α and β with the conventional MFT
shows that u and b (or α and β) exist only around the forcing
scale (Figure 1 in Park & Blackman 2012b; Figure 1(b) in
Park 2017). Kolmogorov’s inertia range seems to separate the
range of u and b for α and β from other scales. However, its
exact range also depends on the various physical environments.

Nonetheless, despite all the limitations discussed above,
Equation (8) itself is statistically correct and valid.

B
B B

t
. 22( ( ) ) ( )a b h

¶
¶

~  ´ - +  ´

This equation means that the B field is induced by the current
density J B=  ´ (∼ α). At the same time, it grows or
decays through diffusion B B2- ´  ´ =  . The former
shows the electromagnetic properties, and the latter shows the
fluidic properties in magnetized plasma.

Equation (22) is not just formalistic. It can be applied to the
practical solar dynamo. Equation (22) is divided into the
poloidal part and toroidal one as follows (Charbonneau 2014):
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(Here, B Apol =  ´ , r sinv q= , and Ω is the angular
velocity from convective motion U r W= ´ .)

The large-scale magnetic field (energy, helicity) and solar
toroidal and toroidal magnetic fields are prepared in Figure 8 in
the Appendix. The field profile in the left panel is the result of
DNS solving Equations (3)–(6), forced with the positive kinetic
helicity. If the polarity of α is negative, only the sign of the
magnetic helicity turns over. The right panel includes the
contour plot of the solar magnetic field from Equations (23)
and (24). The polarization of α changes from positive to
negative along with the solar latitude. The amplitude of α was
carefully chosen to yield the least growing magnetic field
affected by the tidal effects from nearby planets. These effects
yield the periodic solar magnetic fields: amplification–annihila-
tion–reverse in 22 yr.

4.2. Semi-analytic and Numerical Method

Now, we derive the semi-analytic definition of α and β.
They are derived with the evolving equations of the large-scale
magnetic energy and magnetic helicity deduced from

Equation (8). We get

B
B

B B B B
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We can also derive the evolving magnetic helicity as follows.

d

dt
H E H4 2 . 26M M M( ) ( )a b h = - +

These two equations are functions of actual data EMandHM

resulting from all internal and external effects. A simple
method to solve this coupled equation set is to diagonalize the
matrix using a coefficient matrix P, which satisfies
H E P X Y, ,M M[ ] [ ]º . The modified equation is represented as
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The eigenvalues λ1,2 can be found with the usual determinant
condition for the nontrivial eigenvalue and eigenvector
2 4 02 2( ( ) )b h l a+ + - = . Then, we obtain eigenvalues
and eigenvectors as follows. λ1,2=± 2α− 2(β+ η) and
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The intermediate solution is
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where X0 and Y0 can be represented by H 0 and E0. Finally, we
get
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HM is always smaller than E2 M , which satisfies the realizability
condition. However, H E2M M as the system becomes
saturated. In the case of a right-handed HMFD, clearly α> 0
so that the first terms in Equations (29) and (30) are dominant.
This means that H tM n( ) and E tM n( ) are positive. In the case of a
left-handed HMFD, the second term is dominant. This indicates
that H tM n( ) is negative, but E tM n( ) is positive. On the contrary,
in the case of a positively forced HKFD, α is negative so that
the second term in each equation is dominant leading to
negative HM . Still, EM is not influenced by the chirality of
forcing. These inferences are consistent with the simulation
result of HKFD or HMFD. α and β can be obtained from the
above results or Equations (25) and (26) (Park 2020):
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For the temporally evolving profiles, we need the data for
E tM ( ),H tM ( ) , E tM¶ ¶ , and H tM¶ ¶ in each time step “tn.” In
Figure 3, we used the data for E tM ( )andH tM ( ) from simulation
(DNS) solving Equations (3)–(6) instead of Equation (8). As
the wavenumber in the Fourier space is inversely proportional
to the eddy scale k∼ 1/ l , EM and HM for k= 1 correspond to
the large-scale data. Further, E tM¶ ¶ (or H tM¶ ¶ ) can be
approximately obtained from E t E tM M n( ( )D D ~ -
E t t tM n n n1 1( )) ( )-- - . Additionally, these results are verified
in Figure 4(a), (b). Both plots compare ∇× 〈u× b〉
with B B( )a b ´ -  ´ .

Analytically, we expand Equations (31) and (32) with the
assumption of fully helical fields ( E H2 M M~ or A A ´ = ).
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We apply this result to the equation for the large-scale magnetic
field,
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4.3. Derivation of β

The negative β can be derived with the field structure model
with a tensor identity. However, here we derive a more
general result with a statistical identity for the second-order
moment. The β effect is derived from u u B( · )á ´ -  ñ =

Bu r u r l B rijk j m k m( ) ( ) ( )bá- + ¶ ¶ ñ ~ - ´ . In conven-
tional theory, the turbulent moment 〈uj(r)um(r+ l)〉 is simply
replaced by 1/3〈u2〉δjm with l→ 0. The trace of the 3× 3 tensor
〈ujum〉 becomes energy density and is always positive leading to
a positive β effect. The intuitive assumption may be valid in
hydrodynamics. However, in MHD it is too simplified. In
particular, when the field is helical, the off diagonal terms in the
tensor are not negligible. A more general representation for the
second-order moment is to be used (McComb 1990;
Lesieur 2008)
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In the reference frame of l l, 0, 0( )

= or any other appropriate

coordinates, we can easily infer the relation of “A,” “B,” and
“C” as follows: U11= A+ l2B ≡ F, U22= A≡G, U12=
lC≡H. These results can be applied to any homogeneous and
isotropic system without loss of generality. Equation (35) is
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Under the incompressibility condition ∇ ·U= 0, we get an
additional constraint of G= F+ (l/2)∂F/∂l.
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Now, we apply this general result to our β derivation. If j=m,
only the first term F remains, which can be defined as
u2/3(= EV/6). If j≠m, the first and second terms disappear;
however, in general the third term cannot be dropped.
However, as the relation u r u r l B rijk j m k m( ) ( )á + ¶ ¶ ñ 

l l l F l B r2ijk j m k m-á ¶ ¶ ñ¶ ¶ implies that any possible “m”
makes the average zero, it can be also neglected. For the
physical meaning of H, we need to use the definition of helicity
(Lesieur 2008).
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In the last step, we used òijnòins=− 2δjs and ∂H/∂l→H/l with
l→ 0. Then, Equation (37) is4

U
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H
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2
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á ñ

- 

Finally, we can simplify the tensor representation as
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The first term in RHS is clearly found to be B i( )~  ´ . For
the second one, we refer to the vector identity
ijk jms km is ks imd d d d= -  . This relation shows the condition
in the nontrivial case. We use m→ i and s→ k, and other
information remain implicit. We take the average over the large
scale and separate the scale regimes. Then, we can rewrite the
second term as follows:

B

l
H

B

r

l
H

B

r

l
H

6 6

6
. 41

ijk jms
s

V
k

m
jik V ijk

k

i
V j( ) ( )

¶
¶

 á ñ

´
¶
¶

  ´

   

4 Note that lHV ≠ 0 as l→ 0. It should be lHV → f (l)òijk〈uiuk〉, where the
nontrivial f (l) is from the dimensional analysis of [l/∂]. In principle, we can
apply it to Equation (40) again, but we derive the equation as usual in the
turbulence theory.
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Note that we used the normal permutation rule and regarded ls
as a small constant that belongs to the small-scale regime.
Finally,

Bu
l

H
1

3 6
. 42V

2⎛
⎝

⎞
⎠

( ) ( )á ñ - - ´

The series of these analysis is based on the general turbulence
theory. It is not limited to some specific forcing flow, and
neither is Equations (31) and (32).

We infer the constraint of “l”:

u u

u r u r l u r g r u

l lk
u
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6
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2 2

2

( ) ( ) ( ) ( )

· ( ) ( )
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- á  ´ ñ ~
-
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The condition of 2− lk< 0 is actually the correlation position
that makes g(r) negative, which is a typical property of parallel
correlation functions (Davidson 2004). As k for the small scale
is larger than 2, the condition of a negative β is not a hard one.
Figure 8 in the Appendix shows how 1/3〈u2〉 and 1/6
〈u ·∇× u〉 evolve. It is easy to note that 〈u ·∇× u〉∼ k〈u2〉
with k= 2, 3, 4, ... is larger than 〈u2〉 both in the Fourier space
and real space.

In principle, a spatial average “〈 〉” corresponds to the
quantity measured at some instant position (l= 0). However,
this does not mean the exclusion of the effects of neighbor
eddies. Diffusion itself means the exchange of energy and
materials with other eddies, not itself. Moreover, “l” is a
prerequisite quantity to explain the orientation (helicity) of two
vectors (Lesieur 2008). So, we need the second term HV with
“l” as some small distance from other eddies for the complete
description of turbulence. Actually, β shown in Figures 3, 4,
9(b) and derived from Equations (32) and (33) and the
simulation data clearly shows the effect of HV. These equations
and DNS data are exact results.

In this section, we considered the effect of helicity in β, i.e.,
〈u(r)u(r+ l)〉. However, in principle, we can also expand the
helical effect in α. However, the expansion of u or b in
〈u ·∇× u〉 and 〈b ·∇× b〉 leads to nonlinearly constrained
higher-order terms, which are not clearly solved. This is why
Kraichnan (1976) directly expanded the unknown α under the
assumption of a strong helical field. Kraichnan derived the
negative magnetic diffusion effect in Lagrangian formation in a
formalistic and general way (see also Brandenburg & Sokol-
off 2002). We introduce part of his result here but will not
discuss the work in detail. The reader interested in their works
can refer to the references.

B
B B B
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Here, x uu dt u t, , 1 30 0
2

1 0
2

1
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t

,

x xt t, ,( ) ( )a aá ¢ ¢ ñ=A x x D t t D t dt,2 2 2( ) ( ) ( )òt- ¢ - ¢ =
¥

. β0
is the conventional positive magnetic diffusion effect. How-
ever, − τ2A, which is from the correlation of 〈αα〉, actually
plays the role of the negative magnetic diffusion β effect.

There are more theoretical and experimental works asso-
ciated with the negative magnetic diffusivity (Lanotte et al.
1999 and references therein). They are based on an α− α

correlation in the strong helical system. Further, Giesecke et al.
(2014) found that the turbulent magnetic diffusivity was
negative. Although they argued that the net diffusivity
(ηturb+ η) became positive again, what we focus on is the
turbulent magnetic diffusivity ηturb, not the molecule-originated
η. The negative magnetic diffusivity was also observed in
another liquid sodium experiment (Cabanes et al. 2014). They
found that small-scale turbulent fluctuations (∼ u) contribute to
negative magnetic diffusivity in the interior region. The α
effect practically disappears for the lower ReM value; instead,
theβ effect increases strongly and promotes the dynamo action.
In comparison with these specific conditions, Equations (31)

and (32) are from the general Equation (22) and turbulence
theory. The results produce the weak α and negative β with a
randomly driven helical forcing DNS source (Equation (9)). All
of these results strongly imply the role of magnetic diffusion in
a plasma system.
The weak α effect compared to theβ one is a very reasonable

phenomenon in plasma or fluid systems. In vacuum or free
space, the magnetic field propagates unlimitedly (∼ αJ).
However, in a plasma system, the electromagnetic energy is
coupled with massive charged particles to lose its energy.
Growth and propagation mainly depend on diffusion
(β∇2→− βk2).
So far, we have argued that the main reason of negative

magnetic diffusivity is the helical component in “u.” We can
refer to the numerically supporting result in Figure 9 in the
Appendix. When the helical kinetic forcing is turned off at
t∼ 200 and nonhelical forcing is on, negative β becomes
positive. This negative magnetic diffusivity suppresses the
growth of a large-scale magnetic field.

4.4. Intuitive Investigation of Magnetic Field Amplification

4.4.1. α Effect

The right-handed helical magnetic structure in Figure 5(a) is
composed of the toroidal magnetic component btor and poloidal
part bpol. Statistically, btor and bpol are not distinguished in a
homogeneous and isotropic system. However, if we remove
reflection symmetry from the system, btor and bpol become
independent components playing different roles with u.
The interaction between u and btor yields a current density,

i.e., u× btor∼ j1,down and j1,up in the front and back. These two
components induce a new magnetic field bind. At the same time,
u× bpol generates j2. This current density forms the right-
handed magnetic helicity with bind: j b a bk2 ind 2

2
2 ind· ·á ñ  á ñ,

which is a (pseudo) scalar to be added to the system. There is
also a possibility that u and bind induce j3 yielding a left-handed
magnetic helicity 〈j3 · bpol〉. However, the induced magnetic
field from j3 is weakened by the externally provided btor.
On the other hand, j1× btor and j2× bpol generate a Lorentz

force toward− u, which may look as a suppressing plasma
motion. However, j2× btor at the right and left ends yields a
rotation effect, which is toward “− u.” This rotation with those
two interactions generates a right-handed kinetic helicity
〈u ·∇× u〉. The interaction between the current density and
magnetic field produces two effects. The magnetic pressure
effect−∇B2/2 from j1× btor and j2× bpol suppresses the
plasma motion with thermal pressure−∇P. j2× btor creates a
rotational force to form kinetic helicity with the two
suppressing effects. As the Fourier-transformed Lorentz force
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j(p)× b(q)∼∂u(k)/∂t shows, wavenumbers “p” and “q” are
constrained by the relation of p+ q= k.

The induced right-handed kinetic helicity in Figure 5(b)
again generates j 1¢ with b in the front and back. The spatially
inhomogeneous current density from j 1,up¢ and j 1,down¢ induces
b ind¢ leading to j 2¢ with upol, i.e., j u b2 pol bind¢ ~ ´ ¢ . Then, j 2¢
forms a left-handed magnetic helicity with b. Further, upol× b
yields j 3¢ leading to a right-handed magnetic helicity with b ind¢ .
The net helicity is inferred to be j b j b2 3 ind∣ · ∣ ∣ · ∣- á ¢ ñ + á ¢ ¢ ñ .
However, if j b3 ind∣ · ∣á ¢ ¢ ñ is the main process, b will decay in
the resistive plasma system. Therefore, the main process in this
structure is j b2∣ · ∣- á ¢ ñ .

The summed up net current (magnetic) helicity is
j b j b2 ind 2∣ · ∣ ∣ · ∣á ñ - á ¢ ñ . It should be noted that the latter

j b2∣ · ∣- á ¢ ñ is from+ |〈bpol ·∇× btor〉|. As this subsidiary
grows, the overall current helicity decreases, which is
the intuitive model for the oscillating α quenching.
Briefly, b bpol tor

Lorentz

∣ · ∣ + á  ´ ñ  + u upol tor∣ · ∣á  ´ ñ 
a

–

b bpol tor
Lorentz

∣ · ∣ á  ´ ñ  – u upol tor∣ · ∣á  ´ ñ 
a

+|〈bpol ·∇×

btor〉|→ ...

4.4.2. β Effect

Figure 6 presents a more detailed right-handed helical kinetic
structure of Figure 5(b). It is based on the geometrical meaning
of “ u B B u u B 0( ) · · ´ ´ ~  -  > ” for the amplifi-
cation of the magnetic field. Here, we named “ u B·-  ” as the
“local transfer (advective) term,” and we call “B u·  ” the
“nonlocal transfer term.” The symbol “⊗ ” marks the direction
of the current density “u b B J,tor i i, pol( )´ ~ ” heading toward

ẑ- . The size of ⊗ indicates its relative strength. Its distribution
is spatially inhomogeneous so that the nontrivial curl
effect generates two magnetic fields: a locally transferred
field u Bd ( ·ò t -  ) x̂ and a nonlocally transferred field

B ud ( · )ò t  ŷ.
j 3¢ from upol× (b or Bpol) yields positive HM with B u· 

(without ∫dτ). Further, u B upol ·´  produces j 2¢ leading to
negative HM with B (α effect). Moreover, while B is weak,
u u Bpol ( · )´ -  yields j y4 ˆ+ ¢ producing positive HM with
B u·  (left panel). However, as B grows due to the α effect,
the direction of u B( · )-  changes followed by

j y j y4 4ˆ ˆ+ ¢  - ¢ . A negative HM value is produced by j y4 ˆ-
and B u·  , which has the same polarization as j x2 ˆ- andB
(right panel). This is the physical meaning of a negative β in
the field structure model (see u u B d

t
·òb t~ á ´ -  ñ).

5. Summary

In this paper, we have discussed the negative magnetic
diffusion in HMFD. HMFD has several features distinguishing
it from a helical kinetic forcing dynamo (HKFD). Externally
given EM is converted into EV through the Lorentz force, which
activates the plasma motion followed by EMF. This nontrivial
EMF transports EM into the large- and small-scale region. EV in
HMFD is subsidiary to the migration of EM so that magnetic
Reynolds number ULReM( )h= is negligibly small. This
means that the energy dissipation due to plasma fluctuation is
very small. The large-scale magnetic energy EM is amplified
and saturated more efficiently than that of HKFD. This may be
able to explain the big gap between the cosmological seed

magnetic field (∼ 10−62− 10−19G) and the galactic magnetic
field (∼10−6 G).
The nonlinear interaction between the helical field and

plasma can be explained with the α and β effects, which
linearize the nonlinear dynamo process. As the exact defini-
tions of α and β are not yet known, we calculated them using
Equations (31) and (32), which were derived from
Equations (25) and (26). Compared to the conventional theory,
α becomes negligible much earlier than the saturation of B . In
contrast, β remains negative and becomes saturated along with
EM . Clearly, the effect of α as a generator of EM is limited.
Rather, the negative β effect plays a substantial role in
amplifying EM with the Laplacian ∇2→− k_(k= 1).
The main dynamo processes in the system are as follows:

∫∂u/∂t dτ× b ∼ B b bd·ò t ´ ∼ b b Bd( · )ò t ´ (αM,

positive magnetic helicity), u b u Bt d ·ò òt´ ¶ ¶ ~ ´

u u u Bd d( · )òt t ~ -  ´ (αV, negative magnetic heli-

city), u u B Bd 2·ò t b´ -  ~  (positive magnetic helicity).
The first two interactions correspond to α quenching, and the last
one is associated to the negative β effect. These α and negative β
effects commonly originate from the helical component in the
velocity field. In addition to the helical effect in the conventional
α effect, we newly showed that the role of the helical velocity
field in the advection term u B·-  leads to the negative β
effect.
We showed the evolution of α and β in Figure 3 and verified

their consistency in Figure 4. The importance of this approach
is the separation of α and β from EMF without ambiguity.
Numerically and analytically verified α and β give us some
clues to solve the nonlinear effects neglected in their analytic
derivations as well as their experimental application. As long as
EMF is represented as B Ba b-  ´ , a negative β replacing
the quenching α effect is a necessary condition for the
amplification of a large-scale field. Moreover, the negative β
effect suppresses the large-scale plasma motion in the helical
system. These conclusions are made with semi-analytic
equations and simulation data forced with a Gaussian random
helical energy. Further, analytical analysis was conducted in a
general way that is independent of the forcing method or the
fluid system. The method suggested in this manuscript gives as
a tool to find the evolving profiles of α and β from externally
generated data (simulation or observation).
The physical feature and effect of the helical magnetic field in

plasma are useful for investigating the origin of PMF as well as
current astrophysical phenomena. The Biermann battery effect
shows how the seed magnetic field in the early universe could be
generated. Additionally, neutrino–lepton interaction may be a
promising candidate for the formation of strong magnetic helicity
in the universe. The inverse cascade of magnetic helicity gives us
a clue to the expansion of the PMF scale and amplification of its
strength. Macroscopically, magnetic helicity explains how the
evolution of the magnetic field in plasma is constrained, which
eventually leads to the evolution of an astroplasma system. All
these events are closely related to HMFD.
In this paper we considered only the case of PrM= 1 with a

fully helical field in HMFD. However, we need to study more
general systems with PrM≠ 1 (e.g., ∼ 104 for an active galactic
nucleus disk, ∼ 1029 for Galaxy cluster) and arbitrary helicity
ratios. Moreover, the generation of a poloidal magnetic field
from the toroidal field in the solar convection zone with such a
low PrM (∼ 10−2) challenges the current dynamo theory.
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Appendix

The magnetic induction equation is derived from Faraday’s
law ∂B/∂t=−∇× E and Ohm’s law:

This equation is derived from the momentum equation set for
the ion–electron plasma. It is modified with various physical
conditions before being applied to Faraday’s law. In case of
mi?me, the mass-related terms become more simplified. The
Hall effect (∼mi/c ) J× B is neglected if the density of
particles is not very high (e.g., a disk in a protostar or dwarf
nova). Further, if the (seed) magnetic field exists, the Larmor
radius (mv⊥/eB) becomes finite so that the spatially inhomo-
geneous ∇pe can be neglected. Moreover, the influence of
ηJ(=me νc/(ne

2) ne (Ui−Ue)) is ignored if the collision
effect (νc≠ 0) is trivial. These conditions yield the simplified
Ohm’s law in the stationary state: ηJ=E+ (1/c)U×B(c→ 1)
for the usual MHD equation with kinetic forcing. However, if
these conditions are not fulfilled, Ohm’s law has additional
terms working as a forcing source in the magnetic induction
equation. For example, if the (seed) magnetic field is very
weak, the Larmor radius grows and ∇pe plays a dominant role

in the amplification of the seed field (Schluter 1950).
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U B

J
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en
. A2e ( )h+

´
- = -
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Then the magnetic induction equation becomes (c→ 1)
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This is the typical magnetic forcing dynamo. Moreover, in
addition to the Hall effect and the externally provided Eex or
Bex from radiation, the abundant lepton–neutrino interaction
can be an electromagnetic energy source.
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Its axial vector term is f Ba= ¢ , where a¢ is (Semikoz &
Sokoloff 2005):5
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Figure 8. (a) Kinetic helical forcing dynamo (large-scale magnetic field k = 1; Equations (3)–(6) with helical fkin), which is replaced by α and β. (b) Kinetic helical
forcing dynamo derived from Equations (23) and (24). The converted timescale is 21.74 yr.

5 Fermi constant G m10F p
5 2= - (mp: proton mass); c 0.5A

a = (axial weak
coupling, a: electron, muon, tau; (−): electron, (+)’: muon or tau); n ad n :
neutrino density asymmetry; j

a
d n (neutrino current asymmetry);
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a¢ is not the same as that of the usual helicity function.
However, as it is from the helical interaction b j

a
ˆ · d n , the effect

of conserved magnetic helicity can exist in a¢ (HMFD). The
instability of a magnetic field forced by the electron–neutrino
asymmetry from a supernova explosion during the first second
can produce the (seed) magnetic field of a protostar or a
magnetar (Dvornikov & Semikoz 2014).
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Figure 9. (a) Comparison of the conventional β effect from EV and that from HV. All data for k � 2 are summed. (b) Helical kinetic forcing (HV ≠ 0) is turned off at
t ∼ 200. The system was continuously driven with nonhelical kinetic energy (HV = 0) Park (2020).

n e B Tln2 20
2(∣ ∣ )p~ is the lepton number density at the Landau level.

tfluidl ~n is the scale of the neutrino fluid inhomogeneity.
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