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Abstract

In paper a complete intersection Calabi-Yau six-folds are considered.
Their Hodge diamond and Gromov-Witten invariants are calculated us-
ing the mirror symmetry methods. Several Wolfram Mathematica algo-
rithms are proposed.
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1 Introduction

Intensive study of compact Ricci-flat manifolds started after Yau proved the
Calabi conjecture that these spaces always admit a Kahler metric with SU(3)
holonomy group. Phenomenologically these spaces should be used to justifica-
tion of U(1) ® SU(2) ® SU(3) minimal model, which linking electromagnetic -
U(1), weak - SU(2) and strong - SU(3) interactions in string theory. From an
algebraic geometry point of view the Calabi-Yau space be an elementary gen-
eralization of the well-studied K3 surfaces and before 1991 were not attracted
mathematicians. In 1991 the computational experiments of physicists began
to produce results [1], which were previously obtained by mathematicians in
another theory [2]. Explaination of coincidence these results was suggested
by [3]. After this, line of research Calabi-Yau manifolds acquired the status
of "mainstream” both for physicists as for mathematicians. These spaces are
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included in the minimal model through 6-dimension group SU(3). In this
article we consider a 6-folds Calabi-Yau that are a complete intersection hy-
persurfaces in ordinary projective spaces (complete intersection Calabi-Yau).
Also we calculate Hodge diamond and Gromov-Witten invariants using the
methods of the theory of mirror symmetry.

2 Hodge Diamond

All definitions of this article are conventional [4]. We work in projective space
P over an algebraically closed field of arbitrary characteristic. Let x be divisor
k
degree of hypersurface X € P". We denote X,,, = [ S;" € P" as m-fold, which
i=1
is a complete intersection of k hypersurfaces S; degree s;. Then X is a Calabi-
Yau if © = >~ s; = n+ 1. For a sheaf of differential forms Q% = A'Qy we
introduce Hodge numbers h%” = dim H!(€2), which not only are symmetrical:
h¥ = K% but Serre symmetrical also: h¥ = h"~%"7J  If we have Hodge
numbers then Betti numbers may be calculated as

bp= > h.
itj=k
We can also define the Euler characteristic of X as the alternating sum of the

Betti numbers:
X(X) = (=) b
k

For clarity, we rotate the matrix 4% on 45° and call it as the Hodge diamond.
So, for n = 3, we will have:

)00 bO = p00
h1o Kot bl = 10 + hot
h20 hll h02 bg — h20 + hll + h02
h30 h21 h12 h03 b3 — h30 + h21 + h12 + h03
h31 h22 h13 b4 — h31 + h22 + h13
h32 h23 b5 = p32 + h23
h33 b6 — h33

At the initial stage for construction of the Hodge diamond we will use
standard tool of diagramatic search, which described in classical manuals on
algebraic topology. If X € P" be hypersurface, then vector of cohomology
h(Ox) = h*° can be found from the exact sequence of sheaves
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0— O[pm(—.’E) — O]pn — OX —0. (1)
Since h*(Opn(—2)) = 6r00u0 + OxnC =771, then h(Ox) = ( 1,0,...,0,1)
and it is sufficient for the construction of the Hodge diamond for curve in P?%:
hid =1 (i,j =0..1).
To calculate the cohomology of sheaf Opn(—k) we will use the Wolfram
Mathematica (Algorithm 1).

Algorithm 1: Bott formula for h(Opn(k))

In[ ]: OO[n_, k_] := Block[{Oo}, Oo = Array[0&, {n + 1}];
Oo[[1]] = If[k >= 0, Binomialk + n, k], 0];
Oo[[n + 1]] = If[k < 0, Binomial[-k - 1, -k - 1 - n], 0]; Oo |;

(*check*)
In[ ]: n=5; k=-6; OO[n,k]
out[ ]:  {0,0,0,0,0,1}
In[ ]+ OO[5,6]
Out] ]:  {462,0,0,0,0,0}

To find the cotangent bundle 2x we take sequence dual to
0 - TX - T]P)n — NXl]P)n - O,

1.e.
O—N}‘Pn—QPn—QX—O

and tensoring with Ox:
0— Nx — Qpnix —Qx — 0, (2)
where Nx = Ny pn = Ox(—z). Further, if one tensors Euler sequence
0 — Qpn — Opn (1) — Op — 0 (3)
with Ox, then one gets restriction (psjx = Qps @ Ox:

0 — Qpnix — Ox(=1)%"H — Oy —0. (4)

These equations (1), (2), (4) are sufficient to build a Hodge diamond of
hypersurfaces X € P3 and X € P*.

With using Algorithm 2. we can calculate the cohomology sheaf C (0-A-
B-C-0), if we know cohomology of A and B.
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Algorithm 2.

In] |: 03[ , B_] := Block[{n, Oc}, n = Length[A]; Oc = Array[0&,{n}]
Oc[[1 H = B[[1]] - A[[1]];
HWW>AWOHH B[[i]] - A[fi]],
Oc[li - 1]] = Oc[[i - 1]] + A[[i]] - B[[i]]], {i, 2, n}}; Oc];
(*check™*)
[ |- A={0,3,0,04)}; B={0,5,0,0,1}; O3[A, Bl
Out| ]: {0,2,0,3,0}
In[ |- O3[{1,0, 3}, {2, 0, 1}]
Out[ |- {1,2,0}

If X = 51N S, is complete intersection of hypersurfaces of degree s; and
So, then Nx = Ox(—s1) ® Ox(—s3) and the sheaf Ox can be determined from
the scheme:

0 0 0
| | |
0 — OSQ( 81> — OR — OX — 0
| | |
0 —  Op(-s1) —  Om — O -0 (5)

| | |
0 0 0

Example 1. We will construct a Hodge diamond for three-fold Calabi-
Yau X3 € P°, which is a complete intersection of a quadric and a quartics:
X =52nsS%

We will use Alg.1. and Alg.2. Knowing that h(Ops(—2—4)) = (0,0,0,0,0,1)
and h(Ops(—4)) = (0,0,0,0,0,0) from the bottom row (5) we get h(OSl( 4)) =
(0,0,0,0,1). Knowing that h(Ops) = (1,0,0,0,0,0) and h(Ops(—2)) =
(0,0,0,0,0,0) from the middle row (5) we get h(Os,) = (1,0,0,0,0,0). Sub-
stituting these cohomology in the right hand column we obtain h(Ox) =
(1,0,0,1). Since components of the Hodge diamond are h** = h*? = (1,0, 0, 1).
Tensoring (5) with Opn(—1) and repeated calculations we find h(Ox(—1)) =
(0,0,0,6,0,0). Knowing h(Ox(—1)) and h(Ox) from (4) we can find h(Qpn(x) =
(0,1,35,0,0,0). Now, tensoring (5) with Opn(—2) and with Opn(—4) we
find h(Ox(—2)) = (0,0,0,20,0,0) and h(Ox(—4)) = (0,0,0,104,0,0). Also,
from Nx = Ox(—2) ® Ox(—4) we get h(Nx) = (0,0,0,124,0,0). Substi-
tuting h(Nx) and h(Qpnx) in (2) we obtain h(Qx) = (0,1,89,0,0,0) or
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htt = (0,1,89,0) and h** = (0,89,1,0). Therefore the Hodge diamond of
complete intersectin of a quadric and a quartic in P° has the form

1
0 0
0 1 0
1 89 89 1 A
0 1 0
0 0
1

This result is easily verified using the theory of characteristic classes. For
any morphism X . P with uses the bundle
0—Tx — f"Ipn — Ny —0
we find Chern class ¢(Tx). Defining ¢(Opn(d))) = 1+ dt, for a complete
intersection k hypersurfaces X = (k] S; of degree s; we obtain ¢(Ny) = ﬁ (1+

i=1 =1
s;t). The Euler sequence dual to (3) has the form

0 — Opn — Opn (1)) — Tp — 0. (6)
From this ¢(Tpn) = (1 + )", hense

o(Tx) =

=1

The Euler characteristic of m-fold is
X = / cm(X) = / cu(Ng) A em(Tx) = cx(Ng) - cm(Tx), (k+m=mn). (7)
X n

Example 2. For the intersection of a quadric and a quartic in P° we have
c(Ny) = (1+2t)(1+4t) =146t + 8, ie co(Ns) =38

and

(1+1)°
(1 + 2)(1 + 4t)

c(Tx) = ~1+TE 2288, = y(Tx) = —22.
Hence the Euler characteristic is y = —176. Comparing this with Example 1,
we see that b = (1,0,1,180, 1,0, 1) and from formulae y = >_(—)*b; we obtain
the same value y. A

If X = 51N 5, NS5 is complete intersection of 3 hypersurfaces of degree
s1, 2 and s3, then Ny = Ox(—s1) @ Ox(—s2) ® Ox(—s3), and the sheaf



7126 V. N. Dumachev

Ox is determined from the 3d-commutative diagrams (thus Op» = O,, and
Os,n8,n85 = O1n2n3 for simplification).

Ogng(—s1)————— -~ Oy ————-——— > O1n2n3
7 7 I
Og(=s1)——=—————~ % R > O1n2
_7 A _7 A 7 A
-7 [ - [ - [
-7 | - g | e |
Oz(—81—83)————~— I= = = == 0s(—s3) = = = 4 = = = O112(—33) '
A | A | A |
| | | | | |
I I I I | I
| | | | t l O1n3
I | I I I I
| | | | | | /
I I I | I I
. Ou(~s1) = 0, : o
| | |
I / I / I /
| | |
On(—s51 — s3) On(—s3) O1(—s3)
O1n3(—52)
On(—s1 — $2) On(—52) O1(—s2)
On(—s1— 82 — 53) On(—s2 — 83) O1(—s2 — s3)

It is obvious that analysis of the intersection of k hyperplane will require
building of k-dimensional commutative cube. In essence, for determination of
Os,nsn..ns, we need use the following recurrence relations

0 — Ogin85n...086_1 (—5k) — Osin850...080 -, — Osinsen..ns, — 0
O - OslﬂSQH..‘ﬂSk,Q(_Skfl) - OslﬁSQQ...ﬂSk,Q - OslﬁSQQ...ﬁSk,1 - 0
(8)
O - Osl(_82) - Osl - OSmSQ - 0
0— O]pn(—sl) — O]pn — 051 -0

twisting them with Opn(—s;) if it is necessary. Further, we will use the Math-
ematical Algorithm 3. to calculate Ox(—j). Note that Algorithm 3. includes
Algorithm 2. and also Algorithm 1.
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Algorithm 3: h(Ox(j))

In[ ]: Ox[n_, k_, j_] := Block[{Y}, Y = Array[0&, n + 1];
If[Length[k] == 1, Y = O3[OO|n, k[[1]] + j], OO[n, j]]J;
If[Length[k] >= 2,
Y = 03[Ox[n, Delete[k, -1], k[[-1]] + j], Ox[n, Delete[k, -1], j]]];Y];

(*check*)
In n="7k={2 -3, -3};j=0; Ox[n, k, j]
Out| ]: {1,0,0,0,1,0,0,0}

[ ]
[ ]
In[ |- Ox]9, {-2, -2, -3, -3}, -10]
[]: {0,0,0,0,0,34057,0,0, 0, 0}

We denote by X,,, the m-fold, which is a complete intersection k hypersur-
k

faces S; of degree s;. If X,,, = (| S;" € P™ is complete intersection Calabi-Yau,
i=1
m—+1

——
then consistent application of the (8) yields h(Ox) = (1,0,...,0,1).
Now we will find the h*? = dim(H'(P", Q% ). Taking the symmetric square
of (2), we get:

0 — Sym?*Nx — Nx ® Qpnx — Qg x — Q% — 0. (9)

Here Sym?Nyx = Ox(—2z), and Q%le we find using an external degree of the
Euler sequence (3):

0— Qfnpy — Ox(—=2)%1 — Qpuix — 0. (10)
To determine the Q% we split the equation (9) into two parts:
O—Sym2NX—SymNX®QPn|X—E—O (9.1)

and
0—E— gy — Q% —0. (9.2)

It is easy to show that E = Qx(—x). Indeed, multiplying (2) on Ox(—x) we
have (9.1):

0 — Ox(—27) — Nx ® Qpnix(—z) — Qx(—2) — 0.
On the other hand, the vedge power (2) is
0 — Qx (=) = Qpux — Q% — 0,

ie. (9.2).
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In general the k-st symmetric power of (2)
0— SymkNX - Symk_lNX &® Qpnp{ — Symk_zNX ®Q[2Pm‘x — ... Q{;an - QIE( —0.
(11)

allows us to calculate the Q%.

Example 3 We will construct the Hodge diamond of 4-fold Calabi-Yau
X4 € P7, which is a complete intersection of a quadric and two cubics: X =
S2NSPnSe.

For calculations, we need to use Algorithm 2. and Algorithm 3. From
(8) we have h(Ox) = (1,0,0,0,1,0,0,0), so h® = h** = (1,0,0,0,1). Substi-
tuting h(Ox) and h(Ox)(—1) = (0,0,0,0,8,0,0,0) in (4), we have h(Qp7x) =
(0,1,0,0,63,0,0,0). Now, knowing h(Nx) = h(Ox(—2)®0x(-3)®0x(-3)) =
(0,0,0,0,255,0,0,0) from (2) we have h(Qx) = (0,1,0,192,0,0,0,0). There-
fore h'' = (0,1,0,192,0), A = (0,192,0,1,0). Cohomology Q% we obtained
from expanded scheme (9):

0 0
0 — Sym>Nx — Qpr|x (—2) & Qpr|x(—3)* Qfrx —= 0% —0
Ox(—3)% @ Ox(—4)%82 Ox(—2)%%
Ox(=2) © Ox(—3)® Qpr|x
0 0

Knowing the h(€2p7x) and h(Ox)(—2) = (0,0,0,0,35,0,0,0) we obtain h(Qﬂ%ﬂ'X) =
(0, 0,1,0,917,0,0, 0) From h(SmeNx) = h(OX(—4)@OX(—5)692@@)((—6)@3) =
(0,0,0,0,4971,0,0,0) and h(Nx ® Qpnx) = (0,0,0,0,5073,0,0,0) we have
h(Qx(—)) = (0,0,0,815,917,0,0,0), h(Q%) = (0,0,0,816,0,0,0,0). Le.

h* = (0,0,816,0,0) and Hodge diamond takes the form

1
0 0
0 1 0
0 0 0 0
1 192 816 192 1
0 0 0 0
0 1 0
0 0
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Summing the Betti numbers b = (1,0, 1,0, 1202, 0, 1,0, 1) we obtain x = 1206.
With another hand, knowing

c(Ny) = (1+2t)(1+3t)> =1+ 8t + 21> + 183, ie. c3(Ns) =18

and

B (1+1)3
) = F3am 1 + 0y

~ 1+ T2 — 182 + 67, = cy(Tx) =67
for the Euler characteristic X; € P7 from (7) we obtain

X_/ es(N)) A ea(Tx) = es(Ny) - ea(Ty) = 18- 67 = 1206, A
P7

Example 4. Find the Hodge diamond of 5-fold Calabi-Yau X5 € P?, which
is a complete intersection of two quadrics and two dice: X = S?NS?NS3NS3.
Using recurrent sequences (8) and the scheme (11)

0 — Sym®Ny — Sym”Nx ® Qpojx — Nx ®Q]%,9|X - Q]‘;;ng -3 -0,

with help the Algorithm 3 and Algorithm 2 we obtain

1
0 0
0 1 0
0 0 0 0
0 0 1 0 0
1 403 4423 4423 403 1
0 0 1 0 0
0 0 0 0
0 1 0
0 0
1

and x = ca(Ny) - c5(Tx) = 36 - (—268) = —9648. A

Here is a table of the currently known complete intersections Calabi-Yau in
ordinary projective spaces. In this table, m-fold X,, = SN S’ N...N Sk € P~
is indicated by [nn|ij...k],. Spaces X3, have been described in [5]. All 4-
dimensional full intersection Calabi-Yau are described in [6] and 5-dimensional
in work [7].
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Xl hll X3 h12 X4 (h13,h22) X5 (h14 h23)
[2]3] 1 | [4]5] 101 | [5]6] (426,1752) | [6]7] (1667, 18327)
[5133] 73 |[6]52]  (356,1472) | [7]62] (1357, 14917)
[5]42] 89 | [6]43]  (237,996) | [7]53] (811,8911)
[6322] 73 | [7]422] (263,1100) | [7|44] (593, 6513)
[7|2222] 65 | [7]332] (192,816) | [8]522] (971,10671)
[8]3222] (183,780) | [8]432] (559, 6139)
X Rt 9]2...2] (151,652 | [8]333] (406, 4456)
[3]4] 20 [9]4222] (609, 6689)
[4]32] 20 [9]3322]  (403,4423)
[5]222] 20 [1032222] (369, 4049)
[11]2...2]  (289,3169)

The aim of all previous detailed calculations was to show that for any
rational complete intersection Calabi-Yau X, all non-zero entries of the Hodge
diamond always lying on its equator or on the central column. Also h¥ = 1 if
i # m/2. Therefore, we can simplify all calculation with use of characteristic
classes theory.

We take the Riemann-Roch-Hirzebruch equation

V(E, X) = /X ch(E) A td(Ty), (12)

attach it to £ = A?Qx = Q% and rewrite over Chern classes of tangent bundle

C(Tx) = Z Ci(Tx) = H(l -+ ai)l

Qg
td(Tx) = H P (13)
ch(Q%) = Z eti...ea, (14)
11<12<...<iq

Here «; are Chern roots of Tp». It is not difficult to formalize a computation
using Wolfram Mathematica.
According to (13) we find T'd(Tpn).

Algorithm 4: Td(Tpn)

In[ |: n=5; fzﬁp[]; ff=Series[f,{x,0,n+1}];
Do [Ej, = Y7 () * SeriesCoefficient[ff, i]) , {k, 1, n}] ;
F= ngl E¢; Xo=Table [z, {k,1,n}];Cc= Table[ck *h* {k, 1,n}] :
Fc=SymmetricReduction [F,Xo,Cc];
th=Together [CoefficientList [Fc[[1]],h]];
DolPrint [tdk—1,”=",th[[k]]].{k,1,n+1}];
Out[ ]Z td():l tdlzf
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Le.

2 41402 2
1. . _citeo _ cieo. _ —c{+4cica+3cs+cic3—cy |
tdo = 1 tdy = 2 tdy = 2; tdy = @2 td, — —Aideie :

td o —c‘;’cg+3c1c§+c%cg—clc4_
5 )

th o 26?—12041165-1:11016%C%+1OC§+5C‘I’C3+110162C3—C§—5C%C4—90204—28105+266
60480 ’
td7 - 2P Jco— 1001024—100102 2ct 03+11610283 8163+26164 9cicocqs— 2clc5+2clc6
120960
=3¢} + 24c0¢y — 50cic3 + 8cicy + 21c5 — 14cjes + 26016263
+50616263 + 36163 80263 + 140104 — 19616264 - 340204 — 13c1c3¢4
+5¢ — Tches — 16¢cocs + 3ezes + Teicg + 13cac6 + 3cicr — 3
3628800
—3clcy + 213 c3 — 42¢3¢3 + 21165 + 3c8e3 — 29¢ieacs + 50cicies
+80103 8010203 — 30104 + 26010204 — 34010204 13010304 + 50104
+3clc5 — 160%0205 + 3ciczcs — 30“;’06 + 13cicoc6 + 30%07 — 3cics
7257600,
10c1® — 100cfey + 317c8c2 — 302¢ics — 69c2cy + 90c5 + 67clcs
—303c)cacs + 98c3cacs + 381cicies + 526163 + 115610263
—67c8¢cy + 258¢icacy — 17c2c3cy — 219c5cy — 593 cscy
+21c3cy + 18¢3¢% + 87cac? + 4555 — 813 cacs — 162¢1c3cs
+53coc3cs 4+ 42¢1c405 — 50% — 45¢tcg + 583 cacs + 109¢3cs
—32¢c4c6 + 230107 + 53cicocy — 10c307 — 230%08 — 43cocg — 10c¢i ¢
—210103 810203 — 269c;cacscy — 190?0305 + 42 + 10c¢19c103¢6
479001600

Similarly, according to (14) we calculate Ch(QP(X,,)).

tdg =

tdyo =

Algorithm 5: Ch(QP(Xp))-

In[ |: p=2; m=4; If[p==0, p=m]; A=Do[A=Append[A,1]{i,1,p}];
Do[A=Append[A,0],{i,p,m-1}]; pr=Permutations[A];

Dol By = Yty G k1, m} |

il
F— ZLength[pr] T, (Elr;r[[&k}])
Xo=Table[zy,{k,1,m}|; Cc=Table [Ck *tk,{k,l,m}];
Fc=SymmetricReduction[F,Xo,Cc|;
chh=Together[CoefficientList[Fc[[1]],t]];
Do|[Print[chj—_1,”=",chh[[k]]],{k,1,m+1}]

—

Out[ ]: chp=6 ch1 = -3¢, chy = 3 (30% — 402)
1
chs = 3 (—cif + 20102)

chy = 361 SC%CQ + 4c% —4cies + 1664)

21 {

Using the Riemann-Roch-Hirzebruch formula (12), we obtain the Euler
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characteristic: x(P™, QP(X,,).

Algorithm 6: x(P™, QP (X,,)

In| ]: Doltd_1 = th[[k]], {k,1,m + 1}]; Do [chs_1=chh][[k]],{k,1,m+1}]
Td=Y""otd; * 'y Ch=>_1" ch; x z*
x=CoefficientList[Series[Td*Ch,{x,0,m+2}],x];

Print["y = td - ch =", x [[m+1]]]

1

Out[ [: X:td-chzl—zo(

—c‘l1 + 40%02 + 303 —19c¢ic3 + 7904)

For example if Xy = S% € P5, then for ¢(Q?(X,)) we will have

Algorithm 7: X (P™, QP(S)

(1 + x)n—i—l .
[T (04 S(0)] =)
ctc=RotateLeft[CoefficientList[Series[ct,{x,0,n+2}]x]];
Do[e;=ctcl]i]],{i,1,Length|ctc]}];

Td=Y"" o td; * x*; Ch=>"" ch; x 2%
x =CoefficientList[Series[Td*Ch,{x,0,m+2}]x];
X [[m+1]]*(Times@Q@Select[S,##!=0&])

In[ ]: n=5; S={6,0,0}; ; ct=

Out[ ]: 1752

Example 5. Find the Hodge diamond of 6-fold X € P°, which is a
complete intersection of two quadrics, a cubic and a quartic: X = 5?2N.5?N
53N Se.

Substituting (13)-(14) into (12), taking into account that ¢; = 0, we obtain

1065’ — cg — 9cacy + 2¢6

VP, 0x) = (P, Q%) /

¥ 60480 ’

10¢3 + 41c2 — 5leaey — 82¢q

PIO Q _ IP)lO QS — / 2 3 .

X(B",0x) = (B 9% = | — ,
50¢3 + 331c2 — 381cocy + 4378¢q
]P)IO Q2 — ]P)IO Q4 — / 2 3 .
X( ) X) X( ) X) « 20160 3
V(PO 0) — / 50c¢3 + 373c3 — 423c9cq — 830606.

X X 15120

Symbolic computations:
Alg.4:(n=6; ...) — Alg.5:(p=0; m=6; ...) — Alg.6:(c; =0; ...)
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Alg.4:(n=6; ...) — Alg.5:(p=1; m=6; ...) — Alg.6:(c; =0; ...)
Alg.4:(n=6; ...) — Alg.5:(p=2; m=6; ...) — Alg.6:(c; =0; ...)

Since

(1 t)ll
Tx) = = =(1,0,11, —-32, 150, —616, 2542
C( ) (1 2t)2(1 ?)t)(]_ 1t>7 C ( Y ) Y ) 9 Y )7

with use Alg.7:(n=10; S={2,2,3,4}; ...) we have

(P, Q%) = (2, —1130, 25966, —67820, 25966, —1130, 2)
and this yields
R = 1129, h** = 25965, h* = 67820. A

In the following table we show the Hodge numbers of the 6-fold Calabi-Yay
that are complete intersections in ordinary projective spaces.

X6 (h15’ h24, h33) XG (h15, hQ47 h33)

[7[8] (6371, 154645, 398568) | [10[5222] (2246, 53093, 137714)
[8]72]  (5111,123502,318642) | [10]4322] (1129, 25965, 67820)
8163]  (2921,69590,180158) | [10[3332] (761, 17156, 45050)
8]54]  (1691,39493,102744) | [11]42222]  (1211,27965, 72968)
9/622] (3636,87157,225302) | [11]33222]  (734,16517,43394)
0[532] (1891,44418,115394) | [12[322222] (651, 14557, 38312)
9]442] (1271,29341,76560) | [13]2222222] (491, 10781, 28520)
[9]433] (1031,23609, 61736)

3 Gromov-Witten invariants

The increased interest of mathematicians in the theory of mirror symmetry
is associated with the fact that with use of physical theory instruments were
obtained results, (which were) previously considered exclusively mathemati-
cian. Furthermore, physical calculations turned out to be easier and faster
then mathematical ones. For example, one problem is to count the number of
curves of degree d, lying on arbitrary m-folde in P". Mathematically, these type
of problems solved by Schubert calculus. In some special cases the solution is
expressed by analytically. For example the formula

N(d)= > N(k)NOKL[ICHT - kCH7], d>2
k+i=d

it allows you to calculate the number of rational curves of degree d in P? and
through 3d — 1 point:
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N(1) =1, N(2) =1, N(3) = 12, N(4) = 620,
N(5) = 87304, N(6) = 26312976, N(7) = 14616808192, ...

In this section we give a simple ”physical” [8] algorithm and it software
implementation and use them to calculate the invariants Gromov-Witten of
6-fold complete intersection Calabi-Yau.

m

If X; = (S € P"is complete intersection Calabi-Yau manifolds, then

comparison of series

Vs zHrTLl(i):i) (w0)? (20,2) (15)

and

w=3" kg (16)
k

after g-expansion gives ng, i.e. number rational curves of degree d, lying on

X. Thus z = z(q) is inverse series to ¢ = z exp (Z—;),
ZHz 1 ]
n+1 )
_ = Hz 1~7 S 1 y 1 J
wl_z ( n+1 ZSZ' SZ j+ ] <n+ )1/}[j+ ] 7,

=0
Y(z) - polygamma function.

Example 6. We find the number of lines on a 6-fold Calabi-Yau X € P?,
which is a complete intersection of a quadric, cubic and quintic: X = S? N
53N Ss.

Since

wo =Y CUCHUCHL ((.éi(f Dy + 1440z + 6123600022 + 56504448000002° + ...,
- 7!
j=0

= (NN (20027 + 1+ 300+ U+
w—Z( oo (s i ot )

= 142802 + 6834861002% + 657978272000002° + O(z*),
then inverse series to ¢ = z exp(w; /wy) is

z = q — 14280¢® — 357045300¢° — 33867824768000¢" + O(¢°).
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Substituting the function z(¢q) into (15)

B 2-3-5 q 3
W= (1 —2233552) (wp)? <Z8qz>

= 30 + 8753400q + 27468669780004¢> + 872843372113500000¢° + O(¢")

and comparing with (16)

kqu
=ng +n1q+ (ny + 2°n5)¢% + (n1 + 3°n3)¢® + (n1 + 2%ng + 43n4)¢* + O(¢*)
we obtain n; = 8753400 is the number of lines on Xg, ny = 343357278075 is

the number of quadrics on X ... etc. It may be calculated with use Algorithm
8.

Algorithm 8.

In[ ]: n=9; S={2,3,5}; S=Select[S,##!=0&];
g Times QQ((S xm)!)

WO[Z*]:Zm—O (m')n+1 z™:
wilaj=Bxpand [,y (Bt o

X ( Length [5] S[[]]PolyGammalS[[i]]m + 1]
—(n+ )PolyGamma[m +1]))];

Qlz-]=Series [Exp [Log[ ]+ o[z]} ,{2,0,7}};
Z=InverseSeries[Q[q],q];
Times @QQS 3

_ q )
W_(1 — Z Times @QQ(S9)) (w0[Z])2 (20:2)"
WL=CoefficientList[W,q];
{nn; = Coefficient[W, ¢], (Coeﬂﬁcient [W, qQ] - nnl) /23,
(Coefficient [W, ¢*] — nny) /3%}

Out[ ]: {8753400, 343357278075, 32327532300175800}

In next table we show the number of rational curves of given degree for the
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6-folds complete intersection Calabi-Yau.

Xs ny Mo n3

[7]8] 120273920 238475640766464 —

[8|72] 40692344  15726480104979  14564655481706503096
[8|63] 19906560 2935121327856 1037509900910125056
[8|54] 14027200 1312611137600 —

[9|622] 15558912 1352675813184 282158440157963520
[9|532] 8753400 343357278075 32327532300175800
[9|442] 7245824 220670905344 —

[9|433] 5785344 125260349184 6511867479177984
[10|5222] 6838400 158150815200 —

[10|4322] 4520448 57710641536 1770479072924160
[10|3332] 3610008 32768476371 714945700680984
[11|42222] 3530752 26576715776 —

[11|33222] 2820096 15094123200 194346853853184
[12|322222] 2202624 6951624192 52822439144448

[

13]2222222] 1720320 3201773568 —

For the weighted projective spaces [9] P(Ag, A1, ..., A,) formula (15) rewrit-

ten as
S Z(Z;/)H;<w> (2) o
where
e XN .
“’“‘g 0!
wl:i((ﬂz (aw A+ - Z(wmﬂ]))
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