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Abstract

In paper a complete intersection Calabi-Yau six-folds are considered.
Their Hodge diamond and Gromov-Witten invariants are calculated us-
ing the mirror symmetry methods. Several Wolfram Mathematica algo-
rithms are proposed.
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1 Introduction

Intensive study of compact Ricci-flat manifolds started after Yau proved the
Calabi conjecture that these spaces always admit a Kahler metric with SU(3)
holonomy group. Phenomenologically these spaces should be used to justifica-
tion of U(1)⊗SU(2)⊗SU(3) minimal model, which linking electromagnetic -
U(1), weak - SU(2) and strong - SU(3) interactions in string theory. From an
algebraic geometry point of view the Calabi-Yau space be an elementary gen-
eralization of the well-studied K3 surfaces and before 1991 were not attracted
mathematicians. In 1991 the computational experiments of physicists began
to produce results [1], which were previously obtained by mathematicians in
another theory [2]. Explaination of coincidence these results was suggested
by [3]. After this, line of research Calabi-Yau manifolds acquired the status
of ”mainstream” both for physicists as for mathematicians. These spaces are
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included in the minimal model through 6-dimension group SU(3). In this
article we consider a 6-folds Calabi-Yau that are a complete intersection hy-
persurfaces in ordinary projective spaces (complete intersection Calabi-Yau).
Also we calculate Hodge diamond and Gromov-Witten invariants using the
methods of the theory of mirror symmetry.

2 Hodge Diamond

All definitions of this article are conventional [4]. We work in projective space
Pn over an algebraically closed field of arbitrary characteristic. Let x be divisor

degree of hypersurface X ∈ Pn. We denote Xm =
k⋂
i=1

Ssii ∈ Pn as m-fold, which

is a complete intersection of k hypersurfaces Si degree si. Then X is a Calabi-
Yau if x =

∑
si = n + 1. For a sheaf of differential forms Ωi

X = ΛiΩX we
introduce Hodge numbers hij = dim Hi(Ωj

X), which not only are symmetrical:
hij = hji, but Serre symmetrical also: hij = hn−i,n−j. If we have Hodge
numbers then Betti numbers may be calculated as

bk =
∑
i+j=k

hij.

We can also define the Euler characteristic of X as the alternating sum of the
Betti numbers:

χ(X) =
∑
k

(−)kbk.

For clarity, we rotate the matrix hij on 45◦ and call it as the Hodge diamond.
So, for n = 3, we will have:

h00

h10 h01

h20 h11 h02

h30 h21 h12 h03

h31 h22 h13

h32 h23

h33

b0 = h00

b1 = h10 + h01

b2 = h20 + h11 + h02

b3 = h30 + h21 + h12 + h03

b4 = h31 + h22 + h13

b5 = h32 + h23

b6 = h33

At the initial stage for construction of the Hodge diamond we will use
standard tool of diagramatic search, which described in classical manuals on
algebraic topology. If X ∈ Pn be hypersurface, then vector of cohomology
h(OX) = hi,0 can be found from the exact sequence of sheaves
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0−OPn(−x)−OPn −OX − 0. (1)

Since hk(OPn(−x)) = δk0δx0 + δknC
x−n−1
x−1 , then h(OX) = (

n︷ ︸︸ ︷
1, 0, ..., 0, 1 )

and it is sufficient for the construction of the Hodge diamond for curve in P2:
hi,j = 1 (i, j = 0..1).

To calculate the cohomology of sheaf OPn(−k) we will use the Wolfram
Mathematica (Algorithm 1).

Algorithm 1: Bott formula for h(OPn(k))

In[ ]: OO[n , k ] := Block[{Oo}, Oo = Array[0&, {n + 1}];
Oo[[1]] = If[k >= 0, Binomial[k + n, k], 0];
Oo[[n + 1]] = If[k < 0, Binomial[-k - 1, -k - 1 - n], 0]; Oo ];

(*check*)
In[ ]: n=5; k= – 6; OO[n,k]

Out[ ]: {0,0,0,0,0,1}
In[ ]: OO[5,6]

Out[ ]: {462,0,0,0,0,0}

To find the cotangent bundle ΩX we take sequence dual to

0− TX − TPn −NX|Pn − 0,

i.e.
0−N∗X|Pn − ΩPn − ΩX − 0

and tensoring with OX :

0−NX − ΩPn|X − ΩX − 0, (2)

where NX = N∗X|Pn = OX(−x). Further, if one tensors Euler sequence

0− ΩPn −OPn(−1)⊕(n+1) −OPn − 0 (3)

with OX , then one gets restriction ΩP4|X = ΩP4 ⊗OX :

0− ΩPn|X −OX(−1)⊕(n+1) −OX − 0. (4)

These equations (1), (2), (4) are sufficient to build a Hodge diamond of
hypersurfaces X ∈ P3 and X ∈ P4.

With using Algorithm 2. we can calculate the cohomology sheaf C (0-A-
B-C-0), if we know cohomology of A and B.



7124 V. N. Dumachev

Algorithm 2.

In[ ]: O3[A , B ] := Block[{n, Oc}, n = Length[A]; Oc = Array[0&,{n}];
Oc[[1]] = B[[1]] - A[[1]];
Do[If[B[[i]] > A[[i]], Oc[[i]] = B[[i]] - A[[i]],

Oc[[i - 1]] = Oc[[i - 1]] + A[[i]] - B[[i]]], {i, 2, n}]; Oc];

(*check*)
In[ ]: A={0,3,0,0,4}; B={0,5,0,0,1}; O3[A, B]

Out[ ]: {0,2,0,3,0}
In[ ]: O3[{1, 0, 3}, {2, 0, 1}]

Out[ ]: {1,2,0}

If X = S1 ∩ S2 is complete intersection of hypersurfaces of degree s1 and
s2, then NX = OX(−s1)⊕OX(−s2) and the sheaf OX can be determined from
the scheme:

0 0 0
| | |

0 − OS2(−s1) − OR − OX − 0
| | |

0 − OPn(−s1) − OPn − OS1 − 0
| | |

0 − OPn(−s1 − s2) − OPn(−s2) − OS1(−s2) − 0
| | |
0 0 0

(5)

Example 1. We will construct a Hodge diamond for three-fold Calabi-
Yau X3 ∈ P5, which is a complete intersection of a quadric and a quartics:
X = S2 ∩ S4.

We will use Alg.1. and Alg.2. Knowing that h(OP5(−2−4)) = (0, 0, 0, 0, 0, 1)
and h(OP5(−4)) = (0, 0, 0, 0, 0, 0) from the bottom row (5) we get h(OS1(−4)) =
(0, 0, 0, 0, 1). Knowing that h(OP5) = (1, 0, 0, 0, 0, 0) and h(OP5(−2)) =
(0, 0, 0, 0, 0, 0) from the middle row (5) we get h(OS1) = (1, 0, 0, 0, 0, 0). Sub-
stituting these cohomology in the right hand column we obtain h(OX) =
(1, 0, 0, 1). Since components of the Hodge diamond are hi,0 = hi,3 = (1, 0, 0, 1).
Tensoring (5) with OPn(−1) and repeated calculations we find h(OX(−1)) =
(0, 0, 0, 6, 0, 0). Knowing h(OX(−1)) and h(OX) from (4) we can find h(ΩPn|X) =
(0, 1, 35, 0, 0, 0). Now, tensoring (5) with OPn(−2) and with OPn(−4) we
find h(OX(−2)) = (0, 0, 0, 20, 0, 0) and h(OX(−4)) = (0, 0, 0, 104, 0, 0). Also,
from NX = OX(−2) ⊕ OX(−4) we get h(NX) = (0, 0, 0, 124, 0, 0). Substi-
tuting h(NX) and h(ΩPn|X) in (2) we obtain h(ΩX) = (0, 1, 89, 0, 0, 0) or
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hi,1 = (0, 1, 89, 0) and hi,2 = (0, 89, 1, 0). Therefore the Hodge diamond of
complete intersectin of a quadric and a quartic in P5 has the form

1
0 0

0 1 0
1 89 89 1

0 1 0
0 0

1

4

This result is easily verified using the theory of characteristic classes. For

any morphism X
f−→ Pn with uses the bundle

0− TX − f ∗TPn −Nf − 0

we find Chern class c(TX). Defining c(OPn(d))) = 1 + dt, for a complete

intersection k hypersurfaces X =
k⋂
i=1

Si of degree si we obtain c(Nf ) =
k∏
i=1

(1 +

sit). The Euler sequence dual to (3) has the form

0−OPn −OPn(1)⊕(n+1) − TPn − 0. (6)

From this c(TPn) = (1 + t)n+1, hense

c(TX) =
(1 + t)n+1

k∏
i=1

(1 + sit)

.

The Euler characteristic of m-fold is

χ =

∫
X

cm(X) =

∫
Pn
ck(Nf ) ∧ cm(TX) = ck(Nf ) · cm(TX), (k +m = n). (7)

Example 2. For the intersection of a quadric and a quartic in P5 we have

c(Nf ) = (1 + 2t)(1 + 4t) = 1 + 6t+ 8t2, i.e. c2(Nf ) = 8

and

c(TX) =
(1 + t)6

(1 + 2t)(1 + 4t)
≈ 1 + 7t2 − 22t3, ⇒ c3(TX) = −22.

Hence the Euler characteristic is χ = −176. Comparing this with Example 1,
we see that b = (1, 0, 1, 180, 1, 0, 1) and from formulae χ =

∑
(−)kbk we obtain

the same value χ. 4
If X = S1 ∩ S2 ∩ S3 is complete intersection of 3 hypersurfaces of degree

s1, s2 and s3, then NX = OX(−s1) ⊕ OX(−s2) ⊕ OX(−s3), and the sheaf
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OX is determined from the 3d-commutative diagrams (thus OPn = On and
OS1∩S2∩S3 = O1∩2∩3 for simplification).

O2∩3(−s1) // O2∩3 // O1∩2∩3

O2(−s1)

88

// O2
//

::

O1∩2

<<

O2(−s1 − s3)

77

// O2(−s3) //

::

O1∩2(−s3)

::

· O1∩3

OO

On(−s1)

OO

// On

OO

// O1

OO

;;

On(−s1 − s3)

77

//

OO

On(−s3) //

::

OO

O1(−s3)

OO

::

O1∩3(−s2)

OO

On(−s1 − s2) //

OO

On(−s2) //

OO

O1(−s2)

<<

OO

On(−s1 − s2 − s3) //

OO

77

On(−s2 − s3) //

OO

::

O1(−s2 − s3)

OO

::

It is obvious that analysis of the intersection of k hyperplane will require
building of k-dimensional commutative cube. In essence, for determination of
OS1∩S2∩...∩Sk we need use the following recurrence relations

0−OS1∩S2∩...∩Sk−1
(−sk)−OS1∩S2∩...∩Sk−1

−OS1∩S2∩...∩Sk − 0
0−OS1∩S2∩...∩Sk−2

(−sk−1)−OS1∩S2∩...∩Sk−2
−OS1∩S2∩...∩Sk−1

− 0
...

0−OS1(−s2)−OS1 −OS1∩S2 − 0
0−OPn(−s1)−OPn −OS1 − 0

(8)

twisting them with OPn(−si) if it is necessary. Further, we will use the Math-
ematical Algorithm 3. to calculate OX(−j). Note that Algorithm 3. includes
Algorithm 2. and also Algorithm 1.
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Algorithm 3: h(OX(j))

In[ ]: Ox[n , k , j ] := Block[{Y}, Y = Array[0&, n + 1];
If[Length[k] == 1, Y = O3[OO[n, k[[1]] + j ], OO[n, j ]]];
If[Length[k] >= 2,
Y = O3[Ox[n, Delete[k, -1], k[[-1]] + j ], Ox[n, Delete[k, -1], j ]]];Y];

(*check*)
In[ ]: n = 7; k = {-2, -3, -3}; j = 0; Ox[n, k, j ]

Out[ ]: {1, 0, 0, 0, 1, 0, 0, 0}
In[ ]: Ox[9, {-2, -2, -3, -3}, -10]

Out[ ]: {0, 0, 0, 0, 0, 34 057, 0, 0, 0, 0}

We denote by Xm the m-fold, which is a complete intersection k hypersur-

faces Si of degree si. If Xm =
k⋂
i=1

Ssii ∈ Pn is complete intersection Calabi-Yau,

then consistent application of the (8) yields h(OX) = (

m+1︷ ︸︸ ︷
1, 0, ..., 0, 1 ).

Now we will find the hi,2 = dim(H i(Pn,Ω2
X). Taking the symmetric square

of (2), we get:

0− Sym2NX −NX ⊗ ΩPn|X − Ω2
Pn|X − Ω2

X − 0. (9)

Here Sym2NX = OX(−2x), and Ω2
Pn|X we find using an external degree of the

Euler sequence (3):

0− Ω2
Pn|X −OX(−2)⊕C

2
n+1 − ΩPn|X − 0. (10)

To determine the Ω2
X we split the equation (9) into two parts:

0− Sym2NX − Sym NX ⊗ ΩPn|X − E − 0 (9.1)

and
0− E − Ω2

Pn|X − Ω2
X − 0. (9.2)

It is easy to show that E ∼= ΩX(−x). Indeed, multiplying (2) on OX(−x) we
have (9.1):

0−OX(−2x)−NX ⊗ ΩPn|X(−x)− ΩX(−x)− 0.

On the other hand, the vedge power (2) is

0− ΩX(−x)− Ω2
Pn|X − Ω2

X − 0,

i.e. (9.2).
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In general the k-st symmetric power of (2)

0−SymkNX−Symk−1NX⊗ΩPn|X−Symk−2NX⊗Ω2
Pn|X− ...−Ωk

Pn|X−Ωk
X−0.

(11)
allows us to calculate the Ωk

X .

Example 3 We will construct the Hodge diamond of 4-fold Calabi-Yau
X4 ∈ P7, which is a complete intersection of a quadric and two cubics: X =
S2 ∩ S3 ∩ S3.

For calculations, we need to use Algorithm 2. and Algorithm 3. From
(8) we have h(OX) = (1, 0, 0, 0, 1, 0, 0, 0), so hi0 = hi4 = (1, 0, 0, 0, 1). Substi-
tuting h(OX) and h(OX)(−1) = (0, 0, 0, 0, 8, 0, 0, 0) in (4), we have h(ΩP7|X) =
(0, 1, 0, 0, 63, 0, 0, 0). Now, knowing h(NX) = h(OX(−2)⊕OX(−3)⊕OX(−3)) =
(0, 0, 0, 0, 255, 0, 0, 0) from (2) we have h(ΩX) = (0, 1, 0, 192, 0, 0, 0, 0). There-
fore hi1 = (0, 1, 0, 192, 0), hi3 = (0, 192, 0, 1, 0). Cohomology Ω2

X we obtained
from expanded scheme (9):

0

��

0

��
0 // Sym2NX

// ΩP7|X(−2)⊕ ΩP7|X(−3)⊕2 //

��

Ω2
P7|X

//

��

Ω2
X

// 0

OX(−3)⊕8 ⊕OX(−4)⊕8·2

��

OX(−2)⊕28

��
OX(−2)⊕OX(−3)⊕2

��

ΩP7|X

��
0 0

Knowing the h(ΩP7|X) and h(OX)(−2) = (0, 0, 0, 0, 35, 0, 0, 0) we obtain h(Ω2
P7|X) =

(0, 0, 1, 0, 917, 0, 0, 0). From h(Sym2NX) = h(OX(−4)⊕OX(−5)⊕2⊕OX(−6)⊕3) =
(0, 0, 0, 0, 4971, 0, 0, 0) and h(NX ⊗ ΩPn|X) = (0, 0, 0, 0, 5073, 0, 0, 0) we have
h(ΩX(−x)) = (0, 0, 0, 815, 917, 0, 0, 0), h(Ω2

X) = (0, 0, 0, 816, 0, 0, 0, 0). I.e.
h22 = (0, 0, 816, 0, 0) and Hodge diamond takes the form

1
0 0

0 1 0
0 0 0 0

1 192 816 192 1
0 0 0 0

0 1 0
0 0

1



Complete intersection Calabi-Yau six-folds 7129

Summing the Betti numbers b = (1, 0, 1, 0, 1202, 0, 1, 0, 1) we obtain χ = 1206.
With another hand, knowing

c(Nf ) = (1 + 2t)(1 + 3t)2 = 1 + 8t+ 21t2 + 18t3, i.e. c3(Nf ) = 18

and

c(TX) =
(1 + t)8

(1 + 2t)(1 + 3t)2
≈ 1 + 7t2 − 18t3 + 67t4, ⇒ c4(TX) = 67

for the Euler characteristic X4 ∈ P7 from (7) we obtain

χ =

∫
P7

c3(Nf ) ∧ c4(TX) = c3(Nf ) · c4(TX) = 18 · 67 = 1206. 4

Example 4. Find the Hodge diamond of 5-fold Calabi-Yau X5 ∈ P9, which
is a complete intersection of two quadrics and two dice: X = S2∩S2∩S3∩S3.

Using recurrent sequences (8) and the scheme (11)

0− Sym3NX − Sym2NX ⊗ ΩP9|X −NX ⊗ Ω2
P9|X − Ω3

P9|X − Ω3
X − 0,

with help the Algorithm 3 and Algorithm 2 we obtain

1
0 0

0 1 0
0 0 0 0

0 0 1 0 0
1 403 4423 4423 403 1

0 0 1 0 0
0 0 0 0

0 1 0
0 0

1

and χ = c4(Nf ) · c5(TX) = 36 · (−268) = −9648. 4

Here is a table of the currently known complete intersections Calabi-Yau in
ordinary projective spaces. In this table, m-fold Xm = Si ∩ Sj ∩ ... ∩ Sk ∈ Pn
is indicated by [nm|ij...k]χ. Spaces X3, have been described in [5]. All 4-
dimensional full intersection Calabi-Yau are described in [6] and 5-dimensional
in work [7].
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X1 h11 X3 h12 X4 (h13, h22) X5 (h14, h23)

[2|3] 1 [4|5] 101 [5|6] (426, 1752) [6|7] (1667, 18327)
[5|33] 73 [6|52] (356, 1472) [7|62] (1357, 14917)
[5|42] 89 [6|43] (237, 996) [7|53] (811, 8911)
[6|322] 73 [7|422] (263, 1100) [7|44] (593, 6513)
[7|2222] 65 [7|332] (192, 816) [8|522] (971, 10671)

[8|3222] (183, 780) [8|432] (559, 6139)
X2 h11 [9|2...2] (151, 652 [8|333] (406, 4456)
[3|4] 20 [9|4222] (609, 6689)
[4|32] 20 [9|3322] (403, 4423)
[5|222] 20 [10|32222] (369, 4049)

[11|2...2] (289, 3169)

The aim of all previous detailed calculations was to show that for any
rational complete intersection Calabi-Yau Xm all non-zero entries of the Hodge
diamond always lying on its equator or on the central column. Also hii = 1 if
i 6= m/2. Therefore, we can simplify all calculation with use of characteristic
classes theory.

We take the Riemann-Roch-Hirzebruch equation

χ(E,X) =

∫
X

ch(E) ∧ td(TX), (12)

attach it to E =
∧q ΩX = Ωq

X and rewrite over Chern classes of tangent bundle
c(TX) =

∑
i

ci(TX) =
∏
i

(1 + αi):

td(TX) =
∏
i

αi
1− e−αi

, (13)

ch(Ωq
X) =

∑
i1<i2<...<iq

eαi1 ...eαiq . (14)

Here αi are Chern roots of TPn . It is not difficult to formalize a computation
using Wolfram Mathematica.

According to (13) we find Td(TPn).

Algorithm 4: Td(TPn)

In[ ]: n=5; f=
x

1− Exp[−x]
; ff=Series[f,{x,0,n+1}];

Do
[
Ek =

∑n
i=0

(
xik ∗ SeriesCoefficient[ff, i]

)
, {k, 1, n}

]
;

F =
∏n
ξ=1Eξ; Xo=Table [xk, {k, 1, n}];Cc=Table

[
ck ∗ hk, {k, 1, n}

]
;

Fc=SymmetricReduction [F,Xo,Cc];
th=Together [CoefficientList [Fc[[1]],h]];
Do[Print [tdk−1,”=”,th[[k]]],{k,1,n+1}];

Out[ ]: td0 = 1 td1 = c1
2 ...
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I.e.
td0 = 1; td1 = c1

2
; td2 =

c21+c2
12

; td3 = c1c2
24

; td4 =
−c41+4c21c2+3c22+c1c3−c4

720
;

td5 =
−c31c2+3c1c22+c

2
1c3−c1c4

1440
;

td6 =
2c61−12c41c2+11c21c

2
2+10c32+5c31c3+11c1c2c3−c23−5c21c4−9c2c4−2c1c5+2c6

60480
;

td7 =
2c51c2−10c31c22+10c1c32−2c41c3+11c21c2c3−c1c23+2c31c4−9c1c2c4−2c21c5+2c1c6

120960
;

td8 =


−3c81 + 24c61c2 − 50c41c

2
2 + 8c21c

3
2 + 21c42 − 14c51c3 + 26c31c2c3

+50c1c
2
2c3 + 3c21c

2
3 − 8c2c

2
3 + 14c41c4 − 19c21c2c4 − 34c22c4 − 13c1c3c4

+5c24 − 7c31c5 − 16c1c2c5 + 3c3c5 + 7c21c6 + 13c2c6 + 3c1c7 − 3c8


3628800

td9 =


−3c71c2 + 21c51c

2
2 − 42c31c

3
2 + 21c1c

4
2 + 3c61c3 − 29c41c2c3 + 50c21c

2
2c3

+8c31c
2
3 − 8c1c2c

2
3 − 3c51c4 + 26c31c2c4 − 34c1c

2
2c4 − 13c21c3c4 + 5c1c

2
4

+3c41c5 − 16c21c2c5 + 3c1c3c5 − 3c31c6 + 13c1c2c6 + 3c21c7 − 3c1c8


7257600

td10 =



10c101 − 100c81c2 + 317c61c
2
2 − 302c41c

3
2 − 69c21c

4
2 + 90c52 + 67c71c3

−303c51c2c3 + 98c31c
2
2c3 + 381c1c

3
2c3 + 52c41c

2
3 + 115c21c2c

2
3

−67c61c4 + 258c41c2c4 − 17c21c
2
2c4 − 219c32c4 − 59c31c3c4

+21c23c4 + 18c21c
2
4 + 87c2c

2
4 + 45c51c5 − 81c31c2c5 − 162c1c

2
2c5

+53c2c3c5 + 42c1c4c5 − 5c25 − 45c41c6 + 58c21c2c6 + 109c22c6
−32c4c6 + 23c31c7 + 53c1c2c7 − 10c3c7 − 23c21c8 − 43c2c8 − 10c1c9
−21c1c

3
3 − 81c22c

2
3 − 269c1c2c3c4 − 19c21c3c5 + 42 + 10c10c1c3c6


479001600

Similarly, according to (14) we calculate Ch(Ωp(Xm)).

Algorithm 5: Ch(Ωp(Xm)).

In[ ]: p=2; m=4; If[p==0, p=m]; A=Do[A=Append[A,1],{i,1,p}];
Do[A=Append[A,0],{i,p,m-1}]; pr=Permutations[A];

Do
[
Ek =

∑m
i=0

xik∗(−1)
i

i! , {k, 1,m}
]

;

F =
∑Length[pr]

ξ=1

∏m
k=1

(
E

pr[[ξ,k]]
k

)
;

Xo=Table[xk,{k,1,m}]; Cc=Table
[
ck ∗ tk, {k, 1,m}

]
;

Fc=SymmetricReduction[F,Xo,Cc];
chh=Together[CoefficientList[Fc[[1]],t]];
Do[Print[chk−1,”=”,chh[[k]]],{k,1,m+1}]

Out[ ]: ch0 = 6 ch1 = −3c1 ch2 =
1

2

(
3c21 − 4c2

)
ch3 =

1

2

(
−c31 + 2c1c2

)
ch4 =

1

24

(
3c41 − 8c21c2 + 4c22 − 4c1c3 + 16c4

)

Using the Riemann-Roch-Hirzebruch formula (12), we obtain the Euler
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characteristic: χ(Pn,Ωp(Xm).

Algorithm 6: χ(Pn,Ωp(Xm)

In[ ]: Do[tdk−1 = th[[k]], {k, 1,m+ 1}]; Do [chk−1=chh[[k]],{k,1,m+1}]
Td=

∑m
i=0 tdi ∗ xi; Ch=

∑m
i=0 chi ∗ xi;

χ=CoefficientList[Series[Td*Ch,{x,0,m+2}],x];
Print[′′χ = td · ch =′′, χ [[m+1]]]

Out[ ]: χ = td · ch =
1

120

(
−c41 + 4c21c2 + 3c22 − 19c1c3 + 79c4

)

For example if X4 = S6 ∈ P5, then for c(Ω2(X4)) we will have

Algorithm 7: χ(Pn,Ωp(S)

In[ ]: n=5; S={6,0,0}; ; ct=
(1 + x)n+1∏Length[S]

i=1 (1 + S[[i]] ∗ x)
;

ctc=RotateLeft[CoefficientList[Series[ct,{x,0,n+2}],x]];
Do[ci=ctc[[i]],{i,1,Length[ctc]}];
Td=

∑m
i=0 tdi ∗ xi; Ch=

∑m
i=0 chi ∗ xi;

χ =CoefficientList[Series[Td*Ch,{x,0,m+2}],x];
χ [[m+1]]*(Times@@Select[S,##!=0&])

Out[ ]: 1752

Example 5. Find the Hodge diamond of 6-fold X6 ∈ P10, which is a
complete intersection of two quadrics, a cubic and a quartic: X = S2 ∩ S2 ∩
S3 ∩ S4.

Substituting (13)-(14) into (12), taking into account that c1 = 0, we obtain

χ(P10,OX) = χ(P10,Ω6
X) =

∫
X

10c32 − c23 − 9c2c4 + 2c6
60480

;

χ(P10,ΩX) = χ(P10,Ω5
X) =

∫
X

10c32 + 41c23 − 51c2c4 − 82c6
10080

;

χ(P10,Ω2
X) = χ(P10,Ω4

X) =

∫
X

50c32 + 331c23 − 381c2c4 + 4378c6
20160

;

χ(P10,Ω3
X) =

∫
X

50c32 + 373c23 − 423c2c4 − 8306c6
15120

.

Symbolic computations:
Alg.4:(n=6; ...) → Alg.5:(p=0; m=6; ...) → Alg.6:(c1 = 0; ...)
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Alg.4:(n=6; ...) → Alg.5:(p=1; m=6; ...) → Alg.6:(c1 = 0; ...)
Alg.4:(n=6; ...) → Alg.5:(p=2; m=6; ...) → Alg.6:(c1 = 0; ...)
...
Since

c(TX) =
(1 + t)11

(1 + 2t)2(1 + 3t)(1 + 4t)
, ⇒ c = (1, 0, 11,−32, 150,−616, 2542),

with use Alg.7:(n=10; S={2,2,3,4}; ...) we have

χ(P10,Ωi
X) = (2,−1130, 25966,−67820, 25966,−1130, 2)

and this yields

h15 = 1129, h24 = 25965, h33 = 67820. 4

In the following table we show the Hodge numbers of the 6-fold Calabi-Yay
that are complete intersections in ordinary projective spaces.

X6 (h15, h24, h33) X6 (h15, h24, h33)
[7|8] (6371, 154645, 398568) [10|5222] (2246, 53093, 137714)
[8|72] (5111, 123502, 318642) [10|4322] (1129, 25965, 67820)
[8|63] (2921, 69590, 180158) [10|3332] (761, 17156, 45050)
[8|54] (1691, 39493, 102744) [11|42222] (1211, 27965, 72968)
[9|622] (3636, 87157, 225302) [11|33222] (734, 16517, 43394)
[9|532] (1891, 44418, 115394) [12|322222] (651, 14557, 38312)
[9|442] (1271, 29341, 76560) [13|2222222] (491, 10781, 28520)
[9|433] (1031, 23609, 61736)

3 Gromov-Witten invariants

The increased interest of mathematicians in the theory of mirror symmetry
is associated with the fact that with use of physical theory instruments were
obtained results, (which were) previously considered exclusively mathemati-
cian. Furthermore, physical calculations turned out to be easier and faster
then mathematical ones. For example, one problem is to count the number of
curves of degree d, lying on arbitrarym-folde in Pn. Mathematically, these type
of problems solved by Schubert calculus. In some special cases the solution is
expressed by analytically. For example the formula

N(d) =
∑
k+l=d

N(k)N(l)k2l
[
lC3k−2

3d−4 − kC
3k−1
3d−4

]
, d ≥ 2

it allows you to calculate the number of rational curves of degree d in P2 and
through 3d− 1 point:
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N(1) = 1, N(2) = 1, N(3) = 12, N(4) = 620,

N(5) = 87304, N(6) = 26312976, N(7) = 14616808192, ...

In this section we give a simple ”physical” [8] algorithm and it software
implementation and use them to calculate the invariants Gromov-Witten of
6-fold complete intersection Calabi-Yau.

If Xk =
m⋂
i=1

Ssii ∈ Pn is complete intersection Calabi-Yau manifolds, then

comparison of series

W =

∏m
i=1 si

(1− z
∏m

i=1(si)
si) (w0)2

(q
z
∂qz
)3

(15)

and

W =
∑
k

nk
k3qk

1− qk
(16)

after q-expansion gives nd, i.e. number rational curves of degree d, lying on

X. Thus z = z(q) is inverse series to q = z exp
(
w1

w0

)
,

w0 =
∞∑
j=0

∏m
i=1(j · si)!
(j!)n+1

zj,

w1 =
∞∑
j=0

(∏m
i=1(j · si)!
(j!)n+1

(
m∑
i=1

si · ψ[si · j + 1]− (n+ 1) · ψ[j + 1]

))
zj,

ψ(x) - polygamma function.

Example 6. We find the number of lines on a 6-fold Calabi-Yau X6 ∈ P9,
which is a complete intersection of a quadric, cubic and quintic: X = S2 ∩
S3 ∩ S5.

Since

w0 =
∞∑
j=0

(2j)!(3j)!(5j)!

(j!)10
zj = 1 + 1440z + 61236000z2 + 5650444800000z3 + ...,

w1 =
∞∑
j=0

(
(2j)!(3j)!(5j)!

(j!)10
zj
(

2ψ[2j + 1] + 3ψ[3j + 1]+
5ψ[5j + 1]− 10ψ[j + 1]

))
zj

= 14280z + 683486100z2 + 65797827200000z3 +O(z4),

then inverse series to q = z exp(w1/w0) is

z = q − 14280q2 − 357045300q3 − 33867824768000q4 +O(q5).
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Substituting the function z(q) into (15)

W =
2 · 3 · 5

(1− 223355z) (w0)2

(q
z
∂qz
)3

= 30 + 8753400q + 2746866978000q2 + 872843372113500000q3 +O(q4)

and comparing with (16)

W =
∑
k

nk
k3qk

1− qk

= n0 + n1q + (n1 + 23n2)q
2 + (n1 + 33n3)q

3 + (n1 + 23n2 + 43n4)q
4 +O(q4)

we obtain n1 = 8753400 is the number of lines on X6, n2 = 343357278075 is
the number of quadrics on X6 ... etc. It may be calculated with use Algorithm
8.

Algorithm 8.

In[ ]: n=9; S={2,3,5}; S=Select[S,##!=0&];

w0[z ]=
∑8

m=0

Times @@((S ∗m)!)

(m!)n+1
zm;

w1[z ]=Expand
[∑8

m=0

(
Times @@((S∗m)!)

(m!)n+1 zm×

×
(∑Length[S]

i=1 S[[i]]PolyGamma[S[[i]]m+ 1]

−(n+ 1)PolyGamma[m+ 1]))];

Q[z ]=Series
[
Exp

[
Log[z] + w1[z]

w0[z]

]
, {z, 0, 7}

]
;

Z=InverseSeries[Q[q],q];

W=
Times @@S

(1− Z Times @@(SS)) (w0[Z])2
( q
Z ∂qZ

)3
;

WL=CoefficientList[W,q];
{nn1 = Coefficient[W, q],

(
Coefficient

[
W, q2

]
− nn1

)
/23,(

Coefficient
[
W, q3

]
− nn1

)
/33}

Out[ ]: {8753400, 343357278075, 32327532300175800}

In next table we show the number of rational curves of given degree for the
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6-folds complete intersection Calabi-Yau.

X6 n1 n2 n3

[7|8] 120273920 238475640766464 −
[8|72] 40692344 15726480104979 14564655481706503096
[8|63] 19906560 2935121327856 1037509900910125056
[8|54] 14027200 1312611137600 −
[9|622] 15558912 1352675813184 282158440157963520
[9|532] 8753400 343357278075 32327532300175800
[9|442] 7245824 220670905344 −
[9|433] 5785344 125260349184 6511867479177984
[10|5222] 6838400 158150815200 −
[10|4322] 4520448 57710641536 1770479072924160
[10|3332] 3610008 32768476371 714945700680984
[11|42222] 3530752 26576715776 −
[11|33222] 2820096 15094123200 194346853853184
[12|322222] 2202624 6951624192 52822439144448
[13|2222222] 1720320 3201773568 −

For the weighted projective spaces [9] P(λ0, λ1, ..., λn) formula (15) rewrit-
ten as

W =

∑
λ/
∏
λ(

1− z (
∑
λ)

∑
λ∏

λλ

)
(w0)2

(q
z
∂qz
)3
, (17)

where

w0 =
∞∑
j=0

(j
∑
λ)!∏

(jλ)!
zj,

w1 =
∞∑
j=0

(
(j
∑
λ)!∏

(jλ)!

(∑
λ · ψ

[∑
λ · j + 1

]
−
∑

(λψ[λj + 1]
))

zj.
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