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1. Introduction

The low-energy effective dynamics of 4-dimensional N = 2
gauge theories is determined by a single holomorphic function
called the prepotential [1]. According to the Seiberg-Witten theory
[2,3], the prepotential can be exactly computed from the Seiberg-
Witten periods, which are the period integrals of the Seiberg-
Witten differential on the Seiberg-Witten curve describing the
Coulomb moduli space of the vacua. The prepotential obtained
from the Seiberg-Witten periods enables us to understand non-
perturbative aspects of the gauge theories such as the global struc-
ture of the BPS spectra [4-7]. The prepotential can also be obtained
from the Nekrasov partition function [8,9], which is defined on the
Q-deformed background parametrized by two deformation param-
eters € and €'.

Under the Q-background, the prepotential and the Seiberg-
Witten periods also receive the correction by the deformation.
In [10], it was argued that the deformed Seiberg-Witten periods
for the SU(2) super Yang-Mills theory in the Nekrasov-Shatashvili
limit €’ — 0 [11] are identical to the quantum periods (or the WKB
periods) for the Mathieu differential equation. This identification
was generalized to pure SU(N) case [12] and with matters [13]
later. The corresponding differential equations are called the quan-
tum Seiberg-Witten curves, which are obtained from the canoni-
cal quantization of the symplectic structure of the Seiberg-Witten
curves. The quantization of the Seiberg-Witten curves has been
investigated with various examples [14-17]. The quantum Seiberg-
Witten curves also appear in the AGT correspondence, where the
differential equations are satisfied by the one-point function of a
degenerate primary field with respect to the Gaiotto states [18,19].
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Recently, there have been remarkable developments for the
resurgent perspective of the quantum Seiberg-Witten curves. In
[20], the authors applied the exact WKB analysis to the quantum
Seiberg-Witten curve for the pure SU(2) theory and determined
the instanton corrections to the prepotential. The similar analysis
for 4d N'=2 SU(2) SQCD with Ny <4 fundamental hypermulti-
plets is presented in [21], which is based on the quantum Seiberg-
Witten curves obtained from the AGT correspondence.

The exact WKB analysis for the quantum Seiberg-Witten curves
also has a relation to the 2-dimensional integrable QFT. In [22],
the authors investigated the exact WKB analysis for the quan-
tum Seiberg-Witten curves of the (A1, A;) Argyres-Douglas the-
ory (e.g. [23,24]) and derived the thermodynamic Bethe ansatz
(TBA) equations governing the Borel resummations of the quantum
periods as the solution to a Riemann-Hilbert problem explained
by Voros [25]. The TBA equations for the quantum periods are
also derived for the pure SU(2) theory [26,27] and the (A1, D;)
Argyres-Douglas theory [28]. The exact WKB analysis and the TBA
equations for the quantum Seiberg-Witten curves are also studied
in the context of the abelianization (e.g. [29,30]).

It is important to generalize the SU(2) SYM to the SQCD,
which has the moduli space with higher dimensions. The quantum
Seiberg-Witten curves for 4d A'=2 SU(2) SQCD with Ny <4 can
be obtained from the quantization of the Seiberg-Witten curves
[14]. The quantum curves are also obtained from the AGT corre-
spondence with the mass decoupling limits, which decouple the
different hypermultiplets considered in [21]. In this paper, we de-
rive the TBA equations for Ny =2 SQCD with the flavor symmetry
based on the curve in [14]. The moduli space of this gauge the-
ory has three important limits, the massless limit, the decoupling
limit and the Argyres-Douglas limit. For the massless limit and the
decoupling limit, the quantum SW curve becomes the one for the
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pure SU(2) case and the TBA equations for this curve are already
derived in [26,27]. The TBA equations for the Argyres-Douglas limit
are also derived in [22]. Therefore, by deriving the TBA equations
for Ny =2 SQCD with the flavor symmetry, we can study these
flow of the theory from the point of view of the TBA equations.

This paper is organized as follows. In section 2, we apply the
exact WKB analysis to the quantum Seiberg-Witten curve and de-
fine a Riemann-Hilbert problem. In section 3, we derive the TBA
equations as a solution to the Riemann-Hilbert problem. We then
study some special limits of the TBA equations, the massless limit,
the decoupling limit and the Argyres-Douglas limit. We also com-
pute the effective central charge of the underlying CFT, which is
found to be proportional to the coefficient of the one-loop beta
function of the SQCD.

2. Exact WKB analysis and quantum SW curve

The quantum Seiberg-Witten curve for 4-dimensional A = 2
SU(2) SQCD with two fundamental hypermultiplets take the form
of the Schrodinger type differential equation [14],

dZ
(_ezd_z +(V(q) - u)) ¥ (q) =0,
q , 21)

A : ; A
V(q) = —72 (m1e’q + mze_’q) - ?2 cos (29)

where u is the Coulomb moduli parameter, A; is the dynamically
generated scale, my, my are the bare masses of the hypermultiplets,
€ is the deformation parameter in the Nekrasov-Shatashvili limit
of the Q-background and q is a complex variable. In the context of
the AGT-correspondence, the variable g is the position of a surface
operator in the 4d gauge theory (see e.g. [19]).

The standard WKB method produces an asymptotic expansion
in € of the solution to (2.1),

q
1 l 7 /
¥(@q) = m EXP(E / Peven(q)dq), (2.2)
where
Peven(q) = Z D2n (Q)Ezn- (2.3)

n=0

By substituting the solution (2.2) into (2.1), we can obtain p2n(q)

recursively. Especially we find po(q) = +/u — V(q).
Peven(q)dq in (2.2) can be regarded as a one-form on the Rie-
mann surface ¥ defined by the following algebraic curve,

y=u-V@. (2.4)

We will call ¥ WKB curve. The Riemann surface X is the same as
the one defined by the Seiberg-Witten curve of the SU(2) Ny =
2 theory [14]. The one-cycles y € H{(X) generate the periods of

Peven(q)dq,

Iy, := % Peven(@)dq, Y € Hi1(%), (2.5)

14

which we will call quantum periods. The quantum periods deter-
mine the low-energy effective dynamics of the SQCD. As Peyen(q)
goes, the quantum periods are even power series in €,

o0

m, =Y nye, ny= % p2n(@)dg.
n=0 y

(2.6)
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We can compute the higher order corrections to the quantum pe-
riods by using the differential operator technique [14]:

ny =o,ny, (2.7)

where O, is a differential operator with respect to the moduli pa-
rameters on the WKB curve.

The quantum periods are asymptotic series, which converge
only at |€| =0, and therefore need to be properly resumed. In the
exact WKB analysis, we take Borel resummation technique. First,
we define Borel transformation of a quantum period as follows:

o0

. 1 ),
,E=Y —ne», (2.8)

- (2n)!

where £ is a complex variable. With the help of the factor 1/(2n)!,
the Borel transformation has a finite convergence of radius. There-
fore the Borel transformation can be analytically continued on the
whole of &-plane. The Borel resummation of the quantum period
is then defined by the Laplace integral of the Borel transformation,

e o0
1 A
sp (My) (€)= 2 / e /11, (§)dt, (2.9)

0

where @ is the phase of € (¢ = |e|e!?). The Borel resummation of
the quantum period s, (l'Iy) (e) is an analytic function and has the
quantum period IT,, as the asymptotic expansion in € — 0.

In general, the analytic continuations of the Borel transforma-
tions have singularity, which are typically poles and blanch cuts,
on the &-plane. If the Borel transformation of a quantum period
IT, has singularities on the ray along a direction in the £-plane,
then the integral (2.9) cannot be defined in this direction. In that
case, instead of (2.9), we use the integrals which avoid the singu-
larities to the left or right,

sgx () (e¥1el) = Jim sz (1) (e el).

The discontinuity of a quantum period II,, is then given as the
difference of (2.10),

(2.10)

discy Iy, := s (TTy) — sp— (). (211)

Let us compute the discontinuity of the quantum periods for
(2.1). We take a special region on the moduli space in which all
the solutions to u = V (q,) become real and different. This region
can be realized as follows: We consider the case that the hyper-
multiplets have a same mass m; =my =m and m, u, A € R. Then
u — V(q) becomes a real function on the R(q) axis,

AZ
u—V(@q =u+ Aymcos(q) + ?2 cos (2q) . (212)

. A2
Restricting the parameters to —% <m< % and Az|m| — 2 <

u<m?+ %%, the solutions to u = V (q4«) become real and different
(see Fig. 2.1)." In the context of the gauge theory, the restriction of
u corresponds to the strong coupling region.

One can then finds four independent cycles on the WKB curve,
«, @ cycles, encircling the classically allowed intervals, and S,
cycles, encircling the classically forbidden intervals (Fig. 2.2). We
choose the orientations of the cycles so that

1 This configuration corresponds to the bound state in the context of quantum
mechanics.
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Fig. 21. The potential on the real axis (A =4, m=1/8 and u = 1).
(91,92, —q1, —q2) are the solutions to u = V(q).

o o o

Fig. 2.2. The one-cycles on a sheet of the WKB curve. The dashed black lines indicate
branch cuts.

Zy:=Tg = ygpo(q)dq, Zy =My =i?§po(q)dq,

o B
(213)
Z;=n0 =7§ po@)dq. Zy=in® =i 75 Po(@)da.
@ B

are real and positive.

Under the change of variable e!d = z, po(q)dq becomes the root
of the quadratic differential for 4d N =2 SU(2) Ny =2 gauge
theory considered in [31]. The quadratic differential has two ir-
regular singularities at z = 0, co, which correspond to q = +ico.
At these points, 2 iRes(+ioo, pg) = 2rm and Hgloi& becomes the

sum of these residues, while I'[/(soi‘é becomes the difference of these
residues (namely zero). Therefore we obtain the following relation,
Mg’ =0y +4rm, M =12

Then one can show that the higher order coefficients are equiva-
lent respectively,

(2.14)

ny =ny, ny = n;“) n=>1) (2.15)
because the differential operator O, can be expressed by only us-
ing u-derivative [14].

The discontinuity of the Borel resummations of the quantum
periods can be captured by the Delabaere-Dillinger-Pham formula
(theorem 2.5.1 of [32], and theorem 3.4 of [33]). For ¢ =0, the
formula says that the periods for the classically allowed intervals
have the discontinuity, and it is encoded in the periods for the

classically forbidden intervals,

i i
gdlSCO H)/ca = Z(Vca, ch) lOg |:1 + exp <_ESO(HVCf)>] ’

Yef
(2.16)

where y, is a classically allowed cycle, yf is the classically for-
bidden cycles and (yca, V) is the intersection number of them. By
using this formula, the discontinuities of I, I are given as fol-
lows,
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édisco My =—log| 1 +exp< é 0(1‘[,3)>
i (217)
— log 1+exp( go(l'l ) ,
i i
EdlSCo Iz =—log|1 +exp( . 0(1‘[,3)>
z (2.18)
—log 1+exp (——so(l'[ﬁ))

Iy and I1; also have the discontinuity for the direction ¢ =
because the quantum periods are even power series in €. Simi-
larly, ITg and II i have the discontinuity for the direction ¢ = :i:%
because, in this direction, the classically allowed intervals and clas-
sically forbidden intervals are switched.

The asymptotic behavior and the discontinuities for the Borel
resummations of the quantum periods define a Riemann-Hilbert
problem for themselves [25]. In the next section, we derive the
TBA equations as a solution to this problem.

3. Quantum periods and TBA equations
3.1. TBA equations

The discontinuities obtained in the previous section can be put
into a uniform description by introducing functions ¢; (9) as

it i
&1 <9 + 5 - l§0> = Es(p (Ig) (€),

‘ i
£2(0 —ip) = sy (Mg) (o),

. . (3.1)

iTt i
£3 (9 + 5 l(/)) = gstp (ITg) (€),

. i
g4 (0 —ip)= Esga (1_[5) (e),
where 6 is defined by
1 .
- =el %, (3.2)
€

The discontinuities are then put together into a simpler one,

discir28i (0) =£[Li1(0) +Li1(0)], (i1=1,2,3,4) (3.3)

where
Li(6) =log (1+¢71®) (3.4)

and we define Lo = L4, L5 = L.
The functions ¢&; (6) have the following asymptotic behavior,

+0e™),

because 6 — oo expansion of &; (9) is equivalent to € — 0 expan-
sion of the Borel resummations of the quantum periods.

Now we can derive the TBA equations for the functions &; (0)
satisfying the conditions (3.3) and (3.5) [22]. For the present case,
the solution is given by the following TBA system,

i(0) = Z;e’ 6 — oo, (3.5)

log (1 + e*52(9/)> o’
£1(0) = Zq€’ —/——
cosh(¢ —60") 2m

R

log (1 + 6_84(9/)) o’
B / cosh(@ —0) 27’
R
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log (1 +e 8 (9/)> 6’

0) = Zoe’ —
£2(0) = Zze / cosh(@ —0) 27

R
log (1 + 6‘83(0’)) do’
—f——, (3.6)
cosh(0 —6") 2m
R

log (1 + e‘gz(e/)) 4o’
£3(0) = Z3e’ —/——
cosh(d —6") 2m

R

log (1 + 6*84(9/)) 4o’
B f cosh(@ —0) 27’
R

£4(0) = Z4€’ —/
R

/- log (1 + 6_83(0/)) do’

cosh(@ —6") 27’

log (1 +e~ <9’)> do’
cosh(@ —6") 2

R
The identification (2.14) leads to £,(9) = €4(f) and the TBA equa-
tions can be collapsed to three,
log (1 + 6*82(9’)) o’

0)=2Z1e" —2 —,
£10) 1€ / cosh(f —60") 2m

R

82(6) = Zoe’ —/
R

/- log (1 + 6_83(0/)) do’

cosh(@ —6)) 27’

log (1 +e 8 (9/)> 6’
cosh(@ —0) 27
(3.7)

R
log (1 + e‘sZ(e/)) o’

0) = Zze? — 2 —.
&(0) 3¢ / cosh(@ —60") 2w

R

So far we only consider the special parameter region, but we
can also derive the TBA equations for a pure imaginary region
(m, Ay € iR) and an anti-same mass region (m; = —my) in the
same way. For general region, we need to analytically continue the
TBA equations [34]. Let us consider the analytic continuation for
(3.6). Taking u, m, A, as complex values, Z; also becomes complex,

Zi=1Zile"¥, (i=1~4). (3.8)
Then we obtain the following TBA equations,

log (1 + 375‘2(9/)) do’
cosh(6 — 0/ + iy — ip1) 27T

é1<9)=|zl|e0—/
R

/ log (1 + e_54(9')) do’

cosh(d — 0/ +igs — ipy) 27"

R

£2(0) = |Z2e’ —/
R

/ log (1 + 6_53(0/)) do’

cosh(® — 0’ + i3 — ighy) 27"

log (1 +e‘§1(9')> do’
cosh(@ — 0/ + i1 — id) 27

(3.9)
R
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log (1 + 8*52(9/)> o’
cosh(d — 0/ + idy — ip3) 27

é3<0)=|23|e9—/
R

/- log (1 + e_54(9’>) do’

cosh(6 — 0/ + ids — ip3) 27"

R
log (1 +e‘51(0')> 4o’
cosh(6 — 0’ +igy — iga) 277

£4(0) = |Zale’ —f
R

/ log (1 + 6_53(0/)) 4o’

cosh(@ — 0/ + i3 — igha) 270"

R

where

£i(0) :=¢i(0—igi) (i=1~4). (3.10)

The TBA equations (3.9) are only valid for the region |¢; — ¢j| <
7 because the integrands have the pole at |¢; — ¢j| = 5. For
lpi — @l > % the residue of the pole deforms the TBA equations
and typically we find an infinite number of the integral equations.
In the language of the exact WKB analysis, the appearance of an
infinite number of the TBA equations corresponds to the appear-
ance of an infinite number of the quantum periods.

The number of the quantum periods is equivalent to the num-
ber of the stable BPS states in the gauge theory [31,35]. For the 4d
N =2 SU(2) Ny =2 gauge theory, there are four stable BPS states
in the strong coupling region and an infinite number of the states
in the weak coupling region. Therefore we conclude that the TBA
equations (3.9) are valid for the strong coupling region.

In principle, we can also derive the TBA equations for my # m;
by solving the Riemann-Hilbert problem. But in this case the po-
tential V(q) is not a real-valued function on the 9(q) axis and
there is no way to analytically determine the directions of the dis-
continuity as the same-mass case. This difficulty also exists for 4d
N =2 SU(2) Ny =1, 3,4 gauge theories. However, the number of
the stable BPS states for the 4d N =2 SU(2) Ny =2 gauge the-
ory with m; # my is the same for the same-mass case. Therefore
we conjecture that the TBA equations (3.9) are also valid for the
my # my case.

Now we discuss the TBA equations at some special points in
the moduli space. In the massless case m =0, (2.14) leads to 1y, =
Il or equivalently £1(0) = ¢3(f) and the TBA equations can be
collapsed to two,

log (1 + e—SZ(G’)) do’

0) = Z1e? —2 —
e10)=Zre / cosh(@ —0/) 2m

R

)

/ (311)
£ (9)—2 ee_szd_e/

2= a2 cosh(0 —0) 21
R

(3.11) agrees with the TBA equations for the Mathieu equation
[26,27]. This agreement is compatible with that the quantum SW
curve (2.1) becomes the Mathieu equation in the massless case.
We also obtain the TBA equations (3.11) in the decoupling limit
(m — oo and Ay — 0 while mA;, being fixes), which turns the
Nf =2 theory into the pure gauge theory, because in this limit
the quantum SW curve (2.1) becomes the one for the pure SU(2)
theory.

The point m = % u= %Az is the superconformal or Argyres-
Douglas point where mutually nonlocal BPS states become mass-

less [36]. In the limit m — %2, u — 3 A% with keeping the theory
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in the strong coupling region, &-cycle shrinks and IT; goes to zero.
If we neglect @-cycle, we obtain the following TBA equations,

log (1 + e—52(9’)> do’

0)=21" —2 —,
10y =21€ / cosh(6 —0) 27

R

£2(0) = Z»e’ —/
R

/ (3.12)
log (1 +e6100 )) o’
cosh(@ —0) 27"

This TBA system agrees with the TBA equations for the quartic
potential derived in [22], which is the quantum SW curve for
(A1, A3) AD theory. Moreover, under the universality of the AD
theory [16], the quantum SW curve for (A1, A3) AD theory is
equivalent to the SU(2) Ny =2 AD theory.

The large 6 expansion of the TBA equations provides the all-
older asymptotic expansion of the epsilon functions. For example,
for (3.6),

o0
£i(0) = Zie" + Y zMe1 727 g oo, (3.13)

n=1

where

" _

Z:E’”=T / e V(L _1(0) + L1 (0))d0, (k=1,2,3,4).
R

(3.14)

Z,ﬁ") can be replaced with the coefficients of the quantum periods
as follows:

Z" =y, zP’=iny, z{’=prnd,

ﬂ ’
(3.15)
M _ ™
Z, =ill P
Moreover, (3.14) indicates the following identifications:
W=z, =z, (3.16)

These agree with (2.15).

We compare the calculation of the quantum periods by using
the TBA equations and the differential operator (2.7). In the same
mass case, the first and second orders can be calculated by using
the following differential operators [14]:

19 1 9% 1 92

O1==——+-u—5+-m , (3.17)
60u 3 ou? 4 9mou
5 92 1 33 7 9 7 94
%= 2a002 T35 To0 0 w0 a5
23 7, 9 '

* 96 smzow? T 160" am2au?’
Note that there are at least first order u-derivative in each terms.
Therefore we can evaluate the higher order corrections to the
quantum periods by using the u-derivative of l'[;o) ,

_1 _1
O I'Ifxo) = ar (e_iq2 — e‘““) : (e"q2 - eiq‘) :
A
11 (e —eminn) (=i _giany]  G19)
x2F1| =, 2.1, - - - - )
2’2 (e—lqz — e_l‘h) (elq1 — elqz)
_1 _1
3, H;;O) _ 4_7[ (e*ith _ eiq1) 2 (e*ﬁh _ eith) 2
Aa
X 2F1 —, =, 1, - 4 T - 5
2 2 (9—141 — e“}h) (elqz — e—lqz)
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Table 1

The numerical results of the coefficients of the quantum periods (A =4, u=1,m=
1/8). The numerical calculation in the TBA equations is done by Fourier discretiza-
tion with 2'8 points and a cutoff of the integrals (—L, L) where L =40 + log (27).

n (-1 VARRAL iy ",z
1 —0.50248407 —0.50248411 —0.23951302 —0.23951316
2 0.31200029 0.31200019 0.01588744 0.01588743

where q1, g are the solutions to u = V(q) (see Fig. 2.1). In Table 1,
we compare the numerical results of m?“), calculated by the TBA

equations, to H;f), calculated by the differential operators.
3.2. Effective central charge and one-loop beta function

By using the TBA equations, we can calculate the effective cen-
tral charge ceff = ¢ — 24Anin of the underlying 2d CFT, where c is
the central charge of the Virasoro algebra and Ap, is the mini-
mum eigenvalue of the Virasoro operator Lg. For (3.6), ceff is given
by [37,38]

4
6
Cerr=— Zz,-/e%,-(e)de
i=1 R

(3.21)
3 A4
=4+ (s; log(1 + €7) + 2Lip (—e® )) ,
i=1
where
gf = lim &(6). (3.22)
60— —o0

In 6 — —oo limit (or equivalently, € — oo limit), the TBA equations
(3.6) lead

™

1 1
efE{ — 97% — (] + e78*> (] + 3782) 2 R

| | (3.23)
e % —e = (1 —i—e"q)2 (1 +e’£§)2 ,
and therefore
et = (] + 3755) ,
(3.24)

e = (1 + e_sT) .

In fact, there are no mathematically rigorous solutions to (3.24)
[27,39,41]. But we can formally consider that &f — —oo are the
solutions. Then

eflog(1+e) — 0 (3.25)
and

Lo (—e®’) — 0. (3.26)
Therefore we obtain

Ceff = 4. (3.27)

This result agrees with the numerical calculation.

We can also compute the effective central charge from the
quantum periods. The large 6 expansion of the TBA equations
(3.14), (3.15) leads to a relational expression between ceff and the
quantum periods,

Ceff = —

6 6
i [n&mng) - ngpng@] +—(Z3— 1) / e?L3d6.
T T
R

(3.28)
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H&O)Hg) — fo”l'[fso) can be expressed only l'[;,o) by using the dif-
ferential operator ;7 (3.17). After some transpositions, we finally
get the following relation,

© 0
ATl 911"
[Hg» g _ Mo -

au qu P

3211© 3211 ©
i _ (0) B _ o (0
= 17T Coff 3u|:1'1a 2 2 l'[,3
(3.29)
270 210
3 ge¥ s Pl Lo
2 * 9mou  omiu P

6
+i;(23 - Z1)/e9L3d9.
R

In the massless case m =0, 1'[;,0) satisfies the second order Picard-
Fuchs equation [14] and the second, third and fourth terms in the
r.h.s. of (3.29) become zero,

© 0
Tl I
[ng?)—ﬁ 2 qO | ey (3.30)

au ou P

Because, at the massless point, the quantum periods agree with
) omy)
au

the ones for the pure SU(2) theory, the combination [1‘[5,0
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Therefore we obtain ceff = 4.

The relation (3.29) is also derived in the context of A" =2 gauge
theories [42,43], while in these papers, the constant term in the
r.h.s. is proportional to the one-loop beta functions of the A/ =2
gauge theory. Therefore (3.29) indicates that ce¢ for 2-dimensional
CFT is proportional to the one-loop beta function for the SQCD. The
similar relation also exists in the pure SU(2) case [27].

4. Summary and discussions

In this paper, we have investigated the exact WKB analysis
for the quantum Seiberg-Witten curve of 4-dimensional N = 2
SU(2)Ny = 2 gauge theory with flavor symmetry and derived the
TBA equations satisfied by the Borel resummations of the quantum
periods in several parameter regions. We have also computed the
effective central charge of the TBA equations and found the pro-
portionality between the effective central charge and the one-loop
beta function of the SQCD.

As future works, we want to derive the TBA equations for other
gauge theories whose quantum Seiberg-Witten curves form the
Schrédinger type differential equations (e.g. SU(2) with Ny <4
[14,21], N* =2 theory [44-46]). One of the possible way to de-
rive the TBA equations is the ODE/IM correspondence proposed in
[47]. For example, the TBA equations for pure SU(2) case have
already derived in [48] by using the ODE/IM correspondence. An-
other possible way is using the integral equations proposed by
Gaiotto, Moore and Neitzke in [35]. The conformal limit of these
integral equations becomes the TBA equations [39] and the author
argued that these TBA equations calculate the quantum periods.
This argument was numerically demonstrated for pure SU(2) case
[26] and showed in [49]. It is also interesting to study the rela-
tion to [50], which studied the same Riemann-Hilbert problem we
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considered but used different methods. More ambitious generaliza-
tion is the A =2 supersymmetric gauge theories with higher rank
gauge group, whose quantum Seiberg-Witten curves form higher-
order differential equations (for pure SU(N) case [12] and with
matters [13]). A good starting point is the A,-type ODE studied in
[51], which relates to the quantum Seiberg-Witten curve for the
(An, Am)-type Argyres-Douglas theories [52].

It is also interesting to apply the TBA equations to study black
hole physics. In [53], the authors claimed that the quasinormal
mode frequencies for black holes are determined by the Bohr-
Sommerfeld quantization condition for the quantum periods of
4-dimensional V' =2 SU(2) gauge theory with Ny =2,3 and ex-
plicitly demonstrated at some lower levels. The more we included
the higher order collections of the quantum periods, the more the
spectrum obtained from the Bohr-Sommerfeld quantization condi-
tion matched to the true value. Therefore we expect that the Borel
resummations of the quantum periods provide more precision.
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