10P Publishing

® CrossMark

OPEN ACCESS

RECEIVED
19 March 2022

REVISED
28 June 2022

ACCEPTED FOR PUBLICATION
5 July 2022

PUBLISHED
5 August 2022

Original content from
this work may be used
under the terms of the
Creative Commons

Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOL.

New J. Phys. 24 (2022) 073036 https://doi.org/10.1088/1367-2630/ac7{26

Published in partnership
with: Deutsche Physikalische
Gesellschaftand the Institute
of Physics

Deutsche Physikalische Gesellschaft @ DPG

New Journal of Physics

The open access journal at the forefront of physics 10P Institute of Physics

PAPER

Quantum computational quantitative trading: high-frequency
statistical arbitrage algorithm

Xi-Ning Zhuang'-*©, Zhao-Yun Chen’®, Yu-Chun Wu?*?**>*{© and
Guo-Ping Guo!-2345

! Origin Quantum Computing, Hefei, People’s Republic of China

CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026,

People’s Republic of China

Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, People’s Republic of China

CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science
and Technology of China, Hefei 230026, People’s Republic of China

Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, People’s Republic of China

Authors to whom any correspondence should be addressed.

2

5

E-mail: wuyuchun@ustc.edu.cn and gpguo@ustc.edu.cn

Keywords: quantum computation, statistical arbitrage, quantitative trading, quantum finance

Abstract

Quantitative trading is an integral part of financial markets with high calculation speed
requirements, while no quantum algorithms have been introduced into this field yet. We propose
quantum algorithms for high-frequency statistical arbitrage trading by utilizing variable time
condition number estimation and quantum linear regression. The algorithm complexity has been
reduced from the classical benchmark O(N?d) to O(v/dNr3 log (1/¢)?)), where N is the length of
trading data, and d is the number of stocks, x is the condition number and ¢ is the desired
precision. Moreover, two tool algorithms for condition number estimation and cointegration test
are developed.

1. Introduction

With the rapid development of quantum computing [1-3], the qubits on the chips are up to 53 currently
[3], and it will extend beyond 100 soon in the roadmap of quantum systems based on superconductivity.
Hence, quantum computing shows the potential to solving practical problems, such as chemistry [4-6],
materials [7], drug design [8], and so on.

Quantum computation has produced positive effects in finance [9, 10], and current quantum algorithms
mainly focus on solving derivatives pricing problems and risk analysis by quantum Monte-Carlo (QMC)
simulation [11-16], optimizing stocks portfolio through quadratic unstrained binary optimization
(QUBO) [17-19], and financial analysis work utilizing quantum machine learning (QML) [20-23].
However, for quantitative trading and especially statistical arbitrage, there are no corresponding quantum
algorithms yet.

Quantitative trading is an essential field of finance which focuses on algorithmic trading methods via
studying historical trading data and developing complex trading algorithm. And statistical arbitrage is a
mainstream approach of quantitative trading taken by most hedge funds [24, 25]. The main idea of
arbitrage is to describe the comovement out of securities and portfolios and make profit from other traders’
pricing error. While lots of classical algorithms for quantitative trading have been proposed [26-29], and
traditional hardware techniques including infrared communication and field programmable gate array have
been employed over the years [30, 31], still the requirement for speed cannot be satisfied when
implementing those complicated statistical methods, especially in the quicker-take-all situation of
high-frequency trading (HFT) whose need of computing speed is crucial [32]. In statistical arbitrage, one
needs to find a potential cointegrated pair via many linear regressions and cointegration tests involving a
huge matrix of historical data. For example, in US stock markets, the problem size can exceed N = 107 and
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the complexity is 10'> (see section 6 for details) which is very hard to calculate by classical computers. For
this problem, quantum computation might provide an effective solution.

In this article, quantum algorithms applied to statistical arbitrage strategy are proposed. It consists of
two subroutines: the first one is the variable time preselection algorithm (VTPA) that will help to find, with
high probability, the potential comovement out of securities and portfolios. The second one is the quantum
cointegration test algorithm (QCTA) that focuses on the efficient verification of cointegrated pairs, which is
quite valuable in statistics but has not been achieved via quantum computation ever before. The classical
benchmark to achieve the preselection procedure is by matrix factorization with complexity O(N?) [33],
while our algorithm’s complexity is O(v/dN k2 log (1/¢)?) where d is the number of stocks usually much
less than time length N and ry is the condition number. Moreover, an efficient tool named quantum
condition number comparison algorithm (QCNCA) used to probe a matrix’s condition number is
proposed, and it can be applied to many other domains. The estimation and optimization on condition
number is a crux of realistic problems with linear systems, while few work focuses on this issue before.

The structure of this article is as follows: after giving the problem statement and analysis in section 2,
the global structure and main results of our work are shown in section 3. The details of VTPA and QCT are
described in sections 4 and 5, respectively, followed by a discussion on complexity and quantum advantage
in section 6.

2. Statistical arbitrage problem

Statistical arbitrage is a market neutral trading method to model the comovement of different assets and
correct the pricing error in the market. Pioneered by Gerry Bamberger [34], statistical arbitrage has
developed a lot, and the crux and core are to model the comovement. Following the framework first
introduced by Vidyamurthy [27], statistical arbitrage is divided mainly into three key steps: firstly, two or
more securities moved together historically in a formation period should be preselected; secondly, some
version of the Engle—Granger cointegration test [35] is taken for verification; thirdly, the spread between
them in a subsequent trading period is monitored by some optimal entry/exit thresholds. Since the spread
of stocks will revert to its historical mean, and the profit can be made from other traders’ irrational
behavior by longing the oversold securities and shorting the overbought ones at the same time [26]

(see figure 1 for reference).

The first and hard problem of statistical arbitrage is to find the comovement of assets. Although the
covariance matrix can be applied to describe the correlation of every two assets pair, it is much more often
for traders to model the multicollinearity of more than three assets in the market. In statistics,
multicollinearity refers to a situation in which some of the explanatory variables in a multiple regression
model are highly linearly related. The formal problem statement is given as follows:

Problem 1 (Multicollinear detection problem). Suppose that P = {p} is the set of portfolios, and

p= (pij ) 7xT 1s a portfolio of stocks’ historical quote data. Here pij )is an element of p as the jth stock’s
price at time ¢. The matrix p is of full rank since no perfect linear relation exists in noisy financial market
data. The target is to verify whether there are pgj) s whose multicollinearity are statistically significant.

The classical method to seek the multicollinearity is by multiple regression. However, there are two
difficulties one have to face: firstly the classical regression algorithm’s complexity is O(n®) while the realistic
problem size n is quite large; secondly, the algorithm complexity will increase quickly for ill-conditioned
matrix which often appears in the situation of multicollinearity.

In numerical analysis, to detect and measure the seriousness of the multicollinearity problem, the
condition number x is introduced. Given problem f, it is generally a measurement to describe the change
of the output value divided by the change of the input variable x:

- £ |l
k(f) = lim sup ——.
h=1g Joxj<e llox|l

In the case of matrices, the condition number associated with the linear equation Ax = b release the
dependence of accuracy on the input data. Specifically, the condition number of normal matrix A is

o ‘)\max(A)‘

A)= ——=—.
I{( ) |Am1n(A)|

It should be emphasized that condition number is a property of the matrix itself and does not depend on
the algorithm or accuracy of the computer used. Hence, both classical and quantum computers have a
common problem to solve an ill-conditioned (high condition number) linear system of equations.
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Figure 1. The comovement of adjusted close prices of PEP and KO with a rescaling multiplier 2.8. The x-axis is the time line and
the y-axis represents the price. The red line is the sequence of daily close prices of Pepsi, and the blue line is the sequence of daily
close prices of Coca-Cola multiplied by a factor 2.8 from August 8 2020 to August 8 2021. The factor is derived from a linear
regression since the scales of average prices of these companies are different and can not be compared directly. This picture shows
the comovement of these two stocks and the statistical arbitrage strategy: on February 2 2021 the spread of these stocks increased
to a maximum and we can long the PEP and short the KO, and then hold them until the spread reverses in July 2021 and make
profit. (The market data can be downloaded from Yahoo! Finance’s APIL. A pythonic way to download market data can be found
on the website https://pypi.org/project/yfinance/).

The larger the condition number, the more ill-conditioned the matrix is, and the algorithm complexity will
increase very quickly.

The second problem of statistical arbitrage is the verification of the multicointegration of the
preselected multicollinear securities. To make profit the price spread is assumed to revert to its historical
mean, which is guaranteed by the statistical concept multicointegration. Briefly speaking,
multicointegration demands a linear combination of several given time series (denoted as residuals series)
to be stationary (not time varying), and it can describe the reversion property of multi variables. With the
detailed explanation of statistical concepts given in appendix A, the formal problem statement is:

Problem 2 (Multicointegration test problem). Suppose that p = (pEj) )jxt 1s a portfolio of stocks” historical
quote data. Here p'¥ is a time series as the jth stock’s price. The target is to verify whether these time series
are cointegrated.

The classical cointegration test algorithm consists of two regression procedures: one is for the derivation
of the linear combination coefficients, and the other one is for the time stationary hypothesis test. The
complexity of each regression is O(n?).

3. Quantum statistical arbitrage

In this section, two algorithms solving the quantum statistical arbitrage problem are proposed. One is for
the case of fixed condition number threshold; the other is for a fixed number of remained portfolios. Given
historical data of many stocks for a long time interval, our target is to select those stocks that are
cointegrated. The algorithm mainly contains two steps: preselect multicollinear stock portfolios from the
pool by applying VTPA(p, k) where VPTA is true if the given portfolio p’s condition number is larger than
the threshold «; and then verify whether the preselected portfolio p is cointegrated by implementing
QCT(p) to output cointegration flag f and corresponding coefficients 5.

3.1. Data loading
Data loading is an important and difficult procedure for quantum algorithms considering practical
application. In this subsection, the data structure and loading procedure are given, and then the
time complexity is analyzed. Moreover, we proved that this procedure is efficient and optimal.

Suppose that P = {p} is the portfolio pool, and (pEJ) )y is a portfolio of stocks historical quote
data. Here p,” is an element of p as the jth stock’s price at time ¢. The matrix p is of full rank since no
perfect linear relation exists in noisy financial market data. The two quantum statistical algorithms work in
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Algorithm 1. Quantum statistical arbitrage algorithm with
fixed condition number preselection.

Input:
Ko: the threshold for preselection
T: the length of time interval
J: the total number of stocks
d: number of stocks in one portfolio
P: the portfolio pool set contains portfolios p
py): the jth stock’s price at time ¢
Output:
(p, B) cointegrated portfolios and cointegration coefficients

Data loading
for p in P do
) =3 X p 10)1)
if VTPA(p, ko) = True then
QCT(p) =1,
if f = True then
Output (p, B)
else
Skip to the next loop

the standard oracle model, and the matrix is stored in a quantum random access memory (QRAM) [36-38].
A procedure P, is assumed to perform the map

Iz — ]z pf”)

foranyje [1,2,...,d] and t € [1,2,...,N], and the price is stored as a bit string in the third register.
In order to derive the desired real symmetric matrix, the strategy of HHL [39, 40] is adopted as:

0 X
A= .
x 0
Moreover, the norm of the matrix is assumed to satisfy ||A|| = 1 without loss of generality since otherwise

let A= H%H'

For most quantum algorithms concerning realistic situation compared to classical algorithms, data
loading is a common and crucial problem such as pattern recognition and recommendation system where
data loading is a bottleneck problem since every tick a lot of data carrying the picture information need to
be loaded [41]. However, for the case of financial data, things are very different:

For our specified financial scene, we apply the technique named incremental updating [42, 43], so that
the time complexity of data loading procedure can be regarded as a constant. The data need to be loaded
are divided into two parts: the historical data and the new-loading data. Although the time of historical data
loading may be long for the first time, it is finished before the trading time. And in every new second of
trading time, the large matrix of historical data is unchanged and only a fixed number of lines of data will
be updated. Hence the complexity of data updating can be assumed as a constant, which is very different
from other quantum algorithms.

When compared to classical algorithms, since this new-loading data storage procedure is also the data
generation procedure, the time complexity of our algorithm’s quantum data loading is in the same order of
classical ones. And the quantum algorithm will benefit from the computing procedure.

Moreover, since the data based on historical trading is random, it can not be derived efficiently from a
designed quantum circuit. Otherwise the history data can be predicted perfectly by a fixed circuit and this is
impossible. This hints that there is no more efficient circuit to prepare the historical matrix directly, and the
incremental data updating is optimal.

3.2. Fixed condition number algorithm

In the case the market is stationary and the threshold of condition number used for the preselection can be
derived from historical trading data. If an efficient x( derived from historical data is taken as filter
threshold, the following algorithm 1 is given:

Suppose that we have the historical data of ] stocks with T ticks, then for each portfolio p of d stocks, we
apply the variable time preselection algorithm circuit. This quantum circuit will return whether this data
matrix’s condition number is larger than . It is based on the new original quantum condition number
comparison algorithm that can implement a quick condition number estimation by eigenvalue
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Algorithm 2. Quantum statistical arbitrage algorithm with
progressive preselection.

Input:
k: portfolio number threshold
T: the length of time interval
J: the total number of stocks
d: the number of stocks in one portfolio
P: the portfolio pool
p?): the jth stock’s price at time ¢
Output:
(p, B) cointegrated portfolios and cointegration coefficients

Data loading
Step counterj =1
Portfolio counter K = |P|
while K > k do
Rj = 2
for p in P do
) = 05 S p 1))
if VTPA(p, rj) = True then
skip
else
K=K-1
P=P—{p}
j=i+1
for pin P do
QCT(p) = (£, B)
if f = True then
Output (p, 3)

computation, and the variable time structure is applied to make a second accelerated effect by handling
with the case of large condition number. If the VTPA’s result is true, we will know that the matrix’s
condition number is large enough so that there is high probability that this portfolio contains multicollinear
columns of stock price sequences. Then we will apply the quantum cointegration test circuit which can
compute if this multicollinear portfolio contains a linear combination of stocks that is cointegrated as
desired.

3.3. Adaptive condition number algorithm

As for the case that the financial market changes drastically and no fixed threshold ( can be derived, an
even more efficient algorithm 2 is provided and he basic idea is as follows: since our single-step preselection
sub-algorithm can be used for any given &, a progressive « preselection procedure can be implemented.
Portfolio matrices with small x will be directly obsoleted in the first several steps until the number of
matrices left is small enough, and until then, the quantum cointegration test will be implemented.

Both of the above two algorithms are for statistical arbitrage, and the selection depends on the specific
market: if the r-threshold is stationary, the first algorithm is chosen; otherwise, the second one is preferred.
Since the two subroutines VIPA and QCT are complicated and tool sub-algorithm QCNCA is developed,
they will be introduced in sections 4 and 5, respectively.

4. Variable time preselection

In this section, we will explain the main idea of the first part of our work as a variable time quantum
algorithm to preselect the stocks that are multicollinear and thus may be cointegrated as needed.

Although ill-conditioned matrices are commonly considered a terrible problem that one should try to
avoid, we develop the heuristic idea to detect multicollinearity by searching matrices with small eigenvalues
and large condition numbers. QCNCA is developed to determine whether the condition number « of a
given matrix is larger than the threshold & in subsection 4.1.

Since QCNCA’s dependence on « is quadratic, the technique of variable time quantum algorithm is
introduced to accelerate the implementation of matrices selection [44], and then the VTPA is as follows:

Theorem 1.Supposing that many different linear systems are given with unknown condition number x and P;
denote the probability that condition number satisfies k1 = 27! < k < kj = 2. Then there is an efficient
quantum algorithm to preselect matrices with condition numbers k > k. The average query complexity is




10P Publishing

New J. Phys. 24 (2022) 073036 X-N Zhuang et al

O(v/d log (1/6)2(21\{ 4/jP))). As for a uniform probability distribution, the query complexity is
O(\/c_i log (1/¢€)?) to determine whether the condition number is larger than k.

The proofs of correctness and complexity of theorem 1 are given in subsections 4.3 and 4.4, respectively.

4.1. Tools: quantum condition number comparison algorithm

Realizing that multicollinearity appears with large  [45, 46], and hence small eigenvalues, the following
preselection algorithm is developed: repeat a simplified phase estimation sub-algorithm until an eigenvalue
small enough is detected. If such an eigenvalue is found, the corresponding portfolios will be recorded as an
alternative one. It worth noticing that some cointegrated pairs may be missed in our algorithm, but it does
not matter since our task is to search for some collinear portfolios instead of the impossible mission to find
all of the cointegrated pairs. We denote this procedure quantum condition number comparator

QCNC(k, ¢) and get the following result:

Lemma 2. Supposing that A is an N X N Hermitian matrix with ||A|| = 1 with unknown condition number k

and the probability density function of eigenvalues is p(\). Then there is a quantum algorithm using

Ol log(1/e) 122
1/%0

a uniform probability dtstrzbutlon, A’s calls are O(k3 log(1/€)) so that whenever k > 2k, the target qubit

will be 1.

) calls of A to determine whether the condition number is larger than k. In the case of

It should be noticed that this repeating time, especially when « is large, is determined by the threshold
Ko, while traditional algorithms depend on the unknown «. This is an algorithm finding whether the
condition number of a linear system is large than the given threshold without solving the equations.

Proof of lemma 2. Without loss of generality, suppose that A is a matrix with Frobenius norm

1/2

lAllr= (D2 el | =V (1)

i=1 j=1

(otherwise let A = ﬁA), and unknown rank r. A direct calculation shows that:

‘)\max(A)‘ = HA”Z (2)
1
> ﬁ”AHF (3)
d/r (4)
> 1. (5)
Here in (2)
Il = s ” ull BN (6)

is the induced L, norm and equals to |Apx(A)] (see [47]’s example 5.6.6), and it follows the inequality (3)
(see [48]).

For any given eigenvector |\), with a variant of phase estimation, it is easy for us to determine whether
its corresponding eigenvalue ) is larger than 1/kg or not with complexity O(rg log(1/¢)) [49]. By the
definition of the condition number of normal matrices, for any known eigenvalue A:

_ ‘)\max(A)| S 1
|>\min(A)‘ - |>\(A)|

2 Kg. (7)

Hence a lower bound of the condition number is also given. Whenever a sufficiently small eigenvalue ) is
given, the matrix can be regarded with condition number greater than r, and high multicollinearity as a
consequence.

Obviously, there is a certain probability of success when the testing eigenvalue is larger than k. Let the
condition number be « and the probability density function of eigenvalues be p; the success probability is

- fll/hp(x)dx (8)
S0 dx”

P success
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Under the assumption that the eigenvalues follow a uniform probability distribution, the success probability

turns to be
1//‘60 — l/l‘i
Psuccess - Y < (9)
1-1/k
1 k—K
=—— (10)
Ko k—1
1
~ (1 _ @) (11)
Ko R
Here & is assumed large and k — 1 ~ k. Moreover, whenever a matrix with x > 2k, is given, we have:
Psuccess 2 1/2"{/0~ (12)

This procedure shall be repeated 2k, times to boost the success probability. Hence the total number of calls
for A is O(k2 log(1/¢)). Since complexity to simulate U = €4 is oKd + log(ko/€))) [50], the total query
complexity is O(v/dr?2 log(1/€)(1 + log(r/€))). [ |

It should be mentioned that the assumption of uniform distribution is reasonable. Although different
distributions of eigenvalues may appear in specified realistic problems, some normal conditions can be
imposed to guarantee that the algorithm will still work with slight modification.

4.2. Algorithm
To see how to derive an algorithm more efficient on &, one should notice that matrices with small condition
numbers can be found quite early and need not be calculated anymore. Some clock registers are used to
obsolete those matrices with small condition numbers by starting from small threshold x,. The larger the
threshold ry is, the fewer the matrices need to be tested. Repeating this procedure several times can make
the acceleration.
subprocedure A; defined later. Another one-qubit register F is used as a flag register to donate if the
algorithm is stopped. Forall j € {1,..., M}, let ¢; = 1/r; = 277, and let € be the desired precision. Since it
is our target to verify whether matrix A contains components corresponding to small eigenvalues, the
algorithm is defined as A = Ay Ay . .. Ay, where A; is defined as follows:

Algorithm A; conditional on first j — 1 qubits of H¢ being |1), apply QCNC(x;j, €) using C; as the
output qubit and additional fresh qubits from 7P as ancillary (denoted by P;). If Cj is left |0) in the first
term, the qubit on stop flag register F will be flipped.

4.3. Correctness
We shall now prove the correctness of this algorithm.

Proof of theorem 1 (Correctness part). Given a matrix A, the condition number is either in some interval
[k, 2K;] or greater than k.

(i) Suppose that a matrix with condition number x; < k < 2k; is given:

State after A, to A;_;. Since k < ¢ _;_;, the clock registers Ci, . . ., Cj_; are at position |1) while the
stop flag register F stays |0) with high probability. After j — 1 steps the state is left as

where ’7{> is the ancillary state produced by the ith call to QCNC.
State after A;. Because ¢; < 1 < 2¢;, QCNC will split the jth control register to |1>Cj with high

probability:
: 1 j-1 j : 1 j1 j
60|L{J—1>c‘0>f|’71>p1 N >Pj71 %>Pj|0>Pj+1...PM + 61|L{J>c‘0>?|’71>p1 N >Pj71 71>Pj|0>Pj+1...PM
where U; = 110" 7.
Since C; is left |0) in the first term, the qubit on register F is flipped:
1 j—1 j 1 j-1 j
5O|Uj—1>c|1>f|71>pl N >Pj—1 ’Yo>Pj|0>pj+l,,,pM + 51|uj>c|0>f|71>p1 N >Pj,1 ’Yl>Pj|0>Pj+1...PM-
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State after A; . This will affect the two parts of the state in different way: in the case that the jth control
qubit is split, the step QCNC(kj+1, €) is implemented. Notice that £ < ¢;,, the state turns to be:

j
’Yl>Pj

As for the case that jth control qubit is |0), nothing will be done and the state is:

Ny

jt1
W), O

Bl|uj>c‘l>f|'71l>1>l

»
W) 10nysp

j+1

J

U\ 11 Fo _1>
Bolti-1) D)1 - A Py

j :
%>Pj|0>Pj+1wPM +ﬁ1|ul>c|l>f Py..P;

State after A4
Given a matrix A with condition number &; < k < Kj41, the final state at the end of algorithm A is:

Bo|Ui-1).|1) %‘~-~%j>

' j+1
), 105+ Bl W), O

]

o 7j71> ’
Ly
PP Py...P;

(ii) As for matrix A with condition number x > k¢, we have:

[Del0)rlmn "),

1...PM.

It should be noticed that whenever the flag register is split to |1) », the algorithm stops at some step and
reject the hypothesis of the condition number larger than k. Hence a measurement can be implemented on
|1) to decide whether the matrix contains a component with eigenvalues less than some given 1/ k.
Besides, a control counter circuit can be employed on the M clock registers to probe the range for .

4.4. Complexity analysis

In this subsection, the algorithm’s complexity analysis is given to finish the proof of theorem 1. It should be
mentioned that the algorithm complexity depends on the specific distribution of condition numbers and
eigenvalues of the problem. In this work, a theoretical framework is developed for analysis. Moreover, as an
example, the result assuming that log x follows a uniform probability distribution is calculated. This
assumption is common and reasonable since there are relatively fewer matrices with large condition
number.

Proof of theorem 1 (Complexity part). Suppose that there are n matrices and the condition number
threshold for comparison is r. Let M = [logko]. Let r; = 2/ and P; be the probability that the matrix’s
condition number satisfies x;_; < & < #;. Then the cumulative number of queries T; for this kind of matrix
is:

i
T, = Z QCNC(ky, €) (13)
k=1
i
= Z k7 log(1/€)Vd(1 + log(rx/€)) (14)
k=1
i
— Vi log(1/e?S 2%+ (15)
k=1
j— 1/3)47 4
=d log(l/e)z(] /3)3 43 (16)
j+j
< 43 ]\/Elog(l/e)z. (17)
Hence considering the probability, the arithmetic average number of queries is:
M
Tag =Y _P/T| (18)
=1
4t :
=1
4 Ay

=1

8
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Supposing that log  follows a uniform probability contribution, the probability is
Pi=1/M =1/log kg

and the average time is:

Tog < —f dlog(1/e)? 241113 (21)
i
4 M
— g\/Zi log (1/€)? Z4fj/M (22)
=1
4 M
= — 2 ]
3J\/I\/Elog(l/e) ;4] (23)
4 , M4M
= SM\/E log(1/€) (24)
< 19—6\/3 log (1/¢)4M (25)
1
= ?6 drg log (1/¢)*. (26)
Hence the complexity is O(v/dr?2 log (1/¢€)?) as claimed in theorem 1. |

The complexity of this algorithm also depends on the fixed threshold «, instead of an unknown .
Hence besides the acceleration compared to classical algorithms, the stability and robustness are also
improved to satisfy financial problems.

5. Quantum cointegration test

To finish the last piece of quantum statistical arbitrage, it needs to be verified whether the preselected
matrices contain a cointegrated pair. The global structure and details of QCT are described in the first
subsection, and the analysis of complexity is given in the second subsection. These two parts yield the
following result:

Theorem 3. Suppose that d and N are the number of kinds of stocks and the time length of stock prices, € is the

precision desired, and k is the condition number. Then the cointegration test with L lag—length augmented dickey

(L2224 poly(log, L),

fuller test can be implemented with complexity O(d
where § = min{1/d, €}, & = min{1/(L + 2),v/L + 262}

5.1. Algorithm

First of all, the following procedure is used to generate the residual sequence of linear regression. Since the
residuals sequence is needed instead of regression coefficients or predicted values [51, 52], known quantum
linear algorithms should be employed with some further modification. The work of [51]’s theorem 2 is used
to derive an approximation [ of the regression coefficients B.

Lemma 4 (QLR, theorem 2 in [51]). Let X = (x;;) be an N*d balanced matrix such that its singular values
are in range [1/k, 1]. Lety = (y1, 2, ..., yn)" be a balanced unit vector. Suppose (X, y) is well behaved. Given
€ > 0 and access to the procedures P, and P, described above. Then the problem to output a vector

6= (B, B, - . ﬁd)T such that ‘ﬁ — B‘ € and 8 :AXTy can be solved by a gate-efficient quantum algorithm

that makes O(d [log,( 5“) ) uses of Py and P, where 6 = min{1/d, €}.

This quantum linear regression procedure is denoted as QLR(d, 9, k). Then the predicted value vector »
is calculated by the matrix multiplication
y=Xp, (27)

and the residuals sequence is derived by a vector subtraction between the predicted values y and real
values y:

u=y—j. (28)
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Algorithm 3. Quantum cointegration test algorithm.

Input:

Ko: the threshold for preselection

T: the length of time interval

J: the total number of stocks

p: the jth stock’s price at time ¢
Output:

(f, B)flag and cointegrated coefficients

Data loading:
[he) = S50 Z}];(l) |£)|j): amplitude encoding
Residual construction module:

QLR(d, ), k) to derive 3

Classical matrix multiplication y = X3

Classical vector subtraction it = y — ¥
Statistics calculation module:

Lagged residuals Au, = v, — u,_;

QLR(L + 1, 51, ') to derive v

Classical test statistic DFy

Comparison with Critical value table ([53])

This should be a hybrid algorithm since classical algorithms can calculate matrix multiplications and
subtractions with fewer restrictions and more efficiently.

Next, another regression QLR(L + 1,4, ') on time variable and lagged residuals will be employed to
derive the statistical index. The lagged residuals Au; is defined as the first-order difference and can be
calculated efficiently by a vector subtraction:

Aup = uy — Uy . (29)
Then QLR(L + 1, ¢, k") procedure shows:
-1
Aup = a+ Bt +yur+ Y 6lupi + e (30)

i=1

where L is the lag-length used in the ADF test, and [ is the coefficient of the time variable ¢, and +y is the
coefficient of the first-order difference Au,. The test statistic DFr = SE?;, 5 where SE means standard error,
can be computed by classical computer more efficiently.

Finally, the result will be sent to be compared with a critical value table [53]. And the total algorithm is
summarised as algorithm 3.

5.2. Complexity analysis

In the following subsection, a detailed analysis of the algorithm’s complexity is given. Suppose a
single-round cointegration test on an Nd design matrix where N is the number of samples and d is the
number of variables. By lemma 4, the regression coefficients can be derived directly with complexity to be
O( dz(';”s poly(log, d{)). Then the residuals can be computed directly in O(Nd) steps. The result of this
hybrid residual generation procedure is as follows:

Lemma 5 (Complexity of residuals sequence generation procedure). Suppose X is an N*d design matrix
and y the target vector, also we have € the precision desired, and k is the condition number. Then the residuals

sequence of regression can be derived with complexity O( dzsfs poly(log, %) + dN).

Besides this, it should be mentioned that an alternative method use [52]’s work to derive a predictor of a
linear model. This method should be repeated N times to derive the residuals sequence. Hence the total
algorithm is O(Nlog Nx?e3).

Since the residuals derived from the above subroutine are intermediate instead of final results, it is
important for us to analyze the error propagation of the cointegration test to control the global error:

Lemma 6 (Bounded error propagation). Suppose the error of the first regression (for residuals) be
|8 — B'| < ¢, then the error of the second regression (for cointegration test) is bounded by /L + 2€* where L is
the lag length in the ADF test.
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Proof of lemma 6. We can compute the error of residuals as follows: suppose that
u=Xpg—y (31)

and
u,=X3 —y (32)

are the residuals and estimated residuals, respectively. The error of the second regression variable u; is

luy — u] = [(XB —y) — (XB' —y)| (33)
= |X(8 -8 (34)
< e (35)

Here (35) follows from || X]| = 1, and the errors of Au, can be calculated as:

|Au — Auf| = |(ur — 1) — (uy — u;_,)| (36)
< e = we | + g — | (37)
<e+e=2e (38)

Regard these two error sequences as 2e-bounded perturbation terms of the design matrix
U=U+E, (39)

in the second regression (30), by [54—56]’s work the error propagation is bounded as:
Iy =41 < D_F1G- (40)

Here fj = \/7% + ) ¢jej? is the sensitivity of the dependence on the jth variable, and is bounded by
O(V/L + 2¢). And §; is the error of jth term and hence is bounded by O(¢). Hence the total error
propagation is bounded by O(v/L + 2¢2). |

Proof of theorem 3. With the facts above can the total complexity be calculated: the generation of the
residuals will cost O( dz;*‘S poly(log, %) + dN); a second regression on residuals is implemented by QLR
again with propagated error ¢ = /L + 2¢%), condition number ' and d = L + 2, and by lemma 4, the
complexity is O((H?#poly(log2 (LJ:S—?)”,)), where ' = min{1/(L + 2), /L + 2€*}. The final complexity
follows by a direct sum. |

6. Realistic case analysis

This section will analyze the quantum advantage of QSA in the realistic financial scenario of US stock
markets. There are mainly two kinds of characteristics data having significant influences on the algorithm
complexity. One is the number of stocks: there are about 8000 stocks in the US stock markets. Another is
the trading time. The regular trading time of the New York stock exchange and the NASDAQ are both 6.5 h
per day. For the half-second time intervals aggregated quotes data, the length of data in one day is
Ny = 6.5 x 3600 x 2 = 46 800. Furthermore there are about I = 253 trading days one year on average.
Hence the typical size of the time series data can be computed as

N =Ny x 1 =46800 x 253 ~ 1.2 x 10’. (41)

Under the consideration of the realistic case discussed above, there are mainly three reasons why QSA is
more efficient than classical ones: first of all, in financial scenario, there are many different stocks, and it
occupies only a tiny proportion of the searching space to find a multicollinearity portfolio out of thousands
of stocks. The number of three-stock portfolios can exceed M = Cj, &~ 10° while My, the number of
multicointegrated pairs, is usually less than 1000. The proportion of non-multicollinear portfolios is
estimated as
My/M < 10°°. (42)

By (41), the classical benchmark is O(N*d) = 10'%, and the average complexity of our algorithm is mainly
determined by the first preselection subroutine with complexity O(v/dN k2 log (1/€)?)) = 10° (see details
below). The primary reason for this acceleration is that the preselection procedure can search the
multicollinearity without large matrix factorizations and regressions. Secondly, the problem size determined
by sample number N is supposed to be very large for our problem of high-frequency trading: on the one

11
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hand, for high-frequency trading, there is a short time interval and a large number N of trading date
quotes of every single trading day. On the other hand, it does make sense in finance to consider a long time
interval  since it is a statistical arbitrage model instead of some models for prediction such as momentum
trading. Finally, for the specific case of statistical arbitrage trading strategy, it is common and unavoidable
to handle matrices with large condition number &, resulting in high cost of computing resources and time
complexity. Utilizing the ability to detect & by QCNCA, our algorithm is time variable one and adaptive to
k. Since most portfolios are with small  as discussed above, giving a bound k¢ = 1000, our algorithm’s
complexity is about O(v/dN~3 log (1/€)?)) = 10'1.

The number of qubits needed can be estimated as follows: according to the data size discussed above, the
qubits needed to prepare for the initial state is about log(1.2*107) + log 8000 ~ 35. The QCNC(, ¢) circuit
consists of simplified phase estimation subcircuits, and each subcircuit with 0.1 precision needs more than 4
qubits. Moreover, the VTPA circuit consists of QCNC(k;, ¢) circuits for different «;, and hence more than
50 qubits are needed, which are hard for us to simulate.

7. Conclusion

In this article, we introduce quantum algorithms for quantitative trading in the case of high-frequency
statistical arbitrage and show the quantum advantage. Besides exploring new financial applications, two
heuristic algorithms are also developed as instruments: one is for the estimation of the condition number of
a given matrix, which has not been considered and proposed before as far as we know. This algorithm can
be applied to solve other problems where condition number is a primary influencing factor of the
algorithm’s complexity, such as quantum computational fluid dynamics and differential equation solution
[57-61]. The other is the implementation of statistical cointegration test, which has many applications in
time series, finance analysis. Some modifications and exploration will be considered later to suit these
exciting problems.

During the analysis of QCNCA and VTPA’s complexity, we provide a theoretical framework and show
the quantum advantage under the assumption of uniform distribution. Since the real problems are
complicated, many other statistical models and different distributions will be taken into consideration. By
some modification in equations (8)—(11), this method might still work with different results of complexity,
and this is our further research direction. Moreover, the work of circuit simplification and simulation will
be done in the future.
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Appendix A. Cointegration test

In this appendix, some statistical concepts and facts about stochastic process and time series analysis are
provided. Following those, an explicit demonstration is also given on the relationship between
multicollinearity and cointegration, which may be confusing for some readers.

A (weakly) stationary time series, Xy, is a finite variance process with an unconditional joint probability
distribution. Thus it does not change when shifted in time: (i) the mean value function p,, = E(x;) is
constant and (ii) the covariance function 7,(s, t) = E[(x; — p,) (% — 1,)] depends on s and ¢ only through
their difference |s — ¢|. In autoregressive-moving average models of unknown order, to test whether a given
time series denoted as Y; is stationary or not, the augmented Dickey—Fuller (ADF) unit root test may be
employed [62].

Cointegration (multi-cointegration) is a relevant statistical property of two or more time series which
are individually integrated of order d while their combination is integrated of order less than d. Here the
order of integration is a summary statistic denoting the minimum number of differences taken to obtain a
covariance-stationary series. Without loss of generality, d = 1 is assumed in this article. Under different
financial hypotheses, there are mainly three kinds of cointegration tests: the Engle—Granger test [35],
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the Johansen test [63], and the Phillips—Ouliaris test [64]. In our work, Engle—Granger two-step method is
used as the most popular and famous one:
Suppose that x! are non-stationary and integrated of order d = 1, then a linear combination

=" fn
is expected to be stationary for some specific coefficient of ;. In the general case that 3; is not decided yet,
some estimation must be made first, usually by ordinary least squares regression. Next, the stationary test
will be implemented on the residuals i. It is a regression on i, and the lagged residuals i,_; are included
as a regressor:
p—1
Au, = a+ Bt +yu,q + Z Au_; + €.
i=1
Here o and 3 are the intercept and the coefficient on the time trend, respectively, and p denotes the lag
order of the autoregressive process to be decided. 7 is the coefficient on the historical data u;_;. The unit
root test is carried out under the null hypothesis v = 0 which means that the time series is integrated. The
test statistic to be computed is
_
SE(%)
What follows is a comparison with the Dickey—Fuller distribution critical value table [53].
Whenever such a cointegrated stock portfolio is found, the linear combination is expected to have the
property of mean-reverting and can be utilized in statistical arbitrage.

P

Appendix B. Quantum linear regression

Quantum linear regression is the primary tool of QCT and is introduced as follows. Wiebe, Braun, and
Lloyd (WBL) firstly introduced an algorithm for quantum data fitting [40]. Building on Harrow, Hassidim,
and Lloyd’s (HHL) quantum algorithm for linear systems of equations [39], WBL developed a least-squares
estimation using Moore—Penrose pseudo inverse. WBL’s algorithms are mainly suited for data sets whose
design matrices are sparse and well-conditioned. Given an N dimension s sparse data matrix, the time
complexity is O(log Ns’k°¢ '), where the condition number given is x and the accuracy desired is € '. With
the technique of quantum principal component analysis (qQPCA) and singular value decomposition (SVD)
[65], Schuld, Sinayskiy, and Petruccione (SSP) came with an algorithm for prediction based on a linear
regression model with least-squares optimization [52]. The sparseness condition is removed, and the
existence of a low-rank approximation is supposed instead. The time complexity is O(log Nx*¢3), where an
improvement of factor x* is made on the condition number at the cost of worse dependence on accuracy by
a factor e 2. Recently, Guoming Wang presents a new quantum algorithm for fitting a linear regression
model using least-squares approach [51]. This algorithm builds on Low and Chuang’s method for
Hamiltonian simulation based on qubitization and quantum signal processing [66, 67]. Childs, Kothari, and
Somma (CKS)’s approach is introduced to inverse the matrix derived from SVD [49]. Imposing restrictions
on the number of adjustable parameters d, and hence the rank of the design matrix, the gate complexity is

O( dlfz’*’a poly[log,(Z5)]) with the succeeding probability is at least 1 — e.
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