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The Schwarzschild-de Sitter/Kottler geometry is the unique spherical solution of the
vacuum Einstein equations with positive cosmological constant. Putative alternatives in
the literature are shown to either solve different equations or to be the SdSK solution in
disguise. No-hair and cosmic no-hair come together in a new simultaneous theorem for
SdSK in the presence of an imperfect fluid.
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1. Introduction

The Jebsen-Birkhoff theorem of general relativity (GR) states that the

Schwarzschild geometry is the unique vacuum, spherical, asymptotically flat so-

lution of the Einstein equations

Gab ≡ Rab − 1

2
gabR = 0 . (1)

The theorem is no longer true if matter is present, but what if a cosmological

constant Λ is included? The Einstein equations change to Gab = −Λgab. It is

straightforward to extend the proof of the Jebsen-Birkhoff theorem to this case. In

particular, for Λ > 0, the Schwarzschild-de Sitter/Kottler (SdSK) geometry is the

unique solution,

ds2 = −
(

1− 2m

R
−H2R2

)
dT 2 +

dR2

1− 2m
R −H2R2

+R2dΩ2
(2) (2)

(where H =
√

Λ/3).

This fact is not mentioned in modern GR textbooks, even though de Sitter

space is extremely important for inflationary and dark energy cosmology1 and, for

Λ < 0, anti-de Sitter space is fundamental for string theories and the AdS/CFT

correspondence. A proof of the generalized Jebsen-Birkhoff theorem for Λ �= 0

can be found in Synge’s 1960 textbook.2 A recent proof in null coordinates has
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appeared in3. Complicated proofs appear in4–7. The proof in spherical coordinates

is a very simple extension of the standard textbook proof of the Jebsen-Birkhoff

theorem.11 However, there is confusion in the literature: purported alternatives to

SdSK have been reported, which would violate the theorem. More general solutions

with FLRW “background” in the presence of matter do not seem to reduce to

SdSK when the “background” becomes de Sitter. Enter modified gravity: there are

claims that polytropic stars in f(R) and scalar-tensor gravity cannot be matched to

SdSK. If they are interesting for cosmology, these theories contain a time-dependent

Λ. Perhaps SdSK is not the correct solution to match internal solutions to—the

situation is unclear. It does not help if the situation is unclear even in GR, which

is what we clarify here.

2. Putative Alternatives to SdSK

Here we compare putative alternative geometries to SdSK, using the areal radius

as the radial coordinate.

2.1. Abbassi-Meissner proposal

It is claimed that an alternative to SdSK is the Abbassi-Meissner solution8–10

ds2 = −f(t, r)dt2 +
e2Ht

f(t, r)
dr2 + e2Htr2dΩ2

(2) , (3)

where H =
√

Λ/3, m = const., and

f(t, r) = h(t, r) +
√
h2(t, r) +H2r2e2Ht , (4)

h(t, r) =
1

2

(
1−H2r2e2Ht − 2m

r
e−Ht

)
. (5)

Let us change to the areal radius R = eHtr instead of r, and to the new time T

defined by

dT = dt+
2HRdR

A0

(
A0 +

√
A2

0 + 4H2R2
) , (6)

where

A0(R) = 1− 2m

R
−H2R2 = 2h(0, R) . (7)

The line element becomes diagonal and locally static

ds2 = −A0(R)dT 2 +
2

A0(R) +
√
A2

0(R) + 4H2R2

·
⎡
⎣1 +

2H2R2

A0

(
A0 +

√
A2

0 + 4H2R2
)
⎤
⎦ dR2 +R2dΩ2

(2) , (8)

and it is clearly not SdSK. It solves the field equations Gab = −Λgab + Tab with a

radial flow.11
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2.2. Non-rotating Thakurta solution

The Thakurta solution of GR12 is conformal to Kerr and describes a rotating black

hole embedded in a FLRW universe. The non-rotating, spherical subcase is the late

time limit of generalized McVittie solutions13 and it is also the ω → ∞ limit of

a class of Brans-Dicke perfect fluid solutions describing inhomogeneous universes

found by Ref. 14. The non-rotating Thakurta line element is

ds2 = a2(η)

[
−
(

1− 2m

r

)
dη2 +

dr2

1− 2m/r
+ r2dΩ2

(2)

]

= −
(

1− 2m

r

)
dt2 +

a2dr2

1− 2m/r
+ a2r2dΩ2

(2) , (9)

where a(η) is the scale factor of the FLRW “background”. Changing coordinates

to (t, r)→ (T, a(t)r) with

dT =
1

F

(
dt+

HRdR

A2 −H2R2

)
, (10)

A(t, R) = 1− 2m

r
= 1− 2M

R
, M ≡ ma(t) , (11)

the line element becomes

ds2 = −
(

1− 2M

R
− H2R2

1− 2M
R

)
F 2dT 2 +

dR2

1− 2M
R − H2R2

1−2M/R

+R2dΩ2
(2) (12)

(where F is an integrating factor) and it solves the field equations Gab = −Λgab +

qaub + qbua, where qc (with qcuc = 0) describes a purely spatial radial flow.

2.3. Castelo Ferreira metric

The Castelo Ferreira line element15 is

ds2 = −
[
1− 2m

R
−H2R2

(
1− 2m

R

)α]
dt2 +

dR2

1− 2m
R

− 2HR

(
1− 2m

R

)α−1
2

dtdR

+R2dΩ2
(2) (13)

with α,m constants and H = H(t). The coordinate change

dT =
1

F

⎛
⎝dt+

HRdR
(
1− 2m

R

)α−1
2

1− 2m
R −H2R2

(
1− 2m

R

)α
⎞
⎠ (14)

turns the line element into

ds2 = −
[
1− 2m

R
−H2R2

(
1− 2m

R

)α]
F 2dT 2

+
dR2

1− 2m
R −H2R2

(
1− 2m

R

)α +R2dΩ2
(2) . (15)
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One can choose the background to be de Sitter space, then one obtains the non-

rotating Thakurta solution if α = −1 and the SdSK solution if α = 0. However,

the general Castelo Ferreira metric is not SdSK.

3. A Simultaneous No-Hair/Cosmic No Hair Theorem

The Jebsen-Birkhoff no-hair theorem states that the Schwarzschild solution is

generic; the cosmic no-hair theorem states that de Sitter space is generic. Then,

does a simultaneous no-hair/cosmic no-hair theorem exist, stating that SdSK is

generic in some sense?

One can write any spherical metric as

ds2 = −A2(t, R)dt2 +B2(t, r)dR2 +R2dΩ2
(2) (16)

without loss of generality. Now one needs some assumptions about the matter

content. In the previous examples of putative SdSK solutions, a common ingredient

was the imperfect fluid stress-energy tensor

Tab = (P + ρ)uaub + Pgab + qaub + qbua , ucu
c = −1 , qcu

c = 0 , (17)

so we assume 1) this Tab with barotropic and constant equation of state P = wρ,

with w = const.; 2) spherical symmetry; 3) the solution of Gab = −Λgab + 8πTab
is asymptotically de Sitter: there is a de Sitter-like cosmological horizon of radius

RH and the solution reduces to SdSK as R→ RH .

The Einstein equations become

Ḃ

BR
= 4πT01 , (18)

A2

(
2B′

B3R
− 1

B2R2
+

1

R2

)
= ΛA2 + 8πT00 , (19)

2A′

AR
− B2

R2
+

1

R2
= −ΛB2 + 8πT11 , (20)

A′B
A
−B′ − RB2B̈

A2
+
RȦḂB2

A3
− RA′B′

A
+
RA′′B
A

=
(−ΛR2 + 8πT22

) B3

R
. (21)

The fluid 4-velocity and energy flux density are

uμ = (−|A|, 0, 0, 0) , qμ =
(
0, B2q, 0, 0

)
, (22)

while the stress-energy tensor is

T00 = A2ρ , T01 = −|A|B2q , (23)

T11 = B2P , T22 =
T33

sin2 θ
= R2P , (24)

where T01 > 0 and q < 0 correspond to radial inflow.
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In the case of inflow q < 0 we have

(B2)� = −8π|A|B4Rq > 0 , (25)

therefore B2 = g11 increases with time. Assuming the metric coefficients to be

continuous and differentiable, there are then two possibilities:

• either B2(t, R)→ +∞ for any fixed R as t→ +∞, or

• B2(t, R) has an horizontal asymptote as t→ +∞.

Consider the first case. The apparent horizons are located by

∇cR∇cR = 0 ↔ 1/B2 = 0. (26)

If B2 → +∞ as t → +∞ or as t → tmax, then at late times all points of space (at

any R < RH) lie arbitrarily close to an apparent horizon. This situation is familiar

in cosmology: it corresponds to a phantom universe ending in a Big Rip singularity

at tmax and the apparent horizon shrinks around a comoving observer as the cosmic

expansion super-accelerates. This phantom asymptotics contradict the assumption

of de Sitter asymptotics and we discard this case.

In the other case in which B2(t, R) → B2
0(R) as t → +∞, we have Ḃ → 0 as

t → +∞. Then the radial flow q → 0 as t → +∞. Differentiate the (0,0) Einstein

equation to obtain

8πρ̇ =
2

R

(
B′

B3

)�
− 1

R2

(
1

B2

)�
→ 0 as t→ +∞ . (27)

Then the equation of state P = wρ yields Ṗ → 0 as t→ +∞. The (2,2) (or (3,3))

equation gives

8πṖ =
2

R

(
A′

AB2

)�
+

1

R2

(
1

B2

)�
≈ 2

RB2

(
A′

A

)�
→ 0 (28)

as t → +∞, then A2 also becomes time-independent, and the metric becomes

static. To make progress, use the covariant conservation equation ∇bTab = 0 for

the imperfect fluid, obtaining

uau
b∇b (P + ρ) + [(P + ρ)ua + qa]∇bub

+ [(P + ρ)ub + qb]∇bua +∇aP + ub∇bqa + ua∇bqb = 0 . (29)

Projecting onto the time direction ua and using ua∇bua = 0 leads to

−ρ̇− (P + ρ)∇bub + uaqb∇bua + uaub∇bqa −∇bqb = 0 . (30)

At late times qc and ρ̇ disappear from this equation, leaving (P + ρ)∇bub 	 0. In

general ∇bub �= 0 (this quantity reduces to 3H > 0 for large r) and we are left with

P + ρ → 0 as t → +∞. Either the fluid reduces to a pure Λ (then the vacuum

uniqueness theorem for SdSK holds trivially), or else both ρ and P = wρ become

subdominant and Λ dominates. In this case the solution also reduces to SdSK.
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In the case of outflow q > 0, one has instead (B2)� = −8π|A|B4Rq < 0; since

B2 is bounded from below by zero and it decreases as t → +∞, it must have an

horizontal asymptote with B2(t, R)→ B2
0(R)+ as t→ +∞. Then Ḃ → 0 and q → 0

and we repeat the reasoning done for q < 0 from here.

A special case is that of a perfect fluid qa = 0; then T01 = 0 and the (0,1)

equation gives B = B(R). It is then straightforward to prove that it must be

P = −ρ and that SdSK is the unique solution.16

4. Conclusions

A generalized Jebsen-Birkhoff theorem holds for Λ �= 0 but, although its proof is

straightforward, it does not appear in modern GR textbooks. In particular, for

Λ > 0, SdSK is the unique spherical vacuum solution. Putative alternatives to

SdSK in this situation are either non-vacuum solutions or SdSK in disguise. Going

beyond the vacuum case, we have proved a simultaneous no-hair and cosmic no-

hair theorem in the presence of Λ and a radial purely spatial heat flow. Further

generalization to other forms of matter will be pursued in the future.
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