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BROWN UNIVERSITY

Abstract

Department of Physics
Doctor of Philosophy

Landau Singularities in Planar Massless Theories

by Igor PRLINA

In this work we present our contribution to thme method of using Landau singu-
larities for probing scattering amplitudes in planar massles quantum field theories. We
start by proposing a simple geometric algorithm for determining the complete set of
branch points of amplitudes in planar ' = 4 super-Yang-Mills theory directly from
the amplituhedron, without resorting to any particular representation in terms of local
Feynman integrals. This represents a step towards translating integrands directly into
integrals. In particular, the algorithm provides information about the symbol alphabets
of general amplitudes. First we illustrate the algorithm applied to the one- and two-loop
MHYV amplitudes. Then we demonstrate how to use the recent reformulation of ampli-
tuhedra in terms of ‘sign flips’ in order to streamline the application of this algorithm to
amplitudes of any helicity. In this way we recover the known branch points of all one-
loop amplitudes, and we find an ‘emergent positivity” on boundaries of amplituhedra.
Lastly, we look beyond planar N' = 4 super-Yang-Mills theory, and analyze Landau
singularities of general massless planar theories. In massless quantum field theories
the Landau equations are invariant under graph operations familiar from the theory of
electrical circuits. Using a theorem on the Y-A reducibility of planar circuits we prove
that the set of first-type Landau singularities of an n-particle scattering amplitude in any
massless planar theory, in any spacetime dimension D, at any finite loop order in per-
turbation theory, is a subset of those of a certain n-particle | (n—2)?/4|-loop “ziggurat”
graph. We determine this singularity locus explicitly for D = 4 and n = 6 and find that
it corresponds precisely to the vanishing of the symbol letters familiar from the hexagon

bootstrap in SYM theory. Further implications for SYM theory are discussed.
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Chapter 1

Introduction

Ever since its conception, the Feynman diagram approach has been the standard paradigm
for perturbative calculations in quantum field theory. While the method can, in princi-
ple, be used at any order in perturbation theory, the calculations get more and more de-
manding at each new loop order. Alternately one can seek hidden symmetries and new
underlying principles which motivate new calculational approaches where the most ba-
sic features of Feynman diagrams, such as unitarity and locality, are emergent instead
of manifest. Recent years have seen tremendous success in “reverse engineering” such
new symmetries and principles from properties of scattering amplitudes. This approach
has been particularly fruitful in simple quantum field theories such as the planar maxi-
mally supersymmetric N = 4 super-Yang-Mills (SYM) theory [1].

In particular, it has been realized that the unitarity and locality of the integrands [2]
of loop-level amplitudes in SYM theory can be seen to emerge from a very simple ge-
ometric principle of positivity [3]. Moreover, it has been proposed that all information
about arbitrary integrands in this theory is encapsulated in objects called amplituhe-
dra [4, 5] that have received considerable recent attention; see for example [6, 7, 8, 9,
10, 11, 12, 13]. Unfortunately, there remains a huge gap between our understanding of
integrands and our understanding of the corresponding integrated amplitudes. Despite
great advances in recent years we of course don’t have a magic wand that can be waved
at a general integrand to “do the integrals”. Indeed, modern approaches to computing
multi-loop amplitudes in SYM theory, such as the amplitude bootstrap [14, 15] even es-

chew knowledge of the integrand completely. It would be enormously valuable to close
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this gap between our understanding of integrands and amplitudes.

Physical principles impose strong constraints on the scattering amplitudes of ele-
mentary particles. For example, when working at finite order in perturbation theory,
unitarity and locality appear to constrain amplitudes to be holomorphic functions with
poles and branch points at precisely specified locations in the space of complexified
kinematic data describing the configuration of particles. Indeed, it has been a long-
standing goal to understand how to use the tightly prescribed analytic structure of scat-
tering amplitudes to determine them directly, without relying on traditional (and, often
computationally complex) Feynman diagram techniques.

The connection between the physical and mathematical structure of scattering am-
plitudes has been especially well studied in planar A = 4 super-Yang-Mills [1] SYM!
theory in four spacetime dimensions, where the analytic structure of amplitudes is es-
pecially tame. One of the overall aims of this work, its predecessors [16, 17], and its
descendant(s), is to ask a question that might be hopeless in another, less beautiful
quantum field theory: can we understand the branch cut structure of general scatter-
ing amplitudes in SYM theory?

The motivation for asking this question is two-fold. The first is the expectation that
the rich mathematical structure that underlies the integrands of SYM theory (the rational
4] -forms that arise from summing L-loop Feynman diagrams, prior to integrating over
loop momenta) is reflected in the corresponding scattering amplitudes. For example,
it has been observed that both integrands [3] and amplitudes [18, 15, 19] are deeply
connected to the mathematics of cluster algebras.

Second, on a more practical level, knowledge of the branch cut structure of ampli-
tudes is the key ingredient in the amplitude bootstrap program, which represents the
current state of the art for high loop order amplitude calculations in SYM theory. In par-
ticular the hexagon bootstrap (see for example [14]), which has succeeded in computing
all six-particle amplitudes through five loops [20], is predicated on the hypothesis that

at any loop order, these amplitudes can have branch points only on 9 specific loci in the

1We use “SYM” to mean the planar limit, unless otherwise specified.
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space of external data. Similarly the heptagon bootstrap [21], which has revealed the
symbols of the seven-particle four-loop MHV and three-loop NMHYV amplitudes [22],
assumes 42 particular branch points. One result we hope follows from understanding
the branch cut structure of general amplitudes in SYM theory is a proof of this counting
to all loop order for six- and seven-particle amplitudes.

As a step in that direction, and motivated by [23], a systematic exploration of how
integrands encode the singularities of integrated amplitudes,in particular their branch
points, has been performed in [16]. Scattering amplitudes in quantum field theory gen-
erally have very complicated discontinuity structure. The discontinuities across branch
cuts are given by sums of unitarity cuts [24, 25, 26, 27, 28, 29]. These discontinuities
may appear on the physical sheet or after analytic continuation to other sheets; these
higher discontinuities are captured by multiple unitarity cuts (see for example [30, 31]).
A long-standing goal of the S-matrix program, in both its original and modern incarna-
tions, has been to construct expressions for the scattering amplitudes of a quantum field
theory based solely only on a few physical principles and a thorough knowledge of their
analytic structure. In [16] the branch cut structure of one- and two-loop MHV ampli-
tudes in SYM theory starting from certain representations of their integrands in terms
of local Feynman integrals [32] has been studied. In [16] all of their known branch
points have been found, but many other, spurious branch points that are artifacts of the
particular representations used, were also encountered. Indeed, the analysis of [16] was
completely insensitive to numerator factors in the integrand, but the numerators are re-
ally where all of the action is—in any standard quantum field theory the denominator
of a loop integrand is a product of local propagators; the numerator is where all of the
magic lies.

One of the goals in this work is to improve greatly on the analysis of [16]. We do
this by presenting a method for asking the amplituhedron to directly provide a list of
the physical branch points of a given amplitude.

It is a general property of quantum field theory (see for example [27, 33]) that the

locations of singularities of an amplitude can be determined from knowledge of the
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poles of its integrand by solving the Landau equations [26]. Constructing explicit rep-
resentations for integrands can be a challenging problem in general, but in SYM theory
this can be side-stepped by using various on-shell methods [28, 34, 35, 36] to efficiently
determine the locations of integrand poles. This problem is beautifully geometrized by
amplituhedra [4], which are spaces encoding representations of integrands in such a
way that the boundaries of an amplituhedron correspond precisely to the poles of the
corresponding integrand. Therefore, as pointed out in [17], the Landau equations can be
interpreted as defining a map that associates to any boundary of an amplituhedron the
locus in the space of external data where the corresponding amplitude has a singularity.

Only MHV amplitudes were considered in [17]. In this paper we also show how to
extend the analysis to amplitudes of arbitrary helicity. This is greatly aided by a recent
combinatorial reformulation of amplituhedra in terms of “sign flips” [37]. As a specific
application of our algorithm we classify the branch points of all one-loop amplitudes in
SYM theory. Although the singularity structure of these amplitudes is of course well-
understood (see for example [38, 39, 40, 41, 42, 43, 44, 45, 46]), this exercise serves a
useful purpose in preparing a powerful toolbox for the sequel [47] to this paper where
we will see that boundaries of one-loop amplituhedra are the basic building blocks at
all loop order. In particular we find a surprising ‘emergent positivity” on boundaries of
one-loop amplituhedra that allows boundaries to be efficiently mapped between differ-
ent helicity sectors, and recycled to higher loop levels.

While we have found an efficient method to obtain non-spurious singularities in
planar A/ = 4 super-Yang-Mills (SYM) theory, we have also analyzed the potential sin-
gularity structure of an arbitrary planar massless theory. For over half a century much
has been learned from the study of singularities of scattering amplitudes in quantum
field theory, an important class of which are encoded in the Landau equations [26]. This
work combines two simple statements to arrive at a general result about such singu-
larities. The first is based on the analogy between Feynman diagrams and electrical
circuits, which also has been long appreciated and exploited; see for example [48, 49,

50] and chapter 18 of [51]. Here we use the fact that in massless field theories, the sets
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of solutions to the Landau equations are invariant under the elementary graph opera-
tions familiar from circuit theory, including in particular the Y-A transformation which
replaces a triangle subgraph with a tri-valent vertex, or vice versa. The second is a theo-
rem of Gitler [52], who proved that any planar graph (of the type relevant to the analysis
of Landau equations, specified below) can be Y-A reduced to a class we call ziggurats.

We conclude that the n-particle | (n—2)?/4]-loop ziggurat graph encodes all possible
first-type Landau singularities of any n-particle amplitude at any finite loop order in any
massless planar theory. Although this result applies much more generally, our original
motivation arose from related work [16, 17, 53, 47] on planar N' = 4 supersymmetric
Yang-Mills (SYM) theory, for which our result has several interesting implications.

This work is organized as follows. In 2 we apply the Amplituhedron to directly
obtain non-spurious singularities of MHV amplitudes, and we explicitely conduct the
procedure at one and two loops [17]. In 3 we generalize the procedure to non MHV
amplitudes and present the procedure at the one loop example [53]. Finally, in 4 we
describe a method for finding all-loop singularities in general planar massless theories

[54].






Chapter 2

Landau Singularities from the

Amplituhedron

2.1 Introduction

2.1.1 Momentum Twistors

We begin by reviewing the basics of momentum twistor notation [55], which we use
throughout our calculations. Momentum twistors are based on the correspondence be-
tween null rays in (complexified, compactified) Minkowski space and points in twistor
space (P%), or equivalently, between complex lines in IP? and points in Minkowski
space. We use Z,, Z, etc. to denote points in IP?, which may be represented using
four-component homogeneous coordinates Z} = (Z1,72,73,7%) subject to the identifi-
cation Z} ~ tZ! for any non-zero complex number . We use (a b) as shorthand for the
bitwistor ¢; ]KLZ£<ZbL. Geometrically, we can think of (ab) as the (oriented) line contain-
ing the points Z, and Z,,. Similarly we use (abc) as shorthand for € ]KLZ,£Z£< ZCL, which
represents the (oriented) plane containing Z,, Z, and Z.. Analogously, (abc) N (def)
stands for e//KE(abc)g(d e f)1, which represents the line where the two indicated planes
intersect. In planar SYM theory we always focus on color-ordered partial amplitudes so
an n-point amplitude is characterized by a set of n momentum twistors Z!,i € {1,...,n}
with a specified cyclic ordering. Thanks to this implicit cyclic ordering we can use 7 as

shorthand for the plane (i—17i+1), where indices are always understood to be mod n.
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The natural SL(4, C) invariant is the four-bracket denoted by
<LZde> = €1]KLZ£Z£ZLI.<Z§. (2.1)

We will often be interested in a geometric understanding of the locus where such four-
brackets might vanish, which can be pictured in several ways. For example, (abcd) =0
only if the two lines (ab) and (cd) intersect, or equivalently if the lines (ac) and (bd)
intersect, or if the point 4 lies in the plane (b cd), or if the point c lies on the plane (abd),
etc. Computations of four-brackets involving intersections may be simplified via the

formula

((abe)N(def)gh) = (abcg)(defh) —(abch)(defg). (2.2)

In case the two planes are specified with one common point, say f = ¢, it is convenient

to use the shorthand notation

((abc)ni(dec)gh) = (c(ab)(de)(gh)) (2.3)

which highlights the fact that this quantity is antisymmetric under exchange of any two
of the three lines (ab), (de), and (gh).

2.1.2 Positivity and the MHV Amplituhedron

In this paper we focus exclusively on MHV amplitudes. The integrand of an L-loop
MHYV amplitude is a rational function of the n momentum twistors Z; specifying the
kinematics of the n external particles, as well as of L loop momenta, each of which cor-
responds to some line £(Y) in IP%; ¢ € {1,...,L}. The amplituhedron [4, 5] purports to
provide a simple characterization of the integrand when the Z! take values in a par-
ticular domain called the positive Grassmannian G (4, 7). In general G (k, n) may be
defined as the set of k x n matrices for which all ordered maximal minors are positive;
thatis, (a;, - - -a;,) > 0 whenever iy < --- <.

Each line £() may be characterized by specifying a pair of points ﬁgg), Eéé) that

it passes through. We are always interested in n > 4, so the Z; generically provide a
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basis for C*. In the MHV amplituhedron a pair of points specifying each £(*) may be

expressed in the Z; basis via an element of G4 (2, 1) called the D-matrix:

L@H:iDQZL x=12. (2.4)
i=1
For n > 4 the Z; are generically overcomplete, so the map eq. (2.4) is many-to-one.

The L-loop n-point MHV amplituhedron is a 4L-dimensional subspace of the 2L(n —
2)-dimensional space of L D-matrices. We will not need a precise characterization of that
subspace, but only its grossest feature, which is that it is a subspace of the space of L
mutually positive points in G (2, 7). This means that it lives in the subspace for which

all ordered maximal minors of the matrices

D)
D)
<D(4)>, , D) |, etc.
D)
D)

are positive.
A key consequence of the positivity of the D-matrices is that, for positive external
data Z! € G (4,n), all loop variables L") are oriented positively with respect to the

external data and to each other: inside the amplituhedron,

(£Yii+1) > 0foralliand all ¢, and (2.5)

(£ £2)y > 0 for all 44, £,. (2.6)

The boundaries of the amplituhedron coincide with the boundaries of the space of posi-
tive D-matrices, and occur for generic Z when one or more of these quantities approach
zero.

It is worth noting that the above definition of positivity depends on the arbitrary
choice of a special point Z;, since for example (£12) > 0 but the cyclically related
quantity (£n1) is negative. The choice of special point is essentially irrelevant: it just

means that some special cases need to be checked. In calculations we can sidestep this
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subtlety by always choosing to analyze configurations involving points satisfying 1 <
i < j <k <1 < n which can be done without loss of generality. The geometric
properties of figures 2.2-2.5 below are insensitive to the choice and always have full
cyclic symmetry.

The integrand of an MHV amplitude is a canonical form d() defined by its having
logarithmic singularities only on the boundary of the amplituhedron. The numerator of
dQ) conspires to cancel all singularities that would occur outside this region (see [9] for
some detailed examples). Our analysis will require no detailed knowledge of this form.
Instead, we will appeal to “the amplituhedron” to tell us whether or not any given
configuration of lines £() overlaps the amplituhedron or its boundaries by checking

whether egs. (2.5) and (2.6) are satisfied (possibly with some = instead of >).

2.1.3 Landau Singularities

The goal of this paper is to understand the singularities of (integrated) amplitudes. For
standard Feynman integrals, which are characterized by having only local propagators
in the denominator, it is well-known that the locus in kinematic space where a Feyn-
man integral can potentially develop a singularity is determined by solving the Landau
equations [26, 56, 33] which we now briefly review.

After Feynman parameterization any L-loop scattering amplitude in D spacetime

dimensions may be expressed as a linear combination of integrals of the form

L v NP,
ler/ Fas(1-Y a | 2N Pir) 2.7
/H a;>0 " < ;0&) Dv 2.7)

where v is the number of propagators in the diagram, each of which has an associated
Feynman parameter «;, ' is some numerator factor which may depend on the L loop

momenta I as well as the external momenta pf‘ , and finally the denominator involves

D =Y w(g —mi), (2.8)
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where g!' is the momentum flowing along propagator i which carries mass m;. The in-
tegral can be viewed as a multidimensional contour integral in the LD + v integration
variables (I}, a;), where the a; contours begin at a; = 0 and the 1! contours are consid-
ered closed by adding a point at infinity. Although the correct contour for a physical
scattering process is dictated by an appropriate ie prescription in the propagators, a
complete understanding of the integral, including its analytic continuation off the phys-
ical sheet, requires arbitrary contours to be considered.

An integral of the above type can develop singularities when the denominator D
vanishes in such a way that the contour of integration cannot be deformed to avoid the
singularity. This can happen in two distinct situations:

(1) The surface D = 0 can pinch the contour simultaneously in all integration vari-
ables (I, ;). This is called the “leading Landau singularity”, though it is important
to keep in mind that it is only a potential singularity. The integral may have a branch
point instead of a singularity, or it may be a completely regular point, depending on the
behavior of the numerator factor \V.

(2) The denominator may vanish on the boundary when one or more of the a; = 0
and pinch the contour in the other integration variables. These are called subleading
Landau singularities.

The Landau conditions encapsulating both possible situations are

) a;q! = 0 for each loop, and (2.9)
i€loop
w;(g? —m?) = 0 for each i. (2.10)

For leading singularities eq. (2.10) is satisfied by 47 — m? = 0 for each i, while subleading

singularities have one or more i for which g7 — m? # 0 but the corresponding ; = 0. We

will always refer to equations of type g7 — m? as “cut conditions” since they correspond
to putting some internal propagators on-shell. It is important to emphasize that the
Landau equations themselves have no knowledge of the numerator factor A/, which

can alter the structure of a singularity or even cancel a singularity entirely.
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Sometimes (i.e., for some diagram topologies), the Landau equations (2.9) and (2.10)
may admit solutions for arbitrary external kinematics p!’. This usually indicates an in-
frared divergence in the integral (we will not encounter ultraviolet divergences in SYM
theory), which may or may not be visible by integration along the physical contour.

In other cases, solutions to the Landau equations might exist only when the p!' lie
on some subspace of the external kinematic space. MHV amplitudes in SYM theory
are expected to have only branch point type singularities (after properly normalizing
them by dividing out a tree-level Parke-Taylor [57] factor), so for these amplitudes we
are particularly interested in solutions which exist only on codimension-one slices of the
external kinematic space. Even when the p!' live on a slice where solutions of the Landau
equations exist, the solutions generally occur for values of the integration variables «;
and I} that are off the physical contour (for example, the «; could be complex). This
indicates a branch point of the integral that is not present on the physical sheet but only
becomes apparent after suitable analytic continuation away from the physical contour.

Finally let us note that we have ignored a class of branch points called “second-type
singularities” [58, 59, 33] which arise from pinch singularities at infinite loop momen-
tum. As argued in [16], these should be absent in planar SYM theory when one uses a

regulator that preserves dual conformal symmetry.

2.2 Eliminating Spurious Singularities of MHV Amplitudes

In principle one can write explicit formulas for any desired integrand in planar SYM
theory by triangulating the interior of the amplituhedron and constructing the canoni-
cal form dQ) with logarithmic singularities on its boundary. However, general triangu-
lations may produce arbitrarily complicated representations for d(). In particular, these
may have no semblance to standard Feynman integrals with only local propagators in
the denominator (see [6] for some explicit examples). It is therefore not immediately
clear that the Landau equations have any relevance to the amplituhedron. The connec-
tion will become clear in the following section; here we begin by revisiting the analysis

of [16] with the amplituhedron as a guide.
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In [16] we analyzed the potential Landau singularities of one- and two-loop MHV
amplitudes by relying on the crutch of representations of these amplitudes in terms of
one- and two-loop chiral pentagon and double-pentagon integrals [32]. The solutions
to the various sets of Landau equations for these integral topologies represent poten-
tial singularities of the amplitudes, but this set of potential singularities is too large for
two reasons. First of all, the chiral integrals are dressed with very particular numerator
factors to which the Landau equations are completely insensitive. Scalar pentagon and
double pentagon integrals certainly have singularities that are eliminated by the nu-
merator factors of their chiral cousins. Second, some actual singularities of individual
chiral integrals may be spurious in the full amplitude due to cancellations when all of
the contributing chiral integrals are summed.

It is a priori highly non-trivial to see which singularities of individual integrals sur-
vive the summation to remain singularities of the full amplitude. However, the ampli-
tuhedron hypothesis provides a quick way to detect spurious singularities from simple
considerations of positive geometry. In this section we refine our analysis of [16] to de-
termine which potential singularities identified in that paper are actual singularities by
appealing to the amplituhedron as an oracle to tell us which cuts of the amplitude have
zero or non-zero support on the (boundary of the) amplituhedron.

Specifically, we propose a check that is motivated by the Cutkosky rules [27], which
tell us that to compute the cut of an amplitude with respect to some set of cut condi-
tions, one replaces the on-shell propagators in the integrand corresponding to those cut
conditions by delta-functions, and integrates the resulting quantity over the loop mo-
menta. The result of such a calculation has a chance to be non-zero only if the locus
where the cut conditions are all satisfied has non-trivial overlap with the domain of in-
tegration of the loop momentum variables. In the present context, that domain is the
space of mutually positive lines, i.e., the interior of the amplituhedron. This principle
will lead to a fundamental asymmetry between the two types of Landau equations in
our analysis. The full set of Landau equations including both egs. (2.9) and (2.10) should

be solvable only on a codimension-one locus in the space of external momenta in order
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(4) (B) (©)

FIGURE 2.1: Three examples of cuts on which MHV amplitudes have no

support; these appeared as spurious singularities in the Landau equation

analysis of [16] since scalar pentagon and double pentagon integrals do
have these cuts.

to obtain a valid branch point. However, guided by Cutkosky, we claim that the cut
conditions (2.10) must be solvable inside the positive domain for arbitrary (positive) ex-
ternal kinematics; otherwise the discontinuity around the putative branch point is zero
and we should discard it as spurious.

In the remainder of this section we will demonstrate this hypothesis by means of
the examples shown in figure 2.1. The leading Landau singularities of each of these
diagrams were found to be singularities of the scalar pentagon and double-pentagon
integrals analyzed in [16], but it is clear that MHV amplitudes have no support on these
cut configurations. In the next three subsections we will see how to understand their
spuriousness directly from the amplituhedron. This will motivate us to seek a better,

more direct algorithm to be presented in the following section.

2.21 The Spurious Pentagon Singularity

The first spurious singularity of MHV amplitudes arising from the integral representa-
tion used in [16] is the leading Landau singularity of the pentagon shown in figure 2.1a,

which is located on the locus where

(ijkk+1){(iNnjkk+1) =0. (2.11)
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It was noted already in [27] that this solution of the Landau equations does not corre-
spond to a branch point of the pentagon integral. It arises from cut conditions that put

all five propagators of the pentagon on-shell:

0= (Li—1i)=(Lii+1) = (Lj—1j) = (Ljj+1) = (Ckk+1), (2.12)

where L is the loop momentum. The first four of these cut conditions admit two discrete
solutions [32]: either £ = (ij) or L = iNj. The second of these cannot avoid lying

outside the amplituhedron. We see this by representing its D-matrix as

i—1 i i+1
ii) —(i—17 0
D= (i) < 2 , (2.13)
0 (i+17)  —(i})
where we indicate only the nonzero columns of the 2 X n matrix in positions i—1, i and

i+1, per the labels above the matrix. The non-zero 2 x 2 minors of this matrix,

(DGR, IR, i) (214)

have indefinite signs for general positive external kinematics, so this £ lies discretely
outside the amplituhedron.

We proceed with the first solution £ = (i j) which can be represented by the trivial

D-matrix
i
1 0
D= . (2.15)
01

Although this is trivially positive, upon substituting £ = (i j) into eq. (2.12) we find that

the fifth cut condition can only be satisfied for special kinematics satisfying

(ijkk+1) =0. (2.16)
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Therefore, according to the Cutkosky-inspired rule discussed three paragraphs ago, the
monodromy around this putative singularity vanishes for general kinematics and hence
it is not a valid branch point at one loop. Indeed this conclusion is easily verified by

looking at the explicit results of [40].

2.2.2 The Spurious Three-Mass Box Singularity

The second spurious one-loop singularity encountered in [16] is a subleading singular-

ity of the pentagon which lives on the locus

(G (G=1j+1)(ii+1) (kk+1)) =0 (2.17)

and arises from the cut conditions shown in figure 2.1b:

0= (Liit+1) = (Lj—1]) = (Ljj+1) = (Lkk+1). (2.18)

These are of three-mass box type and have the two solutions [4]

L= (jii+1) N (jkk+1) or £ = (FN (ii+1),7N (kk+1)). (2.19)

The two solutions may be represented respectively by the D-matrices

i i+1 i

0 0 1
D= (2.20)

(i+1jkk+1) —(ijkk+1) 0

and
i it k k41
17 — (i 0 0
p_ | G ) o (2.21)
0 0 —(Gk+1) (k)

Neither matrix is non-negative definite when the Z’s are in the positive domain G4 (4, 1),

so we again reach the (correct) conclusion that one-loop MHV amplitudes do not have
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singularities on the locus where eq. (2.17) is satisfied (for generic i, j and k).

2.2.3 A Two-Loop Example

The two-loop scalar double-pentagon integral considered in [16] has a large number of
Landau singularities that are spurious singularities of two-loop MHV amplitudes. It
would be cumbersome to start with the full list and eliminate the spurious singularities
one at a time using the amplituhedron. Here we will be content to consider one example
in detail before abandoning this approach in favor of one more directly built on the
amplituhedron.

We consider the Landau singularities shown in eq. (4.12) of [16] which live on the

locus

GG—1j+1)(i—14) (kD)) (j—1j+1)(i-1i)knI) = 0. (2.22)

We consider the generic case when the indices i, j, k, | are well-separated; certain degen-
erate cases do correspond to non-spurious singularities. This singularity is of pentagon-
box type shown in figure 2.1c since it was found in [16] to arise from the eight cut con-

ditions

<£(1) i—1i) = <£(1)]'_1]'> — <£(1)]']'+1> = <£(1) £(2> =0,
(LD k—=1k) = (LOD kk+1) = (LD [-11) = (LD [14+1) = 0.

(2.23)

The last four equations have two solutions £2) = (kI) or L&) = kN1, but as in the
previous subsection, only the first of these has a chance to avoid being outside the am-
plituhedron. Taking £ = (kI), the two solutions to the first four cut conditions are

then

LW = (ji-1i)N (jk1) = (Zj, Zi1(ijkl) — Z;i(i—1j k1)) or (2.24)

£ = ((i=1i)nf, (kD)) = (Ziali)) = Zili=1]), Zllf) = 2k ])) . (225)
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The D-matrices corresponding to the first solution can be taken as

i—1 i j k1

0 0 1 0 0

DM iikl) —@G—1jkl) 0 0 0
_ (ijkl) —(i—1jkl) (226)

D®@) 0 0 010

0 0 0 0 1

Evidently two of its 4 x 4 minors are —(i jkI) and (i—1jkI), which have opposite signs
for generic Z in the positive domain. D-matrices corresponding to the second solution

can be written as

i—1 i k l
iy —({-1j) 0 0
D@ 0 0 I —(kj
— k) , (2.27)
D®) 0 0 1 0
0 0 0 1

which again has minors of opposite signs.

We conclude that the locus where the cut conditions (2.23) are satisfied lies strictly
outside the amplituhedron, and therefore that there is no discontinuity around the pu-
tative branch point at (2.22). Indeed, this is manifested by the known fact [60] that
two-loop MHV amplitudes do not have symbol entries which vanish on this locus. Ac-
tually, while correct, we were slightly too hasty in reaching this conclusion, since we
only analyzed one set of cut conditions. Although it doesn’t happen in this example, in
general there may exist several different collections of cut conditions associated to the
same Landau singularity, and the discontinuity around that singularity would receive

additive contributions from each distinct set of associated cut contributions.
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2.24 Summary

We have shown, via a slight refinement of the analysis carried out in [16], that the spu-
rious branch points of one- and two-loop MHV amplitudes encountered in that paper
can be eliminated simply on the basis of positivity constraints in the amplituhedron. It
is simple to see that the cuts considered above have no support for MHV amplitudes so
it may seem like overkill to use the fancy language of the amplituhedron. However we
wanted to highlight the following approach:

(1) First, consider a representation of an amplitude as a sum over a particular type
of Feynman integrals. Find the Landau singularities of a generic term in the sum. These
tell us the loci in Z-space where the amplitude may have a singularity.

(2) For each potential singularity obtained in (1), check whether the corresponding
on-shell conditions have a non-zero intersection with the (closure of) the amplituhe-
dron. If the answer is no, for all possible sets of cut conditions associated with a given
Landau singularity, then the singularity must be spurious.

This approach is conceptually straightforward but inefficient. One manifestation of
this inefficiency is that although double pentagon integrals are characterized by four
free indices i, j, k, I, we will see in the next section the vast majority of the resulting po-
tential singularities are spurious. Specifically we will see that in order for the solution to
a given set of cut conditions to have support inside the (closure of the) amplituhedron,
the conditions must be relaxed in such a way that they involve only three free indices.
In other words, most of the O(n*) singularities of individual double pentagon integrals
must necessarily cancel out when they are summed, leaving only O(n?) physical singu-
larities of the full two-loop MHV amplitudes. (The fact that these amplitudes have only
O(n?) singularities is manifest in the result of [60].) This motivates us to seek a more
“amplituhedrony” approach to finding singularities where we do not start by consider-
ing any particular representation of the amplitude, but instead start by thinking directly

about positive configurations of loops £(*).
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2.3 An Amplituhedrony Approach

The most significant drawback of the approach taken in the previous section is that it
relies on having explicit representations of an integrand in terms of local Feynman inte-
grals. These have been constructed for all two-loop amplitudes in SYM theory [61], but
at higher loop order even finding such representations becomes a huge computational
challenge that we would like to be able to bypass. Also, as the loop order increases, the
number of potential Landau singularities grows rapidly, and the vast majority of these
potential singularities will fail the positivity analysis and hence turn out to be spurious.
We would rather not have to sift through all of this chaff to find the wheat.

Let’s begin by taking a step back to appreciate that the only reason we needed the
crutch of local Feynman integrals in the previous section is that each Feynman diagram
topology provides a set of propagators for which we can solve the associated Landau
equations (2.9) and (2.10) to find potential singularities. Then, for each set of cut condi-
tions, we can determine whether the associated Landau singularity is physical or spuri-
ous by asking the amplituhedron whether or not the set of loops £(*) satisfying the cut
conditions has any overlap with the amplituhedron.

In this section we propose a more “amplituhedrony” approach that does not rely on
detailed knowledge of integrands. We invert the logic of the previous section: instead
of using Feynman diagrams to generate sets of cut conditions that we need to check one
by one, we can ask the amplituhedron itself to directly identify all potentially “valid”
sets of cut conditions that are possibly relevant to the singularities of an amplitude.

To phrase the problem more abstractly: for a planar n-particle amplitude at L-loop
order, there are in general nL + L(L — 1) /2 possible local cut conditions one can write
down:

(LY ii+1) =0forall £,iand (L) £(2)) = 0 for all £; # £,. (2.28)

We simply need to characterize which subsets of these cut conditions can possibly be
simultaneously satisfied for loop momenta £() living in the closure of the amplituhe-

dron. Each such set of cut conditions is a subset of one or more maximal subsets, and
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(4) (B)

FIGURE 2.2: (a) A maximum codimension boundary of the one-loop

MHYV amplituhedron. The circle is a schematic depiction of the 7 line

segments (12), (23), ..., (n1) connecting the n cyclically ordered exter-

nal kinematic points Z; € G4 (4, n) and the red line shows the loop mo-

mentum £ = (ij). (b) The corresponding Landau diagram, which is a

graphical depiction of the four cut conditions (2.30) that are satisfied on
this boundary.

these maximal subsets are just the maximal codimension boundaries of the amplituhe-
dron.

Fortunately, the maximal codimension boundaries of the MHV amplituhedron are
particularly simple, as explained in [5]. Each loop momentum £) must take the form
(i) for some i and j (that can be different for different ¢), and the condition of mutual
positivity enforces an emergent planarity: if all of the lines £(*) are drawn as chords on
a disk between points on the boundary labeled 1,2,...,n, then positivity forbids any
two lines to cross in the interior of the disk. In what follows we follow a somewhat low-
brow analysis in which we systematically consider relaxations away from the maximum
codimension boundaries, but the procedure can be streamlined by better harnessing this
emergent planarity, which certainly pays off at higher loop order [62].

In the next few subsections we demonstrate this “amplituhedrony” approach explic-

itly at one and two loops before summarizing the main idea at the end of the section.
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2.3.1 One-Loop MHV Amplitudes

The maximum codimension boundaries of the one-loop MHV amplituhedron occur
when

L= (ij), (2.29)

as depicted in figure 2.2a. On this boundary four cut conditions of “two-mass easy”

type [40] are manifestly satisfied:

(Li—1i) = (Lii+1) = (Lj—-1j) = (Ljj+1) =0, (2.30)

as depicted in the Landau diagram shown in figure 2.2b. (For the moment we consider
i and j to be well separated so there are no accidental degenerations.) The Landau
analysis of eq. (2.30) has been performed long ago [26, 33] and reviewed in the language

of momentum twistors in [16]. A leading solution to the Landau equations exists only if

(ij)(ij) =0. (2.31)

Subleading Landau equations are obtained by relaxing one of the four on-shell con-
ditions. This leads to cuts of two-mass triangle type, which are uninteresting (they exist
for generic kinematics, so don’t correspond to branch points of the amplitude). At sub-
subleading order we reach cuts of bubble type. For example if we relax the second and
fourth condition in eq. (2.30) then we encounter a Landau singularity which lives on the
locus

(i-1ij—1j) = 0. (2.32)

Other relaxations either give no constraint on kinematics, or the same as eq. (2.32) with
i —i+land/orj— j+1.
Altogether, we reach the conclusion that all physical branch points of one-loop MHV

amplitudes occur on loci of the form

(ab) =0o0r (aa+1bb+1) =0 (2.33)



2.3. An Amplituhedrony Approach 23

for various a,b. (Note that whenever we say there is a branch point at x = 0, we mean
more specifically that there is a branch cut between x = 0 and x = o0.) Indeed, these
exhaust the branch points of the one-loop MHV amplitudes (first computed in [40])
except for branch points arising as a consequence of infrared regularization, which are

captured by the BDS ansatz [63].

2.3.2 Two-Loop MHV Amplitudes: Configurations of Positive Lines

We divide the two-loop analysis into two steps. First, in this subsection, we classify
valid configurations of mutually non-negative lines. This provides a list of the sets of
cut conditions on which two-loop MHV amplitudes have nonvanishing support. Then
in the following subsection we solve the Landau equations for each set of cut conditions,
to find the actual location of the corresponding branch point.

At two loops the MHV amplituhedron has two distinct kinds of maximum codimen-
sion boundaries [5]. The first type has £(1) = (i j) and £?) = (k1) for distinct cyclically
ordered i, j, k, I. Since <£(1) £(2)> is non-vanishing (inside the positive domain G (4, 1))
in this case, this boundary can be thought of as corresponding to a cut of a product of
one-loop Feynman integrals, with no common propagator (£1) £(2)). Therefore we will
not learn anything about two-loop singularities beyond what is already apparent at one
loop.

The more interesting type of maximum codimension boundary has £(1) = (i j) and
L® = (ik), as depicted in figure 2.3a. Without loss of generality i < j < k, and for
now we will moreover assume that 7, j and k are well-separated to avoid any potential
degenerations. (These can be relaxed at the end of the analysis, in particular to see that
the degenerate case j = k gives nothing interesting.) On this boundary the following

nine cut conditions shown in the Landau diagram of figure 2.3b are simultaneously
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(a) (B)

FIGURE 2.3: (a) A maximum codimension boundary of the two-loop
MHYV amplituhedron. (b) The corresponding Landau diagram (which,
it should be noted, does not have the form of a standard Feynman inte-
gral) depicting the nine cut conditions (2.34)—(2.36) that are satisfied on

this boundary.
satisfied:
(LW i-1i)y = (LW iit1) = (£LPi-1i) = (£LPii1) =0, (2.34)
(LW =17y =(£Wjj+1) = (LD k=1k) = (LD kk+1) =0, (2.35)

(M @y =o. (2.36)

This is the maximal set of cuts that can be simultaneously satisfied while keeping the
L)’s inside the closure of the amplituhedron for generic Z € G, (4,1). We immediately
note that since only three free indices i, j, k are involved, this set of cuts manifestly has
size O(n?), representing immediate savings compared to the larger O (n*) set of double-
pentagon cut conditions as discussed at the end of the previous section.

We can generate other, smaller sets of cut conditions by relaxing some of the nine
shown in egs. (2.34)—(2.36). This corresponds to looking at subleading singularities, in
the language of the Landau equations. However, it is not interesting to consider relax-
ations that lead to <£(1) E(z)> # 0 because, as mentioned above, it essentially factorizes
the problem into a product of one-loop cuts. Therefore in what follows we only consider
cuts on which (£ £(2)) = 0.

By relaxing various subsets of the other 8 conditions we can generate 28 subsets

of cut conditions. In principle each subset should be analyzed separately, but there
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is clearly a natural stratification of relaxations which we can exploit to approach the
problem systematically. In fact, we will see that the four cut conditions in eq. (2.34)
that involve the point i play a special role. Specifically, we will see that the four cut
conditions in eq. (2.35) involving j and k can always be relaxed, or un-relaxed, “for free”,
with no impact on positivity. Therefore, we see that whether a configuration of loops
may be positive or not depends only on which subset of the four cut conditions (2.34) is
relaxed.

In this subsection we will classify the subsets of eq. (2.34) that lead to valid configu-
rations of positive lines LY and in the next subsection we will find the locations of the

corresponding Landau singularities.

Relaxing none of eq. (2.34) [figure 2.3a]. At maximum codimension we begin with the

obviously valid pair of mutually non-negative lines represented trivially by

i j k

1 0 0

DM 01 0
= (2.37)

D®) 1 0 0

00 1

Relaxing any one of eq. (2.34). The four cases are identical up to relabeling so we
consider relaxing the condition (L@ ii4+1) = 0, shown in figure 2.4a. In this case the
remaining seven cut conditions on the first two lines of egs. (2.34) and (2.35) admit the

one-parameter family of solutions

ﬁ(l) = (i]'), £(2) = <Zk/ «Zi_1+ (1 — lX)Zi) . (2-38)
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(8)
(L@ ii41), (LD i-11) #£0

(©)
(LW ii41), (L2 i-1i) #0

FIGURE 2.4: Three different invalid relaxations of the maximal codimen-
sion boundary shown in figure 2.3.
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We recall that the parity conjugate solutions having £(!) = 7N flie discretely outside the

amplituhedron as seen in eq. (2.13). The corresponding D-matrices

0 1 0 0
D 0 0 1 0

= (2.39)
D®) a 1—a 0 0

are mutually non-negative for 0 < a < 1. It remains to impose the final cut condition

that £ and £? intersect:
(LWL = w(i-1ijk) =0. (2.40)

For general positive external kinematics this will only be satisfied when a# = 0, which
brings us back to the maximum codimension boundary. We conclude that the loop

configurations of this type do not generate branch points.

Relaxing (£ i—1i) = 0and (£® ii4+1) = 0 [figure 2.4b]. In this case the six remain-

ing cut conditions in egs. (2.34) and (2.35) admit the two-parameter family of solutions
LY = (aZi+(1-a)Zi11,2), LD =(BZi+ 1 —B)Zi1, Zk). (2.41)

The corresponding D-matrices

0 « 1—a 0 O

D) 0 0 1 0
_ (2.42)

0

T
»
—_
|
s>
o ™ O
(@]
o (@]
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(a) (B)
(L@ ii41), (LD ii4+1) #0 (LP)i-1d),(LP) ii4+1) #0

FIGURE 2.5: Two valid double relaxations of figure 2.3. The other two
possibilities are obtained by taking i — i+1 in (a) or £?) — £(1) and
j < kin (b).
are mutually non-negative if 0 < &, < 1. Imposing that the two loops intersect gives

the constraint

(LVL2Y = 01— B)(i—1ijk) + (1 —a)Blii+1]jk) + (1 —a)(1 - B)(i—1i+1jk) =0,

(2.43)

which is not satisfied for general positive kinematics unless « = p = 1, which again
brings us back to the maximum codimension boundary.

Relaxing the two conditions (L) ii+1) = (£ ii—1) = 0, depicted in figure 2.4c,

is easily seen to lead to the same conclusion.

Relaxing (LM ii+1) = 0 and (£ ii+1) = 0 [figure 2.5a]. In this case there is a one-
parameter family of solutions satisfying all seven remaining cut conditions including

<£(1) 5(2)> =0

LV = (aZi+ (1= a)Ziy1, 7)), LP = (aZi+ (1 - &) Zip1, Z). (2.44)
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The D-matrices can be represented as

i i+l j Kk

« 1—a 0 O

D 0 0 1 0
= , (2.45)

D®) « 1—a 0 O

0 0 01

which is a valid mutually non-negative configuration for 0 < o < 1. We conclude that
these configurations represent physical branch points of two-loop MHV amplitudes by
appealing to Cutkoskian intuition, according to which we would compute the discon-
tinuity of the amplitude around this branch point by integrating over 0 < a < 1 (in
figure 2.5a this corresponds to integrating the intersection point of the two L’s over the
line segment between Z;_; and Z;).

Relaxing the two conditions (L) ii—1) = (£?)ii—1) = 0 is clearly equivalent up

to relabeling.

Relaxing (£ i—1i) = 0 and (£® ii+1) = 0 [figure 2.5b]. The seven remaining cut

conditions admit a one-parameter family of solutions
LY =), L¥=(aZi+(1-a)Z;Z), (2:46)

which can be represented by

i j k

1 0 0

D 0 1 0
= (2.47)

D®) a 1—a 0
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This is a valid configuration of mutually non-negative lines for 0 < a < 1 so we expect
it to correspond to a physical branch point. Clearly the same conclusion holds if we

were to completely relax £(1) at i instead of £(2),

Higher relaxations of eq. (2.34). So far we have considered the relaxation of any one
or any two of the conditions shown in eq. (2.34). We have found that single relaxations
do not yield branch points of the amplitude, and that four of the six double relaxations
are valid while the two double relaxations shown in figures 2.4b and 2.4c are invalid.

What about triple relaxations? These can be checked by explicit construction of the
relevant D-matrices, but it is also easy to see graphically that any triple relaxation is
valid because they can all be reached by relaxing one of the valid double relaxations.
For example, the triple relaxation where we relax all of eq. (2.34) except (L) i—1i) =0
can be realized by rotating £(?) in figure 2.5a clockwise around the point k so that it
continues to intersect £(1). As a second example, the triple relaxation where we relax
all but (£3)i—1i) = 0 can be realized by rotating £() in figure 2.5a counter-clockwise
around the point j so that it continues to intersect £(2).

Finally we turn to the case when all four cut conditions in eq. (2.34) are relaxed.

These relaxed cut conditions admit two branches of solutions, represented by D-matrices

of the form
j j+1 -+ k=1 k
1 0 e 0 0
DM I N A B 4
_ j j+1 k-1 k (2.48)
D) O @1 o M1

0 0 0 1
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or a similar form with a parameters wrapping the other way around from k to j:

-1k k+1

| | 219

Both of these parameterize valid configuration of mutually non-negative lines as long

as all of the a’s are positive.

Relaxing £(1) at j and/or £?) at k. All of the configurations we have considered so
far keep the four propagators in eq. (2.35) on shell. However it is easy to see that none
of these conditions have any bearing on positivity one way or the other. For example,
there is no way to render the configuration shown in figure 2.4b positive by moving £
away from the vertex j while maintaining all of the other cut conditions. On the other
hand, there is no way to spoil the positivity of the configuration shown in figure 2.5b by

moving £(2) away from the vertex k while maintaining all other cut conditions.

Summary. We call a set of cut conditions “valid” if the m > 0-dimensional locus in £-
space where the conditions are simultaneously satisfied has non-trivial m-dimensional
overlap with the closure of the amplituhedron. (The examples shown in figures 2.5a
and 2.5b both have m = 1, but further relaxations would have higher-dimensional so-
lution spaces.) As mentioned above, this criterion is motivated by Cutkoskian intuition
that the discontinuity of the amplitude would be computed by an integral over the in-
tersection of this locus with the (closure of the) amplituhedron. If this intersection is
empty (or lives on a subspace that is less than m-dimensional) then such an integral
would vanish, signalling that the putative singularity is actually spurious.

The nine cut conditions shown in eqs. (2.34)—(2.36) are solved by the configuration
of lines shown in figure 2.3a that is a zero-dimensional boundary of the amplituhedron.

We have systematically investigated relaxing various subsets of these conditions (with



32 Chapter 2. Landau Singularities from the Amplituhedron

the exception of eq. (2.36), to stay within the realm of genuine two-loop singularities) to

determine which relaxations are “valid” in the sense just described.

Conclusion: The most general valid relaxation of the configuration shown in figure 2.3a
is either an arbitrary relaxation at the points j and k, or an arbitrary relaxation of fig-
ure 2.5a (or the same with i — i4-1), or an arbitrary relaxation of figure 2.5b (or the same
with j <+ k). The configurations shown in figure 2.4, and further relaxations thereof that

are not relaxations of those shown in figure 2.5, are invalid.

2.3.3 Two-Loop MHV Amplitudes: Landau Singularities

In the previous subsection we asked the amplituhedron directly to tell us which pos-
sible sets of cut conditions are valid for two-loop MHV amplitudes, rather than start-
ing from some integral representation and using the amplituhedron to laboriously sift
through the many spurious singularities. We can draw Landau diagrams for each valid
relaxation to serve as a graphical indicator of the cut conditions that are satisfied. The
Landau diagram with nine propagators corresponding to the nine cut conditions satis-
tied by figure 2.3a was already displayed in figure 2.3b. The configurations shown in
figures 2.5a and 2.5b satisfy the seven cut conditions corresponding to the seven propa-
gators in figures 2.6a and 2.6b, respectively. We are now ready to determine the locations
of the branch points associated to these valid cut configurations (and their relaxations)
by solving the Landau equations.

The following calculations follow very closely those done in [16]. Note that through-
out this section, in solving cut conditions we will always ignore branches of solutions

(for example those of the type £ = 7N j) which cannot satisfy positivity.

The double-box. For the double-box shown in in figure 2.6a let us use A € P° to
denote the point on the line (i—1,i) where the two loop lines £(*) intersect. These can
then be parameterized as £L(1) = (A, Z;) and L®) = (A, Z). The quickest way to find
the location of the leading Landau singularity is to impose eq. (2.9) for each of the two

loops. These are both of two-mass easy type, so we find that the Landau singularity
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(a) (B)

FIGURE 2.6: The Landau diagrams showing the seven cut conditions sat-
isfied by figures 2.5a and 2.5b, respectively.

lives on the locus (see [16])

(i—1ijk)(A]) = (i—-1ijk)(Ak) =0. (2.50)

These can be solved in two ways; either by

(i-1ijk) =0 (2.51)

or by solving the first condition for A = jN (i—11) and substituting this into the second
condition to find

(i—-1ijnk) =0. (2.52)

The astute reader may recall that in (2.16) we discarded a singularity of the same
type as in eq. (2.51). This example highlights that it is crucial to appreciate the essential
asymmetry between the roles of the two types of Landau equations. The on-shell condi-
tions (2.9) by themselves only provide information about discontinuities. We discarded
eq. (2.16) because the solution has support on a set of measure zero inside the closure of
the amplituhedron, signalling that there is no discontinuity around the branch cut asso-
ciated to the cut conditions shown in eq. (2.11). Therefore we never needed to inquire
as to the actual location where the corresponding branch point might have been. To
learn about the location of a branch point we have to solve also the second type of Lan-

dau equations (2.10). Indeed (2.51) does correspond to a branch point that lies outside
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the positive domain, but we don’t discard it because the discontinuity of the amplitude
around this branch point is nonzero. As mentioned above, according to the Cutkosky
rules it would be computed by an integral over the line segment between Z;_; and Z;
in figure 2.5a. When branch points lie outside G (4, 1), as in this case, it signals a dis-
continuity that does not exist on the physical sheet but on some other sheet; see the
comments near the end of section 1.

Additional (sub*-leading, for various k) Landau singularities are exposed by setting
various sets of a’s to zero in the Landau equations and relaxing the associated cut con-
ditions. Although these precise configurations were not analyzed in [16], the results of
that paper, together with some very useful tricks reviewed in appendix A, are easily

used to reveal branch points at the loci

(G(j—1,j+1)(k, k£1)(i—1,i)) =0 (2.53)

together with the same for j <> k, as well as (aa+1bb+1) = 0 for 4, b drawn from the
set{i—1,j—1,j,k—1,k}.

The pentagon-triangle. With the help of appendix A and the results of [16] it is easily
seen that the leading singularity of the pentagon-triangle shown in figure 2.6b is located

on the locus where

(iN(ij) =0. (2.54)

The computation of additional singularities essentially reduces to the same calculation

for a three-mass pentagon, which was carried out in [16]. Altogether we find that branch
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points live on the loci

(ijk—1k) =0,
(i(i—1i4+1)(j—1j)(k—=1k)) =0,
(i(i=1i4+1)(jj+1)(k—1k)) =0,
(j(i—1j+1)(i-1i)(k—1k)) =0, (2.55)
(G-1j+1)(ii+1)(k—1k)) =0,

(ii+1jk) =0,

(ijj+1K) =0,

together with the same collection with (k—1k) — (kk+1),aswellasall (aa+1bb+1) =
0 for a, b drawn from the set {i—1,7,j—1,j,k—1,k}.

The maximum codimension boundaries. We left this case for last because it is some-
what more subtle. It is known that the final entries of the symbols of MHV amplitudes
always have the form {ab) [60]. We expect the leading Landau singularity of the maxi-
mum codimension boundary to expose branch points at the vanishing loci of these final
entries.

However, if we naively solve the Landau equations for the diagram shown in 2.3b,
we run into a puzzle. The first type of Landau equations (2.9) correspond to the nine
cut conditions (2.34)—(2.36), which of course are satisfied by LM = (ij) and L@ =
(ik). The second type of Landau equations (2.10) does not impose any constraints for
pentagons because it is always possible to find a vanishing linear combination of the
five participating four-vectors. This naive Landau analysis therefore suggests that there
is no leading branch point associated to the maximum codimension boundary:.

This analysis is questionable because, as already noted above, the Landau diagram
associated to the maximal codimension boundary, shown in figure (2.2b), does not have
the form of a valid Feynman diagram. Therefore it makes little sense to trust the asso-

ciated Landau analysis. Instead let us note that the nine cut conditions (2.34)—(2.36) are
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1+1 1—1

(4) (B)

FIGURE 2.7: Landau diagrams corresponding to all of the cut condi-
tions (2.34)(2.36) except for (a) (L1 i—1i) = 0, and (b) (£?) ii+1) = 0.
These are the only two cut conditions that are redundant (each is im-
plied by the other eight, for generic kinematics) and, when omitted, lead
to Landau diagrams that have the form of a standard Feynman integral.

(In both figures £(1) is the momentum in the right loop and £®?) is the
momentum in the left loop.)

not independent; indeed they cannot be as there are only eight degrees of freedom in
the loop momenta.

We are therefore motivated to identify which of the nine cut conditions (1) is redun-
dant, in the sense that it is implied by the other eight for generic external kinematics,
and (2) has the property that when omitted, the Landau diagram for the remaining eight
takes the form of a valid planar Feynman diagram. None of the conditions involving j
and k shown in eq. (2.35) are redundant; all of them must be imposed to stay on the max-
imum codimension boundary. The remaining five conditions in egs. (2.34) and (2.36) are
redundant for general kinematics, but only two of them satisfy the second property. The
corresponding Landau diagrams are shown in fig. 2.7. Being valid planar Feynman di-
agrams, the integrand definitely receives contributions with these topologies (unlike
tig. 2.2b), and will exhibit the associated Landau singularities.

It remains to compute the location of the leading Landau singularities for these di-
agrams. For fig. 2.7a the on-shell conditions for the pentagon set £(2) = (ik) while the

Kirkhoff condition for the box is
0= (j(j—1j+1)LP(ii+1)) = (i) (ii+1]k). (2.56)

The Landau equations associated to this topology therefore have solutions when (i j) =



2.4. Discussion 37

0 or when (ii+1jk) = 0. However, on the locus (ii+1jk) = 0 it is no longer true that
the eight on-shell conditions shown in fig. 2.7a imply the ninth condition (£ i—1) =
0. Therefore, this solution of the Landau equations is not relevant to the maximum
codimension boundary.

We conclude that the leading Landau singularity of the maximum codimension
boundary is located on the locus where (ij) = 0 or (from fig. 2.7b) (ik) = 0. These
results are in agreement with our expectation about the final symbol entries of MHV
amplitudes [60]. Relaxations of Figures 7a, 7b at j, k will not produce any symbol en-

tries.

Conclusion. In conclusion, our analysis has revealed that two-loop MHV amplitudes

have physical branch points on the loci of the form

(ab) =0,

(abcc+1) =0,
(2.57)

(aa+1bNc) =0,

(a(a—1a+1)(bb+1)(cc+1)) =0,

for arbitrary indices 4, b, c. Again let us note that when we say there is a branch point
at x = 0, we mean a branch cut between x = 0 and x = oco. Indeed, this result is in
precise accord with the known symbol alphabet of two-loop MHV amplitudes in SYM
theory [60].

2.4 Discussion

In this paper we have improved greatly on the analysis of [16] by asking the ampli-
tuhedron directly to tell us which branch points of an amplitude are physical. This
analysis requires no detailed knowledge about how to write formulas for integrands by
constructing the canonical “volume” form on the amplituhedron. We only used the am-

plituhedron’s grossest feature, which is that it is designed to guarantee that integrands
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have no poles outside the space of positive loop configurations. We have shown in sev-
eral examples how to use this principle to completely classify the sets of cut conditions
on which integrands can possibly have support. Let us emphasize that our proposal is

a completely well-defined geometric algorithm:

e Input: a list of the maximal codimension boundaries of the amplituhedron; for

MHYV amplitudes these are known from [5].

e Step 1: For a given maximal codimension boundary, identify the list of all cut con-
ditions satisfied on this boundary. For example, at the two-loop boundary shown
in figure 2.3a, these would be the nine cut conditions satisfied by the Landau di-
agram in figure 2.3b, shown in egs. (2.34)—(2.36). Consider all lower codimension
boundaries that can be obtained by relaxing various subsets of these cut condi-
tions, and eliminate those which do not overlap the closure of the amplituhedron,

i.e. those which do not correspond to mutually non-negative configurations of

lines £©),

e Step 2: For each valid set of cut conditions obtained in this manner, solve the
corresponding Landau equations (2.9) and (2.10) to determine the location of the

corresponding branch point of the amplitude.

e Output: a list of the loci in external kinematic space where the given amplitude

has branch points.

As we have mentioned a few times in the text, this algorithm is motivated by in-
tuition from the Cutkosky rules, according to which an amplitude’s discontinuity is
computed by replacing some set of propagators with delta-functions. This localizes the
integral onto the intersection of the physical contour and the locus where the cut con-
ditions are satisfied. Now is the time to confess that this intuitive motivation is not a
proof of our algorithm, most notably because the positive kinematic domain lives in
unphysical (2,2) signature and there is no understanding of how to make sense of the
physical ie contour in momentum twistor space (see however [64] for work in this direc-

tion). Nevertheless, the prescription works and it warrants serious further study, in part
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because it would be very useful to classify the possible branch points of more general
amplitudes in SYM theory.

For amplitudes belonging to the class of generalized polylogarithm functions (which
is believed to contain at least all MHV, NMHV and NNMHYV amplitudes in SYM theory)
the path from knowledge of branch points to amplitudes is fairly well-trodden. Such
functions can be represented as iterated integrals [65] and analyzed using the technol-
ogy of symbols and coproducts [66, 67]. It was emphasized in [23] that the analytic
structure of an amplitude is directly imprinted on its symbol alphabet. In particular, the
locus in external kinematic space where the letters of an amplitude’s symbols vanish (or
diverge) must exactly correspond to the locus where solutions of the Landau equations
exist. The above algorithm therefore provides direct information about the zero locus of
an amplitude’s symbol alphabet. For example, the symbol alphabet of one-loop MHV
amplitudes must vanish on the locus (2.33), and that of two-loop amplitudes must van-
ish on the locus (2.57). Strictly speaking this analysis does not allow one to actually
determine symbol letters away from their vanishing locus, but it is encouraging that
in both egs. (2.33) and (2.57) the amplituhedron analysis naturally provides the correct
symbol letters on the nose.

In general we expect that only letters of the type (aa+1bb+1) may appear in the
first entry of the symbol of any amplitude [68]. At one loop, new letters of the type
(ab) begin to appear in the second entry. At two loops, additional new letters of the
type (a(a—1a+1)(bb+1)(cc+1)) also begin to appear in the second entry, and new
letters of the type (abcc+1) and (aa+1bN¢) begin to appear in the third. As discussed
at the end of section 3, the final entries of MHV amplitudes are always (ab) [60]. In
our paper we have given almost no thought to the question of where in the symbol a
given type of letter may begin to appear. However, it seems clear that our geometric
algorithm can be taken much further to expose this stratification of branch points, since
the relationship between boundaries of the amplituhedron and Landau singularities
is the same as the relationship between discontinuities and their branch points. For

example it is clear that at any loop order, the lowest codimension boundaries of the
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amplituhedron that give rise to branch cuts are configurations where one of the lines
L intersects two lines (ii+1) and (jj+1), with all other lines lying in generic mutually
positive position. These configurations give rise to the expected first symbol entries
(ii+1jj+1). By systematically following the degeneration of configurations of lines
onto boundaries of higher and higher codimension we expect there should be a way to
derive the symbol alphabet of an amplitude entry by entry.

In many examples, mere knowledge of an amplitude’s symbol alphabet, together
with some other physical principles, has allowed explicit formulas for the amplitude to
be constructed via a bootstrap approach. This approach has been particularly powerful
for 6- [69, 70, 71, 72, 73, 20], and 7-point [21] amplitudes, in which case the symbol
alphabet is believed to be given, to all loop order, by the set of cluster coordinates on
the kinematic configuration space [18]. It would be very interesting to use the algorithm
outlined above to prove this conjecture, or to glean information about symbol alphabets
for more general amplitudes, both MHV and non-MHV. One simple observation we can
make in parting is to note that although maximum codimension boundaries of the L-
loop MHV amplitude involve as many as 2L distinct points, the singularities that arise
from genuinely L-loop configurations (rather than products of lower loop order) involve
at most L + 1 points. Therefore we predict that the size of the symbol alphabet of L-loop
MHYV amplitudes should grow with 7 no faster than O(n**1).

It would be very interesting to extend our results to non-MHV amplitudes. For the
NK amplitude, singularities should still be found only on the boundary of the NNMHV
amplituhedron, so the presented approach should still be applicable, albeit more com-
plicated. An important difference would be the existence of poles, in addition to branch
points, due to the presence of rational prefactors. We are not certain our approach
would naturally distinguish these two types of singularities. However, the singulari-
ties of rational prefactors can be found using other means, for example by considering

the boundaries of the tree-level amplituhedron.
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2.5 Elimination of Bubbles and Triangles

Here we collect a few comments on the elimination of bubble and triangle sub-diagrams
in the Landau analysis. These tricks, together with the results of [16], can be used to

easily obtain all of the Landau singularities reported in section 2.3.3.

2.5.1 Bubble sub-diagrams

The Landau equation for a bubble with propagators ¢ and ¢ + p, which may be a sub-

diagram of a larger diagram, are

= {+p)?=0, (2.58)

zx1€” + ap (ﬁ + p)ﬂ = 0, (259)

where a1 and a; are the Feynman parameters associated to the two propagators. The

loop equation has solution

X2
= — # 2.60
a1+ o P ( )
so that
X102 SY)
a = — # ar(0+p)H = ® 2.61
1 P 24P =P (2.61)

while the on-shell conditions simply impose p? = 0. Therefore, we see that any Landau
diagram containing this bubble sub-diagram is equivalent to the same diagram with the
bubble replaced by a single on-shell line with momentum p* and modified Feynman pa-
rameter &’ = a0y /(a1 + az). We do not need to keep track of the modified Feynman
parameter; we simply move on to the rest of the diagram using the new Feynman pa-
rameter a’.

In conclusion, any bubble sub-diagram can be collapsed to a single edge, as far as

the Landau analysis is concerned.
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2.5.2 Triangle sub-diagrams

Similarly, we will now discuss the various branches associated to a triangle sub-diagram.
The Landau equations for a triangle with edges carrying momentag; = ¢, g0 = {4+ p1 +

p2 and g3 = ¢ + p», and with corresponding Feynman parameters ay, x> and a3, are

P=U+p)=UL+p+p)?=0, (2.62)

o 0F + o (0 + pr+ p2)! +az(+ p2)t =0. (2.63)

The solution to the loop equation is

gﬂ _ (0(2 + a3)pg + [sz]f (2 64)
N1+ & + a3 '

while egs. (4.1) impose the two conditions

0=pipsprs, (2.65)

(a1:o2:a3) = (pi(—pi+p5+p3) : v5(pi—p5+p3) : P3(pT+P5—p3))  (2.66)

where p3 = —p; — p2. Suppose we follow the branch p7 = 0. In this case a; is forced to

vanish, effectively reducing the triangle to a bubble with edges

2
a3p;
2

p
Pl (2.67)
P%_P3 !

B _
— oP1s &3z = —

This is equivalent (by appendix A.1) to a single on-shell line carrying momentum p;f .
A similar conclusion clearly holds for the branches p3 = 0 or p3 = 0. If any two of p?,
p5 or p3 simultaneously vanish, then the two corresponding Feynman parameters must
vanish. Finally, if all three p? vanish, then the Landau equations are identically satisfied
for any values of the three «;. In conclusion, triangle sub-diagrams of a general Landau
diagram can be analyzed by considering separately each of the seven branches outlined

here.
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Chapter 3

All-Helicity Symbol Alphabets from

Unwound Amplituhedra

3.1 Review

This section provides a thorough introduction to the problem our work aims to solve.
The concepts and techniques reviewed here will be illuminated in subsequent sections

via several concrete examples.

3.1.1 The Kinematic Domain

Scattering amplitudes are (in general multivalued) functions of the kinematic data (the
energies and momenta) describing some number of particles participating in some scat-
tering process. Specifically, amplitudes are functions only of the kinematic information
about the particles entering and exiting the process, called external data in order to dis-
tinguish it from information about virtual particles which may be created and destroyed
during the scattering process itself. A general scattering amplitude in SYM theory is la-
beled by three integers: the number of particles 7, the helicity sector 0 < k < n —4, and
the loop order L > 0, with L = 0 called tree level and L > 0 called L-loop level. Ampli-
tudes with k = 0 are called maximally helicity violating (MHV) while those with k > 0

are called (next-to-)kmaximally helicity violating (N*MHV).
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The kinematic configuration space of SYM theory admits a particularly simple char-
acterization: n-particle scattering amplitudes' are multivalued functions on Conf, (IP%),
the space of configurations of n points in IP* [18]. A generic point in Conf, (IP?) may be
represented by a collection of n homogeneous coordinates Z! on IP? (here I € {1,...,4}
and a € {1,...,n}) called momentum twistors [55], with two such collections consid-
ered equivalent if the corresponding 4 x n matrices Z = (Z;---Z,) differ by left-

multiplication by an element of GL(4). We use the standard notation
(abed) = ey ZLz] 7K 7% 3.1)

for the natural SL(4)-invariant four-bracket on momentum twistors and use the short-
hand (---a@---) = (---a—laa+1---), with the understanding that all particle labels
are always taken mod n. We write (ab) to denote the line in IP*> containing Z, and
Zy, (abc) to denote the plane containing Z,, Z, and Z., and so a denotes the plane
(a—laa+1). The bar notation is motivated by parity, which is a Z, symmetry of SYM
theory that maps NXMHV amplitudes to N" " *"*MHV amplitudes while mapping the
momentum twistors according to {Z,} — {W, = x(a—1laa+1)}.

When discussing N¥MHV amplitudes it is conventional to consider an enlarged
kinematic space where the momentum twistors are promoted to homogeneous coordi-
nates Z,, bosonized momentum twistors [4] on IPX*3 which assemble into an 1 x (k 4 4)
matrix Z = (2 - -- Z,). The analog of Eq. (3.1) is then the SL(k + 4)-invariant bracket
which we denote by [] instead of (-). Given some Z and an element of the Grassman-
nian Gr(k, k + 4) represented by a k x (k 4+ 4) matrix Y, one can obtain an element of
Conf,(IP?) by projecting onto the complement of Y. The four-brackets of the projected

external data obtained in this way are given by

(abed) = Y 2, 2, 2. 2. (3.2)

1Here and in all that follows, we mean components of superamplitudes suitably normalized by dividing
out the tree-level Parke-Taylor-Nair superamplitude [57, 74]. We expect our results to apply equally well
to BDS- [63] and BDS-like [75] regulated MHV and non-MHYV amplitudes. The set of branch points of a
non-MHYV ratio function [76] should be a subset of those of the corresponding non-MHV amplitude, but
our analysis cannot exclude the possibility that it may be a proper subset due to cancellations.
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Tree-level amplitudes are rational functions of the brackets while loop-level ampli-
tudes have both poles and branch cuts, and are properly defined on an infinitely-sheeted
cover of Conf, (IP?). For each k there exists an open set D, C Conf,(IP?) called the prin-
cipal domain on which amplitudes are known to be holomorphic and non-singular. Am-
plitudes are initially defined only on D, and then extended to all of (the appropriate
cover of) Conf, (IP?) by analytic continuation.

A simple characterization of the principal domain for n-particle N\MHV amplitudes
was given in [37]: D, may be defined as the set of points in Conf,(IP?) that can be

represented by a Z-matrix with the properties
1. (aa+1bb+1) > 0forallaand b ¢ {a—1,a,a+1}?, and
2. the sequence (123 e) has precisely k sign flips,

where we use the notation e € {1,2,...,n} so that
(123 e) = {0,0,0,(1234), (1235),...,(123n)}. (3.3)

It was also shown that an alternate but equivalent condition is to say that the sequence
(aa+1be) has precisely k sign flips for all 4,b (omitting trivial zeros, and taking ap-
propriate account of the twisted cyclic symmetry where necessary). The authors of [37]
showed, and we review in Sec. 3.1.2, that for Y’s inside an N\MHV amplituhedron, the

projected external data have the two properties above.

3.1.2 Amplituhedra ...

A matrix is said to be positive or non-negative if all of its ordered maximal minors are
positive or non-negative, respectively. In particular, we say that the external data are
positive if the n x (k + 4) matrix Z described in the previous section is positive.

A point in the n-particle N\MHV L-loop amplituhedron A,y 1 is a collection (Y, L))
consisting of a point Y € Gr(k, k +4) and L lines £V, ..l (called the loop momenta)

2As explained in [37], the cyclic symmetry on the 1 particle labels is “twisted”, which manifests itself
here in the fact that if k is even, and if 2 = n or b = n, then cycling around n back to 1 introduces an extra
minus sign. The condition in these cases is therefore (—1)**1(cc+1n1) > 0 forall ¢ ¢ {1,n—1,n}.
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in the four-dimensional complement of Y. We represent each £(*) as a2 x (k +4) matrix

with the understanding that these are representatives of equivalence classes under the

equivalence relation that identifies any linear combination of the rows of Y with zero.
For given positive external data Z, the amplituhedron A, \ | (Z£) was defined in [4]

for n > 4 as the set of (Y, £()) that can be represented as

Yy=cCz, (3.4)

£O =pWz, (3.5)

in terms of a k x 7 real matrix C and L 2 x n real matrices D'*) satisfying the positivity

property that for any 0 < m < L, all (2m + k) x n matrices of the form

D)
D(i2)
(3.6)
D(im)

C

are positive. The D-matrices are understood as representatives of equivalence classes
and are defined only up to translations by linear combinations of rows of the C-matrix.

One of the main results of [37] was that amplituhedra can be characterized directly
by (projected) four-brackets, Eq. (3.2), without any reference to C or D(!)’s, by saying

that for given positive Z, a collection (Y, £L(¥)) lies inside A, 1 (Z) if and only if
1. the projected external data lie in the principal domain D, ,
2. (LW aa+1) > 0forall £ and a°,
3. for each /, the sequence (£() 1 o) has precisely k + 2 sign flips, and

4. (£ L&)y > 0 forall £1 # £y.

3Again, the twisted cyclic symmetry implies that the correct condition for the case 2 = n is
(—D) (L0 n1) > 0.
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Here the notation (£ ab) means (A Bab) if the line L is represented as (A B) for two
points A, B. It was also shown that items 2 and 3 above are equivalent to saying that the

sequence (£") a o) has precisely k + 2 sign flips for any ¢ and a.

3.1.3 ... and their Boundaries

The amplituhedron A,y ; is an open set with boundaries at loci where one or more of the
inequalities in the above definitions become saturated. For example, there are bound-
aries where Y becomes such that one or more of the projected four-brackets (a a+1bb+1)
become zero. Such projected external data lie on a boundary of the principal domain
D, x. Boundaries of this type are already present in tree-level amplituhedra, which are
well-understood and complementary to the focus of our work.

Instead, the boundaries relevant to our analysis occur when Y is such that the pro-
jected external data are generic, but the £0 satisfy one or more on-shell conditions of the

form
(LY aa+1) =0 and/or (£ £B)) =0, 3.7)

We refer to boundaries of this type as £-boundaries*. The collection of loop momenta sat-
isfying a given set of on-shell conditions comprises a set whose connected components
we call branches. Consider two sets of on-shell conditions S, S/, with S’ C S a proper
subset, and B (B’) a branch of solutions to S (S’). Since S’ C S, B’ imposes fewer con-
straints on the degrees of freedom of the loop momenta than B does. In the case when
B C B', we say B is a relaxation of B. We use A, \ | to denote the closure of the ampli-
tuhedron, consisting of A, i | together with all of its boundaries. We say that A,y | has

a boundary of type Bif BN A, x| # @ and dim(BN A,y 1) = dim(B).

3.14 The Landau Equations

In [17] it was argued, based on well-known and general properties of scattering am-

plitudes in quantum field theory (see in particular [27]), that all information about the

4In the sequel [47] we will strengthen this definition to require that (M £(2)> = 0 at two loops.
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locations of branch points of amplitudes in SYM theory can be extracted from knowl-
edge of the L-boundaries of amplituhedra via the Landau equations [26, 33]. In order
to formulate the Landau equations we must parameterize the space of loop momenta in

terms of 4L variables d 4. For example, we could take® £(Y) = D) Z with

10 d d 10 ds d
D — PR pe - > ete, (3.8)

01d3d4 01d7d8

but any other parameterization works just as well.
Consider now an L-boundary of some A,y ; on which the L lines £() satisfy d on-

shell constraints

=0 (J=12,...,4d), (3.9)

each of which is of the form of one of the brackets shown in Eq. (3.7). The Landau
equations for this set of on-shell constraints comprise Eq. (3.9) together with a set of

equations on d auxiliary variables a; known as Feynman parameters:

S o)

Y aj=- =0 (A=1,...,4L). (3.10)
= 0da

The latter set of equations are sometimes referred to as the Kirchhoff conditions.

We are never interested in the values of the Feynman parameters, we only want
to know under what conditions nontrivial solutions to Landau equations exist. Here,
“nontrivial” means that the a; must not all vanish®. Altogether we have d + 4L equa-
tions in d + 4L variables (the d aj’s and the 4L d 4’s). However, the Kirchhoff conditions
are clearly invariant under a projective transformation that multiplies all of the &} simul-

taneously by a common nonzero number, so the effective number of free parameters is

5By writing each £ as a 2 x 4 matrix, instead of 2 x (k + 4), we mean to imply that we are effectively
working in a gauge where the last four columns of Y are zero and so the first k columns of each £ are
irrelevant and do not need to be displayed.

6Solutions for which some of the Feynman parameters vanish are often called “subleading” Landau
singularities in the literature, in contrast to a “leading” Landau singularity for which all a’s are nonzero.
We will make no use of this terminology and pay no attention to the values of the a’s other than ensuring
they do not all vanish.
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only d +4L — 1. Therefore, we might expect that nontrivial solutions to the Landau
equations do not generically exist, but that they may exist on codimension-one loci in
Conf, (IP?) — these are the loci on which the associated scattering amplitude may have
a singularity according to [26, 33].

However the structure of solutions is rather richer than this naive expectation sug-
gests because the equations are typically polynomial rather than linear, and they may
not always be algebraically independent. As we will see in the examples considered
in Sec. 3.5, it is common for nontrivial solutions to exist for generic projected external
data’, and it can happen that there are branches of solutions that exist only on loci of
codimension higher than one. We will not keep track of solutions of either of these types
since they do not correspond to branch points in the space of generic projected external
data.

There are two important points about our procedure which were encountered in [17]
and deserve to be emphasized. The first is a subtlety that arises from the fact that the
on-shell conditions satisfied on a given boundary of some amplituhedron are not al-
ways independent. For example, the end of Sec. 3 of [17] discusses a boundary of A, »
described by nine on-shell conditions with the property that the ninth is implied by
the other eight. This situation arises generically for L > 1, and a procedure — called
resolution — for dealing with these cases was proposed in [17]. We postpone further
discussion of this point to the sequel as this paper focuses only on one-loop examples.

Second, there is a fundamental asymmetry between the two types of Landau equa-
tions, (3.9) and (3.10), in two respects. When solving the on-shell conditions we are only
interested in branches of solutions that (A1) exist for generic projected external data, and
that (A2) have nonempty intersection with A, \ ; with correct dimension. In contrast,
when further imposing the Kirchhoff constraints on these branches, we are interested

in solutions that (B1) exist on codimension-one loci in Conf,(IP3), and (B2) need not

7Solutions of this type were associated with infrared singularities in [16]. We do not keep track of these
solutions since the infrared structure of amplitudes in massless gauge theory is understood to all loop
order based on exponentiation [77, 63]. However, if some set of Landau equations has an “IR solution”
at some particular L‘([), there may be other solutions, at different values of £(Z), that exist only on loci of
codimension one. In such cases we do need to keep track of the latter.
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remain within A, ; ;. The origin of this asymmetry was discussed in [17]. In brief, it
arises from Cutkoskian intuition whereby singularities of an amplitude may arise from
configurations of loop momenta that are outside the physical domain of integration (by
virtue of being complex; or, in the current context, being outside the closure of the am-
plituhedron), and are only accessible after analytic continuation to some higher sheet;
whereas the monodromy of an amplitude around a singularity is computed by an inte-
gral over the physical domain with the cut propagators replaced by delta functions. The
resulting monodromy will be zero, i.e. the branch point doesn’t really exist, if there is
no overlap between the physical domain and the locus where the cuts are satisfied, mo-
tivating (A2) above. In summary, it is important to “solve the on-shell conditions first”
and then impose the Kirchhoff conditions on the appropriate branches of solutions only

afterwards.

3.1.5 Summary: The Algorithm

The Landau equations may be interpreted as defining a map which associates to each
boundary of the amplituhedron A, \ ; a locus in Conf, (IP?) on which the corresponding
n-point NMHV L-loop amplitude has a singularity. The Landau equations themselves
have no way to indicate whether a singularity is a pole or branch point. However, it
is expected that all poles in SYM theory arise from boundaries that are present already
in the tree-level amplituhedra [4]. These occur when some (aa+1bb+1) go to zero as
discussed at the beginning of Sec. 3.1.3. The aim of our work is to understand the loci
where amplitudes have branch points, so we confine our attention to the £-boundaries
defined in that section.

The algorithm for finding all branch points of the n-particle NMHV L-loop ampli-

tude is therefore simple in principle:
1. Enumerate all £-boundaries of A, 1 for generic projected external data.

2. For each £-boundary, identify the codimension-one loci (if there are any) in Conf, (IP?)

on which the corresponding Landau equations admit nontrivial solutions.
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However, it remains a difficult and important outstanding problem to fully charac-
terize the boundaries of general amplituhedra. In the remainder of this paper we focus
on the special case L = 1, since all £-boundaries of A, \ 1 (which have been discussed

extensively in [10]) may be enumerated directly for any given n:
1(a). Start with a list of all possible sets of on-shell conditions of the form (£ aa+1) = 0.

1(b). For each such set, identify all branches of solutions that exist for generic projected

external data.

1(c). For each such branch B, determine the values of k for which A,y 1 has a boundary

of type B.

It would be enormously inefficient to carry out this simple-minded algorithm beyond
one loop. Fortunately, we will see in the sequel that the one-loop results of this paper

can be exploited very effectively to generate £-boundaries of L > 1 amplituhedra.

3.2 One-Loop Branches

In this section we carry out steps 1(a) and 1(b) listed at the end of Sec. 3.1.5. To that end
we first introduce a graphical notation for representing sets of on-shell conditions via
Landau diagrams. Landau diagrams take the form of ordinary Feynman diagrams, with
external lines labeled 1,...,n in cyclic order and one internal line (called a propagator)
corresponding to each on-shell condition. Landau diagrams relevant to amplituhedra
are always planar. Each internal face of an L-loop Landau diagram is labeled by a dis-
tinct ¢ € {1,..., L}, and each external face may be labeled by the pair (2 a+1) of external
lines bounding that face.

The set of on-shell conditions encoded in a given Landau diagram is read off as

follows:

e To each propagator bounding an internal face ¢ and an external face (aa+1) we

associate the on-shell condition (£(¥) aa+1) = 0.
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e To each propagator bounding two internal faces /1, /> we associate the on-shell

condition (£(“) £(2)) = 0.

At one loop we only have on-shell conditions of the first type. Moreover, since £
only has four degrees of freedom (the dimension of Gr(2,4) is four), solutions to a set
of on-shell conditions will exist for generic projected external data only if the number
of conditions is d < 4. Diagrams with d = 1,2,3,4 are respectively named tadpoles,
bubbles, triangles and boxes. The structure of solutions to a set of on-shell conditions
can change significantly depending on how many pairs of conditions involve adjacent
indices. Out of abundance of caution it is therefore necessary to consider separately
the eleven distinct types of Landau diagrams shown in the second column of Tab. 3.1.
For d > 1 their names are qualified by indicating the number of nodes with valence
greater than three, called masses. These rules suffice to uniquely name each distinct type
of diagram except the two two-mass boxes shown in Tab. 3.1 which are conventionally
called “easy” and “hard”. This satisfies step 1(a) of the algorithm.

Proceeding now to step 1(b), we display in the third column of Tab. 3.1 all branches
of solutions (as always, for generic projected external data) to the on-shell conditions
associated to each Landau diagram. These expressions are easily checked by inspection
or by a short calculation. More details and further discussion of the geometry of these
problems can be found for example in [32]. The three-mass triangle solution involves

the quantities

p(a) = —a(ij+1kk+1) — (1 —a)(i+1j+1kk+1),
(3.11)

o(a) =a(ijkk+1) + (1 —a)(i+1jkk+1),
and the four-mass box solution is sufficiently messy that we have chosen not to write it
out explicitly.
Altogether there are nineteen distinct types of branches, which we have numbered
(1) through (19) in Tab. 3.1 for ease of reference. The set of solutions to any set of on-shell
conditions of the form (£ aa+1) must be closed under parity, since each line (aa+1)

maps to itself. Most sets of on-shell conditions have two branches of solutions related
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to each other by parity. Only the tadpole, two-mass bubble, and three-mass triangle
(branches (1), (4), and (9) respectively) have single branches of solutions that are closed

under parity.
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TABLE 3.1: This table shows: the eleven Landau diagrams corresponding to sets of one-loop on-shell conditions that can
be satisfied for generic projected external data; the nineteen branches of solutions to these on-shell conditions; the range
of k for which N\MHYV amplituhedra have boundaries of each type; the twistor diagram depicting the low-k solution (or
one low-k solution for the one-mass triangle and two-mass hard box); the loci in Conf, (IP?) where the Landau equations
for each branch admit nontrivial solutions (where the quantity in the last column vanishes). At one loop it happens that
the loci are the same for each branch of solutions to a given set of on-shell conditions. Here «, 8 are arbitrary numbers,
A is an arbitrary point in IP?, P is an arbitrary plane in IP?, p(«), () are defined in Eq. (3.11), f;; = (aa+1bb+1), and
(i(i—1i4+1)(jj+1)(kk+1)) = (i—1ijj+1)(ii+1kk+1) — (j <> k).
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3.3 One-Loop Boundaries

We now turn to the last step 1(c) from the end of Sec. 3.1.5: for each of the nineteen
branches B listed in Tab. 3.1, we must determine the values of k for which A,y has a
boundary of type B (defined in Sec. 3.1.3). The results of this analysis are listed in the
fourth column of the Tab. 3.1. Our strategy for obtaining these results is two-fold.

In order to prove that an amplituhedron has a boundary of type B, it suffices to write
down a pair of matrices C, D such that definitions (3.4) and (3.5) hold, C and (’8 ) are
both non-negative, and the external data projected through ¥ = CZ are generic for
generic positive Z. We call such a pair C, D a valid configuration for B. In the sections be-
low we present explicit valid configurations for each of the nineteen branches. Initially
we consider for each branch only the lowest value of k for which a valid configuration
exists; in Sec. 3.3.7 we explain how to grow these to larger values of k and establish the
upper bounds on k shown in Tab. 3.1.

However, in order to prove that an amplituhedron does not have a boundary of type
B, it does not suffice to find a configuration that is not valid; one must show that no valid

configuration exists. We address this problem in the next section.

3.3.1 A Criterion for Establishing Absent Branches

Fortunately, for £-boundaries of the type under consideration there is a simple criterion
for establishing when no valid configuration can exist. The crucial ingredient is that
if (Y,£) € Ayx1 and (Laa+1) = 0 for some 4, then (£ aa+2) must necessarily be
non-positive®; the proof of this assertion, which we omit here, parallels that of a closely
related statement proven in Sec. 6 of [37].

Consider now a line of the form £ = (¢Z, + pZ,11, A) for some point A and some
parameters «, f which are not both vanishing. We will show that an £ of this form can

lie in the closure of an amplituhedron only if £ = (aa+1) or af > 0.

8 Unlessa € {n —1,n}, when one must take into account the twisted cyclic symmetry. In all that follows
we will for simplicity always assume that indices are outside of this range, which lets us uniformly ignore
all sign factors that might arise from the twisted cyclic symmetry; these signs necessarily always conspire
to ensure that all statements about amplitudes are Z,, cyclically invariant.
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First, as just noted, since (£ aa+1) = 0 we must have

0> (Laa+2) =Bla+1Aaa+2). (3.12)

On the other hand, as mentioned at the end of Sec. 3.1.2, we also have (L aa+1) > 0 for

all a. Applying this to a + 1 gives

0<(La+la+2) =al{aAa+la+2). (3.13)

If (aa+1a+2 A) # 0, then the two inequalities (3.12) and (3.13) imply that a > 0.
This is the conclusion we wanted, but it remains to address what happens if (aa+1a+2 A) =
0. In this case L lies in the plane (aa+1a+2) so we can take £ = (aZ, + BZa+1, YZat+1 +

6Z442). Then we have

0> (La+1a+3) = —ad(aa+1a+2a+3),
(3.14)

0<(La—1la)=Bé(a—1aa+1a+2).

Both of the four-brackets in these inequalities are positive (for generic projected external
data) since they are of the form (aa+1bb+1), so we conclude that either 6 = 0, which
means that £ = (aa+1), or else we again have aff > 0.

In conclusion, we have developed a robust test which establishes that

L= (aZs+PZsi1,A) € Ayxqonlyif £ = (aa+1)oraf>0. (3.15)

This statement is independent of k (and Y)), but when applied to particular branches, we
will generally encounter cases for which a is negative unless certain sequences of four-
brackets of the projected external data have a certain number of sign flips; this signals

that the branch may intersect A, i 1 only for certain values of k.
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3.3.2 MHYV Lower Bounds

The fact that MHV amplituhedra only have boundaries of type (1)—(7), (10) and (12)
(referring to the numbers given in the “Branches” column of Tab. 3.1) follows implicitly
from the results of [17] where all boundaries of one- (and two-) loop MHV amplituhedra
were studied. It is nevertheless useful to still consider these cases since we will need
the corresponding D-matrices below to establish that amplituhedra have boundaries of
these types forall 0 <k < n —4.

In this and the following two sections we always assume, without loss of generality,
that indices i, j,k, ¢ are cyclically ordered and non-adjacent (i+1 < j < j+1 < k <
k+1 < ¢), and moreover that 1 < i and ¢ < n. In particular, this means that we ignore

potential signs from the twisted cyclic symmetry (see footnote 8).

Branch (4) is a prototype for several other branches, so we begin with it instead of

branch (1). The solution for £ shown in Tab. 3.1 may be represented as £ = DZ with

i+l 1

o« 1—a O 0
D = , (3.16)

0 0 B 1-8

where we display only the nonzero columns of the 2 x n matrix in the indicated po-
sitions 7, i+1, j and j+1. This solves the two-mass bubble on-shell conditions for all
values of the parameters « and B. This branch intersects A, o1 when they lie in the
range 0 < a, 8 < 1, where the matrix D is non-negative. Thus we conclude that MHV

amplituhedra have boundaries of type (4).

Branches (5), (6), (7), (10), and (12) can all be represented by special cases of Eq. (3.16)
for « and/or B taking values 0 and/or 1, and/or with columns relabeled, so MHV am-

plituhedra also have boundaries of all of these types.
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Branch (1) may be represented by

i—-1 i i+l 42

0 o 1—w 0
D= . (3.17)

&i—1 & Qi1 Kigo

This provides a solution to the tadpole on-shell condition (£ ii+1) = 0 for all values of
the parameters, and there clearly are ranges for which D is non-negative. Note that all
but two of the parameters in the second row could be gauged away, but this fact is not
relevant at the moment (see footnote 9). If 0 < a < 1, we could have either «, = 0 for
a<i+landa, >0fora >i,ora =0fora >ianda, < 0fora < i+ 1. We conclude

that MHV amplituhedra also have boundaries of this type.
Branch (2) is the special case # = 1 of branch (1).

Branch (3) may be represented by

i—-1 1 i+1
1 0 «a
D= (3.18)
0o 1 B

for arbitrary «, B, which is non-negative for « < 0 and p > 0, so MHV amplituhedra

also have boundaries of this type.

3.3.3 NMHYV Lower Bounds

Branch (8) of the two-mass triangle may be represented as

it i

a 1—uw 0 0
D = (3.19)

0 0 —(ij+1) (ij)
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for arbitrary a. For generic projected external data £ # (j j+1), so criterion (3.15) shows
that this configuration has a chance to lie on the boundary of an amplituhedron only
if —(ij+1)(ij) > 0. This is not possible for MHV external data, where the ordered
four-brackets are always positive, so MHV amplituhedra do not have boundaries of
this type. But note that the inequality can be satisfied if there is at least one sign flip in
the sequence (i ), between ¢ = j and e = j+1. This motivates us to consider k = 1, so

let us now check that with

i—1 i i+l 1

C= <Ci_1 G o o Cm), (3.20)

the pair C, D is a valid configuration. First of all, it is straightforward to check that
L = DZ still satisfies the two-mass triangle on-shell conditions. This statement is not
completely trivial since these conditions now depend on Y = CZ because of the projec-
tion (3.2). Second, in order for C to be non-negative we need all five of the indicated c,’s
to be non-negative. Moreover, in order to support generic projected external data, we
need them all to be nonzero — if, say, c; were equal to zero, then (i—1i+1;j+1) would
vanish, etc. Finally, for ( 2) to be non-negative we need

Ci

0<an < ——m—.
Cit+Cit1

(3.21)

This branch intersects A, 1 1 for « in this range, so we conclude that NMHYV amplituhe-

dra have boundaries of this type.

Branch (9) is the general solution of the three-mass triangle, and is already given

in Tab. 3.1 in D-matrix form as

D= ) (3.22)
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with p(«) and o(«) defined in Eq. (3.11). For generic projected external data this £
can never attain the value (ii+1) or (jj+1). Applying criterion (3.15) for both 2 =
i and a = j shows that this configuration has a chance to lie on the boundary of an
amplituhedron only if #(1 —a) > 0 and p(a)o(a) > 0. This is not possible for MHV
external data, so we conclude that MHV amplituhedra do not have boundaries of this
type. However, the p(a)o(a) > 0 inequality can be satisfied if the sequences (ikk+1 o)
and (i+1kk+1e) change sign between e = j and e = j+1, as long as the sequences
(jkk+1e) and (j+1kk+1e) do not flip sign here. Consider for k = 1 the matrix

i il 1k k1

C= (‘Xci (1—a)c G Ci+1  Ck Ck+1>' (3.23)

Then C, D is a valid configuration because (1) £ = D Z satisfies the three-mass triangle
on-shell conditions (for all values of a and the ¢’s), and, (2) for 0 < a < 1 and all
c’s positive, the C-matrix is non-negative and supports generic positive external data
(because it has at least k+4 = 5 nonzero columns), and (3) for this range of parameters
(2) is also non-negative. Since this branch intersects A,, 1 1 for a range of a, we conclude

that NMHV amplituhedra have boundaries of this type.

Branch (16) is the special case @ = 1 of branch (9).

Branch (14) is the special case j — i + 1, k — j of branch (16).

Branch (15) is equivalent to the mirror image of branch (14), after relabeling.

Branch (11) is the special case j = i + 2 of branch (15).
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3.3.4 N?MHV Lower Bounds

Branch (17) may be represented by

j j+1 k k+1
b_ 0 0 —(k+1) (ik) ‘ (3.24)
—(ij+1) (ij) 0 0

For generic projected external data the corresponding £ will never attain the value
(jj+1) or (kk+1). We can apply criterion (3.15) for both 2 = j and a = k, which reveals
that this configuration has a chance to lie on a boundary of an amplituhedron only if
both —(ij+1)(ij) > 0and —(ik+1)(ik) > 0. This is impossible for MHV external data,
and it is also impossible in the NMHYV case, where some projected four-brackets may be
negative but the sequence (i @) may only flip sign once, whereas we need it to flip sign
twice, once between e = jand e = j+1, and again between e = k and e = k+1. We
conclude that k < 2 amplituhedra do not have boundaries of this form. Consider now

pairing (3.24) with the k = 2 matrix

i-1 i i+l j+1 k k1

c— cn c12 3 ¢ cs 0 0 ) (3.25)

1 c»n c3 0 0 ¢ o5

It is straightforward to check that C, D is a valid configuration for a range of values of

c’s, so we conclude that k = 2 amplituhedra have boundaries of this type.

Branch (13) may be represented by

D= , (3.26)
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which by (3.15) cannot lie on a boundary of an amplituhedron unless the sequence (j o)
flips sign twice, first between ¢ = i—1 and i and again between @ = i and i+1. Therefore,
neither MHV nor NMHV amplituhedra have boundaries of this type. However it is

straightforward to verify that with

i1 i il -1 j+1
co ci1 c2 0 3 e cr5 (3.27)
0 ¢ ¢ €3 0 025

the pair C, D is a valid configuration for a range of values of ¢’s, so k = 2 amplituhedra

do have boundaries of this type.
Branches (18) and (19) of the four-mass box may be represented as

i+l j 1

a 1—a O 0
D = , (3.28)

0 0 B 1-p

where « and B are fixed by requiring that £ intersects the lines (kk+1) and (¢ /¢+1).
The values of « and 8 on the two branches were written explicitly in [78]; however, the
complexity of those expressions makes analytic positivity analysis difficult. We have
therefore resorted to numerical testing: using the algorithm described in Sec. 5.4 of [3],
we generate a random positive n X (k +4) Z-matrix and a random positive k x n C-
matrix. After projecting through Y = CZ, we obtain projected external data with the
correct NKMHYV sign-flipping properties. We have checked numerically that both four-
mass box branches lie on the boundary of NMHV amplituhedra only for k > 2, for

many instances of randomly generated external data.
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3.3.5 Emergent Positivity

The analysis of Secs. 3.3.2, 3.3.3 and 3.3.4 concludes the proof of all of the lower bounds
on k shown in the fourth column of Tab. 3.1. We certainly do not claim to have written
down the most general possible valid C, D configurations; the ones we display for k > 0
have been specifically chosen to demonstrate an interesting feature we call emergent
positivity.

In each k > 0 case we encountered D-matrices that are only non-negative if certain
sequences of projected four-brackets of the form (aa+10b e) change sign k times, at cer-
tain precisely specified locations. It is straightforward to check that within the range of
validity of each C, D pair we have written down, the structure of the C matrix is such
that it automatically puts the required sign flips in just the right places to make the D
matrix, on its own, non-negative (provided, of course, that (IC) ) is non-negative). It is
not a priori obvious that it had to be possible to find pairs C, D satisfying this kind of

emergent positivity; indeed, it is easy to find valid pairs for which it does not hold.

3.3.6 Parity and Upper Bounds

Parity relates each branch to itself or to the other branch associated with the same Lan-
dau diagram. Since parity is a symmetry of the amplituhedron [37] which relates k to
n — k — 4, the lower bounds on k that we have established for various branches im-
ply upper bounds on k for their corresponding parity conjugates. These results are
indicated in the fourth column of Tab. 3.1, where the inequalities are aligned so as to
highlight the parity symmetry.

Although these k upper bounds are required by parity symmetry, they may seem
rather mysterious from the analysis carried out so far. We have seen that certain branches
can be boundaries of an amplituhedron only if certain sequences of four-brackets have
(at least) one or two sign flips. In the next section, we explain a mechanism which gives
an upper bound to the number of sign flips, or equivalently which gives the upper

bounds on k that are required by parity symmetry.
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3.3.7 Increasing Helicity

So far we have only established that NMHYV amplituhedra have boundaries of certain
types for specific low (or, by parity symmetry, high) values of k. It remains to show
that all of the branches listed in Tab. 3.1 lie on boundaries of amplituhedra for all of the
intermediate helicities. To this end we describe now an algorithm for converting a valid
configuration Cy, Dy at the initial, minimal value of ky (with Cy being the empty matrix
for those branches with kg = 0) into a configuration that is valid at some higher value
of k.

We maintain the structure of D = Dy and append to Cy a matrix C’ of dimensions
(k —ko) x nin order to build a configuration for helicity k. Defining C = ( (é? ), we look

for a C’ such that following properties are satisfied:
1. The same on-shell conditions are satisfied.

2. In order for the configuration to support generic projected external data, the C-
matrix must have m > k + 4 nonzero columns, and the rank of any m — 4 of those

columns must be k.
3. Both C and ( g ) remain non-negative.

Since the C-matrix only has n columns in total, it is manifest from property (2) that
everything shuts off for k > n — 4, as expected.

Let us attempt to preserve the emergent positivity of D. If kg = 0 then this is trivial;
the D-matrices in Sec. 3.3.2 do not depend on any brackets, so adding rows to the empty
Co has no effect on D. For kg > 0, let A and B be two entries in Dy that are responsible
for imposing a sign flip requirement. The argument applies equally to all of the kg > 0
branches, but for the sake of definiteness consider from Eq. (3.19) the two four-bracket
dependent entries A = — (i j+1) and B = (i j). Assuming that Cy is given by Eq. (3.20) so
that both A and B are positive with respect to Yo = CoZ, then AB = —[Yyij+1][Yoij] >
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0. If we append a second row C’ and define Y’ = C'Z then we have

A=Y 212 Zi41 Zjn] = —¢j[2;Y' Zi 21 Zj44], (329)

B = [YO Y/ Zifl Zi Zl‘+1 Z]] = CjJrl [Zj+1 Y/ Zi Zi+1 Z]] .

Since ¢; and c;j1 are both positive, we see that A and B still satisty AB > 0, regardless
of the value of Y’. By the same argument, arbitrary rows can be added to a C-matrix
without affecting the on-shell conditions, so property (1) also holds trivially (and also if
ko = 0).

The structure of the initial Dy of Secs. 3.3.2, 3.3.3 and 3.3.4 are similar in that the
nonzero columns of this matrix are grouped into at most two clusters’. For example,
for branch (17) there are two clusters {j, j+1} and {k, k+1} while for branch (3) there is
only a single cluster {i—1,i,i+1}. Property (3) can be preserved most easily if we add
suitable columns only in a gap between clusters. Let us illustrate how this works in the

case of branch (4) where Cy is empty and we can start by taking either

i—1 i i+l 2 e =1 j j+1 j+2
0O «a 1=« 0 --- 0 O 0 0
Do
o 0 0 0 0 o p 1-p 0 .- | (30
0 0 Cy1 Cy2 -+ C1 G O 0
to fill in the gap between clusters {i,i+1} and {j, j+1}, or
i1 i il 42 - j=1 j 41 j+2
0 a 1—-a O 0 O 0 0
Dy
C = 0 0 0 0 o g 1-p 0 - (3.31)
-1 G 0 0 -+ 0 0 G (a2

to fill in the gap between {j, j+1} and {i,i+1} that “wraps around” from n back to 1. In

9Branch (1) appears to be an exception, but only because Eq. (3.17) as written is unnecessarily general:
it is sufficient for the second row to have only three nonzero entries, either in columns {i—3,i—2,i—1} or
in columns {i+1,i+2,i+3}.
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both (3.30) and (3.31) each ¢, is understood to be a k-component column vector, and in
both cases ( %’ ) can be made non-negative as long as C is chosen to be non-negative'’.
In this manner we can trivially increment the k-validity of a given configuration until
the gaps become full. This cutoff depends on the precise positions of the gaps, and is
most stringent when the two clusters are maximally separated from each other, since
this forces the gaps to be relatively small. In this worst case we can fit only [ 5] columns
into a C-matrix of one of the above two types. Keeping in mind property (2) that the
C-matrix should have at least k + 4 nonzero columns, we see that this construction can
reach values of k < [4] — 4. In order to proceed further, we can (for example) add
additional columns ¢; and c¢;;1 to Eq. (3.30), or ¢;11 and ¢; to Eq. (3.31). Choosing a non-
negative C then no longer trivially guarantees that ( %0 ) will also be non-negative, but
there are ranges of C for which this is possible to arrange, which is sufficient for our
argument.

It is possible to proceed even further by adding additional, specially crafted columns
in both gaps, but the argument is intricate and depends delicately on the particular
structure of each individual branch (as evident from the delicate structure of k upper
bounds in Tab. 3.1). In the interest of brevity we terminate our discussion of the algo-
rithm here and note that it is straightforward to check that for all boundaries, even in the
worst case the gaps are always big enough to allow the construction we have described
to proceed up to and including the parity-symmetric midpointk = |4 | — 2; then we ap-
peal again to parity symmetry in order to establish the existence of valid configurations

for k between this midpoint and the upper bound.

This finally concludes the proof of the k-bounds shown in the fourth column of Tab. 3.1,
and thereby step 1(c) from Sec. 3.1.5.

1071f k is even this is automatic; if k is odd the two rows of Dy should be exchanged.
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3.4 The Hierarchy of One-Loop Boundaries

Step (1) of our analysis (Sec. 3.1.5) is now complete at one loop. Before moving on
to step (2) we demonstrate that the boundaries classified in Sec. 3.3 can be generated
by a few simple graph operations applied to the maximal codimension boundaries of
MHYV amplituhedra (Tab. 3.1 type (12) or, as a special case, (10)). This arrangement will
prove useful in the sequel since one-loop boundaries are the basic building blocks for
constructing boundary configurations at arbitrary loop order.

We call boundaries of type (2), (5)—(7), (10), (12), and (14)—(16) low-k boundaries since
they are valid for the smallest value of k for their respective Landau diagrams. The
branches (8), (11), (13) and (17) are high-k boundaries and are respectively the parity
conjugates of (7), (10), (12) and (16). Branch (3), the parity conjugate of branch (2), is
properly regarded as a high-k boundary since (2) is low-k, but it is accidentally valid for
all k. Branches (1), (4), and (9) are self-conjugate under parity and are considered both

low-k and high-k, as are the parity-conjugate pair (18), (19).

3.4.1 A Graphical Notation for Low-helicity Boundaries

We begin by devising a graphical notation in terms of which the operations between
momentum twistor solutions are naturally phrased. These graphs are twistor diagrams'!
depicting various configurations of intersecting lines in IP?. The elements of a twistor

diagram, an example of which is shown in panel (a) of Fig. 3.1, are:

e The red line depicts an £ solving some on-shell conditions, specifically:

¢ if £ and a single line segment labeled i intersect at an empty node, then

(Lii+1) =0, and

e if £ and two line segments intersect at a filled node labeled i, then

(Li—1i) = (Lii+1) = 0.

An “empty” node is colored red, indicating the line passing through it. A “filled” node

is filled in solid black, obscuring the line passing through it.

1Not to be confused with the twistor diagrams of [Hodges:2005bf].



70 Chapter 3. All-Helicity Symbol Alphabets from Unwound Amplituhedra

(a) (b) (©)
FIGURE 3.1: The twistor diagram shown in (a) depicts branch (16) of so-
lutions to the three-mass box on-shell conditions (Li—1i) = (Lii+1) =
(Ljj+1) = (Lkk+1) = 0, which is a valid boundary for k > 1. This
branch passes through the point Z; and intersects the lines (jj+1) and
(kk+1). As drawn, the intersection at j is an example of a non-MHV in-
tersection, but the figure is agnostic about the relative cyclic ordering of
i,j,k and is intended to represent either possibility. Therefore, the corre-
sponding Landau diagram can be either (b) or (c) depending on whether
i<j<kori<k<j.

In general a given £ can pass through as many as four labeled nodes (for generic
projected external data, which we always assume). If there are four, then none of them
can be filled. If there are three, then at most one of them can be filled, and we choose
to always draw it as either the first or last node along L. If there are more than two,
then any nodes between the first and last are called non-MHYV intersections, which are
necessarily empty. This name is appropriate because branches satisfying such on-shell
constraints are not valid boundaries of MHV amplituhedra, and each non-MHYV inter-
section in a twistor diagram increases the minimum value of k by one.

Although no such diagrams appear in this paper, the extension to higher loops is
obvious: each L is represented by a line of a different color, and the presence of an
on-shell condition of the form (£(“1) £{%)) = 0 is indicated by an empty node at the
intersection of the lines £(“) and £(%).

To each twistor diagram it is simple to associate one or more Landau diagrams, as
also shown in Fig. 3.1. If a twistor diagram has a filled node at i then an associated Lan-
dau diagram has two propagators (£i—11) and (L ii+1) requiring a massless corner at
i in the Landau diagram. If a twistor diagram has an empty node on the line segment

marked i then an associated Landau diagram only has the single propagator (Lii+1),

requiring a massive corner in the Landau diagram. Therefore, twistor diagrams should
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be thought of as graphical shorthand which both depict the low-k solution to the cut
conditions and simultaneously represent one or more Landau diagrams, as explained
in the caption of Fig. 3.1.

One useful feature of this graphical notation is that the nodes of a twistor diagram
fully encode the total number of propagators, 71prps, in the Landau diagram (and so also
the total number of on-shell conditions): each filled node accounts for two propagators,

and each empty node accounts for one propagator:

Nprops = 2nilled + Nempty - (332)

This feature holds at higher loop order where this counting directly indicates how many
propagators to associate with each loop.

Let us emphasize that a twistor diagram generally contains more information than
its associated Landau diagram, as it indicates not only the set of on-shell conditions
satisfied, but also specifies a particular branch of solutions thereto. The sole exception
is the four-mass box, for which the above rules do not provide the twistor diagram with
any way to distinguish the two branches (18), (19) of solutions. Moreover, the rules
also do not provide any way to indicate that an £ lies in a particular plane, such as
i. Therefore we can only meaningfully represent the low-k boundaries defined at the
beginning of Sec. 3.4.

Given a twistor diagram depicting some branch, a twistor diagram corresponding to
a relaxation of that branch may be obtained by deleting a non-MHYV intersection of the
type shown in (a) of Fig. 3.1, by replacing a filled node and its two line segments with
an empty node and a single segment, or by deleting an empty node. In the associated
Landau diagram, a relaxation corresponds to collapsing an internal edge of the graph.

This is formalized in greater detail in Sec. 3.4.2.

3.4.2 A Graphical Recursion for Generating Low-helicity Boundaries

In Fig. 3.2 we organize twistor diagrams representing eight types of boundaries accord-

ing to d and k; these are respectively the number of on-shell conditions d satisfied on
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Codimension
d=4 d=3 d =2 d=1
A\
Ui+
k>0 _
R/\/CLJr R/
-5
k>0
= <
jas
=
4
Z.
k>1
< <
K:z+ ,R/
k>2 ¢
k

FIGURE 3.2: Twistor diagrams depicting eight types of low-k boundaries
of N\MHYV amplituhedra, organized according to the minimum value of
k and the codimension d (equivalently, the number of on-shell conditions
satisfied). These correspond respectively to branch types (2), (1), (12), (7),
(4), (16), (9) and (18)/(19). The graph operators K, R, and U are explained
in the text and demonstrated in Figs. 3.3-3.5, respectively. Evidently all
eight types of boundaries can be generated by acting with sequences of
these operators on MHV maximal codimension boundaries of the type
shown shaded in gray. There is an analogous parity-conjugated version
of this hierarchy which relates all of the high-k branches to each other.
The missing low-k boundary types (5), (6), (10), (11), (14) and (15) are
degenerate cases which can be obtained by starting with j = i + 1 in the
gray blob.
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the boundary, and the minimum value of k for which the boundary is valid. It is evi-
dent from this data that there is a simple relation between d, k, and the number of filled
(ni11ed) and empty (empty) nodes. Specifically, we see that an NEMHV amplituhedron

can have boundaries of a type displayed in a given twistor diagram only if
k> 2nempty + 3nfijted — d—2= Nempty + Nfijled — 2, (333)

where we have used Eq. (3.32) with npops = d. In the sequel we will describe a useful
map from Landau diagrams to the on-shell diagrams of [3] which manifests the rela-
tion (3.33) and provides a powerful generalization thereof to higher loop order. The
amplituhedron-based approach has some advantages over that of enumerating on-shell
diagrams that will also be explored in the sequel. First of all, the minimal required he-
licity of a multi-loop configuration can be read off from each loop line separately. Sec-
ond, we immediately know the relevant solution branches for a given helicity. And fi-
nally, compared to enumerating all relevant on-shell diagrams the amplituhedron-based
method is significantly more compact since it can be used to produce a minimal subset of
diagrams such that all allowed diagrams are relaxations thereof, including limits where
massive external legs become massless or vanish.

From the data displayed in Fig. 3.2 we see that a natural organizational principle
emerges: all NNMHYV one-loop twistor diagrams can be obtained from the unique maxi-
mal codimension MHV diagram (shown shaded in gray) via sequences of simple graph
operations which we explain in turn.

The first graph operation K increments the helicity of the diagram on which it op-
erates. (The name K is a reminder that it increases k.) Its operation is demonstrated
in Fig. 3.3. Specifically, K; replaces a filled node at a point i along £ by two empty
nodes, one at i and a second one on a new non-MHYV intersection added to the diagram.
Since ng)jeq decreases by one but 71empty increases by two under this operation, it is clear
from Eq. (3.33) that K; always increases by one the minimal value of k on which the
branch indicated by the twistor diagram has support. From the point of view of Landau

diagrams, this operation replaces a massless node with a massive one, as illustrated in
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1—1 7 i+1 1—1
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FIGURE 3.3: The graph operation K; maps an N\MHV twistor diagram
into an N*"'MHYV twistor diagram as shown in the top row. On Landau
diagrams, this corresponds to replacing a massless corner by a massive
corner; such an operation is effectively an inverse collinear limit. The
shaded region in the figures represents an arbitrary planar sub-graph. A
dashed external line on a Landau diagram may be either one massless
external leg so the whole corner is massive, or completely removed so
the whole corner is massless.

the bottom row of Fig. 3.3, and hence it may be viewed as an “inverse” collinear limit.

The other two graph operations R and U both correspond to relaxations, as defined
in Sec. 3.1.3, since they each reduce the number of on-shell conditions by one, stepping
thereby one column to the right in Fig. 3.2.

The operation R; simply removes (hence the name R) an empty node i from a
twistor diagram, as shown in Fig. 3.4. This corresponds to removing (Lii+1) = 0
from the set of on-shell conditions satisfied by £'2.

The last operation, U, corresponds to “un-pinning” a filled node (hence “{”). Un-
pinning means removing one constraint from a pair (Li—1i) = (Lii+1) = 0. The line
L, which was pinned to the point i, is then free to slide along the line segment (i—117) or
(1i+1) (for U; — or U; 1, respectively). In the twistor diagram, this is depicted by replac-
ing the filled node at the point i with a single empty node along the line segment (ii+1)
(see Fig. 3.5). Only U, appears in Fig. 3.2 because at one loop, all diagrams generated
by any U/ operation are equivalent, up to relabeling, to some diagram generated by

a U,. In general, however, it is necessary to track the subscript + since both choices

12Note that in line with the conventions adopted in Sec. 3.4.1 we label R; only with the smaller label of
a pair (ii+1).
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FIGURE 3.4: The graph operation R; relaxes £ by removing the condi-
tion that £ must pass through the line (jj+1); this is equivalent to re-
moving the on-shell condition (£ jj+1) = 0. On Landau diagrams, this
corresponds to collapsing the propagator indicated by the filled dot in the
bottom figure on the left. The shaded region in the figures represents an
arbitrary planar sub-graph. A dashed external line on a Landau diagram
may be either one massless external leg so the whole corner is massive,
or completely removed so the whole corner is massless. It is to be un-
derstood that the graphical notation implies that j # i +2 and i # j+ 2;
otherwise, the two empty nodes in the top left diagram would be repre-
sented by a single filled node on which the action of R is undefined; the
appropriate graph operation in this case would instead be U.

are equally valid relaxations and can yield inequivalent twistor and Landau diagrams.
From Fig. 3.2, we read off the following identity among the operators acting on any

diagram g:
u]"+g = RkKj,+g . (334)

There was no reason to expect the simple graphical pattern of Fig. 3.5 to emerge
among the twistor diagrams. Indeed in Sec. 3.2 we simply listed all possible sets of
on-shell conditions without taking such an organizational principle into account. At
higher loop order, however, the problem of enumerating all boundaries of NNMHV am-
plituhedra benefits greatly from the fact that all valid configurations of each single loop
can be iteratively generated via these simple rules, starting from the maximal codimen-
sion MHV boundaries. Stated somewhat more abstractly, these graph operations are

instructions for naturally associating boundaries of different amplituhedra.
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FIGURE 3.5: The graph operation Uf; , relaxes a line £ constrained to pass
through the point i, shifting it to lie only along the line (ii+1). This is
equivalent to removing the on-shell constraint (£ i—17) = 0. (The equally
valid relaxation U; _, not pictured here, lets the intersection point slide
onto (i—1i).) On Landau diagrams, this corresponds to collapsing the
propagator indicated by the filled dot in the bottom figure on the left. The
shaded region in the figures represents an arbitrary planar sub-graph. A
dashed external line on a Landau diagram may be either one massless
external leg so the whole corner is massive, or completely removed so
the whole corner is massless. As explained in the caption of Fig. 3.4, the
U operation can be thought of as a special case of the R operation, and we
distinguish the two because only the latter can change the helicity sector
k.
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Before concluding this section it is worth noting (as is evident in Fig. 3.2) that re-
laxing a low-k boundary can never raise the minimum value of k for which that type
of boundary is valid. In other words, we find that if A4, ; has a boundary of type B,
and if B’ is a relaxation of B, then A,y ; also has boundaries of type B’. This property
does not hold in general beyond one loop; a counterexample involving two-loop MHV

amplitudes appears in Fig. 4 of [17].

3.5 Solving Landau Equations in Momentum Twistor Space

As emphasized in Sec. 3.1.5, the Landau equations naturally associate to each boundary
of an amplituhedron a locus in Conf,(IP?) on which the corresponding amplitude has
a singularity. In this section we review the results of solving the Landau equations for
each of the one-loop branches classified in Sec. 3.2, thereby carrying out step 2 of the
algorithm summarized in Sec. 3.1.5. The results of this section were already tabulated
in [16], but we revisit the analysis, choosing just two examples, in order to demonstrate
the simplicity and efficiency of these calculations when carried out directly in momen-
tum twistor space. The utility of this method is on better display in the higher-loop
examples to be considered in the sequel.

As a first example, we consider the tadpole on-shell condition
fi=(Lii+1) =0. (3.35)

We choose any two other points Z;, Z; (which generically satisfy (ii+1jk) # 0) in terms

of which to parameterize
L= (Zi + d1Z]- +doZy, Ziy1 + d3Zj + d4Zk) . (3.36)
Then the on-shell condition (3.35) admits solutions when

didy —dods =0, (3.37)
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while the four Kirchhoff conditions (3.10) are

Déld4 = —0(1d3 = —0(1d2 = aldl =0. (338)

The only nontrivial solution (that means a; # 0; see Sec. 3.1.4) to the equations (3.37)
and (3.38) is to set all four d4 = 0. Since this solution exists for all (generic) projected
external data, it does not correspond to a branch point of an amplitude and is uninter-
esting to us. In other words, in this case the locus we associate to a boundary of this
type is all of Conf, (IP?).

As a second example, consider the two on-shell conditions corresponding to the

two-mass bubble

fi=(Lii+1) =0, fo=(Ljj+1)=0. (3.39)

In this case a convenient parameterization is

L= (Zi+dZis1+doZi, Zj+d3Zi 1 +dsZy). (3.40)

Note that an asymmetry between i and j is necessarily introduced because we should
not allow more than four distinct momentum twistors to appear in the parameteriza-
tion, since they would necessarily be linearly dependent, and we assume of course that

Zy is generic (meaning, as before, that (ii+1jk) # 0). Then

f1=—da(ii+1jk),

fo=ds(ii+1jj4+1) +da(ijj+1k) + (dids — dod3) (i+1jj+1k) (3.41)
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and the Kirchhoff conditions are

0 dy(i+1jj+1k)
—(ii+1jk —da(i+1jj+1k 0
{fi+1]k) 3(i+17j+1k) o (3.42)
0 (ii+1]j+1) — da(i+1]j+1k) | | 2z
0 (ifj+1k) +dy (i+1]j+1k)

Nontrivial solutions exist only if all 2 x 2 minors of the 4 x 2 coefficient matrix vanish.
Three minors are trivially zero, and the one computed from the second and third rows

evaluates simply to

—(ii+1jk)(ii+1]j+1) =0 (3.43)

using the on-shell condition fi = —dy(ii+1jk) = 0. If this quantity vanishes, then
the four remaining constraints (the two on-shell conditions f; = f, = 0 and the two
remaining minors) can be solved for the four d4, and then Eq. (3.42) can be solved to
find the two a;’s. Since (ii+1jk) # 0 by assumption, we conclude that the Landau
equations admit nontrivial solutions only on the codimension-one locus in Conf, (IP3)

where

(ii+1jj+1) =0. (3.44)

These two examples demonstrate that in some cases (e.g. the tadpole example) the
Landau equations admit solutions for any (projected) external data, while in other cases
(e.g. the bubble example) the Landau equations admit solutions only when there is a
codimension-one constraint on the external data. A common feature of these examples
is that some care must be taken in choosing how to parameterize £. In particular, one
must never express £ in terms of four momentum twistors (Z;, Z;, etc.) that appear in
the specification of the on-shell conditions; otherwise, it can be impossible to disentan-
gle the competing requirements that these satisfy some genericity (such as (ii+1jk) # 0

in the above examples) while simultaneously hoping to tease out the constraints they
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must satisfy in order to have a solution (such as Eq. (3.44)). For example, although one
might have been tempted to preserve the symmetry between i and j, it would have been
a mistake to use the four twistors Z;, Z; 1, Z; and Z; 1 in Eq. (3.40).

Instead, it is safest to always pick four completely generic points Z,, . .., Z; in terms

of which to parameterize

1 0 dy d V4
L= T (3.45)
0 1 d3 ds Z.

Zy

The disadvantage of being so careful is that intermediate steps in the calculation become
much more lengthy, a problem we avoid in practice by using a computer algebra system
such as Mathematica.

The results of this analysis for all one-loop branches are summarized in Tab. 3.1.
Naturally these are in accord with those of [26] (as tabulated in [16]). At one loop it
happens that the singularity locus is the same for each branch of solutions to a given set

of on-shell conditions, but this is not generally true at higher loop order.

3.6 Singularities and Symbology

As suggested in the introduction (and explicit even in the title of this paper), one of the
goals of our research program is to provide a priori derivations of the symbol alphabets
of various amplitudes. We refer the reader to [67] for more details, pausing only to
recall that the symbol alphabet of a generalized polylogarithm function F is a finite list
of symbol letters {z1,...,z,} such that F has logarithmic branch cuts (i.e., the cover has
infinitely many sheets)!® between z; = 0 and z; = oo foreachi =1,...,7.

To date, symbol alphabets have been determined by explicit computation only for

two-loop MHV amplitudes [60]; all other results on multi-loop SYM amplitudes in the

I3These branch cuts usually do not all live on the same sheet; the symbol alphabet provides a list of all
branch cuts that can be accessed after analytically continuing F to arbitrary sheets.



3.6. Singularities and Symbology 81

literature are based on a conjectured extrapolation of these results to higher loop order.
Throughout the paper we have however been careful to phrase our results in terms of
branch points, rather than symbol letters, for two reasons.

First of all, amplitudes in SYM theory are expected to be expressible as generalized
polylogarithm functions, with symbol letters that have a familiar structure like those of
the entries in the last column of Tab. 3.1, only for sufficiently low (or, by parity conju-
gation, high) helicity. In contrast, the Landau equations are capable of detecting branch
points of even more complicated amplitudes, such as those containing elliptic polylog-
arithms, which do not have traditional symbols'*.

Second, even for amplitudes which do have symbols, determining the actual symbol
alphabet from the singularity loci of the amplitude may require nontrivial extrapolation.
Suppose that the Landau equations reveal that some amplitude has a branch point at
z = 0 (where, for example, z may be one of the quantities in the last column of Tab. 3.1).
Then the symbol alphabet should contain a letter f(z), where f in general could be an
arbitrary function of z, with branch points arising in two possible ways. If f(0) = 0, then
the amplitude will have a logarithmic branch point at z = 0 [23], but even if f(0) # 0,
the amplitude can have an algebraic branch point (so the cover has finitely many sheets)
atz = 0if f(z) has such a branch point there.

We can explore this second notion empirically since all one-loop amplitudes in SYM
theory, and in particular their symbol alphabets, are well-known (following from one-
loop integrated amplitudes in for example, [38, 39, 40, 41, 42, 43, 44, 45, 46]). According
to our results from Tab. 3.1, we find that one-loop amplitudes only have branch points

on loci of the form
e (ii+1jj+1)=0or(ij) =0for0 <k <n—4,
o (i(i—1i+1)(jj+1)(kk+1)) =0for1 <k <n-—5,and

e Ajjxy = 0 (defined in Tab. 3.1) for2 < k < n —6,

147t would be interesting to understand how the “generalized symbols" of such amplitudes capture the
singularity loci revealed by the Landau equations.



82 Chapter 3. All-Helicity Symbol Alphabets from Unwound Amplituhedra

where i, ], k, ¢ can all range from 1 to n. Happily, the first two of these are in complete
accord with the symbol letters of one-loop MHV and NMHYV amplitudes, but the third
reveals the foreshadowed algebraic branching since A;j, is not a symbol letter of the
four-mass box integral contribution to N?<K<""®MHV amplitudes. Rather, the symbol

alphabet of this amplitude consists of quantities of the form

fii = (ii+1jj+1) and  fific £ (fifje — fijfree) £ 1/ Dijee s (3.46)

where the signs may be chosen independently. Since no symbol letter vanishes on the
locus Ajjxy = 0, amplitudes evidently do not have logarithmic branch points on this
locus. Yet it is evident from the second expression of (3.46) that amplitudes with these
letters have algebraic (in this instance, square-root- or double-sheet-type) branch points
when A;j, = 0.

Although we have only commented on the structure of various potential symbol
entries and branch point loci here, let us emphasize that the methods of this paper can
be used to determine precisely which symbol entries can appear in any given ampli-
tude. For example, Tab. 3.1 can be used to determine values of 7, j and k for which the
letter (i(i—1i4+1)(jj+1)(kk+1)) can appear, as well as in which one-loop amplitudes,
indexed by n and k, such letters will appear. An example of a fine detail along these lines
evident already in Tab. 3.1 is the fact that all NMHYV amplitudes have branch points of
two-mass easy type except for the special case n = 6, in accord with Eq. (2.7) of [79].

We conclude this section by remarking that the problem of deriving symbol alpha-
bets from the Landau singularity loci may remain complicated in general, but we hope
that the simple, direct correspondence we have observed for certain one-loop ampli-
tudes (and which was also observed for the two-loop MHV amplitudes studied in [17])

will continue to hold at arbitrary loop order for sufficiently simple singularities.
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3.7 Conclusion

This paper presents first steps down the path of understanding the branch cut structure
of SYM amplitudes for general helicity, following the lead of [17] and using the recent
“unwound” formulation of the amplituhedron from [37]. Our algorithm is conceptu-
ally simple: we first enumerate the boundaries of an amplituhedron, and from there,
without resorting to integral representations, we use the Landau equations directly to
determine the locations of branch points of the corresponding amplitude.

One might worry that each of these steps grows rapidly in computational complex-
ity at higher loop order. Classifying boundaries of amplituhedra is on its own a highly
nontrivial problem, aspects of which have been explored in [5, 7, 10, 13, 80]. In that light,
the graphical tools presented in Sec. 3.4.2, while already useful for organizing results as
in Fig. 3.2, hint at the more enticing possibility of a method to enumerate twistor dia-
grams corresponding to all £-boundaries of any given A, i ;. Such an algorithm would
start with the maximal codimension twistor diagrams at a given loop order, and apply
the operators of Sec. 3.4.2 in all ways until no further operations are possible. From these
twistor diagrams come Landau diagrams, and from these come the branch points via
the Landau equations. We saw in [17] and Sec. 3.5 that analyzing the Landau equations
can be made very simple in momentum twistor space.

Configurations of loop momenta in (the closure of) MHV amplituhedra are rep-
resented by non-negative D-matrices. In general, non-MHV configurations must be
represented by indefinite D-matrices, but we observed in Sec. 3.3.5 that even for non-
MHYV amplituhedra, D may always be chosen non-negative for all configurations on
L-boundaries. This ‘emergent positivity” plays a crucial role by allowing the one-loop
D-matrices presented in Secs. 3.3.2, 3.3.3 and 3.3.4 to be trivially recycled at higher val-
ues of helicity. One way to think about this is to say that going beyond MHV level
introduces the C-matrix which “opens up” additional configuration space in which an
otherwise indefinite D-matrix can become positive.

While the one-loop all-helicity results we obtain are interesting in their own right
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as first instances of all-helicity statements, this collection of information is valuable be-
cause it provides the building blocks for the two-loop analysis in the sequel. There we
will argue that the two-loop twistor diagrams with helicity k can be viewed as com-
positions of two one-loop diagrams with helicities k; and k; satisfying k = k; + ky or
ki 4+ ko + 1. We will also explore in detail the relation to on-shell diagrams, which are
simply Landau diagrams with decorated nodes.

More speculatively, the ideas that higher-loop amplitudes can be constructed from
lower-loop amplitudes, and that there is a close relation to on-shell diagrams, suggests
the possibility that this toolbox may also be useful for finding symbols in the full, non-
planar SYM theory. For example, enumerating the on-shell conditions as we do here
in the planar sector is similar in spirit to the nonplanar examples of [12] where certain
integral representations were found such that individual integrals had support on only
certain branches'®. There are of course far fewer known results in the nonplanar SYM

theory, though there have been some preliminary studies [82, 83, 84, 85, 86].

15 Already in the planar case, one might interpret our algorithm as applying the Landau equations to
integrands constructed in expansions around boundaries of amplituhedra, which is reminiscent of the
prescriptive unitarity of [81].
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Chapter 4

All-loop singularities of scattering
amplitudes in massless planar

theories

4.1 Landau Graphs and Singularities

We begin by reviewing the Landau equations, which encode the constraint of locality
on the singularity structure of scattering amplitudes in perturbation theory via Landau
graphs. We aim to connect the standard vocabulary used in relativistic field theory to
that of network theory in order to streamline the rest of our discussion.

In planar quantum field theories, which will be the exclusive focus of this paper, we
can restrict our attention to plane Landau graphs. An L-loop m-point plane Landau graph
is a plane graph with L+1 faces and m distinguished vertices called terminals that must
lie on a common face called the unbounded face. Henceforth we use the word “vertex”
only for those that are not terminals, and the word “face” only for the L faces that are
not the unbounded face.

Each edge j is assigned an arbitrary orientation and a four-component (or, more
generally, a D-component) (energy-)momentum vector g;, the analog of electric current.
Reversing the orientation of an edge changes the sign of the associated g;. At each vertex

the vector sum of incoming momenta must equal the vector sum of outgoing momenta
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(current conservation). This constraint is not applied at terminals, which are the loca-
tions where a circuit can be probed by connecting external sources or sinks of current. In
field theory these correspond to the momenta carried by incoming or outgoing particles.
If we label the terminals by 2 = 1,...,m (in cyclic order around the unbounded face)
and let P, denote the D-momentum flowing into the graph at terminal 4, then energy-
momentum conservation requires that }_, P, = 0 and implies that precisely L of the g;’s
are linearly independent.

Scattering amplitudes are (in general multivalued) functions of the P,’s which can be
expressed as a sum over all Landau graphs, followed by a DL-dimensional integral over
all components of the linearly independent g;’s. Amplitudes in different quantum field
theories differ in how the various graphs are weighed (by P,- and g;-dependent factors)
in that linear combination. These differences are indicated graphically by decorating
each Landau graph (usually in many possible ways) with various embellishments, in
which case they are called Feynman diagrams. We return to this important point later,
but for now we keep our discussion as general as possible.

Our interest lies in understanding the loci in P;-space on which amplitudes may
have singularities, which are highly constrained by general physical principles. A Lan-
dau graph is said to have Landau singularities of the first type at values of P, for which the

Landau equations [26]

och]z = 0 for each edge j, and (4.1)

edg;gf a;jq; = 0 for each face F (4.2)

admit nontrivial solutions for the Feynman parameters a; (that means, omitting the trivial

solution where all «; = 0). In the first line we have indicated our exclusive focus on

massless field theories by omitting a term proportional to m]2- which would normally be
present.

The Landau equations generally admit several branches of solutions. The leading

Landau singularities of a graph G are those associated to branches having qu = 0 for

all j (regardless of whether any of the «;’s are zero). This differs slightly from the more
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conventional usage of the term “leading”, which requires all of the a;s to be nonzero.
However, we feel that our usage is more natural in massless theories, where it is typical
to have branches of solutions on which q]Z and a; are both zero for certain edges j. Lan-
dau singularities associated to branches on which one or more of the q]2. are not zero (in
which case the corresponding &;’s must necessarily vanish) can be interpreted as lead-
ing singularities of a relaxed Landau graph obtained from G by contracting the edges
associated to the vanishing «;’s.

A graph is called c-connected if it remains connected after removal of any c—1 ver-
tices. It is easy to see that the set of Landau singularities for a 1-connected graph (some-
times called a “kissing graph” in field theory) is the union of Landau singularities asso-
ciated to each 2-connected component since the Landau equations completely decouple.
Therefore, without loss of generality we can confine our attention to 2-connected Lan-

dau graphs.

4.2 Elementary Circuit Operations

We refer to Eq. (4.2) as the Kirchhoff conditions in recognition of their circuit analog where
the a;’s play the role of resistances. The analog of the on-shell conditions (4.1) on the other

hand is rather mysterious, but a very remarkable feature of massless theories is that:

The graph moves familiar from elementary electrical circuit theory preserve the

solution sets of Egs. (4.1) and (4.2), and hence, the sets of first-type Landau singu-

larities in any massless field theory.

Let us now demonstrate this feature, beginning with the three elementary circuit
moves shown in Fig. 4.1.

Series reduction (Fig. 4.1(a)) allows one to remove any vertex of degree two. Since
g2 = g1 by momentum conservation, the structure of the Landau equations is trivially
preserved if the two edges with Feynman parameters a1, a2 are replaced by a single
edge carrying momentum g’ = q; = ¢, and Feynman parameter &’ = a1 + ay.

Parallel reduction (Fig. 4.1(b)) allows one to collapse any bubble subgraph. It is

easy to verify (see for example Appendix A.1 of [17]) that the structure of the Landau
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- —

FIGURE 4.1: Elementary circuit moves that preserve solution sets of the
massless Landau equations: (a) series reduction, (b) parallel reduction,
and (c) Y-A reduction.

equations is preserved if the two edges of the bubble are replaced by a single edge
carrying momentum g’ = q; + g2 and Feynman parameter o’ = ayap/ (aq + a2).

The Y-A reduction (Fig. 4.1(c)) replaces a vertex of degree three (a “Y”) with a trian-
gle subgraph (a “A”), or vice versa. Generically the Feynman parameters «; of the A are

related to those of the Y, which we call §;, by

NoK3 .
= —>", and cyclic. 4.3
b= T am Y *3)

On branches where one or more of the parameters vanish, this relation must be suitably
modified. For example, if a branch of solutions for a graph containing a Y has 1 =
B2 = 0 but B3 nonzero, then the corresponding branch for the reduced graph has az = 0
but a4, a» nonzero.

The invariance of the Kirchhoff conditions (4.2) under Y-A reduction follows straight-
forwardly from these Feynman parameter assignments. The invariance of the on-shell
conditions (4.1) is nontrivial, and follows from the analysis in Appendix A.2 of [17] by
checking that the on-shell conditions before and after the reduction are equivalent for

each branch of solutions to the Landau equations. Actually [17] mentions only seven of
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O—0

O—0

Oo—=0 Oo—=0

FIGURE 4.2: The four-, six-, five- and seven-terminal ziggurat graphs.
The open circles are terminals and the filled circles are vertices. The pat-
tern continues in the obvious way, but note an essential difference be-

tween ziggurat graphs with an even or odd number of terminals in that
only the latter have a terminal of degree three.

(c) (c) (®) (c)

FIGURE 4.3: The six-terminal ziggurat graph can be reduced to a three
loop graph by a sequence of three Y-A reductions and one FP assignment.
In each case the vertex, edge, or face to be transformed is highlighted in

gray.
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the eight different types of branches. The eighth branch has a1 = ay = a3 = 0, corre-
sponding to B1 = B2 = B3 = 0, but in this relatively trivial case both the Y and the A
can effectively be collapsed to a single vertex.

The proof of the crucial theorem of [52] that we employ in the next section relies
on three additional relatively simple moves that either have no analog in field theory
or trivially preserve the essential content of the Landau equations. These are (d) the
deletion of a “tadpole” (edges that connect a vertex or terminal to itself), (e) the deletion
of a “hanging propagator” (a vertex of degree one and the edge connected to it), and
(f) the contraction of an edge connected to a terminal of degree one (called “FP assign-
ment” [87]). The last of these is strictly speaking not completely trivial at the level of the

Landau equations; it just removes an otherwise uninteresting bubble singularity.

4.3 Reduction of Planar Graphs

The reduction of general graphs under the operations reviewed in the previous section
is a well-studied problem in the mathematical literature. When it is declared that a cer-
tain subset of vertices are to be considered terminals (which may not be removed by
series or Y-A reduction) the corresponding problem is called terminal Y-A reducibility.
Aspects of terminal Y-A reducibility have been studied in [88, 89, 90, 91, 87, 92], in-
cluding an application to Feynman diagrams in [93]. For our purpose the key result
comes from the Ph.D. thesis of 1. Gitler [52], who proved that any planar 2-connected
graph with m terminals lying on the same face can be reduced to a graph of the kind
shown in Fig. 4.2, which we call ziggurat graphs, or to a minor thereof. We denote the
m-terminal ziggurat graph by 7, and note that a minor of a graph G is any graph that
can be obtained from G by any sequence of edge contractions and/or edge deletions.
At the level of Landau equations an edge contraction corresponds, as discussed
above, to a relaxation (setting the associated «; to zero), while an edge deletion cor-
responds to setting the associated g; to zero. It is clear that the Landau singularities as-

sociated to any minor of a graph G are a subset of those associated to §G. Consequently
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we don’t need to worry about explicitly enumerating all minors of 7,,; their Landau
singularities are already contained in the set of singularities of 7y, itself.

It is conventional to discuss scattering amplitudes for a fixed number n of external
particles, each of which carries some momentum p; that in massless theories satisfies
p? = 0. The total momentum flowing into each terminal is not arbitrary, but must be a
sum of one or more null vectors. The momenta carried by these individual particles are
denoted graphically by attaching a total of n external edges to the terminals, with at least
one per terminal. In this way it is clear that any Landau graph with m < n terminals
is potentially relevant to finding the Landau singularities of an n-particle amplitude.
However, it is also clear that if m < n then 7}, is a minor of 7, so again the Landau sin-
gularities of the former are a subset of those of the latter. Therefore, to find the Landau
singularities of an n-particle amplitude it suffices to find those of the n-terminal ziggu-
rat graph 7, with precisely one external edge attached to each terminal. We call this the

n-particle ziggurat graph and finally summarize:

The first-type Landau singularities of an n-particle scattering amplitude in any

massless planar field theory are a subset of those of the n-particle ziggurat graph.

While the Landau singularities of the ziggurat graph exhaust the set of singulari-
ties that may appear in any massless planar theory, we cannot rule out the possibility
that in certain special theories the actual set of singularities may be smaller because of
nontrivial cancellation between the contributions of different Landau graphs to a given
amplitude. We return to this important point in Sec. 4.6.

Let us also emphasize that Y-A reduction certainly changes the number of faces of a
graph, so the above statement does not hold at fixed loop order L; rather it is an all-order
relation about the full set of Landau singularities of n-particle amplitudes at any finite
order in perturbation theory. Since the n-particle ziggurat graph has L = | (n—2)%/4]
faces, we can however predict that a single computation at only | (n—2)2/4|-loop order
suffices to expose all possible Landau singularities of any n-particle amplitude.

In fact this bound is unnecessarily high. Gitler’s theorem does not imply that ziggu-

rat graphs cannot be further reduced to graphs of lower loop order, and it is easy to see
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that in general this is possible. For example, as shown in Fig. 4.3, the six-terminal graph
can be reduced by a sequence of Y-A reductions and one FP assignment to a particularly
beautiful three-loop wheel graph whose 6-particle avatar we display in Fig. 4.4. Ziggu-
rat graphs with more than six terminals can also be further reduced, but we have not

been able to prove a lower bound on the loop order that can be obtained for general 7.

4.4 Landau Analysis of the Wheel

In this section we analyze the Landau equations for the graph shown in Fig. 4.4. The six
external edges carry momenta py, ..., ps into the graph, subject to }_; p; = 0 and pz-z =0
for each i. Using momentum conservation at each vertex, the momentum g; carried by
each of the twelve edges can be expressed in terms of the six p; and three other linearly
independent momenta, which we can take to be [,, for r = 1,2, 3, assigned as shown in
the figure. Initially we consider the leading Landau singularities, for which we impose

the twelve on-shell conditions

(h—p)*=1F=0+p)*=0,

(b—p3)?=05=(L+ps)?=0,

(ls—ps)>=15=(s+ps)* =0,

(4.4)
(h+pr—L+p3)*=0,
(b+ps—Ilz+ps)? =0,

(lg+p6—ll+p1)2:0.

So far we have not needed to commit to any particular spacetime dimension. We now
tix D = 4, which simplifies the analysis because for generic p; there are precisely 16
discrete solutions for the I,’s, which we denote by [;(p;). To enumerate and explicitly
exhibit these solutions it is technically helpful to parameterize the momenta in terms
of momentum twistor variables [55], in which case the solutions can be associated with

on-shell diagrams as described in [3]. Although so far the analysis is still applicable to
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D2 Ps

FIGURE 4.4: The three-loop six-particle wheel graph. The leading first-

type Landau singularities of this graph exhaust all possible first-type Lan-

dau singularities of six-particle amplitudes in any massless planar field
theory, to any finite loop order.

general massless planar theories, we note that in the special context of SYM theory, two
cut solutions have MHV support, twelve NMHYV, and two NNMHV.

With these solutions in hand, we next turn our attention to the Kirchhoff conditions

0 2061(11 — Pl) + asly + 063(11 + P2)+
a10(ls+ps—h+p1) +ann(lh+p2—L+ps),

0 =ay(lr — p3) +asly + ae(lo + pa)+
(4.5)

a11(lh+p2—l+p3) +a(la +ps— 3+ ps),
0 :tX7(13 — p5) + 06813 + 0(9(13 + P6>+

ap(b+ps—Iz+ps)+a(ls+ps—hL+p1).

Nontrivial solutions to this 12 x 12 linear system exist only if the associated Kirch-
hoff determinant K(p;,1,) vanishes. By evaluating this determinant on each of the so-
lutions I, = I3 (p;) the condition for the existence of a non-trivial solution to the Landau
equations can be expressed entirely in terms of the external momenta p;. Using vari-
ables 1, v, w, Yy, Yo, Yw that are very familiar in the literature on six-particle amplitudes

(their definition in terms of the p;’s can be found for example in [20]), we find that
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K(pi, I¥(pi)) = 0 can only be satisfied if an element of the set

} (4.6)

Se ={u,v,w,1-u,1-v,1-w,

4

Qe
S

= |-

vanishes. We conclude that the three-loop n = 6 wheel graph has first-type Landau

singularities on the locus

Se=|J{s=0}. (4.7)

SESq

It is straightforward, if somewhat tedious, to analyze all subleading Landau singular-
ities corresponding to relaxations, as defined above. We refer the reader to [16, 17, 47]
where this type of analysis has been carried out in detail in several examples. We find
no additional first-type singularities beyond those that appear at leading order. Let us
emphasize that this unusual feature does not occur for any of the examples in [16, 17,
471, which typically have many additional subleading singularities.

To summarize, we conclude that any six-particle amplitude in any four-dimensional
massless planar field theory, at any finite loop order, can have first-type Landau singu-

larities only on the locus Sg given by Egs. (4.6) and (4.7), or a proper subset thereof.

4.5 Second-Type Singularities

The first-type Landau singularities that we have classified, which by definition are those
encapsulated in the Landau equations (4.1), (4.2), do not exhaust all possible singulari-
ties of amplitudes in general quantum field theories. There also exist “second-type” sin-
gularities (see for example [58, 33]) which are sometimes called “non-Landauian” [27].
These arise in Feynman loop integrals as pinch singularities at infinite loop momentum
and must be analyzed by a modified version of Egs. (4.1), (4.2).

In the next section we turn our attention to the special case of SYM theory, which
possesses a remarkable dual conformal symmetry [94, 95, 76] implying that there is no

invariant notion of “infinity” in momentum space. As pointed out in [16], we therefore
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expect that second-type singularities should be absent in any dual conformal invariant
theory. Because ziggurat graphs are manifestly dual conformal invariant when D = 4,
this would imply that the first-type Landau singularities of the ziggurat graphs should
capture the entire “dual conformally invariant part” of the singularity structure of all
massless planar theories in four spacetime dimensions. By this we mean, somewhat

more precisely, the singularity loci that do not involve the infinity twistor.

4.6 Planar SYM Theory

In Sec. 4.3 we acknowledged that in certain special theories, the actual set of singularities
of amplitudes may be strictly smaller than that of the ziggurat graphs due to cancella-
tions. SYM theory has been shown to possess such rich mathematical structure that it
would seem the most promising candidate to exhibit such cancellations. Contrary to

this expectation, we now argue that:

Perturbative amplitudes in SYM theory exhibit first-type Landau singularities on

all such loci that are possible in any massless planar field theory.

Moreover, our results suggest that this all-order statement is true separately in each
helicity sector. Specifically: for any fixed n and any 0 < k < n — 4, there is a finite
value of L, such that the singularity locus of the L-loop n-particle N\'MHV amplitude
is identical to that of the n-particle ziggurat graph for all L > L, ;. In order to verify this
claim, it suffices to construct an n-particle on-shell diagram with NFMHYV support that
has the same Landau singularities as the n-particle ziggurat graph; or (conjecturally)
equivalently, to write down an appropriate valid configuration of lines inside the am-
plituhedron [4] A, . for some sufficiently high L.

To see that this is plausible, note that in general the appearance of a given singular-
ity at some fixed k and L can be shown to imply the existence of the same singularity at
lower k but higher L by performing the opposite of a parallel reduction—doubling one
or more edges of the relevant Landau graph to make bubbles (see for example Fig. 2

of [47]). For example, while one-loop MHV amplitudes do not have singularities of
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three-mass box type, it is known by explicit computation [60] that two-loop MHV am-
plitudes do. Similarly, while two-loop MHV amplitudes do not have singularities of
four-mass box type, we expect that three-loop MHV and two-loop NMHV amplitudes
do. (To be clear, our analysis is silent on the question of whether the symbol alphabets
of these amplitudes contain square roots; see the discussion in Sec. 7 of [53].)

It is indeed simple to check that the n-particle ziggurat graph can be converted into
a valid on-shell diagram with MHV support by doubling each internal edge to form a
bubble. Moreover, in this manner it is relatively simple to write an explicit mutually
positive configuration of positive lines inside the MHV amplituhedron. However, we
note that while this construction is sufficient to demonstrate the claim, it is certainly
overkill; we expect MHV support to be reached at much lower loop level than this
argument would require, as can be checked on a case by case basis for relatively small

n.

4.7 Symbol Alphabets

Let us comment on the connection of our work to symbol alphabets. In general, the
presence of some letter 4 in the symbol of an amplitude indicates that there exists some
sheet on which the analytically continued amplitude has a branch cut froma = 0toa =
0. The symbols of all known six-particle amplitudes in SYM theory can be expressed in

terms of a nine-letter alphabet [67] which may be chosen as [69]
A ={u,v,w,1—u,1-v,1-w, Yy, Yo, Y } , (4.8)
where z = {y,,1/y,} are the two roots of
u(1-0)(1—w) (2 +1) = [u* —2uvw+(1-v—w)?] z (4.9)

and v, and y,, are defined by cycling u — v — w — u. It is evident from Eq. (4.9) that
Yu can attain the value 0 or co only if # = 0 or v = 1 or w = 1. We therefore see that the

singularity locus encoded in the hexagon alphabet Ag is precisely equivalent to Sg given
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by Egs. (4.6) and (4.7). Indeed, the hypothesis that six-particle amplitudes in SYM theory
do not exhibit singularities on any other loci at any higher loop order (which we now
consider to be proven), and the apparently much stronger ansatz that the nine quantities
shown in Eq. (4.8) provide a symbol alphabet for all such amplitudes, lies at the heart of
a bootstrap program that has made possible impressive explicit computations to high
loop order (see for example [69, 96, 70, 14, 72, 73, 20]). An analogous ansatz for n = 7
has similarly allowed for the computation of symbols of seven-particle amplitudes [21,
22].

Unfortunately, as the y,, o, Y« letters demonstrate, the connection between Landau
singularity loci and symbol alphabets is somewhat indirect. It is not possible to derive
Ag from Sg alone as knowledge of the latter only tells us about the locus where symbol
letters vanish [23] or have branch points (see Sec. 7 of [53]). In order to determine what
the symbol letters actually are away from these loci it seems necessary to invoke some
other kind of structure; for example, cluster algebras may have a role to play here [18,

19].

4.8 Conclusion

We leave a number of open questions for future work. What is the minimum loop order
L, to which the n-particle ziggurat graph can be reduced? Can one characterize its
Landau singularities for arbitrary 1, generalizing the result for n = 6 in Sec. 4.4? Does
there exist a similar framework for classifying second-type singularities, even if only in
certain theories? The graph moves reviewed in Sec. 4.2 preserve the (sets of solutions
to the) Landau equations even for non-planar graphs; are there results on non-planar
Y-A reducibility (see for example [97, 98]) that may be useful for non-planar (but still
massless) theories?

In Sec. 4.4 we saw that the wheel is a rather remarkable graph. The ziggurat graphs,
and those to which they can be reduced, might warrant further study for their own
sake. Intriguingly they generalize those studied in [99, 100] and are particular cases of

the graphs that have attracted recent interest, for example in [101, 102], in the context of
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“fishnet” theories. We have only looked at their singularity loci; it would be interesting
to explore the structure of their cuts, perhaps in connection with the coaction studied
in [30, 103, 104, 105, 106].

In the special case of SYM theory the technology might exist to address more de-
tailed questions. For general n and k, what is the minimum loop order L, ; at which
the Landau singularities of the n-particle N'MHV amplitude saturate? Is there a direct
connection between Landau singularities, ziggurat graphs, and cluster algebras? For
amplitudes of generalized polylogarithm type, now that we know (in principle) the rel-
evant singularity loci, what are the actual symbol letters for general , and can the sym-
bol alphabet depend on k (even though the singularity loci do not)? How do Landau
singularities manifest themselves in general amplitudes that are of more complicated

(non-polylogarithmic) functional type?
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