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Abstract

The present thesis describes an optimal control approach using
trigonometric functions. The result are very simple and smooth
pulses, which motivates the notion of Smooth Optimal Control.
Variational calculus with Floquet theory can be exploited in or-
der to derive many expressions analytically.

Narrow-band pulses are constructed to enable AC magnetic field
sensing with ensembles of nitrogen-vacancy centers. These pulses
are robust against inhomogeneous broadening and inhomogeneities
of the control field.

The versatility of smooth optimal control is shown by applying it
to selected examples of composite quantum systems. In particu-
lar, we demonstrate how to manipulate the dynamics of two spins
such that the presence of entanglement can be guaranteed during
a prescribed time window. Furthermore, in order to combat deco-
herence, time-optimal entangling gates are constructed. Another
method to mitigate decoherence effects is to decouple a spin from
its spin bath. Finally, in a spin chain, the end spins are entangled
in the presence of static noise. Moreover, the single spin dynamics
is generalized to the coupling of an ensemble of spins to a quantum-
mechanical cavity, and the effective control of the emission of this
cavity is shown by driving it with suitably shaped pulses.





Zusammenfassung

Die vorliegende Arbeit beschreibt eine Optimale-Kontroll-Methode,
die trigonometrische Funktionen verwendet. Das Ergebnis sind
sehr einfache, glatte Pulse, was den Terminus Glatte Optimale Kon-
trolle rechtfertigt. Variationsrechnung mit Floquet-Theorie kann
dazu benutzt werden, um viele Ausdrücke analytisch herzuleiten.

Schmalbandige Pulse werden konstruiert, um kleine zeitlich verän-
derliche Magnetfelder mit Hilfe von Stickstoff-Fehlstellen-Zentren-
Ensembles zu messen. Diese Pulse sind sowohl robust gegenüber
inhomogener Verbreiterung als auch gegenüber Inhomogenitäten
im Kontrollfeld.

Die ganze Vielseitigkeit von glatter optimaler Kontrolle wird gezeigt
durch die Anwendung auf ausgewählte Beispiele aus dem Bereich
der Mehr-Teilchen-Quantendynamik, genauer wird die Dynamik
zweier Spins so manipuliert, dass Verschränkung über ein endliches
Zeitfenster garantiert wird. Darüber hinaus wird Dekohärenz durch
Erzeugung zeitoptimaler Gatter entgegengewirkt. Eine andere Me-
thode, Dekohärenzeffekte zu vermeiden, besteht in der Abkopplung
eines Spins von seinem Spinbad. Schließlich werden in einer Spin-
kette die Endspins in Anwesenheit von statischem Rauschen mitein-
ander verschränkt. Desweiteren wird die Einzel-Spin-Dynamik da-
hingehend verallgemeinert, dass die Kopplung eines Spinensembles
an eine quantenmechanische Kavität betrachtet wird und die ef-
fektive Kontrolle der Strahlungsemission dieser Kavität durch Ver-
wendung speziell designter Pulse gezeigt wird.
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Introduction

It is astonishing how succesful time-independent quantum mechanics is. An
exciting phenomenon like superconductivity [1] can be described with the con-
cept of quasi-particles; other interesting effects like Bose-Einstein condensation
[2] can be explained in terms of statistical quantum mechanics. They both have
in common that they can be described by static, equilibrium quantum mechan-
ics. Yet, there are other phenomena that are intrinsically time-dependent. For
example, if an atom is irradiated with a laser beam, it is of great interest to
study the population of different atomic levels as a function of time. In this
context, Fermi’s Golden Rule [3] makes a statement about the final popula-
tions of the levels, and its derivation is based on time-dependent quantum
mechanics. In the dynamics of large molecules, on the other hand, excitation
energies can be calculated by using time-dependent density-functional theory
[4, 5].

In all the above cases, one starts from the time-dependence and uses it in
order to explain a certain effect. In Optimal Control (OC), on the other hand,
one starts from a desired effect and uses the time dependence in order to
reach it. More precisely, OC strives for a time-dependent control Hamiltonian
Hc(t) with the help of which one can manipulate a system described by the
time-independent Hamiltonian H0. The goal of OC is to drive the system to
desired properties. These desired properties can be the overlap of an initial
state |ψi� with a final state |ψf� (population transfer), as it is encountered in
physical chemistry [6, 7]. Indeed, the first area of application of OC was nuclear
magnetic resonance (NMR) [8, 9]. In this field, besides population transfer, one
is particularly interested in the synthesis of unitary gates, this means not only
transfer one state to another but to map a whole family of states to another one
[10]. At the same time, technological advances appear, enabling the control
of quantum systems, almost perfectly isolated and therefore protected against
decoherence, like nitrogen-vacancy centers [11], trapped ions [12] or atoms
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trapped in optical lattices [13]. In this way, quantum information processing
got into the scope of OC. Here, OC is used to optimize even more interesting
properties of quantum systems, like the value of an entanglement measure [14]
(see Sec. 1.1.5 for a self-contained review) or the time interval over which
entanglement exceeds a certain value [15]. Although one- and two-qubit gates
have already been implemented in NMR, its application to systems with long
coherence times is still lacking. This application would pave the way for a
quantum computer.

Whereas very powerful OC algorithms exist, many of them generate pulses
which contain high-frequency components. However, in some experiments
[16, 17], the spectral width of the pulses to be generated is limited by na-
ture. As an example, a cavity can generate the control signal, which has a
well-defined resonance frequency and a small resonance width, i.e. only a
small frequency band would be filtered out of a broadband pulse, leading to a
completely different result than if all frequencies were present. That is why,
in our approach we search for a description of the pulses which excludes high
frequency components from the very beginning. This narrow band control has
the advantage that it uses only a few control parameters, corresponding to the
number of frequency components present in the pulse. By using very few con-
trol parameters, one obtains pulses of a quite simple shape, which gives hope
to answer the question why a certain control goal can be obtained, thus going
beyond the mere question of existence if such a control goal can be reached.
This advantage has to be seen in contrast to many other algorithms [18], where
the pulses seem - at least to an unexperienced eye - almost random [9] and it
is impossible to extract any information about the functionality of the pulses.

By doing pulse shaping in frequency space, we can calculate many quantities
analytically. Namely, we can compute the time evolution operator to arbitrary
numerical precision, from which we can derive the quality of a pulse. However,
if we want to improve the quality of a pulse, we also need information about
how the system evolves if one slightly modifies the control Hamiltonian. By
exploiting this information, we can improve the quality of a pulse in an iterative
manner. In our framework, we can use variational calculus in order to find this
information.

One important aspect that can be obtained by OC is the robustness against
parameter fluctuations. In the above experiments, these parameters can be the
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coupling of a spin to a cavity or the resonance frequency of this spin. Whereas a
strong rectangular pulse, i.e. a pulse whose envelope is not modulated in time,
is always optimized for a certain set of internal parameters, the modulation of
a time-dependent pulse can be designed such that it gains robustness against
these parameters. It is the goal of this thesis to construct pulses which work
not only for one spin with a specific resonance frequency and coupling but for
a whole ensemble of spins with different parameters.

These robust pulses can be used in order to measure small magnetic fields.
Small magnetic fields are of a broad interest ranging from biological effects
[19, 20] to applications on the human body [21]. Magnetic field sensing can be
realized by driving solid state spins with a sequence of control pulses and mea-
suring the angle by which these spins have dephased. Up to now, sensing has
mostly been done with single spins and rectangular pulses [22, 23]. Examples
where ensembles of spins are used can be found in [24, 25]. If the advantage of
a higher signal attainable by more than one spin has not yet been envisioned,
this is because spin ensembles typically suffer from parameter fluctuations that
deteriorate the signal. In the present thesis, we want to overcome this restric-
tion and tailor smooth pulses for AC magnetic field sensing with ensembles of
nitrogen-vacancy centers.

Since magnetic field sensing can be modeled by an ensemble of non-interacting
spins, the whole dynamics can be studied by considering the dynamics of a sin-
gle spin. Indeed, only few works [26, 14, 27] investigate OC in the presence
of many-body quantum dynamics. In the present work, we want to progress
in this realm of OC. Since entanglement is the key element of quantum infor-
mation processing, it will be interesting how entanglement dynamics can be
influenced by OC. Moreover, we will drop the assumption that an ensemble
can be described as a collection of non-interacting spins and will see how their
dynamics can be manipulated.

The current work is structured as follows: After presenting in the first chap-
ter the underlying theoretical and experimental concepts appearing in this
thesis, we will explain in detail our OC approach - Smooth Optimal Control -
in chapter 2. Chapter 3 is dedicated to the control of ensembles of independent
spins. The major focus of this chapter will be to build a pulse sequence for
magnetometry, i.e. how to measure small AC magnetic fields with the help
of nitrogen-vacancy centers. In the last and most important chapter, we will
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apply Smooth Optimal Control to the dynamics of more than one body. Most
interestingly, we will attack the problem of an ensemble whose members inter-
act with each other via a common coupling to a cavity. The work ends with
some concluding remarks.
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1. State of the art

In this chapter the state of the art of methods used in this thesis will be pre-
sented. It will be distinguished between theoretical and experimental concepts.

1.1. Theoretical Concepts

In the present section, the theoretical concepts underlying this work will be
summarized. As explained in the introduction, optimal control will be used to
manipulate a quantum system such that it exhibits certain desired properties.
It is therefore of a great importance to understand the main ideas of OC theory,
which will be presented in the following. As the function space in which one
searches for the solution of the OC problem is very large, analytical results
are difficult to obtain. However, there exists a number of OC algorithms with
the help of which the system can be driven to the desired properties with
high accuracy. As two particularly successful examples, we will describe the
GRAPE and Krotov’s algorithms.

In order to assess the quality of the pulses generated by optimal control,
we have to calculate the dynamics induced by these pulses, i.e. to solve the
time-dependent Schrödinger equation. Floquet’s theorem gives a statement
about the solutions of the Schrödinger equation for Hamiltonians periodic in
time. As we will develop in chapter 2 an optimal control approach which is
based on time-periodic Hamiltonians, an overview of Floquet theory will be
provided.

A common task in quantum control is to implement a quantum gate, i.e.
an operation which maps a set A of states onto another set B of states. If
one wants to verify in the experiment if this quantum gate is correctly imple-
mented, one measures to which output states a certain class of input states
is transferred. This procedure is called a quantum process tomography, which
will be explained in detail in the following.
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1. STATE OF THE ART

Entanglement is a feature concerning the combination of two systems and
is intrinsically quantum mechanical. As we will control many-body quantum
dynamics, entanglement theory is an important tool, which will be described
at the end of this chapter.

1.1.1. Optimal Control Theory

In this section, we will introduce the basic tools of optimal control theory.
Fig. 1.1 can be considered as the summary of this part. As two important
examples, the GRAPE and Krotov’s algorithms will be described.

1.1.1.1. Basics of Optimal Control

In nature, many processes can be described by differential equations. The
Schrödinger equation

i
∂

∂t
|Ψ(t)� = H(t)|Ψ(t)� (1.1)

is the equation of motion of quantum mechanics. Here, since we will work
with a finite number of two-level systems (called ‘qubits’), the Hamiltonian
H(t) is a finite-dimensional Hermitian matrix, which can depend on time.
The solution of the Schrödinger equation describes how the state vector |Ψ(t)�

evolves in time. This state vector is not an observable in itself, but with
its help experimentally accessible expectation values �A� = Tr(|Ψ��Ψ|A) of
an observable A can be computed. In the following, we will focus on the
Schrödinger equation as equation of motion, but we keep in mind that it is only
a special case of a linear differential equation ẋ = f(x(t), t), where the function
f(x(t), t) is linear in x. This is why what follows can easily be generalized to
different linear differential equations.

As we argued in the introduction, the above equation of motion merely
describes reality. However, in the following, we want to be in the position to
design reality according to our wishes. This is the interest of optimal control.
In order to have a coherent picture of OC, we start from a time-independent
system or drift Hamiltonian H0. As an example, one can give a spin chain
whose inter-spin couplings are determined by their distance. Since one cannot
change this distance, one cannot change the system Hamiltonian. This is why
one adds a time-dependent control Hamiltonian Hc(t). In the example of the
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1.1 Theoretical Concepts

spin chain, this could be the control of each spin by a laser beam, whose shape
is modulated in time.

The goal of optimal control is formulated in terms of a target functional
F(Hc(t), |Ψ(t)�) which has to be maximized and which can depend on both
the control Hamiltonian Hc(t) and the state |Ψ(t)�, fulfilling the Schrödinger
equation Eq. (1.1) with the Hamiltonian H(t) = H0 + Hc(t). A typical OC
goal would be the transfer from an initial state |Ψi� to a final state |Ψf� at the
moment tf in time. The corresponding target functional would be the overlap
F0(|Ψ(tf )�) = |�Ψf |Ψ(tf )�|2 between the evolved state |Ψ(tf )� = U(tf )|Ψi�

and the target state |Ψf�. Here, U is the time evolution operator, which again
fulfills the Schrödinger equation:

iU̇(t) = H(t)U(t) (1.2)

with the initial condition U(0) = . As one sees, if the overlap is equal
to one, the evolved state is identical (up to an irrelevant global phase) to
the target state: |Ψ(tf )� = |Ψf�. If one wishes, in addition, to limit the
power of the applied pulse, one can do this by adding a penalty functional
Fp = −p

�
tf

0 dt�Hc(t)�2, meaning that the full target functional is F = F0+Fp.
One can see in the expression for the penalty functional that it is maximized by
�Hc(t)� → 0 (be aware of the fact that the penalty functional is strictly non-
positive). With the help of the parameter p one can control the importance
of low power pulses: p → 0 means that the intensity of the pulse is very
unimportant, whereas p → ∞ favours low power pulses.

If we summarize the task of OC, it is to find a control Hamiltonian Hc(t)

such that a certain target functional F(Hc(t), |Ψ(t)�) becomes maximal. Un-
fortunately, the space of all possible control Hamiltonians is extremely high-
dimensional, and it is therefore a highly complex task to maximize the target
functional. However, the physical reality is simpler: in the real world, only cer-
tain Hamiltonians are realized. This restriction is obvious in an experimental
situation: In the case of a spin chain e.g. single spin properties can be easily
manipulated by the experimentator, while one has no access to many-body
interactions. This is why one can write

Hc(t) =
N�

k=1

fk(t)hk, (1.3)
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1. STATE OF THE ART

where fk(t) are scalar functions depending on time and hk are time-independent
single spin operators. By performing the decomposition Eq. (1.3), one replaces
the search in a high-dimensional space of Hamiltonians by a search in the space
of scalar functions. However, this space is still very large, which suggests to
decompose the pulses fk(t) in terms of a certain basis gjk(t):

fk(t) =
n�

j=1

ajkgjk(t) (1.4)

Now, the OC task is a lot simpler, it consists in searching scalar tuples in
contrast to scalar functions. One of these decompositions could be to express
the pulses in terms of periodic functions, as we will see later.

Figure 1.1.: Typical structure of a gradient-based optimal control algorithm:
After computing the time evolution U at the end time T , one
evaluates the target functional F and its derivatives. With the
help of the derivatives a better pulse is created.

Mathematically, in order to maximize the functional F , one has to solve the
equation ∂F

∂aij
= 0 for every aij. These equations are typically impossible to be

solved analytically. The common way is therefore to solve the maximization
problem by numerical algorithms. The basic steps of these algorithms are the
following (see Fig. 1.1): In the first step, one has to determine how the control
changes the system, i.e. one has to solve the equation of motion Eq. (1.2) for
the time evolution operator U(t). In the second step, one assesses the quality of
the pulse by evaluating the target functional. Furthermore, one has to find out
how the quality of the pulse, represented by the target functional F , changes
if one slightly modifies the control amplitude ajk by a small amount δajk, i.e.

8



1.1 Theoretical Concepts

one searches for the derivatives ∂F

∂ajk
of the target functional with respect to

the control parameters ajk. By using the information about the derivatives,
one can in the third step update the control parameters to yield a better pulse,
e.g. one can use a method of steepest ascent, following the direction of the
gradient ∇aF =

�
∂F

∂ajk

�

jk

,

a → a� = a+ α∇aF . (1.5)

Here, the step size α is still to be determined. The simplest choice is a constant
value of α, a more sophisticated solution is provided by a line search, which
means that one increases α if the target functional is increased, otherwise
one deminishes it. A more complicated update rule using also the second
derivatives with respect to the control parameters is discussed in Sec. 2.2.
If after the update, the target functional has not yet obtained the desired
value, one can iterate the three steps of the optimal control algorithm. Ideally,
the target functional is increased in each iteration step, before obtaining its
optimal value.

1.1.1.2. GRAPE

Here, we will give an example for an optimal control algorithm. GRAPE
(gradient ascent pulse engineering) is a very powerful optimal control algorithm
with applications mainly in NMR [10, 28]. If one follows Fig. 1.1 about
the construction of a general optimal control algorithm, the first step is to
calculate the time evolution operator. Therefore, it is advantageous to choose a
decomposition Eq. (1.4) which is as simple as possible such that the propagator
can be readily computed. In the framework of GRAPE, one chooses piecewise
constant functions

θt1,t2(t) =

�
1 if t1 ≤ t ≤ t2
0 otherwise

(1.6)

as the basis gjk(t) of the control pulses, gjk(t) = θtj ,tj+1(t). Such a decomposi-
tion is given in Fig. 1.2. Therefore, the pulse is fully characterized by the step
heights ajk of the piecewise constant functions. Let us from now on assume
equal time intervals, ∆t = tj+1 − tj.

The decomposition into piecewise constant functions has advantages and
disadvantages: An advantage is that if the step size ∆t is sufficiently small, one
can be sure that almost any dynamics is implementable. Another advantage is

9



1. STATE OF THE ART

ajk

ajk'

Figure 1.2.: Starting point of the GRAPE algorithm: the pulse is decomposed
into piecewise constant functions with step heights (= control pa-
rameters). The update of the ajk’s with a higher fidelity is pro-
vided by another set of control parameters a�

jk
.

that the computation of the time evolution operator is particularly easy (see
below). The drawback of choosing piecewise constant functions is that high
frequency components can be generated rather easily, because the difference
|aj+1,k − ajk| between two adjacent steps is not limited. As one can see in [9]
or other applications of OC related to NMR, the resulting pulses look nearly
random. One possibility to avoid the high frequency problem is to use filter
functions that smoothen the high frequency signal [29]. Furthermore, because
of the high number of control parameters it is very difficult, if not impossible,
to extract any information about the functionality of these pulses.

Following Fig. 1.1, one first has to calculate the time evolution operator.
Here, the advantage of having chosen piecewise constant functions as the basis
of the pulses can be understood: Since the Hamiltonian is constant in the time
interval between tj and tj+1, the time evolution operator reads

Uj(t) = exp

�
−i

�
H0 +

N�

k=1

ajkhk

�
t

�
, t ∈ [tj, tj+1]. (1.7)

If one searches for the full time evolution U(tf ) at the end time tf = n∆t, then
one has to apply the operators Uj ≡ Uj(∆t) one after the other:

U(tf ) = Un · . . . · U1 (1.8)

The second step of Fig. 1.1 is to calculate the fidelity from the time evolution
operator: A common fidelity measure for the transfer from the state ρ0 to the
state ρf at the moment tf in time is given by

F(ρ) = �ρf , ρ(tf )�. (1.9)

10



1.1 Theoretical Concepts

Here, one defines the scalar product �ρ1, ρ2� := Tr(ρ†1ρ2). The fidelity is there-
fore nothing else but an overlap between the target state ρf and the final state
ρ(tf ) of the system after the application of control. Exploiting the fact that
the trace is invariant under cyclic permutations, one can write

F = �ρf ,Un · · · U1ρ(0)U
†

1 · · · U
†

n
�

= �U
†

j+1 · · · U
†

n
ρfUn · · · Uj+1� �� �
λj

,Uj · · · U1ρ0U
†

1 · · · U
†

j� �� �
ρj

�. (1.10)

In this notation, one understands that the fidelity can be computed as the
scalar product between the states ρj and λj. The interpretation of the two
states is that ρj ≡ ρ(tj) is obtained by a propagation with the initial condi-
tion ρ(0) = ρ0 (forward propagation), whereas λj corresponds to the fictitious
case where the initial condition is ρ(0) = ρf and the final state U

†

j+1 · · · U
†
n
ρf

·Un · · · Uj+1 at the moment tj in time (backward propagation). This interpre-
tation is illustrated in Fig. 1.3: One state is propagated forward, the other
backwards in time, both are evaluated at the same moment tj in time.

The full power of the decomposition with respect to the states ρj and λj

will become obvious after one has calculated the gradient of the fidelity with
respect to the control parameters, which is the third step of Fig. 1.1. Here,
one has

∂F

∂ajk
= �λj,

∂Uj

∂ajk
· · · U1ρ(0)U

†

1 · · · U
†

j
�+ �λj,Uj · · · U1ρ(0)U

†

1 · · ·
∂U †

j

∂ajk
� (1.11)

The quantity to calculate is therefore

∂Uj

∂ajk
=

∂

∂ajk
exp

�
−i

�
H0 +

N�

k=1

ajkhk

�
∆t

�
. (1.12)

This expression can be put into the form d
dxe

A+xB

���
x=0

with A = −i (H0+
�

N

k=1 ajkhk

�
∆t, B = −ihk∆t and x = δajk. If the operators hk commuted

with each other and with H0, then the result would simply be

d

dx
eA+xB

���
x=0

= eAB = BeA. (1.13)

However, in general, these operators do not commute. This is why we have to
resort to the formula

d

dx
eA+xB

���
x=0

=

� 1

0

eAτBe(1−τ)Adτ. (1.14)
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1. STATE OF THE ART

Therefore, one can write

∂Uj

∂ajk
= −i

� ∆t

0

dτ Uj(τ)hkUj(−τ)Uj. (1.15)

One can calculate this expression exactly, as shown in [18], or use the approx-
imation ∆t�H0 +

�
k
ajkhk� � 1 [10]. For small time intervals, the operator

U(τ) (τ ∈ [0,∆t]) reduces to the identity and one obtains

∂Uj

∂ajk
≈ −i∆thkUj. (1.16)

Reinserting this into Eq. (1.11), one obtains

∂F

∂ajk
≈ −i∆t�λj|[hk, ρj]� (1.17)

This computation of the gradient is in contrast to conventional methods that
use a rule of finite differences

∂F

∂ajk
≈

F(ajk + δajk)− F(ajk)

δajk
(1.18)

with a small δajk in order to approximate the gradient.

Figure 1.3.: The calculation of the target functional is illustrated by propa-
gating forward the initial state ρ(0) and backward the final state
ρf . In order to compute the gradient, only these two states are
necessary, whereas conventional methods need n propagations.

Finally, in the last step in Fig. 1.1, one updates the control parameters by
a method of steepest ascent (see Eq. (1.5)). We will now see why GRAPE is
faster than conventional optimal control methods: In the framework of these
conventional methods a control parameter is updated and then the time evo-
lution is recalculated, as it had changed due to the update of the control
parameter. This is what is called a sequential update (‘one after the other’).
In the framework of GRAPE, however, to calculate ∂F

∂ajk
only requires the two

forward and backward propagations ρj and λj and all control parameters can
be updated at once (concurrent update).

12



1.1 Theoretical Concepts

1.1.1.3. Krotov’s algorithm

An algorithm that uses a sequential update is Krotov’s method [30]. The
whole mathematical understanding of this algorithm is beyond the scope of
this thesis but we want nevertheless describe its idea. The idea is to maximize
the target functional F by extremalizing the variation δF , i.e. δF = 0. In the
following, we assume a target functional

F = �ψ(tf )|O|ψ(tf )� − α

�
tf

0

�

j

fj(t)
2dt, (1.19)

where O is an operator (O = |ψ(0)��ψ(0)| in the case of an overlap fidelity)
and the last term penalizes strong fields by the factor α. By using variational
calculus, in the same manner as Euler-Lagrange equations are obtained, one
is able to derive the update rule [31]

fj(t) = −
1

α
Im�χ(t)|hj|ψ(t)�. (1.20)

Here, in analogy with Eq. (1.10), |ψ(t)� is the forward propagated solution
of the Schrödinger equation (initial condition |ψ(0)� = |ψ0�) and |χ(t)� is the
backward propagated solution with initial condition |χ(tf )� = O|ψ(tf )�, where
tf is the total duration of the pulse. A characteristic feature of Krotov’s method
is that it is continuous in time. However, a computer has a limited memory.
This is why fj(t) can only be stored at finitely many moments of time t1, . . . , tn.
Because of the discreteness of time on a computer, the pulse has to be updated
successively (sequential update) for all time slices t = t1, . . . , tn. An advantage
of Krotov’s method is that, as the time slices can be made arbitrarily small,
it is expected that it also remains continuous in time, i.e. the generation of
high-frequency components is less probable.

Krotov’s method has become a very popular OC algorithm. It is used in dif-
ferent fields such as quantum information theory [32, 33] or quantum chemistry
[31, 34].

1.1.2. Floquet Theory

So far, only piecewise constant Hamiltonians were considered, from now on
the focus will be on periodic Hamiltonians, as they appear in smooth optimal
control (SOC) described in chapter 2. As mentioned above, Floquet theory is

13



1. STATE OF THE ART

important in order to assess the quality of the SOC pulses. It is a powerful tool
that permits us to calculate the solutions of the time-dependent Schrödinger
equation Eq. (1.1) with a periodic Hamiltonian H(t + T ) = H(t) and finally
to calculate the time evolution operator U . Floquet’s theorem [35] states that
for Hamiltonians periodic in time the fundamental solutions |Ψk� of Eq. (1.1)
can be written in the form

|Ψk(t)� = e−i�kt|Φk(t)�, (1.21)

where the |Φk� are again periodic in time, |Φk(t + T )� = |Φk(t)�. If one casts
Eq. (1.21) back into Eq. (1.1), one obtains the eigenvalue problem

K|Φk� = �k|Φk� (1.22)

with the Floquet operator K = H − i∂t. Because of this equation describing
an eigenvalue problem, one calls the �k (quasi-)energies and the corresponding
|Φk� eigenstates. One uses the term quasi-energies in order to distinguish them
from the energies appearing in the stationary Schrödinger equation. Whereas
the energies, as the eigenvalues of a Hamiltonian, have a physical meaning,
this is not true in the case of the Floquet quasi-energies. It is noteworthy that
the Floquet picture has many points in common with the Schrödinger picture:
The Schrödinger equation i d

dt |Ψ� = H|Ψ� with a time-independent Hamilton
operator H can be transformed into an eigenvalue problem H|Φk� = Ek|Φk�

by means of the ansatz |Ψk(t)� = e−iEkt|Φk�. One can see by this ansatz
that a Floquet eigenstate is the formal analogon of a stationary state. The
only difference between Floquet and Schrödinger picture is that the eigenstates
in the Floquet picture still depend periodically on time, whereas the energy
eigenstates in the Schrödinger picture are constant in time. This additional
time-dependence can already be seen in the expression of the Floquet operator,
which is not stationary but depends on time. Indeed, K not only acts via H0

on the original finite-dimensional Hilbert space Cd (where d is the dimension
of the system) but also acts via the derivative with respect to time and Hc(t)

on the space L2([0, T )) of T -periodic square integrable functions. The latter
space is infinite-dimensional and so is the eigenvalue problem, in contrast to
the finite dimensional Schrödinger equation.

Besides the similarity of the Schrödinger and Floquet picture, it is important
to mention that the Bloch theorem [36] from solid state physics is very similar

14



1.1 Theoretical Concepts

to Floquet’s theorem. Instead of the time domain, the Hamilton operator is
periodic in space, i.e. the potential fulfills V (r+R) = V (r), where the vector
R describes the periodicity in space, and the solutions of the Schrödinger
equation are ψ(r) = eik·ruk(r) with periodic functions uk(r+R) = uk(r).

The periodic structure of Floquet’s theorem suggests to solve the time-
dependent Schrödinger equation in Fourier space. To this end one performs
the elementary steps of a Fourier transformation, namely one writes |Φk� as a
Fourier series |Φk� =

�
∞

ν=−∞
eiνΩt|χkν� with Ω = 2π/T , as well as the Fourier-

transformed Hamilton operator Hν = 1/T
�

T

0 dt e−iνΩtH(t). Then one reinserts
this into Eq. (1.22), multiplies both sides by e−iµΩt, µ ∈ Z, and integrates them
with respect to t from 0 to T . This yields

1/T

�
T

0

dt e−iµΩt(H(t)−i∂t)
∞�

n=−∞

eiνΩt
|χkν� = �k/T

�
T

0

dt e−iµΩt

∞�

n=−∞

eiνΩt
|χkν�,

(1.23)
which gives

∞�

ν=−∞

1/T

�
T

0

dt
�
e−i(µ−ν)Ωt

H(t) + νΩei(ν−µ)Ωt
�
|χkν� = εk|χkµ� (1.24)

and finally the set of coupled equations

µΩ|χkµ�+
∞�

ν=−∞

Hµ−ν |χkν� = εk|χkµ�, ∀µ ∈ Z. (1.25)

Solving Eq. (1.25) is equivalent to finding the eigensystem of the eigenvalue
problem [37]

K̃|χk� = �k|χk�, (1.26)

where |χk� = (. . . , |χk,−1�, |χk,0�, |χk,1�, . . . )
T and

K̃ =





. . .

. . . H0 − Ω
. . .

. . . H1 H0 H−1 . . .
. . . H0 + Ω

. . .

. . .





(1.27)

is the (infinite-dimensional) Fourier-transformed Floquet operator. We have
therefore shifted the problem of solving a differential equation (the Schrödinger
equation) to the problem of diagonalizing the Floquet matrix K̃.
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1. STATE OF THE ART

As in the experiment one can only implement a finite number of frequency
components, there is a highest non-vanishing Fourier component Hn. The
consequence of this fact is that |K̃ii−K̃jj| � |K̃ij|, i.e. for large i−j, the mixing
between the off-diagonal elements becomes negligeable and the eigenvalues and
eigenvectors of the truncated version K̃trunc of the Floquet matrix represent a
good approximation of those of the full matrix K̃.

By the following symmetry one can construct all eigenvalues and eigenvectors
from a very limited set of eigenvalues and eigenvectors: Since the Floquet
matrix K̃ satisfies SK̃S† = K̃ + Ω , where S shifts the entries of |χk� by one,
i.e. (S|χk�)ν = (|χk�)ν+1, the vector Sm|χk� is an eigenvector for any integer
m if |χk� is an eigenvector. In other words, if |χk� is an eigenvector to the
eigenvalue �k, then Sm|χk� is an eigenvector to the eigenvalue �k − mΩ. In
this way, one obtains a set of eigenvalues, i.e. the knowledge of the right d

eigenvalues of K̃, namely those for which (�k− �j)/Ω �∈ Z, k �= j is valid, where
d = dim(H), permits us to know all of them by translation. The interval
in which such a set of eigenvalues lies is also called a Brillouin zone. This
terminology is the same as in Bloch’s theorem: If k is a wave vector, then
k + K is also a wave vector. Here, K is a reciprocal lattice vector with the
property eiK·R = 1, and R determines the periodicity. The first Brillouin zone
is built up by the wave vectors k which cannot be connected by a reciprocal
lattice vector K.

In order to compute the time evolution operator U , which has been the
ultimate goal of the above calculations, one has to know only the spectrum of
one Brillouin zone, i.e. one can limit the summation of basis states |Φk� in U

to the summation of d terms:

U(t) =
d�

k=1

|Ψk(t)��Ψk(0)| =
d�

k=1

∞�

ν=−∞

ei(νΩ−�k)t|χkν��Φk(0)| . (1.28)

Numerically, one is able to compute the time evolution operator exactly, as
the resulting error can be reduced to a value which is equal to the machine
precision. More information about the numerics of Floquet theory can be
found in the appendix A.

1.1.3. Quantum states and tomography

For what follows, one needs to generalize the concept of a state. Up to now,
the concept of a state was limited to vectors |ψ� in a Hilbert space H . If one
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1.1 Theoretical Concepts

wishes to unify statistical and quantum mechanics, one has to consider the
case where the system is in the state |ψk� only with a certain probability pk.
The physics is therefore characerized by an ensemble of states. The central
object describing this situation is the density matrix

ρ =
�

k

pk|ψk��ψk|. (1.29)

This matrix is Hermitian because |ψk��ψk| is Hermitian and pk real-valued. The
density matrix is also positive-semidefinite, i.e. only possesses non-negative
eigenvalues, because the probabilities pk are non-negative. Furthermore, it is
Tr ρ = 1 because

�
k
pk = 1. If ρ = |ψ��ψ| (equivalent to Tr(ρ2) = 1), the

density matrix represents a pure state, otherwise it is called a mixed state
(characterized by Tr(ρ2) < 1).

In the experiment, the exact density matrix is typically not known. In
quantum state tomography, which is a generalization of quantum process to-
mography (to be discussed in Sec. 1.1.4), the quantum state is reconstructed
by doing sufficiently many measurements. In order to measure observables
more than one time, this implies that there are sufficiently many copies of the
system, which can be realized by doing the same experiment over and over
again. As an example of a quantum state tomography, one can take a qubit:
the operators /

√
2, σx/

√
2, σy/

√
2, σz/

√
2, where σk are the Pauli matrices,

form a basis of the four-dimensonal Hilbert space. A state ρ can then be
expanded in terms of this basis [38]:

ρ =
1

2
(Tr(ρ) + Tr(σxρ)σx + Tr(σyρ)σy + Tr(σzρ)σz) (1.30)

The expansion coefficients are given by the expectation values of the corre-
sponding operators. However, in the experiment, one can only perform a finite
number of measurements. This means that the density matrix can only be
reconstructed approximately. The standard deviation of this matrix decreases
as 1/

√
N [38], where N is the number of measurements. When measuring e.g.

σz, one gets the outcomes z1, . . . , zN ∈ {−1, 1}, i.e. the expectation value of
σz can be approximated by 1

N

�
N

k=1 zk. Therefore, by measuring the spin in x-,
y- and z-direction and obtaining the outcomes xk, yk and zk (k = 1, . . . , N),
the density matrix can be reconstructed as

ρ ≈
1

2

�
+

1

N

N�

k=1

(xkσx + ykσy + zkσz)

�
(1.31)
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1.1.4. Quantum Process Tomography

Floquet theory as discussed in Sec. 1.1.2 permits us to theoretically construct
the dynamics induced by a periodic Hamiltonian. If one aims at an experi-
mental implementation of such a Hamiltonian, one typically needs to verify
that indeed the desired propagator has been realized. Such a task is typically
referred to as quantum process tomography. As a quantum process can be
considered the dynamics induced by the pulses that are constructed with the
methods presented in 1.1.1.

In the present section, quantum process tomography will be described. In
order to do that, one first needs the notion of a quantum process: For a pure
state |ψ�, a quantum process E is represented by a unitary operator U , i.e.
which preserves the scalar product:

|ψ� → |ψ�
� = E(|ψ�) = U |ψ� (1.32)

For a mixed state, a quantum process E is represented by a set of Kraus oper-
ators {Ek}, each of which is applied to a state |ψk� of the statistical mixture,
i.e.

ρ → ρ� = E(ρ) =
�

k

EkρE
†

k
. (1.33)

Preservation of trace, Tr ρ� = Tr ρ = 1, results in the constraint
�

k
E†

k
Ek =

on the operators Ek.
Let us now come to quantum process tomography: Whereas the concept of

Kraus operators {Ek} is only a formal tool, in the experiment the quantum
process can often be modelled by using another basis {Ak}, which is connected
to Ek via Ek =

�
j
akjAj. The quantum process then reads

E(ρ) =
�

m,n

χmnAmρA
†

n
, (1.34)

where χmn =
�

k
akma∗kn are the entries of a matrix which is positive Hermitian

by construction. A common choice [38] for a single qubit is A1 = , A2 = σx,
A3 = −iσy, A4 = σz. In order to do quantum process tomography, one
prepares the system successively in one of the basis states ρj, which were
selected beforehand. For a single qubit, a common choice [39] of the basis are
the pure states ρj = |ψj��ψj| with |ψ1� = |0�, |ψ2� = |1�, |ψ3� = (|0�+ |1�)/

√
2
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and |ψ4� = (|0�+ i|1�)/
√
2, which form a complete set of states. The result is

the following decomposition

E(ρj) =
�

k

λjkρk, (1.35)

where the coefficients λjk can be determined by a quantum state tomography
of the E(ρj). The task of quantum process tomography is to determine the
process matrix χ. In order to do that, we write AmρjA†

n
in the basis ρj:

AmρjA
†

n
=

�

k

βjkmnρk, (1.36)

The coefficients βjkmn can be found by standard linear algebra [38]. Combining
Eqs. (1.35) and (1.36), one obtains:

�

k,m,n

χmnβjkmnρk =
�

k

λjkρk (1.37)

Since the ρj form a basis, they are linear independent, which results in
�

m,n

βjkmnχmn = λjk. (1.38)

If one introduces the multi-indices m� ≡ (j, k) and n� ≡ (m,n), the tensor β

can be represented by a matrix and the matrices λ and χ by vectors. Then,
by inverting β, one arrives at the process matrix χ.

For the case of a qubit, if one defines the output states

ρ�1 = E(|ψ1��ψ1|) (1.39)

ρ�4 = E(|ψ2��ψ2|)

ρ�2 = E(|ψ3��ψ3|)− iE(|ψ4��ψ4|)− (1− i)
ρ�1 + ρ�4

2

ρ�3 = E(|ψ3��ψ3|) + iE(|ψ4��ψ4|)− (1 + i)
ρ�1 + ρ�4

2
,

the process matrix χ can be calculated according to [40] as

χ =
1

2

�
σx

σx −

��
ρ�1 ρ�2
ρ�3 ρ�4

��
σx

σx −

�
. (1.40)

The problem of quantum process tomography is that the number of required
measurements grows exponentially with the number of involved particles [38].
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Fortunately, in the present work, we will only consider the quantum tomogra-
phy of one spin.

Unfortunately, in the experiment every measurement is afflicted by errors
which cannot be described by positive semidefinite process matrices. In order
to remove these processes, one tries to find the nearest possible process matrix
to the experimental one. For this, it can be exploited that according to the
Cholesky decomposition, a positive semidefinite matrix can be written in the
form [39]

χ̃ = T †T (1.41)

with the lower triangular matrix

T =





t1 0 0 0
t5 + it6 t2 0 0
t11 + it12 t7 + it8 t3 0
t15 + it16 t13 + it14 t9 + it10 t4



 . (1.42)

The task is then to find the parameters t1, . . . , t16 such that the distance be-
tween the unphysical and the correct process

∆χ = �χ− χ̃�HS (1.43)

becomes minimal. Here, �χ�HS :=
�
Tr(χχ†) is the Hilbert-Schmidt norm.

The search of the coefficients tk can be done by standard optimization algo-
rithms.

1.1.5. Entanglement Theory

Entanglement has no classical counterpart and is the central element thanks
to which quantum algorithms outperform their classical counterparts [38]. In
chapter 4, control will be used in order to generate entanglement. In this
section we will present the well established theory of bipartite entanglement
as well as the latest advances in multipartite entanglement.

1.1.5.1. Bipartite Entanglement

As entanglement is an effect that concerns (at least) two particles, one first
has to know what structure a Hilbert space formed by two particles has. The
natural way to combine two Hilbert spaces is the tensor product ‘⊗’: The
tensor product between two states |u� = (u1, . . . , um) and |v� = (v1, . . . , vn)
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(from spaces with dimensions m and n, respectively) consists in multiplying
every entry of |u� with every entry of |v�:

|u� ⊗ |v� = (u1v1, . . . , u1vn, . . . , umv1, . . . , umvn) (1.44)

The tensor product has many of the useful properties that one knows from
the product in R, namely additivity in both arguments. However, the tensor
product is not commutative. If the tensor product HA ⊗ HB of two Hilbert
spaces HA and HB is constructed, its dimension is dim(HA ⊗ HB) = mn,
where dim(HA) = m and dim(HB) = n.

In order to see what entanglement is, let us consider two parties A and
B with Hilbert spaces HA and HB, respectively. For a pure state |ψ� ∈

HA ⊗ HB from the combined Hilbert space we say that it is entangled if it is
not separable, i.e. if it cannot be written in a product form |ψ� = |ψA� ⊗ |ψB�

with |ψA� ∈ HA, |ψB� ∈ HB. A mixed state ρ ∈ HA ⊗ HB is entangled if it
cannot be written as a sum

ρ =
�

i

piρ
(i)
A

⊗ ρ(i)
B

(1.45)

with pi ≥ 0 and the density matrices ρ(i)
A

∈ HA, ρ(i)
B

∈ HB. In particular, even
if a state cannot be written in the form ρ = ρA ⊗ ρB, it does not yet mean
that the state is entangled, as it can contain statistical mixtures of separable
states.

In order to see what entanglement actually means, we will consider a concrete
example: Let us assume that two qubits are in the entangled state |ψ� =

(|0� ⊗ |1� − |1� ⊗ |0�) /
√
2. This can be achieved, e.g. in subatomic physics if

a spin zero particle decays into two particles. In order to conserve the total
spin quantum number, the spin quantum numbers of the particles after the
decay must have opposite sign. If, now, party A measures the outcome ‘0’, the
state collapses into the state

|0��0|⊗ |ψ� ∝ |0� ⊗ |1� (1.46)

This means that if A measures ‘0’, then the outcome ‘1’ of B is determined
before performing any measurement. This also holds for other measurements.
The dependence of the measurements on each other is even more spectacular
if the parties A and B are spatially separated because then it seems that
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information is transmitted instantaneously. However, it can be shown [38]
that information cannot be exchanged via a quantum channel with a speed
higher than the speed of light.

There are different possibilities to judge if a state is entangled or not, one of
those are separability criterions. The following remarks concern pure states.
They can be brought from their general form

|ψ� =
�

i,j

wij|ψ
(i)
A
� ⊗ |ψ(j)

B
� (1.47)

to the Schmidt decomposition

|ψ� =
�

i

�
λi|φ

(i)
A
� ⊗ |φ(i)

B
�. (1.48)

This follows from the singular value decomposition [38]. Now, a bipartite state
is separable if and only if all but one Schmidt coefficient λi vanish. Otherwise,
the state is entangled. Here, one can draw an analogy between entanglement
and mixedness Tr(ρ2

A
) of the reduced density matrix ρA = TrB(|ψ��ψ|). If the

reduced state ρA is pure, then the initial pure state |ψ� is separable. If, on
the other hand, the reduced density matrix is maximally mixed, then |ψ� is
maximally entangled.

Since for mixed states, the definition of entanglement is more complex, it
can be expected that separability criteria are also harder to find. These criteria
are beyond the scope of this thesis but can be found in detail in [41].

If up to know, we have only looked at criteria that permit us to know
whether a state is entangled or not, however, it is more interesting to establish a
quantitative concept of entanglement. This quantitative approach is provided
by entanglement measures. It is beyond the scope of this work to give a deeper
insight into entanglement measures. This is why we restrict ourselves to the
elementary information which is needed in chapter 4. In this sense, for pure
states, the von Neumann entropy E(ρA) = −Tr(ρA log2 ρA) of the reduced
state ρA = TrB |ψ��ψ| represents an entanglement measure. The Einstein-
Podolski-Rosen (EPR)-state |EPR� = 1

√
2
(|00�+ |11�) maximizes E(ρA).

For mixed states, to find an entanglement measure is not so easy anymore
because it is difficult to distinguish between quantum and classical correla-
tions. One way out of this dilemma is the introduction of the convex roof: It

22



1.1 Theoretical Concepts

means that starting from a pure state entanglement measure one calculates
the infimum of the convex sum over all decompositions ρ =

�
i
pi|ψi��ψi|, i.e.

E(ρ) = inf
{pi,|ψi�}

�

i

piE(|ψi�). (1.49)

To calculate the convex roof can be very complicated, if not impossible, in
practice. For the case of two qubits, i.e. dimHA = dimHB = 2 and E being
the entanglement of formation (see [42]), the problem has been solved exactly.
To arrive at the final expression, one first has to define the spin-flipped state

ρ̃ = σy ⊗ σyρ
∗σy ⊗ σy (1.50)

Then, one labels the eigenvalues λi of the matrix ρρ̃ in decreasing order: λ1 ≥

λ2 ≥ λ3 ≥ λ4. The so-called concurrence can be calculated as

C(ρ) = max{0,
�
λ1 −

�
λ2 −

�
λ3 −

�
λ4} (1.51)

In the case of pure states it is

C(|ψ�) = |�ψ|σy ⊗ σy|ψ
∗
�|. (1.52)

The entanglement measure, called entanglement of formation, is finally

E(ρ) = E(C(ρ)) (1.53)

with

E(C) = −
1 +

√
1− C2

2
log2

1 +
√
1− C2

2
−

1−
√
1− C2

2
log2

1−
√
1− C2

2
.

(1.54)
It has to be mentioned that there exist also other entanglement measures than
entanglement of formation. A representative collection can be found in [43].
It is worth noting that these entanglement measures can in general not be
compared, as they all define a different notion of entanglement.

1.1.5.2. One- and Two-Qubit operations

In quantum information processing, single- and two-qubit operations are per-
formed one after the other, in order to implement a quantum algorithm. Single-
qubit operations can be characterized by three angels φx, φy, φz, such that

U(φx,φy ,φz) = exp

�
−i

�

k=x,y,z

φkσk/2

�
(1.55)
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An even more interesting question is the parametrization of two-qubit opera-
tions because they generate entanglement. This can be done up to single qubit
operations as a function of only three parameters αx, αy and αz [44]:

U(αx,αy ,αz) = exp

�
−i

�

k=x,y,z

αkσ
(1)
k

⊗ σ(2)
k

�
(1.56)

The gates U(αx,αy ,αz) which generate maximal entanglement are characterized
by the two inequalities [44]

αx + αy ≥ π/4 (1.57)

αy + αz ≤ π/4 (1.58)

The separable initial state |Ψ� with which U(αx,αy ,αz)|Ψ� is a maximal entangled
state reads [44]

|Ψ� =
4�

k=1

|µk|e
iλk |Φk� (1.59)

with

λ1 = αx − αy + αz

λ2 = −αx + αy + αz

λ3 = −αx − αy − αz

λ4 = αx + αy − αz (1.60)

and

|Φ1� =
1
√
2
(|00�+ |11�)

|Φ2� =
−i
√
2
(|00� − |11�)

|Φ3� =
1
√
2
(|01� − |10�)

|Φ4� =
−i
√
2
(|01�+ |10�) . (1.61)

The coefficients µk obey the following equations (we can choose µ1 = 0 without
loss of generality):

sin(α3)|µ2|
2 + sin(α1)|µ4|

2 = 0 (1.62)

|µ3|
2 + cos(α3)|µ2|

2 + cos(α1)|µ4|
2 = 0 (1.63)

|µ2|
2 + |µ3|

2 + |µ4|
2 = 1, (1.64)
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where we have defined

α1 = 4(αx + αy)

α2 = 4(αx + αz)

α3 = 4(αy + αz). (1.65)

1.1.5.3. Multipartite Entanglement

Whereas a good understanding of bipartite entanglement exists, there are still
many open problems concerning multipartite entanglement. A pure state is
called genuinely multipartite entangled if it is not separable with respect to
any bipartition [45]. For three parties A, B and C these bipartitions would
be AB|C, A|BC and AC|B. A mixed state ρ is called genuinely multipartite
entangled if any decomposition into pure states (pi > 0)

ρ =
�

i

pi|ψi��ψi| (1.66)

contains at least one genuinely multipartite entangled state. Besides genuinely
multipartite entanglement, there exists a whole variety of weaker notions of
multipartite entanglement.

If we want to generalize the above notions from bipartite to multipartite
entanglement, we first need a notion of the tangle. For a pure state ρ = |ψ��ψ|

it is defined in the following way [45]:

F = Tr(ρ⊗ ρV ) (1.67)

with

V = 4

�
P+ −

N�

n=1

P (n)
+ − (1− 21−N)P−

�
. (1.68)

Here, P (n)
± = (1± Πn)/2 are the projection operators on the (anti-)symmetric

subspace and Πn the permutation operator on the n-th subsystem, i.e. Π|ij� =
|ji�. The operator P+ (P−) is the symmetric (antisymmetric) global opera-
tor. They are built up by an even (odd) number of antisymmetric operators
P (n)
− . The form of Eq. (1.68) can be explained by the fact that each sum-

mand detects a different kind of multipartite entanglement (with respect to a
certain bipartition). For this, one has to keep in mind that separable states
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are invariant under permutation of two factors, Π1(|φ� ⊗ |ψ�)⊗ (|φ� ⊗ |ψ�) =

(|φ� ⊗ |ψ�)⊗ (|φ� ⊗ |ψ�), whereas entangled states are not invariant, e.g.:

Π1|EPR� ⊗ |EPR� = Π1(|0000�+ |0011�+ |1100�+ |1111�)/2

= (|0000�+ |1001�+ |0110�+ |1111�)/2

�= |EPR� ⊗ |EPR� (1.69)

Therefore, P (i)
− = 1 − Πi vanishs for separable states. In Eq. (1.68) e.g. the

summand P (1)
− ⊗ · · ·⊗ P (N)

− detects all states that are not fully separable, i.e.
cannot be written in a form

�
N

i=1 |ψi�. Indeed, the operators P (n)
± are invariant

under local unitary transformations, making of F an entanglement measure.
As an example for Eq. (1.67), let us calculate the case N = 2. By inserting

all the definitions, one has

V = 4

�
P (1)
− P (2)

− + P (1)
+ P (2)

+ − P (1)
+ P (2)

+ −
1

2

�
P (1)
− P (2)

+ + P (1)
+ P (2)

−

��

= (1− Π1)(1− Π2)−
1

2
((1− Π1)(1 + Π2) + (1 + Π1)(1− Π2))(1.70)

= 2Π1Π2 − Π1 − Π2. (1.71)

Now one has to evaluate expressions like the following:

Tr(ρ⊗ ρΠ1) =
�

i1,i2
j1,j2

�i1i2|�j1j2|ρ⊗ ρΠ1|i1i2�|j1j2�

=
�

i1,i2
j1,j2

�i1i2|ρ|j1i2��j1j2|ρ|i1j2�

=
�

i1,j1

�i1|Tr2(ρ)|j1��j1|Tr2(ρ)|i1� = Tr(ρ21) (1.72)

Here, ρ1 = Tr2 ρ is the reduced density matrix with respect to the first system.
If one collects all terms, one obtains (with Tr(ρ2) = 1 for pure states)

F = Tr(ρ⊗ ρV ) = 2Tr(ρ2)− Tr(ρ21 + ρ22) (1.73)

This result is in accordance with intuition: The more the reduced density
matrices are mixed, the more information they retain about the other part of
the system, i.e. the more they are entangled.

It is interesting that generalized to mixed states by a convex roof expression,
infpk,|ψk�

�
k
pkF(|ψk��ψk|), the expression Eq. (1.67) is still a lower bound of
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the tangle. This means that if one finds a state ρ with F(ρ) > 0, then ρ is
multipartite entangled.

As a concluding remark, we have to mention that there can be several classes
of maximally entangled states which cannot be transformed into each other by
local transformations. In a three qubit system e.g. two inequivalent classes
of maximally entangled states are formed by the Greenberger-Horn-Zeilinger
(GHZ) state |GHZ� = 1

√
2
(|000� + |111�) and the W state |W� = 1

√
3
(|100� +

|010�+ |001�) [41].

1.2. Experimental Concepts

In the following chapter, we will describe the experimental setup which has
been used to obtain the experimental results presented in chapter 3. The
central element of these experiments are nitrogen-vacancy (NV) centers, which
can show very long coherence times, on the order of seconds [46]. As NV centers
with their excellent coherence properties are used in the experiments, we will
first discuss the physics of NV centers. After that, we will present how NV
centers can be manipulated coherently. Then, we will describe how NV centers
can be used in order to measure small magnetic fields.

1.2.1. Nitrogen-Vacancy Centers

An NV center is a defect occuring in diamond, and it consists of a nitrogen
atom, that has replaced a carbon atom from the diamond lattice, and a missing
carbon atom, i.e. a vacancy. The axis on which the nitrogen atom and the
vacancy lie is also referred to as the NV axis. As can be seen in Fig. 1.4, the
three carbon atoms that are grouped around the vacancy contribute three free
electrons to the NV complex. Another two electrons are delivered by the lone
pair of the nitrogen atom. The complex described above is called the NV0.
What we will deal with, however, is the negatively charged NV−. There, an
additional electron is taken from the diamond lattice, such that six electrons
contribute to the NV−. In the following, it will always be referred to the NV−

as the NV center.
As the NV complex is built by an even number of spins, their total spin must

be an integer number. Indeed, as derived from a combination of molecular
orbitals [11, 47] and confirmed experimentally [48], the NV center has a spin-1
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triplet both in the ground and the excited state (energy difference 1.945 eV,
see Fig. 1.4) and a spin-0-singlet, lying between the ground and the excited
states. The spin-singlet is a meta-stable dark state, which means that the
system does not radiate when undergoing the transition from this state to the
ground state.

The Hamiltonian describing the ground state of the NV center in the pres-
ence of a magnetic field B is the following [49]:

H = ∆S2
z
− γeB · S−

�

n

γnB · In −
�

n

S ·An · In −
�

n>m

In ·Cnm · Im (1.74)

Here, S is the spin-1-operator of the six electrons participating in the NV
complex, while In labels the nuclear spins, i.e. the carbon and nitrogen nuclei.
The first term is the zero-field splitting ∆ between the states characterized
by the magnetic quantum numbers mS = 0 and mS = ±1, where the latter
states are degenerate for zero magnetic field. The second and the third term
describe the Zeeman splitting of the electronic and nuclear levels, respectively,
due to the magnetic field B; the gyromagnetic ratios with which the nuclei and
electrons couple to the magnetic field are γe and γn, respectively. The fourth
term results from the hyperfine interaction between the electronic spin and the
nuclei, the last term stands for the dipole-dipole interaction between the nuclei.
The tensors An and Cnm account for an anisotropy, they are An,Cnm ∝ in
the case of a totally isotropic system.

We will now see by which approximations the general Hamiltonian Eq. (1.74)
can be simplified: If the density of NV centers is sufficiently small - which
will be the case in the present experiments - one can neglect the spin-spin
interaction

�
n>m

In ·Cnm · Im. If one applies a strong magnetic field along the
NV axis, one can lift the degeneracy between the states mS = ±1 and split up
the three levels of the ground state. However, there are still sufficiently many
hyperfine levels that broaden the mS-levels. By using a hole burning scheme
described in [40], one can move all but one hyperfine level out of resonance.
One can now drive the transition between the ground state mS = 0, named |0�,
and a hyperfine level of one of the mS = ±1, let us say mS = 1 which will be
called |1�. The whole dynamics is now constrained to two levels, which form
the qubit that we will work with. If ω0 is the transition frequency between the
two levels |0� and |1�, then the original Hamiltonian Eq. (1.74) is reduced to
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the Hamiltonian
H0 =

ω0

2
σz. (1.75)

In chapter 3, we will always start from this Hamiltonian.

Figure 1.4.: Setup to measure population differences in the two qubit states |0�
and |1�, respectively: By using a magnetic field B (left), one selects
a qubit transition. As the transition to a dark singlet state depends
on the magnetic quantum number mS (right), the fluorescence of
the mS = +1-level (left) presents a dip as compared with the one
of mS = 0.

Another issue one has to tackle is the problem of reading out population
differences of the two qubit levels. In order to measure the population in
the ground state and in the mS = +1-level, one uses a sophisticated method
developed in [50]: With the help of a laser, the transition to the first excited
level is driven (see Fig. 1.4); this transition conserves the magnetic quantum
number mS. From the excited state a certain fraction follows a dark transition
to a metastable singlet state, this fraction is higher in the mS = +1 than in
the mS = 0 state. The remaining possibility for the system is to decay to the
ground state by emitting fluorescence photons. If one observes the fluorescence
as a function of time, the curve for mS = 1 will present a more pronounced
dip than the mS = 0-curve. This dip is caused by the fraction of spins which
have decayed non-radiatively from the metastable singlet state to the mS = 0

ground state and therefore do not contribute to the fluorescence signal. For
times t → ∞ the curves for mS = 0 and mS = 1 saturate to a common
equilibrium. This also represents a method how to initialize the system in
the |0� state: One applies a very long laser pulse such that all populations
have decayed to the |0� level. Now, in the experiment one can only observe
a superposition of the mS = 0 and mS = 1 fluorescence curves. As the
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absolute fluorescence varies from time to time, one measures instead a relative
fluorescence Irel, namely one devides the integrated fluorescence during the first
200 ns by the fluorescence during 200 ns of the steady state (approximately
after 3 µs). If one applies a microwave pulse that drives the qubit transition
|0� → |1�, one can observe how the fluorescence curve changes its shape and
oscillates between the curves for mS = 0 and mS = 1. By setting the relative
fluorescence for mS = 0 equal to one, one normalizes the fluorescence such
that it is equivalent to the population P (|0�) in the level |0�. The population
is averaged by repeating the experiment about 107 times.

1.2.2. Optimal Control with Nitrogen-Vacancy Centers

In this section, we will explain how to do optimal control with an ensemble
of NV centers. This leads to the two immediate questions: Why do we use
ensembles and why do we need optimal control? After answering those, we
will conclude this section by stating the optimal control problem that one has
to solve.

1.2.2.1. Why to use ensembles?

In this work, we will deal with an ensemble of non-interacting NV centers. The
reason of choosing an NV ensemble rather than a single NV center is two-fold:

Figure 1.5.: Proposal by Kubo et al. [16] to build a hybrid quantum device:
NV centers serve as a quantum memory, via the bus (cavity) a
state is transported to a superconducting qubit, where quantum
computations can be done. After that, the state is swapped back
into the memory.

First, NV centers show very long coherence times, i.e. they are ideally suited
to serve as a quantum memory. However, the coupling to an NV center (or in
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general to a spin) is often too weak in order to write or read out a state. If, on
the other hand, one uses ensembles of spins, the interaction is enhanced by a
factor

√
N , where N is the number of spins [17, 51]. This enhancement can be

explained by the coupling to collective excitations [52]. As there are systems
in which qubits are easier to manipulate than NV centers, it is only logical to
combine different quantum systems in order to build a hybrid quantum circuit
[16] (see Fig. 1.5). The hybrid quantum system in [16] consists of a memory,
a bus and a processing unit (CPU). The bus serves as a transmitter of the
quantum state from the memory to the CPU. As soon as the state is stored
in the CPU, it can be manipulated coherently, i.e. quantum gate operations
can be performed. After these computations, the state is again transferred
back via the bus into the memory. In the proposal of Kubo et al. [16] as the
memory one uses an ensemble of NV centers, as the bus a cavity and as the
CPU a superconducting qubit. The levels in this sort of qubit are the two
directions (clock- or counterclock-wise) of a superconducting current.

The second reason why one uses ensembles is that spins can serve as sensors
to measure e.g. small magnetic fields [22]. The signal coming from the spin
can be amplified by using an ensemble of spins, since the signal grows with
the number of participating spins. On the other hand, the coherence time T ∗

2

connected to different resonance frequencies of the spins becomes shorter with
the number of spins. This is the case because due to stress and impurities the
resonance frequencies ω0 vary from spin to spin. This phenomenon is called
inhomogeneous broadening. If the control Hamiltonian Hc(t) is optimized for
one specific spin, it is not anymore suited to drive another spin with a different
resonance frequency. As the signal increases with the number of spins but the
coherence time decreases, there is an optimal number of spins with which one
can perform sensing.

1.2.2.2. Why to use optimal control?

In the experiment that Tobias Nöbauer and Andreas Angerer performed [40],
an NV ensemble is controlled by an antenna. Each of the non-interacting
NV centers can be modeled by a two-level Hamiltonian Eq. (1.75). Due to
inhomogeneous broadening, the distribution of the resonance frequencies ω0 of
the NV centers obey a Gaussian law.
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Figure 1.6.: An antenna emits an inhomogeneous control field (different α(r)),
which can be used to manipulate an inhomogeneously broadened
ensemble of NV centers (different ω0).

The antenna, on the other hand, emits a time-dependent control field

Hc(t) = cos(ω0t) (fx(t)σx + fy(t)σy) . (1.76)

It is important to note that the control field is classical and not quantum, i.e.
the Hamiltonian is not expressed in terms of annihilation and creation opera-
tors a and a† of a quantum field. As the NV centers are spatially distributed
in a large probe volume V , they experience the inhomogeneous, spatially de-
pendent field of the antenna. It follows that the spins experience a percentage
α(r)Hc(t) of the control field, depending on the spatial position r of the NV
center. The factor α is the larger, the nearer the NV center is to the antenna.

If the NV centers were manipulated by time-independent pulses (hard pulses),
the outcome of these pulses would suffer from the fact that they are always
designed to work for a precise value of ω0 and α and fail for other values. One
can see this explicitly in an example: At resonance ω0 = 0 and only control of
the x-component (fy ≡ 0) by a rectangular pulse of duration T and strength
fx ≡ 1, the target functional of transferring the spin from the state |0� to the
state |1� is given by

|�1| exp(−iαTσx)|0�|
2 = sin2(αT ). (1.77)

Now, if α = 1, the rectangular pulse of duration T = π/2 transfers the spin
from |0� to |1�. However, the other spins which have another distance from
the antenna, i.e. another value of α, they only show a fidelity of sin2(απ/2).
What is important in the case of rectangular pulses, is that the motion of the
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spin on the Bloch sphere follows a curve of the same longitude. On the Bloch
sphere, the state of a qubit is visualized according to

|θ,φ� = cos
θ

2
|0�+ eiφ sin

θ

2
|1� (1.78)

with the latitude θ (measured from the z-axis) and longitude φ (measured from
the x-axis). If, however, the pulses were time-dependent, one could design them
in a way that each spin follows a different trajectory on the Bloch sphere, but
ends in the same point (here |1�) at the end of the control. Therefore, a time-
dependent pulse can gain robustness with respect to different values of α and
ω0.

1.2.2.3. Rotating Wave Approximation

Up to now, three important approximations have been made: All spins are
independent of each other, one spin can be regarded as a two level system,
and the field of the antenna is classical. In this section, we will make an
additional approximation, the rotating wave approximation: If one considers
the spin dynamics from a rotating frame

U0 = e−iH0t = e−iω0tσz/2 = cos
�ω0

2
t
�
− iσz sin

�ω0

2
t
�
, (1.79)

one obtains

U
†

0HU0 =
ω0

2
σz + cos(ω0t)

n�

k=1

Ak sin(kΩt) (1.80)

with the SOC-Hamiltonian H = ω0
2 σz + cos(ω0t)

�
n

k=1(akσx + bkσy) sin(kΩt)

(see Eqs. (1.75) and (1.76)) and

Ak = (akσx + bkσy)
�
cos2

�ω0

2
t
�
− sin2

�ω0

2

�
t
�

+2 cos
�ω0

2
t
�
sin

�ω0

2
t
�
(bkσx − akσy) (1.81)

Expanding the trigonometric functions into exponentials yields

Ak =

�
0 (ak − ibk)eiω0t

(ak + ibk)e−iω0t 0

�
. (1.82)

Multiplying with cos(ω0t) gives

cos(ω0t)Ak =

�
0 1

2(ak − ibk) (e2iω0t + 1)
1
2(ak + ibk) (e−2iω0t + 1) 0

�
(1.83)
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Here, one can make the rotating wave approximation: Since one drives the
spins near the resonance, one can eliminate the rapidly oscillating terms e±2iω0t ≈

0 that are averaged out in the end. One finally obtains

U
†

0HU0 =
ω0

2
σz +

1

2

n�

k=1

(akσx + bkσy) sin(kΩt) (1.84)

In the following, we will absorb the factor 1/2 in the coefficients ak and bk,
also we will regard ω0 as the detuning from the resonance frequency.

1.2.2.4. The Optimal Control Problem

Coming back to the formulation of our optimal control problem, we have now
identified the Hamiltonian Eq. (1.84) as underlying the spin dynamics. As
we have seen in Sec. 1.2.2.2, the pulses that we have to design are to work
for all experimentally relevant values of detunings ω0 and control amplitudes
α. Because of this, one has to average the target functional over ω0 and α

such that a high average target functional means that the pulse works for all
parameters α and ω0 one has averaged over. Concerning the target functional,
we have to distinguish between state transfer and gate implementation.

If one aims at a state transfer from |ψi� to |ψf� in the time tf , one can use
the averaged overlap (also referred to as ‘fidelity’)

�Ffid� =
�
|�ψf |U(tf )|ψi�|

2�
ω0,α

(1.85)

as the target functional, where U(tf ) is the propagator at time tf .
If one wishes to implement a unitary transformation Uf , one has to minimize

the distance (Hilbert-Schmidt norm �·�HS) between the actual U ≡ U(tf ) and
the desired time evolution Uf :

�U − Uf�
2
HS

= Tr(U − Uf )(U
†
− U

†

f
) (1.86)

= Tr
�
UU

†
− UU

†

f
− UfU

† + UfU
†

f

�
(1.87)

= 2Tr − 2ReTrUU †

f
≡ 2(d− Re�U ,Uf�HS), (1.88)

where d is the dimension of the system and �·, ·�HS the Hilbert-Schmidt scalar
product. Therefore, one has to maximize the averaged operator fidelity

�Fop� = �Re�U ,Uf�HS/d�ω0,α
. (1.89)
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Before going to a detailed analysis, let us first observe some general symme-
try principles of OC pulses:

If the pulse fx,y(t) implements a state transfer from |ψi� to |ψf�, then fx,y(−t)

causes the state transfer from |ψf� to |ψi�, since U(−t)|ψf� = U(−t)U(t)|ψi� =

|ψi�

If a pulse fx,y(t) of length tf works for an inhomogeneous broadening ∆ω, i.e.
if a high fidelity is obtained for all spin frequencies from an inhomogeneously
broadened ensemble, then the squeezed pulse f �

x,y
(t) = κfx,y(κt) copes with an

inhomogeneous broadening of κ∆ω, since the transformation t = κt� entails

i
∂

κ∂t�
|ψ(κt�)� =

�ω0

2
σz + fx(κt

�) + fy(κt
�)σy

�
|ψ(κt�)�

⇔ i
∂

∂t�
|ψ(κt�)� =

�κω0

2
σz + κfx(κt

�)σx + κfy(κt
�)σy

�
|ψ(κt�)�. (1.90)

The new fundamental frequency is then Ω� = κΩ, i.e. the pulse ends at
t = tf/κ. By squeezing the pulse, one can therefore obtain higher fidelities but
at the cost of a higher intensity and a broader bandwidth.

If the control Hamiltonians fx(t)σx and fy(t)σy implement Uf and the Hamil-
tonian is transformed by a transformation M (H� = MHM †, MM † = ) and
the inhomogeneous broadening is invariant under M , then the transformation
U �

f
= MUfM † is implemented by the controls fx(t)MσxM † and fy(t)MσyM †.

This is because

Tr(U †

f
U) = Tr(U †

f
M †MUM †M) = Tr((MUfM

†)†MUM †). (1.91)

The simplest example is the transformation

M =

�
0 1
i 0

�
(1.92)

that exchanges σx and σy:

MσxM
† = σy MσyM

† = σx MσzM
† = −σz, (1.93)

i.e. if one exchanges fx(t) and fy(t), the x- and y-axis are exchanged. In other
words, a rotation around the x-axis becomes a rotation around the y-axis and
vice versa. It is therefore not necessary to calculate the pulse that implements
a rotation around the y-axis if one already has calculated the corresponding
rotation around the x-axis. The last equation MσzM † = −σz implies that the
transformed pulse works now for an ensemble whose resonance frequencies are
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reflected around the point ω0 = 0. For a symmetric distribution, which is the
case in most applications, the transformed and the original ensembles are the
same.

1.2.3. Experimental Setup

Figure 1.7.: The schematic setup of the NV experiment s depicted [53]: The
sample is excited by a 532 nm laser, the fluorescence light is di-
rected onto a detector, while the sample is manipulated by a mi-
crowave pulse.

Let us now come to the concrete experimental setup (see Fig. 1.7) we will
refer to in chapter 3. The beam of a 532 nm laser is stabilized by an arrange-
ment of acousto-optical modulators, lenses and beam splitters (see [40]). Then,
through a microscope, the beam is guided onto the sample. Optimal control
can be done with the sample by controlling it with the help of a micro-wave
signal. The antenna that emits the control field is a gold wire which has the
shape of a loop. Inside this loop, there are the NV centers, which experience
the inhomogeneous field of the loop (see Fig. 1.8). The fluorescence light is
collected by the microscope and directed onto a detector.

1.2.4. Magnetic Field Sensing

Magnetometry is the ability of measuring small magnetic fields. If one deals
with magnetometry, one has to distinguish the cases of DC (static) and AC
(time-dependent) fields. Both have in common that they measure a phase
shift that results from the application of a magnetic field. In the following,
a magnetic field B is assumed to be applied along the z-axis. In the case of
a DC field (see Fig. 1.9), one first transfers the spin from the state |0� to
the state (|0�+ |1�)/

√
2 (called a π/2-pulse) [53]. On the Bloch sphere, a π/2
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Figure 1.8.: On the left: a gold wire forms the antenna. Inside the loop, NV
centers are to be manipulated. On the right: the black diamond
containing NV centers with the antenna on the top (photos taken
by T. Nöbauer [53]).

Figure 1.9.: Scheme for measuring DC magnetic fields: After a π/2-pulse, the
spins precess in the equatorial plane of the Bloch sphere (see be-
low) due to their resonance frequency ω0. The read-out is done by
applying a (π/2)y-pulse.

pulse corresponds to the mapping of the north pole to a point in the equatorial
plane of the Bloch sphere (left sphere in Fig. 1.9). Then, one lets the spins
precess in the equatorial plane for a time τ . This evolution follows the internal
dynamics e−iω0τσz/2 (second sphere in Fig. 1.9) with the resonance frequency
ω0 of the spin. The read-out consists of a (π/2)y-pulse and a projection on
the state |1� (right sphere in Fig. 1.9). The above sequence is also called a
Ramsey sequence [54]. The result of this sequence is the fidelity

����1|e−iπσy/4e−iω0τσz/2 (|0�+ |1�) /
√
2
���
2
= cos2

�ω0τ

2

�
=

1

2
(1 + cos(ω0τ)) .

(1.94)
An additional static B field in form of a Hamiltonian HB = Bσz will cause
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an additional shift e−iBτσz . If one considers the output P (|1�) as a function
of τ , one can see that the magnetic field causes a higher frequency. From this
frequency shift ∆φ = Bτ one can calculate the value of B as B = ∆φ/τ .

Figure 1.10.: Scheme for measuring AC magnetic fields: A πx-pulse would lead
to a refocusing of the spins after the second free evolution. How-
ever, an AC magnetic field, as triggered above, induces an addi-
tional phase shift A.

In the case of an AC magnetic field, one cannot use the above scheme because
fields would be averaged out over time. Instead, one adds another πx-pulse
(on the Bloch sphere the rotation by π around the x-axis) in between the
free evolution (see Fig. 1.10) [55]. This is what is called a (Hahn) spin echo
sequence. Let us first discuss the pulse scheme without magnetic field. The
idea of spin echo is that during the first evolution the spins precess with their
frequency ω0 (see black arrow in the left sphere of Fig. 1.10), then they are
rotated around the x-axis by an angle of π (second sphere in Fig. 1.10), and
during the second free evolution they exactly get back the distance they had
covered during the first evolution (black arrow in the right sphere of Fig. 1.10),
so that they are finally refocused after a time τ . The mechanism of spin echo
can be illustrated by runners in a stadium. They start to run as fast as possible,
everyone at his own speed (free evolution). Then, on a whistle (the πx-pulse),
they run back to the point where they came from. Now, a fast runner has
covered a long distance, but has also a long distance to get back. On the other
hand, a slower runner has covered a smaller distance and also has to get back
a smaller distance. So, in the end, all runners will come back at the same time.

Now, the magnetic field comes into play: One assumes that this field is
periodic in time and that its periodicity is adapted to the control sequence in
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a way that it is positive during the first free evolution (see left sphere in Fig.
1.10) and negative during the second (right sphere in Fig. 1.10). This can
be achieved experimentally by suitably triggering the control sequence [53].
Therefore, the spins will obtain a positive dephasing +Bτ during the first
interval and a negative dephasing −Bτ during the second evolution. In this
way one will have a phase shift of

∆φ =

�
τ

0

B(t)dt−

� 2τ

τ

B(t)dt. (1.95)

By this method, one thus measures the lowest Fourier component of the time-
dependent field B(t).

In order to assess the quality of the above pulse scheme in the presence of
experimental imperfections, let us next calculate the sensitivity δBmin. This is
the minimal magnetic field δBmin that permits us to distinguish a field B1 from
the field B1+δBmin by performing asymptotically many measurements. These
measurements are limited by the standard deviation σsn of the shot-noise,
which is always present when counting the number of photons. Therefore,
the signal dS that permits us to distinguish between two magnetic fields has
to be larger than the experimental shot-noise. The sensitivity δBmin is thus
defined as the limiting case where the signal dS can still be distinguished from
shot-noise (signal-to-noise ratio = 1):

δBmin =
σsn

dS
. (1.96)

Here, dS =
�� ∂S

∂B0

�� is the slope of the signal as a function of the magnetic
field [40]. According to Eq. (1.94), the fidelity after a free evolution with a
phase shift ∆φ can be written as F0 + S(∆φ). One therefore defines the spin
echo signal as S = CNtot cos(∆φ), where C is the spin-echo contrast and Ntot

the total number of collected photons. In order to get a rough estimate of
the sensitivity, one takes as B(t) not a sine function but a rectangular one.
Since the surface under a rectangular pulse is greater than the surface under
any other pulse of equal duration, a rectangular pulse provides the maximal
attainable sensitivity. As the signal has the value B0 during the first free
evolution τ and −B0 during the second free evolution, this gives ∆φ = 2B0τ .
It follows that ���

∂S

∂B0

��� = 2CNtotτ sin(2B0τ). (1.97)
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Again, we are interested in the highest signal, i.e. sin(2B0τ) = 1. Since
the shot-noise represents a high number Ntot of independent events, it can be
modeled as a Poissonian process, i.e. σsn =

√
Ntot. As the total number of

collected photons depends on the measurement time T and volume V , it seems
reasonable to divide by these quantities such that the normalized sensitivity
reads

δBmin =
1

Cτ
√
NtotTV

(1.98)

One can see that the longer the free precession time τ is, the more photons are
collected and the better is the sensitivity δBmin. Unfortunately, the spin echo
contrast C deminishes with τ on the time scale of the decoherence time T2

[55]. Therefore, an optimal precession time τopt exists. The spin echo contrast
diminishes approximately as [56]

C(τ) = C0e
−

�
τ
T2

�n

, (1.99)

where n ∈ [1, 2] is a fitting parameter. In order to yield the optimal precession
time, we calculate the derivative of δBmin with respect to τ , which is equivalent
to solving the following equation:

e
�

τopt
T2

�n �
n
�
n
�

τopt
T2

�n

− 1
��

τ 2
= 0 (1.100)

The solution of this equation is

τopt =
T2

n1/n
(1.101)

A common value of this is τ ≈ 0.5T2, as we will see soon.

40



2. Smooth Optimal Control

with Floquet Theory

In this chapter, we will describe the method of Smooth Optimal Control (SOC)
that we have developed. In Sec. 1.1.2 we already explained how Floquet
theory can be used to compute the time evolution operator, which is the first
step of our algorithm (see Fig. 1.1). In this chapter, we will present a new
technique with which one can compute the derivatives with respect to the
control parameters with the help of perturbation theory. The chapter will
be concluded with the description of the concurrent update of the control
amplitudes. In addition, the reader can find in the appendix A some remarks
about the numerical calculation of the Floquet eigenvalues.

In the framework of SOC, the pulse is expanded into a Fourier series with a
fundamental frequency Ω, i.e. the functions in Eq. (1.4) are

gjk(t) = sin(jΩt). (2.1)

From this follows that the Hamiltonian is periodic in time, H(t + T ) = H(t),
with the period T = 2π/Ω. We therefore can invoke Floquet’s theorem in
order to calculate the time evolution operator. In contrast to GRAPE, where
the above functions were discontinuous step functions, in our framework these
functions are smooth - which motivates the notion of smooth optimal control.
Whereas GRAPE is discrete in time, SOC is discrete in frequency space. This
discreteness bears some important advantages, as we will see later.

One may argue that working with periodic Hamiltonians is a big restriction.
In practice, however, the duration tf of the pulse can always be chosen such
that H(0) = H(tf ) = 0, which can be achieved by switching the pulse on
at t = 0 and switching it off at t = tf . In this way, the period T of the
Hamiltonian, i.e. the time T for which H(t) = H(t+ T ) is fulfilled, naturally
coincides with the duration tf of the pulse. It has to be mentioned that, since
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2. SMOOTH OPTIMAL CONTROL WITH FLOQUET THEORY

the Hamiltonian for times t > tf is of no interest, one can periodically continue
H(t). The condition of dealing with a time-periodic Hamiltonian therefore has
been achieved without any restriction in practice.

2.1. Derivatives with Perturbation Theory

Whereas with GRAPE it is still manageable to calculate the first derivatives
of the propagator with respect to the control parameters, the calculation of
the second derivatives entails a lot of effort and is only possible numerically
[28]. With SOC, on the contrary, one is capable with little effort to compute
any order of the derivatives analytically. This will be shown in the following.

In order to compute the derivatives of the time evolution operator U with
respect to the control parameters ajk, which is the second step of our algorithm
from Fig. 1.1, one has to know how the Floquet eigenvalues and eigenvectors
change under a modification of the control amplitudes. As the Hamiltonian H

depends linearly on the control parameters, so does the Floquet operator K̃:

K̃(a+ δa) = K̃(a) + δa ·Kint, (2.2)

where Kint = ∇aK̃|a=0. One can now do perturbation theory in Floquet space
with the unperturbed matrix K̃(a) and the small perturbation δa ·Kint. It is
important to note that perturbation theory in Floquet space does not differ
conceptually from perturbation theory in the Schrödinger picture, the only
difference is that in Floquet space one has to deal with infinitely large matrices.

The first step of perturbation theory is to expand the perturbed eigenvalues
and eigenvectors in powers of the perturbation parameter δa,

�k(a+ δa) ≈ �k(a) + δa · �(1)
k

= �k(a) + δa ·∇a�k, (2.3)

with �(1)
k

being the first perturbative correction. It results from this expansion
that the m-th derivatives with respect to the control parameters are nothing
else but the m-th perturbative corrections in Floquet space. In the following,
for the ease of notation, we will replace the two indices i and j in aij by one
index j. If one expands eigenvalues and eigenvectors in a series in δaj, one
obtains

�
K̃ +

�

j

δajK
(j)
int

�
�

α∈Nn
0

(δa)α|χ(α)
k

� =
�

α∈Nn
0

(δa)α�(α)
k

�

β∈Nn
0

(δa)β|χ(β)
k

�. (2.4)

42



2.1 Derivatives with Perturbation Theory

Collecting all first order terms in δaj yields:

K̃|χ
(1j)
k

�+K(j)
int |χ

(0)
k
� = �

(1j)
k

|χ(0)
k
�+ �(0)

k
|χ

(1j)
k

� (2.5)

Here, �(0)
k

≡ �k and |χ(0)
k
� ≡ |χk� are the unperturbed eigenvalues and eigenvec-

tors, and �
(1j)
k

and |χ
(1j)
k

� are the first perturbative expressions with perturba-
tion in the j-th coordinate. By multiplying with �χ(0)

k
| and taking �χ(0)

k
|χ(α)

k
� =

δ0α, one obtains:
�
(1j)
k

=
∂�k
∂aj

= �χk|K
(j)
int |χk� (2.6)

Expressing
|χ

(1j)
k

� =
�

m

�χ(0)
m
|χ

(1j)
k

�|χ(0)
m
� (2.7)

in terms of |χ(0)
m � and inserting in Eq. (2.5) gives

�χ(0)
m
|χ

(1j)
k

� =

�
�χm|K

(j)
int |χk�

�k−�m
k �= m

0 k = m
(2.8)

If one introduces the (pseudo-)inverse

Ik :=
�

n �=k

1

�n − �k
|χn��χn| (2.9)

of K̃− �k in the space orthogonal to |χk� and the operator Tkj := K
(j)
int −

∂�k
∂aj

,

it results that |χ(1j)
k

� can be written in the form

∂|χk�

∂aj
= −IkTkj|χk�. (2.10)

The form Eq. (2.9) implies that the eigenvalues �n are non-degenerate. It is
worth noting that the term Ik

∂�k
∂aj

|χk� vanishes because |χk� is by construction
orthogonal to |χn� for all n �= k. However, we keep the current definition
because Tkj will later be applied to other vectors.

Let us now proceed to the second order perturbation theory. If one collects
in Eq. (2.4) all second order terms proportional to δajδal, one obtains

K̃|χ
(1j ,1l)
k

�+K(j)
int |χ

(1l)
k

�+K(l)
int|χ

(1j)
k

�

= �
(1j ,1l)
k

|χ(0)
k
�+ �

(1j)
k

|χ(1l)
k

�+ �(1l)
k

|χ(1j)
k

�+ �(0)
k
|χ

(1j ,1l)
k

� (2.11)

By projecting on �χk| it follows that

∂2�k
∂aj∂al

= �χk|K
(j)
int |χ

(1l)
k

�+ �χk|K
(l)
int|χ

(1j)
k

�

= −�χk| (TkjIkTkl + TklIkTkj) |χk�. (2.12)
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Expanding again |χ
(1j ,1l)
k

� in terms of the basis |χ(0)
m � yields

|χ
(1j ,1l)
k

� =
�

m

�χ(0)
m
|χ

(1j ,1l)
k

�|χ(0)
m
�. (2.13)

By replacing |χ
(1j ,1l)
k

� from the latter equation in Eq. (2.11), one obtains

�χ(0)
m
|χ

(1j ,1l)
k

� =






�χ
(0)
m |K

(j)
int |χ

(1l)
k �+�χ

(0)
m |K

(l)
int|χ

(1j)

k �−�
(1j)

k �χ
(0)
m |χ

(1l)
k �−�

(1l)
k �χ

(0)
m |χ

(1j)

k �

�
(0)
k −�

(0)
m

k �= m

0 k = m
.

(2.14)
At the second order, an issue occurs that is related to normalization. While
the vector |χm� is still normalized at first order,

�
�χ(0)

k
|+ δa�χ(1)

k
|

��
|χ(0)

k
�+ δa|χ(1)

k
�

�
(2.15)

= �χ(0)
k
|χ(0)

k
�+ 2δaRe�χ(1)

k
|χ(0)

k
�+O((δa)2) (2.16)

= 1 +O((δa)2) (2.17)

it is not anymore at second order, where we have
���
�
|χ(0)

k
�+ δa|χ(1)

k
�+ (δa)2|χ(2)

k
�

����
2
= 1 + (δa)2 �χ(1)

k
|χ(1)

k
�� �� �

=1

+O((δa)3) �= 1.

(2.18)
In order to normalize |χ(2)

k
�, we start from the general expression |χ(2)

k
� =

�
j
cj|χ

(0)
j
�: For j �= k, the coefficients cj are determined by Eq. (2.14),

whereas ck is fixed by normalization. Since |δχ(2)
k
� = ck|χ

(0)
k
� is orthogonal to

|χ(0)
j
� for all j �= k, it does not alter the result of perturbation theory and can

be seen as a correction term ensuring normalization. By using Eq. (2.18), the
calculation leads to the condition

�δχ
(1j ,1l)
k

|χ(0)
k
�+ �χ(0)

k
|δχ

(1j ,1l)
k

�+ �χ
(1j)
k

|χ(1l)
k

�+ �χ(1l)
k

|χ
(1j)
k

� = 0. (2.19)

It follows that the correction term can be written as

|δχ
(1j ,1l)
k

� = −�χ
(1j)
k

|χ(1l)
k

�|χ(0)
k
�. (2.20)

Using Eq. (2.10) one can finally write

∂2|χk�

∂aij∂al
= ( IkTkjIkTkl + IkTklIkTkj) |χk�

−
1

2
�χk|

�
TkjI

2
k
Tkl + TklI

2
k
Tkj

�
|χk�|χk�. (2.21)
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If one desires to calculate the derivative or curvature along a specific (nor-
malized) direction e, one has to replace the direction δa in Eq. (2.2) by the
direction δa e, such that the small perturbation of the Floquet matrix becomes
δa e ·Kint. As we will see in detail in the next section, the speed of convergence
with which the OC algorithm finds an optimal value of the target functional
is the higher the more information is known about the derivatives. In this
sense, the curvature along the direction of the gradient is an important quan-
tity which can be evaluated in the SOC framework with nearly no additional
overhead, whereas it is not clear how this can be done in the framework of
GRAPE.

Figure 2.1.: The time needed to calculate the derivatives with respect to the
control parameters is depicted as a function of the number of con-
trol parameters. The more control parameters one uses, the more
time is needed. The increase is a cross-over between polynomial
and exponential behavior.

To conclude this section, we will measure the time consumed in determining
the derivatives. It is clear that using second order perturbation theory is more
time-consuming than calculating only the first derivatives. In general, as the
time needed to compute the derivatives depends strongly on the number of
control parameters, it is recommendable to determine beforehand how many
frequency components one really requires. As the dimension of the Hilbert
space increases exponentially with the number of involved particles, the ques-
tion of the required number of frequency components is even more delicate
in the case of Hamiltonians of more than one spin. In Fig. 2.1, we plotted
the CPU time needed to calculate the derivatives with respect to the control
parameters as a function of the number of control parameters. We used the
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test Hamiltonian

H =
ω0

2
σz

� �� �
H0

+
nmax�

k=1

ak sin(kt)σx

� �� �
Hc(t)

. (2.22)

We have set ω0 = 0.3592, and the control amplitudes ak were chosen ran-
domly for each nmax from an interval of [−1, 1]. As one can see, the CPU
time increases rapidly with increasing number of control parameters. If one
compares the computational effort with existing optimal control routines like
GRAPE, one has to state that the calculation of the derivative with respect
to a single control parameter can be performed with very low effort, but on
the other hand there are hundreds or thousands of such parameters, whereas
SOC only necessitates the computation of around ten (first) derivatives but
with more effort for each derivative. From this fact one can expect that the
computational effort of GRAPE and SOC is approximately comparable.

From a technical point of view, in MATLAB, the Penrose inverse pinv pro-
vides an efficient algorithm to compute the pseudo-inverse Eq. (2.9), which is
about ten times faster than a direct computation of the operator Ik by hand.
It has to be said that from all steps of the algorithm, the computation of the
derivatives consumes by far the most time compared to the other steps. It
is therefore of great interest to implement the computation of the derivatives
efficiently. This efficient implementation is obtained by using the operators Ik

and Tkj - which only have to be calculated once and reappear at the second
order perturbation theory. Furthermore, what is also time consuming is the
evaluation of K(j)

int , but fortunately this has only to be calculated when the size
of the truncated Floquet matrix is changed, as it only depends on the structure
of the Hamiltonian and not on the explicit values of the control amplitudes aj.

2.2. Concurrent Update

We will now proceed to the last step of our algorithm from Fig. 1.1, namely the
update of the pulses. There are numerous ways to update the pulse in order
to get a better fidelity in each iteration step. The most intuitive method is the
method of steepest ascent, where the new pulse a� lies on the line a + α∇F .
The parameter α, i.e. the distance covered in the direction of the gradient
∇F , can be determined e.g. by a direct line search, where α is enlarged if the
fidelity is improved and reduced if the fidelity is deminished.
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2.2 Concurrent Update

The speed of convergence can be enhanced by exploiting information about
the second derivatives with respect to the control parameters. For example, the
step size of a gradient-based optimization can be approximated by exploiting
the curvature along the direction e∇F = ∇F/ �∇F� of the gradient ∇F . In
this case, as explained in the previous section, the expression δa ·Kint in Eq.
(2.2) has to be replaced by δa e∇F · Kint. This computation is by far easier
than in the framework of GRAPE, where all second derivatives have to be
calculated in order to determine a directional derivative at second order. It has
to be mentioned that second-order GRAPE has only been developped recently
[28]. Concerning the update of the pulse, one has to distinguish between a
convex and concave landscape. If the curvature d2Fgr along the gradient is
negative, i.e. one approaches a local maximum, then the landscape of the
fidelity in the neighborhood of x0 = a, where a are the control parameters,
can be approximated by a (convex) quadratic function f(x) = d2Fgr(x−x0)2+

∇F ·(x−x0)+c. If the landscape was really quadratic, the maximum could be
found by setting the first derivative of f(x) equal to zero. This results in the
condition ∇f(x) = 2d2Fgr(x− x0) +∇F = 0. The maximum would therefore
lie at x = x0 −

∇F

2d2Fgr
, i.e. the update of the pulse for a negative curvature is

a� = a+
∇F

2 |d2Fgr|
. (2.23)

If, on the other hand, the curvature is positive, i.e. the landscape is concave,
one still has to update the pulse along the direction of the gradient. If one
again models the landscape by a quadratic function f(x) = d2Fgr(x− x0)2 +

∇F · (x− x0) + c, one obtains the condition d2Fgr(x− x0)2 � ∇F · (x− x0)

such that the approximation to second order is valid. This condition results
in a constraint on x− x0:

x− x0 �
∇F

d2Fgr

(2.24)

For a concave landscape, we therefore update the pulse in the following way:

a� = a+ δ
∇F

d2Fgr

(2.25)

The parameter δ specifies how strongly the update deviates from the original
landscape. For our purposes, we have chosen δ = 0.05, meaning a deviation of
5 %.
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For the case in which the full curvature ∂
2F

∂aj∂al
is accessible, we developed

a more sophisticated method: First of all, the step size should depend on
the curvature. Again, one has to distinguish between regions of positive and
negative curvature. In order to know in which directions the landscape is
convex and in which concave, one has to diagonalize the matrix of curvature
Kjl =

∂
2F

∂aj∂al
and consider their eigenvectors |kj� and eigenvalues κj. Next, it

is helpful to construct the operators

P =
�

j

θ(�− κj)|kj��kj| and Q =
�

j

θ(κj − �)|kj��kj|. (2.26)

They project on the directions where the curvature is lower or higher than a
certain threshold �. This threshold should be adapted to the fidelity reached,
because the approximation to second order is the more accurate the nearer one
gets to a local maximum, and these local maxima are characetrized by high
fidelities. In this work, we used the following values for �:

F �
<0.6 -10

[0.6, 0.8) -1
[0.8, 0.95) -0.1
≥ 0.95 -0.01

We first consider the update for a convex landscape: Similar to Eq. (2.23),
but where the matrix of curvature K replaces the curvature along the gradient
and the operator P projects onto the directions where the landscape is convex,
one updates the control amplitudes a according to

a� = a+
1

2
PK−1

∇F (2.27)

if TrP > δ. Here, δ = 0.1 is a small parameter ensuring that the curvature is
substantially greater than zero. This parameter has been introduced heuris-
tically, as we have discovered that convergence is the worse the flatter the
landscape is. Being in the concave part of the landscape (TrQ > δ) entails the
following update rule

a� = a+ α
∇F ·Q ·∇F

|∇F ·QK ·∇F|
Q ·∇F (2.28)

Here, we used α = 0.1, specifying the deviation from the original landscape.
This update rule can be explained by the same reasoning as in Eq. (2.24), but
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with (∇F ·Q ·∇F)Q ·∇F replacing the gradient and |∇F ·QK ·∇F| replacing

the curvature along the gradient.

In the following, we want to compare the three update methods explained

above. As a test model, we optimized a system of 20 non-interactive spins

governed by the Hamiltonian Eq. (1.84) (with Ω = 1 and n = 5 Fourier modes)

and showing a Gaussian inhomogeneous broadening of 1 MHz full width at half

maximum and a control amplitude ranging from α = 0.75 to α = 1.25. As

the target functional we used the average fidelity Eq. (1.85). As one can see

in Fig. 2.2, in the beginning, i.e. where the control landscape is rather flat,

the method using the first derivative only is the fastest one (here we used a

constant step size α = 1). However, after 30 iteration steps the convergence

slows down significantly and after 40 iteration steps it is outperformed by the

method using the first and second derivatives. The latter method is obviously

the best choice if the landscape is curved. Here, one can fully exploit the

additional information about the curvature provided by the second derivatives.

Concerning the method using the first derivative and the curvature along the

direction of the gradient, it is the slowest one in the beginning. However, after

60 iteration steps it speeds up considerably and attains a convergence speed

comparable to the method that uses the full information about the curvature.

If one takes the best of each method, one would begin with a search only

using the first derivative, and as the control landscape becomes curved one

would proceed by using in addition the curvature along the direction of the

gradient, as this is computationally less expansive than calculating the full

curvature. There is certainly more than one criterion when switching from

the optimization using the first derivative only to the method that uses the

curvature along the direction of the gradient. Here, we switched when the

fidelity did not substantially increase over five iteration steps (here: when it

is less than 0.002). One can see in Fig. 2.2 that the hybrid method attains a

fidelity comparable to the method that uses the curvature along the gradient

after 100 iteration steps. However, the hybrid method has consumed less

computational time during the first 40 iteration steps, where the first derivative

only has been used.
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Figure 2.2.: Convergence using the first derivative only (black continuous line),
using the first derivative and the curvature along the direction of
the gradient (blue dashed line), using the first and second deriva-
tives (red dotted line) and using a combination of first derivative
and curvature along the gradient (red, bold line).

Concluding remarks

After having introduced SOC, we would like to describe the advantages that
characterize SOC in comparison with existing state of the art techniques: First
of all, one has the full control of the spectral width, as it is set by the choice
of the Fourier components used. This distinguishes the SOC approach from
methods where the spectral width is artificially limited a posteriori by a filter
function. As we have already seen in Fig. 2.2 and as we will see in more detail
in the next chapter, comparatively few (typically: 10) optimization parameters
are required in order to yield a very good result of the optimization. The very
restricted number of parameters gives hope that one can explain why certain
pulses work better than others. This question is very difficult to be answered
in state-of-the-art techniques like GRAPE, where hundreds or thousands of
control parameters are needed. Another advantage of SOC is due to Floquet
theory, that is many calculations can be performed analytically, e.g. non-linear
target functionals can be implemented without additional effort (see Sec. 4.3),
time-optimal pulses are easily implemented (see Sec. 4.1) and also averaging
over time is performed fairly easily (see Sec. 4.4). In the framework of GRAPE,
these quantities are only numerically accessible.
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3. Control of Single Spin

Dynamics

The following chapter is dedicated to the coherent control of a single spin (or
an ensemble of non-interacting spins). Most of the material presented in this
chapter results from a collaboration with the experimentalists Tobias Nöbauer,
Andreas Angerer and Johannes Majer from the Atominstitut Vienna. Expe-
riment and theory are then compared with each other. The main findings are
published in [40]. The main goal of this chapter is to measure small magnetic
fields with an ensemble of NV centers. The unavoidable inhomogeneous broad-
ening of such ensembles will be compensated with suitably designed pulses,
and we will show that the pulses designed with SOC clearly outperform typ-
ically employed hard pulse sequences and that they permit us to compensate
inhomogeneous broadening essentially perfectly despite their narrow spectral
structure. In order to measure small magnetic fields, both state transfer and
operator pulses are designed. It has to be said from the very beginning that
the robustness we achieve by SOC can also - at least in principle - be attained
by using GRAPE. However, SOC has several advantages mentioned at the
end of the previous chapter, above all the inherent smoothness of the pulses.
Furthermore, GRAPE has its main applications in NMR, only recently it has
been applied to NV centers [57, 58].

3.1. Designing Ensemble Pulses

If one wants to design a pulse for a specific experiment, one has to know the
following data given by the experiment: The form and size of the inhomoge-
neous broadening of the resonance frequencies ω0 (see Eq. (1.75)) depend on
the NV sample. Unless it is not specified otherwise, we will assume an inho-
mogeneous broadening with a Gaussian form and 10 MHz full width at half
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3. CONTROL OF SINGLE SPIN DYNAMICS

maximum (FWHM). The range of the control field experienced by the spins is
determined by the geometry of the gold wire that generates the control field
(see Sec. 1.7) and by the volume V the microscope focuses on. If not specified
otherwise, the control field ranges from weak fields of 75% in the middle of
the probe volume to strong fields of 125% in the vicinity of the gold wire. As
an ensemble, we take one with 100 spins and test its representativeness at the
end by applying the resulting pulse on a different ensemble. By doing this, we
ensure that the average fidelity is independent on the test ensemble that one
uses in order to calculate the average. As another important quantity char-
acterizing the pulse, the maximal spectral width of the pulse is given by the
number of frequency components present in the optimal control pulse. In addi-
tion to the above quantities one also needs to know the maximal pulse length.
This pulse length is limited by the single spin decoherence time T2, which is
determined by the interaction with surrounding carbon and nitrogen nuclei
[59]. Another quantity that one needs in order to design an optimal control
pulse is the maximal Rabi frequency, i.e. the maximal value Athr of the control
amplitudes fx(t) and fy(t) in Eq. (1.76). To limit this value, one introduces a
penalty functional Fp = −p tf

2 a
2, where a are the control amplitudes, tf is the

duration of the pulse and p ≥ 0 is a parameter which specifies how strongly
high amplitudes are penalized. In practice, one starts the algorithm with a
strong penalty of p = 0.1 and calculates the maximal Rabi frequency Amax in
each iteration step. If Amax < Athr, p is decreased by a small amount ∆p (here
we used ∆p = 1/600), otherwise it is increased by ∆p. The penalty for high
amplitudes not only limits the maximal power of the pulse but also prevents
the algorithm from being trapped in local maxima.

3.1.1. State Transfer Pulses

In the following, we will deal with the state transfer problem |ψi� → |ψf�

described in Sec. 1.2.2.4 and the corresponding target functional Eq. (1.85).
In this context, we recall that a π-pulse is a pulse which causes a transfer
from the state |0� to the state |1�, a π/2-pulse a pulse which realizes the
transfer |0� → (|0�+ |1�)/

√
2. In the following example, we optimized a pulse

for 8 MHz Gaussian FWHM and a control amplitude as stated above. The
experiment is done with an NV ensemble that contains at least 99.999% of
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3.1 Designing Ensemble Pulses

12C. The decoherence time is T2 = 140µs, the dephasing time connected to
the inhomogeneous broadening is T ∗

2 = 10µs.

Figure 3.1.: SOC pulse (a: red fx(t), orange fy(t)) with n = 10 frequency
components, which leads to the ensemble trajectory b. The theo-
retical prediction is shown by the solid line, the dots correspond
to the measurements that have been done. In c-f are depicted the
spins on the Bloch sphere at the moments t = 0, 150, 300 and
500 ns in time. The red spins only experience 90% of the control
amplitude, the grey ones 100% and the orange ones 110%. Within
these three groups the spins show eleven detunings equally spaced
in the interval [−7,+7] MHz. [40]

Our first objective was to verify that the pulses that we design induce the
desired dynamics in the experiment. For this purpose we constructed a pulse
with ten frequency components that induces a propagator Uα,ω0(tf ), where
tf is the duration of the pulse, such that |�1|Uα,ω0(tf )|0�|

2 ≈ 1 (π-pulse) for
any spin resonance frequency ω0 and relative control amplitude α in the re-
spective interval (see Sec. 1.2.2.2). The time-dependent, ensemble-averaged
spin population P (|0�) = ��0|Uα,ω0 |0��α,ω0 can be measured experimentally and
comparison between the theoretical prediction and experimental data permits
us to verify the agreement between theory and experiment. Fig. 3.1 depicts
the averaged trajectory P (|0�), i.e. the population in the state |0�, for both
the experimental observation (dots) and the theoretical prediction (continuous
line). One sees that the trajectory reaches zero at the end of the pulse (here
after 500 ns), meaning that the state |1� is reached. Therefore, we really deal
with a π-pulse. Furthermore, the theoretical prediction is reproduced with
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3. CONTROL OF SINGLE SPIN DYNAMICS

high accuracy in the experiment, meaning that our theoretical description is
right. In addition, we plotted the SOC pulses that led to this trajectory. As
one can see, they are very smooth and do not contain high frequency com-
ponents by definition - as one would expect for a pulse with ten frequency
components. We limited the maximal Rabi frequency with the above algo-
rithm to Amax = 10 MHz. This goal is achieved, as one can see in Fig. 3.1
a), where the amplitudes vary between -10 and 7 MHz. In order to illustrate
the theoretical dynamics of the single spins, four snapshots of a spin ensemble
on the Bloch sphere are taken at different moments in time. As one can see,
the dynamics of the spins is rather complicated but in the end all spins are
refocused in the state |1�. As mentioned in Sec. 1.2.2.2, the ‘detour’ made
by some of the spins is crucial for the robustness of the pulse. Moreover, it
is important to note that the pulse is the more robust the more of the Bloch
sphere the spins explore.
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Figure 3.2.: Fidelity maps are depicted for a rectangular pulse (a) with the
same maximal amplitude as the smooth pulse, (b) shows the theo-
retical prediction of a SOC pulse, (c) the experimental result. The
white lines indicate a fidelity of 90%. [40]

In order to assess the quality of a pulse, the best way is to generate a fidelity
map, where the fidelity, encoded in a color scheme, is shown as a function of the
detuning ω0 and the relative control amplitude α, as introduced in Sec. 1.2.2.2.
The fidelity is probed with a single NV, which is detuned or whose relative
control amplitude is varied. The result is shown in Fig. 3.2: One can see that
both theoretical and experimental plot show a region with a fidelity of more
than 90% ranging from -8 to +8 MHz detuning and a relative control amplitude
from 0.5 to 1.5. The experimental plot resembles the theoretical plot taken at
a lower resolution. This lower resolution is due to the unavoidable presence of
shot noise in the experiment. In order to compare SOC with the state of the
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3.1 Designing Ensemble Pulses

Figure 3.3.: Logarithmic infidelity of a π-pulse with n = 10 frequency com-
ponents as a function of the inverse squeezing, measured by the
parameter κ. The initial pulse length was tf = 500 ns (corre-
sponding to κ = 1).
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Figure 3.4.: Logarithmic infidelity of a π/2-pulse as a function of the number
of frequency components n. The inhomogeneous broadening had
a rectangular shape with width ∆ω = 0.5 MHz, the control ampli-
tude had a range from 80 to 120%, the duration of the pulse was
tf = 1µs.

art techniques one has to draw a comparison with rectangular pulses. Here,
different choices are possible: One could compare with the shortest possible
rectangular pulse. However, this choice is not appropriate because given a
highest implementable frequency, retangular pulses can always be made shorter
than any other pulse, resulting in an artificially higher fidelity. The second
option would be to compare with the rectangular pulse of the same duration,
this however would disadvantage the rectangular pulse, which could be realized
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3. CONTROL OF SINGLE SPIN DYNAMICS

with much higher intensity. The third and fairest solution is to compare pulses
with the same maximal Rabi frequency because this is the natural limitation
of the pulses.

For a rectangular pulse, one can identify a region from -4 to 4 MHz detuning
and 0.8 to 1.2 relative control amplitude, where the fidelity is higher than 90%.
Beyond this region, fidelity rapidly decreases. Concerning the SOC pulse, the
fidelity is higher than 90% in a much larger region, more precisely from -8
to 8 MHz detuning - the double of the rectangular pulse - and for a relative
control amplitude ranging (nearly) from 0.5 to 1.5 - being the double of the
rectangular pulse, too. We have therefore shown that SOC is better than
conventional control techniques working with rectangular pulses. One also has
to say that the robustness against different control amplitudes - from α = 0.5

to 1.5 - is finally much better than the targeted control amplitudes (from
α = 0.75 to 1.25).

It is impressive how far one can push the robustness against different control
amplitudes: We were able to generate a π-pulse with n = 10 frequency compo-
nents that is robust against an inhomogeneous broadening of 1 MHz FWHM
and control amplitudes ranging from α = 0.04 to 1.96, i.e. the nearest spin to
the antenna experiences a control field that is about 50 times stronger than
this of the farest spin. By limiting the maximal Rabi frequency to Amax = 20

MHz, this pulse yields an average fidelity of more than 95%. Therefore, SOC is
ideally suited to control an ensemble of NV centers in nanodiamonds. As the
orientations of these nanodiamonds are randomly distributed over the sample,
they experience a broad range of control amplitudes [60].

As we have seen in Sec. 1.2.2.4, a given pulse can be improved by squeezing
it, i.e. by decreasing the pulse duration by a factor κ and enlarging the control
amplitude by the same factor κ. In Fig. 3.3, the logarithmic infidelity is
shown as a function of the inverse squeezing parameter 1/κ. One can see
that the fidelity gets exponentially better with increasing squeezing until it
saturates for 1/κ < 0.4 to log10(1 − F0) = −2.6. This can be understood in
the following way: Squeezing means nothing else but magnifying the central
region in the above fidelity map - region over which one has to average. As
the fidelity is higher in the central region, the fidelity of a squeezed pulse must
increase. However, in the limit of κ → ∞, the fidelity cannot exceed the
fidelity F∆ω=0,α=1 of no detuning and the exact relative control amplitude.
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3.1 Designing Ensemble Pulses

It is important to note that one squeezes a pulse which is already optimized.
In particular, there is no additional optimization for a given squeezing; the
improvement in fidelity only comes from the squeezing.

In Sec. 2.1 we have seen that the computational cost for computing the
derivatives with respect to the control parameters increases fast with the num-
ber of frequency components. This means that many frequency components
should be avoided. Here, the logarithmic infidelity of a π/2-pulse is shown
in Fig. 3.4 as a function of the number of frequency components. In order
to compensate for local maxima, every data point is the result of the best of
five iterations. As more frequency components mean more freedom in design-
ing a pulse, one may expect the fidelity to increase with increasing number
of frequency components. Indeed, one can see in Fig. 3.4 that the fidelity
becomes exponentially better until it saturates to 1−10−5 for n ≥ 7 frequency
components. This means that one does not have to go to a large number of
frequency components. In order to be sure that the fidelity does not increase
substantially with the number of frequency components, one takes more than 7
frequency components, typically about n ≈ 10 components are enough. In this
way, the computational cost of many frequency components can be avoided. In
addition, smooth pulses typically look very simple and almost intuitive. It is
expected that the fidelity with respect to the number of frequency components
behaves in a monotonic way, as a pulse with more frequency components can
always be generated from less components by adding sufficiently many zeros.
The fact that the fidelity for n = 6 frequency components is less than for
n = 5 has to do with the existence of local maxima in the control landscape
[61]. These local maxima are also present in the region where the fidelity
saturates.

Another important aspect is the behavior of the fidelity as a function of
the duration tf of the pulse. It is found that the fidelity does not depend
significantly on the pulse duration. A reason for this is the interplay of two
effects: on the one hand, a longer pulse provides more possibilities to control
the system, i.e. results in a higher fidelity; on the other hand, the detrimental
effect of inhomogeneous broadening is the stronger, the longer the pulse is. In
the end, these two tendencies cancel each other out.
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Figure 3.5.: Quantum process tomography for a πx-pulse: The modulus and
the phase of the process matrix χ are displayed for the correct
amplitude (a), for the correct amplitude and 8 MHz detuning (b)
and for 87.5% of the optimal amplitude and no detuning (c). As
one can see, the loss in fidelity is little. [40]

3.1.2. Operator Pulses

In the following, we will deal with operator pulses, e.g. pulses that implement
a rotation Uf = e−iπσx/2 by π around the x-axis, abbreviated as πx. The
corresponding target functional is given by the operator fidelity Eq. 1.89.
In theory, one could also generate a fidelity map for operator pulses. In the
experiment, however, this operator fidelity is not directly measurable but one
needs to reconstruct the quantum channel induced by the pulse by means of
quantum process tomography described in Sec. 1.1.4. With the reconstructed
channel one can then compare experiment and theory.

The operations which are necessary for quantum state tomography are done
with the shortest possible rectangular pulses, which have a high fidelity. If one
had used SOC pulses, the result of the quantum process tomography would
depend heavily on the operations with which one realizes the input states of
the quantum state tomography.

When dealing with operator pulses, in the case of NV centers, there is an
additional difficulty to overcome: Since the signal for measuring populations
(see Sec. 1.2.1) only depends on the magnetic quantum number mS, it is only
possible to measure the z-component of the spins. However, if one likes to
measure the x- or y-component after the application of a certain pulse - as it
is necessary for quantum state tomography -, one can do this by the following
measurement scheme: One rotates the spins first by a (π/2)x- or (π/2)y-pulse
(Uf = e−iπσk/4, k = x, y), then performs the pulse, next rotates the state back
by a (−π/2)x- or (−π/2)y-pulse (Uf = eiπσk/4, k = x, y) and then measures
the z-component in order to determine the x- or y-component.
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3.1 Designing Ensemble Pulses

In the experiment, the process matrix for a πx-pulse for a single spin is to
be found. A πx-pulse can be described by the unitary transformation U =

e−iπσx/2 = σx. From this, it follows that the density matrix ρ� after the pulse
can be written in the form ρ� = UρU † = σxρσx. This means that the process
matrix χ in Eq. (1.34) can be expressed in terms of the basis { , σx,−iσy, σz}

by the matrix

χ =





0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



 . (3.1)

Compared to this ideal matrix, Figure 3.5 shows the experimental process
matrix χ in the case of the ideal amplitude (a), the ideal amplitude and 8
MHz detuning (b) and of an amplitude which is 12.5% smaller than the ideal
one (c). The results are represented in a bar chart, where the height of the
bars represents the modulus and the color the phase of the matrix elements
χmn. The matrix with the ideal amplitude and no detuning agrees with high
accuracy with the theoretical prediction. The dominant entry of the process
matrix is χ22 and has a modulus of 0.991 and a phase of zero. The next largest
entries are χ12 and χ21 and have a modulus of less than 0.1. The phases of
the other entries are distributed over the whole range of [0, 2π), which is not
surprising, as a fluctuation on the top of a complex number near zero can easily
alter its phase. The process matrix for the ideal amplitude and a detuning of
8 MHz is still very close to the theoretical prediction, as the main entry χ22

has a modulus of 0.928 and zero phase. The next largest entries are χ24 and
χ42 with a modulus of 0.2. Also the process matrix for 87.5% of the original
amplitude and no detuning is in agreement with the theory: The leading entry
χ22 has a modulus of 0.961 and zero phase. The next largest entries are χ12

and χ21 with a modulus of 0.25, the other entries being close to zero.
As the above analysis shows, the constructed pulse induces a πx-gate not

only for one spin with resonance frequency ω0 = 0 and control amplitude
α = 1 but also for spins which are detuned from the resonance frequency or
do not experience the full control amplitude. Therefore, the operator pulse
πx will also work with ensembles of NV centers, and this is what is needed in
magnetometry.

In Sec. 1.1.4, we considered the possibility that the process matrix may be
not positive semidefinite. In the three examples of quantum process tomog-
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raphy, the distance (calculated with the Hilbert-Schmidt norm) between the
experimental process matrix χ and the ideal one χ̃ is only 2 to 3% of �χ̃�HS

[40]. In Ref. [39], the authors present a quantum process tomography with
NV centers. The deviation of the experimental process matrix from the ideal
one, calculated therein, lies slightly higher than ours. This entails that our
experimentally found χ represents to a very good approximation a physical
process.

3.2. Magnetometry

Now that we have the necessary pulses π/2, πx and (π/2)y at hand, we are able
to do magnetometry, as it is described in Sec. 1.2.4. The experiment described
here was performed by T. Nöbauer and A. Angerer with a sample that had
a decoherence time of T2 ≈ T ∗

2 ≈ 2.2µs. The time of free precession was
τ = 1.2µs, in accordance with Eq. (1.101). In contrast to the measurements
quoted in Figs. 3.2 and 3.5, an ensemble of NV centers is now used in the
experiment. Scanning the detuning and the relative control amplitude over
a broad range for both rectangular and SOC pulses with the same maximal
amplitude permits us to experimentally verify the robustness of our method.
The resulting sensitivity encoded in a color scale is shown in Fig. 3.6 a). As
one can see, the SOC pulses lead to a uniform high sensitivity of at least
10−6 T Hz−1/2 over the detuning range of 0 to 14 MHz and a relative control
amplitude ranging from 0.65 to 1. On the contrary, the rectangular pulse has
a comparable sensitivity for a detuning of less than 5 MHz and then rapidly
looses one to two orders of magnitude in sensitivity as detunings increase. This
behavior is illustrated by Figs. 3.6 b) and c), where one has averaged along
constant control amplitude (1.0) and along constant detuning (0), respectively.
Whereas the SOC pulses are only slightly better than the rectangular ones for
varying relative control amplitude, SOC shows its whole power for strongly
broadened ensembles. Whereas the averaged sensitivities obtained with SOC
and rectangular pulses nearly coincide for detunings smaller than 4 MHz, SOC
almost gains two orders of magnitude in sensitivity for a detuning of 14 MHz.
Here, one can see a well-known trend which one has already seen in the case
of the fidelity maps of state transfer pulses (see Sec. 3.1.1): the robustness
against different detunings is very limited for rectangular pulses. In summary,
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3.2 Magnetometry

we have shown that the sensitivity in the case of SOC magnetometry is not
only better than methods using state-of-the-art rectangular pulses, but is also
by far more robust against different detunings and relative control amplitudes.
As in the case of other OC algorithms, this robustness is an inherent property
of our OC framework.
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Figure 3.6.: Sensitivity map (a) for SOC and rectangular pulse (white points
stand for data points that were discarded because of experimental
instabilities). In addition we integrated along a relative control
amplitude 1.0 (b) and no detuning (c). The SOC pulse sequence
performs by far better than the rectangular one. [40]
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4. Control of Composite

Quantum Systems

In this chapter, the use of Smooth Optimal Control will be extended to control
the dynamics of more than one body. The goal of this chapter is to show the
versatility of SOC when applied to composite quantum systems. The first
three sections are also discused in [15]. More precisely, it is demonstrated how
time-optimal pulses can be designed in order to entangle two interacting spins.
Next, it is shown how entanglement dynamics can be influenced such that the
time interval for which entanglement - both bipartite and multipartite - is high
can be enhanced. After that, the focus will be on spin chains and mediated
interactions. Before describing in detail the interaction of a cavity and a spin
ensemble, the decoupling of a spin from its environment will be studied.

4.1. Time-Optimal Gates

A crucial task in quantum information processing is to implement a unitary
gate Ud ∈ U(4) on two qubits. Unfortunately, every system is subject to
decoherence as it is coupled to an environment. This will limit the precision
with which one can implement a quantum operation. The simplest way to
avoid decoherence is to make the duration of the pulse that implements the
desired gate as short as possible. If the duration of a gate is substantially
shorter than the decoherence time, the destructive effects of decoherence can
be circumvented. In this context, the notion of time optimality has to be
introduced: A pulse is said to be time-optimal, if a desired fidelity cannot
be reached in a shorter time. The common way [62] to obtain time-optimal
pulses is to start the optimization algorithm with an initial time t0 and then
decrease the pulse duration, until a certain fidelity threshold cannot be reached
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4.1 Time-Optimal Gates

anymore. Depending on the desired precision, this procedure can be very time-
consuming.

On the other hand, time-optimality can be implemented in the current OC
framework by introducing an appropriate penalty functional Fp. In this frame-
work, the duration of a gate becomes a control parameter in itself. The simplest
choice for the penalty functional is Fp = −ptf , where tf is the duration of the
pulse and p ≥ 0 is a parameter specifying how strongly long times are penal-
ized. In this way, long pulse durations make the penalty functional highly neg-
ative, enforcing the algorithm to favor smaller pulse durations, corresponding
to a higher (the penalty functional is negative) value of the penalty functional.
The reason why time-optimality can be obtained in such an easy way within
the SOC framework will become clear in the following: Since the pulse should
be switched on at t = 0 and switched off at t = tf , the zeros of the fundamental
frequency component Ω have to coincide with the beginning and the end of the
control, g1k(0) = g1k(tf ) = 0 in Eq. (1.4) for all k ∈ N. This constraint implies
that Ωtf is a constant, while Ω is varied, namely, when using trigonometric
functions, it is Ωtf = π because sin(0) = sin(kΩtf ) = sin(kπ) = 0 with k

being an integer. One can now replace tf in the time evolution operator U(tf )
by tf = π/Ω. Since the Floquet operator K̃ (Eq. (2.2)) is linear in Ω in the
same way as in the control amplitudes a, one can use the same perturbation
ansatz in order to calculate the derivatives with respect to Ω. In this way, the
fundamental frequency Ω becomes a control parameter itself.

For the problem of implementing a gate Ud, the target functional reads
F = F0+Fp, with the gate fidelity F0 = Re

�
Tr

�
U(tf )†Ud

��
/4 and the penalty

functional Fp from above. Having chosen a value for p, the algorithm will end
in a state where F0 and tf will have certain values. In practice, however, one
is more interested in finding the shortest possible time in which a gate can be
constructed with a certain initially specified fidelity Fthr. One problem that
one faces when running our algorithm is the trapping into local minima of slow
gates (see below in detail). To circumvent this difficulty, we first optimized the
SOC pulse for a fixed pulse duration t = t0 (p = 0), which is smaller than the
characteristic time scale tchar, on which entanglement can be created by the
system itself. After the optimization for t = t0, the time-optimality algorithm
is started with a high penalty of p = 1. However, a too high parameter p

would result in a fast gate but with very bad fidelity. Because of this, p is
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varied during the SOC algorithm, namely p is decreased by an amount of
∆p = 0.01 in each iteration step. As soon as the target fidelity Fthr is reached,
p is again increased by ∆p in order to get a faster gate with the same fidelity.

In the present work, the implementation of entangling gates is studied for
two interacting spins whose system Hamiltonian has the following form:

H0 =
ω1

2
σ(1)
z

+
ω2

2
σ(2)
z

+ gxσ
(1)
x
σ(2)
x

+ gyσ
(1)
y
σ(2)
y

(4.1)

Here, σ(j)
k

is the k-th Pauli matrix of the j-th spin. The coupling constants gx
and gy and the (possibly small) splittings ω1 and ω2 are chosen at random and
can be found in the caption of Fig. 4.1. The two spins can be manipulated
separately by the control Hamiltonian

Hc(t) =
�

k=x,y

j=1,2

f (j)
k

(t)σ(j)
k
, (4.2)

where the control pulse

f (j)
k

(t) =
nmax�

n=1

a(k,j)
n

sin(nΩt) (4.3)

has nmax frequency components of a fundamental frequency Ω.
As quoted in Eq. (1.56), a unitary gate Ud can be characterized up to local

transformations by only three parameters αx, αy and αz. A common task in
quantum information processing is to drive the system from an initial product
state to a maximally entangled state. The unitary gates U(αx,αy ,αz) that can
do this obey the inequalities Eqs. (1.57) and (1.58).

In Fig. 4.1, the maximally entangling gate U(0.5,0.4,0.3) with a fidelity thresh-
old of Fthr = 1 − 10−4 has been implemented. The starting point of our
algorithm is determined by the characteristic time scale tchar on which entan-
glement can be created. This time scale can be estimated by tchar = π/(4gmax),
where gmax is the largest coupling constant in Eq. (4.1). This estimate is de-
rived from the fact that exp(−iπ/4σx ⊗ σx) provides a maximally entangling
gate. In Fig. 4.1, one has tchar ≈ 0.08µs. The starting point for the search of
the time-optimal solution was a pulse optimized for t0 = 0.06µs, while using
nmax = 6 Fourier components. In Fig. 4.1 a), one can see the evolution of
the gate fidelity F0 and of the pulse duration tf as a function of the iteration
steps. The fidelity is at first increased by using longer pulse durations. As
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4.1 Time-Optimal Gates

soon as the algorithm passes the fidelity threshold Fthr (here, after about 350
iteration steps), the weighting parameter p is increased and the pulse duration
decreased. The pulse duration then saturates to the final value of tf = 0.077µs.
Fig. 4.1 b) is the result of the above optimization; it shows the time evolution
of the logarithmic infidelity. As one can see, the intrinsic dynamics alone is
not able to entangle the spins with high fidelity, whereas control can imple-
ment a maximally entangling gate with fidelity F0 = 1 − 10−4 by using only
nmax = 6 Fourier components. More frequency components improve the result
only modestly.
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Figure 4.1.: a) Typical run of the optimization routine to construct the en-
tangling gate U(0.5,0.4,0.3) for gx = 5.40 MHz, gy = 9.95 MHz,
ω1 = 0.13 MHz, ω2 = 0.26 MHz in minimal time. The time tf
(solid line) is minimized, such that a gate fidelity (dashed line) of
more than 99.99% is reached. b) Result of the above optimization:
Logarithmic infidelity as a function of time with (solid line) and
without control (dashed line). Without control the gate cannot be
realized with high fidelity. [15]

To be sure that the solution for tf = 0.077µs is really time-optimal, the
SOC algorithm has been run for fixed times t < tchar (p = 0). In this case, one
should see that the fidelity threshold Fthr = 1 − 10−4 is reached in the time
tf = 0.077µs. When optimizing for fixed times, one particularity (see Fig.
4.2) is observed: there are two branches one can follow; the first (green stars)
is obtained without any restriction, for the second branch (red crosses) the
algorithm was started with the optimal solution for tf = 0.08µs and then one
optimizes F0 for successively smaller times. It turns out that the green branch
represents a set of local maxima. Indeed, if one lets run the time-optimality
algorithm as it is described above, one always lands on the curve with the
red crosses, strongly suggesting that one has found the time-optimal solution.
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4. CONTROL OF COMPOSITE QUANTUM SYSTEMS

If, on the other hand, one starts the optimization from an arbitrary point,
without pre-optimization, the solution always lies on the curve with the green
stars. Furthermore, it is easy to achieve a higher fidelity, as the curve F0(tf )

drops down fast when approaching tchar, e.g. going from Fthr = 1 − 10−4 to
Fthr = 1− 10−6 only requires 2% more time.
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Figure 4.2.: Logarithmic gate infidelity log10(1 − F0) as a function of the
pulse duration tf for nmax = 6 frequency components, with pre-
optimization of t = 0.08µs (red ‘×’) and without initial optimiza-
tion (green ‘∗’). The symbol ‘+’ depicts the time-optimal pulses
for a required gate fidelity of F0 = 1 − 10−4 and F0 = 1 − 10−6,
respectively, and with pre-optimization; they always lie on the red
curve. The blue ‘×’ correspond to runs of the time-optimality
algorithm without pre-optimization and lie on the green curve of
local maxima.

4.2. Creating and Maintaining Entanglement

Entanglement is the essential part when constructing algorithms that are more
powerful than their classical analogues [38]. In the following, we will discuss
control pulses that help to create entanglement and maintain it over a finite
time window. The maintenance of entanglement is important for experimental
situations where time can only be triggered up to a certain accuracy ∆t or
where entanglement is needed for a longer time in order to perform other
operations onto the system. In the following, one will distinguish between
bipartite and multipartite entanglement.
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4.2 Creating and Maintaining Entanglement

4.2.1. Bipartite Entanglement

The easiest way to entangle two particles is to transfer them from an initially
unentangled state |Ψi� = |ψ1�|ψ2� to a maximally entangled state |Ψf� = |ΨE�

by using the fidelity Ffid = |�Ψf |U(tf )|Ψi�|
2 as the target functional. This is

what is displayed in Fig. 4.3. We assumed the same system Hamiltonian Eq.
(4.1) with controls Eqs. (4.2) and (4.3) and the separable state

|Ψ(0)� =
N�

k=1

�
cos (θk/2) |0�+ eiφk sin (θk/2) |1�

�
(4.4)

with θ1 = 1.59, θ2 = 2.10, φ1 = 5.23, and φ2 = 0.57 as initial condition. The
maximally entangled target state was

|Ψf� = α1|00�+ α2|01�+ α3|10�+ α4|11� (4.5)

with α1 = −0.46 + 0.32i, α2 = −0.02 − 0.43i, α3 = −0.33 − 0.26, α4 =

−0.53 + 0.18i. As one can see, the fidelity quickly drops down after having
reached its maximal value. However, in experimental situations [63], where one
desires robustness against small variations ∆t in time, one is rather interested
in a broader time interval of high entanglement. Unfortunately, if one optimizes
the entanglement for two different initial control amplitudes a0, one obtains
two different control pulses but which follow nearly the same evolution of
entanglement, as can be seen in Fig. 4.3. This means that it is very difficult
to design the time evolution in a desired fashion. It seems that demanding a
precise final state restricts the dynamics in Hilbert space to a very tiny region,
which is incompatible with other dynamical constraints on the evolution of
entanglement.

In order to enlarge the region in Hilbert space to which the dynamics are
constrained, one can use an entanglement measure E as the target functional.
As entanglement is preserved by local unitary transformations, this provides
more freedom to design the time evolution of entanglement. In this work, the
tangle C2 = |�Ψ(tf )|σy ⊗ σy|Ψ∗(tf )�|

2 [42] is used as an entanglement mea-
sure. Similarly to Sec. 4.1, the target functional reads F = C2 + Fp with a
penalty functional Fp = −p

�
∂2C2/∂t2|t=tf

�2, which penalizes high curvatures
with respect to time at t = tf , therefore enforces a plateau in the time evo-
lution of entanglement. The derivatives with respect to time can be obtained
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Figure 4.3.: Driving two coupled spins with gx = 2.7MHz, gy = 6.2MHz,
ω1 = 0.3MHz, and ω2 = 0.2MHz to a maximally entangled state.
Although the control pulses are rather different (see b), as an ex-
ample, only the component f (1)

x (t) is depicted), the time evolutions
of the fidelity Ffid, represented in a) by the continuous and dashed
lines, are very similar.

analytically without resorting to a method of finite differences as

∂nU

∂tn
= in

�

k,ν

(νΩ− �k)
n
|χkν��Φk(0)|e

i(νΩ−�k)t. (4.6)

In practice, a fixed small value of p is sufficient in order to decrease the
curvature by several orders of magnitude (practically to zero, below p = 10−4

is used) while maintaining maximal the tangle at t = tf . In Fig. 4.4, the tangle
C2 with and without minimization of the curvature and without any optimal
control is displayed as a function of time for two durations tf = 0.2 and 0.4 µs of
control. Not surprisingly, without control no substantial entanglement can be
created. With control, maximal entanglement can be easily generated by using
only six frequency components. By penalizing high curvatures, the curvature
of the tangle is decreased from 102(µs)−2 (no penalty, p = 0) to 10−7(µs)−2

(penalty p = 10−4). In the case of tf = 0.4µs, without minimization the
control keeps entanglement above 99.9% for 4.6 ns, while the minimization of
the curvature results in 98 ns of high entanglement, i.e. more than twenty times
longer. This longer time requires only a moderate increase in the maximal
control amplitude from 3.0 to 5.4 MHz.

As one can see in Fig. 4.4, the time interval of high entanglement is the
longer, the longer the control time is. This is not surprising, since a longer
duration of the pulse corresponds to more possibilities to control the system.
However, a limitation of the time interval T of high entanglement is given by
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Figure 4.4.: Time evolution of the tangle C2 for two interacting spins (same
parameters as in Fig. 4.3). Without control (solid line) maximal
entanglement can never be reached. The grey curves are obtained
by maximizing the tangle at tf = 0.2µs (dotted curve) and tf =

0.4µs (dashed curve), respectively (these moments in time are
emphasized by fat vertical lines), by using a control pulse with
nmax = 6 frequency components and fundamental frequency Ω =

π/tf . The curves obtained with an additional minimization of the
curvature are depicted in black. The time interval for which the
spins are highly entangled is considerably longer in these cases.
[15]

the minimal time tmin which is needed in order to provide maximal entangle-

ment. An upper limit of T is therefore given by T = 2(tf − tmin), since the

plateau cannot be extended below tmin, otherwise one could have obtained en-

tanglement in a time smaller than tmin. The region for which the evolution

of entanglement can be approximated by the second derivative only is already

quite impressive. Nevertheless, the plateau cannot be increased indefinitely

because at some point the validity of the second derivative reaches its limit.

This case is given for tf � 0.6µs. If one wishes to extend the plateau even

further, one has to maximize the tangle and minimize its curvature at sev-

eral moments t1, . . . , tN in time. This corresponds to using the new fidelity

F̃ = 1
N

�
N

n=1 F(tn), i.e. an average over several intervals for each of which

the approximation by the second derivative is valid. In the case of Fig. 4.5,

one could enlarge the width of the plateau of high entanglement (F > 99.9%)

for tf = 0.6µs by almost a factor of three by only using a second node at

t2 = 0.5µs.
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Figure 4.5.: It is shown how one can create a plateau of high entanglement
at t = 0.6µs (black curve) and by using the combined fidelity
1
2 (F(t1) + F(t2)) with t1 = 0.5µs and t2 = 0.6µs (red curve). In
the latter case, the time interval of high entanglement is consider-
ably increased.

4.2.2. Multipartite Entanglement

If it is possible to prolong a time interval of high bipartite entanglement, the
question if this is still manageable in the case of multipartite entanglement
(see Sec. 1.1.5.3) is only natural. As a target functional, the lower bound Eq.
(1.67) of the tangle is used.

In the following, it is assumed that the total density matrix represents a
pure state. In this case the above lower bound for mixed states becomes an
entanglement measure of pure states in its own. For N = 3, one then obtains

FN=3 =
1

2

�
6− Tr(ρ223 + ρ213 + ρ212)− Tr(ρ21 + ρ22 + ρ23)

�
, (4.7)

The maximal value of FN=3 = 3/2 is obtained by the Greenberger-Horn-
Zeilinger state |GHZ3� = (|000� + |111�)/

√
2, since it results in maximally

mixed single-spin reduced density matrices. The W state |W3� = (|100� +

|010� + |001�)/
√
3, on the other hand, only achieves FN=3 = 4/3. For N = 4,

one has:

FN=4 =
1

4
(14 − Tr(ρ2234 + ρ2134 + ρ2124 + ρ2123)

− Tr(ρ212 + ρ213 + ρ214 + ρ223 + ρ224 + ρ234)

− Tr(ρ21 + ρ22 + ρ23 + ρ24)
�

(4.8)

For this case, neither the generalized GHZ state |GHZ4� = (|0000�+|1111�)/
√
2

(FN=4 = 7/4) nor the W state |W3� = (|1000� + |0100� + |0010� + |0001�)/2
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4.2 Creating and Maintaining Entanglement

(FN=4 = 3/2) obtain the maximum of FN=4 = 2. The maximum is instead
obtained by a state which maximizes the mixedness of the single-spin reduced
density matrices (Tr ρ2

i
= 1

2 , i = 1, 2, 3, 4) and which yields Tr(ρ21,2 + ρ21,3 +

ρ21,4) = Tr(ρ23,4 + ρ22,4 + ρ22,3) = 1.
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Figure 4.6.: Time evolution of the genuine three-body entanglement (ω1 = 0.16

MHz, ω2 = 0.12 MHz, ω3 = 0.70 MHz, g(1)x = 4.93 MHz, g(2)x =

2.52 MHz, g(1)y = 4.11 MHz, g(2)y = 0.65 MHz) without control
(red continuous line), with optimization of the fidelity (blue dotted
line) and with an additional minimization of the curvature (black
dashed line).

In order to test the SOC algorithm for multipartite entanglement, we use a
spin chain

H0 =
N�

k=1

ωk

2
σ(k)
z

+
N−1�

k=1

�
g(k)
x

σ(k)
x

σ(k+1)
x

+ g(k)
y

σ(k)
y

σ(k+1)
y

�
(4.9)

with nearest neighbor couplings g(k)
j

and a small splitting ωk in z-direction,
whose values can be found in the caption of Fig. 4.6. We only control the
end spins by the same control Hamiltonian as in Eqs. (4.1) and (4.3). As
initial state, one chose the state with θ1 = 0.66, θ2 = 2.63, θ3 = 0, φ1 =

φ2 = φ3 = 0, according to Eq. (4.4). Fig. 4.6 displays the time evolution
of the controlled system (with and without minimization of the curvature)
as well as of the uncontrolled one. As expected, without control there is no
chance to attain a maximally three-body entangled state. With a control
pulse that contains nmax = 6 Fourier components, one obtains a fidelity of
1.5 − 10−11. The minimization of the curvature enlarges the duration of high
entanglement (FN=3 > 1.499) from 7 to 60 ns, while the power needed to
reach this control goal is even a few percent lower than without targeting
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4. CONTROL OF COMPOSITE QUANTUM SYSTEMS

minimal curvature. This can be explained by a cooperative effect of the control
and the internal dynamics of the spin chain which itself creates many-body
entanglement. Control becomes the more difficult, the larger the system is: for
N = 4, one is able to enlarge the duration of high entanglement (FN=4 > 1.999)
from 7 to 25 ns. This is what one would intuitively expect: the longer the spin
chain is, the less control can be exerted on the whole chain by only controlling
the end spins.

4.3. Mediated Interaction in Spin Chains

As demonstrated in Sec. 4.2, entanglement cannot be generated on a time scale
substantially shorter than tchar = π/(4gmax). If, however, the direct interaction
between two spins is weak (e.g. if dipole-dipole interaction becomes negligible
due to a large separation between the to-be-entangled spins [64]), then the spins
cannot be entangled on a reasonable time scale. If, on the other hand, one uses
spins that lie in between the to-be-entangled spins, i.e. if each spin of such a
chain is coupled to its nearest neighbor, then entanglement can be generated
between the end spins by exploiting the mediated interaction between them. In
the experiment, the situation of a spin chain could be achieved by implanting
spins in between the to-be-entangled spins. Recent proposals are based on
nitrogen-vacancy centers [65, 66]. As will be shown, Smooth Optimal Control
is capable to entangle the end spins of a chain even if the couplings of the spins
are known only up to a certain accuracy. This corresponds to an experimentally
relevant situation where the couplings can only be measured up to a certain
accuracy. But let us first start from the assumption that all couplings are
known exactly:

One uses the Hamiltonian Eq. (4.9) and only controls the end spins with a
control Hamiltonian of the form of Eqs. (4.2) and (4.3). As maximal entan-
glement is the goal of the optimization, an entanglement measure seems to be
the right choice for the target functional. In contrast to Sec. 4.2.1, one deals
with mixed states, as one is only interested in the reduced density matrix of
the end spins. Unfortunately, most entanglement measures are non-analytical
for mixed states, meaning that the target functional and its derivatives have to
be evaluated numerically. This computation is not only time-consuming but
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4.3 Mediated Interaction in Spin Chains

also unreliable. Instead, one uses the lower bound Eqs. (1.67) and (1.68)

F = 2Tr(ρ21N)− Tr(ρ21)− Tr(ρ2
N
) (4.10)

of the tangle of the end spins. Here, ρ1N is the reduced density matrix of the
two end spins, whereas ρ1 and ρN are the reduced single-spin density matrices
of the end spins. Because of the analytic (here: quadratic) dependence on the
density matrices, the target functional and its derivatives with respect to the
control parameters can be calculated analytically.
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Figure 4.7.: a) Time evolution of the entanglement of formation E of the
end spins in two random configurations of a chain with N = 3

(solid line, g(1)x = 0.78 MHz, g(2)x = 1.48 MHz, g(1)y = 1.27 MHz,
g(2)y = 2.65 MHz, ω1 = 0.91 MHz, ω2 = 0.97 MHz, and ω3 = 0.40

MHz) and N = 4 spins (dotted line, g(1)x = 4.36 MHz, g(2)x = 1.61

MHz, g(3)x = 5.33 MHz, g(1)y = 1.02 MHz, g(2)y = 8.82 MHz,
g(3)y = 1.29 MHz, ω1 = 0.57 MHz, ω2 = 0.55 MHz, ω3 = 0.81 MHz,
and ω4 = 0.42 MHz). In both cases, the system dynamics of the
chain (grey) are not able to entangle the end spins, whereas a con-
trol pulse with nmax = 6 frequency components (black) can gener-
ate maximal entanglement at tf = 1µs (see fat vertical line). [15]
b) Entanglement of formation of the controlled system of N = 3

(rectangles) and 4 (circles) if the pulse optimized for the above
coupling configuration is applied to a system where the coupling
constants are only known up to a certain error. The error bars
result from a test ensemble of 100 coupling configurations. In the
case of N = 3 spins, the maximization of the averaged target func-
tional for a test ensemble of ten coupling configurations (crosses)
significantly increases the amount of entanglement (5%: 94.2%→

99.3%; 10%: 78.1%→ 96.7%).

We tested SOC on chains with N = 3 and 4 spins and random configurations
of couplings (see Fig. 4.7 a)). The initial states are random, too, since the
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4. CONTROL OF COMPOSITE QUANTUM SYSTEMS

result should be independent of the initial state: it is θ1 = 1.39, θ2 = 1.28,
θ3 = 0.71, φ1 = 6.03, φ2 = 0.95, and φ3 = 5.30 for N = 3 and θ1 = 1.60,
θ2 = 1.31, θ3 = 0.94, θ4 = 0.44, φ1 = 5.24, φ2 = 6.21, φ3 = 5.85, and φ4 = 6.07

for N = 4, according to the notation Eq. (4.4). As illustrated in Fig. 4.7
a), where the time evolution of entanglement of formation is depicted, one
is able to create entanglement between the end spins with an infidelity of at
most 10−5 at tf = 1µs by using a control pulse with nmax = 6 frequency
components. This has to be compared with the case of no control, where only
little entanglement (E < 0.6) can be generated. Nevertheless, if one wants
to entangle the end spins in an experiment, one knows the coupling constants
only up to a certain extent [67]. In order to estimate how much entanglement
is lost in the case of limited knowledge of the couplings, one can apply the
pulse optimized for certain couplings to an ensemble of spins whose couplings
deviate by an uncertainty � from the orginal ones and measure the value of
the target functional. This is what is depicted in Fig. 4.7 b): the value of
the target functional is the more affected, the more spins are involved. For
N = 4 spins only 20% entanglement can be generated in the presence of 10%
uncertainty, compared to 80% entanglement for N = 3. This coincides with
the intuitive picture according to which the dynamics is the more perturbed
the more spins can participate in such a perturbation.

Similarly to the inhomogeneous broadening in chapter 3, one can reduce
the decrease of entanglement by using as a target functional the averaged
target functional �F�g, where g = {g(k)x,y}k=1,...,N−1 corresponds to a coupling
configuration. Surprisingly, one can construct a robust pulse based on a small
ensemble of only ten coupling configurations. More precisely, one optimized
the averaged target functional for the case of N = 3 spins and an uncertainty
of 5 and 10%, respectively. In order to guarantee that the number of coupling
configurations with which one has calculated the average is sufficient, the pulses
were tested on an ensemble of 100 coupling configurations. As one can see
in Fig. 4.7 b), the optimization of the averaged target functional with 5%
uncertainty results in an improvement from 94.2 to 99.3%, whereas for 10%
uncertainty the entanglement is improved from 78.1 to 96.7%. In terms of
control amplitude |a|2, the improvement of 10% uncertainty requires the double
amplitude compared to the case of no uncertainty, whereas the amplitude
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needed to achieve robustness for 5% uncertainty is roughly the same as the
amplitude needed to maximize entanglement without uncertainty.

Concerning the computational power required by SOC, spin chains clearly
show the limitations of SOC in the case of many-body systems: Since the
dimension of the Hilbert space increases exponentially according to 2N , where
N is the number of qubits, the dimension of the Floquet matrix increases
as 2N × 2N . As one needs to take approximately a hundred Brillouin zones,
the matrices with which one has to work quickly become very large. The
consequence of these large matrices is that also the time necessary to perform
all matrix manipulations exceeds any reasonable limit. Whereas the pulse that
entangles the end spins of a chain of N = 3 spins is found after a few hours of
iterations, the time needed for N = 4 spins lies on the time scale of days. In
this way, chains of N = 5 or more spins become numerically hardly tractable.
Concerning the robustness of the pulses with respect to different coupling
configurations, the required time of the algorithm for reaching the optimum
scales linearly with the size of the ensemble. Furthermore, the size of the
ensemble has to be enlarged with the loss of fidelity due to different coupling
configurations. Only by using a larger ensemble, one can guarantee that the
average is independent of the size of the ensemble. This is why concerning the
robust pulses we restricted us to the case of N = 3 spins. One may argue that
one can enlarge the number of qubits with which one can deal by truncating
the Hilbert space, e.g. by permitting for just one excitation in the whole
system. In the case of one excitation one could reduce the dimension of the
Hilbert space from 2N to N + 1 (ground state + one excitation in each spin).
However, our calculations have shown that the end spins cannot be entangled
in a system whose Hilbert space is truncated. One infers from this fact that
the whole Hilbert space is necessary in order to distribute entanglement.

Since the peak in the time evolution of entanglement in Fig. 4.7 a) is rather
sharp, one may consider using the same method as in Sec. 4.2 to reduce the
curvature. Unfortunately, this attempt results in very poor values for both
entanglement and curvature. The reason why it is not possible to generate
maximal entanglement and minimal curvature, is the result of a fundamental
limitation. While in Sec. 4.2 the interaction between the two spins was direct,
it is here indirectly induced by nearest neighbor couplings. In order to under-
stand the influence of the indirect coupling on the minimization of curvature,
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one can consider the following Hamiltonian:

Hα = (1− α)
�
g(N)
x

σ(N)
x

σ(1)
x

+ g(N)
y

σ(N)
y

σ(1)
y

�
+

N�

k=1

ωk

2
σ(k)
z

+ α
N−1�

k=1

�
g(k)
x

σ(k)
x

σ(k+1)
x

+ g(k)
y

σ(k)
y

σ(k+1)
y

�
(4.11)

!
! ! !

!

! !

! !
!!!

!

!

!!
!
!!

!

!!

!
!!
!!!
!
!!!!

!

!
!
!!!

" " " " " " " " """"
"
""""""

"

"

"

""
"
"
""
"

"
"

""

"

"

"

"""

0.0 0.2 0.4 0.6 0.8 1.0
#10

#8

#6

#4

#2

0

0

100

200

300

400

500

Α

lo
g

1
0
!1
#

!
0
"

d
2

!

d
t2

a"

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

t !Μs"

E
!Ρ

1
N
"

b"

Figure 4.8.: a) Lower bound of entanglement F0 between the end spins (red
‘×’) and their curvature at the end of the control (blue ‘+’) as a
function of the indirect interaction α taking place in the dynamics
(g(3)x = 2.32 MHz, g(3)y = 1.74 MHz). For α > 0.85 entanglement
and curvature are not independent anymore. b) Time evolution
of entanglement of formation of the end spins for three different
values of indirect coupling: α = 0 (only direct interaction, red solid
line), α = 0.85 (blue dotted line), α = 1 (only indirect coupling,
dashed black line).

Here α ∈ [0, 1] is a parameter which specifies the strength of the direct
interaction between the end spins: α = 0 means only direct coupling, whereas
α = 1 represents only indirect coupling. We optimized entanglement and
curvature for different values of α for a system with N = 3 spins. The result of
this optimization is shown in Fig. 4.8 a) where the peak value of entanglement
(characterized in terms of the lower bound Eq. (4.10)) and its curvature is
depicted as a function of the parameter α. One can see in Fig. 4.8 a) that for
α < 0.85 the infidelity and the curvature are arbitrarily low, while they both
increase for α > 0.85. Therefore, there exists a threshold αthr = 0.85, beyond
which entanglement and curvature cannot be optimized independently from
each other, i.e. 15% of direct interaction between the end spins are necessary
in order to vary the curvature independently of the entanglement. Fig. 4.8 b) is
an illustration of Fig. 4.8 a): it depicts the time evolution of entanglement for
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4.4 Decoupling of system and environment

three different values of α. For α = 0 (only direct coupling) the plateau of high
entanglement is maximal; one also obtains a fairly broad interval of maximal
entanglement for α = 0.85, whereas α = 1 (only indirect coupling) results in a
sharp peak (high curvature) which does not reach maximal entanglement.

4.4. Decoupling of system and environment

Decoherence is the main source of errors in quantum information processing. In
the case of NV centers, decoherence is mainly caused by the surrounding carbon
and nitrogen atoms [67]. One possibility to include decoherence effects into our
model, is to describe the time evolution by a Lindblad master equation [68].
However, since spin dynamics are often dominated by non-Markovianity [69],
a Markovian Lindblad equation seems to be hardly reliable. Another solution
consists in exlicitly taking N spins (system + environment) and calculating
their unitary evolution U(t). However, as elucidated in the previous section,
this is only possible up to N = 4 spins. If one takes in the following a system S

of dimension dS with an initial state |ψS� and an environment E of dimension dE

with the initial state |φE�, then the evolution of the system S can be obtained
by tracing out all environmental degrees of freedom E :

ρS(t) = TrE
�
U(t)|ψS�|φE��ψS |�φE |U

†(t)
�

(4.12)

This state has to be compared to the evolution of the system without environ-
ment, which would be

ρf (t) = e−iHS t|ψS��ψS |e
iHS t, (4.13)

where HS is the Hamiltonian of the system. If the system should be decoupled
from the environment during a time interval [0, tf ], this would lead to a time-
averaged target functional

Fav =
1

tf

�
tf

0

dt�ρS(t)−ρf (t)�
2
HS

=
1

tf

�
tf

0

dtTr (ρS(t)− ρf (t))
�
ρ†
S
(t)− ρ†

f
(t)

�

(4.14)
Time-averaged target functionals are particularly easy to evaluate in the frame-
work of SOC, as they mean to merely integrate an exponential, e.g. with
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4. CONTROL OF COMPOSITE QUANTUM SYSTEMS

|ψ0� = |ψS�|φE� and the basis |φl� of E as well as the basis |ψl� of S
�

tf

0

dtTr ρS(t)ρ
†

S
(t) =

�
tf

0

dtTr
�

l1,l2
k1,k2,k3,k4
ν1,ν2,ν3,ν4

�φl1 |χk1ν1��Φk1(0)|ψ0�e
i(ν1Ωt−�k1

)t

×�ψ0|Φk2(0)��χk2ν2 |φl1�e
−i(ν2Ωt−�k2

)t

×�φl2 |χk3ν3��Φk3(0)|ψ0�e
i(ν3Ωt−�k3

)t

×�ψ0|Φk4(0)��χk4ν4 |φl2�e
−i(ν4Ωt−�k4

)t

=
�

l1,l2,l3
k1,k2,k3,k4
ν1,ν2,ν3,ν4

ei((ν1−ν2+ν3−ν4)Ω−(�k1−�k2
+�k3

−�k4
))tf − 1

i((ν1 − ν2 + ν3 − ν4)Ω− (�k1 − �k2 + �k3 − �k4))

×�ψl3 |�φl1 |χk1ν1��Φk1(0)|ψ0��ψ0|Φk2(0)��χk2ν2 |φl1�

×�φl2 |χk3ν3��Φk3(0)|ψ0��ψ0|Φk4(0)��χk4ν4 |φl2�|ψl3� (4.15)

Here, we inserted the time evolution operator from Eq. (1.28) and performed
the integral over the exponentials. As one can see, the evaluation is cumber-
some: indeed, if one takes 100 Brillouin zones, in order to evaluate the sum
from above, one has to add dSd2E(dSdE)

4 · 108 summands, which is extremely
time-consuming from a numerical point of view. The high number of sum-
mands can be explained by the fact that in the time-average Eq. (4.15) the
propagator U appears four times. One therefore searches for a target functional
where the propagator appears less often.

In order to find a new target functional, one first notices that the influence
Eq. (4.12) of the environment on the system can be described by a quantum
channel with Kraus operators Fk, i.e.

ρS =
dE�

k=1

Fk|ψS��ψS |F
†

k
. (4.16)

The Kraus operators read Fk = ( dS ⊗ �φk|)U( dS ⊗ |φE�) ≡ �φk|U|φE�, where
|φk� is a basis state of E . Now, we want the system to evolve as if no environ-
ment was present. This requires that

dE�

k=1

Fk|ψS��ψS |F
†

k

!
= US |ψS��ψS |US , (4.17)

where US(tf ) = e−iHS tf is the time evolution without environment at the mo-
ment tf in time, induced by the system Hamiltonian HS . If Eq. (4.17) is
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valid, it follows that Fk = ckUS with an arbitrary complex number ck. If one
multiplies Fk with U

†

S
and takes the trace, one obtains

Tr(FkU
†

S
) = dSck. (4.18)

Next, one will make use of the following identity:

dE�

k=1

TrS(FkF
†

k
) =

dE�

k=1

TrS
�
�φk|U|φE��φE |U

†
|φk�

�
(4.19)

=
dE�

k=1

Tr
�
U dS ⊗ |φE��φE | U

†
�

(4.20)

=
dE�

k=1

Tr
�
U

†
U dS ⊗ |φE��φE |

�
(4.21)

= �φE |φE�TrS( dS ) = dS (4.22)

One can finally calculate the difference between actual and desired dynamics:

dE�

k=1

�Fk − ckUS�
2
HS

=
dE�

k=1

Tr

�
FkF

†

k
−

1

dS
FkU

†

S
Tr(USF

†

k
)

−
1

dS
Tr(FkU

†

S
)USF

†

k
+

1

d2
S

Tr(FkU
†

S
)USU

†

S
Tr(USF

†

k
)

�

= dS −
1

dS

dE�

k=1

���Tr(FkU
†

S
)
���
2

(4.23)

Since
�

dE
k=1�Fk − ckUS�

2 ≥ 0, a good target functional is

F =
1

d2
S

dE�

k=1

|�Fk,US�HS
|
2 . (4.24)

F is non-negative and adopts its maximal value F ≡ 1 if and only if Fk ∝

US for all k. In the new target functional, the propagator U only appears
twice. However, this still means to add 104 summands, when considering
100 Brillouin zones. Indeed, a numerical evaluation of the time-average is
faster than computing the analytical expression. We did calculations for the
paradigmatic model of a central spin S coupled to NE environmental spins,
which is described by the following Hamiltonian

H =
ω0

2
σ(S)
z

+
NE�

k=1

ωk

2
σ(k)
z

+
NE�

k=1

�
g(k)
x

σ(S)
x

σ(k)
x

+ g(k)
y

σ(S)
y

σ(k)
y

�
, (4.25)
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Figure 4.9.: The logarithmic infidelity is depicted for two interacting spins as
a function of time for the uncontrolled case (black, dashed line)
and the decoupling pulse controlling both spins (red, continuous
line).

where we only controlled the system spin via a control Hamiltonian

Hc = fx(t)σ
(S)
x

+ fy(t)σ
(S)
y

. (4.26)

Unfortunately, even if the target functional Eq. (4.24) obtained high values
at single points in time, it was never possible to attain a substantial improve-
ment of the time-averaged fidelity compared with the case of no control. For
two spins (ωS = ω1 = 10 Hz, gx = 0.25 MHz, gy = 0.5 MHz), for example,
we obtained only an improvement of less than 0.1%. If, however, we control
both spins by the the same type of control Hamiltonian as above, we obtain
an improvement of 99.9% compared to 97.4% without control. In Fig. 4.9,
the time evolution of the target functional Eq. (4.24) is depicted for the case
of no control and control of both spins. One sees that in the case of control
the fidelity is always better than 99.9%, whereas it becomes monotonically
worse in the case of no control. We learn from the above study that in order
to implement a certain dynamics, one has to control each spin individually.
Unfortunately, in the experiment, it is very rare that one can address each
environmental spin individually. This is why, in the following, we will concen-
trate on the problem of decoupling the system spin from the environmental
ones at a specific moment in time by only controlling the system spin.

We performed calculations for NE = 1, 2 and 3 environmental spins. In all
cases, we were able to decouple the dynamics of the central spin from the envi-
ronmental ones, independently of the choice of the final time tf . With nmax = 6

Fourier components, minimal fidelities of 95% (NE = 3), 99% (NE = 2) and
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4.4 Decoupling of system and environment

Figure 4.10.: Fidelity F of three environmental spins being decoupled, for the
uncontrolled case (black, dashed line) and the decoupling pulse
(red, continuous line). The system is characterized by ωS = ωk =

10 Hz, g(k)x = 0.25 MHz, g(k)y = 0.50 MHz (k = 1, 2, 3).

99.9% (NE = 1) are achieved. Most importantly, the obtained pulses work in-
dependently of the initial state |φE� of the environment. In Fig. 4.10, one can
see the comparison of the time evolution between the controlled and the uncon-
trolled case. The uncontrolled system does not return to its initial (decoupled)
state, whereas with control the system is decoupled from the environment at
t = tf . One might suspect that like in the previous chapter the fidelity presents
a sharp peak in time. However, one even obtains a plateau of high decoupling.
As the target functional does not depend on the exact state of the system and
environment, one obtains a relative freedom for the control in Hilbert space.
The plateau of the fidelity is a consequence of this freedom.

To conclude this section, we would like to compare our approach with state
of the art decoupling scenarios. The most commonly used decoupling method
is dynamical decoupling [70, 71]. Dynamical decoupling can be described as a
generalization of a spin echo sequence. Whereas spin echo compensates for in-
homogeneous broadening, dynamical decoupling can cope with a very general
class of system-environment couplings. In spin echo, the πx-pulse effectively
behaves like a propagator backwards in time; dynamical decoupling uses a se-
ries of strong, approximately instantaneous pulses such that the spins evolve
towards their initial state. However, in experimental situations where hard
pulses cannot be realized because of a limited bandwidth, dynamical decou-
pling will not work. This is the regime in which the smooth continuous driving
of SOC is advantageous. A disadvantage of our method is that one has to know
the couplings to the environment exactly, whereas dynamical decoupling only
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4. CONTROL OF COMPOSITE QUANTUM SYSTEMS

needs to know the type of interaction, e.g. σz ⊗ E, where E is an operator
acting on the Hilbert space of the environment. On the other hand, with SOC
one can gain a certain robustness against different couplings by averaging over
a few coupling configurations. As a test, we consider the decoupling from one
spin (NE = 1): by using a test ensemble of 20 coupling configurations with an
uncertainty of 20%, we were able to achieve an extremely robust pulse with an
average fidelity of 99.99% compared to (94.1±0.7)% for a pulse which has not
been optimized for different coupling configurations (the error results from an
application to a test ensemble of 100 coupling configurations). The robustness,
however, is paid at the price of a pulse intensity |a|2 which is ten times larger
than without averaging.

4.5. A Cavity interacting with a Spin Ensemble

In chapter 3, the coupling of a spin ensemble to the classical field of an antenna
was studied. There, one neglected both the back action of a spin to another
spin via the antenna and the quantum character of the control field. In the
present section, we will treat a spin ensemble coupled to a cavity which is
controlled by SOC pulses. The Hamiltonian of such a system is [72]

H(t) = ωca†a +
1

2

N�

k=1

ωkσ
z

k
+ i

N�

k=1

�
gkσ

−

k
a† − g∗

k
σ+
k
a
�

(4.27)

− i
�
η(t)a†e−iωpt − η∗(t)aeiωpt

�
, (4.28)

where N is the number of spins, ωc the central frequency of the cavity, ωk

are the frequencies of the spins, gk the coupling constants between cavity and
spins, and η(t) is a time-dependent external field. In the rotating frame defined
by

Hrot = eiH0tH e−iH0t −H0 (4.29)

with

H0 = ωp

�
a†a+

1

2

N�

k=1

σz

k

�
, (4.30)

one obtains

Hrot = (ωc − ωp) a
†a+

1

2

N�

k=1

(ωk − ωp) σ
z

k
+i

N�

k=1

�
gkσ

−

k
a† − g∗

k
σ+
k
a
�
−i

�
ηa† − η∗a

�
.

(4.31)
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If the external field is on resonance with the cavity (ωc = ωp), the Hamiltonian
takes the form

Hres =
1

2

N�

k=1

δωkσ
z

k
+ i

N�

k=1

�
gkσ

−

k
a† − g∗

k
σ+
k
a
�
− i

�
ηa† − η∗a

�
, (4.32)

where δωk = ωk−ωp is the detuning of the spins from the resonance frequency.
In the following, one wants to have an equation of motion for the cavity

operator a. This equation is of the Volterra type and is derived in the appendix
B. There, we followed the derivation in [72]. Starting from the Heisenberg
equation of motion, taking the quantum mechanical average �·� and making
the Holstein-Primakoff approximation �σz

k
� ≈ −1 [73], one obtains

Ȧ(t) = −[κ+ i(ωc − ωp)]A(t) +
N�

k=1

gkBk(t)− η(t) (4.33)

Ḃk(t) = −(γ + iδωk)Bk(t)− g∗
k
A(t), (4.34)

where A(t) = �a(t)� and Bk(t) = �σ−

k
�, and the cavity losses κ and the losses

of the spin ensemble γ are introduced by hand. The above equations result in
the Volterra equation

A(t) = F (t) +

�
t

0

dτ K(t− τ)A(τ) (4.35)

with the driving force

F (t) = −

�
t

0

dτ η(τ)e−(i(ωc−ωp)+κ)(t−τ) (4.36)

and the memory kernel

K(t− τ) = e−(i(ωc−ωp)+κ)(t−τ)Ω2

�
∞

−∞

dω ρ(ω)
e−(i(ω−ωc)+γ−κ)(t−τ) − 1

i(ω − ωc) + γ − κ
(4.37)

as well as the spectral density

ρ(ω) =
�

k

g2
k
δ(ω − ωk)

Ω2
. (4.38)

4.5.1. Discretization

Since the operators of the cavity are bosonic operators, the space they act on
is infinitely large. In order to be solved on a computer, one has to discretize
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the problem. In particular, the infinite ladder of states, typical for a harmonic
oscillator, has to be cut off at a finite size. Here, one just considers one
excitation in the cavity and the spins. Since the average excitation of a single
spin is little - fact used by making the Holstein-Primakoff approximation -, the
limitation to one excitation in the cavity and the spins is justified. The states
are labelled as follows:

|1� = |0 ↓ . . . ↓�

|2� = |0 ↑↓ . . . ↓�
...

|N + 1� = |0 ↓ . . . ↓↑�

|N + 2� = |1 ↓ . . . ↓�

|N + 3� = |1 ↑↓ . . . ↓�
...

|2N + 2� = |1 ↓ . . . ↓↑�

(4.39)

If the Hamiltonian Eq. (4.31) acts on these states, one obtains for k = 1

H|1� = −

�

k

δωk

2
|1� − iη|N + 2�, (4.40)

for k = 2, . . . , N + 1

H|k� = −

�
�

j �=k−1

δωj

2
−

δωk−1

2

�
|k�+ igk−1|N + 2� − iη|k +N + 1� (4.41)

for k=N + 2

H|N + 2� = −

�

k

δωk

2
|N + 2� − i

�

k

g∗
k
|k + 1�+ iη∗|1� (4.42)

and finally for k = N + 3, . . . , 2N + 2:

H|k� = −

�
�

j �=k−N−2

δωj

2
−

δωk−N−2

2

�
|k�+ iη∗|k −N − 1� (4.43)

If one projects onto the state �m|, one obtains the matrix representation of the
truncated Hamiltonian, with which one can calculate the Floquet eigenvalues
and eigenvectors and finally the time evolution as described by Eq. (1.28). In
contrast to the exponential dependence in the previous sections, the dimension
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of the (truncated) Hilbert space depends now linearly on the number of spins.
This permits us to consider spin ensemble of a bigger size (N ≈ 30 with
optimization, N ≈ 100 without optimization, only in order to calculate the
time evolution). In contrast to the previous sections, to consider only the one-
excitation subspace is a good approximation because the average excitation of
an ensemble spin is very low. In the above basis, the reduced density matrix
of the cavity can be expressed as

ρc =
N+1�

k=1

(�k|ρ|k�|0��0|+ �k|ρ|k +N + 1�|0��1|

+�k +N + 1|ρ|k�|1��0|+ �k +N + 1|ρ|k +N + 1�|1��1|)

(4.44)

One can now calculate the squared expectation value |�a(t)�|2:

|�a�|2 = |Tr (ρca)|
2 =

�����
�

n=0,1

�n|ρca|n�

�����

2

= |�1|ρc|0�|
2 =

�����

N+1�

k=1

�k +N + 1|ρ|k�

�����

2

(4.45)
Next, one has to discretize the spectral density, i.e. to draw important repre-
sentatives from it. To this end, one defines an interval [ωs − �ωs,ωs + �ωs] and
devides it into M subintervals with a width ∆ω. Each subinterval is centered
around a frequency ωk (see Fig. 4.11). If the subinterval is sufficiently small,
then the approximation

�
ωk+∆ω/2

ωk−∆ω/2

dω ρ(ω) ≈ ρ(ωk)∆ω (4.46)

holds. On the other hand, one has

�
ωk+∆ω/2

ωk−∆ω/2

dω ρ(ω) =
1

Ω2

M�

j=1

g2
j

�
ωk+∆ω/2

ωk−∆ω/2

dω δ(ω − ωj) =
g2
k

Ω2
. (4.47)

It follows that gk = Ω
�
∆ωρ(ωk). In order to calculate ∆ω, one exploits the

normalization condition
�

∞

−∞

dω ρ(ω) =
M�

k=1

ρ(ωk)∆ω = 1. (4.48)

In total, one arrives at

gk = Ω

�
ρ(ωk)�
M

j=1 ρ(ωj)
. (4.49)
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Figure 4.11.: Discretization of the spectral density. The frequency axis is di-
vided into M subintervals with values ωk and a width ∆ω of the
intervals.

In order to test our discretization scheme, we take a Lorentzian spectral
density

ρ(ω) =
1

π∆

1

1 +
�
ω−ωs
∆

�2 . (4.50)

As an experimentally relevant example one takes ∆/(2π) = 4 MHz, Ω/(2π) =
9.55 MHz, ωs/(2π) = 2.6915 GHz, it is ωp = ωc = ωs [72]. As the Hamiltonian
Eqs. (4.40)-(4.43) cannot account for losses, one sets γ = κ = 0. For the case
of a Lorentzian spectral density and constant η(t) ≡ η = 55.8 kHz (rectangular
pulse), the solution of the Volterra equation can be found analytically, it states
|�a(t)�|2 = y(t)2 with

y(t) = 4
η∆

∆2 + 4Ω2
R

+
ηe−∆t/2

ΩR(∆2 + Ω2
R
)
x(t) (4.51)

x(t) = −4ΩR∆ cos(ΩRt) + (4Ω2
R
−∆2) sin(ΩRt) (4.52)

and the Rabi frequency ΩR =
√
4Ω2 −∆2. After the pulse is turned off, say

after the time toff, one has the following evolution:

yoff(t) =
ηe−∆(t−toff)/2

ΩR(∆2 + Ω2
R
)
xoff(t) (4.53)

xoff(t) = x(t− toff) (4.54)

The evolution can be described as follows (see Fig. 4.12, where the time
evolution of |�a(t)�|2 is depicted): during the pulse is switched on, oscillations
saturate to a constant level of |�a�|sat =

4η∆
∆2+4Ω2

R
, i.e. the cavity is pumped by

the external field η; after the pulse is switched off, the cavity excitation decays
to zero on a time scale set by the inhomogeneous broadening ∆, and energy is
transferred into the spin ensemble.
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As a test, one performs calculations with different widths � and different en-
semble sizes M . One started with an initially empty cavity and no excitations
in the spins. It is found out that an ensemble of M ≈ 100 spins and a width
of � = 0.02 is enough to model the analytical solution. As one can see in Fig.
4.12, an ensemble of M = 70 spins, on the other hand, results in important
finite-size effects after 500 ns.

Figure 4.12.: Exact solution of the Volterra equation for a Lorentzian spectral
density (red continuous curve) and approximation by ensembles
of N = 70 (dotted line) and 100 spins (dashed line, both have
the same width � = 0.02). The rectangular pulse is switched off
at t = 600 ns. 100 spins are enough in order to simulate the
Lorentzian spectral density, whereas 70 spins do not suffice.

An even more relevant case for the experiment is that of a q-Gaussian dis-
tribution [72]

ρq(ω) =

�
1− (1− q)

(ω − ωs)2

∆2

� 1
1−q

. (4.55)

Here ρq is of a Lorentzian shape for q = 2, while q → 1 results in a Gaussian
distribution. For Fig. 4.13, where the time evolution of |�a�|2 is depicted, the
following parameters were used: γq/(2π) = 9.44 MHz, Ω/(2π) = 8.56 MHz,
q = 1.389. Here, γq is defined via γq = 2∆

�
2q−2
2q−2 . Because the q-Gaussian

with q = 1.389 is narrower than the Lorentzian distribution (q = 2), one needs
fewer spins distributed within a smaller interval. Indeed, a width of � = 0.005

and 30 spins yield a very good result without any finite size effect.

4.5.2. Optimization

Now, one can optimize the pulse η(t) =
�

n

k=1 ak sin(kΩfundt) for a target func-
tional F(a) to be specified later. We can do this in two ways: by using SOC
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Figure 4.13.: Evolution of |�a�|2 for a q-Gaussian spectral density; approxima-
tion by 30 spins and a width of � = 0.005.

with a finite number of spins out of an interval of width � or, since the Volterra
equation (4.35) is linear in both η(τ) and A(t), one can directly optimize the
Volterra equation. If Ak(t) is the solution of

Ak(t) = −

�
t

0

dτ sin(kΩfundτ)e
−(i(ωc−ωp)+κ)(t−τ)+

�
t

0

dτ K(t−τ)Ak(τ), (4.56)

then A(t) =
�

n

k=1 akAk(t) is the solution of

A(t) = −

�
t

0

dτ
n�

k=1

ak sin(kΩfundτ)e
−(i(ωc−ωp)+κ)(t−τ) +

�
t

0

dτ K(t− τ)A(τ),

(4.57)
One can now optimize a target functional F(a) in the same way as above.

In the following, we want to manipulate the emission of light from the cavity.
Since the operator a annihilates an excitation in the cavity this means that we
have to use a target functional which contains the averaged cavity operator
|�a�|2. In order to control the emission of light, one can imagine two elementary
processes: the suppression and the enhancement of the emission of light. The
suppression from a moment t1 to a moment t2 in time is achieved by minimizing
the integral

Fsup =

�
t2

t1

dt|�a(t)�|2, (4.58)

whereas the enhancement at a moment T in time can be obtained by using
the target functional

Fenh = |�a(T )�|2. (4.59)

We first use the method with the discretization of Sec. 4.5.1. The result of
the minimization of Eq. (4.58) can be found in Fig. 4.14 (the same parameters
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4.5 A Cavity interacting with a Spin Ensemble

as in Fig. 4.13 are used): With the help of SOC - n = 10 frequency compo-
nents were used - the integral is minimized between t1 = 100 and t2 = 280 ns.
As one can see, this results in a suppression of light during approximately 200
ns. In order to understand that this time is long and has not been occurred
‘by accident’, one compares it with the characteristic oscillation time without
control. This Rabi period can be estimated by TR ≈ 100 ns, i.e. the suppres-
sion of light has indeed been enforced during a time which is the double of
TR.

Figure 4.14.: Minimization of the integral
�
t2

t1
dt |�a�|2 with t1 = 100 and t2 =

280 ns. Emission of light is supressed during t1 < t < t2.

We will now try the second method, which consists in directly optimizing the
Volterra equation. In order to describe an experimentally relevant situation,
the cavity/spin losses γ = 50 Hz and κ = 0.4 MHz are assumed [72]. We used
n = 10 frequency components and fixed the total amplitude to

�
n

k=1 a
2
k
= P0.

In this way, one amplitude am = ±

�
P0 −

�
k �=m

a2
k

can be eliminated. Here,
we used P0 = 100 MHz. As a first test, we minimized the integral of |�a�|2

from zero to a moment T in time. As one can see in Fig. 4.15, which displays
the time evolution of |�a(t)�|2, there is no problem of supressing the emission of
light during 50, 100 or 170 ns. Here, one has to mention that the total duration
of control is only 200 ns, i.e. the time of suppression of light is indeed long.

In a second example, one maximizes the amplitude |�a(t)�|2 at a moment
t = T in time. As one can see in Fig. 4.16, where the time evolution of
|�a(t)�|2 is depicted, a peak can easily be generated at the moments T = 50,
100 and 170 ns. These peaks are also the highest peaks in the time evolution
of |�a(t)�|2.
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4. CONTROL OF COMPOSITE QUANTUM SYSTEMS

It is important to mention that the dynamics can only be influenced as long
as the control pulse is applied. After control is turned off, the dynamics entirely
follow the internal time evolution induced by the Hamiltonian Eq. (4.31) with
η ≡ 0. It is therefore impossible to maximize |�a�| or to minimize it over a
finite time interval outside the control window.

If one compares the both methods, optimization by discretized SOC and di-
rect optimization of the Volterra equation, one sees that the direct optimization
is substantially faster than SOC because it circumvents the time-consuming
operations in Floquet space. On the other hand, the variation of parameters
is possible without additional overhead in the framework of SOC, whereas the
direct optimization of the Volterra equation makes it necessary to recalculate
the response functions Ak Eq. (4.56). Another advantage of the direct op-
timization of the Volterra equation is that one can consider spin and cavity
losses, which is not possible in the Hamiltonian approach of SOC. Furthermore,
if the width of the spectral density is broad, one needs a large number of spins
to model it. In this case, SOC might be very slow because its computational
time depends on the number of involved spins.

Figure 4.15.: Minimization of the integral
�
T

0 dt |�a�|2 by using a direct opti-
mization of the Volterra equation. The time of suppression of
light emission can be prolonged to T = 50 (black, continuous
line), 100 (blue, dashed line) and 170 ns (red, dotted line). The
duration of the pulses is 200 ns.
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4.5 A Cavity interacting with a Spin Ensemble

Figure 4.16.: Maximization of |�a(t)�|2 at the moment t = T in time. A peak
is enforced at the following moments in time: T = 50 (black,
continuous line), 100 (blue, dashed line) and 170 ns (red, dotted
line). The duration of the pulses is 200 ns.
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Conclusions and Outlook

In the present thesis, an optimal control framework has been developed which is
based on control pulses being expressed in terms of Fourier modes. Variational
calculus with Floquet theory made it possible to calculate many quantities
analytically. In particular, the dependence on the variable ‘time’ permits us to
create time-optimal pulses and to extend control targets from single points in
time to finite time windows. Furthermore, it could be shown that entanglement
can be distributed within a spin chain by using only mediated interactions.
This was even possible when these interactions are not known exactly, making
out of the robustness against parameter fluctuations an important property of
our approach.

Concerning the control of single spin dynamics, high accuracy AC mag-
netic field sensing has been demonstrated with ensembles of nitrogen-vacancy
centers. In particular, the supremacy over state-of-the-art techniques with
rectangular pulses has been shown. Since the quality of the sensing scheme
is limited by the decoherence time T2, as induced by the nuclear spin bath,
one goal remains to mitigate the effect of decoherence by using an appropriate
target functional. More precisely, the decoupling of a system spin from several
environmental spins, as presented in Sec. 4.4, seems to be attractive in order
to circumvent the detrimental effects of the environment.

In Sec. 4.5, we generalized the coupling of an ensemble of non-interacting
spins to a classical antenna to an ensemble which interacts via the common
coupling to a quantum-mechanical cavity. There, it could be seen that a conti-
nuity of spins can be accurately modelled by using just a few dozens of spins. If
the spin-cavity coupling makes it necessary to consider a big number of spins,
e.g. for q-Gaussian spectral densities with a high value of q, we identified
the direct optimization of the Volterra equation as an attractive alternative.
More precisely, it has been shown that the dynamics can be manipulated in
a way that the emission of light from the cavity is suppressed during a finite
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4.5 A Cavity interacting with a Spin Ensemble

time interval or enhanced at a moment T in time. By exploiting these two
elementary processes, a long term goal would be to write an excitation from
the spin ensemble into the cavity and read it out again. In this sense, it would
be of a great benifit to combine cavity and spins with a superconducting qubit
as described in Sec. 1.2.2.1 and therefore to pave the way for a quantum
computer. Moreover, as entanglement is the central element of a quantum
computer, one may use the methods developed in Chapter 4, as they consti-
tute the main capacities of quantum computers: long-lasting, time-optimal
entanglement which can be created between two spins, even if they are only
coupled by intermediate spins.

Last but not least, we would like to emphasize the inherent simplicity of
our approach. The relatively low number of optimization parameters, when
compared to other optimal control methods, gives us great hope to learn more
about the functionality of our pulses.
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A. Floquet Theory with

MATLAB

In order to calculate the Floquet spectrum, we diagonalize with the program
MATLAB a truncated version K̃trunc of the Floquet matrix K̃. Typically, for
n ≈ 10 Fourier components and moderate amplitudes |a| ≈ 1/tf (where tf is
the duration of the pulse) one does not need more than 100 Brillouin zones.
In order to speed up calculations, it is important to dynamically adapt the
size of the truncated Floquet matrix. For this purpose, we need a quantity
that measures the error due to the truncation. As this measure, we chose
the non-unitarity E = |Tr(UU † − )| of the time evolution operator U . As
soon as E > � (here we chose � = 10−10), the Floquet matrix will be enlarged
by one Brillouin zone. By this procedure we calculate the required number
of Brillouin zones. In Fig. A.1 we computed the size of the Floquet matrix
using the Hamiltonian Eq. (1.84). As one can see in Fig. A.1 a), the number
of required Brillouin zones increases approximately linearly with the number
of frequency components. Here, for each number of frequency component
one takes random amplitudes ak ∈ [−1, 1]. However, one does not want a
number of required Brillouin zones that results from a higher amplitude. That
is why one normalizes each control amplitudes a by the largest amplitude
amax = maxk|ak|: a → a/amax. Whereas the number of required Brillouin
zones depends linearly on the number of frequency components, one has to keep
in mind that the computational effort scales quadratically with the number of
Brillouin zones (as one deals with matrices). On the other hand, the number
of required Brillouin zones only scales moderately with the amplitude |a|2 of
the control pulse, as one can extract from Fig. A.1 b): for |a|2 = 1000 one
needs about twice as many Brillouin zones as for |a|2 = 1. Here, one started
with a random pulse with n = 10 frequency components and multiplied it by
a scaling factor in order to obtain different values of |a|2.
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A. FLOQUET THEORY WITH MATLAB

Figure A.1.: a) Number of required Brillouin zones as a function of the number
of frequency components. b) Number of Brillouin zones for n = 10

frequency components as a function of the consumed power |a|2.

Another important aspect when dealing with numerical Floquet theory con-
cerns the question which eigenvalues of the truncated matrix one has to take.
The answer is that one has to take always the eigenvalues from the central
Brillouin zone, i.e. containing the eigenvalues nearest to zero. Eigenvalues at
the end of the spectrum, on the contrary, suffer from finite-size effects: typi-
cally, the difference between eigenvalues from outer Brillouin zones will deviate
from mΩ (m ∈ Z, see Sec. 1.1.2).
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B. Derivation of the Volterra

equation

Here, we want to derive an equation of motion for the cavity operator a, which
will be of the Volterra type with a certain memory kernel. If one sets up the
Heisenberg equations of motion, one obtains

ȧ(t) = i[H, a(t)] = −i(ωc − ωp)a(t) +
N�

k=1

gkσ
−

k
− η(t) (B.1)

σ̇k
−(t) = i[H, σk

−
(t)] = −iδωkσ

−

k
(t) + g∗

k
σz

k
(t)a (B.2)

Now, the number of spins N is very large, i.e. the excitation of a single
spin is very low. Therefore, one can use the Holstein-Primakoff approximation
�σz

k
� ≈ −1 [73]. If one considers cavity losses κ and losses γ of the spin ensemble

and takes the average �·�, one obtains

Ȧ(t) = −[κ+ i(ωc − ωp)]A(t) +
N�

k=1

gkBk(t)− η(t) (B.3)

Ḃk(t) = −(γ + iδωk)Bk(t)− g∗
k
A(t), (B.4)

where A(t) = �a(t)� and Bk(t) = �σ−

k
�. For simplicity, one assumes gk to be

real. Making the transformation Bk(t) = B̃k(t)e−∆kt, ∆k = iδωk + γ yields

˙̃Bk(t) = −gkA(t)e
∆kt. (B.5)

Integrating this equation gives

B̃k(t) = B̃k(0)− gk

�
t

0

dτA(τ)e∆kτ (B.6)

Inserting into (B.3) yields (∆c = κ+ i(ωc − ωp))

Ȧ(t) = −∆cA(t)−η(t)+
N�

k=1

gkB̃k(0)e
−∆kt−

N�

k=1

g2
k

�
t

0

dτe−∆k(t−τ)A(τ) (B.7)
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B. DERIVATION OF THE VOLTERRA EQUATION

One can again eliminate the term −∆cA(t) by transforming A(t) = Ã(t)e−∆ct:

˙̃A(t) = −η(t)e∆kt +
N�

k=1

gkBk(0)e
−(∆k−∆c)t −

�
t

0

N�

k=1

g2
k
e−(∆k−∆c)(t−τ)Ã(τ)dτ

(B.8)
By exploiting ∆k − ∆c = i(ωk − ωc) + γ − κ, setting Ã(0) = B̃k(0) = 0 and
introducing the spectral density

ρ(ω) =
�

k

g2
k
δ(ω − ωk)

Ω2
(B.9)

one arrives at

Ã(t) = −

�
t

0

dτ η(τ)e∆cτ−Ω2

�
t

0

dt�
�

t
�

0

dτ

�
∞

−∞

dωρ(ω)e−(i(ω−ωc)+γ−κ)(t�−τ)Ã(τ)

(B.10)
Partial integration with respect to t� gives

�
t

0

dt� e−(i(ω−ωc)+γ−κ)t�
�

t
�

0

dτ e(i(ω−ωc)+γ−κ)τ Ã(τ)

= −

�
e−(i(ω−ωc)+γ−κ)t�

i(ω − ωc) + γ − κ

�
t
�

0

dτ e(i(ω−ωc)+γ−κ)τ Ã(τ)

�t

t�=0

+

�
t

0

dτ
e−(i(ω−ωc)+γ−κ)τ

i(ω − ωc) + γ − κ
e(i(ω−ωc)+γ−κ)τ Ã(τ)

=

�
t

0

dτ
1− e−(i(ω−ωc)+γ−κ)(t−τ)

i(ω − ωc) + γ − κ
Ã(τ) (B.11)

By recasting everything into (B.10) one obtains the following Volterra equation

A(t) = F (t) +

�
t

0

dτ K(t− τ)A(τ) (B.12)

with the driving force

F (t) = −

�
t

0

dτ η(τ)e−(i(ωc−ωp)+κ)(t−τ) (B.13)

and the memory kernel

K(t− τ) = e−(i(ωc−ωp)+κ)(t−τ)Ω2

�
∞

−∞

dω ρ(ω)
e−(i(ω−ωc)+γ−κ)(t−τ) − 1

i(ω − ωc) + γ − κ
. (B.14)
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