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Surface loss calculations and design of a superconducting
transmon qubit with tapered wiring
John M. Martinis1✉

Analytical formulas are presented for simplified but useful qubit geometries that predict surface dielectric loss when its thickness is
much less than the metal thickness, the limiting case needed for real devices. These formulas can thus be used to precisely predict
loss and optimize the qubit layout. Surprisingly, a significant fraction of surface loss comes from the small wire that connects the
Josephson junction to the qubit capacitor. Tapering this wire is shown to significantly lower its loss. Also predicted are the size and
density of the two-level state (TLS) spectrum from individual surface dissipation sites.
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INTRODUCTION
Quantum computers are made from quantum bits, which have
natural sources of noise and dissipation that produce errors in
quantum gates. Decreasing these errors increases the size and
complexity of quantum algorithms that can be run on a quantum
computer. When errors are reduced to about 0.1% per gate
operation, then quantum error correction may be used on a large
array of qubits in order to lower logical errors and execute vastly
more complex quantum algorithms1. Qubit errors are often
limited by the rate of energy decay from loss mechanisms.
Superconducting qubits can be thought of as an inductor-

capacitor resonator, with the superconducting Josephson junction
giving a non-linear inductance that allows the two lowest energy
levels to behave as a qubit. The Josephson junction and the
capacitance are designed to be separate physical entities, as
illustrated in Fig. 1, and thus can be separately optimized. The size
of the Josephson junction is about 100 nm. Its natural capacitance
is negligible and junction defects are statistically unlikely because
of its small size; the junction can thus typically be modeled as
bringing no energy loss. The capacitance is made from super-
conducting pads with a relatively large millimeter size and about
100 μm spacing, producing a capacitance of about 100 fF for the
transmon qubit2. When the capacitor is designed properly with
control lines weakly coupled to an external circuit, dielectric
surface loss from the superconductor and substrate is the
dominant mechanism of energy loss. As for any surface loss
mechanism, it has been found experimentally that increasing the
size of this capacitor lowers the net effect of the surface loss on
the qubit device3.
Calculating the surface loss is difficult because of the

divergence of the electric fields at the metal edges, which has
pushed researchers to solve the problem numerically with finite-
element models3–7. More recently, an analytical result was
obtained using solutions of conformal mapping, which describes
the electric fields of ribbon and coplanar geometries8. Unfortu-
nately, this result is only approximate since it assumed the
dielectric is thicker than the metal, opposite of the real design.
Here, a more practical solution is presented that is valid for a few
nanometer lossy dielectric surrounding a much thicker metal layer
about 0.1 μm. Changes to the conformal predictions are calculated

using the scaling of corner fields and numerical simulation, and
are simple to use and understand.
For planar transmons, ribbon capacitors are typically embedded

in a ground plane, and thus the analytical results are not valid.
Numerical simulations and fit functions give capacitance and
surface loss for this important practical case.
New surface loss predictions are also given for the wires that

connect the Josephson junction to the capacitor pads. They
typically have a width approximately the size of the junction,
about 0.1 μm, and extend in length from the junction to the pads,
about 50 μm. They are typically narrow compared to their length
and thus have large electric fields at their edges. Conformal and
numerical solutions are used to give analytic predictions of surface
loss. Their long length produces significant surface loss, which can
be reduced by tapering the wires, as illustrated in Fig. 1. I argue
that tapering is better than previous stepped designs.
For numerical solutions, meshing is always a concern given the

range of size scales, from nanometer thick oxides to millimeter-
sized capacitor pads. Meshing is particularly important for 2-D and
3-D numerical solvers where the large grid makes it more difficult
to calculate edge fields accurately. In this paper, the assumption of
flat substrates (no trenching) allows solutions based on surface
charges that are effectively 1-D, so that adaptive meshing at
corners to the nanometer scale enables accurate checking of
formulas. These formulas are thus a useful standard reference for
verifying numerical methods. This is especially needed for
experiments where surface loss parameters want to be accurately
extracted9,10.
Expressing loss with formulas is also useful since the designer

can separate out all the loss mechanisms, instead of modeling the
entire device at once using numerical solvers. Optimization is
more transparent, for example, trading off the surface loss of the
qubit capacitance pads and the junction wires. In order to give
useful design formulas for various geometries of the qubit
capacitor, the surface loss is analyzed for 3 cases: a parallel plate,
a ribbon capacitor where electric fields are between the two
electrodes, and a coplanar capacitor where the fields connect
through a ground plane. A typical design should be able to be
modeled as a combination of these geometries, thus enabling
surface loss predictions from formulas derived here.
The initial section introduces the surface loss calculation and

shows that the participation ratios have significant contributions
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from dielectric factors. This theory is then applied to the simple
case of a parallel plate capacitor, where the surface fields can be
calculated readily. The next section considers the case of a coaxial
and flat coaxial geometry because the fields can be expressed in
simple formulas, thus allowing surface energy to be calculated.
Here, important corrections are introduced due to finite thickness
of the film. The next three sections give results for the important
cases of a ribbon, coplanar and ribbon with ground capacitors.
The surface loss from the junction wires are then calculated for
both a straight and tapered design, the later showing lower loss. A
final section discusses how the splitting spectrum from the two-
level-states of the surface loss can be estimated knowing the
surface electric fields. The methods section describes how
numerical calculations were performed here.

RESULTS AND DISCUSSION
Qubit model and participation ratios
Figure 2 shows an example design of a full differential qubit,
include the qubit electrodes and an shielding ground plane (gray).
The full design can be broken up into the junction and tapered
wires (red), a ribbon capacitor (blue) and a coplanar capacitor
(green). The capacitances and losses from the combination of the
structures would then be used to optimize the design.
We are interested here in calculating the loss from dielectrics,

since the loss from the metallic structures are typically negligible
for superconductors. For a crystalline substrate such as silicon or
sapphire, the loss is dominated by the thin surface layers of the
films4: the metal-air (MA), metal-substrate (MS) and substrate-air
(SA), typically coming from amorphous oxides.
The total loss tangent for these thin layers is given by Σpi tan δi ,

where surface interface type i has loss tangent tan δi and
participation ratio of the stored energy

pi ¼
ϵi=2
W

Z
dA ti jEij2 (1)

where the normal volume integral is replaced by a surface integral
dA for a thin dielectric layer with thickness ti, dielectric constant ϵi,
and a surface electric field Ei. The participation ratio is normalized
by the total capacitor energy W= CV2/2, where C is the total
capacitance and V the voltage.
When designing the qubit, the qubit capacitance C is usually

fixed to a desired parameter. Because the results are more easy to
interpret in terms of design distances, it is convenient to describe
the qubit capacitance in terms of a length using

C � ϵ0L : (2)

For C= 100 fF, a value used for a qubit non-linearity of about
200 MHz, one finds L= 11.3 mm.

For thin films, the electric fields of the top and bottom
dielectrics can be considered separately. Thus the electric fields E0
can be solved for ϵ= ϵ0, the free space value, and then the
participation ratio is multiplied by 1 for the solution on the air side
and ϵs for the substrate side. The surface dielectrics can be taken
into account with the three participation ratios4

pMA ¼ 1
ϵMA

tMA

Lϵ0=2
ϵ0
2

Z
MA

dA jE0=V j2
� �

; (3)

pMS ¼
ϵ2s
ϵMS

tMS

Lϵ0=2
ϵ0
2

Z
MS
dA jE0=V j2

� �
; (4)

pSA ¼ ϵSA
tSA

Lϵ0=2
ϵ0
2

Z
SA
dA jE0=V j2

� �
; (5)

where the area integrals correspond to the appropriate surfaces
for each type, and the bracketed terms are called surface energies.
Tangential fields are only included for the SA formula, as
appropriate for thin films4. For the above MA and MS surface
energies, the electric field is for only one side of the metal. Thus
for the total surface energy U calculated in the next sections, the
above MA and MS energies in brackets should be U/2.
Dielectric constants are for a silicon substrate ϵs= 11.7,

aluminum oxide ϵMA= ϵMS= 9.8, and silicon dioxide ϵSA= 3.8;
the relative weights of the MA:MS:SA dielectric terms are
0.10:14:3.8.

Differential parallel plate capacitor
The simplest geometry is a parallel plate capacitor, which allows a
simple calculation of the surface loss due to constant electric
fields. A differential geometry is illustrated in Fig. 3. This
contribution is typically needed when transmon qubits are made

-a

a

b

ℓ
-b

Fig. 1 Qubit design with taper. Drawing of prototypical qubit
device, with relative dimensions approximately to scale. The qubit
capacitance C≃ 100 fF is made from two ribbons (shaded gray) of
width b− a= 100 μm and length ℓ= 1300 μm, separated by
distance 2a= 100 μm. Wires (drawn in red) connect to the sub-μm
Josephson junction in a conventional design. Surprisingly, the loss
from the small junction wires is about equal to that coming from the
large ribbons. This paper proposes tapering these wires (shaded
blue) as a near-optimal design.

Fig. 2 Example of full transmon design. Example design of a
differential transmon qubit that incorporates several of the
capacitance structures described here. Red shows the junction
and tapered wire, blue is a ribbon capacitor, and green is a coplanar
capacitor. The outer ground plane is gray. The capacitances and
losses would be added to give a good approximation for the entire
design.
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using bump-bonded substrates, where the second substrate acts
as a ground plane above the qubit metal pads and thus adds
capacitance to the qubit. This structure can be treated as parallel
plate with each plate having width w and length ℓ and a
separation s to the ground plane, with capacitance

Cp ¼ ð1=2Þϵ0ℓw=s ; (6)

where the 1/2 factor coming from the differential design of the
qubit, where the capacitance of each parallel plate is in series.
The electric field in each differentially driven capacitor is

Ep ¼ 1
2 V=s, and the total surface energy is

Up ¼ ðϵ=2Þ2ð2ℓwÞðV=2sÞ2 ; (7)

where a factor of 2 comes from the two parallel plates, and
another from surface loss at the 2 plates of the capacitor.
The participation ratio for the parallel-plate capacitor is

ppMA ¼ 1
ϵMA

tMA

L
ℓw
s2

: (8)

Participation ratios are written with first the dielectric factor, then
the dielectric thickness, and finally the geometric factors for the
design.

Thickness correction
The finite thickness of the metal film changes the surface electric
fields mostly at the edges of the film. Since the edge fields will be
similar for different geometries, their effect will be calculated here
for a simple flat coaxial film. The resulting simple correction to the
surface energy can then be applied to different geometries.
It is useful to start with a 2-D solution of a coax line, with an

inner conductor of radius r and an outer conductor of radius R as
illustrated in Fig. 4a. The solution for the radial electric field on the
surface of the inner conductor is

Ec ¼ V
r lnðR=rÞ ; (9)

with its strength decreasing with radius x as

EcðxÞ ¼ ðr=xÞEc (10)

The electric field energy (ϵ/2)∫E2dv is calculated from a volume
integral dv of the electric field E. Because the interest here is for
the surface energy in a 2-D geometry, we compute the surface
energy U/ℓ for a line length ℓ so that the full energy will be
multiplied by the surface thickness and length ℓ. For the coax
geometry, the surface energy of the inner metal at radius r is

Um
c =ℓ ¼ ðϵ=2Þ2πrE2c (11)

¼ ϵE2c r π: (12)

The surface energy coming from the substrate, the red line in
Fig. 4a, is a cut through the middle of the coax

Us
c=ℓ ¼ ðϵ=2Þ 2

Z R

r
EcðxÞ2dx (13)

¼ ϵE2c r ½1� r=R�; (14)

where the factor of 2 before the integral comes from the left and
right substrate sides.
Figure 4b shows a flat coax, where the circular inner conductor

is replaced by a thin film of width 2r. The electric field magnitude
along the coordinate x of the thin film is found from numerical
solutions for all x to be given by a conformal-mapping solution

Ef ¼ V
r lnð2R=rÞ ; (15)

EfðxÞ ¼ Ef

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r

jr þ xj

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
r

jr � xj

s
; (16)

which fits well for R> 2r. The electric field is perpendicular to the
metal surface but parallel to the substrate surface. The voltage
integral checks properlyZ R

r
EfðxÞ dx ¼ V ½1þ Oðr2=R2Þ� : (17)

Figure 5 shows a comparison between the numerical solution
and the formula of Eqs. (15) and (16), showing excellent
agreement. The square-root divergence at the metal edge is
characteristic of the electric fields of thin metal films.

w
s

+V/2-V/2

Up
w

Fig. 3 Differential parallel plate. Side view of a differential parallel-
plate capacitor. The parallel plate has width w and length ℓ, using a
separation s of a vacuum gap. The differential voltage drive is ±V/2.
The surface energy is Up.
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Fig. 4 Coaxial geometries. Drawings of coaxial geometries con-
sidered here. a Cross section of coax, with inner radius r and outer
radius R. b Cross section of flat coax, with width 2r of inner thin film.
The surface energies of the metal and substrate are Um and Us

respectively, with the subscripts referring to the coax (Uc) or flat coax
(Uf) cases. The x-direction is horizontal and the shaded regions
correspond to the substrate.
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Fig. 5 Electric field of flat coax. Plot of the surface electric field for a
flat coax for both the metal surface (black) and substrate (blue),
obtained by numerical simulation (dots) for the zero thickness limit.
The solid lines (green, red) are predictions from Eqs. (15) and (16)
and fit well the numerics. Parameters are r ¼ 10 μm and R= 100 μm.
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The surface energy for the metal surface (jxj< r) is

Um1
f =ℓ ¼ ðϵ=2ÞE2f 4

Z r�t=2

0

r2

r2 � x2
dx (18)

’ ϵE2f r lnð4r=tÞ (19)

where the factor of 4 is for the top/bottom and left/right parts of
the metal, and the logarithmic divergence in the integral at the
edge is cut-off at half the thickness t of the film.
Numerical simulation for a film with a rectangular cross-section

of thickness t shows that the electric fields within t/2 of the
outside corner have a power law behavior with exponent
p=− 1/3, as appropriate for a 90 degree corner4,11. As an initial
approximate solution, this power law dependence of the corner
field is then matched to the computed field Efðr � t=2Þ at a
distance t/2 from the corner. At a distance rc from the corner, the
corner field is

Ec ¼ Efðr � t=2Þ ½rc=ðt=2Þ�p (20)

¼ Ef
ffiffiffiffiffiffi
r=t

p
½2rc=t�p: (21)

Including all 4 corners, with 2 sides per corner, the line energy for
the corner is approximately

Um2
f =ℓ ¼ ðϵ=2ÞE2f ðr=tÞ 8

Z t=2

0
½2rc=t�2pdrc: (22)

¼ 4ϵE2f ðr=tÞðt=2Þ=ð1þ 2pÞ (23)

¼ ϵE2f r ½2=ð1þ 2pÞ� : (24)

With 1+ 2p= 1/3, the numerical factor in Eq. (24) is 6 and does
not depend on t.
The total surface energy for the metal is the sum of the two

energies

Um
f =ℓ ¼ ϵE2f r ½lnð4r=tÞ þ cm� ; (25)

where cm is the corner correction for the finite thickness of the
metal. Figure 6 gives cm obtained from numerical integration of
the surface energy. The corner correction is slowly varying with
relative film thickness t=r and has a typical value

cm ¼ 5:0 (26)

close to the value 6 obtained above by scaling of the corner fields.
It is useful that the surface energy is predicted well even for a thick
film, with thickness as much as one-half the width. The edges
typically contribute about 1/3 of the total surface energy. Also
shown is the case of a semicircular edge, which lowers the surface
energy a non-negligible but small amount, providing a lower
bound for the correction of a rounded edge.
This result shows that a constant term added to the logarithmic

cut-off term well represents the corner fields. Note the similarity to
Eq. (12). Here, the bracket term in Eq. (25) is slightly larger than the
corresponding π constant in Eq. (12), as expected since the flat
coax has large edge fields. The correction factor lnð4r=tÞ !
lnð4r=tÞ þ cm will be used in all formulas for the metal edge.
The surface energy for the substrate surface (r < x < R) is

Us1
f =ℓ ¼ ðϵ=2ÞE2f 2

Z R

rþt=2

r2

x2 � r2
dx (27)

¼ ϵE2f ðr=2Þ lnð4r=tÞ � ln
Rþ r
R� r

� �
; (28)

where the factor of 2 is for the left/right parts of the substrate. Like
found for the metal surface, numerical integration for finite
thickness gives a corner correction 1.6. Since typically r � R, the
total substrate surface energy is

Us
f=ℓ ¼ ϵE2f ðr=2Þ½lnð4r=tÞ þ cs � 2r=R� ; (29)

cs ¼ 1:6 : (30)

This is smaller than the surface energy for the metal surface since
it does not include a sharp edge. The correction factor lnð4r=tÞ !
lnð4r=tÞ þ cs will be used in all formulas for the substrate edge.

Differential ribbon capacitor
Considered next is the capacitance between the two leads of the
qubit, modeled as two long and straight ribbons as illustrated in
Fig. 7. Each ribbon has metal spanning a distance a to b from the
centerline, with length ℓ≫ b and a metal thickness t. A conformal-
mapping solution from Ref. 8 is used for the electric fields. The

Thickness ratio  t / r

C
or

ne
r c

or
re

ct
io

n 
 c

m
, c

s cm (straight)

cs (straight)

cm (semicircle)

Fig. 6 Corner corrections. Plot of corner corrections obtained by
numerical simulation of films with finite thickness t=r and a straight
vertical edge, for the metal cm (black) and substrate cs (blue). Data in
red is for a semi-circular edge, showing that sharp corners have a
non-negligible but non-dominant effect. The corrections vary slowly
with thickness and are taken as cm= 5.0 and cs= 1.6.

aUr b-b -aUr
m

Ur aUr
s

-a

a

bℓ

-b

+V/2

-V/2

b)

a) a
x

Fig. 7 Differential ribbon. a Cross section of a differential ribbon
capacitor, with metal conductors from −b to −a and a to b. The
surface energies for the metal and substrate are Um

r and Us
r

respectively. b Top view, showing a capacitor of length ℓ and
differentially driven by ±V/2. The gray bar shows typical location of
the junction wires. The x-direction is horizontal and the shaded
region corresponds to the substrate.
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ribbon capacitance for a differential voltage V is

Cr ¼ ½ðϵs þ 1Þ=2� ϵ0ℓ=CKða=bÞ ; (31)

CK ¼ Kða=bÞ=K 0ða=bÞ (32)

’ ð1=πÞ ln½2ð1þ
ffiffiffiffiffiffiffiffi
a=b

p
Þ=ð1�

ffiffiffiffiffiffiffiffi
a=b

p
Þ� ; (33)

K 0ðkÞ ¼ Kð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
Þ (34)

where K(k) is the complete elliptic integral of the first kind.
Equation (33) is an excellent approximation to Eq. (32). The
effective dielectric constant has contribution from both the air (ϵ0/
2) and substrate (ϵsϵ0/2).
From the conformal-mapping solution Eq. (5) of Ref. 8, the

surface fields are

jErðxÞj2 ¼ V=2
Kða=bÞ

� �2 b2

jðx2 � a2Þðx2 � b2Þj ; (35)

where the E field is parallel to the surface on the substrate and
perpendicular on the metal. The surface integral is evaluated in
three sections:

inner 0< x < a� t=2 ; (36)

center aþ t=2< x < b� t=2; (37)

outer bþ t=2< x <1 ; (38)

giving

Si ¼
Z a�t=2

0
dx

b2

jðx2 � a2Þðx2 � b2Þj (39)

¼
1
a ln

aþx
a�x þ 1

b ln
b�x
bþx

2ð1� a2=b2Þ ja�t=2
0 (40)

’
1
a ln

4a
t þ 1

b ln
b�a
bþa

2ð1� a2=b2Þ ; (41)

Sc ’
1
a ðln 4a

t þ ln b�a
bþaÞ þ 1

b ðln 4b
t þ ln b�a

bþaÞ
2ð1� a2=b2Þ ; (42)

So ’
1
a ln

b�a
bþa þ 1

b ln
4b
t

2ð1� a2=b2Þ : (43)

Note that Sc= Si+ So.
The surface energy of the center metal section is

Um
r =ℓ ¼ ðϵ=2Þ 4 ½V=2Kða=bÞ�2Sc (44)

¼ ϵV2

2 K2ða=bÞ
SaðcmÞ

a
; (45)

SaðcmÞ �
ðln 4a

t þ cm þ ln b�a
bþaÞ þ a

b ðln 4b
t þ cm þ ln b�a

bþaÞ
2ð1� a2=b2Þ (46)

where the factor of 4 comes from the two ribbons and the top/
bottom surfaces. The dimensionless surface integral is obtained
from Sa/a= Sc, along with adding the corner correction cm for a
finite thickness.
The surface energy of the inner and outer substrate sections is

Us
r=ℓ ¼ ðϵ=2Þ 2 ½V=2Kða=bÞ�2ðSi þ S0Þ (47)

¼ ϵV2

4 K2ða=bÞ
SaðcsÞ
a

; (48)

where the factor of 2 is from the two sides of the ribbon. The
substrate surface energy is smaller than the metal by approxi-
mately a factor of 2.
The ribbon capacitor has participation ratios coming from the

surface-air, metal-substrate, and substrate air interfaces, calculated
using Eqs. (3)–(5), (45) and (48)

prMA ¼ 1
ϵMA

tMA

L
ℓ

a
SaðcmÞ

2 K2ða=bÞ ; (49)

prMS ¼
ϵ2s
ϵMS

tMS

L
ℓ

a
SaðcmÞ

2 K2ða=bÞ ; (50)

prSA ¼ ϵSA
tSA
L
ℓ

a
SaðcsÞ

2 K2ða=bÞ : (51)

The only difference in the 3 participation ratios is the dielectric
factors and the small change from the corner constant.
The black lines in Fig. 8 are a plot of the dimensionless surface

energy Sa(cm)/K2 for the metal (solid) and SaðcsÞ=K 02 for the
substrate (dashed) as a function of the normalized distance (b−
a)/a. The metal surface energy is greater because of the higher
corner constant cm > cs. As the distance b− a increases, the
surface energy decreases. Typical designs use (b− a)/a ~ 1. Note
that the surface energy drops by a non-negligible amount with
the lower corner constant, showing that the edge fields from the
finite thickness are important.
For the case where all of the capacitance comes from the ribbon

Cr= ϵ0L, the participation for the metal-substrate interface is

prMSðCrÞ ¼ ϵ2s
ϵMSðϵs þ 1Þ=2

tMS

a
1
2

SaðcmÞ
Kða=bÞK 0ða=bÞ : (52)

The last factor is the geometric mean of the ribbon and coplanar
curves of Fig. 8, shown in red.

Differential coplanar capacitor
The qubit can also have capacitance to ground. This can be
modeled as a coplanar structure as shown in Fig. 9, where each
side of the qubit has a pad with width 2a and length ℓ≫ a, with a
ground plane at a distance b from the centerline. As this is the
“dual” of the ribbon capacitor, with metal and substrate switched,
similar conformal solutions can be used with minor modifications.

Normalized distance  (b-a)/a

Su
rfa

ce
 e

ne
rg

y 
 S

a/K
2 , 

S a/K
’2 , 

S a/K
K’

 

ribbon 
cm= 5.0

coplanar
cm= 5.0

cs= 1.6

cs= 1.6

a/t = 1000

Fig. 8 Surface energies. Plot of the normalized surface energies
Sa(cm)/K2 for ribbon (black) and SaðcsÞ=K 02 for coplanar (blue)
geometries, versus the normalized distance (b− a)/a. The plot uses
the normalized thickness a/t= 1000. The solid lines are for the metal
surface with cm= 5.0, whereas dashes are for the substrate with cs=
1.6. Also plotted in red is Sa=KK 0 for the case of all capacitance
coming from the ribbon or coplanar geometry.
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The differential capacitance is

Cc ¼ ð1=2Þ½ðϵs þ 1Þ=2� ϵ0ℓ 4CKða=bÞ ; (53)

where CK is defined in Eq. (32), and the initial factor of 1/2 comes
from the two coplanar capacitors in series. From Eq. (25) of Ref. 8,
the electric field for each coplanar capacitor is

jEcðxÞj2 ¼ V=2
K 0ða=bÞ

� �2 b2

jðx2 � a2Þðx2 � b2Þj ; (54)

where now the field is perpendicular to the substrate in the inner
and outer sections, and parallel in the center.
The surface energy of the metal sections is similar to the ribbon

case except for an extra factor of 2 to account for the series
capacitors, as can be seen from Fig. 9 since ℓ only accounts for half
of the total length. The metal and substrate surface energies are

Um
c =ℓ ¼ ϵV2

K 02ða=bÞ
SaðcmÞ

a
; (55)

Us
c=ℓ ¼ ϵV2

2 K 02ða=bÞ
SaðcsÞ
a

; (56)

Note the similarities to the ribbon formulas. The participation
ratios are twice as large as the ribbon and with K replaced by K 0

pcMA ¼ 1
ϵMA

tMA

L
2 ℓ
a

SaðcmÞ
2 K 02ða=bÞ ; (57)

pcMS ¼
ϵ2s
ϵMS

tMS

L
2 ℓ
a

SaðcmÞ
2 K 02ða=bÞ ; (58)

pcSA ¼ ϵSA
tSA
L
2 ℓ
a

SaðcsÞ
2 K 02ða=bÞ : (59)

For the case where all the capacitance comes from the coplanar
structure, the participation is the same as the ribbon design, for
example

pcMSðCcÞ ¼ prMSðCrÞ : (60)

A single-ended coplanar design is used to test resonators. In this
case, the coplanar capacitance of Eq. (53) does not have the initial
1/2 term. The surface energy U and participation ratios are a factor

of 2 larger. The participation prMSðCcÞ includes these two factors, so
Eq. (60) is unchanged for the single-ended design.

Differential ribbon capacitor with ground
Planar transmons are typically designed to have a ground plane
surrounding the qubit capacitor, as shown in Fig. 2. For the ribbon
capacitor considered previously, a ground plane is added here
from minus infinity to −c and c to infinity, where c > b, as shown in
Fig. 10. The capacitance and surface loss is computed numerically
and then fit to functions based on the previous ribbon formulas.
The surface electric field is well described a simple modification

to the ribbon case of Eq. (35)

jErgðxÞj2 ¼ jErðxÞj2 c2

jx2 � c2j : (61)

Integration of surface charge from the numerical solutions gives a
simple modification to the ribbon differential capacitance of Eq.
(31)

Crg ’ Cr=½1� ðxe=cÞ2�0:23 ; (62)

xe ¼ b� 0:15ðb� 1:2aÞ : (63)

Figure 11 shows the numerical results (points) and the fit function
(line) versus ground plane separation (c− b)/b for three values of
a, representative of a/b ratios that would commonly be used. The
fit function represents the numerical results well.
For the surface loss of the metal, the fit function for the

numerical results are

Um
rg=ℓ ¼ ϵV2 0:98

2 K2ða=bÞ
Saða; b; t; cmÞ

a

�
(64)

þ 1:70

2 K 02ðb=cÞ
Saoðb; c; t; cmÞ

b

�
; (65)

where the contribution of Sao corresponds to the outer metal of a
coplanar capacitor between b and c

Saoðb; c; t; cmÞ ¼
ln c�b

cþb þ b
c ðln 4c

t þ cmÞ
2ð1� b2=c2Þ : (66)

The surface loss for both the inner and outer substrate gaps gives
the fit function

Us
rg=ℓ ¼ ϵV2 0:95

4 K2ða=bÞ
Saða; b; t; csÞ

a

�
(67)

þ 0:80

4 K 02ðb=cÞ
Saðb; c; t; csÞ

b

�
; (68)

where the second contribution of Sa corresponds to the substrate
of a coplanar capacitor between b and c. Figure 11 shows the
numerical results are well represented by the fit functions.

Differential junction wires
The connections between the Josephson junction and the
capacitor electrodes are made through two junction wires of
total length 2d, as shown in Fig. 12. Starting with the simple case

aUc b-b -aUc
m

Uc aUc
s

aa
b

-bℓ b
-a
-
-

ℓℓ
+V/2

ℓ
-V/2

b)

a)
a

x

Fig. 9 Differential coplanar. a Cross section of a differential
coplanar capacitor, with metal conductors from −∞ to −b, −a to
a, and a to ∞. The surface energies for the metal and substrate are
Um
c and Us

c respectively. b Top view, showing each differential
electrode with length ℓ and driven by ±V/2. The gray bar shows
typical location of the junction wires. The x-direction is horizontal
and the shaded region corresponds to the substrate.

aUrg b-b -aUrg
m Urg aUrg

s
c-c a

x

Fig. 10 Differential ribbon with ground. a Cross section of a
differential ribbon capacitor with ground conductors added from
−∞ to c and c to ∞. The surface energies for the metal and
substrate are Um

rg and Us
rg respectively.
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of treating these wires as round with radius r and placed end-to-
end each with length d, the surface field can be calculated
numerically using the potential matrix Eq. (97) for a 2-D geometry
with cylindrical symmetry. For a differential voltage V, the surface
electric field as a function of distance y from the junction is well
described by

EcwðyÞ ¼ 1
2

V
r lnð2y=rÞ ; (69)

as shown in Fig. 13. In comparison with Eq. (9), the second term is
equivalent to a coax of inner radius r and outer radius 2y. The first
term 1/2 represents this coax placed in series with a second coax
of the same dimensions, which represents the fields emanating
from one circular wire, expanding to a distance 2y, and then
converging in to the other circular wire.
This 2-D numerical calculation also allows the radius r to change

with distance y. Modeling a linear taper with r= S y, the electric
field is found to be well described by Eq. (69) with r replaced by r
(y), as long as the taper is not too large S < 0.4; larger slopes are
found not to reduce the electric field significantly. Figure 13 shows
numerical results for both a straight and tapered cylindrical wire,
with good agreement to the approximation formula Eq. (69).
A solution for a flat wire can be obtained by assuming the wire

has the x-dependence of the electric field as given in Eq. (16), but
with an overall dependence of Efw with y that is determined
numerically. Equation (100) in the appendix shows how to solve
this problem with a potential matrix. Numerical solutions for both
straight and tapered flat wires show that a good fitting function is

EfwðyÞ ¼ 1
2

V
r lnð4y=rÞ ; (70)

which has the form of Ef in Eq. (15) but with 2R replaced by 4y. It is
again valid for small slope S < 0.4. The factor of 4 in the logarithm
can be understood as a factor of 2 from the coax to the wire
geometry, and another factor of 2 from the circular to flat coax
formula in Eqs. (9)–(15).
The metal surface energy for a straight wire of constant width

can thus be found by integrating this surface field, which is
equivalent to integrating one-fourth of the line energy Eq. (25)

Distance from junction  y [ m]

straight

tapered

El
ec

tri
c 

fie
ld

  E
w
 / 

μm
-V

Fig. 13 Electric field of cylindrical wire. Plot of the surface electric
field for a cylindrical wire for both straight (S= 0) and tapered
(S= 0.2) radius. Numerical solutions (black and blue) match well
with the approximation formulas (green and red) of Eq. (69).
Parameters are r= 0.1 μm and d= 100 μm. The uptick of the field at
the end of the wire is expected for an edge field.

2d 2r

y

Fig. 12 Junction wires. Top view of wires connecting the Josephson
junction to capacitor pads, with each wire of length d. A straight
wire of width 2r is drawn in red, and a tapered wire in blue.
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Fig. 11 Capacitance and loss numerics. Plot of the capacitance (top
panel) and surface loss (bottom panel) versus the ground plane
separation (c− b)/b, for a= (25, 50, 70) μm (top to bottom) and b=
100 μm. Points are numerical simulations and lines are fit formulas.
The metal and substrate surface loss is colored black and blue,
respectively. Numerical simulations are for a infinitely thin metal
with an integration cutoff t/2= 0.05 μm, with the fit also using cm=
cs= 0. Dashed lines include corner correction cm= 5.0 and cs= 1.6.
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over the wire length

Um
sw ¼ 2

Z d

2r

1
4
Um
f ðR ¼ 2yÞ=ℓ

� �
dy (71)

¼ 2ϵV2
Z d

2r

lnð4r=tÞ þ cm
4 rln2ð4y=rÞ dy (72)

’ ϵV2

2
lnð4r=tÞ þ cm

ln2ðd=rÞ
d
r
; (73)

where the factor of 2 before the integral accounts for both
junction wires. The last formula was fit to numerical integration.
Because of the d=r factor, this surface energy can be large, so a
more optimal solution is to taper the wire as explained below.
Similarly from Eq. (29), the surface energy of the substrate for a

straight wire of constant width is

Us
sw ¼ 2

Z d

2r
½1
4
Us
fðR ¼ 2yÞ=ℓ� dy (74)

’ ϵV2

4
lnð4r=tÞ þ cs
ln2ðd=rÞ

d
r
; (75)

The participation ratios for straight wires are

pswMA ¼ 1
ϵMA

tMA

L
d
r
psw

0
M ; (76)

pswMS ¼
ϵ2s
ϵMS

tMS

L
d
r
psw

0
M ; (77)

pswSA ¼ ϵSA
tSA
L
d
r
psw

0
S ; (78)

where multiplicative factors are given by

psw
0

M ¼ 1
2
lnð4r=tÞ þ cm

ln2ðd=rÞ ; (79)

psw
0

S ¼ 1
2
lnð4r=tÞ þ cs
ln2ðd=rÞ : (80)

As found previously, the equations differ only in the relative
dielectric constants and the corner constant.
The capacitance of the straight junction wires is found from

numerical simulation

Csw ’ 4:1 ½ðϵs þ 1Þ=2� ϵ0 d= lnðd=rÞ : (81)

Tapered junction wires
The large d=r ratio in the above participation ratios contributes to a
large surface energy, since the small width of the wires produce large
electric fields at its surface. As surface loss decreases with increasing
size, it is natural to increase the width of the wire to lower loss. A
solution to minimize surface energy is to taper the wire, increasing
the wire width with increasing distance y from the junction as shown
in Fig. 12. The contribution to the line energy, the surface energy per
line length dy, is the integrand of Eq. (72), where r is now a function
of y. The integrand is minimized at distances y/t= (10, 100, 1000) for
a half-width r=y ¼ ð0:363; 0:402; 0:425Þ, respectively.
An effective solution is to taper the wire according to rðyÞ ¼

maxðr0; ðy � 5tÞSÞ with the taper starting at y= 5t, optimizing the
slope S for lowest energy. Numerical integration of the line energy
gives the metal surface energy for a tapered wire that is fit by

Um
tw ’ 0:38 ϵV2 lnðd=r0Þ

S
lnð4Sd=tÞ þ cm

ln2ð4=SÞ ; (82)

Although this has a minimum energy at slope S= 0.45, it is a
broad minimum increasing by 2% at S= 0.28 and only 10% at

S= 0.16. Note that this formula is similar to Eq. (73) for a constant
width wire, except for the logarithm dependence on d.
Similarly, the substrate surface energy for a tapered wire is fit by

Us
tw ’ 0:15 ϵV2 lnðd=r0Þ

S
lnð4Sd=tÞ þ cs

ln2ð4=SÞ : (83)

The metal surface loss for the junction wires is plotted in Fig. 14
for the straight and tapered cases, obtained by numerical
integration of Eq. (72). At small distances d≲ 5 μm, the two
results are similar, but at large distances the logarithmic scaling
makes the tapered loss significantly lower. It is standard practice
to increase the overall size of the qubit capacitor to lower its loss.
When using a large d, it is thus increasing important to optimally
design the junction wires with a taper.
The formulas for the participation ratios for a tapered wire are

ptwMA ¼ 1
ϵMA

tMA

L
lnðd=r0Þ

S
ptw

0
M ; (84)

ptwMS ¼
ϵ2s
ϵMS

tMS

L
lnðd=r0Þ

S
ptw

0
M ; (85)

ptwSA ¼ ϵSA
tSA
L
lnðd=r0Þ

S
ptw

0
S ; (86)

with multiplicative factors

ptw
0

M ¼ 0:38
lnð4Sd=tÞ þ cm

ln2ð4=SÞ ; (87)

ptw
0

S ¼ 0:30
lnð4Sd=tÞ þ cs

ln2ð4=SÞ : (88)

It is recommended using a continuous taper as described
above, not a stepped taper as in previous designs, since the
continuous taper is optimal at every distance from the junction x;
the sharp corners of the steps will produce larger electric fields
and increase the surface energy. It is not reliable to accurately
compare the surface loss of stepped versus tapered wiring since
numerical solutions do not have meshing dense enough, which is
difficult for 2D simulations and especially problematic for 3D.

Junction wire length d [ m]
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rg
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m
 /ε
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Fig. 14 Junction wire surface energy. Metal surface energy (and
loss) of the junction wire for straight (black) and tapered (blue)
designs versus wire length per side d, obtained from the integral of
Eq. (72). Dashed lines are approximate formulas from Eqs. (73) and
(82). The tapered wire shows significantly lower energy for wire
lengths d≳ 10 μm. At large distances the straight and tapered
energy scale with d approximately linearly and logarithmically,
respectively. Parameters are t ¼ r0 ¼ 0:1 μm and S= 0.4.
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The capacitance of the tapered junction wires is found from
numerical simulation

Ctw ’ 3:5 ½ðϵs þ 1Þ=2� ϵ0
ffiffiffi
S

p
d : (89)

Comparisons and transmon devices
These formulas agree well with a prior numerical simulation, as
detailed in Table 1. The first example shows good agreement with
numerical results from Ref. 4. Note the only difference in the MS
and SA formulas are from the corner constants cm and cs. The
second example does not agree well with the MS geometry of
Ref. 10, although the results here are for a flat substrate with no
trenching dt= 0. It is unexpected that the prior numerical results
with trenching gives a higher participation ratio for all surfaces.
This table suggests that numerical calculations may give
participation ratios with errors as high as a factor of 3–10.
Surface loss closely scales as the inverse of the system size, as

described previously in Ref. 4. However, the calculation for the
participation ratio from the junction wires has the opposite effect,
as its participation increases with length. Thus there is a crossover
in distance d where the surface loss of the wire goes from
relatively unimportant to dominant. Formulas for predicting this
crossover is an important result of this work.
Table 2 shows the participation ratios for the 3 interfaces and 5

qubit capacitance types, for an example geometry of size scale of
~100 μm that is appropriate for current devices. Here a constant
thickness 2 nm of the surface oxides is assumed. The ribbon has
the same participation as the coplanar geometry, as expected. Of
course, predictions depend on actual device parameters, which
can be readily made with these formulas.
For the qubit capacitance, the metal-substrate (MS) interface

dominates the surface participation. For the ribbon design, the
substrate-air (SA) is about 5 times smaller due to the dielectric
factors, half the surface, and a lower corner constant cs. However,
the wire loss is not much smaller and clearly indicates that for
present designs this contribution should be carefully considered.
Importantly, the tapering of the wire will produce a significant
improvement in qubit performance, about a factor of 3.
When qubit designs use multiple chips that are bump-bonded

together, a parallel plate capacitance is often formed between the
qubit chip and ground. Table 2 shows that the participation ratio
of this structure needs to be considered even for a plate
separation of s= 5 μm, especially since the thickness of the other
surfaces are likely less than 3 nm.

Although the formulas predict surface energy will decrease
slightly with taper slopes greater than 0.4, doing so is not
recommended since numerical simulations show that electric
fields do not decrease in this range. Besides, the surface energy
only slightly decreases above a slope of 0.2.
An interesting question is how much more surface loss is there

for thin films, arising from the large fields at the edges. It is
possible to compare surface energy for a round coax and flat coax
of the same width using Eqs. (12) and (25), which shows that the
ratio of the metal surface energy is

Um
f

Um
c
’ lnð4r=tÞ þ cm

π
’ 4:0 (90)

for r ¼ 50 μm and t= 0.1 μm, typical dimensions considered here.
Although the metal-film edges produce more loss, the increase is
still acceptable. Note that the logarithm factor is 7.6, so that about
1/3 of the surface energy comes from the corners within t/2 of
the edges.
The MA and MS participation formulas in Eqs. (3) and (4) use

surface energies U/2 for the two sides of the film, which are then
multiplied by dielectric constant factors. However, since the metal
film usually sits on top of the substrate, this splitting of surface
energy should change somewhat. One expects the air side of the
surface energy to include both sides of the top corner and the
outside of the bottom corner, while the substrate side only
includes the film edge of the bottom corner. Since these two sides
of the corner contributes similarly, one expects the constant factor
added to the logarithm to be about 1.5 cm for the air side and and
0.5 cm for the substrate side. For example, this modification
changes the MA prediction of Table 1 from 0.060 to 0.077, closer
to the numerical result 0.010.
Since the MS interface clearly dominates in the participation

ratio, there has been effort to minimize this oxide layer by surface
treating the silicon wafer before depositing the metal film12,13. The
MS thickness and loss tangent are thus parameters that should be
measured carefully to optimize a design. The qubit capacitor is
much larger size than the junction and its wires are often made in
a separate step patterned with optical lithography, while the
junction and wire is patterned with electron-beam lithography. If
the surface treatment is easier or even possible with the optical
lithography step, it is then recommended that the taper is brought
down to within 1 μm or so of the junction to minimize its loss. In
this case the data in Fig. 14 would be used to estimate the loss
from both sections of wire; because of the logarithmic

Table 2. Participation ratios for various qubit structures.

Interface Eqs. MA MS SA

Parallel plate (8) 8.16e−5

Ribbon (49)–(51) 1.04e−6 1.42e−4 2.74e−5

Coplanar (57)–(59) 1.04e−6 1.42e−4 2.74e−5

Straight wires (76)–(80) 7.47e−7 1.02e−4 1.30e−5

Tapered wires (84)–(88) 2.35e−7 3.22e−5 4.90e−6

The top three are for the primary qubit capacitance, and the bottom two are
for straight and tapered wires that connect to the junction with capacitance
~ 7 fF. For comparison purpose, they all use a length ℓ such that the total
capacitance is 100 fF. Geometry parameters are thickness t= 0.1 μm; parallel
plate (s,w, ℓp)= (5, 100, 1130) μm; ribbon and coplanar (a, b, ℓr, ℓc)= (50, 100,
1391, 1138) μm; junction wires ð2d; r; r0Þ ¼ ð100; 0:1; 0:1Þ μm and S= 0.4.
Dielectric parameters are (ϵs, ϵMA, ϵMS, ϵSA)= (11.7, 9.8, 9.8, 3.8). For simplicity,
here the oxide thickness is assumed to be tMA= tMS= tSA= 2 nm; results can
be simply scaled with expected thickness. Total loss can be estimated by
multiplying the surface loss tangents10; typical values for amorphous
insulators are 0.00514.

Table 1. Check data.

Loss × 106 MA MS SA

Ref. 4 0.10 6.13 4.02

This work 0.060 5.93 3.57

Participation ratio (%) MA MS SA

Ref. 10 (dt= 0.28 μm) 0.017 0.297 0.156

This work (dt= 0) 0.0012 0.139 0.027

Ref. 5 (dt= 0.04 μm) 0.01 0.31 0.17

This work (dt= 0) 0.003 0.414 0.086

Comparison of prior numerical results from finite element analysis with
formulas from this paper. The first example shows good agreement for (a,
b, t)= (2.5, 4.5, 0.1) μm and surface parameters (ϵs, ϵMA, ϵMS, ϵSA)= (10, 10,
10, 10), thickness 3 nm and loss tangent 0.002. The second example does
not agree well and uses (a, b, t)= (3, 6, 0.25) μm and surface parameters (ϵs,
ϵMA, ϵMS, ϵSA)= (11.7, 11.4, 10, 4) and thickness 2 nm, but different trench
depths dt. The third example is for C13 and uses (a, b, t)= (1.35, 3.45, 0.04)
μm and surface parameters (ϵs, ϵMA, ϵMS, ϵSA)= (11.7, 10, 7.6, 3.9) and thick-
nesses (tMA, tMS and tSA) = (3,2,3)nm.
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dependence, there would still be some contribution from even the
short junction section.

Two-level states
Surface loss typically comes from two-level states (TLS)14, which
saturate and produce less loss at high excitation fields. Using the
numerically computed surface fields, the dependence on power
can be found by scaling the reduction in loss from the local
electric field E with

E2 ! E2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2=E2s

q
(91)

¼ E Es for E � Es ; (92)

where the saturation electric field Es depends on microscopic
parameters of the TLS14.
Since saturation measurements are typically made with

coplanar resonators, numerical integration of the surface loss is
shown in Fig. 15 for three values of a, each with the gap equal to
the inner metal width b= 2a. As expected, for large saturation

fields (loss at low power) the largest resonator gives lowest loss. At
large fields, the loss of all three resonators converges. This
behavior can be understood using dimensional analysis: scaling all
the lengths by D decrease the electric field by E ~ 1/D, but
increases the surface integration by D. For loss at low power, the
integral scales as E2D ~ 1/D. But when saturated, EEsD ~ Es gives
constant scaling. Figure 15 also shows volume saturation, for
example coming from TLS in the substrate.
The analysis so far has treated the dissipation continuously.

However, surface loss comes from a bath of two-level states, with
individual states that are spectroscopically observable for small-
area devices14. Simple models predict both the magnitude and
the density of TLS, so its spectrum can be extremely useful for
identifying the physical location of the loss.
The dipole moment of the TLS couples to the electric field of

the 0 to 1 qubit transition. This produces a qubit splitting with
random frequency and splitting size, but with a maximum splitting
size given by Eq. (3) of Ref. 14

Smax ¼ 2ðdTLS=xjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E10 e2=2C

p
; (93)

were dTLS/xj is the relative size of the dipole to the dielectric
thickness, E10 is the qubit energy, and e2/2C is the qubit charging
energy. Note that Smax is proportional to the qubit electric field
and inversely proportional to the square-root of the qubit
capacitance. For a junction capacitor with parallel-plate separation
2 nm and a qubit capacitance 2 pF, a value Smax ¼ 74 MHz was
measured.
For a transmon qubit with C= 0.1 pF, the above scaling gives

Smax ¼ ð330MHz � 2 nmÞ E=V ; (94)

where E/V has a dimension of inverse distance and has been
computed here for the various surface electric fields. Since two-
level-states tend to have universal behavior, especially if one
considers amorphous oxides, this formula is useful for estimating
Smax from other surfaces.
For the MS interface of a ribbon capacitor, Fig. 16 shows a plot

of Smax versus the distance from the inner corner rc, which includes
edge corrections at a distance less than the half-thickness t/2. The
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Fig. 15 Saturation loss of a coplanar resonator. Top panel: Plot of
surface energy versus saturation electric field Es, using surface loss
scaled for saturation according to Eq. (91). The single-ended coplanar
resonators have voltage V= 1 Volt and parameters a= (2, 10, 50) μm,
b= 2a and t= 0.1 μm. In the low power limit (high saturation Es), the
loss is inversely proportional to 1/a, whereas at high power the curves
merge together. The plus symbol (+) is the characteristic crossover
point, given here by the single-ended prediction of the surface
energy Eq. (55) and 3Ec(0), where Ec(0) is the center x= 0 electric field
of Eq. (54). Bottom panel: Volume energy versus saturation field for
the same geometric parameters and colors. The volume energy isR
dx dy jEðx; yÞj2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jEðx; yÞj2=E2s

q
, where E(x, y) is the conformal

mapping solution. At low fields the volume energy is equivalent to
the capacitance per unit length for all curves, as expected. At left, the
characteristic saturation field scales inversely with metal dimension.
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Fig. 16 TLS for ribbon capacitor. Plot of maximum splitting Smax
versus distance from edge of ribbon capacitor rc. Black is ribbon
solution of ϵs/ϵMS multiplied by Eq. (35) (� r�1=2

c ), and blue is edge
scaling Eq. (20) (� r�1=3

c ). The integrated area A= 1.5(2ℓrc) is shown
on the top x-axis for ℓ= 1.4 mm, showing that the effective areas are
typically much greater than 1 μm2 (arrow). Thus TLS at the metal
edges are statistically observable. The upturn at rc= 50 μm is from
the large fields at the outside metal edge.
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size of the largest splittings are in the few hundred kilohertz
range.
The number of splittings is proportional to the capacitor

volume. Figure 2 of Ref. 14 shows that the size of the splittings
have a log-normal distribution, so that the largest splittings are
between Smax=3 and Smax and have a density 0.5/μm2GHz. The
expected TLS density of the ribbon capacitor can be estimated by
the effective integrated area A(S), obtained by multiplying rc by
twice the length of the ribbon 2.8 mm and a factor 3/2 to account
for the thicker 3 nm thick surface oxide. Since the observed
splittings are dominated by those close to Smax, the splitting
density ρS between splittings S1 and S2 is thus approximately
given by

ρS ’ ð0:5=μm2GHzÞ½AðS2Þ � AðS1Þ� : (95)

If one assumes the qubit splitting measurements spans a 2 GHz
frequency range, then the first observable splitting should occur
on average for an integrated area A= 1 μm2. As shown in Fig. 16,
TLS should be statistically observable even within a few
nanometers from the metal edge. The largest splittings at 3 nm
should have size 300 kHz, with an average spacing of about one
per 200 MHz in the qubit frequency.
For a parallel plate capacitor, the effective distance for the

electric field is the separation multiplied by ϵMA= 9.8. For the
example of Table 2, this gives 49 μm. One finds a splitting size of
13 kHz, and an effective area of 1.5 times the capacitor area.
Junction wire results are shown in Fig. 17 for the untapered and

tapered cases. These plots were obtained by numerically breaking
up the wire into about 100k sections, then computing Smax and
the differential area dA for each section. The curve is obtained by
sorting Smax from large to small, and then cumulative summing
over the corresponding dA to obtain the integrated area A. The
tapered case shows lower splittings Smax, consistent with the
continuum theory. The TLS become statistically observable for A >
1 μm2, which predicts splittings in the several MHz range. The
dependence on d shows that the dominant contribution to the
TLS are for distances greater than about 10 μm; shorter distances
are unimportant because they have small areas. The dominance of
an intermediate length scale is perhaps a surprising result, and
shows why detailed theory is needed to optimize the wire design.

This result suggests that undercutting the junction wires into
the substrate can be an effective solution to decrease the
contribution of the metal-substrate interface. Since there is little
contribution at small distances, it is not essential to undercut
around the junction, which should improve the reliability of the
fabrication and the stability of the junctions.

Summary
Calculation of participation ratios and surface loss is challenging
because of the divergence of the electric fields at metal edges.
Previously, these fields were solved in the infinitely thin limit using
solutions from conformal mapping. Here, the solutions were
extended to the useful limit where the thin surface oxide (few nm)
is less than the metal film thickness (0.1 μm), and less than the
typical film size (100 μm). The finite thickness condition was
solved via a calculation that matched the conformal fields to edge
fields, then checked and refined with numerical simulation. Going
forward, these formulas are also useful when checking numerical
simulations for systematic errors due to meshing.
Formulas are given for common capacitor structures. By

separating out the geometery of actual designs, participation
ratios can be calculated accurately and then used to optimize the
design. This is an important check on numerical calculations since
misleading results can come from finite meshing when structures
range in size from nanometers to millimeters.
For junction wires, a solution for the capacitance and surface

loss was obtained using well-formed models, approximations and
numerics, which should give accurate and reliable formulas. A
tapered junction wire was shown to have superior performance
compared to straight wires when the wire length is longer than
about ~10 μm. This design feature is important for the latest
generation of devices that use large capacitor size to lower surface
loss. A further design improvement for the taper was suggested.
These electric field solutions enable a prediction of the TLS

spectrum, which could be invaluable to identify where the TLS
comes from in the qubit design.
Finally, it is hoped that these results will encourage researchers

to precisely test surface loss theory, and measure in additional
experiments the various surface loss parameters. By doing so, this
should speed the optimization and development of long
coherence time qubits.

METHODS
Numerical calculation of surface electric fields
For thin films suitable for superconducting qubits, it is useful to
numerically calculate the electric fields, for example for a thin film of
finite thickness. Fortunately, realistic transmon designs are well approxi-
mated by simple geometries with fields that can be well described using
simple fitting functions, so that they can be physically understood and
optimized. Two-dimensional geometries are particularly amenable to
efficient numerical solutions and thus their method of solution will be
described here first. For simplicity, the calculations here will assume a
constant dielectric constant ϵ. Corrections due to the substrate and
vacuum are included in the main text.
Figures 7, 9 and 10 show geometries to be considered here. The first is 2-

dimensional, with solutions given per unit length in the third dimension,
with results typically scaled with length ℓ. The second solution uses
cylindrical symmetry to turn a 3-dimensional problem to 1-D. The last uses
an approximation to the edge fields so that a thin film wire can be similarly
calculated in 1-D.
Numerical solutions can be obtained through inverting a matrix. For a

2-D geometry with translational invariance in the z direction, the problem
is first broken into an vector of points in the x-y plane that have line charge
q!. The voltage V

!
can be solved with the matrix equation V

!¼ M q!,
where the potential matrix M has elements

Mij ¼ 1
2πϵ

lnð1=ρijÞ ; (96)
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Fig. 17 TLS for junction wire. Plot of Smax versus integrated area for
untapered (S= 0) and tapered (S= 0.2) wires. The electric fields are
obtained from Eqs. (16) and (70), and numerically breaking up the
wire into small area sections. The tapered wire shows lower
maximum splitting, consistent with the continuum results. For the
untapered wire, the observable areas A > 1 μm2 (arrow) has Smax in
the 1–4MHz range, whereas for tapered it is below 1.5 MHz. Note
that the dominant contribution comes from wire surfaces at a
distance greater than about 10 μm.
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where ρij is the distance between point i and j. For metal electrodes the
voltage is set instead, so the charge can be obtained using q ¼ M

�1
V
!
,

where the inverse matrix M
�1

can be thought of as a capacitance matrix.
The time to solution grows as the cube of the number of points, which can
be solved quickly for size 1k - 10k.
For a 3-D geometry with cylindrical symmetry, the potential matrix can be

solved for a circular ring of total charge q, giving a potential matrix with
elements

Mij ¼ 1
2π2ϵ

ellipkð�4ri rj=ρ2ij Þ
ρij

; (97)

¼ 1
4πϵρij

for ρij � ri rj ; (98)

where ρij is the distance between points in the r-z plane, and ri and rj are
the radial components. The Python ellipk(m) function is equivalent to K(k)
but with m= k2, and allows negative m arguments.
For a similar 3-D geometry of a flat coax, the potential matrix for the

inner conductor is

Mij ¼
Z rj

�rj

1=πffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2j � x2

q 1=4πϵffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2ij

q dx (99)

¼ 1
2π2ϵ

ellipkð�r2j =y
2
ijÞ

yij
; (100)

¼ 1
4πϵ yij

for yij � rj ; (101)

where yij is the distance between points i and j on the centerline of the
wire. In comparison with the matrix for the cylinder geometry Eq. (97), the
difference is the absence of the factor of 4 in the ellipk argument.
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