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Abstract

In topological insulators, the bulk-boundary correspondence describes the relation-
ship between the bulk invariant — computed for a system with periodic boundary
conditions — and the number of topological boundary states in the correspond-
ing system with open boundary conditions. This is a well-known property of these
systems and is important for predicting how they will behave. In recent years, how-
ever, the modeling of dissipative and non-equilibrium systems using non-Hermitian
Hamiltonians has become increasingly popular. These systems feature many novel
phenomena; in particular the bulk-boundary correspondence breaks down since
the spectrum of the system with periodic boundary conditions typically differs
fundamentally from the spectrum of the system with open boundary conditions.

In this thesis, the behavior of the boundary states in non-Hermitian lattice
models is studied. The framework of biorthogonal quantum mechanics is used
to develop the biorthogonal bulk-boundary correspondence, which predicts the
(dis)appearance of the boundary states in these systems. Closely related to the
drastic change in spectra between boundary conditions is the non-Hermitian skin
effect. This refers to the exponential localization of almost all eigenstates to the
boundaries and is typically seen in non-Hermitian lattice models. How to predict
this, and how to quantify the sensitivity of the spectrum to the boundary conditions
are therefore questions that are also studied in this thesis.



Sammanfattning

I topologiska isolatorer beskriver bulk-randkorrepondensen férhallandet mellan en
bulkinvariant — som berdknas for ett system med periodiska randvillkor — och an-
talet topologiska kanttillstand i motsvarande system med 6ppna randvillkor. Detta
ar ett valkant forhallande hos sadana system och ar viktigt for att forutsidga hur
de ska bete sig. De senaste aren har det emellertid blivit populdrt att modellera
dissipativa system och icke-jamviktssystem med hjilp av icke-Hermiteska Hamil-
tonianer. I de systemen upptriader manga nya fenomen. Framfor allt bryter bulk-
randkorrespondensen samman eftersom spektrumet for ett system med periodiska
randvillkor skiljer sig fundamentalt fran spektrumet for motsvarande system med
oppna randvillkor.

I den har avhandlingen studeras beteendet hos kanttillstand i icke-Hermiteska
gittermodeller. Det ramverk som utgors av biortogonal kvantmekanik anvénds
for att utveckla den biortogonala bulk-randkorresepondesen som forutsdger nar
kanttillstand dyker upp och férsvinner i systemet. Tétt sammankopplad med den
stora forandringen i spektrum mellan 6ppna och periodiska randvillkor ar den icke-
Hermiteska skinneffekten. Med detta menas den exponentiella lokaliseringen till
randen som typiskt ses hos néstan alla egentillstand i icke-Hermiteska gittermod-
eller. Hur man férutsdger néir detta intraffar och hur spektrumets kanslighet for
randvillkor kvantiseras, studeras darfor ocksa i den hér avhandlingen.
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Chapter 1

Introduction

One of the main tasks of condensed matter physics is to classify different phases
of matter. For a long time it was believed that all phase transitions could be
understood in terms of symmetry breaking, like the transition from solid to liquid
or between different crystal structures in a solid material. This is something Lan-
dau’s theory of phase transitions explains. The foundation in this theory is the
existence of a local order parameter.

However, in the past decades one has found several phases of matter that simply
cannot be described in this way. Famous examples include the integer quantum
Hall effect [2], which was discovered in 1980 and was the first example of such a
phase, and the quantum spin Hall phase in graphene [3, 4], which was discovered
in 2005. One important subset of systems whose phases are not fully described by
Landau’s theory consists of topological insulators, which include Chern insulators
[5-7] and Zo insulators [3, 4, 8-10]. A topological insulator is a bulk insulator
for which one can compute a topological invariant from the bulk properties of the
system. This invariant differentiates between the different phases the system can
be in. In contrast to Landau’s theory, there does not need to be any difference in
symmetry between these phases. Typical for topological insulators is the presence
of robust, gapless boundary states in the topological phase, that is the phase with
a non-zero invariant. The invariant tells us the number of boundary states present
in the system. This relationship is called the bulk-boundary correspondence and
is of fundamental importance in this area of physics. The boundary states are
furthermore either topologically protected or protected by some symmetry of the
system and are thus robust as long as no ’violent’ transformations are done to the
system or as long as the symmetry persists.

More recent, but related, is the discovery of higher-order topological insulators
[11-15]. Ordinary topological insulators are bulk insulators with d spatial dimen-
sions that carry gapless boundary states on the (d—1)-dimensional boundaries. A



Chapter 1 Introduction

higher-order topological insulator, however, carries gapless boundary states on the
(d—n)-dimensional boundaries.

In recent years, another branch of physics has gained momentum and become
extremely popular to study, namely, that of systems described by non-Hermitian
Hamiltonians. This is done both in classical settings, where the system is mapped
to a Schrodinger-like equation, and in quantum settings. One of the fundamental
postulates in quantum mechanics is the assumption that all observables are de-
scribed by Hermitian operators. This implies e.g. reality of the eigenvalues and
many other properties, both physically and mathematically. Non-Hermitian op-
erators are typically more difficult to deal with. They can be very ill-conditioned
in numerical settings, they are not necessarily diagonalizable and their left and
right eigenvectors are typically not related by Hermitian conjugation. Physically,
non-Hermiticity leads to several strange phenomena that at first glance seem unin-
tuitive and hard to explain. Despite this, non-Hermitian Hamiltonians are useful
to describe non-equilibrium systems, systems that feature gain or loss and systems
that interact with the environment. It has turned out to be particularly useful in
optical systems, where gain and loss needs to be implemented when light travels
through a medium [16-26], but is also interesting in topoelectrical circuits [27-32]
and mechanical systems [33—-35]. Tt is, however, important to note that physics on
a fundamental level always is Hermitian, but that one can use these non-Hermitian
Hamiltonians to model for example quasiparticles or a non-isolated part of a larger
system.

One topic that has gained a lot of attention is non-Hermtitian generalizations
of topological systems. Such systems have been extensively studied in the past
few years, both theoretically [36-49] and experimentally [50-60]. In the particular
case of non-Hermitian generalizations of topological insulators, which is central
to the accompanying papers of this thesis, the breakdown of the bulk-boundary
correspondence [61-64] is of great importance. It turns out that the bulk energy
spectrum differs significantly between systems with periodic and open boundary
conditions, something that at first glance seems very unintuitive; if the boundary
is very far away, you should not ’see’ it from inside the bulk. This means that we
can no longer immediately use the simple Bloch Hamiltonian to make predictions
about the number of boundary states in the system.

The breakdown of the conventional bulk-boundary correspondence and how to
find a new biorthogonal bulk-boundary correspondence is the main subject of the
accompanying papers of this thesis. Since the bulk-boundary correspondence de-
scribes the relation between boundary states and bulk invariants, it is clear that it
is important to understand the behavior of those boundary states in non-Hermitian
systems. To accomplish this, we study a certain class of systems that are non-



Hermitian generalizations of Hermitian topological systems with exact solutions
for the boundary states described in [65-67]. It turns out that the exact solutions
generalize nicely to the non-Hermitian case, which gives way for a clear analysis.
One important difference, however, is that the Hamiltonian, as previously men-
tioned, has left and right eigenstates that are not necessarily related by Hermitian
conjugation. In order to account for that, we need to turn to the framework of
biorthogonal quantum mechanics, described in [68], where one defines a new inner
product that is used to compute quantum mechanical probabilities.

In Paper I, [69], Biorthogonal bulk-boundary correspondence in non-Hermitian
systems, some one-dimensional non-Hermitian systems that have exact solutions
are studied. Using the formalism of biorthogonal quantum mechanics, the gap
closings and the existence of boundary states in the system are accurately pre-
dicted. Furthermore, the biorthogonal polarization is defined, which is an integer
that takes the value 1 when there is a state at the boundary and 0 when there is
not.

In Paper II, [70], Non-Hermitian extensions of higher-order topological phases
and their biorthogonal bulk-boundary correspondence, non-Hermitian versions of
higher-order topological insulators are studied. It is shown that the biorthogonal
formalism can be used to understand the gap closings and boundary states in these
models as well.

In Paper 111, [71], Phase transitions and generalized biorthogonal polarization
in non-Hermitian systems, properties of a generalization of the biorthogonal po-
larization introduced in [69] are discussed. Furthermore, results from Paper I are
studied in more detail. In particular, it is proven that the gap closes at the pre-
dicted points. In addition to this, a method for finding not only the boundary
states, but also all bulk states, is proposed.

In Paper 1V, [72], Sensitivity of non-Hermitian systems, the sensitivity of the
spectrum to boundary conditions is studied in more detail in one-dimensional
systems. A method to find the eigenvalues of one-dimensional one-band models is
described and applied to several systems in order to obtain analytical expressions
for the eigenvalues, which enables quantifying the sensitivity of the spectrum.
Furthermore, using these results, several two-dimensional systems are also studied.

Finally, in Paper V, [73], Biorthogonal renormalization, the biorthogonal inner
product is studied in more detail. It is shown that the choice of scaling of the
eigenvectors of the Hamiltonian can play a significant role when computing prob-
abilities and expectation values. This means that one has to be very careful and
make sure that what was done in Papers I[-1II is actually consistent, something
which is proven in this work. An alternative inner product is defined, which makes
comparisons between different systems easier, and the physical meaning of the
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lattice sites in our lattice models is discussed.

This thesis aims at describing the background necessary to understand and ap-
preciate the relevance of the accompanying papers. In Ch. 2, the relevant Hermi-
tian systems that are generalized in the accompanying papers are introduced. We
start with a short introduction to what a topological insulator is. Then we describe
higher-order topological insulators and show how one uses the exact solutions men-
tioned to understand the behavior of the boundary states in a certain class of
systems. Finally we have a short discussion about how to find the bulk states
exactly in a special class of Hermitian systems. Ch. 3 concerns non-Hermitian
systems. Here we illustrate the phenomena that can occur in such systems. In
particular, we describe the skin effect and the extreme sensitivity of the spectrum
to the boundary conditions. In Ch. 4, we give an introduction to biorthogonal
quantum mechanics and the biorthogonal bulk-boundary correspondence and dis-
cuss how the degree of freedom in choosing the biorthogonal inner product affects
the results. Finally, in Ch. 5, we provide a discussion and an outlook.



Chapter 2

Bulk-boundary correspondence
in Hermitian systems

In order to understand and appreciate the non-Hermitian systems that are the
focus of the accompanying papers, one first needs some background about the
corresponding Hermitian systems. This chapter will not be a full review of those
systems, but rather include the background necessary to understand the non-
Hermitian generalizations we make.

2.1 Topology and boundary states

Topology (see e.g. [74]) is the part of mathematics where one studies the properties
of sets that are preserved under what one can think of as continuous deformations.
These deformations do not include for example gluing and cutting. More mathe-
matically accurately, a topological property is preserved under maps that are called
homeomorphisms. In physics, topology shows up in several different contexts, but
in particular it is relevant in the study of phases in condensed matter systems.
As mentioned in the introduction, topological phases are phases that cannot be
described by the Landau theory of phase transitions, i.e. topological phases cannot
be separated from each other by studying the symmetry of the system. Instead
they differ from each other by some invariant that is usually related to a topolog-
ical invariant that can be defined in the system. One should note that although
many systems are called topological in this context, they might not all have an
associated invariant that a mathematician would call topological.



Chapter 2 Bulk-boundary correspondence in Hermitian systems

2.1.1 Topological insulators

Topological insulators is a special class of systems in which topological phases ex-
ist. They are bulk insulators, which means that the system with periodic boundary
conditions has a band gap, for which one can find a bulk invariant that differenti-
ates between phases. This bulk invariant is related to the number of robust gapless
boundary states — i.e. states that are insensitive to certain perturbations, are lo-
calized to the boundary of the system and have energies that lie in the band gap
— present in the system!'. When the bulk invariant is zero, we say that we are in
the topologically trivial phase. This means that the system, in this phase, can be
adiabatically transformed to the atomic limit, where the unit cells are completely
disconnected from each other, without closing any gaps in the system. Trans-
formation to, from and between topologically non-trivial phases requires a gap
closing in the system. The relationship between a bulk invariant computed from
a system with periodic boundary conditions and the number of gapless boundary
states in the corresponding system with open boundary conditions, is called the
bulk-boundary correspondence and is of great importance in this area of physics.

The first topological insulator discovered was the integer quantum Hall effect
[2]. In this system the Hall conductance is quantized according to

e2

Ty = . (2.1)

where n is the Chern number and tells us the number of chiral edge states in
the system. These edge states are topologically protected and are thus extremely
robust to impurities and deformations of the system.

One class of topological insulators, which does not include the integer quantum
Hall effect, consists of those that have symmetry protected boundary states. This
means that as long as the particular symmetry of the system that protects these
boundary states is present, the states will be robust. These systems might, nat-
urally, be more sensitive to perturbations as those can break the symmetry. The
fact that the boundary states are symmetry protected, enables a classification of
topological insulators based on their symmetries. The most important symmetries
in this context are time-reversal symmetry, charge conjugation symmetry and chi-
ral symmetry, but in principle any discrete symmetry of the system could give rise
to protected boundary states. These three symmetries, in particular, have given
rise to a 'periodic table’ of topological insulators, where a classification is made of
which kind of invariant, Z or Zs, occurs in an n-dimensional system with specified
symmetries [76, 77]. A Zo-invariant implies that there can exist either one or zero

1Tt seems like people do not entirely agree upon the definition of a topological insulator. Some,
do not e.g. require the existence of the gapless boundary states [75].



2.1 Topology and boundary states

gapless boundary states, while a Z-invariant implies that there can be an integer
number of them, as in the case of the integer quantum Hall effect where we have
the Chern number.

Central to the above discussion is the existence of robust boundary states. The
theory of topological insulators is well-known in the Hermitian case. The non-
Hermitian case, however, is not so well-understood yet. One way to approach
that subject is thus to examine the behavior of boundary states in non-Hermitian
systems. This is what was done in Papers I-III. To appreciate and understand
what was done there, the rest of this chapter will be devoted to the understanding
of boundary states in Hermitian systems.

2.1.2 Tight-binding Hamiltonians

The integer quantum Hall effect mentioned above is a continuum system, but in
this thesis we will be interested in lattice models. These, we will analyze in a
tight-binding setting. In the tight-binding approximation, the Hamiltonian of a
system with N sites, written in position basis, is given by

N
H = Z tijC;er = CTHC, (22)

1,7=1

where H = (t;;) is the matrix representation of the Hamiltonian, CZT creates an

electron at site ¢ and ¢;; describes how easy it is for an electron to move from site
1 to site j. For now, we assume, as is standard in quantum mechanics, that the
matrix H is Hermitian, i.e. that t;; = t;l The parameters t;; are referred to as
hopping parameters.

This means that when analyzing the topological properties of systems, we are
interested in the properties of the matrix H as a function of system parameters.
In particular, we are interested in understanding the behavior of the eigenvalues
and eigenvectors. Therefore, we will first make some general remarks about the
tight-binding matrices that might show up. In general, the structure of the matrix
depends on the dimension and the geometry of the system we are interested in, as
well as the boundary conditions. There are, however, some general considerations
that can be made.
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One-dimensional systems.
A one-dimensional system can be described by the matrix

A B Df
Bt . e
Hyp = , (2.3)
... g
D Bt A

where A is a Hermitian matrix describing the unit cell, B describes the hopping
between the unit cells and D describes the boundary conditions. Typically we are
interested in systems with open or periodic boundary conditions in which cases we
have D = 0 and D = B, respectively.

Two-dimensional systems.

We can easily use the above to extend our description to two-dimensional sys-
tems with rectangular geometry. By stacking one-dimensional chains, we get a
two-dimensional system, whose Hamiltonian is of the form

Hip By D}
Bt
Hop = | 72 : (2.4)
. . By
Do Bl Hip

where H;ip is the matrix describing the one-dimensional systems, By is the matrix
describing the connection between them and Dy the boundary conditions in the
second direction.

Higher-dimensional systems.

It is clear that as long as we have a rectangular geometry, the procedure of
describing an n-dimensional system as stacked (n — 1)-dimensional systems using
a block-Toeplitz matrix will work in any dimension, and we will have a matrix of
the form

Hp-nyp Bn D},
B}
H,p = " : (2.5)
. B
D, Bl Hu o

Therefore, understanding the behavior of block-tridiagonal block-Toplitz matrices
is of importance to this.



2.1 Topology and boundary states

Matriz perturbation theory.

In the next section, we will see an example of the bulk-boundary correspon-
dence, but first, we will make a more general observation. Namely, inherent to
the bulk-boundary correspondence is the fact that the bulk spectrum does not
significantly change when we change the boundary conditions. That this is indeed
the case, is suggested by a famous perturbation theorem for Hermitian matrices,
called the Cauchy interlacing theorem, see e.g. [78]:

Theorem. Let A be a Hermitian n X n-matrix with eigenvalues \; > --- > A\,
and let B be a principal submatrix of order n — k of A with eigenvalues g > --- >
tn—t- Then

i > i > Nigks (2.6)

fori=1,2,....n—k.

This theorem means that if we remove a number of rows and a columns (with
the same indices, respectively) of a Hermitian matrix, the remaining matrix will
have eigenvalues that all lie in between the eigenvalues of the original matrix.

We know that the eigenvalues of the matrix

Hu-1yp Bn B}
T
Hop=| Pr , (2.7)
S B,
B, By Hu o

are given by the eigenvalues of the matrices
M = B;["Le—27rik/N1 + H(n—l)D + Bn€27rik/N1’ (28)

with £ =0,..., N7y — 1, where Njp is the number of blocks on the diagonal. Since
M is a Hermitian matrix and since k/N; € (=1, 1), the eigenvalues of H,_1)p will
be real and contained in a finite number of intervals, I;. When the system is made
larger, i.e. when the number of matrices H(,_1)p becomes larger, the eigenvalues
will still be contained within the same intervals.

Suppose we have a matrix describing a periodic system and consider the principal
submatrix constructed by removing the rows and columns containing the periodic
boundary conditions. By the interlacing theorem, we know that the eigenvalues
of the system with open boundary conditions will lie between the eigenvalues of
the system with periodic boundary conditions. That is, almost all of them, will
lie in the intervals I}, but there might be a few isolated eigenvalues between these
intervals. These are what we understand as boundary states.
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11 to
¢—0—0—0—0—9

Figure 2.1: The SSH-chain.

This suggests that the bulk spectrum, i.e. the parts of the spectrum contained
in the intervals I}, is relatively insensitive to boundary conditions, which is one of
the foundations for the bulk-boundary correspondence to work.

2.1.3 The SSH-chain

We now turn to the Su-Schrieffer-Heeger model, henceforth called the SSH-chain,
which was introduced to describe solitons in a polyacetylene chain [79-81]. The
SSH-chain has since become one of the most widely used systems to demonstrate
and explain topological phenomena. The system is very simple, exactly solvable,
and thus easy to analyze, but still demonstrates many important effects.

In Fig. 2.1, a sketch of the SSH-chain is shown. It consists of two different kinds
of sites, A and B, inbetween which the electrons can move according to hopping
amplitudes ¢; and t5. The tight-binding Hamiltonian for the system with N unit
cells is given by

N-1

N
Hy = Z [tl(CL,ACn,B + c;Bcn,A)} + Z [t2(CL+1,Acn,B + cLBan,A) 2.9
/ .

n= n=1
= CTHopen,NCa

where CL ; creates an electron in unit cell n at position ¢ and c is a vector consisting
of all creation operators. The matrix Hopen v is a 2N X 2N-matrix given by

0 t
t1 0 1o
ta 0 t1
Hopen,N = t 0 . . (210)
3]
t1 O

In a similar way, the Hamiltonian matrix for the corresponding system with pe-
riodic boundary conditions, that is the system where we have tied the two ends

10



2.1 Topology and boundary states

together with a to hopping, is given by the 2N x 2N-matrix

0 t to
t1 0 t
ta 0 t
Hper,n = A (2.11)
. t1
to t1 O

Fourier transforming the system with periodic boundary conditions, we end up
with the Bloch-Hamiltonian

. 0 t1 + th—ik
10 = () e "7, 2.12)
which has eigenvalues
e (k) = %/t + 6§ + 2112 cos(k) (2.13)

with corresponding unnormalized eigenvectors

—ik
VBloch,+ (k) = <t1 J—ET?Z) ) ’ (2.14)
where k = 27j/N and j = 1,..., N. The spectrum of a periodic chain with N = 40
unit cells is shown in Fig. 2.2 as a function of ¢1, together with the spectrum for
the corresponding system with open boundary conditions.

We see in Fig. 2.2, that for [t1] < |t2| we have two states with zero energy in the
system. These are exponentially localized at different ends of the system, which
can be seen by studying the corresponding eigenstates, so we have one boundary
state at each end.

Now, let us see if we can find an invariant for this system. This is described
in general particle-hole symmetric cases in [82]. The Bloch Hamiltonian can be
written in the basis of Pauli matrices in the following way:

H(k) = d(k) - o, (2.15)

where o is the vector of Pauli matrices, d(k) € R3 and 0 < k < 27. Explicitly, we
have

dy(k) =t1 +tacos(k), dy(k)=tasin(k), d.(k)=0, (2.16)
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Chapter 2 Bulk-boundary correspondence in Hermitian systems

Figure 2.2: Spectrum for the SSH-chain with to = 1 and N = 40 unit cells for the
periodic (left) and open (right) systems. We see that the gap closes at t; = %|¢3| and that
we in the open system have two boundary states for [¢t1| < |ta].

and we see that d(k) traces out a closed loop in the d,d,-plane as we change k
from 0 to 2m. We can find the winding number of this loop around the origin,
which is a homotopy invariant. The winding number is given by
_ 1 d.d(dy) — dyd(d,)
21 C d% + dZQI ’

(2.17)

where C' is the curve in the d,d,-plane traced out by d(k). Put differently, we
have

. /% do (k) () — dyy (k) d., (k) 11 /% 122
B 0 ( 2 0

dk = — + —
(k)2 + dy(k)? 2 * 47 2 + t2 + 2t115 cos(k)
(2.18)

Evaluating the integral, we get

_ {1 i (t —t2)/(t +t2) > 0 & |t1] > |tal,

. (2.19)
0 if (tl — tg)/(tl +t2) <0& ‘tl‘ < ‘tg‘,

and we see that the winding number is one exactly in the regions where we have
a boundary state at each end and zero otherwise. This is an example of the bulk-
boundary correspondence, and we see that one very nice feature is that we can
use the Bloch Hamiltonian to compute the bulk invariant and use this number to
predict the number of boundary states in the open system.

2.1.4 Higher-order topological insulators

So far we have discussed ordinary topological insulators. A d-dimensional topolog-
ical insulator has an insulating bulk, but can host robust gapless boundary states
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on the (d—1)-dimensional boundary of the system in the topological phase. How-
ever, in principle one could imagine that there can exist gapless boundary states
on any boundary of dimension less than d. These systems are called higher-order
topological insulators [83], and were initially explored by [11-15].

More precisely, we say that we have an nth order topological insulator if we
have gapless boundary states on (d—n)-dimensional subsystems. In contrast to
the toplogical insulators previously described, these states are not protected by
topological invariants, but rather by spatial symmetries of the lattice. Further-
more, the states can depend on the shape of the surface.

2.2 Exact solutions for boundary states

Now, as previously mentioned, one of the key elements in the study of topologi-
cal insulators is understanding the existence of boundary states in a system. In
generic systems, there is no way to get exact expressions for them, since finding
them requires diagonalization of big matrices, which in general cannot be done
analytically. However, there exists a special class of systems that has been thor-
oughly described in [65-67] where one can find exact solutions for the boundary
states. In what follows a description of such systems will be given.

In the special case that we will be considering, we have a d-dimensional lattice,
described by the Hamiltonian H, with open boundary conditions in d — n dimen-
sions that is built up from the sublattices A, By, Bo, ..., Bg_,. The lattice is then
created by stacking alternating A and B; sublattices in the ith direction, such
that we have A-sublattices at all boundaries. The hoppings on these lattices are
restricted by the fact that we do not allow hoppings between A-sublattices. The
SSH-chain with a broken unit cell at one end and the systems shown in Figs. 2.4
and 2.5 are some examples of systems that are of this form.

Let h 4 be the Hamiltonian describing the lattice A and let n4 denote the number
of sites in this lattice. The operator ha will then have n4 eigenvalues that we
denote by E4 ;. It now turns out that E,; is also an eigenvalue of H and that
the corresponding eigenstate of H is a state with zero amplitude on all B;-lattices
given by

d—n
i) =N S [T el i, 10) - (2.20)
m; g=1

Here i labels the state, N; is a normalization factor, m, labels the A lattices in
the s-direction, cz i.m, Creates an electron with energy F4; in the A sublattice in
the unit cell labelled by mg = (mg1,...,Ms4-r), and r; 4 is a number that can be
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Chapter 2 Bulk-boundary correspondence in Hermitian systems

determined from a simple equation resulting from the fact that the state has zero
amplitude on all the B; sites.

We note that these solutions have a very special form. Namely, assuming that
ny = 1, the probability of finding a particle described by such a state at an A-site
is given by

d—n
Pa(mg) = [N T frg*ss, (2.21)
q=1
and at a Bj-lattice site by
Pp,(my) = 0. (2.22)

That is, we see that if some of the |r; 4| # 1, the state will be exponentially
localized to some boundaries of the system. On the other hand, if all |r; 4| = 1,
the state will be completely delocalized in the lattice, and thus be a bulk state.
At this point, there should therefore also be a gap closing in the system, as this is
where the boundary state becomes a bulk state. This means that if we can write
Tiq in terms of parameters of the system, we can predict the existence of boundary
states under adiabatic deformation of the system.

The probabilities for finding the particle at different sites can also be thought
of as expectation values of the projection operator

Hms = ’ems> <ems| ’ (223)

that projects onto unit cell my. (Note that since the lattice has A-sites at all
boundaries, it necessarily must contain broken unit cells. For those broken unit
cells the projection is onto those sites in the unit cell that are actually there.) This
observation will be of use in the non-Hermitian case that we will describe in Ch. 4.

We will now turn to some concrete examples to see how this can be used to
obtain important information about the boundary states in a system.

2.2.1 The SSH-chain

Returning to the SSH-chain that was described in Sec. 2.1.3, we note that if we
remove the last site in the chain, we have a boundary state of the form described
in Eq. (2.20). In this case it is given by

N
) =N rmel, 0y (2.24)
m=1
where r = —t;/ty. This state has corresponding eigenvalue £ = 0 for all values

of t; and t5. The existence of this eigenvalue can be seen in Fig. 2.3, where the
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2.2 Exact solutions for boundary states

Figure 2.3: Plot of the energy eigenvalues for the SSH-chain with a broken unit cell for
to =1 and N = 40. We see that we have one exact zero eigenvalue for all values of ¢;.

spectrum is plotted for different values of ¢;. The normalization constant is given
by

1 /1—r2

N = VT (2.25)
We see that depending on the relative sizes of t; and t, the state in Eq. (2.24) will
either be localized to one of the edges of the chain or completely delocalized. More
precisely, we see that for |t1]| < |t2], the state will be localized to the end of the
chain where m = 1 and for |t1| > |t2| to the end where m = N. For |t1]| = |t2|, the
point where the state changes its localization, it becomes completely delocalized
in the chain. This also implies that the gap should close in the system, which we
indeed see happens in Fig. 2.3.

Now we can use the knowledge of the localization of this zero mode to predict
what happens in the system with unbroken unit cell. The gap closings and zero
modes in the SSH-chain are defined in the thermodynamic limit, i.e. when we
let N — oo. The Hamiltonian for the SSH-chain with a broken unit cell can be
represented by the (2N — 1) x (2N — 1)-matrix

0 &
t1 0 i
ty 0 t
Hbroken,N = t 0 . ) (226)
to
ta O

15



Chapter 2 Bulk-boundary correspondence in Hermitian systems

where N is the number of unit cells. The zero state is given by

Now, let

PN = <

r
0
7'2
wexacmN = N 0
?,.3
7aN
r
0
7’2
wexaoct,N> _ r03 and
r
0

o N =

(2.27)

(2.28)

Going back to the SSH-chain with unbroken unit cells defined in Eq. (2.10), we

see that

Hopen,NT;[)l,N =

0 #H
t 0 to
ta 0 t
1 0
-
t1 0

=1

3,0

r
0

= : (2.29)

Expressed differently and considering all states as part of an infinite-dimensional
Hilbert space on which the Hamiltonians Hx act, we have for |r| < 1

li — lim t;rVel, o [0) =0
NgnooHNWl,N> N onr CB,N| ) )

(2.30)

We thus see that if [r| < 1, then in the limit, |¢); y) becomes an eigenstate with
eigenvalue 0. In a similar fashion, we also see that in the limit, |12 ) must also
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be an eigenstate with zero eigenvalue for |r| < 1. That is, for |r| < 1, we have one
boundary state at each end of the chain. We note, however, that for |r| > 1, these
are not eigenstates. One can also argue that there can be no boundary states at
all in this case. Namely, one can show (which we will do in Sec. 2.3), that apart
from the exact state Eq. (2.24) in the SSH-chain with a broken unit cell, there are
no other boundary states. Using a very similar argument to what was just done,
one can show that one has an exponentially localized boundary state in the SSH-
chain with broken unit cell at end m = 1 if and only if one has an exponentially
localized boundary state at both ends in the SSH-chain with unbroken unit cells.
This means that we do not have any boundary states for |r| > 1.

We can understand this physically. If we compare the even and odd chains, they
should display the same physics at the m = 1 end of the chain for large systems,
since the other end ends up very far away. That is, when we have the exact zero
state localized at the m = 1 end in the chain, which happens when |r| < 1, with the
broken unit cell, it should exist in the corresponding unbroken chain also. But the
unbroken chain is mirror symmetric and has two ends that are equivalent, which
means that there must be one boundary state at each end of the chain. Similarly,
we do not have a boundary state at the m = 1 end for |r| > 1, which means that
we should have no boundary state at all for these parameter values. What all of
this means is that we can use the localization of the exact boundary states in the
broken chain to predict when we have boundary states in the unbroken chain, and
since they have an exact form for all system sizes this simplifies the analysis.

2.2.2 The Kagome lattice

Next, we turn to the Kagome lattice, which exhibits higher-order boundary states.
It is built up from a net of SSH-chains, and can be analyzed in the same way as
described earlier. Fig. 2.4 shows the rhombic and triangular Kagome lattices. We
note that the triangular one has complete unit cells, while the rhombic one fits
the description of a system with exact boundary states. In the same way as was
just shown for the SSH-chain, we will thus use the exact solutions of the rhombic
system to try to understand the triangular system [65].

The rhombic Kagome lattice has the following exact solution for the state with
ZEro energy:

=N Z Z rgnlr;"%Aml g 10} (2.31)
mi1=1mo=1

where r1 = —t1 /ty, 1o = —t1/to, CL my.m, CTEates an electron at the A sublattice in
unit cell (mq, ms), N is a normalization constant and N is the number of unit cells
in each direction. We see that since r1 = rs, the state must be localized either to
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oy

Figure 2.4: The rhombic and the triangular Kagome lattices.

the (1,1) or the (m,m) corner and when it changes localization at |ri| = |ra| =1
it does so by delocalizing completely in the whole bulk.

So what does this mean for the triangular system? We note that in the large
system limit the (1,1) corner in the rhombus locally behaves like the corners in
the triangular lattice. This means that for |ri| = |re| < 1 we have one corner state
with zero energy eigenvalue in each corner, and thus in the large system size limit,
we get a three-fold degenerate zero energy.

2.2.3 Chiral hinge states

The final model we will discuss in this section is one where we can find chiral
hinge states. This model consists of stacked Rice-Mele chains as in Fig. 2.5 and
was described in [65].

In practice, the t-dependence of the hoppings means that we can interpret the
model as three-dimensional, where the third dimension is continuous and has mo-
mentum labeled by ¢. For each value of ¢, we have the following expression for a
chiral hinge state with energy — sin(t)

=N Z Z r’f“r;’%Amm 0), (2.32)

mi1=1mo=1

where r; = —(—t; +0 cos(t))/(—t1 —d cos(t)) and o = —1 and N is the number of
unit cells in each direction. It is thus completely delocalized in the mo-direction
and exponentially localized to one of the sides in the mj-direction. This means
that if we go through the values of ¢, we will get a boundary state that is localized
at one of the hinges. This state will switch hinge when |r1| = 1, since this is when
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2.2 Exact solutions for boundary states

Figure 2.5: Left: Schematic picture of the model built up by Rice-Mele chains. The
hoppings in the chains are given by a(t) = —t1 + d cos(t) and b(t) = —t1 — 0 cos(t). Right:
Energy spectrum for the model for t; = 1.5, § = 1, s = 0.25 and N = 10. The chiral hinge
state is depicted in red and we see that it attaches to the bulk at ¢t = +7/2.
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it delocalizes completely in the mi-direction. That is, it happens when

—t1 + d cos(t)

T =l == 1’ 233

ol ‘ —t1 — & cos(t) (2:33)

which implies that ¢t = £7/2. These are also the points where the state changes

chirality. The spectrum as a function of ¢ is plotted in Fig. 2.5. We see that the

t-values given by Eq. (2.33) correspond to points in the spectrum where the chiral

hinge state (in red) attaches to the rest of the spectrum. The part of the spectrum

plotted in blue consists of two different parts; we see both the bulk states and the
surface states.

2.3 Finding all bulk states

Up until now, we have had our main focus on the boundary states, but to prove
that the gap closes at the predicted points, and to know that the boundary states
we have found are the only ones, one needs knowledge about the bulk states also.
Finding analytic expressions for bulk states is easy to do in a periodic system,
as the Bloch Hamiltonian for systems with small unit cells is easy to diagonalize
exactly, even for large systems. On the other hand, the problem is much harder
to solve for the system with open boundary conditions. In [84] a procedure for
finding the bulk states in a family of such systems is described and we will now
give a description of this procedure as we generalize it to the non-Hermitian case
in Paper IIL.

Consider a d-dimensional system consisting of alternating (d — 1)-dimensional
A and B lattices, with open boundary conditions in one direction, and with the
property that the corresponding Bloch Hamiltonian has energy eigenvalues that
satisfy

E(k) = E(—k). (2.34)

Furthermore, we assume that the A-lattices have n degrees of freedom, that the
B-lattices have one degree of freedom, and that the electrons cannot hop directly
between A-sites. This, for example, includes the SSH-chain with a broken unit
cell. To simplify notation, we will only show the method for the SSH-chain here,
but all calculations can be straightforwardly generalized to all the systems in this
family.

Consider a periodic SSH-chain with 2M unit cells, as in Fig. 2.6. Let us denote
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(-]

Figure 2.6: Assuming zero amplitude on the crossed-over sites in the periodic system
gives us two completely detached SSH-chains with broken unit cells.

the eigenvectors of the Bloch Hamiltonian in Eq. (2.14), by

_ (Yax(k)
VBloch,+ (k) = (d)B,i(k)) ; (2.35)
where '
"QbA,i(k) =t + tgeflk, wB,i(k) = :f:E(k), (236)

for k = jo/M and j = 1,...,2M. The corresponding real space eigenvector is

now given by

e®B1oeh,+ (k)

6’2Z'k¢Bloch,:|: (k)

Yrs+ (k) = (2.37)

Mk p1oen + (k)

Denote by ¥pui,i+(k,m) = e"kmw@i(k) the new bulk state at site i € {A, B} in
the mth unit cell, such that

YBulk, A+ (k, 1)
YBulk,B,+(k, 1)
YBulk, A+ (k, 2)
Yps+(k) = Upu.s. (k,2) (2.38)

YBulk,A,+ (k, M)

Now, since we know that E (k) = E(—k) for the SSH-chain, the vectors ¥rg + (k)
and ¢ prs +(—k) must have the same energy. That is, any linear combination of
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these two vectors must also be an eigenvector of the Hamiltonian. This means
that

YBulk,i (B, m) = A +(k, m) + By +(—k, m)

. i~ (2.39)
= Ae"™p; 1 (k) + Be """ 1 (—k).
Now, if we impose the condition that
YBulk,B,+ (k, 2M) = Yuk B+ (k, M) = 0, (2.40)

for all k, we see that we get two SSH-chains with broken unit cells that are com-
pletely detached from each other. This is illustrated in Fig. 2.6. This condition
implies

B ypak) _ xB(k) _
A wpi(—k)  E£E(-k) L, (2.41)

which means
UBul i (k,m) = €™ 1 (k) — ey 1 (—k), (2.42)

or more explicitly

UBulk A+ (k,m) = Pty 4 tae™ ™) — e TR (1) + tget®)

= 2i [ty sin(km) + to sin(k(m — 1))], (2.43)

and
Ypulk, B+ (k,m) = e*MEL (k) — e "M Ey(—k) = 2i B4 (k) sin(km). (2.44)

This means that Eq. (2.38), together with Egs. (2.43) and (2.44), must form
eigenvectors for the SSH-chain with M unit cells with the last unit cell broken.
For k = jw/M and j = 1,..., M — 1, we note that they are also orthogonal to each
other, which, together with the exact solution described in Sec. 2.2, gives us 2M —1
states in total, which is precisely the number eigenstates of the Hamiltonian.

By analyzing the expression for these states, we see that all of them are delocal-
ized in the bulk, so all of them correspond to bulk states. Since the Hamiltonian is
Hermitian, extension of the system by one site with hoppings comparable to hop-
pings in the rest of the system, should not be able to turn all these bulk states into
non-bulk states as this would require them to change exponentially. This means
that even though we have found these bulk states in the system with a broken unit
cell, we can conclude that we must have at least this number of bulk states also in
the system with complete unit cells. There will then be two states remaining to
analyze, and those are precisely the ones given by |11 v) and |12 n).
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Chapter 3

Non-Hermitian systems

In this chapter an introduction to non-Hermitian systems will be given. We will
talk about Hamiltonians since we will solve Schrodinger-like equations with non-
Hermitian Hamiltonians, but as we will see the applications are so far mainly not
in quantum mechanics.

3.1 What is a non-Hermitian system?

To appreciate the difficulty with non-Hermitian systems, it is important to first be
aware of how special Hermitian operators are, so here we collect some of the main
properties of Hermitian operators. Let H be a Hilbert space and let @ : H — H
be a Hermitian operator. Then the following is true.

1. The eigenvalues of ) are real.
2. Eigenvectors belonging to different eigenvalues are orthogonal to each other.

3. @ is unitarily diagonalizable, meaning that the eigenvectors form a complete
basis for H and that if |¢) is a right eigenvector of ) with eigenvalue ¢, then
(q| is a left eigenvector of @) with eigenvalue q.

4. The expectation value w is real for all |a) € H.

In particular the first and the fourth of these statements are reasons for us using
Hermitian operators to describe observables in quantum mechanics — since the
eigenvalues are tied to measurement outcomes, we want them to be real.

Letting go of the Hermiticity condition would mean that at least one of these
statements is no longer true, which is potentially problematic from a physics point
of view and something that needs to be carefully considered. We do, however,
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note that some of the statements may still be true. For example, we can have a
non-Hermitian matrix with real eigenvalues. This is the case for PT-symmetric
systems that have been extensively studied in e.g. [85-88]. Non-Hermitian sys-
tems, however, became really popular when people started to let go of the reality
condition and allow for complex eigenvalues. So far the applications have mainly
been in classical systems, where non-Hermiticity is easier to implement. Examples
of these systems include e.g. mechanical systems [34, 35, 89], photonic systems
[16-26] and topoelectrical circuits [27-30]. While non-Hermiticity naturally shows
up in optical systems in the form of gain an loss, the idea in other kinds of systems
is that e.g. the equations of motions of mechanical systems or linearized wave
equations can be rewritten in a Schrédinger-equation like form,

i%x = Hx, (3.1)
where H is a matrix and x corresponds to a vector of some physical quantities,
or transformations of such, in the system. This is what has been done in e.g.
[35], where the idea is based on similar mappings made in the Hermitian case. In
this particular case of a mechanical system, the vector x contains positions and
velocities.

All of this concerns classical physics, but it is natural to also look for imple-
mentations in the quantum regime. Here the experimental results are fewer, but
there are several suggestions of what to study. Most notably, we have the Lind-
blad equation [90], which describes interactions between a system described by the
(Hermitian) Hamiltonian Hp and the environment via a set of Lindblad operators
L,. The Lindblad equation is given by

d h 1
a _h P L i
=20 = = [Ho, pl + §n [anLn 5 (Lnan+ anLn)} , (3.2)

where p is the density matrix of the system. We note that non-Hermiticity comes
into play in (at least) two ways here. First of all, the right-hand side can be
described in terms of a Liouvillian super operator, such that

d

2P = L), (3.3)

where L is a linear operator. Representing p as a vector, we can represent L as a
matrix, which typically will be non-Hermitian. Thus non-Hermitian operators are
relevant for understanding the Lindblad equation. This is studied in e.g. [91, 92],
where, in particular, the damping matrix is of interest. In [92] it is shown that
the Liouvillian for certain dissipative fermionic chains can be diagonalized by a
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non-Hermitian matrix Hg, which in the case considered has the structure of a
non-Hermitian SSH-chain (see Sec. 3.2). The matrix Hg is related to the damping
matrix, which means that properties of the non-Hermitian matrix Hg, such as the
skin effect, then carry over to the quantum system.

Secondly, there is also another non-Hermitian operator that can be extracted
from the Lindblad equation. This can be seen by noting that the Lindblad equation
can be simulated using a Monte Carlo method. In these settings, it turns out that
it is the term anLL that is responsible for the so called quantum jumps, which
switch trajectory in the simulation. This means that in order to understand the
time evolution of p in very short time-frames or if we are only interested in a
specific trajectory in the simulation, we can neglect this term. Then it turns out
that the Lindblad equation can be rewritten as a Schrédinger equation with an
effective Hamiltonian, Heg, given by

Hug = Ho — %Z LiL,. (3.4)

This is also studied in [92], where in the same kinds of systems where Hg had the
structure of an SSH-chain, also H.g has the same structure.

In conclusion, non-Hermitian operators are useful in many different contexts. In
what follows, we will study the properties of non-Hermitian lattice models, where
the Hamiltonian resembles what we would call a tight-binding Hamiltonian in the
Hermitian case. In such systems, non-Hermiticity can be implemented either by
adding an imaginary potential to each site or by making the hopping asymmetric.

3.2 Breakdown of the bulk-boundary correspondence

In this section, we will illustrate in more detail some of the effects that can occur
if we let go of the Hermiticity condition. For simplicity, we keep the discussion to
the SSH-chain with asymmetric hopping, which e.g. has been described in [93],
but these phenomena occur also in other, more complicated systems.

We add a +7-term to the ¢1-hoppings described in Sec. 2.1.3. The resulting
model is illustrated in Fig. 3.1. The Bloch Hamiltonian for this system is given by

—ik
0 t1 + 7y +tge ) ’ (3.5)

Hpioen (k) = <t1 -7+ toe'® 0
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Figure 3.1: A non-Hermitian SSH-chain with asymmetric hoppings.

and the Hamiltonian for the open system by

N
Hopen = Z [(tl + 'Y)CL,ACW,,B + (tl - ')’)C;Bcn,A}

n=1
N1 (3.6)
T T
+ t2(cn+1,Acan + Cn,BCn-FLA) )
n=1
which on matrix form gives us
0 t—7
11+ 7y . to
H = to (3.7)
i —v
1+ 0

Diagonalizing the Hamiltonian for both open and periodic boundary conditions,
we note several things. First of all, the eigenvalues are not real. This means that —
apart from having to figure out what complex energies mean — it is not as straight-
forward to define gap closings as in the Hermitian case, which is problematic if we
want to predict the (dis)appearence of boundary states. In this particular case,
however, one can show that the boundary state that we are interested in modeling
has eigenvalue zero for all parameter values that it exists for. This means that a
gap closing which can cause the edge state to disappear should mean that there is
a gap closing at zero energy in the absolute value spectrum. In more general cases,
one can talk about line gaps and point gaps [43]. These will be discussed in more
detail in the next section since it turns out that there are important differences
between these kinds of gap closings.

In Fig. 3.2, we plot the absolute value of the spectra for the non-Hermitian SSH-
chains with periodic and open boundary conditions, respectively, as a function of
t1. As was noted in [62, 93], we see that the bulk spectra are vastly different
and that the gap closings occur at very different parameter values. This means
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Figure 3.2: The absolute value of the energy eigenvalues for the non-Hermitian SSH-chain
at to = 1 and v = 0.5 for N = 40 unit cells for periodic (left) and open (right) boundary
conditions.

that the bulk-boundary correspondence we take for granted in Hermitian systems
apparently must fail here. If the gap closings in the periodic spectrum do not
correspond to the gap closings in the open system, they cannot be used to predict
phase transitions or a change in the number of boundary states. This is because
we expect, just as in the Hermitian case, that these only can occur at the gap
closings. The fact that we get this difference between the spectra is seemingly
counterintuitive, since it means that no matter how large the system is, a tiny
change at one point in the lattice will still significantly affect the bulk spectrum.
In Sec. 3.3, we will look at why this is the case.

Another property of non-Hermitian operators is that they are not necessarily
diagonalizable. In this case, this happens in the system with open boundary
conditions at t; = +. At first glance these points might look as points where the
states are highly degenerate. Upon closer inspection, however, it turns out that we
do not have a complete set of eigenstates for the Hamiltonian here. Such points are
called exceptional points and contain a lot of interesting physics [21, 45, 94, 95].

We can also study the states explicitly. In Fig. 3.3, we plot the absolute value
of the eigenvectors of the SSH-chain for £; = 0.8, v = 0.5, 3 = 1. We see that all
eigenstates are exponentially localized to the boundaries. This is an example of
the so called skin effect [63, 64, 93], which we will discuss in more detail in next
section. At first glance, this localization might seem unintuitive, but the reason
for it can be understood by the fact that we have the asymmetry which drives
towards one of the ends of the chain and thus creates this build up. It also fits
well with the big difference between the spectra of the systems with periodic and
open boundary conditions respectively; because of this localization, the spectrum
is exponentially sensitive to coupling between the ends as there is no end to localize
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Figure 3.3: Exponentially localized right and left eigenvectors of the SSH-chain with
parameter values t; = 0.8, v = 0.5, t2 = 1, and N = 30.

at in the periodic case. The skin effect, however, makes it less straightforward to
interpret these states as bulk states, as we would have in the Hermitian case.

From the above discussion, it is clear that we cannot expect that a bulk invariant
derived from the Bloch Hamiltonian should be related to the boundary states in the
open system. Nevertheless, we could try to compute the winding number as we did
for the Hermitian case in Sec. 2.1.3. However, we note that attempting to write the
Bloch Hamiltonian in terms of the Pauli matrices, as we did in Egs. (2.15)-(2.16),
gives us

Hgioen (k) = d(k) - o, (3-8)

with
dy(k) =t1 +tacos(k), dy(k)=tysin(k) —ivy, d.(k)=0. (3.9)

That is, d(k) € C3, which means that we can no longer even define the wind-
ing number in this way. (There are, however, attempts to define other types of
invariants for the system, see e.g. [42, 93, 96].)

From all of the above, we thus see that essentially nothing remains of the bulk-
boundary correspondence as we know it from the Hermitian case. In Ch. 4 we
will see how we can formulate a new bulk-boundary correspondence, but before
we come to that, we will study the sensitivity of the spectrum and eigenvectors in
more detail.

3.3 Sensitivity to boundary conditions

In the previous section, we saw several phenomena that are related to the non-
Hermiticity. It turns out that the sensitivity of the spectrum to boundary condi-
tions, the skin effect and the type of gap in the system are related to each other.
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3.3 Sensitivity to boundary conditions

In this section, we will formalize this and look into more detail on the effects and
how they are related.

3.3.1 Non-Hermitian lattice models

As we saw in Sec. 2.1.2, the tight-binding matrix describing a lattice with rectan-
gular geometry, will be a block-tridiagonal block-Toeplitz matrix. When we now
attempt to generalize this to the non-Hermitian case, we notice that the block-
structure will be intact. This means that we, for an n-dimensional system, get a
Hamiltonian of the form

H(n—l)D Bn 5nCn
Hop—=| R : (3.10)
. . &
5, B Con Hpn-1)p

where H(,_1)p is the not necessarily Hermitian matrix describing an (n — 1)-
dimensional system and B,, and C,, describe the couplings between these stacked
systems. We also add a parameter §,, € [0, 1] which interpolates between open and
periodic boundary conditions in the nth dimension. We introduce the subscript
on the § as we could imagine wanting to study different boundary conditions in
different directions.

In Sec. 2.1.2 we made an analysis of the properties of the eigenvalues based on
the interlacing theorem. This is no longer possible if our matrix is non-Hermitian,
which should be clear in a situation where we e.g. have complex eigenvalues.
Since not-necessarily-Hermitian matrices is a class containing all matrices, we can-
not really expect there to be a perturbation theorem that gives us a very exact
perturbation bound for all matrices. In general, there are some theorems that
apply to all matrices. These theorems are not so restrictive, but still give a sense
of an upper limit of how far away the eigenvalues can move given a specific per-
turbation. This, however, does not tell us a lot in reality since these limits still
give room for significant qualitative change in spectra. And indeed, we see from
examples that in some systems even a very small perturbation can lead to large
changes in the spectrum, while in other systems this is not the case. We will now
look closer at this. The ultimate goal would be to find conditions on the param-
eters in the lattice model that tell us whether or not the spectrum is sensitive to
perturbations.

So far we have only spoken quite loosely about the sensitivity to boundary
conditions, but as we see in the plots the change in spectrum appears to be quite
drastic and it is of interest to understand this sensitivity more properly. In the
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supplementary material of Paper I, we briefly study the SSH-chain with boundary
conditions that interpolate between open and periodic boundary conditions. This
is done by introducing a parameter § € [0, 1] in the following way,

0 t1 -+ Oto
th—v - [5)
H(5) = 2 coo , (3.11)
1 —7 '
. i1+
(5t2 tl - 0

and studying what happens if § is changed away from 0. It turns out that the
larger the system is, the smaller the § required for the spectrum to change away
from the spectrum of the open system. More specifically it is observed that the
0 required to change a point in the spectrum by a fixed amount AFE seems to be
proportional to e~V where N is the length of the chain.

That the sensitivity to boundary conditions seems to be exponential, has several
implications, not least when doing numerical calculations. In Fig. 3.4, we show the
eigenvalue spectrum for an SSH-model with open boundary conditions for several
different system sizes. In these plots we have alternating hoppings ¢,1 and ¢, 2 to
the right and ¢;; and #;5 to the left, respectively, with ¢,.1 = 2, t,0 =4, t;; =1
and t;92 = 4. It might seem as if the spectrum changes significantly with system
size, but this is a numerical issue that probably has to do with the fact that the
floating point representation of the numbers is not accurate enough and could also
be affected by the algorithm used to compute the eigenvalues. This plot was made
using MATLAB R2020b.

The fact that these systems are so prone to numerical errors, makes it very
important to be aware of this when doing numerical calculations. It also makes it
interesting to understand the sensitivity in more detail.

3.3.2 The spectral winding number and gaps

In previous section, we saw an example of the skin effect. In general we de-
fine the skin effect as the phenomenon that an extensive number of left and
right eigenstates, in the system with open boundary conditions, are exponentially
localized to one of the boundaries of the system. That this can occur in non-
Hermitian systems is experimentally verified in several different contexts, see e.g.
[30, 31, 35, 54, 97, 98].
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Figure 3.4: Eigenvalues of the SSH-chain with parameter values ¢, =2,t,.20 =4,%,;, =1
and ¢, 2 = 4 numerically found using MATLAB R2020b for different system sizes. As N
becomes larger, the system becomes numerically unstable and we see a deviation from
the spectrum we expect for open boundary conditions into something that resembles the
periodic case.

It is clear that if the boundary conditions are changed to periodic, something
very drastic will happen in the system since there is no longer any boundary
that the states can localize to, which means that the states will change from
exponentially localized to completely delocalized. This suggests that there should
also be a big change in the eigenvalue spectrum when there is a skin effect, just as
we saw in the SSH-chain.

The skin effect is not present in all non-Hermitian systems, which in turn means
that not all non-Hermitian systems need to have sensitive spectra. This can be
seen in Fig. 3.5, where we, for an SSH-chain with parameter values ¢,; = 0.5,
tr2 =8, t;1 =i and t;o = 4, plot the right eigenstates for the system with open
boundary conditions together with the eigenvalues for both open and periodic
boundary conditions. We see that, apart from the emergence of a zero mode in the
case of open boundary conditions, the spectra are very similar and the eigenstates
are delocalized. To predict when this happens in one-dimensional systems, and
possibly find conditions on the parameter values in the system for when this occurs,
one can use the spectral winding number defined in [46, 99] as

w(Ep) = % / " det[H (k) — Egldh, (3.12)

where Ep € C. We note that, while the winding number defined for the SSH-chain
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Figure 3.5: Left: Absolute value of right eigenvectors for an SSH-chain with parameter
values t,1 = 0.5, t,2 = 8, t;1 = % and ¢;2 = 4 and open boundary conditions. Right:
Eigenvalues of the same SSH-chain for open (blue) and periodic (red) boundary conditions.

in Eq. (2.17) can be computed only since the vector d lies in a plane, the spectral
winding number can be defined for any one-dimensional system.

If there exists an Fp for which w(FEp) is non-zero, there will be a skin effect
in the system, otherwise not. Since we have argued that the skin effect is tied to
the sensitivity of the spectrum, this also implies that if we have a non-zero wind-
ing number for some Ep there will be a high sensitivity to boundary conditions.
Closely related to this are the types of gaps that can be found in a non-Hermitian
system [43, 46], namely, we differentiate between point gaps and line gaps, where
the latter resembles the Hermitian case. A system with loops in the spectrum
of the Bloch Hamiltonian is said to have a point gap, while a system where the
spectrum of the Bloch Hamiltonian can be divided into two parts by a line is said
to have a point gap. We note that since the determinant of a matrix is equal to the
product of its eigenvalues, the spectral winding number can be rewritten as the
sum of the windings of the eigenvalues of H (k) around the point Ep [46], namely

1 (™ E (k)

w(Ep) Zn: oo /ﬂ B )~ g dk, (3.13)

where E, (k) is the nth eigenvalue of H (k). This implies that a necessary, but not

sufficient condition for having a skin effect is that there are loops in the spectrum of

the Bloch Hamiltonian. Similarly, if we have a Bloch Hamiltonian whose spectrum

does not have any point gaps, i.e. if it consists of line segments, the system cannot
have a skin effect.

To give an example, we look at the Hatano-Nelson model, which is described by

the Bloch Hamiltonian H (k) = t.e’* +t;e~*. Just by looking at the form of H (k),
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3.3 Sensitivity to boundary conditions

we can see that the spectrum will form an ellipse if |¢,| # |£;| and a straight line
segment otherwise. We can thus conclude that only if |¢,| = |¢;|, the winding of
the spectrum will be zero around all points, and thus it is only at these parameter
values we do not have a skin effect. We can try to do this using the integral instead:

1 /” it e’k — itje—ik

E —_— — " )
w(E) 2mi . tretk +tiemth — F

dk. (3.14)

This integral is relatively easy to compute, but it is enough to go to the SSH-
model to realize that it quickly becomes very difficult to find the winding number
analytically for arbitrary parameter values. A general one-band model has a Bloch
Hamiltonian of the form

H(k) =to+ Y (t-ne™*" 4 t,e*m), (3.15)
n=1

where m describes the maximum hopping distance. It is clear that the winding
number integral will become essentially impossible to evaluate analytically for
arbitrary values of the t,s for almost all such models, and thus we cannot expect
that this integral will be a convenient way to find out for which combinations of
parameter values the system might not have a skin effect.

We would therefore have to rely on other methods, like the one identifying the
spectrum of the Hatano-Nelson model as an ellipse. Similar arguments can be
made for other simple models, but again, in more complicated situations it will
not be possible to fully determine analytically when we do and do not have a
skin effect. This is, however, something that is important to try and understand
further, which is what we do in Paper IV.

3.3.3 Quantifying the sensitivity

In Paper IV, we study matrices of the form in Eq. (3.10) and their sensitivity to
boundary conditions. Apart from the sensitivity discussion in last section, this
is important because, while the winding number predicts the presence of the skin
effect in one-dimensional systems, it cannot be used in higher-dimensional systems.
Therefore it is of interest to develop a complementary method to find the parameter
values for which the system is insensitive.

One-dimensional systems
In the first part of Paper IV, we study one-dimensional systems with unit cells
consisting of one site. These can be described by ordinary banded Toeplitz ma-
trices, the hopping range determined by the number of non-zero diagonals in the
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matrix. Using a parameter ¢ to interpolate between open and periodic boundary
conditions, we thus want to find the eigenvalues of matrices of the form

to t1 ... tg 0 ... 0 6t_p ... Oty

t_1 to t t.. 0 :

e s,

t 0

Hp=| " '* 0 (3.16)

0 -

0 "

st S

: .o 0 t_g t.1 tp t

Sty ... Oty 0 ... 0 t_p ... t_ to

We do this by assuming a functional form in some parameter « of the eigenvalues
that is determined from the solution to the é = 1 case. For such an eigenvalue
A«), we now have a corresponding eigenvector v, and the goal is to find the
appropriate values of « since that gives us the eigenvalues. To do this, we go to
the eigenvalue equation from which we get a recurrence relation for the elements
of the vector v, of the form

k

D (t-nVaj-n + tnva,jtn) + (to — Ma))v; = 0. (3.17)

n=1
The solution to this recurrence relation will contain a number of constants that
can be determined using the boundary conditions, and in this process we also find
the appropriate values of a. For details, see Paper IV.

For the simplest case, the Hatano-Nelson model, with tg = t4, t1 = t; and

t_1 =t,, we get that the eigenvalues are given by

A\ = tq+ 2vt\/t cos(@), (3.18)

where the parameter & is given by the equation

PSn@N 1) ( N2 t{v/2> sin(@(N +1)

sin(a) ERE @ (3.19)

From this equation, we can see that the eigenvalues will be very sensitive to changes
in 0 when |t.| # |t;], and that we can classify this sensitivity as exponential. On
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the other hand, we see that the spectrum is relatively insensitive when |t,| = |t;|.
This is in agreement with the computation of the winding number in Sec. 3.3.2.
As we saw there, it is a very hard problem to compute the integral as an analytic
function of the system parameters for more complicated systems. The method used
in Paper IV, however, reaches further and we can get conditions on parameters
for more complicated systems than what is possible using the winding number.
This method also says more about the behavior of the eigenvalues as we explicitly
see what happens when we change the boundary conditions. For example, we can
see that the spectrum is very sensitive around § = 0, but relatively insensitive
around 6 = 1. This explains the behavior in Fig. 3.4 — when the system size is
increased, the numerical inaccuracies are enough to perturb the spectrum away
from the open spectrum in such a way that it starts resembling the periodic one.

We can obtain more complicated one-dimensional systems by stacking one-
dimensional chains with known eigenvalues in a periodic fashion. That is, we
effectively get a two-dimensional system with periodic boundary conditions in one
direction. This gives us clues about what relations between parameters in a system
we can expect to give a system without a skin effect. We do this in Paper IV and
see that a necessary condition for not having a skin effect seems to be that the
system should be balanced in some way, meaning that the overall hopping to the
left in the unit cell should be the same as the overall hopping to the right. A clear
example of this is for the SSH-chain with alternating hoppings ¢1 ,, ¢, 2 to the right
and t; 1,12 to the left, where the condition for not having a sensitive spectrum is

[tratra| = [tiatiol. (3.20)

This is quite intuitive as it would imply that there is no 'favored’ edge in the
system. However, this condition with an overall balancing does not seem to be
sufficient in general as there are systems which seem to be balanced, but that still
have a skin effect. One example of this is when we introduce longer range hoppings.
In a system with only ¢ and ¢_5 non-zero, we see that there is no choice of t; and
t_o for which we do not have a skin effect — not even when they are equal.

Two-dimensional systems
As mentioned, the winding number can only be used for one-dimensional systems,
and it would be desirable to find another way to predict the presence of the skin
effect. This has been investigated in e.g. [100], but the results are somewhat incon-
clusive. Block-Toeplitz matrices describing systems with open boundary conditions
are, however, notoriously hard to diagonalize analytically. Nevertheless, having ob-
tained balancing conditions for two-dimensional systems with periodic boundary
conditions in one direction, we can implement those conditions in two dimensions
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and hope to find systems without skin effect that are purely two-dimensional. This
works, and we show e.g. that the triangular lattice can be obtained in this way
as a lattice with no skin effect. At least when the number of unit cells in both
directions are the same. When they are different, we notice that the states start
to localize even though the parameters indicate the system should be balanced.
This is contrary to the intuitive explanation given in Paper II for the absence of
the skin effect in the triangular kagome lattice, where we argued that this could be
due to the formation of closed loops that prevent the states from getting 'trapped’
at a corner, but this is clearly not the whole story, despite its intuitiveness.
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Biorthogonal quantum
mechanics

In order to understand the strange effects we saw in Sec. 3.2 and formulate a new
kind of bulk-boundary correspondence, we will turn to the formalism of biorthogo-
nal quantum mechanics, which is described in [68, 101]. It was originally developed
as an extension of Hermitian quantum physics to allow for Hamiltonians that are
non-Hermitian, but still have real eigenvalues, as is the case for PT-symmetric
systems, but we will apply it in a more general setting. In this section, we will
first describe some general theory, and then show how one can apply it in the
context of lattice systems.

4.1 The biorthogonal inner product

We start by giving an introduction to the biorthogonal formalism described in
[68]. Suppose we have an operator H, which is not necessarily Hermitian, on a
finite-dimensional Hilbert space. (The infinite-dimensional case is complicated,
and something one needs to be very careful with.) We will typically think of H as
a Hamiltonian. Denote the right eigenstates of this operator by |R,,) and the left
eigenstates by (L,|, and let them correspond to the eigenvalue E,. That is, let

H|Rn> :En|Rn>7 <Ln|H:En <Ln| (4'1)

One of the most important properties of the eigenstates of the Hamiltonian in
Hermitian quantum mechanics is the fact that they can always be chosen to be
orthogonal to each other. This implies that the eigenstates of the Hamiltonian are
stationary states and also greatly simplifies computations of e.g. probabilities. If
the Hamiltonian is non-Hermitian, this is no longer necessarily true. This means
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that if we were to do quantum mechanics the way we are used to, we 1) would get
a lot of complicated calculations and 2) might miss out on information about the
system since the left eigenstates may contain information that the right ones do
not. Furthermore, it actually leads to contradictions. The probability in quantum
mechanics to transition from a normalized state |«) into another normalized state
|B) is given by | (B|a) |?>. We now see that if we have a non-Hermitian Hamiltonian,
the probability to transition from one eigenstate |R,) into another state |R,,) is
given by | (R;,|R,)|?, which is not necessarily zero since the eigenstates might
not be orthogonal. This contradicts the fact that we want the eigenstates to be
stationary with zero transition probability between them.

The solution to this is to define a new inner product that we use to do compu-
tations of e.g. probabilities. We note that instead of orthogonality between right
eigenstates, we have

(Lp|Rm) = Smns (4.2)

which in the Hermitian case reduces to the ordinary orthogonality among the
eigenstates.

Since the sets of left and right eigenstates form two linearly independent sets
respectively, we can expand an arbitrary state |«) in the right eigenstates:

=> an|Rn). (4.3)
Now we define the state |@) as

=> an|Ln). (4.4)

Normally, in quantum mechanics, we have a Hilbert space 5 consisting of states
|a)). To each of these states, we associate in a unique way a state (a| in the dual
Hilbert space ##*. Now, instead of associating the state (| to |a), we pick the
state (&| € 7, and we thus call |&@) the associated state of |a). Clearly, as
long as the space is finite dimensional and the Hamiltonian is diagonalizable, this
association is unique and well-defined. Using this, we define the biorthogonal inner
product of the states |o) and |38) =", bn |Ry,) as

(. 190) = (@18) = 3 ait: (4.5)

That this is an inner product can easily be seen by first noting that it clearly is
linear in its second argument and anti-linear in the first. Furthermore, we have

(Bla)” ana (@), (4.6)
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and finally,

(la),]a)) = (@) = > anan =Y lanl> = 0. (4.7)
n n
The final equality in Eq. (4.5) shows that the inner product in this case works in
the way we are used to in Hermitian quantum mechanics. However, some care
is needed as this equality is not necessarily true if we make a change of basis,
meaning that the coefficients in another basis might not correspond to probability
amplitudes. From now on we will normalize all states according to this inner
product. That is, we normalize a state |¥) by requiring (¥|¥) = 1.
Assuming that all the states |Ry,), |L,) and |a) are normalized, we get for the
state |«) that

(J) s la)) =Y apan =1, (4.8)

and we can interpret the number a a, = (L,|a) (&|R,) as the probability to tran-
sition from the state |a) into the nth eigenstate of the Hamiltonian. In particular,
we see that if |«) is an eigenstate of H, then the probability is, just as we expect,
1 to remain in that state and 0 to transition into another state.

More generally, we now get that the probability to transition from a state |a)
into another state |3) is given by

p_ @l8) (Bla) (4.9)

(@la) (B18)

This is a real number, and because of the Cauchy-Schwartz inequality, it must
also be a number between 0 and 1, which means that it can be interpreted as
a probability. That it makes sense to define probabilities in this way is further
discussed in [68].

Using the fact that we can talk about probabilities, we can also find an expression
for the expectation value of an operator A. Namely, we define the expectation value
of the operator A in the normalized state |«) as

), Ala)) _ (alAla)

o _
W= )T ) (10

If A happens to be the Hamiltonian, we get

(@ Ha) _ >, ananky

(@la) Y, anan

which we see is precisely the expression that we expect.

(H) = (4.11)
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We note that the expectation value does not always have to be real since non-
Hermitian operators can have complex valued eigenvalues. However, if the Hamil-
tonian has real eigenvalues, also the expectation value of it is real. In general, an
operator is said to be biorthogonally Hermitian if the matrix representation of it
in the biorthogonal basis is a Hermitian matrix. This implies that the eigenvalues
are real, and thus observables are naturally described by biorthgonally Hermitian
operators, rather than Hermitian operators, in biorthogonal quantum mechanics.

In summary, we see that given a Hamiltonian H and a set of left and right
eigenstates, we can define an inner product that gives us a Hilbert space where
physical states are represented as vectors and observables as biorthogonally Her-
mitian operators.

4.2 The bulk-boundary correspondence

Now we turn to applying the biorthogonal formalism described in [68] to some
systems. The goal is to describe non-Hermitian versions of the systems that we
introduced in Ch. 2. It is important to note here that we allow for non-Hermitian
Hamiltonians with complex eigenvalues, which means that they can be used to
describe interactions with the environment. This is different from what is done
in [68] where the Hamiltonian is assumed to have real eigenvalues and describe a
closed quantum system.

4.2.1 Lattices

Suppose we have a lattice with M sites. For notational simplicity we assume no
internal degrees of freedom. The Hilbert space is then M-dimensional and the
Hamiltonian will generically have M left and right eigenstates respectively. These
are the states we use to define the inner product. Now, just as we are used to,
another basis for the Hilbert space in this case is formed by the vectors represented
by the standard basis vectors, that is the vectors containing precisely one element
equal to 1 while the rest of the elements are zero. We will denote these vectors by
lex) where k denotes a site in the lattice.

Just as in the Hermitian case, we can now consider the projection operator that
projects a state onto the kth site. We take this operator to mean the operator
that picks out the coefficient in front of |ex) when writing the state as a linear
combination of these vectors. This operator is given by

Ty = |ex) (ex| - (4.12)

One might be skeptical about this, since in the biorthogonal formalism, it might
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be more natural to take the projection operator to be |eg) (éx|. But as we will see,
the operator in Eq. (4.12) has nice properties that we want to take advantage of.

By considering the biorthogonal expectation value of II; in some state, we can
get a measure of the localization of the state in the system, just as in the Hermitian
case. Suppose we are interested in the mth eigenstate of the Hamiltonian. The
biorthogonal expectation value of Il in this state is then given by

(k) = (L[| Bin) = (Lmle) (ex|Bm) (4.13)

Now, suppose

[Rin) =Y ™ en), L) =D cF™ len) . (4.14)

n n

Inserting this into Eq. (4.13), we get
() = (™) ™. (4.15)

Contrary to the Hermitian case, this number does not have to be real since the
left and right eigenstates typically are different in non-Hermitian systems. We
can, however, still use the result to get a sense of the localization of the state, by
considering e.g. the absolute value of the expectation value. By collecting all these
absolute values into a vector

[(I11)]
len) = : , (4.16)
" [(TT) |

we get a vector that can give us a sense of the localization of the state |«) in the
lattice.

4.2.2 The biorthogonal bulk-boundary correspondence

Now, let us apply the above to the non-Hermitian systems of interest. For simplic-
ity, we do this again in the SSH-chain described in Sec. 3.2, as was done in Paper 1.
In Fig. 4.1 we plot the absolute value of the biorthogonal expectation value of I,
as a function of n for the eigenstates of a system with parameter values ¢; = 0.8,
v=0.5,to =1, and N = 30. For these parameter values, we expect a skin effect
as we can see in Fig. 3.3, but remarkably we see no such thing in Fig. 4.1. Instead
we see a behavior that resembles what we are used to from the Hermitian case
in terms of bulk and boundary states. Namely, we notice that the vector II is
delocalized for almost all states. The states for which this is the case, we call
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Site index

Figure 4.1: The vector IT for each of the eigenstate in an SSH-chain with parameter
values t; = 0.8, v = 0.5, to = 1, and N = 30. These are the same parameter values as in
Fig. 3.3 where we see a clear skin effect.

biorthogonal bulk states. In a similar fashion, we see that we have two states for
which IT is localized to the ends of the chain, and we thus call these biorthogonal
boundary state. It therefore seems like we can use the biorthogonal expectation
value of II; to define bulk and boundary states in non-Hermitian systems.

Now the question is if we can use gap closings etc. to predict the existence of
biorthogonal boundary states. To investigate this, we use the same method as was
used in Sec. 2.2.1 for Hermitian systems; we begin by studying the system with an
odd number of sites, i.e. with a broken unit cell. For this system, we have for all
parameter values a zero eigenvalue with corresponding left and right eigenstates

Wr) =Nr > rhch 410),
" ' (4.17)
L) =N Y riel 4100,
n
where rp = —(t1 —v)/t2 and r] = —(t1 +7)/t2.
Computing the biorthogonal expectation value of IL,, in this state, we get

(L) = @rln|¢r) = NeNL(rprr)", (4.18)

and we see that just as in the Hermitian case, the vector Il will be localized
to different sides of the chain for different parameter values. In this case, it is
delocalized when
lrire| =1, (4.19)
which happens when
£2 _ A2
17
2
t3

=1. (4.20)
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4.2 The bulk-boundary correspondence

Figure 4.2: Absolute value of the energy spectra of the non-Hermitian SSH model for t5 =
1,v= 0.5, and N = 40 unit cells and different boundary conditions. Blue lines correspond
to open boundary conditions and gray lines to periodic boundary conditions. The black
lines correspond to points predicted in Eq. (4.21) and we see that this corresponds to the
gap closings in the spectrum with open boundary conditions.

Assuming that the parameters are real, this gives us the points

tp =+4/72 —t3, and t; =+4/92 +t3. (4.21)

Furthermore, we note that for |rjrr| > 1, the state will be localized to the right
of the chain and for |r;rp| < 1 to the left. This means, that in the chain with an
even number of sites, i.e. with an unbroken unit cell, we should have biorthogonal
boundary states for |rjrg| < 1. Comparing with the spectrum in Fig. 4.2, we see
that this corresponds precisely to when we have a zero eigenvalue in the system. It
thus seems the biorthogonal formalism is suitable for understanding these systems.
Further confirmation of this is given by the biorthogonal polarization, also defined
in Paper I,

P=1- lim — ZnM (4.22)
—~ (ULlYr)

It turns out that we have P = 1 when we have a biorthogonal boundary state and
P =0, when we do not.

Similar effects can be seen in other systems and in Paper I we look at a two-
dimensional Rice-Mele model [102] with non-Hermitian hoppings. In Paper II, we
study systems of higher dimension. In particular, we study non-Hermitian versions
of the systems described in Sec. 2.2.2 and 2.2.3. Using the biorthogonal formalism,
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Chapter 4 Biorthogonal quantum mechanics

we find that there can exist both biorthogonal boundary and corner states, that
become non-Hermitian analogues of higher-order states.

Further exploring of the use of the biorthogonal inner product is done in Paper
11, where we define a generalized biorthogonal polarization. For a one-dimensional
system with M boundary states we have

. 1 M X <¢m,L‘Hn’wm,R>
P=M- lim — Y > o i) (4.23)

m=1n=1

where m labels the boundary state. We show that P is equal to the number of
biorthogonal boundary states in the system and thus we once again get a confir-
mation that the biorthogonal formalism is what we need to use to understand the
gap closings.

The relationship between the gap closings in the spectrum of the systems with
open boundary conditions and the appearance of biorthogonal boundary states is
called the biorthogonal bulk-boundary correspondence. This has not only been stud-
ied theoretically, but has been verified experimentally in e.g. mechanical systems
[35], where the mechanical system in question can be mapped to a non-Hermitian
SSH-chain. They show that the right eigenstates can be directly probed and that
the gap closings occur at the theoretically predicted points in Eq. (4.21). In [103]
it is further argued that not only should one be able to probe the right eigen-
states, but also should be able to probe the left eigenstates and thus find the full
biorthogonal nature of the system.

4.3 The bulk states

In paper III, apart from studying boundary states in one-dimensional systems, we
also generalize the method for finding bulk states described in Sec. 2.3, and we
find all the bulk states of a non-Hermitian SSH-chain. In the system with a broken
unit cell, we find they are of the form

VU R Bulk,+,4(k, 1)
VU R Bulk,+,8(k, 1)
VU R Bulk,+,4(k, 2)
Uppuks(k) =Nr | VRBuk+B(F,2) : (4.24)

VU R Bulk,+,8(k, N — 1)
U R Bulk,+,4(k, N)

where N is a normalization factor,
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4.3 The bulk states

(ty — )2 . Vit +y .
U R Bulk,+,4(k,n) = 21W (t1 + ) sin(kn) + tgm sin(k[n —1])|,
(4.25)
and
v (- y)n/? .
R,Bulk,:l:,B(kv n) = QZmEi(kj) sm(k:n). (4.26)

The parameter k takes values k = 7j/N for j = 1,...,N — 1 and the number
E4 (k) is given by

E. (k)= i\/t% + 12 — 2 + 2ta\/t1 — yV/t1 + 7y cos(k), (4.27)

and is the eigenvalue of the state Vg gk + (k).

We notice that there are 2N — 2 such states, which means we have found all of
them, since there also is an edge state given by Eq. (4.17). We notice that all these
states show a clear exponential localization (not in the biorthogonal sense, but in
the ’standard’, Hermitian sense) to the side of the chain, as is expected from the
skin effect. A similar phenomenon is also observed in Paper IV, where we study a
more general SSH-chain and find the behavior of the bulk states.

From the right eigenstates we can, using the symmetry of the Hamiltonian, which
implies that W7, gu +(k,v) o< ¥} gk + (k, =), conclude that the corresponding
left eigenstates have the form o

U7 puk+,a(k, 1)
U7 guk,+,5(k: 1)
U7 Bulk,+,4(k,2)
\I]L,Bulk,i(k) = Nf \Ijz,Bulk,:l:,B(k7 2) R (4.28)

‘I’*L,Bulk,i,B(kv N —1)
\Ilz,Bulk,i,A(k’ N)

where N7, is a normalization factor such that ¥, guik + (k)*¥ g Buk,+ (k) = 1,

(t1 +’Y)"/2 ) Vit =7 .
Vs Bu k,n)=2i——— |(t1 —y)sin(kn) + t sin(kln — 1)),
LB lk,:l:,A( ) (tl — ’7)n/2 ( 1 7) ( ) 2\/t1T7 ( [ ])
(4.29)
and 12
At +)" .
\IIL,Bulk,:I:,B(ky n) = QZWEi(k) sm(kn). (430)
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Chapter 4 Biorthogonal quantum mechanics

We would like to use these bulk states to study what happens as we approach
the exceptional points at t; = %7, but as they are written now, it seems like
we end up with singularities. This is, however, only a matter of scaling; since
they are eigenstates, we can multiply them by an appropriate factor and still have
eigenstates. We thus pick the normalization factors N and N7, such that we have

U g Bulk +.4(k, 1) =(t1 —7)"D2 () 4 ) N7=1/25

)|
_|_
2|2

[(tl + ) sin(kn) + to 1 — sin(k[n — 1])] ,

—_
~—

2B (k)sin(kn),
/25

—— sin(h{n - 1])] ,

\I’L,Bulk,:t,B(ka n) :(tl + 7)(n71)/2(t1 — ’}/)(Ninfl)/QEi(k) Sin(k:n).

We see that in this case, we have no singularities as we approach the exceptional
points. In addition, they are also not all equal to zero, so the limits are well-defined.
We have

U Bulk+,B(k,n) =(t1 — )2ty 4 )N

(4.31)
\I’L,Bulk,j:,A(k', n) :(tl + 'y)(n_l)/z(tl — (N—n—1

~—
~—

2

1 —

[(tl — ) sin(kn) + to

)|
_|_
-2

1
ta/(27)
to/(2
tlliLnV\I/R,Bulk,ﬂ:(k):(z'Y)N/ ?sin(k) 2/(() B , (4.32)

and

) 0 , (4.33)
t2/(27)
t2/(27)

~—

lm U, g+ (k) = (27)V?sin(k(N -1
t1—y
and

lim U g g (k) = (—27)N/2sin(k(N — 1)) 0 , (4.34)
il

T —t2/(27)
—t5/(27)
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4.3 The bulk states

and
1
—t2/(27)
/(2
lim Wrpas (k) = (—27)2 sin(k) 2{)( M| (4.35)
t1—>—
0

We notice that these states at the exceptional points cannot be normalized accord-
ing to Eq. (4.2). However, away from the exceptional points, we can attempt to
make such a normalization. We have

N
‘I/TL,Bulk,i(k)\I/R,Bulk,i(k) = Z U1, Bulk,+,4 (K, 7)Y R Bulk,+,4 (K, n)
n=1
N-1 (4.36)
+ Z VU1 Bulk,+,B(k, 7)Y R Bulk,+,B(k, 1)

n=1

= N(t1 — )2ty + )NV EL (K)2

We clearly see that this is 0 at the exceptional points, so we cannot normalize the
states there, but away from the exceptional points, we get
1 (tl +,y)(N—2n)/4
VR Bulk,+,4(k,n) =
,bulkK,T, ( ) \/NE:]:(I{:) (tl_,y)(N—Qn)/ﬁl

X

t
{(tl + v) sin(kn) + to \/\/g sin(k[n — 1])} ,
1 (¢ + (N—2n)/4 )
VR Bulk,+,8(k,n) Vi Eti - z;(N—2n)/4 sin(kn),
1 (ty — y)N—2m)/4 (4.37)
Wik (1) = U ) ()27
t1 —
[(tl — ) sin(kn) + t2 \/\/g sin(k[n — 1])} ,
A (N=2n)/4
L (h=7) sin(kn).

\IJL,Bulk,:I:,B(kvn) :\/N(tl-F’Y)(N_%)M

We can clearly see that the limit as we approach the exceptional points is no longer
well-defined. We thus have to make a choice between having an appropriate limit
at the exceptional points and the states being normalized away from them. Even
though perhaps inconvenient, it is not very surprising. The biorthogonal formalism
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Chapter 4 Biorthogonal quantum mechanics

requires a complete set of eigenstates, and thus we cannot expect it to work at
points where this is no longer true.

Eq. (4.37) shows us that the left and right eigenstates are symmetric, which is
nice, but in principle there is nothing that prevents us from letting Ny and N7,
being different, as long as we keep

U bt (F) ¥ R Bt (k) = 1. (4.38)

As we will see in the next section, this can have consequences for the results.

4.4 Degree of freedom in the biorthogonal inner
product

Applying the definition of the biorthogonal inner product to our systems, gives us a
degree of freedom, namely, the eigenvectors of an operator are only determined up
to a scale factor. This means that any set of right eigenvectors of a Hamiltonian
together with an appropriately normalized set of left eigenvectors form a valid
biorthogonal basis that can be used to define the biorthogonal inner product.
This poses a possible problem, as is pointed out in e.g. [104, 105] and something
we investigate further in Paper V.

Suppose we have a Hamiltonian H with a set of left and right eigenstates {| L)}
and {|R,)} such that (L,|R,) = 1. Suppose further that there exists another set
of eigenstates {|L},) = ay, |Ly,)} and {|R.) = a;;' |R,)}. Both of these sets can be
used to define a biorthogonal inner product according to Eq. (4.5). Let us denote
these inner products by (—, —) and (—, —)’ respectively. Now, suppose we have a
vector

a
ja) =) an|Ra) =) " |R). (4.39)
n n an
The associated states in the respective biorthogonal bases now become

|6) = an |Ln), (4.40)

and

&) =30 1L (4.41)

n
Computing the probability of measuring energy FE, for a particle in a state
represented by the vector |a) in the respective inner products gives us

(o), [R))(|Rn) s |a)) — (Lnla) (@|Rn) — chen
P (o) ) (Ra)  JRa)) ~ (@) (Ll B~ S i’ (4.42)
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4.4 Degree of freedom in the biorthogonal inner product

and

(o) R (Rad o) _ {Lhlo) (@IRe) _ aman
P (o) o) (R} TRa)) — (@) (LR T 5 e (4.43)

m *
O, Oy

Clearly, the probability here depends on the choice of a,,. In a similar fashion,
we expect the expectation value to depend on that choice as well. To illustrate
this, we compute the biorthogonal expectation value of an operator () in the state
represented by the vector |«) using the different inner products:

(@l@Qle) > pn G (Lm| Q| Rn)

(@) = Gla) S aran : (4.44)
and .
y o (L | Q| R
<Q>l — <O<46LC‘2C‘SK> — amana;:an , (445)
2o ok o,

These are clearly not equal in general, which means that the expectation value
depends on which biorthogonal basis we pick. This in itself is not necessarily a
problem, since we change the Hilbert space when we change the inner product,
and thus we also change the way our states and operators are represented. Thus
the vector |a) can describe different physical states depending on which inner
product we use. However, when we study the non-Hermitian lattice models, we
take the vectors |e,) to represent positions in the lattice, which means that we
assign a meaning to the vector itself, irrespective of which inner product is used.
To illustrate the consequences of this, we consider as an example the Hatano-Nelson

model with
0 t+y

e
Hy=|"7 "~ (4.46)
: t+y
t—ry 0

Now, suppose we want to find the expectation value of H in the state |e1) + |e2).
We do this using two different choices of eigenvectors of the Hamiltonian, while
still keeping the Brody normalization. The choices are the following:

IP1. We pick (R,|Ry) = (L,|Ly,) and (L,|R,) = 1.
IP2. We pick (R,|R,) randomly and then choose |L,,) according to (L,|R,) = 1.

49



Chapter 4 Biorthogonal quantum mechanics

IP1 1P2
1 30
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Figure 4.3: The expectation value of the Hamiltonian in the state |e1) +|e2) as a function
of v using two different choices of normalization of the eigenstates of the Hamiltonian.

We depict the differences between these choices as a function of v in Fig. 4.3,
where we can see that the expectation value as a function of v shows a significant
qualitative change when we change the definition of the inner product. This ob-
viously raises some questions and makes it very important to make sure that the
results obtained in Papers I-III are consistent.

The most important observation we make in this context is that if |a) is an
eigenstate of H, then Eqgs. (4.44) and (4.45) are independent of the choice of
eigenvectors of the Hamiltonian, and thus all expectation values will be the same
irrespective of normalization of the eigenstates of the Hamiltonian. The biorthog-
onal bulk-boundary correspondence described in Papers I-I1I is a statement about
properties of eigenstates of the Hamiltonian, and thus all the results in these papers
will be unaffected by the ambiguity.

However, the issue remains if one would want to study such families of lattice
models further. For example, a natural question could be what would happen to a
particle that is placed on the nth site in the lattice, but since the meaning of the
vector |e,) is ambiguous, it is not clear how to tackle this given the above. All in
all there are two main issues here:

1. The representation of a physical state depends on which inner product we
choose. Since there is no canonical way to pick the eigenvectors of a Hamil-
tonian, the inner product defined in [68] is not well-suited for comparing the
physics of different systems, such as a family of Hamiltonians depending on
some parameter, with each other.

2. Even if we do have a well-defined inner product, the interpretation of the
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4.4 Degree of freedom in the biorthogonal inner product

vectors |e,) remains unclear. According to the biorthogonal formalism, they
should represent different physical states when the inner product is changed
and do not have an independent physical meaning, but as we have seen in
Sec. 3.1 and as can be seen in experimental verifications of the biorthogonal
bulk-boundary correspondence [35], these vectors do correspond to physical
quantities.

These issues are addressed in Paper V, where we define an inner product that is
independent of the choice of eigenvectors of the Hamiltonian. There, we avoid the
associated state and instead define the inner product via an inner product matrix,
G, which we define as

G =3 e L) (L. (4.47)

such that the inner product of two states |«) and |B) is given by

(la), 18))e = (alG[B) - (4.48)

We see that rescaling the eigenstates of the Hamiltonian leaves G, and thus also
the inner product, invariant. This means that the inner product is uniquely de-
fined given a Hamiltonian, and thus comparisons between different systems are
significantly simplified. We do, however, also show that there is no way to keep
the meaning of the vectors |e,) as positions in a lattice within the biorthogonal
formalism. The conclusion from this is that even though the biorthogonal bulk-
boundary correspondence is experimentally verified in several classical systems, the
rest of the biorthogonal formalism is not straightforwardly mapped to a classical
lattice model.
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Chapter 5

Discussion and outlook

In this thesis, we have investigated what happens to the bulk-boundary correspon-
dence in non-Hermitian systems. We have seen that the bulk-boundary correspon-
dence known from the Hermitian case breaks down in the non-Hermitian realm.
To understand what is going on in the non-Hermitian case, we study several sys-
tems in which we can find analytical expressions for the eigenvectors corresponding
to a zero eigenvalue, and show that we can predict the gap closings by comput-
ing the biorthogonal expectation value of the operator |ey) (e,|. We call this the
biorthogonal bulk-boundary correspondence since the gaps in the spectrum of the
system with open boundary conditions predict the (dis)appearance of biorthogonal
boundary states. We show that this works out in several systems, both in the one-
dimensional and the higher-dimensional case. The biorthogonal bulk-boundary
correspondence is supported by experiments in the classical regime [35], where
they make use of the fact that the system can be mapped to a Schrodinger-like
equation. Previously, this method has been used to create a mapping between Her-
mitian Hamiltonians and classical systems, which then allows us to map physical
properties of condensed matter systems to classical systems. In the non-Hermitian
case, however, we argue that even though this map exists mathematically between
these systems, it might not be possible to map the actual physical properties. In
particular, we have seen that while the vector |e,) has a physical meaning in a
classical system, it might not have that in a biorthogonal quantum system, where
it seems that the lattice model obtained from a non-Hermitian model might be
more of a tool for visualization than of the existence of an actual physical system.
This is certainly very interesting and should be investigated further.

The claim that |e,) does not have a physical meaning in a biorthogonal quantum
system, relies on the fact that the vector itself cannot be connected to a physical
state without reference to an inner product. And since the inner product changes
when we change the Hamiltonian, the physical meaning of the vector |e,) would
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also change. However, we have seen that computing the biorthogonal expectation
value of the operator I1,, does predict something about the system and it would be
very interesting to understand this better in a quantum setting. Is it even possible
to realize such quantum systems?

Going back to the biorthogonal bulk-boundary correspondence, we note that this
is an attempt to generalize the Hermitian bulk-boundary correspondence. In the
Hermitian case, the bulk-boundary correspondence also includes the existence of a
topological invariant that predicts the number of topological boundary states. In
principle, there can be states localized at the boundary that are not topological,
which means that the existence of an invariant is an important component of
the bulk-boundary correspondence. In the non-Hermitian case there have been
attempts to find invariants for the systems we have studied, but none of them have
been as successful as in the Hermitian case. Examples include the work in [93]
and [106]. We therefore note that the biorthogonal bulk-boundary correspondence
is not a claim about topological properties of a system, but rather a connection
between existence of boundary states and prediction of gap closings. This is still
very important as the boundary states themselves and the gap closings give a lot
of information about the system and also give a very strong hint towards where
to look for topological invariants. It is tempting to say that it seems unlikely
that a number computed from the Bloch Hamiltonian could say anything about
the existence of topological boundary states in the system with open boundary
conditions, but since the spectral winding number in Eq. (3.12) is computed from
the Bloch Hamiltonian and still can predict the existence of the skin effect, we
cannot rule out that something similar can be done for the boundary states. This
would add additional robustness to the boundary states we have found.

As has been pointed out in the thesis, Papers I-III are focused on developing
the biorthogonal bulk-boundary correspondence. This is done by studying several
different systems, but we have not proven that the bulk-boundary correspondence
exists in this form in general. This is an open question that would be important
to study further. Mathematically, much is known about Toeplitz matrices (see
e.g. [107]), but block-Toeplitz matrices are much harder to diagonalize. Trying
to prove such a bulk-boundary correspondence might thus be challenging in more
than one dimension.

That higher-dimensional systems are harder to understand is something we also
see in Paper IV. In general, two-dimensional systems with open boundary con-
ditions are not possible to diagonalize analytically. This makes it very hard to
find conditions on the parameter values in the system for which we do not have
a skin effect. As we demonstrate in Paper IV, it is not enough to balance a two-
dimensional system in the two different directions separately; it seems to work if
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the lattice has a square geometry, but when the lattice is rectangular the eigen-
states start to localize even though balancing conditions are implemented in both
directions. An example of this would be the triangular lattice. This is quite unin-
tuitive, and having a better physical understanding of why this happens and what
it means is desirable. The same goes for the fact that we cannot seem to balance
hoppings of different lengths with one another, even though the naive thought
would be that it should be possible.

Finally, a comment on experiments. Even though we study lattice models and
this brings the thought to condensed matter systems, none of the experimental
realizations are, to date, in that field. Most of them are classical and makes
use of the fact that e.g. the equations of motion of some mechanical systems
can be mapped to a Schrodinger-like equation with a non-Hermitian Hamiltonian.
In the quantum regime there have been less experiments. In general, it is clear
that even if it were possible to design a condensed matter system consisting of a
non-Hermitian lattice, it could be very hard to actually construct such a system
with open boundary conditions in reality since the skin effect makes such systems
extremely sensitive to perturbations. On the other hand, the extreme sensitivity
can also have advantages. One example of this is in sensors, something that has
been discussed in [108, 109], where the suggestion is to construct quantum non-
Hermitian topological sensors.
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