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Abstract: Spin foam theory is a concrete framework for quantum gravity where numerical calculations
of transition amplitudes are possible. Recently, the field became very active, but the entry barrier is
steep, mainly because of its unusual language and notions scattered around the literature. This paper
is a pedagogical guide to spin foam transition amplitude calculations. We show how to write an
EPRL-FK transition amplitude, from the definition of the 2-complex to its numerical implementation
using sl2cfoam-next. We guide the reader using an explicit example balancing mathematical rigor
with a practical approach. We discuss the advantages and disadvantages of our strategy and provide
a novel look at a recently proposed approximation scheme.
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1. Introduction

Spin foam theory provides a background-independent, Lorentz covariant path integral
for general relativity. Spin foams provide dynamics to Loop Quantum Gravity, defining
transition amplitudes between spin network states. A triangulation discretizes the space-
time manifold, and its 2-complex regularizes the partition function.

The EPRL-FK model [1,2] (we will refer to it as just EPRL for brevity) is the state-
of-the-art spin foam model. There is a large consensus in the community [3–7] that the
classical continuum theory can be recovered with a double limit of finer discretization and
vanishing h̄. This observation is supported by the emergence of Regge geometries and
the Regge action in the asymptotics of the 4-simplex vertex amplitude for large quantum
numbers [8,9] and the recent study of many vertices transition amplitudes.

The amount of calculations possible within the models recently grew considerably.
It was possible because of a paradigm shift in the field. It evolved from a theoretical
framework to circumvent the difficulties in imposing the Hamiltonian constraint in the
canonical approach [10] into a concrete tool where numerical calculations of transition
amplitudes are possible [11–17].

With increased interest in the field, its entry barrier also increased vastly. Getting into
spin foam is very difficult for a student or a researcher from a different field. There are plenty
of reviews [18,19] and excellent books [20] to study and learn the basic theory. On the other
end of the spectrum, we have plenty of advanced frontline papers that explore the connection
of spin foam with GR [3,6,21] or possible phenomenological implications [22–25].

We noticed a hole in the literature. There are no papers that give you all the tools
needed to complete a spin foam calculation, from its conception to the number. With this
paper, we guide the reader through the calculation of an EPRL transition amplitude in a
pedagogical manner. We use an explicit example to help them not feel disoriented dealing
with abstract concepts. We hope that this paper can fill that hole and open spin foam
calculation to a new generation of students and researchers.

To read this paper, advanced background knowledge on spin foam is not necessary.
However, a basic understanding of the topic is helpful. We think of this work as a guide for
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making spin foam calculations. We refer to targeted reviews of the EPRL model [18–20] for
a comprehensive discussion of its definition, motivation, and physical significance.

We start with a brief review of the construction of the spin foam theory and the
definition of the EPRL model in Section 2. In the rest of the paper, we show the reader
how to compute a spin foam transition amplitude associated with a triangulation of the
space-time manifold. We identify five necessary steps, each illustrated in a different section.

Step 1. Draw the 2-complex.
In Section 3, we describe how to build the 2-complex from the triangulation. It is
crucial in regularizing the gravitational path integral and writing a finite transi-
tion amplitude.

Step 2. Write the EPRL spin foam amplitude.
In Section 4, we give the prescription to write the transition amplitude associated
with a 2-complex, and we introduce a very convenient graphical method to repre-
sent the amplitude. For the calculation, we resort to a divide-and-conquer strategy.

Step 3. Divide the EPRL transition amplitude into vertex contributions.
In Section 5, we show how to divide any transition amplitude into vertex amplitudes.

Step 4. Compute the EPRL vertex amplitudes.
In Section 6, we discuss the calculation of the vertex amplitude in terms of SU(2)
invariants and booster functions.

Step 5. Use sl2cfoam-next to compute a number.
We perform the numerical evaluation of the amplitude in Section 7 using the
numerical library sl2cfoam-next and discuss the necessary approximations. In
this section, we also discuss and improve the extrapolation scheme discussed
in [13] as a tentative to lift, at least part of, the approximation used to calculate
the amplitude.

We complement our discussion with an explicit example. We compute the EPRL
transition amplitude based on the triangulation ∆4. It was considered first in [26] in
Lorentzian the spin foams. It is 2-complex that at the same time not trivial (with more than
one vertex), simple (with four vertices and some symmetry) but rich enough (with one
bulk face) to require a certain degree of optimization to compute the associated amplitude.
Moreover, in [26] coherent boundary data corresponding to a Lorentzian geometry was
provided, allowing semiclassical calculation with some ease that we leave to future work.

2. Overview of the EPRL Model

Spin foam theory is a promising approach to quantize gravity. The goal is to define
a path integral for general relativity in a non-perturbative and background-independent
way. The spin foam partition function assigns transition amplitudes between spin network
states, a basis of the Loop Quantum Gravity kinematical Hilbert space. For this reason,
spin foam theory gives a dynamic to Loop Quantum Gravity, and it is often referred to as
Covariant Loop Quantum Gravity [20].

In the Plebanski formulation of general relativity [27], we formulate gravity as a
topological BF theory with constraints [28]. The variables of the BF theory are a 2-form B
conjugated to a connection ω (with curvature F) 1.

General relativity is not topological, the simplictiy constraints reduce the B-field in BF
theory to a γ-simple 2-form B = ?e ∧ e + 1

γ e ∧ e , reducing the action to the familiar Holst
action [29].

The path integral of spin foam theory is regularized on a triangulation, more precisely
its 2-complex, to truncate the degrees of freedom. We discretize and quantize the topological
theory first. The B-fields are assigned to faces of the 2-complex, triangles, and encode their
geometry. The connection is regularized by considering only its holonomy g responsible
for the parallel transport along the (half-)edges of the 2-complex (from one tetrahedra to
another). The topological theory partition function consists of a collection of delta functions
imposing flatness of each face of the 2-complex.
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The partition function of the EPRL model is derived enforcing the simplicity con-
straints at the quantum level to reduce the topological theory to gravity. On a simplicial
triangulation, we have a linear version of the simplicity constraints: we require the propor-
tionality between the boost and rotation generators of SL(2,C) ~K = γ~L at the boundary
of any 4-simplex (vertex of the 2-complex). The generalization to arbitrary tessellation is
possible [30] but requires complications beyond this work’s scope. Therefore, we limit
ourselves to 4-simplices.

The key ingredient of the EPRL model is the Yγ map. It embeds the spin j SU(2)
representation into the lowest spin sector of the unitary irreducible representations in the
principal series of SL(2,C) labeled by ρ, k = γj, j.

We expand the BF theory partition function in terms of matrix elements of the
holonomies in irreducible rerpesentations of SL(2,C) Dρ,k

jmln(g). See Appendix B and
references therein for more details. The EPRL model prescription enforces the Yγ map at
every vertex of the 2-complex restricts the irreducible representations to γ-simple ones
Dγj,j

jmjn(g) [1].
If the 2-complex has a boundary, the spin foam partition function maps states from the

Loop quantum Gravity kinematical Hilbert space (identified with the boundary space of
the spin foam with the Yγ map) into the complex numbers (quantum transition amplitudes
between these states).

The EPRL spin foam partition function is given as a state sum over SU(2) spins j f on
the faces and intertwiners ie on the edges of the 2-complex:

Z∆ = ∑
j f ,ie

∏
f

A f (j f )∏
e

Ae(ie)∏
v

Av

(
j f , ie

)
, (1)

defined in terms of the face amplitude A f , and the edge amplitude Ae and the vertex
amplitude Av. Requiring the correct convolution property of the path integral at fixed
boundary, the form of the face amplitude A f (j f ) = 2j f + 1 and the edge amplitude
Ae(ie) = 2ie + 1 are fixed [31].

We will not give an explicit form of the amplitude for an arbitrary 2-complex. They
can be found in many references [1,18,20] if the reader is interested. Instead, we opt for a
constructive approach. In Section 4, we guide the reader through a set of rules to write
a general EPRL transition amplitude. In Section 5, we divide the transition amplitude in
vertex amplitudes. In Section 6, we discuss the explicit form of the vertex amplitude and
its form best suited for numerical calculations.

3. How-to Draw the 2-Complex

The spin foam partition function is regularized on the 2-complex of a triangulation of
the space-time manifold. Given a triangulation, we can build its 2-complex associating a
vertex to each 4-simplex.

Each 4-simplex shares a tetrahedron with an adjacent 4-simplex. We associate to each
tetrahedron of the triangulation an edge of the 2-complex. An edge connects two adjacent
vertices. Each triangle in a 4-simplex is shared by two tetrahedra, which are generally
shared with other 4-simplices. In the whole triangulation, a triangle can be shared by any
number of tetrahedra and 4-simplices.

We associate to each triangle of the triangulation a face of the 2-complex. A face can
contain any number of vertices and all the edges connecting them. We also assign an
orientation to the faces of the 2-complex. This choice is needed for a well-defined notion of
parallel transport (to identify the source and target of the holonomy uniquely).

Since two vertices share each edge for each of them, we can introduce two half-edges,
one associated with each vertex. We can still picture them as dual to the tetrahedron
but “seen” in the 4-simplex it belongs to. In each vertex in a given face there are two
half-edges. This is sometimes referred to as a wedge. The orientation of the face allows us
to identify one half-edge as the source tetrahedron (reference frame) and the other as the
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target tetrahedron (reference frame) of parallel transport along the face from the first one to
the last one. If a boundary is present, the edges intersected by the boundary are severed in
half, leaving only one half-edge in the skeleton.

We summarize the nomenclature introduced in this section in the following:

Triangulation 2-complex

4-simplex � Vertex

Tetrahedron � Edge

Triangle � Face

Tetrahedron within
4-simplex

� Half-edge

Oriented couple of
tetrahedra in the

same simplex

� Wedge

An Example: The ∆4 Triangulation

The triangulation is formed by four 4-simplices, all sharing a triangle. The triangula-
tion has seven points, nineteen segments, twenty-five triangles, sixteen tetrahedra (twelve
in the boundary and four in the bulk), and four 4-simplices. We label the points with
numbers from 1 to 7, segments with couples of different numbers (points), triangles with
triples of distinct numbers (the shared triangle is 123), tetrahedra with a quadruple of
distinct numbers, and 4-simplices with five distinct numbers. See Figure 1 for a pictorial
representation of the triangulation.

The 2-complex of the ∆4 triangulation has four vertices associated with a 4-simplex. It
has four internal edges, each associated with a tetrahedron shared among two 4-simplices.
There are also three external edges for each vertex. Each edge belongs to 4 faces, and each
face is associated with a triangle of the ∆4 triangulation. All triangles but one belong to the
boundary of the triangulation. Therefore all faces but one of the 2-complex are boundary
faces. The bulk face is associated with the triangle shared by all the 4-simplices. Thus, it is
crossing all four vertices. We label the 2-complex in the same way of the triangulation, see
Figure 2 for a representation.
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Figure 1. The ∆4 triangulation. The numbered circles correspond to points, while lines correspond to
segments. Each color corresponds to a different 4-simplex. The bulk triangle 123 is highlighted in red.
In the right panel, the 4-simplices are shown separately.

1234

12345 12347

12356 12367

1347

1247

2347

2367

1267

13671356

1256

1356

2345

1345

1245

1236

12371235

Figure 2. The 2-complex of the ∆4 triangulation. We named the vertices and the tetrahedra explicitly.
We avoided naming the faces explicitly not to clutter the figure. Three numbers label the faces. We
find a face’s name looking for the numbers in common to all the edges it belongs to. For example, the
tetrahedra 1234, 1235, 1236, and 1237 all share the face 123.

4. How-to Write the EPRL Spin Foam Amplitude

For each wedge we write a γ-simple unitary irreducible representation in the princi-
pal series of SL(2,C) (see Appendix B and reviews [32] and references therein for more
mathematical details).

Dγj,j
jm,jn(gw) , (2)

where j ∈ N/2 is a spin, γ is the Immirzi parameter coming from the simplicity con-
straints, m, n are magnetic indices m, n = −j,−j + 1 . . . , j − 1, j, and gw ∈ SL(2,C) is a
group element associated with the wedge. This restriction results from the weak quantum
implementation of the simplicity constraints in the EPRL spin foam model. The Yγ map is
responsible of this implementation and embeds the spin j SU(2) representation in SL(2,C)
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as in (2). The group element gw represents the holonomy responsible for the parallel trans-
port along the wedge from the reference system of the source tetrahedron to the reference
system of the target tetrahedron. We conventionally associate the row of the representation
matrix, the couple (j, m) in (2), to the target and the column, the couple (j, n) in (2), to the
source. In this way, the SL(2,C) γ-simple representation matrices inherit the orientation of
the 2-complex.

Instead of a group element for each wedge, we prefer to use a group element for each
half-edge. We replace gw → g−1

t gs where s and t are the source and target half-edges. This
choice of fundamental variables guarantees that the parallel transport on a closed path in a
vertex is trivial. In other words, the product of all the holonomies on the same closed path
is the identity 2 , or the holonomy is flat within a single vertex.

We set the spin j on each edge to be the same and contract the magnetic indices
m, n. At the end of this procedure, the only non-contracted magnetic indices are on
boundary half-edges. We prescribe them as part of the boundary data. A common choice
to describe boundary data is to contract these magnetic indices with intertwiners in the
recoupling basis or with coherent intertwiners if we are interested in representing some
semi-classical geometry.

We sum over all the possible spins j f associated with each closed face and we weight
the contribution of the face with the dimensional factor (2j f + 1) [31]

∑
j f

(2j f + 1) ∑
mw ,nw

(
∏

w⊂ f
D

γj f ,j f
j f mw j f nw

(gw)

)
, (4)

where the product is on all the wedges belonging to the face. On non closed-faces we assign
the spin as part of boundary data.

We integrate over the group element associated with each half edge using the Haar
measure of SL(2,C). For each vertex one integration is redundant and we remove it to
regularize the amplitude as prescribed in [33].

4.1. Graphical Notation

Writing all the constituent of an EPRL spin foam amplitude can quickly get out of
hand. To help us be precise and clear, we rely on a graphical notation. We introduce the
various elements as we need them. We represent a unitary irreducible representation in the
principal series of SL(2,C)as an oriented line. The row labels correspond to the start of the
line, and the column labels to the end of the line. We indicate the argument group element
in a box and decorate the line with the needed representation labels

Dρ,k
jmln(g) = g

l, n j,m

ρ, k

. (5)

We contract two representations summing over all the magnetic indices (both j and
m are magnetic numbers from the perspective of the infinite-dimensional irreducible
representations of SL(2,C)) by connecting the two lines. For example, in graphical notation,
the SL(2,C) representation property reads

Dρ,k
jmln(g2g1) = ∑

i≥k
|p|≤i

Dρ,k
jmip(g2)Dρ,k

ipln(g1) = g1g2
l, n j,m

ρ, k

= g1
l, n j,m

ρ, k

g2 . (6)
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We denote the implementation of the Yγ map (2) with a blue thick line that cuts across
the representation line:

Dγj,j
jmjn(g) = g

j

n m . (7)

If we apply the Yγ map (7) to the product g1g2 and use the decomposition (6), in the
graphical notation we have one blue line at both ends:

Dγj,j
jmjn(g1g2) =

j

n mg1 . (8)

The (infinite) sum over two pairs of magnetic indices is implied in graphical notation,
according to Equation (6). If we contract two representation lines with a Yγ map we only
sum over one pair of magnetic indices:

∑
|p|≤j

Dγj,j
jmjp(g2)Dγj,j

jpjn(g1) = g2 m

j

g1n . (9)

We denote with a thicker red line the sum over the spin associated with that represen-
tation j weighted by a dimensional factor (2j + 1):

∑
j
(2j + 1) ∑

m,n
Dγj,j

jmjn(g1)Dγj,j
jnjm(g2) =

g2g1
. (10)

The (tensor) product of two representations is represented as two lines side by side. If
the group element is the same we use a single box. Similarly for the Y-map, we use a single
line. When we draw a box in amplitudes, we will always imply the integration with the
Haar measure over the corresponding SL(2,C) group element:

∫
dgDγj1,j1

j1m1 j1n1
(g)Dγj2,j2

j2m2 j2n2
(g)Dγj3,j3

j3m3 j3n3
(g)Dγj4,j4

j4m4 j4n4
(g) = g

n1

n

j1
j2

j3
j4

n2

n3

n4

m1

m2

m3

m4

. (11)

4.2. An Example: Writing the ∆4 Amplitude

With the general recipe discussed in this Section and the corresponding graphical
representation, we write the ∆4 spin foam amplitude associated with the 2-complex in
Figure 2. We also inherit the naming convention from the 2-complex.
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A∆4 =

j123 j123

j123j123

g1235

g̃1235 g1237

g̃1237

g1234 g̃1234

12345

12356

g2356

j235

j235

j135

j135

j125

j125

j134 j134j124

j145

j245

j234

j345

j236

j356 j126

j124

j234

12347

g1347 g1247

g2347

j347

j127j137

j236

j137 j127

j237

j237

j126j136 j136

g2367

12367

j367

j156 j167

j267j256

j147

j247

i1267i1367

i2367

i1356i1256

i2356

i1347 i1247

i2347

i1245 i1345

i2345

(12)

To assign a unique name to all the SL(2,C) group elements, we denoted as g and g̃
the two group elements associated with the same (bulk) edge but belonging to different
vertices. We used a small abuse of notation in writing (12). Some group elements appears as
their inverse. To represent them as a single box we opted to not distinguish them. However,
following our conventions, the group element in the matrix element of a target half-edge
appears always as its inverse. For example, the half edge 1234 is the source of 234 and the
target of 134. The group element g1234 appears as Dγj234,j234(g1234) and Dγj134,j134(g−1

1234).
As mentioned above, we contracted all the boundary magnetic indices with four valent

intertwiners (12 in total) as part of the prescription of the boundary data. We chose the
same recoupling basis on each of them and kept the label generic for the moment (ie with e
a quadruple identifying a boundary tetrahedron).

We highlighted in red the bulk face (123), dual to the triangle 123 in the ∆4 triangula-
tion from Figure 1. According to Equation (10), we are implying a summation over the spin
j123 assigned to it weighted by a dimensional factor 2j123 + 1. As part of the boundary data,
we also prescribed all the spins associated with the boundary faces. We keep them generic
for the moment (j f with f a triple identifying a boundary triangle).

We regularized the amplitude removing one SL(2,C) integration for each vertex as
discussed above. In Equation (12) we indicate the removed integrals with a white box. This
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choice is arbitrary, and the amplitude value is independent of this choice. However, we can
use this arbitrariness to simplify the numerical computation (see Section 7) by making the
symmetric choice. The integral removed is always opposite to the two bulk half edges and
the bulk edge (123).

5. How-to Divide the EPRL Transition Amplitudes

Approaching the calculation of the full amplitude is an arduous task. The group
matrix elements in unitary representations are highly oscillating functions. The integrals
are group integrals over many copies (sixteen in our example) of six-dimensional non-
compact groups. We divide the transition amplitude into smaller and more manageable
components and compute them serialized. This approach is the most advantageous if your
goal is to obtain a number from the computation of a transition amplitude. However, this
could be suboptimal for semiclassical calculation due to the number of components.

Without any loss of generality, we insert a resolution of the identity over the intertwiner
space between every two vertices of (12).

g̃1234g1234

j123

j234

j134

j124

i1234 . (13)

We rewrite the resolution of the identity over the intertwiner space as an integral over
SU(2) of four matrix elements (A23). We commute the SU(2) integral with the Yγ map and
bring the SU(2) group element in the SL(2,C) representation.

g̃1234
g1234u

j123

j234

j134

j124

. (14)

Finally, we use the invariance property of the SL(2,C) Haar measure to reabsorb the
SU(2) group element with a change of variable, obtaining the original spin foam edge.

g̃1234
g1234

j123

j234

j134

j124

. (15)

An Example: Decomposing the ∆4 Amplitude

If we divide the ∆4 amplitude (12) inserting 4 resolutions of the identity (each one
between two different vertices), the latter decomposes into a linear combination of the
product of four amplitudes. That is, one per vertex. These amplitudes are commonly known
as vertex amplitudes. Using the graphical representation, we write the full ∆4 transition
amplitude as:
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A∆4 = ∑
l f

j123 j123

j123j123

g1235

g̃1235

g̃1237

g1234 g̃1234

g̃1236 g1236

12345

12356

g2356

j235

j235

j135

j135

j125

j125

j134 j134j124

j145

j245

j234

j345

j236

j356 j126

j124

j234

12347

g1347 g1247

g2347

j347

j127j137

j236

j137 j127

j237

j237

j126j136 j136

g2367

12367

j367

j156 j167

j267j256

j147

j247

i1267i1367

i2367

i1356i1256

i2356

i1347 i1247

i2347

i1245 i1345

i2345

i1235 i1237

i1234

i1236

. (16)

By separating the vertices as in (16), we have transformed the problem of calculating
the full amplitude into the computation of the single building blocks: the vertex amplitudes.

6. How-to Compute the EPRL Vertex Amplitudes

In this section, we will focus on contributions local at the vertices. For concreteness,
we model the definition of the vertex amplitude on the (12345) vertex in the example (12).

Av12345 =

j123

g1235

g1234

j235

j135j125

j134j124

j145

j245

j234

j345

i1245 i1345

i2345

i1235

i1234

. (17)

In Equation (17) we contracted the magnetic indices of the bulk edges (1234) and
(1235) with two intertwiners, labelled by i1234 and i1235. We will see in the next section why
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this choice is natural, and we are not losing any generality. Remember that we regularized
the amplitude by fixing the group element g1245 = 1, graphically denoting such element by
leaving it blank.

Consider the contribution from the wedge (234). We use the representation property
to separate the matrix elements corresponding to the two group elements.

Dγj234,j234
j234m′234 j234n234

(g−1
2345g1234) = ∑

|l234|≥j234

∑
|n234|≤l234

Dγj234,j234
j234m′234l234n234

(g−1
2345)Dγj234,j234

l234n234 j234m234
(g1234) (18)

= g2345
j234 j234l234

g1234 .

The inverse g2345 is due to the orientation of the wedge (234) and the conventions we
are adopting.

To help the reader remember about the extra summation introduced by the represen-
tation property, we wrote spin l234 even if we are summing over it. This summation is
bounded from below by j234 but is unbounded from above. It is a consequence of the non-
compactness of the group (all unitary irreducible representations are infinite-dimensional).
Each group element appears as the argument of four matrix elements. For example, g1234
appears in the matrix elements

l123

g1234

l234

l134

j124

i1234

j123

j234

j134

j124

. (19)

On the face (124) there is no sum over the spin l124, as a consequence of the regulariza-
tion choice g1245 = 1 and the presence of the Yγ map on the half-edge (1245).

We parametrize each Lorentz transformation (SL(2,C) group element) with an arbi-
trary rotation (SU(2) group element) followed by a boost in a conventional direction (the
3 direction in our case) and another arbitrary rotation: the Cartan parametrization (A35) of
SL(2,C). The representation matrices decompose as (A35) and the Haar measure factor-
izes as in (A36). We divide the contribution of the integral on the half-edge (1234) to the
amplitude into

l123

v1234

l234

l134

j124

l123

l234

l134

j124

j123

u1234

j234

j134

j124

i1234

j123

j234

j134

j124

r1234 . (20)

The matrix elements of u1234 and v1234 are SU(2) matrix elements elements (A38).
We represent the integral over the rapidity r1234 of the product of four reduced matrix
elements (A40) as a white oval. We wrote the arguments explicitly to help the reader
to visualize the parametrization. In the following, we will omit the name of redundant
integration variables.
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The Y map commutes with SU(2) group elements. Therefore, we move it next to the
rapidity integral. We perform the integrals over SU(2) (A25) in terms of (4jm) symbols.
The contribution to the amplitude from the half-edge (20) is

, (21)

where the thicker red line represent a summation over the corresponding label weighted
by a dimensional factor as in (10).

The contraction of two (4jm) symbols obey the orthogonality condition (A27) and
allows us to remove the summation over i′1234

i1234

j123

j234

i′
1234

j134

j124

= (−1)2j234
δi′1234i1234

2i1234 + 1
. (22)

where the phase (−1)2j234 is a consequence of the different orientation of the link (A13).
We define the booster functions Bγ

4 as the result of the integral

Bγ
4 (j1, j2, j3, j4, l1, l2, l3, l4; i, k) =

l1

l2

l4

l3

j1

j2

j4

j3

k i (23)

= ∑
p1,p2,p3,p4

(
l1 l2 l3 l4
p1 p2 p3 p4

)(k)
∫ ∞

0
dr

1
4π

sinh2 r
4⊗

f=1

d
γj f ,j f
l f j f p f

(r)

( j1 j2 j3 j4
p1 p2 p3 p4

)(i)

.

The booster functions were first introduced in [34], numerically computed in [12,35],
analytically evaluated in terms of complex gamma functions [36,37], and they have an
interesting geometrical interpretation in terms of boosted tetrahedra [38]. The booster
functions encode how the EPRL model imposes the quantum simplicity constraints and
depend on the Immirzi parameter γ. Note that, in the definition (23), we dropped the
information on the orientation of the faces. The orientation of the faces in the booster
function is irrelevant. The effect of orientation change of the (4jm) symbols cancels exactly
the effect of orientation change of the reduced density matrices of SL(2,C), as we discuss
in Appendix B. Using this definition, we can write (19) in terms of the booster functions as:

. (24)
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We compute the contribution to the amplitude from all other half edges of (12345)
with the same prescription. The (4jm) symbols in (24) contracts among themselves and
form a {15j} symbol of the first kind (A30).

Av12345 = (−1)2j135+2j234 ∑
l f

. (25)

The sum over spins l f are only bounded from below (e.g., l123 ≥ j123) and the inter-
twiners ke are bounded by the triangular inequalities of the (4jm) symbols. To complete
the calculation we recognize the SU(2)invariant as a canonical {15j} symbol of the first
kind (A30). The vertex amplitude is

Av12345 = (−1)2j135+2j234 ∑
l f


i1245 j124 k1234 l234 k2345
j145 l134 l123 l235 j245
l345 k1345 l135 k1235 j125

 (26)

Bγ
4 (j235, j234, j345, j245, l235, l234, l345, j245; i2345, k2345)

Bγ
4 (j123, j135, j125, j235, l123, l135, j125, l235; i1235, k1235)

Bγ
4 (j134, j124, j234, j123, l134, j124, l234, l123; i1234, k1234)

Bγ
4 (j145, j345, j135, j134, j145, l345, l135, l134; i1345, k1345) .

In general one need to change the orientation of some links to obtain the canonical
{15j} symbol using (A13) to compute the relative phase.

We rewrote the vertex amplitude (17) as a combination of a canonical {15j} symbol
weighted by four booster functions.

7. How-to Calculate Numbers

In the previous Section, we completed the formal evaluation of the amplitude. If we
are satisfied with the expression (16) we can stop here. A few more steps are needed if we
want to translate it into a number. We decompose each vertex amplitude in (16) as in (25).
By doing so, we finally write the ∆4 transition amplitude in the appropriate form for a
numerical evaluation:
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A∆4 = ∑
l f

i1237

i1234

l123

l136

l235

j256

j156
i1256

i1236
i2356

i1356

l236

j126

j125 l135

l356

l123l235

l134

j145

j245

i1245

i1235

i1345

i2345

l135j125

j124

l234

l345

l123

l134

l237

j247

j147
i1247

i2347

i1347

l234

j124

j127l137

l347

l123 l237

l136

j167

j267

i1267

i1367

i2367

l137 j127

j126

l236

l367

j123

j123

j123

j123

. (27)

In this paper, we rely on the library sl2cfoam-next to perform the numerical evalua-
tion of the EPRL spin foam amplitude. The code discussed in this Section is available in the
repository in the form of notebooks [39].

7.1. Historical Overview

The development of a library for the numerical computation of the Lorentzian EPRL
4-simplex vertex amplitude started with sl2cfoam [40]. The library is coded in C and is
based on the decomposition of the vertex amplitude (26) in terms of booster functions.
We refer to the original paper [12] for a detailed discussion of the library’s performances,
accuracy, and memory management.

The library computes the SU(2) invariant symbols using wigxjpf [41]. The invariants
are stored efficiently in custom hash tables based on khash [42] that takes into account their
symmetry properties.

sl2cfoam computes the booster functions performing a numerical integration of the
boost matrix elements (23). The integrand is rewritten as a finite sum of exponentials
with complex coefficients to tame its highly oscillating behaviour. One obtains the booster
function from the interference of many exponential integrals done with the trapezoidal rule.
In order to reach enough numerical precision, the authors employed arbitrary precision
floating point computations with the GNU libraries GMP [43], MPFR [44] and MPC [45].
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The library was used to explore the numerical properties of the EPRL vertex [3,11,14,46].
The need for a much more efficient and accurate code immediately became clear, as the
computational time for more complex amplitudes was definitely out of reach.

Recently sl2cfoam-next [47], the evolution of sl2cfoam, has been released. Further-
more, the new library is written in C, but it has an optional julia interface [48] which hugely
simplifies its usage. Although sl2cfoam-next computes the Lorentzian EPRL vertex ampli-
tude in the form Equation (26), it introduces several ideas and techniques borrowed from
High-Performance Computing and tensor networks. Therefore, with respect to the original
version, it represents a significant improvement in performance and precision. We refer
to [35] for its complete description and several usage examples.

The numerical integration of the booster functions is performed with the Gauss–
Kronrod quadrature method after a weighted sub-intervals decomposition of the integra-
tion range. Furthermore, for technical reasons, the γ-simple unitary irreducible represen-
tations in the principal series of SL(2,C) are slightly different from (2) as it uses Dγ(j+1)j

instead of Dγjj.
The huge number of sums and products involved in the expression (17) is performed

with optimized routines for multidimensional arrays multiplications (we will refer to them
loosely as tensors in the informatics sense), such as BLAS [49] and MKL. For the description
of the CPU parallelization scheme adopted, we refer to [35]. It has been recently introduced
the possibility to offload tensor contractions to the GPU and parallelize them over the GPU
cores with the CUDA platform by using the julia package CUDA.jl [50,51].

7.2. Introducing the Cut-Off

The vertex amplitude (26) is made of three distinct elements: the {15j} symbol, the
booster functions and the combination of two together. The formula (26) is exact and
sl2cfoam-next can compute its constituents to very high numerical precision. However,
the sums over the spins l f , that appear in (26) due to the split of the representation matrix
elements on the wedges, are bounded from below but not from above. This means that
in order to extract a number from (26) we need to make an approximation and cut-off the
6 unbounded sums in the vertex amplitude. While unbounded the sums are convergent
because the vertex amplitude is finite [33]. Therefore, in principle, it is possible to find a
cut-off large enough to capture the value of the amplitude with the desired precision.

The library sl2cfoam-next implement an homogeneous cut-off ∆l on all the un-
bounded summations. We replace the sums

∞

∑
l f =j f

−→
j f +∆l

∑
l f =j f

. (28)

Unfortunately, we do not have a prescription to find the optimal value of ∆l. Numerical
explorations show that it depends on the details of boundary data, such as the face spins j f
and the Barbero-Immirzi parameter γ. At the moment, the best consolidated strategy is to
set ∆l as large as possible and estimate the error by studying the value of the amplitude
A∆4(∆l) as a function of the cut-off.

Recently [13] introduced an extrapolation scheme to overcome the enormous compu-
tational cost represented by indefinitely increasing ∆l. The extrapolation algorithm was
used to calculate the self-energy spinfoam amplitude (see [46,52]), which is a divergent
amplitude since it contains a bubble. Furthermore, we mention that the implementation of
Markov Chain Monte Carlo methods in the study of spinfoams based on the techniques
discussed in this paper is in progress [25].

7.3. Using the sl2cfoam-next

Before any calculation we need to import the sl2cfoam-next library and initialize it.
In the blocks of code of this Section, we will imply that the library is correctly initialized
first, and we omit the following code. We report the code initialization in Listing 1.
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We set the value of the Immirzi parameter to 1.2 (for historical reasons, any value is
equally possible). We define a data folder that is used both to look for the fastwigxj tables
and to store the computed data optionally. In this way, we avoid recomputing the same
vertex amplitude for a second time. We refer to the documentation of sl2cfoam-next and
the accompanying paper [35] for a detailed description of all the setup options.

7.4. Computing One Vertex

We find very valuable to dedicate this paragraph to show how to use the julia fron-
tend of sl2cfoam-next to compute the EPRL vertex amplitude. We use the amplitude (26)
as reference. We provide some jupyter notebooks 3 in the Git repository [39], for interac-
tive usage examples that the reader can compile and execute. In the Listing 2 we show an
essential schematic representation of the code in Listing 2.

We are omitting the initialization code in Listing 1. In lines 1–2, we specify the
boundary data (all the spins equal to 1) and the cut-off ∆l = 15. In line 3, we compute
the amplitude. The function vertex_compute returns a tensor with five indices, one per
intertwiner, computing the vertex amplitude (25) (without any phase) for all possible
values of boundary intertwiners. In [39], we show how to compute a restricted range of
boundary intertwiners.

Listing 1. Initialization of sl2cfoam-next.� �
1 using SL2Cfoam
2 Immirzi = 1.2
3 sl2c_data_folder = ``$(path_to_library_data_folder)''
4 sl2c_configuration = SL2Cfoam.Config(VerbosityOff, VeryHighAccuracy, 100, 0)
5 SL2Cfoam.cinit(sl2c_data_folder, Immirzi, sl2c_configuration)� �

The @time macro is used for logging purposes, tracking the computational time and
memory usage. At fixed boundary spins and Immirzi parameter, the computation time
depends on several parameters such as the value of the cut-off ∆l and the accuracy level at
which the library is set. With the parameters specified in Listing 1, the first time that line 3
of Listing 2 is run takes 158 s. The computation time decreases exponentially by selecting
a lower cut-off ∆l. We tested this code on a laptop with Intel(R) Core(TM) i7-10750H
2.60 GHz processor. The library distributes the workload on the available cores, according
to the parallelization scheme discussed in [35]. If we store the required booster functions
during the first computation, the second time we run the script takes 3.2 s. It is the time to
compute, sum, and contract all the required {15j} symbols in the expression (25). Finally,
If we store the full vertex amplitude, the computation time is negligible since nothing is
calculated, and we retrieve the value from memory.

Listing 2. Computation of a vertex amplitude with sl2cfoam-next.� �
1 Dl = 15
2 spins = j245, j125, j124, j145, j235, j234, j345, j123, j135, j134 = ones(10)
3 @time vs. = vertex_compute(spins, Dl);� �

If we are interested in one single vertex amplitude this is all we need to do.

7.5. An Example: Computing the ∆4 Amplitude with sl2cfoam-next

We split the computation of the amplitude (27) into two steps. First, we compute
and save the value of all the necessary vertices. Then, we contract the required vertices to
calculate the ∆4 amplitude. For simplicity, we fix all boundary spins j equal to 1. The bulk
spin j123 assumes values from 0 to 3j, while bulk intertwiners i1234, i1235, i1236, and i1237
assume values compatible with triangular inequalities. With the regularization choices we
did, the vertex amplitudes are fully symmetric. That is, the bulk spin and bulk intertwiners
always appear in the same position in each of the four vertices. Therefore, it is sufficient to
compute only a single vertex amplitude for all the possible values of spins and intertwiners.
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To keep the computational time reasonable, we fix the cut-off ∆l to 15. We analyze the
dependence of the amplitude on this cut-off in the next step. We report the code in Listing 3.

In lines 2–3, we set all boundary spins equal to 1 and the cut-off ∆l = 15. In lines 4–6,
we create the directory path to organize the files containing the computed amplitudes. In
line 7, we define the range of the bulk spin, and from line 8, we loop over it. In lines 9–12,
we assign the vertex amplitude’s spins, compute the vertex amplitude, and save it for
later use. Notice that we are computing the fulltensor vertex amplitude, namely for all
the possible values of boundary intertwiners. This ensures that the ∆4 amplitude can be
calculated for any combination of the latter.

Finally we compute the whole amplitude (27) by assembling all the vertices. We report
the corresponding code in Listing 4. One of the main advantages of collecting the vertex
amplitudes in multidimensional arrays is that there are very efficient methods to multiply
(or “contract”) the latter. For the application we discuss in this work it is unnecessary
to improve upon a for loop, but julia offers the possibility to perform contractions in a
wonderfully efficient and simple way, possibly using the GPU. See for example the method
contract, provided in sl2cfoam-next to contract vertices with coherent boundary states.
Alternatively, there are packages such as LoopVectorization.jl (see [53] for an example)
or libraries like ITensor [54]. In Listing 4, we are assuming that all the variables defined in
Listing 3 are available.

Listing 3. Computation of all the vertex amplitudes needed in the computation of the transition
amplitude (27).� �

1 using JLD2
2 j = 1
3 Dl = 15
4 root_dir = pwd()
5 vertex_path = ``$(root_dir)/vertex_ampls/Immirzi_$(Immirzi)/j_$(j)/Dl_$(Dl)''
6 mkpath(vertex_path)
7 j_bulk_min, j_bulk_max = 0, 3j
8 for j_bulk = j_bulk_min:j_bulk_max
9 spins = [j, j, j, j, j, j, j, j_bulk, j, j]

10 vs. = vertex_compute(spins, Dl)
11 vertex = v.a
12 @save ``$(vertex_path)/j_bulk_$(j_bulk)_fulltensor.jld2'' vertex
13 end� �

Listing 4. Computation of the transition amplitude (27). All the vertex amplitudes are pre-computed.� �
1 i_b = 2
2 i = i_b + 1
3 D4_amp = 0.0
4 for j_bulk = j_bulk_min:j_bulk_max
5 fulltensor_to_load = ``$(vertex_path)/j_bulk_$(j_bulk)_fulltensor.jld2''
6 @load ``$(fulltensor_to_load)'' vertex
7 D4_partial_amp = 0.0
8 D = size(vertex[i,:,:,i,i])[1]
9 for i_1234 in 1:D, i_1235 in 1:D, i_1236 in 1:D, i_1237 in 1:D

10 @inbounds D4_partial_amp += vertex[i,i_1234,i_1235,i,i]*vertex[i,i_1235,i_1236,i,i]*
11 vertex[i,i_1236,i_1237,i,i]*vertex[i,i_1237,i_1234,i,i]
12 end
13 D4_partial_amp *= (2j_bulk + 1)
14 D4_amp += D4_partial_amp
15 end
16 @show D4_amp� �

In lines 1–2, we define the boundary intertwiners. For simplicity, we pick them all
equal to 2, but any other choice is also possible. Notice that in julia the vector’s index
starts from 1. Therefore, we shift its value. In line 3, we initialize the variable that will
contain the amplitude. From line 4, we loop over all the possible values of the bulk spin. In
lines 5–6, we load the precomputed amplitude. In line 7, we initialize the variable to store
the partial amplitude. The partial amplitude is the quantity in (27) at fixed value of the
bulk spin j123. From lines 8 to 12, we sum over the bulk intertwiners the product of the four
vertex amplitudes. In line 13, we add the dimensional factor to the full amplitude value,
that we display in line 16.
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7.6. Results and Extrapolation

We summarize the result of our calculation in Table 1 and Figure 3.

Table 1. Numerical values of the amplitude A∆4 (∆l) in function of the cut-off.

∆l 0 1 2 3 4 5 6 7
A∆4 (∆l)× 1036 0.202 1.09 2.03 2.59 2.90 3.09 3.21 3.29

∆l 8 9 10 11 12 13 14 15
A∆4 (∆l) 3.36 3.40 3.44 3.47 3.50 3.51 3.53 3.54

Figure 3. Amplitude A∆4 (∆l) in function of the cut-off.

Looking at the plot in Figure 3 seems reasonable to deduce that by increasing the
cut-off ∆l, the value of the amplitude grows and (asymptotically) converges to the value of
the amplitude. In the first numerical works based on sl2cfoam and st2cfoam-next [3,11]
the amplitude was approximated using the value with largest available cut-off. However,
we have way more information (convergence, trends, speed). Is it possible to better estimate
the amplitude with what we have?

We use series acceleration techniques. We reorganize the sums in the amplitude such
that it takes the form

A∆4(∆l) =
∆l

∑
n=0

an , (29)

where a0 is the amplitude with vanishing cut-off ∆l = 0 (also called simplified model in [34]),
a1 encodes all the terms in the various sums of A∆4 that appears in the amplitude cut-off
∆l = 1 but are not in a0, and so on. The whole amplitude is recovered in the limit for
infinite cutoff of (29).

While recast in this form, we can apply techniques to estimate the value of numerical
convergent series like the one in Appendix C. A similar approach was attempted in [13],
and here we improve it and clarify it. The technique is analog to the Aitken delta-squared
process [55] applied the the succession of the partial sum (29).

Since the amplitude is finite, the infinite cutoff limit of (29) exists, and the series
defined in this way is convergent. We will assume that the ratios an/an−1 are increasing
(from a certain point onward). This assumption is backed up by numerical evidence (up to
the available cutoff). The lower bound estimate in (A50) specialized for the series (29) is
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A∆4 '
A∆4(∆l)A∆4(∆l − 2)− A2

∆4
(∆l − 1)

A∆4(∆l)− 2A∆4(∆l − 1) + A∆4(∆l − 2)
=

A∆4(15)A∆4(13)− A2
∆4
(14)

A∆4(15)− 2A∆4(14) + A∆4(13)
≈ 3.61× 10−36 , (30)

where we specified the largest maximum value of the cut-off we computed, which is
∆l = 15. The estimate (30) is significantly different from A∆4(15) and does not require any
additional calculation or resources. The lower bound (30) is analogous to the approximation
we can obtain with the Aitken’s delta-squared process. With (A50) we also obtain an upper
bound to the amplitude.

A∆4 /
A∆4(∆l)− A∆4(∆l − 1)L

1− L
=

A∆4(15)− LA∆4(14)
1− L

≈ 3.74× 10−36 , (31)

where L = lim∆l→∞ an/an−1 which we estimate numerically with a inverse power law fit
as in the example in Appendix C. We stress that the validity of this upper bound needs to
be taken with a grain of salt since approximating the value of L can falsify the inequality
in (31). Summarizing,

A∆4 ∈ (3.61× 10−36,≈ 3.74× 10−36) . (32)

We plot in Figure 4 the amplitude together with the bound obtained from (30) and (31)
to appreciate the improvement to the rough estimate A∆4(15).

Figure 4. Amplitude A∆4 (∆l) in function of the cut-off with the band (32) highlighted in blue. We
excluded the points ∆l < 5 for a better plot scale.

Computational resources are precious. Up to this point, all the calculations we pro-
posed can be done on a standard laptop. How much can we improve the estimate by
increasing the cut-off using High Performance Computing? We used Compute Canada’s
Narval cluster to increase the cut-off from 15 to 25. The computation was distributed on
80 tasks with 10 CPUs per task, requiring about 8 min. The script used can be found in [39].
These were the resources we could employ in this project. There is still a big room for
easy improvement.

Repeating the estimate process, we find new upper and lower bounds.

A∆4 ∈ (3.63× 10−36,≈ 3.69× 10−36) . (33)
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The lower bound is marginally improved, as expected by comparing the numerical
values in Table 2 to the ones in Table 1. However, the improvement on the upper bound is
significant. Having more points to extrapolate the limit of the ratios L is essential. We plot
in Figure 5 the result of the calculation.

Table 2. Numerical values of the amplitude A∆4 (∆l) in function of the cut-off.

∆l 16 17 18 19 20 21 22 23 24 25

A∆4 (∆l)× 1036 3.55 3.56 3.57 3.58 3.58 3.59 3.59 3.60 3.60 3.61

Figure 5. Amplitude A∆4 (∆l) in function of the cut-off with the band (32) highlighted in purple and
the band (33) highlighted in green.

The calculation we proposed is not limited to our choice of boundary data. Using the
same technique and adapting the code we compute also the value of the A∆4 amplitude for
boundary intertwiners ib = 1, 0 and for other values of the Immirzi parameter γ = 1, 0.1.
We summarize the results in Table 3

Table 3. Numerical calculation of the amplitude A∆4 with different boundary data. The boundary
spins are all equal j = 1 and the cut-off ∆l = 25.

A∆4(25) A∆4(25)

γ = 1.2, ib = 1 5.06× 10−37 (5.09× 10−37, 5.11× 10−37)
γ = 1.2, ib = 0 1.90× 10−37 (1.92× 10−37, 2.17× 10−37)

γ = 1.0, ib = 2 9.44× 10−34 (9.51× 10−34, 9.90× 10−34)
γ = 1.0, ib = 1 1.49× 10−34 (1.50× 10−34, 1.53× 10−34)
γ = 1.0, ib = 0 4.95× 10−35 (5.01× 10−35, 8.50× 10−35)

γ = 0.1, ib = 2 4.28× 10−24 (4.33× 10−24, 5.49× 10−24)
γ = 0.1, ib = 1 1.24× 10−24 (1.26× 10−24, 1.64× 10−24)
γ = 0.1, ib = 0 2.33× 10−25 (2.38× 10−25, 2.79× 10−25)
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Appendix A. SU(2) Toolbox

The group SU(2) is the group of 2× 2 complex matrices with unit determinant that
satisfy the unitarity condition

det(u) = 1 , and u−1 = u† , ∀u ∈ SU(2) . (A1)

The group is homomorphic to the rotation group SO(3) and is generated by the
angular momentum algebra Li with i = 1, 2, 3 satisfying the commutation relations[

Li, Lj
]
= iεijkLk . (A2)

In the fundamental representation Li = σi/2 where σi are the standard Pauli matrices.
The Casimir operator is L2 = ~L ·~L and the unitary irreducible representations are labeled
by a spin j ∈ N/2 a half-integer and are 2j + 1 dimensional. The canonical basis for these
representations diagonalizes the operator L3

L2|j, m〉 = j(j + 1)|j, m〉 , L3|j, m〉 = m|j, m〉 . (A3)

In this basis the matrix elements of the group are given by the Wigner matrices

Dj
mn(u) ≡ 〈j, m|u|j, n〉 . (A4)

Their explicit expression and properties can be found in [56] and we will not report them.
In this work, we compute integrals of products of SU(2) representation matrices in

terms of SU(2) invariants. We will introduce the minimal amount of tools needed and
the graphical method to perform the calculations. We do not want to provide a complete
introduction to recoupling theory and its graphical method that are worth books and
reviews on their own [32,57,58]. We use a graphical notation that is completely analogous
to the one introduced in Section 4.

We associate an oriented line to each SU(2) representation matrix. We decorate the
line with a spin label and a box containing the group element

Dj
mn(u) = u

n m

j1
. (A5)

qiss.fr
www.computecanada.ca
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We contract two representations summing over the magnetic indices by connecting
the two lines. We compute the integral over SU(2) using the unique invariant measure
over the group (the Haar measure du [32]). The explicit form of the measure depends on
the parametrization used for the group. We collect the boxes corresponding to the same
group elements. In the following, we will always imply the integration over all the group
elements in the boxes.

The integral of the product of two representation matrices is given by

∫
duDj1

m1n1(u)Dj2
m2n2(u) =

1
2j1 + 1

δj1 j2(−1)2j1−m1−n1 δ−m1m2 δ−n1n2 =
1

2j1 + 1
δj1 j2 ε

j1
m1m2 ε

j1
n1n2 , (A6)

where we defined the tensor ε
j1
m1m2 ≡ (−1)j1−m1 δ−m1m2 , the unique invariant tensor in the

product of two j1 representations. The ε tensor squares to

∑
m2

ε
j1
m1m2 ε

j1
m2m3 = ∑

m2

(−1)j1−m1 δ−m1m2(−1)j1−m2 δ−m2m3 = (−1)2j1−m1+m3 δm1m3 = (−1)2j1 δm1m3 , (A7)

and has the symmetry property ε
j1
m1m2 = (−1)2j1 ε

j1
m2m1 . We use the graphical representation

to write (A6) as

u

j1

j2

=

j1

1

2j1+1
δj1j2 . (A8)

The invariance property of the tensor ε
j1
m1m2 means

∑
n1,n2

Dj1
m1n1(u)Dj1

m2n2(u)ε
j1
n1n2 = ε

j1
m1m2 . (A9)

From (A9) we can derive the property of Wigner matrices

∑
m2n2

ε
j1
n1m2 ε

j1
m1n1 Dj1

m2n2(u) = Dj1
m1n1(u

−1) . (A10)

Using this property we can also perform integrals where an inverse group element appears

∫
duDj1

n1m1(u
−1)Dj2

m2n2(u) = u

j1

j2

=

j1
1

2j1+1
δj1j2 =

1

2j1+1
δj1j2

j1

(A11)

=
1

2j1 + 1
δj1 j2 δm1m2 δn1n2 . (A12)

For simplicity, we will merge the ε tensors with the box in the following. At first
sight, it could appear as an ambiguity since one line will have a group element u in the
box, while the line with the opposite orientation u−1 and there is no indication of which is
which. However, we are integrating over u. Therefore, the name we give the group element
is irrelevant. The important information is contained in the relative polarity: one group
element is the inverse of the other.
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Using this convention and the square property (A7), in any closed diagram, inverting
the orientation of a line (without group elements) results into a phase (−1)2j.

=

j j

(−1)2j = (−1)2j

j

. (A13)

The integral of the product of three representation matrices is given by

∫
duDj1

m1n1(u)Dj2
m2n2(u)Dj3

m3n3(u) =
(

j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
n1 n2 n3

)
. (A14)

The tensors appearing in (A14) are the Wigner (3jm) symbols, the unique invariant
tensor (or three valent intertwiner) in the tensor product of three SU(2) representations.

∑
n1,n2,n2

Dj1
m1n1(u)Dj2

m2n2(u)Dj3
m3n3(u)

(
j1 j2 j3
n1 n2 n3

)
=

(
j1 j2 j3

m1 m2 m3

)
. (A15)

The (3jm) has the following symmetry properties (see [32,56,58] for an exhaustive list)(
j1 j2 j3
n1 n2 n3

)
=

(
j2 j3 j1
n2 n3 n1

)
= (−1)j1+j2+j3

(
j1 j3 j2
n1 n3 n2

)
, (A16)

and vanishes unless the selection rules are satisfied

m1 + m2 + m3 = 0 , |j1 − j2| ≤ j3 ≤j1 + j2 , j1 + j2 + j3 ∈ N . (A17)

In the graphical representation (A14) is

u

j1

j3
=

j2

j1

j3

j2

j1

j3

j2 , (A18)

where for the (3jm) symbol

(
j1 j2 j3

m1 m2 m3

)
=

j1

j3

j2 , (A19)

we read the spins in clockwise order if all the arrows are outgoing and in anti-clockwise
order if all the arrows are ingoing. In the standard SU(2) graphical calculus, this is usually
indicated with a sign next to the node [56–58]. For our calculations, this is unnecessary, and
we avoid adding this extra layer of complexity. Similarly to (A11) we have

∫
duDj1

n1m1(u
−1)Dj2

m2n2(u)Dj3
m3n3(u) =

u

j1

j3
=

j2

j1

j3

j2

j1

j3

j2 = (A20)

(−1)j1−n1

(
j1 j2 j3
−n1 n2 n3

)
(−1)j1−m1

(
j1 j2 j3
−m1 m2 m3

)
.
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The (3jm) satisfy the orthogonality relation

∑
m2,m3

(
j1 j2 j3

m1 m2 m3

)(
j′1 j2 j3

m′1 m2 m3

)
=

j2

j3

j1 j′
1

=
1

2j1 + 1
δj1 j′1

δm1m′1
, (A21)

and are normalized to 1

∑
m1,m2,m3

(
j1 j2 j3

m1 m2 m3

)(
j1 j2 j3

m1 m2 m3

)
=

j1

j3

j2
= 1 . (A22)

We also compute the integral of the product of four representation matrices with the
tools we provided using a trick

∫
duDj1

m1n1(u)Dj2
m2n2(u)Dj3

m3n3(u)Dj4
m4n4(u) =

∫
dudvs.Dj1

m1n1(u)Dj2
m2n2(u)δ(uv−1)Dj3

m3n3(v)Dj4
m4n4(v) , (A23)

where we doubled the number of integrals inserting a delta function. The delta function
can be expanded as a sum of Wigner functions [20]

δ(uv−1) = ∑
i
(2j + 1)∑

m
Di

mm(uv−1) = ∑
i
(2i + 1) ∑

m,n
Di

mn(u)Di
nm(v

−1) . (A24)

Using the graphical representation and the properties (A15) and (A20) we
compute (A23)

u

j1

j3

j2

j4

=u

j1

j2

i

j3

j4

=

j1

j2

j4

j3

i , (A25)

where we used a red thick line to imply a summation weighted by the dimensional factor
(2i + 1) and we define the (4jm) symbols (invariant tensor or four valent intertwiner) as

j1

j2

j4

j3

i =

(
j1 j2 j3 j4

m1 m2 m3 m4

)(i)

= ∑
m
(−1)i−m

(
j1 j2 i

m1 m2 m

)(
i j3 j4
−m m3 m4

)
. (A26)

The way we grouped representations together in (A23) is completely arbitrary. The
definition (A26) corresponds to the choice of coupling (also called recoupling basis) of
the representation of spins j1 and j2 (ore equivalently spins j3 and j4). The orthogonality
condition (A21) of the (3jm) symbols imply the normalization of the (4jm) symbols
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j1

j2

j4

j3
i k = 1

2i+1
δik

j4

j3

i

= (−1)2i 1

2i+1
δik

. (A27)

The contraction of two (4jm) symbols in different recoupling basis forms another
notable SU(2) invariant called the {6j} symbol.

j1

j2

j4

j3

i k = (−1)j2+j3+i+k
{

j1 j2 i
j4 j3 k

}
. (A28)

The {6j} symbol in terms of (3jm) symbols can be written in a canonical from as

{
j1 j2 j3
j4 j5 j6

}
= ∑

m1 ...m6

(−1)

6
∑

i=1
(ji−mi)

(
j1 j2 j3

m1 m2 −m3

)(
j1 j5 j6
−m1 m5 m6

)
×
(

j4 j5 j3
m4 −m5 m3

)(
j4 j2 j6
−m4 −m2 −m6

)
. (A29)

For a numerical evaluation, it is not convenient to write the {6j} symbol as in (A29).
It is much more efficient to rely on libraries that compute and store Wigner {6j} symbols
optimally using recursion and symmetry properties, such as wigxjpf and fastwixj [41,59].

Another higher-order invariant that appears in our calculations is the irreducible
{15j} symbol of the first kind (following the classification of [58]). We can write it both
graphically and in terms of {6j} symbols as:

It must be emphasized that the {15j} symbol (A30) is not the most convenient choice
from a numerical point of view. In fact, it is possible to choose the recoupling scheme in
order to obtain reducible {15j} symbols (see [60] for an example), whose evaluation is
much faster. However, since this aspect is not the most critical part of the performance,
we prefer to have a pleasantly symmetrical symbol and sacrifice some efficiency. This also
simplifies computations of spin foams transition amplitudes with many vertices, since
the basis choice in the recoupling on one edge affects both vertices it connects. Therefore,
choosing a symmetric {15j} symbol as in (A30), we are sure that the recoupling is consistent
in every vertex.
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
j1 j2 j3 j4 j5
l1 l2 l3 l4 l5
k1 k2 k3 k4 k5

 =

l4

l3

l2

k2

l1

j1

j5

l5

k1

j4 k3

j2k5

k4 j3

= (−1)∑5
i=1 ji+li+ki ∑

x
(2x + 1)

{
j1 k1 x
k2 j2 l1

}{
j2 k2 x
k3 j3 l2

}
×
{

j3 k3 x
k4 j4 l3

}{
j4 k4 x
k5 j5 l4

}{
j5 k5 x
j1 k1 l5

}
. (A30)

Appendix B. SL(2,C) Toolbox

The group SL(2,C) is the group of 2× 2 complex matrices with unit determinant. The
group is homomorphic to the proper Lorentz group (the Lorentz group part that preserve
the sign of the time component) [61,62].

The algebra of SL(2,C) is generated by spatial rotations and boosts Li and Ki satisfying
the commutation relations[

Li, Lj
]
= iεijkLk ,

[
Li, Kj

]
= iεijkKk ,

[
Ki, Kj

]
= −iεijkLk . (A31)

In the spinorial representation Li = σi/2 and Ki = iσi/2 where σi are the standard
Pauli matrices. The two Casimir operators are K2 − L2 and ~K ·~L. The unitary irreducible
representations in the principal series are labeled by ρ a real number and k a half-integer.
In these representations the Casimirs assume the values(

K2 − L2
)
|ρ, k〉 = (ρ2 − k2 + 1)|ρ, k〉 , ~K ·~L|ρ, k〉 = ρk|ρ, k〉 . (A32)

The generic unitary representation (ρ, k) is infinite dimensional since the group is
non-compact. However, we can decompose the representation (ρ, k) in an infinite number
of SU(2) representations that diagonalize L2 with different values of the spin j

(ρ, k) =
⊕
j≥k

j . (A33)

The definition of the EPRL model is based on the canonical basis of (ρ, k). In this basis
we diagonalize L2 and L3

L2|ρ, k; j, m〉 = j(j + 1)|ρ, k; j, m〉 , L3|ρ, k; j, m〉 = m|ρ, k; j, m〉 . (A34)

with j ≥ k and m = −j, . . . , j .
The Cartan parametrization [34,62] of the group SL(2,C) is given by the map

g = ue
r
2 σ3 v−1 , (A35)
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where u, v ∈ SU(2), r ∈ [0, ∞) is the rapidity and σ3 is the diagonal Pauli matrix the
generator of boosts along the z axis. The Haar measure with respect to this parametrization
is [34,62]

dg =
1

4π
sinh2 r dr du dvs. . (A36)

Using the Cartan parametrization (A35) the matrix elements of a group element g in
the canonical basis reads

Dρ,k
jmln(g) ≡ 〈ρ, k; j, m|g|ρ, k; l, n〉 = Dρ,k

jmln(ue
r
2 σ3 v−1) = ∑

a,a′
Dj

ma(u)Dρ,k
jala′(e

r
2 σ3)Dl

a′n(v
−1) . (A37)

The subgroup SU(2) ⊂ SL(2,C) is generated by~L and its matrix elements are given
by SU(2) Wigner matrices (A4)

Dρ,k
jmln(u) = 〈ρ, k; j, m|u|ρ, k; l, n〉 = δjl D

j
mn(u) where u ∈ SU(2) . (A38)

Moreover, e
r
2 σ3 is diagonal, therefore Dρ,k

jmln(e
rσ3) = δaa′D

ρ,k
jala(e

rσ3) ≡ δaa′d
ρ,k
jla (r) where

dρ,k
jla are called reduced matrix elements of SL(2,C). Summarizing

Dρ,k
jmln(g) = ∑

a
Dj

ma(u) dρ,k
jla (r) Dl

an(v
−1) . (A39)

The expression for dρ,k
jlm(r) was given in [34,62–65]

dρ,k
jlm(r) = (−1)j−l

√
(iρ− j− 1)!(j + iρ)!
(iρ− l − 1)!(l + iρ)!

√
(2j + 1)(2l + 1)
(j + l + 1)!

e(iρ−k−m−1)r

√
(j + k)!(j− k)!(j + m)!(j−m)!(l + k)!(l − k)!(l + m)!(l −m)!

∑
s,t
(−1)s+te−2tr (k + s + m + t)!(j + l − k−m− s− t)!

t!s!(j− k− s)!(j−m− s)!(k + m + s)!(l − k− t)!(l −m− t)!(k + m + t)!

2F1

[
{l − iρ + 1, k + m + s + t + 1}, {j + l + 2}; 1− e−2r

]
(A40)

where 2F1 is the Gauss hypergeometric function. The phase used in (A40) is the same
introduced in [34], which ensures the reality of the booster function (23). The reduced
matrix elements (A40) satisfy the following relation:

dρ,k
jlm(r) = (−1)j−ldρ,k

jl−m(r) . (A41)

As a consequence, the matrices (A38) have the property:

Dρ,k
jmln(g) = (−1)j−l+m−nDρ,k

j−ml−n(g) . (A42)

We can write the SL(2,C) matrix elements of g−1 as:

Dρ,k
lnjm(g−1) = (−1)j−l+m−nDρ,k

j−ml−n(g) = ∑
a
(−1)j−l+m−n Dj

−ma(u) dρ,k
jla (r) Dl

a−n(v
−1) , (A43)

where in the first equality we used (A42) (in addition to the SL(2,C) irrep properties) and
in the second one (A39). Since there are no phases depending on the summed index, we
conclude that the orientation of the (4jm) spins in the booster function (23) is irrelevant.
This justifies the fact that we draw the latter without arrows.
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Appendix C. Approximation of a Convergent Series

In this appendix, we provide further details on the extrapolation scheme used in
Section 7. This is analogous to the more general Aitken’s delta-squared process [55], which
accelerate the rate of convergence of a sequence providing a good approximation technique.
Consider the series S = ∑∞

n an and cut-offed sum SN = ∑N
n an. By definition the series is

the limit of SN for infinite cut-off

S = lim
N→∞

SN = lim
N→∞

N

∑
n

an =
∞

∑
n

an . (A44)

Suppose that the sequence an is positive and, from a certain point onwards, increasing
such that

lim
N→∞

cN ≡ lim
N→∞

aN
aN−1

= lim
N→∞

SN − SN−1

SN−1 − SN−2
≡ L < 1 , (A45)

where the ratios increase to L. The series S is convergent by the ratio test since the ratios
are increasing:

cN =
aN

aN−1
<

ak
ak−1

, ∀k > N . (A46)

Hence we have aN+1 = aN
aN+1

aN
> aNcN , aN+2 > aN+1cN > aNc2

N , and in general
aN+m > aNcm

N for m > 0. We can provide a bound on the series observing that

S− SN =
∞

∑
n=N+1

an =
∞

∑
m=1

aN+m >
∞

∑
m=1

aNcm
N = aN

cN
1− cN

. (A47)

Similarly, we have that ak
ak−1

< L ∀k > N by definition of L and monotonicity of the
ratios.

S− SN =
∞

∑
n=N+1

an =
∞

∑
m=1

aN+m <
∞

∑
m=1

aN Lm = aN
L

1− L
. (A48)

Summarizing, we have an estimate from above and below of the value of the series as

SN + aN
cN

1− cN
< S < SN + aN

L
1− L

. (A49)

If the ratios are decreasing instead of increasing, we obtain an estimate analog to (A49)
but with inequalities operators inverted. Let us focus on (A49) since it is the case relevant
for the cut-off approximation presented in Section 7. We rewrite (A49) in terms of cut-offed
sums as

SNSN−2 − S2
N−1

SN − 2SN−1 + SN−2
< S <

SN − SN−1L
1− L

. (A50)

Often, in real-world physical applications, the analytical expression of an is very
complicated. We cannot compute S but can still calculate the cut-offed sums SN with N
as large as our numerical computational resources allow. What is the best approximation
of S we can find? We will assume that we know S is convergent (so that the question is
well-posed) and that the ratios cN increase. We want to use the inequalities (A50). We
can numerically compute the left-hand side of the inequality. What about the right-hand
side? The convergence of S ensure that lim

N→∞
cN = L exists, however in general we cannot

compute the value of L. At the moment, there is no clear strategy on how to compute L.
In this work, we will consider two possibilities. None of them is optimal, and we leave
improvements to future work. Notice that no matter what approximation we decide to
adopt to compute L the right inequality of (A50) will not hold anymore.

For example, we can approximate L with the largest available ratio L ≈ cN . In
particular, if we insist and substitute in (A50) the approximation L ≈ cN , the right quantity
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becomes equal to the left one. We have to content ourselves with a lower bound estimate of
the amplitude given

S '
SNSN−2 − S2

N−1
SN − 2SN−1 + SN−2

. (A51)

The estimate (A51) is very similar to the strategy used in [13,15]. We clarified that
it is a lower bound. Another possibility is to use the sequence of ratios cN computed
numerically to estimate the value of L. This extrapolation is slightly dangerous since its
accuracy depends on how large we can take the cut-off N. Of course, this is in addition to
the lower bound (A51).

In the following, we provide a concrete toy model example. Consider the series

S =
∞

∑
n=1

1
n + 1

(9/10)n =
10
9

log(10)− 1 ≈ 1.558 . (A52)

This series is exactly summable in terms of the log function. Nevertheless, we want
to approximate the series pretending not to know how to sum it, ignoring the fact that
any analytical calculation is straightforward, an relying only on numerical tools. Let us
assume that the largest possible cut-off we have access to is N = 15. We can compute the
cut-offed sums

S15 ≈ 1.480 , S14 ≈ 1.467 , S13 ≈ 1.452 . (A53)

We can immediately apply (A51) to obtain

S '
S15S13 − S2

14
S15 − 2S14 + S13

≈ 1.549 . (A54)

The largest cut-offed sum is 5% off the real value while the lower bound approxima-
tion (A54) is closer, being only 0.6% off. The numerical values for the ratios are summarized
in Table A1.

Table A1. Numerical values of of the ratios for (A52)

N 3 4 5 6 7 8 9 10 11 12 13 14 15
cN 0.675 0.720 0.750 0.771 0.788 0.800 0.810 0.818 0.825 0.831 0.836 0.840 0.844

We extrapolate the limit at infinity of the ratios L fitting the data using the first few
terms of an inverse power law and keeping the constant term. It is a cheap and dirty way
of extrapolating, and one should be more careful. However, it is more than enough for our
purposes. We use Wolfram’s Mathematica built-in Fit method to perform the fit and find
L ≈ 0.889. If we substitute it in (A50), keeping in mind the approximations we are making,
we find the estimate

S /
S15 − S14L

1− L
≈ 1.583 , (A55)

which is 1.6% larger than the actual value. Combining the two estimates, we obtain a range
for the series S ∈ [1.549, 1.583].

Notes
1 This theory has no degrees of freedom: all the solutions of the equations of motion are gauge equivalent to the trivial one dω B = 0

and F(ω) = 0. The name derives from the name of the variables used and the simple form of the action
∫
M B ∧ F(ω).

2 Explicitly, if w1, w2 and w3 are three wedges of the same vertex we have

gw3 gw2 gw1 =g−1
e1

ge3 g−1
e3

ge2 g−1
e2

ge1 = 1 , (3)
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where we have assumed that the wedges are oriented such that the target of w1 is the source of w2 and so on. If the orientation of
one of the wedges w is the opposite we replace gw with its inverse.

3 The code in [39] was tested with the kernel julia 1.7.0
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