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Resumo

Nesta tese estudaremos a eletrodinâmica quântica de Podolsky em equi-
ĺıbrio termodinâmico no formalismo de Matsubara-Fradkin. Uma vez que a
eletrodinâmica de Podolsky é uma teoria de gauge, quantizar-la-emos com
o método do campo auxiliar de Nakanishi, que é uma técnica invariante
de Lorentz. Mostraremos que no caso do campo de Podolsky livre uma
correção à lei de Stefan-Boltzmann é esperada e utilizaremos dados da ra-
diação cósmica de fundo em microondas para limitar os posśıveis valores
do parâmetro de Podolsky. Investigaremos, também, as equações de Dyson-
Schwinger-Fradkin e as identidades de Ward-Fradkin-Takahashi da teoria em
equiĺıbrio termodinâmico.

Palavras Chaves: Formalismo de Matsubara-Fradkin para teorias quânticas
de campos em equiĺıbrio termodinâmico; densidade de Lagrangeana com
derivadas de segunda ordem; eletrodinâmica de Podolsky; quantização de
teorias de gauge; campo auxiliar de Nakanishi; modificação na lei de Stefan-
Boltzmann.

Área do conhecimento: Teoria de Campos.

iv



Abstract

In this thesis we study Podolsky quantum electrodynamics in thermody-
namic equilibrium via Matsubara-Fradkin formalism. Since Podolsky elec-
trodynamics is a gauge theory, we quantize it using Nakanishi’s auxiliary field
method, which is a Lorentz invariant procedure. For the case of free Podol-
sky field we show that a correction to the Stefan-Boltzmann law is expected
and we set a thermodynamical limit for the Podolsky parameter using data
from the cosmic microwave background radiation. We also study the Dyson-
Schwinger-Fradkin equations and the Ward-Fradkin-Takahashi identities of
the theory in thermodynamic equilibrium.

Keywords: Matsubara-Fradkin formalism for quantum field theories in ther-
modynamic equilibrium; Lagrangian density with second-order derivatives;
Podolsky electrodynamics; quantization of gauge theories; Nakanishi’s aux-
iliary field; modification of Stefan-Boltzmann law.

Knowledge field: Field theory.
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Last of all Húrin stood alone. Then he cast aside his shield, and wielded
an axe two-handed; and it is sung that the axe smoked in the black blood of
the troll-guard of Gothmog until it withered, and each time that he slew Húrin
cried: ‘Aurë entuluva! Day shall come again!’ Seventy times he uttered that
cry; but they took him at last alive, by the command of Morgoth, for the Orcs
grappled him with their hands, which clung to him still though he hewed off
their arms; and ever their numbers were renewed, until at last he fell buried
beneath them. Then binding him, they dragged him to Angband with mockery.

The Silmarillion, de J. R. R. Tolkien
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Caṕıtulo 1

Introdução

1.1 Comentários iniciais

Compreender a mecânica quântica é dif́ıcil; comprender a teoria quântica de
campos, mais dif́ıcil. A razão pode ser a dificuldade técnica envolvida. A
razão pode ser puramente interpretativa. Para mim, é uma amálgama de
ambas.

Do ponto de vista técnico, a dificuldade é enorme. Enquanto que os ob-
serváveis da mecânica quântica são associados a operadores de um espaço de
Hilbert, as quantidades correspondentes na teoria de campos são distribuições
operatoriais [2, 3, 4]. É um trabalho árduo manter a consistência matemática
enquanto se visa obter resultados que possam ser comparados com dados ex-
perimentais. Essa tarefa é tão árdua que ela chega a ser rara. Em geral,
trabalhos matematicamente rigorosos tendem a provar propriedades formais
da estrutura teórica de uma teoria de campos [5]. Por outro lado, embo-
ra não seja uma regra de maneira alguma geral, trabalhos voltados para a
fenomenologia seguem a tendência de não focar no formalismo matemático
da teoria. Esta tese recai num limbo entre esses dois extremos: ela não é for-
mal e não tem quase nenhuma fenomenologia. Ela é, no entanto, em primeiro
lugar uma tentativa de se esclarecer alguns tópicos básicos de teoria de cam-
pos, em especial, nas situações de equiĺıbrio termodinâmico. Esse assunto
é tratado como uma subárea da teoria de campos mas, do ponto de vista
abordado nesta tese, a situação é inversa: da situação de equiĺıbrio pode-se
obter os resultados de temperatura nula, mas a rećıproca não vale. Matema-
ticamente, esta tese é simplificada demais: distribuições são ingenuamente
tratadas como funções. Além disso, pouco conhecimento prévio de teoria
quântica de campos é necessário para acompanhar a exposição. Esta tese foi
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escrita com a intenção de ser um guia para quem conheça mecânica quântica
e teoria clássica de campos.

A quantidade de trabalhos voltados para interpretações da teoria quântica
de campos é praticamente nula se comparada com o montante de literatura
voltada para interpretações da mecânica quântica. É bem verdade que muito
provavelmente alguma extensão ou adaptação da interpretação de Copenha-
gen da mecânica quântica se aplique à teoria de campos. Mas teoria de cam-
pos não é mecânica quântica. Teoria de campos é uma teoria com seus efeitos
e implicações f́ısicas próprios e, dentre os mais surpreendentes, distintos da
fenomenologia da mecânica quântica [6]. Enquanto que a mecânica quântica
é uma teoria geral, com átomos e elétrons descritos pela mesma equação,
na teoria de campos cada objeto de estudo é descrito por um campo. A
descrição de um único átomo do ponto de vista de teoria de campos é, até
o presente, um problema em aberto. Na mecânica quântica, o quadrado do
módulo da função de onda possui uma interpretação probabiĺıstica. Na teoria
de campos, não há funções de onda. Na mecânica quântica, o prinćıpio de in-
certeza de Heisenberg sustenta que não faz sentido atribuir significado f́ısico
simultâneo aos observáveis posição e momento de um sistema. Na teoria de
campos, por outro lado, “posição” não é, a rigor, um observável. Existem,
ainda, muitas outras diferenças entre as teorias, mas o exposto provavelmente
já sirva para indicar que as teorias são muito distintas e que a interpretação
usual da mecânica quântica enfrenta algumas dificuldades que são muitas
vezes ignoradas ao se estudar teorias de campos.

A fim de se evitar o algumas vezes enfadonho procedimento teórico de
se calcular amplitudes de espalhamento no regime perturbativo, Stueckel-
berg e Feynmann desenvolveram uma espécie de atalho: o recurso conhecido
como grafos de Feynmann. Nessa abordagem, em vez de se calcular termos e
mais termos advindos da aplicação do teorema de Wick para um processo ou
então de se calcular diversas derivadas funcionais de um funcional gerador
complicado, basta desenhar uma quantidade finita de grafos topologicamente
inequivalentes e, então, fazer-se uso das chamadas regras de Feynmann para
se obter precisamente os mesmos resultados fornecidos pelas outras abor-
dagens. Não há a menor dúvida do valor dessa técnica: muito tempo é
poupado e grandes avanços na comparação das previsões teóricas com dados
experimentais foram e vem sendo obtidos através de seu emprego. Infeliz-
mente, interpretações equivocadas e razoavelmente difundidas desses grafos
levam a conceitos f́ısicos errôneos. O principal problema, na minha opinião,
surge ao se atribuir a cada linha de um grafo o significado de representar
uma part́ıcula. As linhas internas de um grafo seriam uma representação da
realidade objetiva durante um processo de colisão, por exemplo, segundo a
referida visão. No entanto, do ponto de vista de uma interpretação positivis-
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ta, apenas quantidades que possam ser medidas possuem significado f́ısico.
O evento da colisão não pode ser medido, mas apenas os estados inicial e
final dos campos. Por essa razão, atribuir significado f́ısico às linhas dos
grafos de Feynmann não está de acordo com visões positivistas. Sendo a in-
terpretação de Copenhagen positivista, seŕıamos forçados a abandoná-la em
teoria de campos, bem como quaisquer de suas posśıveis adaptações. Uma
vez que a visão mencionada afirma a existência de uma realidade que não
pode ser medida, a saber, as configurações das part́ıculas durante processos
de colisão, essa interpretação teria um caráter realista. Não é dif́ıcil, con-
tudo, argumentar que uma visão realista desse tipo não possui consistência.
Consideremos qualquer grafo de qualquer teoria que possua um loop interno.
Segundo a visão realista, esse loop é interpretado como constituindo-se da
criação de um par de part́ıcula e antipart́ıcula com sua subsequente mútua
aniquilação. Porém, segundo as regras de Feynmann, esses eventos de criação
e de aniquilação são integrados em todo o espaço-tempo. Ou seja, os even-
tos de criação e de aniquilação de pares devido à colisão que são causados
pelo estado inicial e contribuem para o final não ocorrem somente durante
o processo de colisão mas em todo o ponto do espaço em todo o instante de
tempo. Teŕıamos, assim, não apenas part́ıculas voando com velocidades e
energias arbitrárias, mas também as part́ıculas do estado inicial causando
a criação de um par, digamos, cinco minutos depois do estado final ter sido
medido viajando, então, no tempo para se aniquilar dez bilhões de anos atrás
e contribuindo para o resultado final. Para evitar esse tipo de eqúıvoco, os
grafos não serão utilizados nesta tese. Todo este parágrafo, entretanto, foi
inclúıdo com a finalidade de chamar a atenção do leitor para essa questão,
que é deliberadamente ignorada na grande maioria dos livros-textos sobre
teoria de campos.

Esta tese tem um caráter construtivo, sendo que pouco conhecimento
prévio dos assuntos abordados são necessários. Os operadores de campo,
por exemplo, apresentados nesta tese podem, sem muitos problemas, serem
entendidos como os operadores da mecânica quântica, com a extensão de que
ao invés de um parâmetro temos um número maior correspondente ao número
de dimensões espaço-temporais. De antemão afirmo que esta tese ficou mais
longa do que eu gostaria, mas confesso que não fora a urgência do tempo,
ela ainda seria um pouco maior. Devido à pressão temporal, alguns assuntos
que eu gostaria de abordar ficaram de fora, dentre eles destaco a renorma-
lizabilidade da teoria de Podolsky em equiĺıbrio termodinâmico, as soluções
não perturbativas para as funções de Green e os fenômenos caracteŕısticos de
F́ısica de plasmas, como a blindagem de Debye e oscilações coletivas [7, 8, 9].
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1.2 A teoria termodinâmica

A termodinâmica é uma teoria desenvolvida no século XIX com o objetivo de
se descrever processos envolvendo trocas de calor entre objetos macroscópicos.
Seus desenvolvedores não conheciam a estrutura atômica da matéria, por-
tanto o desenvolvimento da termodinâmica se deu com bases puramente
emṕıricas e macroscópicas, salvo raras exceções. As leis básicas da ter-
modinâmica, todavia, fazem menção apenas a quantidades macroscópicas,
como o volume do sistema e a sua energia interna.

Um conceito central na teoria termodinâmica é o chamado estado de
equiĺıbrio termodinâmico. É dif́ıcil dar uma descrição precisa do que seja
esse estado. Na maioria dos casos, sua definição é a posteriori : a ter-
modinâmica somente pode ser aplicada a sistemas que estejam em equiĺıbrio
termodinâmico. Se eventualmente num determinado caso particular a teo-
ria termodinâmica previr resultados contraditos pelos dados experimentais,
o sistema não está num estado de equiĺıbrio [10].

Embora falte uma definição precisa do conceito de equiĺıbrio termodinâ-
mico, algumas de suas propriedades são conhecidas. Primeiramente, ele é um
estado macroscopicamente estacionário. Isso significa que, contanto que ape-
nas sejam realizados experimentos que meçam quantidades macroscópicas,
os resultados são independentes do tempo. Isso não implica que o sis-
tema seja microscopicamente independente do tempo. De fato, ele não é.
Mesmo quando um determinado gás está em equiĺıbrio termodinâmico, suas
moléculas constituintes estão descrevendo trajetórias complexas devido às
incomensuráveis colisões mútuas. No entanto, no caso de teoria de campos,
embora campos sejam objetos quânticos, assumi-los independentes do tempo
é uma hipótese que simplifica a abordagem e garante, por exemplo, que
medições de uma função dos campos no ensemble realizada em dois instantes
distintos forneçam os mesmos resultados. A segunda propriedade fundamen-
tal consiste na ausência de memória do sistema. Dito de outra forma, dado
um sistema em equiĺıbrio termodinâmico, por medições sobre o sistema é
imposśıvel saber como ele chegou ao estado de equiĺıbrio. Estudaremos no
caṕıtulo 4 a radiação cósmica de funda em microondas, que constitui-se do
campo eletromagnético quântico em equiĺıbrio termodinâmico. A questão de
como a radiação de fundo atingiu a condição de equiĺıbrio não é abordada
pela termodinâmica.

Nesta tese a conexão da estat́ıstica quântica com a termodinâmica é feita
via limite termodinâmico. Neste processo, pela aplicação de limites apropri-
ados encontra-se equações envolvendo termos que são, então, identificados
com quantidades termodinâmicas. Desse ponto de vista, não se pode de-
duzir as leis da termodinâmica a partir de leis que governam os fenômenos
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microscópicos, mas somente se pode fazer uma espécie de associação entre
quantidades microscópicas e macroscópicas. O teorema H de Boltzmann
mostra como a segunda lei da termodinâmica emerge a partir de uma teo-
ria microscópica. No entanto, existe uma discussão sobre a validade desse
teorema, uma vez que para se pode resolver as equações, Bolztmann fez a
hipótese de caos molecular e essa hipótese, por si só, quebra a invariância
temporal. Dito de outra forma, a fim de demonstrar a quebra da simetria
temporal, Boltzmann supôs a quebra da simetria temporal. Essa questão
também não é tratada nesta tese.

1.3 Um tributo a E. S. Fradkin

Grande parte do conteúdo desta tese é profundamente influenciada pelos
trabalhos de E. S. Fradkin. Fradkin foi pioneiro em diversas áreas da F́ısica
Teórica mas, infelizmente, seu nome permanece esquecido. Apenas para
citar alguns dos seus feitos, ele desenvolveu a formulação funcional da teoria
quântica de campos e estat́ıstica quântica [11, 12]. Logo após Matsubara
estabelecer as bases do formalismo baseado na matriz densidade do ensemble
canônico para o tratamento da mecânica quântica em equiĺıbrio térmico,
Fradkin extendeu seu formalismo para descrever teorias quânticas de campos
no ensemble grão-canônico lançando, assim, as bases para a quantização de
campos em equiĺıbrio termodinâmico [12, 13]. Fradkin também encontrou o
sistema de equações renormalizadas das funções de Green obtidos por Dyson
e Schwinger [11]. Nesse sistema de equações, Dyson conjecturou em 1949 uma
certa relação, que foi provada no ano seguinte por Ward e ficou conhecida
como identidade de Ward. Alguns anos mais tarde e antes de Takahashi,
Fradkin provou todas as demais identidades conhecidas como identidades de
Ward-Fradkin-Takahashi [14, 15]. Fradkin codescobriu independentemente
de Landau e de Pomeranchuk o problema da carga nula da eletrodinâmica
quântica. Fradkin inventou a teoria de perturbação modificada que leva seu
nome [16]. Ele foi pioneiro no estudo da interação fraca e teorias de gauge
não Abelianas, desenvolveu um método de quantização de teorias vinculadas,
estudou teorias conformes, supergravidade, cordas e teorias de unificação.1

Por seus feitos e por sua inspiração, esta tese é um tributo ao seu nome.

1Consultar o apêndice de [1] para a lista completa.
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1.4 Em defesa de Maxwell

Eletromagnetismo é sinônimo de J. C. Maxwell. Todo o desenvolvimento tec-
nológico e cient́ıfico da humanidade deve-se, em grande parte, à teoria eletro-
magnética resumida nas quatro equações de Maxwell e na força de Lorentz
[17]. Circuitos de computadores, transmissões de informação por fibras óticas
e por ondas eletromagnéticas, celulares, internet sem fio, lasers, cartões
magnéticos, câmeras de segurança, sistemas de navegação por satélite, sondas
espaciais, correios eletrônicos, radiografias, ressonâncias magnéticas, fornos
microondas, tudo isso tem por base a teoria de Maxwell. A versão quântica
da eletrodinâmica Maxwelliana, juntamente com correções devido aos de-
mais campos do Modelo Padrão das Part́ıculas Elementares mantém, hoje,
o recorde de previsão mais precisa de uma teoria já desenvolvida [18]. Sendo
assim, há algo de errado com essa teoria?

Não.
Pelo menos se há, ainda não detectamos. Todas as previsões da teoria

estão de acordo com os dados experimentais. Não existe no momento a
necessidade de se estender a teoria, ou de adaptá-la, ou ainda de substitúı-la
por outra totalmente diferente.

Se assim, por qual razão estar-se-ia a teoria eletromagnética de Podolsky?

1.5 Sobre a necessidade de se estudar a teoria

de Podolsky

A razão principal devido a qual a teoria de Maxwell é estudada é que ela exibe
as duas simetrias básicas empiricamente fundamentais do eletromagnetismo:
a de Lorentz e a de gauge [19]. Uma alternativa razoavelmente conhecida
para a teoria de Maxwell é a eletrodinâmica massiva, na qual o campo de
Maxwell é substitúıdo por um campo de Proca. Se a massa desse campo
for suficientemente diminuta, é posśıvel, pelo menos em prinćıpio, descrever
todos os resultados experimentais tão bem quanto a versão Maxwelliana.
No entanto, a presença de uma massa no campo de gauge, não importando
quão pequena seja ela, quebra explicitamente a simetria de gauge. Então, a
menos que a simetria observada nos experimentos seja uma simetria apro-
ximada, a eletrodinâmica massiva não pode fundamentalmente descrever a
eletrodinâmica observada. A teoria de Podolsky, por outro lado, embora en-
volva um setor de Proca, é uma teoria que exibe as duas simetrias fundamen-
tais do eletromagnetismo, a saber, a de Lorentz e a de gauge [20, 21, 22]. Por
ajustes apropriados do parâmetro livre da teoria seria, em prinćıpio, posśıvel
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descrever todos os resultados experimentais do eletromagnetismo pelo menos
tão bem quanto a teoria de Maxwell.

A resposta mais simples, então, para a questão levantada no ińıcio da
seção anterior é que a teoria de Maxwell não é a única que, em prinćıpio,
está de acordo com todos os dados experimentais, não é a única capaz de
descrever os circuitos de computadores e sistemas de navegação e não é a
única que pode manter o recorde de previsão mais precisa. A teoria de
Maxwell não é nada mais do que um limite, um caso especial da teoria de
Podolsky. Além disso, de acordo com Cuzinatto, de Melo e Pompeia em
[23], a teoria de Podolsky é a única extensão posśıvel do eletromagnetismo
usual que contém derivadas de segunda ordem e que mantém a simetria de
gauge e de Lorentz. Sendo Podolsky uma teoria de derivadas de ordens
superiores, sua estrutura teórica é mais fascinante [24]. De fato, utilizando a
teoria de Podolsky, J. Frenkel resolveu o antigo e famoso problema do “4/3
da eletrodinâmica clássica”[25]. Esse mesmo problema, do ponto de vista
da teoria de Maxwell, permanece não solucionado. Conforme indicado por
Cuzinatto, de Melo, Medeiros e Pompeia em [26] com diversas propostas
experimentais, a teoria de Podolsky pode ser fenomenologicamente testada.
Na realidade, uma de suas implicações experimentais é um dos resultados
desta tese [27].

Finalizando esta seção, parece-me conveniente citar Sir A. S. Eddington
[28]:2

The law that entropy always increases - the second law of thermodynamics
- holds, I think, the supreme position among the laws of Nature. If someone
points out to you that your pet theory of the universe is in disagreement with
Maxwell’s equations - then so much the worse for Maxwell’s equations. If it
is found to be contradicted by observation - well, these experimentalists do
bungle things sometimes. But if your theory is found to be against the second
law of thermodynamics I can give you no hope; there is nothing for it but to
collapse in deepest humiliation.

Com esse pensamento em mente, estudaremos justamente as questões
termodinâmicas da teoria de Podolsky nesta tese.

2Tradução: “A lei de que a entropia sempre cresce - a segunda lei da termodinâmica -

possui, penso eu, a posição suprema entre as leis da Natureza. Se alguém lhe mostrar que

a sua teoria simples do universo está em desacordo com as equações de Maxwell - então

azar das equações de Maxwell. Caso se descubra que ela é contradita pela observação -

bem, esses experimentais fazem coisas tolas de vez em quando. Mas caso se descubra que

sua teoria viola a segunda lei da termodinâmica eu não posso te dar esperanças; não resta

nada para ela além de se afundar na mais profunda humilhação.”
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1.6 Como ler esta tese

É imposśıvel para um autor saber de antemão quem lerá seu trabalho. Eu
fiz, contudo, algumas suposições sobre o leitor. Nem o formalismo nem a
teoria aqui apresentados são, em geral, conhecidos. Então, suponho que o
leitor tenha interesse principalmente por pelo menos um desses dois tópicos.
Se o interesse do leitor for o formalismo de Matsubara-Fradkin, recomendo
a leitura do caṕıtulo 2. Nele o formalismo é apresentado dos primórdios, ini-
ciando com a apresentação da matriz densidade de um ensemble em equiĺıbrio
termodinâmico. O caṕıtulo é finalizado com um exemplo de um campo
escalar real com interação arbitrária. Caso o leitor esteja interessado na
quantização da eletrodinâmica usual de Maxwell, basta recorrer ao terceiro
caṕıtulo tomando o limite mP → ∞ (ou, equivalentemente, λP → 0) em
todas as expressões sempre que o limite existir. Procedendo dessa forma, o
leitor encontrará as expressões correspondentes na teoria Maxwelliana. Se,
por outro lado, o interesse principal do leitor for a teoria de Podolsky, sua
emersão a partir do prinćıpio de gauge é apresentada na seção 3.1 e suas carac-
teŕısticas mais básicas na seção 3.2. No restante do caṕıtulo 3 é apresentada
a quantização da teoria de Podolsky em equiĺıbrio termodinâmico. Algumas
implicações fenomenológicas da eletrodinâmica de Podolsky em equiĺıbrio
são encontradas no caṕıtulo 4. As conclusões são apresentadas no último
caṕıtulo.
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Caṕıtulo 2

Fundamentos da quantização de

campos em equiĺıbrio

termodinâmico

Neste caṕıtulo estudaremos o formalismo de Matsubara-Fradkin da quan-
tização de campos em equiĺıbrio termodinâmico [29, 12, 13]. Iniciaremos
o caṕıtulo introduzindo o conceito de matriz densidade, um operador que
contém toda a informação a respeito do sistema quântico estudado [30]. A
formulação da Mecânica Quântica em termos desse operador não é restrita
aos casos dos estados puros (situações comumente descritas na Mecânica
Quântica não-relativ́ıstica pela equação de Schrödinger), mas também de-
screve sistemas em situações mais gerais [31]. Dentre tais situações, desta-
camos a de equiĺıbrio termodinâmico [32]. A fim de descrevermos um sistema
quântico em equiĺıbrio, introduziremos o conceito de ensemble, que nada mais
é do que o conjunto de estados sobre os quais as medições são realizadas.
Como desejamos estudar o sistema quântico em equiĺıbrio, especializar-nos-
emos no caso do ensemble grão-canônico. Esse ensemble é um dos posśıveis
conjuntos de estados que descrevem uma situação de equiĺıbrio termodinâ-
mico. A seguir, estudaremos os análogos da evolução temporal em equiĺıbrio
sendo que com o aux́ılio da matriz densidade encontraremos a equação satis-
feita pelo funcional gerador. A partir dessa quantidade, que está relacionada
intimamente com a matriz densidade, todas as funções de Green da teoria
quântica podem ser obtidas.
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2.1 A matriz densidade

O que segue é válido para o caso relativ́ıstico, contudo, não é uma formulação
covariante de Lorentz.

A matriz densidade ρ̂, um operador funcional dos operadores campos e
momentos canonicamente conjugados aos campos, contém toda a informação
de um sistema quântico. O ensemble, por sua vez, é o conjunto de estados
no qual as medições são realizadas. Em diversas situações estamos interes-
sados em ensembles puros e a descrição da Mecânica Quântica é feita de
maneira usual - com a equação de Schrödinger, no caso da teoria quântica
não relativ́ıstica. Contudo, em muitas outras situações, estamos interessados
em conjuntos de estados que não podem ser descritos de uma maneira tão
simples. Em todos os casos, o ensemble é completamente definido uma vez
dada a matriz densidade do sistema. No que segue, estudaremos a matriz
densidade normalizada �̂.1 Com essa matriz, a média no ensemble de um
operador arbitrário Â é 〈

Â
〉
≡ Tr

(
�̂Â
)
, (2.1)

sendo Tr o traço.
No caso especial no qual o ensemble é puro, a matriz densidade é dada

pelo projetor
�̂P = |ξ 〉〈 ξ| , (2.2)

sendo |ξ〉 o estado do sistema f́ısico (que assumimos normalizado: 〈ξ|ξ〉 = 1).

Neste caso, vemos que a média no ensemble de um operador Â reduz-se ao

seu valor esperado no referido estado
〈
ξ
∣∣∣Â ∣∣∣ ξ〉:

〈
Â
〉
P

= Tr
(
�̂P Â

)
= Tr

(
|ξ 〉〈 ξ| Â

)
=
∑
n

〈bn |ξ 〉
〈
ξ
∣∣∣Â∣∣∣ bn

〉
=
∑
n

〈
ξ
∣∣∣Â ∣∣∣ bn〉 〈bn |ξ 〉 = 〈ξ ∣∣∣Â ∣∣∣ ξ〉 . (2.3)

Nesta expressão calculamos o traço numa base ortonormal arbitrária for-
mada pelos vetores {|bn〉} e utilizamos a resolução da unidade nessa mesma
base,

1̂ =
∑
n

|bn〉 〈bn| . (2.4)

1A diferença entre as matrizes densidade normalizada e não normalizada ficará clara

no que segue.
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Vemos, dessa forma, que a média num ensemble puro coincide com a
média obtida na teoria quântica usual. Assim sendo, não necessitamos da
matriz densidade para descrever os resultados, embora a teoria da matriz
densidade também forneça corretamente os resultados neste caso. Contudo,
em geral, a matriz densidade não pode ser escrita na forma (2.2). Sua forma
geral é

�̂G =
∑
j

wj �̂Pj
, (2.5)

sendo wj > 0 satisfazendo
∑

j wj = 1, a soma indo de 1 a um número
que depende das caracteŕısticas particulares do ensemble em questão e �̂Pj

matrizes densidade de ensembles puros

�̂Pj
= |ξj 〉〈 ξj| . (2.6)

Vemos que a média nesse ensemble geral é

〈
Â
〉
G
=Tr

(
�̂GÂ

)
= Tr

(∑
j

wj �̂Pj
Â

)
=
∑
j

wjTr
(
�̂Pj

Â
)

=
∑
j

wj

〈
Â
〉
ξj

(2.7)

e notamos que a igualdade (2.3) não é satisfeita, mas em seu lugar obtemos
uma média de valores esperados de ensembles puros definida pelo conjunto
dos pesos estat́ısticos {wj}.

Uma vez apresentada a matriz densidade e o conceito de ensemble, estu-
daremos um dos ensembles que caracterizam o equiĺıbrio termodinâmico.

2.1.1 O ensemble grão-canônico

Uma teoria de campos pode apresentar um certo número de simetrias. De
acordo com o teorema de Noether, associada a cada simetria cont́ınua do
sistema estudado existe uma quantidade, chamada de carga de Noether, que
é conservada. A existência de quantidades conservadas numa teoria limita
drasticamente seu comportamento, uma vez que a conservação de uma quan-
tidade f́ısica constitui-se em um v́ınculo que o sistema deve respeitar. A fim
de clarificar as ideias, consideremos o exemplo da teoria Newtoniana para
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a mecânica de part́ıculas. Consideremos, ainda, que esse sistema f́ısico seja
conservativo. Nesse caso, o sistema é invariante por translações temporais e,
pela versão do teorema de Noether para part́ıculas não relativ́ısticas, a ener-
gia se conserva. Então, de todas as trajetórias conceb́ıveis para cada uma das
part́ıculas, somente podem ser fisicamente realizadas aquelas que não violam
o v́ınculo de conservação da energia. O mesmo ocorre para uma teoria clássica
de campos: caso existam simetrias no problema e, consequentemente, cargas
de Noether associadas ao sistema, de todas as configurações de campos ima-
gináveis, o sistema f́ısico somente exibe aquelas que respeitem a conservação
de cada uma das cargas. A versão quântica dessa propriedade existe: para
uma teoria quântica de campos com um certo número de simetrias, tere-
mos um certo número de operadores cargas de Noether.2 A conservação
de cada um desses operadores são v́ınculos aos quais o sistema está sujeito.
Quando os elementos de um subconjunto dessas simetrias forem simetrias
internas, cont́ınuas e globais, o formalismo desenvolvido por Matsubara e
Fradkin inclui os operadores cargas de Noether associados a elas na matriz
densidade através da inclusão de multiplicadores de Lagrange. Esses mul-
tiplicadores de Lagrange são, posteriormente, identificados com os diversos
potenciais qúımicos do problema. As quantidades termodinâmicas indepen-
dentes utilizadas na descrição do sistema são, então, a temperatura T = β−1,
os potenciais qúımicos {μj} e o hipervolume em D dimensões V . O ensemble
descrito por tais quantidades é chamado de ensemble grão-canônico.

Podemos encontrar a matriz densidade nesse ensemble impondo que as
médias no ensemble dos operadores Hamiltoniano Ĥ e cargas de Noether{
N̂j

}
coincidam com os valores da energia interna do sistema e dos valores

termodinâmicos para as cargas de Noether, respectivamente,〈
Ĥ
〉
gc

= U ; (2.8)〈
N̂j

〉
gc

= Nj, (2.9)

sendo
〈
Â
〉
gc

a média no ensemble calculada com a matriz densidade �̂gc =

�̂
(T,V,{μj})
gc do ensemble grão-canônico.
Além dessas condições, impomos uma condição de normalização da matriz

2Pode ocorrer que uma teoria exiba uma certa simetria no regime clássico e não a

apresente em sua versão quântica. Esse fenômeno é chamado de anomalia.
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densidade tal que a média no ensemble da identidade seja 1:3〈
1̂
〉
gc
= 1. (2.10)

Essa condição é extremamente importante, pois garante que as médias no
ensemble de operadores múltiplos da identidade sejam exatamente iguais ao
fator de proporcionalidade entre eles e a identidade. Conforme veremos nas
próximas seções, estudaremos a quantização do campo escalar na presença
de fontes externas clássicas J(τ,x). No espaço de Hilbert, essas quantidades
são um múltiplo da identidade: J(τ,x)1̂. De acordo com a condição acima,
a média no ensemble dessa fonte clássica coincide com seu valor clássico:〈
J(τ,x)1̂

〉
gc
= J(τ,x).

Definimos a entropia S de um sistema quântico através da seguinte ex-
pressão:

S ≡ −〈ln (�̂gc)〉gc . (2.11)

Essa definição é a versão quântica da entropia de Gibbs.
Ao se variar infinitesimalmente as quantidades termodinâmicas usadas

para se definir o ensemble grão-canônico, quais sejam, a temperatura T , o
volume V e os potenciais qúımicos {μj}, de acordo com

T → T ′ = T + δT ; (2.12)

V → V ′ = V + δV ; (2.13)

μj → μ′
j = μj + δμj, (2.14)

a matriz densidade, ou seja, o próprio ensemble grão-canônico original, muda
de acordo com:

�̂(T,V,{μj})gc → �̂
(T ′,V ′,{μ′j})
gc = �̂(T+δT,V+δV,{μj}+{δμj})

gc = �̂(T,V,{μj})gc + δ�̂gc. (2.15)

Consequentemente, a média no ensemble de qualquer operador muda, pois
o próprio ensemble mudou. Contudo, é hipótese da teoria termodinâmica
que a entropia seja invariante sob essa troca, contanto que o novo ensem-
ble seja ainda um ensemble grão-canônico. Portanto, como condição vinda
da termodinâmica, impomos que a variação da entropia (2.11), com a ma-
triz densidade sujeita aos v́ınculos (2.8-2.10), seja nula. A implementação

3A condição (2.10) juntamente com a definição de média no ensemble (2.1) são justa-

mente as expressões que caracterizam a normalização do que chamamos de matriz densi-

dade normalizada.
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dos v́ınculos é feita através da adição de multiplicadores de Lagrange, que
chamaremos de λU ,

{
λNj

}
e λ1. Assim, impomos

δ

[
λ1

〈
1̂
〉
gc
+ λU

〈
Ĥ
〉
gc
+ λNj

〈
N̂j

〉
gc
− 〈ln (�̂gc)〉gc

]
= 0. (2.16)

Utilizando a definição de média no ensemble:

δ
{
Tr
[
λ1�̂gc + λU �̂gcĤ + λNj

�̂gcN̂j − �̂gc ln (�̂gc)
]}

= Tr
{[

(λ1 − 1) 1̂+

+λUĤ + λNj
N̂j +

− ln (�̂gc)] δ�̂gc}
= 0. (2.17)

Uma vez que δ�̂gc é arbitrário, devemos ter

(λ1 − 1) 1̂ + λUĤ + λNj
N̂j − ln (�̂gc) = 0̂, (2.18)

sendo 0̂ = 01̂. Também podemos escrever

ln (�̂gc) = (λ1 − 1) 1̂ + λUĤ + λNj
N̂j. (2.19)

A solução dessa equação é

�̂gc = e(λ1−1)1̂+λU Ĥ+λNj
N̂j = eλ1−1eλU Ĥ+λNj

N̂j , (2.20)

sendo que utilizamos o fato de que a identidade comuta com todos os opera-
dores existentes.

Agora, impomos a condição de normalização (2.10):

〈
1̂
〉
gc

= Tr
(
�̂gc1̂
)
= Tr (�̂gc)

= eλ1−1Tr
(
eλU Ĥ+λNj

N̂j

)
= 1. (2.21)

Dessa expressão, encontramos a primeira relação entre os multiplicadores de
Lagrange:

eλ1−1 =
1

Tr
(
eλU Ĥ+λNj

N̂j

) , (2.22)

ou seja,

λ1 = ln

⎡⎣ 1

Tr
(
eλU Ĥ+λNj

N̂j

)
⎤⎦+ 1 = 1− ln

[
Tr
(
eλU Ĥ+λNj

N̂j

)]
. (2.23)
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A fim de encontrarmos os demais multiplicadores de Lagrange, multipli-
camos a equação (2.19) por −�̂gc, tomamos o traço e utilizamos os v́ınculos
(2.8-2.9):

−Tr [�̂gc ln (�̂gc)] = S = ln
[
Tr
(
eλU Ĥ+λNj

N̂j

)]
− λUU − λNj

Nj. (2.24)

Multiplicamos esse resultado pela temperatura:

TS = T ln
[
Tr
(
eλU Ĥ+λNj

N̂j

)]
− TλUU − TλNj

Nj, (2.25)

ou
−T ln

[
Tr
(
eλU Ĥ+λNj

N̂j

)]
= −TλUU − TS − TλNj

Nj. (2.26)

Comparamos essa expressão com a equação termodinâmica que define o
grão-potencial Ω (T, V, {μj}):

Ω (T, V, {μj}) = U − TS − μjNj. (2.27)

Assim, identificamos:

Ω (T, V, {μj}) = −T ln
[
Tr
(
eλU Ĥ+λNj

N̂j

)]
; (2.28)

λU = −β; (2.29)

λNj
= βμj, (2.30)

ou seja,

Ω (T, V, {μj}) = −T ln
{
Tr
[
e−β(Ĥ−μjN̂j)

]}
. (2.31)

Com isso, a matriz densidade normalizada do ensemble grão-canônico se
escreve como

�̂(T,V,{μj})gc =
e−β(Ĥ−μjN̂j)

Tr
[
e−β(Ĥ−μjN̂j)

] . (2.32)

Notamos que a matriz densidade normalizada é completamente especi-

ficada uma vez conhecido o operador exp
[
−β
(
Ĥ − μjN̂j

)]
. Chamaremos

esse operador de matriz densidade não normalizada ρ̂
(T,V,{μj})
gc = ρ̂gc do en-

semble grão-canônico

ρ̂gc ≡ e−β(Ĥ−μjN̂j). (2.33)

Em termos desse operador, a matriz densidade normalizada (2.32) e a
média no ensemble (2.1) se escrevem respectivamente como
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�̂gc =
ρ̂gc

Tr (ρ̂gc)
; (2.34)

〈
Â
〉
=
Tr
(
ρ̂gcÂ

)
Tr (ρ̂gc)

. (2.35)

Além disso, recordemos que o potencial termodinâmico Ω (T, V, {μj}) é
escrito como

Ω (T, V, {μj}) = −T ln [Z (T, V, {μj})] , (2.36)

sendo Z (T, V, {μj}) a função de partição. De posse da função de partição
podemos calcular todas as quantidades termodinâmicas. Com o aux́ılio das
equações (2.31), (2.33) e (2.36), identificamos

Z (T, V, {μj}) = Tr (ρ̂gc) . (2.37)

Vemos, assim, que a partir da matriz densidade não normalizada no en-
semble canônico, doravante chamada apenas de matriz densidade, todas as
quantidades termodinâmicas podem ser calculadas.

2.1.2 Sobre a inclusão de fontes

Consideremos uma teoria de campos cujo Hamiltoniano seja Ĥ. Em geral,
essa teoria terá um certo número de operadores cargas de Noether associados
a simetrias internas globais. Denotaremos esse conjunto de operadores cargas

de Noether por
{
N̂j

}
.4 Por esses operadores serem cargas de Noether, eles

são conservados, donde eles comutam com o Hamiltoniano,

[
Ĥ, N̂j

]
= 0̂, ∀j. (2.38)

Consideremos, agora, que além dos campos quânticos usuais, tenhamos a
presença de fontes clássicas externas no nosso problema. O que são fontes?
Fontes são campos que aparecem na densidade de Lagrangeana do problema
na forma s(x)ϕ(x), sendo s(x) a fonte e ϕ(x) o campo do qual s(x) é a
fonte. Essas fontes são clássicas porque elas são funções, não operadores.

4Esse conjunto pode ser vazio.
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Mais precisamente, suas representações no espaço de Hilbert são funções
multiplicadas pela identidade, isto é, s(x)1̂. Essas fontes são ditas externas
porque seus únicos aparecimentos na densidade de Lagrangeana do problema
são em termos do tipo s(x)ϕ(x). Em outras palavras, suas dinâmicas não
são consideradas.

Caso estivéssemos tratando de um problema clássico, a inclusão de termos
de fonte alteraria a energia do problema, ou seja, alteraria a Hamiltoniana do
mesmo. Como estamos tratando de um problema quântico, um novo termo é
adicionado ao Hamiltoniano do problema. Denotaremos esse termo por Ĥs:

Ĥs =

∫
Ĥs (x) d

Dx, (2.39)

sendo a densidade de Hamiltoniano das fontes dada por

Ĥs (x) = −
1

2

∑
j

[
sj (x) φ̂j (x)− (−1)Pj φ̂j (x) sj (x)

]
, (2.40)

com Pj = 1 quando a fonte sj comuta com seu campo associado e Pj = −1
quando ela for uma variável Grassmanniana.

Uma questão a ser destacada é que embora os operadores cargas de
Noether comutem com o Hamiltoniano Ĥ, estes não comutam, em prinćıpio,
com o Hamiltoniano das fontes Ĥs. Sendo assim, se defińıssemos o Hamilto-
niano total ĤT como a soma dos Hamiltonianos do sistema sem fontes com
o Hamiltoniano das fontes, isto é,

ĤT ≡ Ĥ + Ĥs, (2.41)

teŕıamos como uma regra geral

[
ĤT , N̂j

]
�= 0̂. (2.42)

A fim de tratarmos o problema de campos quânticos em equiĺıbrio ter-
modinâmico na presença de fontes externas, consideremos a seguinte matriz
densidade

ρ̂s (β) = exp
[
−β
(
ĤT − μjN̂j

)]
, (2.43)

sendo que assumimos a soma impĺıcita em j tal que todas as cargas conser-
vadas associadas a simetrias internas globais sejam inclúıdas. Essa matriz
densidade depende da temperatura, do hipervolume D-dimensional e dos po-
tenciais qúımicos mas, por conveniência de notação, somente sua dependência
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com a temperatura está explicitada no primeiro membro. Derivando essa ex-
pressão com relação a β, temos

∂ρ̂s (β)

∂β
= −

(
ĤT − μjN̂j

)
ρ̂s (β) . (2.44)

Esta expressão é conhecida como equação de Bloch.
A fim de encontrarmos a matriz densidade do sistema com fontes externas,

suponhamos o seguinte Ansätz :

ρ̂s (β) = ρ̂ (β) Ŝ (β) , (2.45)

sendo ρ̂ (β) a matriz densidade do sistema sem fontes externas em equiĺıbrio
termodinâmico

ρ̂ (β) = exp
[
−β
(
Ĥ − μjN̂j

)]
. (2.46)

Esse operador satisfaz a equação de Bloch com o Hamiltoniano sem fontes:

∂ρ̂ (β)

∂β
= −

(
Ĥ − μjN̂j

)
ρ̂ (β) . (2.47)

Derivando o Ansätz (2.45) e utilizando as equações de Bloch (2.44) e
(2.47), obtemos

∂ρ̂s (β)

∂β
=

∂ρ̂0 (β)

∂β
Ŝ (β) + ρ̂ (β)

∂Ŝ (β)

∂β

= −
(
Ĥ − μjN̂j

)
ρ̂s (β) + ρ̂ (β)

∂Ŝ (β)

∂β

= −
(
Ĥ + Ĥs − Ĥs − μjN̂j

)
ρ̂s (β) + ρ̂ (β)

∂Ŝ (β)

∂β

= −
(
ĤT − μjN̂j

)
ρ̂s (β) + Ĥsρ̂s (β) + ρ̂ (β)

∂Ŝ (β)

∂β
, (2.48)

o que implica

∂Ŝ (β)

∂β
= −ρ̂−1 (β) Ĥsρ̂ (β) Ŝ (β) . (2.49)

O inverso da matriz densidade é dado por ρ̂−1 (β) = ρ̂ (−β). Para qual-

quer operador F̂ definimos sua dependência com a temperatura através de
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uma transformação de similaridade com a matriz densidade do ensemble sem
fontes:

F̂ (τ) ≡ ρ̂−1 (τ) F̂ ρ̂ (τ) . (2.50)

Assim:

∂Ŝ (β)

∂β
= −Ĥs (β) Ŝ (β) . (2.51)

Essa expressão mostra que Ŝ depende unicamente de Ĥs (β).
Dessa forma, reescrevemos a equação (2.51), trocando a variável β por τ :

∂Ŝ (τ)

∂τ
= −Ĥs (τ) Ŝ (τ) . (2.52)

Integrando essa equação de 0 a β, encontramos

Ŝ (β)− Ŝ (0) = −
∫ β

0

dτĤs (τ) Ŝ (τ) . (2.53)

Das expressões (2.43), (2.45) e (2.46) vemos que

ρ̂s (0) = 1̂ = ρ̂ (0) Ŝ (0) = Ŝ (0) . (2.54)

Portanto, ficamos com

Ŝ (β) = 1̂−
∫ β

0

dτĤs (τ) Ŝ (τ) . (2.55)

Essa equação é uma versão quântica de uma equação do tipo de Volterra. A
solução da equação clássica pode ser obtida por meio de iteração. Tentando
essa mesma técnica, encontramos
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Ŝ (β) =1̂−
∫ β

0

dτ1Ĥs (τ1) Ŝ (τ1)

=1̂−
∫ β

0

dτ1Ĥs (τ1)

[
1̂−
∫ τ1

0

dτ2Ĥs (τ2) Ŝ (τ2)

]
=1̂−

∫ β

0

dτ1Ĥs (τ1)

{
1̂−
∫ τ1

0

dτ2Ĥs (τ2)×

×
[
1̂−
∫ τ2

0

dτ3Ĥs (τ3) Ŝ (τ3)

]}
=1̂−

∫ β

0

dτ1Ĥs (τ1)

{
1̂−
∫ τ1

0

dτ2Ĥs (τ2)×

×
[
1̂−
∫ τ2

0

dτ3Ĥs (τ3)
(
1̂− ...

)]}
. (2.56)

Procedendo indefinidamente, observamos que a solução para o operador
Ŝ pode ser escrita na seguinte forma:

Ŝ (β) = 1̂ +
∞∑
n=1

(−1)n
n∏
j=1

∫ τj−1

0

dτjĤs (τj) , (2.57)

com
τ0 ≡ β. (2.58)

Definindo a função degrau de Heaviside θ(τ) e o ordenamento T respec-
tivamente como

θ(τ) ≡
{

1, se τ ≥ 0,
0, nos demais casos;

(2.59)

T
[
Â(τ1)B̂(τ2)

]
≡
{
θ(τ1 − τ2)Â(τ1)B̂(τ2)± θ(τ2 − τ1)B̂(τ2)Â(τ1), se τ1 �= τ2;

Â(τ1)B̂(τ2), se τ1 = τ2;

(2.60)

com o sinal negativo utilizado quando ambos os campos forem Grassmannia-
nos e o positivo nos demais casos, podemos reescrever o operador Ŝ como

Ŝ (β) = 1̂ +
∞∑
n=1

(−1)n
n!

∫ β

0

[
n∏
j=1

dτj

]
T

[
n∏
k=1

Ĥs (τk)

]

≡ T

{
exp

[
−
∫ β

0

dτĤs (τ)

]}
, (2.61)
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Podemos escrever o Hamiltoniano das fontes em termos de um operador
densidade de Hamiltoniano da seguinte forma

Ĥs (τ) =

∫
dDxĤs (τ) . (2.62)

Agora, definimos:

Ŝ (τ1, τ2) ≡ T

{
exp

[
−
∫ τ1

τ2

dτĤs (τ)

]}
. (2.63)

Claramente,
Ŝ (β, 0) = Ŝ (β) . (2.64)

Com esse novo operador, temos a equação quântica de Volterra (2.55):

Ŝ (β, 0) = 1̂−
∫ β

0

dτĤs (τ) Ŝ (τ, 0) . (2.65)

Temos, também

Ŝ (τ, τ ′) = 1̂−
∫ τ

τ ′
dτ1Ĥs (τ1) Ŝ (τ1, τ

′) . (2.66)

Derivando essa expressão com relação a τ :

∂Ŝ (τ, τ ′)
∂τ

= −Ĥs (τ) Ŝ (τ, τ ′) . (2.67)

Resolvendo essa equação por iteração, encontramos

Ŝ (τ, τ ′) = 1̂ +
∞∑
n=1

(−1)n
n∏
j=1

∫ τj−1

τ ′
dτjĤs (τj) , (2.68)

com τ0 ≡ τ , ou seja:

Ŝ (τ, τ ′) = T

{
exp

[
−
∫ τ

τ ′
dτ1Ĥs (τ1)

]}
, (2.69)

conforme hav́ıamos definido.
Derivando funcionalmente Ŝ (τ, τ ′) com relação à fonte sj (x, τx), encon-

tramos:
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δŜ (τ, τ ′)
δsj (x, τx)

=
δ

δsj (x, τx)

[
1̂−
∫ τ

τ ′
dτ1Ĥs (τ1) Ŝ (τ1, τ

′)
]

= −
∫ τ

τ ′
dτ1

δĤs (τ1)

δsj (x, τx)
Ŝ (τ1, τ

′)−
∫ τ

τ ′
dτ1Ĥs (τ1)

δŜ (τ1, τ
′)

δsj (x, τx)

=

∫ τ

τ ′
dτ1

∫
dDyδjlδ (y − x) δ (τ1 − τx) φ̂l (y, τ1) Ŝ (τ1, τ

′) +

−
∫ τ

τ ′
dτ1Ĥs (τ1)

δŜ (τ1, τ
′)

δsj (x, τx)

= θ (τ − τx) θ (τx − τ ′) φ̂j (x, τx) Ŝ (τx, τ
′) +

−
∫ τ

τ ′
dτ1Ĥs (τ1)

δŜ (τ1, τ
′)

δsj (x, τx)
.

(2.70)

Da equação (2.66) com τ ′ = τx, temos

Ŝ (τ, τx) = 1̂−
∫ τ

τx

dτ1Ĥs (τ1) Ŝ (τ1, τx) . (2.71)

Agora, multiplicamos essa equação por φ̂j (x, τx) Ŝ (τx, τ
′):

Ŝ (τ, τx) φ̂j (x, τx) Ŝ (τx, τ
′) = φ̂j (x, τx) Ŝ (τx, τ

′)+

−
∫ τ

τx

dτ1Ĥs (τ1) Ŝ (τ1, τx) φ̂j (x, τx) Ŝ (τx, τ
′) .

(2.72)

Ou seja

φ̂j (x, τx) Ŝ (τx, τ
′) = Ŝ (τ, τx) φ̂j (x, τx) Ŝ (τx, τ

′)+

+

∫ τ

τx

dτ1Ĥs (τ1) Ŝ (τ1, τx) φ̂j (x, τx) Ŝ (τx, τ
′) . (2.73)
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Logo:

δŜ (τ, τ ′)
δsj (x, τx)

= θ (τ − τx) θ (τx − τ ′) φ̂j (x, τx) Ŝ (τx, τ
′)+

−
∫ τ

τ ′
dτ1Ĥs (τ1)

δŜ (τ1, τ
′)

δsj (x, τx)

= θ (τ − τx) θ (τx − τ ′) Ŝ (τ, τx) φ̂j (x, τx) Ŝ (τx, τ
′)+

+ θ (τ − τx) θ (τx − τ ′)
∫ τ

τx

dτ1Ĥs (τ1) Ŝ (τ1, τx)×

× φ̂j (x, τx) Ŝ (τx, τ
′)−

∫ τ

τ ′
dτ1Ĥs (τ1)

δŜ (τ1, τ
′)

δsj (x, τx)
. (2.74)

A fim de resolvermos essa equação, supomos:

δŜ (τ, τ ′)
δsj (x, τx)

= θ (τ − τx) θ (τx − τ ′) Ŝ (τ, τx) φ̂j (x, τx) Ŝ (τx, τ
′) . (2.75)

Resta-nos, agora, substituir tal Ansätz em (2.74) a fim de verificarmos
sua consistência:

δŜ (τ, τ ′)
δsj (x, τx)

= θ (τ − τx) θ (τx − τ ′) Ŝ (τ, τx) φ̂j (x, τx) Ŝ (τx, τ
′)+

+ θ (τ − τx) θ (τx − τ ′)
∫ τ

τx

dτ1Ĥs (τ1) Ŝ (τ1, τx)×

× φ̂j (x, τx) Ŝ (τx, τ
′)−

∫ τ

τ ′
dτ1Ĥs (τ1)×

× θ (τ1 − τx) θ (τx − τ ′) Ŝ (τ1, τx) φ̂j (x, τx) Ŝ (τx, τ
′)

= θ (τ − τx) θ (τx − τ ′) Ŝ (τ, τx) φ̂j (x, τx) Ŝ (τx, τ
′)+

+ θ (τ − τx) θ (τx − τ ′)
∫ τ

τx

dτ1Ĥs (τ1) Ŝ (τ1, τx)×

× φ̂j (x, τx) Ŝ (τx, τ
′)−

∫ τx

τ ′
dτ1Ĥs (τ1) θ (τ1 − τx)×

× θ (τx − τ ′) Ŝ (τ1, τx) φ̂j (x, τx) Ŝ (τx, τ
′)+

−
∫ τ

τx

dτ1Ĥs (τ1) θ (τ1 − τx) θ (τx − τ ′) Ŝ (τ1, τx)×

× φ̂j (x, τx) Ŝ (τx, τ
′) . (2.76)
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Com isso,

δŜ (τ, τ ′)
δsj (x, τx)

= θ (τ − τx) θ (τx − τ ′) Ŝ (τ, τx) φ̂j (x, τx) Ŝ (τx, τ
′)+

+ θ (τ − τx) θ (τx − τ ′)
∫ τ

τx

dτ1Ĥs (τ1) Ŝ (τ1, τx)×

× φ̂j (x, τx) Ŝ (τx, τ
′)+

− θ (τx − τ ′)
∫ τ

τx

dτ1Ĥs (τ1) Ŝ (τ1, τx) φ̂j (x, τx) Ŝ (τx, τ
′)

= θ (τ − τx) θ (τx − τ ′) Ŝ (τ, τx) φ̂j (x, τx) Ŝ (τx, τ
′) , (2.77)

o que mostra que nossa suposição é consistente e correta.
Assim, para 0 < τx:

δŜ (τ, 0)

δsj (x, τx)
= θ (τ − τx) Ŝ (τ, τx) φ̂j (x, τx) Ŝ (τx, 0)

= θ (τ − τx) Ŝ (τ, τx) Ŝ (τx, 0) Ŝ
−1 (τx, 0)×

× ρ̂−1 (τx) φ̂j (x, 0) ρ̂ (τx) Ŝ (τx, 0)

= θ (τ − τx) Ŝ (τ, τx) Ŝ (τx, 0)
[
ρ̂ (τx) Ŝ (τx, 0)

]−1

φ̂j (x, 0)×

× ρ̂ (τx) Ŝ (τx, 0) . (2.78)

Uma vez que Ŝ (τ, 0) = Ŝ (τ), temos

δŜ (τ, 0)

δsj (x, τx)
= θ (τ − τx) Ŝ (τ, τx) Ŝ (τx, 0)

[
ρ̂ (τx) Ŝ (τx)

]−1

φ̂j (x, 0)×

× ρ̂ (τx) Ŝ (τx)

= θ (τ − τx) Ŝ (τ, τx) Ŝ (τx, 0) ρ̂
−1
s (τx) φ̂j (x, 0) ρ̂s (τx) . (2.79)

Agora, definimos, para qualquer operador F̂ :

F̂ s (τ) ≡ ρ̂−1
s (τ) F̂ ρ̂s (τ) , (2.80)

que difere de (2.50) devido à presença do termo de fontes.5 Assim,

δŜ (τ, 0)

δsj (x, τx)
=θ (τ − τx) Ŝ (τ, τx) Ŝ (τx, 0) φ̂

s
j (x, τx) . (2.81)

5Uma vez que ρ̂−1
s (τ) = ρ̂s (−τ), notamos que F̂ s (0) = F̂ .
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Utilizando a definição (2.63) para τ > τx, temos

Ŝ (τ, τx) Ŝ (τx, 0) = T

{
exp

[
−
∫ τ

τx

dτĤs (τ)

]}
T

{
exp

[
−
∫ τx

0

dτĤs (τ)

]}
= T

{
exp

[
−
∫ τ

τx

dτĤs (τ)

]
exp

[
−
∫ τx

0

dτĤs (τ)

]}
= T

{
exp

[
−
∫ τ

τx

dτĤs (τ)−
∫ τx

0

dτĤs (τ)

]}
= T

{
exp

[
−
∫ τ

0

dτĤs (τ)

]}
= Ŝ (τ, 0) . (2.82)

Logo,

δŜ (τ, 0)

δsj (x, τx)
= θ (τ − τx) Ŝ (τ, 0) φ̂sj (x, τx) . (2.83)

Uma vez que Ŝ (τ, 0) = Ŝ (τ), encontramos o resultado

δŜ (τ)

δsj (x, τx)
= θ (τ − τx) Ŝ (τ) φ̂sj (x, τx) . (2.84)

Com isso, a derivada funcional da matriz densidade com fontes com relação
a uma das fontes é

δρ̂s (τ)

δsj (x, τx)
=

δ

δsj (x, τx)

[
ρ̂ (τ) Ŝ (τ)

]
= ρ̂ (τ)

δŜ (τ)

δsj (x, τx)

= θ (τ − τx) ρ̂ (τ) Ŝ (τ) φ̂sj (x, τx)

= θ (τ − τx) ρ̂s (τ) φ̂
s
j (x, τx) . (2.85)

Para τ = β > τx, encontramos

δρ̂s (β)

δsj (x, τx)
= ρ̂s (β) φ̂

s
j (x, τx) . (2.86)

Calcularemos, agora, a derivada funcional do produto da matriz densi-
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dade com fontes com um operador F̂ s (τ) arbitrário:

δ

δsj (x, τx)

[
ρ̂s (β) F̂

s (τ)
]

=
δ

δsj (x, τx)

[
ρ̂s (β) ρ̂

−1
s (τ) F̂ (0) ρ̂s (τ)

]
=

δρ̂s (β)

δsj (x, τx)
ρ̂−1
s (τ) F̂ (0) ρ̂s (τ) +

+ρ̂s (β)
δ [ρ̂−1

s (τ)]

δsj (x, τx)
F̂ (0) ρ̂s (τ) +

±ρ̂s (β) ρ̂−1
s (τ) F̂ (0)

δρ̂s (τ)

δsj (x, τx)
, (2.87)

sendo que o sinal positivo é utilizado quando a fonte comuta com o operador
F̂ e o negativo usado quando esses objetos anti-comutam um com o outro.

Para qualquer matriz inverśıvel M , temos

M−1M = 1̂. (2.88)

A derivada dessa expressão é

δ (M−1M)

δs
=

δ (M−1)

δs
M +M−1 δM

δs
=

δ
(
1̂
)

δs
= 0̂. (2.89)

Ou seja,
δ (M−1)

δs
M = −M−1 δM

δs
. (2.90)

Multiplicando essa expressão pela inversa de M pela direita, encontramos a
fórmula:

δ (M−1)

δs
= −M−1 δM

δs
M−1. (2.91)

Com isso,

δ

δsj (x, τx)

[
ρ̂s (β) F̂

s (τ)
]
=

δρ̂s (β)

δsj (x, τx)
ρ̂−1
s (τ) F̂ (0) ρ̂s (τ)+

− ρ̂s (β) ρ̂
−1
s (τ)

δρ̂s (τ)

δsj (x, τx)
ρ̂−1
s (τ) F̂ (0) ρ̂s (τ)+

± ρ̂s (β) ρ̂
−1
s (τ) F̂ (0)

δρ̂s (τ)

δsj (x, τx)

= ρ̂s (β) φ̂
s
j (x, τx) ρ̂

−1
s (τ) F̂ (0) ρ̂s (τ)+

− ρ̂s (β) ρ̂
−1
s (τ) θ (τ − τx) ρ̂s (τ) φ̂

s
j (x, τx)×

× ρ̂−1
s (τ) F̂ (0) ρ̂s (τ)+

± ρ̂s (β) ρ̂
−1
s (τ) F̂ (0) θ (τ − τx) ρ̂s (τ) φ̂

s
j (x, τx) ,

(2.92)
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ou seja

δ

δsj (x, τx)

[
ρ̂s (β) F̂

s (τ)
]
= ρ̂s (β)

{
φ̂sj (x, τx) F̂

s (τ)− θ (τ − τx)×

×
[
φ̂sj (x, τx) F̂

s (τ)∓ F̂ s (τ) φ̂sj (x, τx)
]}

.

(2.93)

Se τx > τ , temos

δ

δsj (x, τx)

[
ρ̂s (β) F̂

s (τ)
]∣∣∣∣
τx>τ

= ρ̂s (β) φ̂
s
j (x, τx) F̂

s (τ) . (2.94)

Por outro lado, se τ > τx, temos

δ

δsj (x, τx)

[
ρ̂s (β) F̂

s (τ)
]∣∣∣∣
τ>τx

= ρ̂s (β)
{
φ̂sj (x, τx) F̂

s (τ)+

−φ̂sj (x, τx) F̂ s (τ)± F̂ s (τ) φ̂sj (x, τx)
}

= ±ρ̂s (β) F̂ s (τ) φ̂sj (x, τx) . (2.95)

Podemos resumir esses resultados como

δ

δsj (x, τx)

[
ρ̂s (β) F̂

s (τ)
]

= ρ̂s (β)
[
θ (τx − τ) φ̂sj (x, τx) F̂

s (τ)+

±θ (τ − τx) F̂
s (τ) φ̂sj (x, τx)

]
= ρ̂s (β)T

[
φ̂sj (x, τx) F̂

s (τ)
]
. (2.96)

Logo, a derivada funcional de segunda ordem da matriz densidade com fontes
é

δ2ρ̂s (β)

δsl (y, τy) δsj (x, τx)
=

δ

δsl (y, τy)

[
δρ̂s (β)

δsj (x, τx)

]
=

δ

δsl (y, τy)

[
ρ̂s (β) φ̂

s
j (x, τx)

]
= ρ̂s (β)T

[
φ̂sl (y, τy) φ̂

s
j (x, τx)

]
. (2.97)

Seja o funcional gerador termodinâmico ZGF [{sj}] = Z
β,{μj},V
GF [{sj}] de-

finido como
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ZGF [{sj}] ≡ Tr [ρ̂s (β)] . (2.98)

Notamos, em particular, que a função de partição pode ser obtida a partir
de ZGF simplesmente fazendo-se as fontes nulas:

ZGF [{sj = 0}] = Tr [ρ̂s (β)]|s=0 = Tr [ρ̂ (β)] = Z (β) . (2.99)

Tomando o traço da equação (2.86), obtemos

Tr

[
δρ̂s (β)

δsj (x, τx)

]
=

δTr [ρ̂s (β)]

δsj (x, τx)
=

δZGF [{sj}]
δsj (x, τx)

= Tr
[
ρ̂s (β) φ̂

s
j (x, τx)

]
.

(2.100)

Calculando essa expressão para fontes nulas e dividindo pela função de partição,
encontramos:

1

Z (β)
Tr
[
ρ̂ (β) φ̂j (x, τx)

]
=

1

Z (β)

δZGF [{sj}]
δsj (x, τx)

∣∣∣∣
s=0

. (2.101)

Nesta expressão, o ı́ndice s foi retirado, pois quando as fontes são nu-
las ρ̂s (β) = ρ̂ (β), e a definição (2.50) foi utilizada. Contudo, utilizando a
equação (2.35), o primeiro membro dessa expressão coincide com a média

térmica de φ̂j (x, τx). Logo,

〈
φ̂j (x, τx)

〉
=

1

Z (β)

δZGF [{sj}]
δsj (x, τx)

∣∣∣∣
s=0

. (2.102)

Da mesma forma, podemos escrever a partir de (2.97):

〈
T
[
φ̂l (y, τy) φ̂j (x, τx)

]〉
=

1

Z (β)

δ2ZGF [{sj}]
δsl (y, τy) δsj (x, τx)

∣∣∣∣
s=0

. (2.103)

Vemos, portanto, que é posśıvel obter médias no ensemble de campos e
de ordenamentos de campos a partir do funcional gerador termodinâmico.

Até a presente seção tratamos da teoria geral da quantização de campos.
A fim de tornar mais clara a apresentação do método de Matsubara-Fradkin,
em especial o papel das fontes clássicas, no restante deste caṕıtulo restringir-
nos-emos ao caso do campo escalar.
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2.2 O campo escalar real

Consideremos um campo escalar real clássico φ com auto-interação arbitrária
num espaço-tempo (D + 1)-dimensional. Tal campo é descrito pela seguinte
densidade de Lagrangeana

L =
1

2
∂μφ∂μφ−

1

2
m2φ2 + gLint (φ) . (2.104)

Nesta expressão, m é um parâmetro real com dimensão de energia, g
é um parâmetro real arbitrário adimensional e Lint (φ) é a densidade de
Lagrangeana de interação cuja forma é, em prinćıpio, arbitrária no entanto,
por uma questão de simplicidade, restrigimo-nos aos casos nos quais ela não
depende das derivadas do campo.

Nos casos nos quais a densidade de Lagrangena de interação é uma função
par do campo, o sistema possui uma invariância Z2, que consiste em substi-
tuir φ por −φ no presente caso. Tal simetria, embora seja interna, é também
discreta. Para um único campo escalar real aparentemente não se pode ter
simetrias internas, cont́ınuas e globais, razão pela qual não há cargas de
Noether associadas a tais simetrias. De antemão já notamos que não haverá
potencial qúımico envolvido na descrição de um campo escalar real quanti-
zado em equiĺıbrio térmico. Ainda assim, a simplicidade técnica associada ao
se estudar o campo escalar real é atrativa o suficiente para o considerarmos
nosso primeiro objeto de estudo nesta tese.

Associado ao campo φ(x) temos o seu momento canonicamente conjugado
π(x):

π(x) ≡ ∂L
∂ [∂0φ(x)]

= ∂0φ(x) =
∂φ(x)

∂t
. (2.105)

Visto que a relação entre o momento canônico e a derivada temporal
do campo é linear ela é evidentemente inverśıvel e, sendo φ o único campo
envolvido no problema, vemos que não há v́ınculos. Evidencia-se aqui uma
das vantagens de se estudar o campo escalar real. Veremos no próximo
caṕıtulo que a quantização, e mesmo o estudo clássico, de teorias vinculadas
se apresentam como grandes dificuldades e enormes desafios. Voltando ao
caso do campo escalar, os únicos parênteses de Poisson fundamentais não
nulos são

{φ(x), π (y)}x0=y0P = δ (x− y) . (2.106)
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Podemos, também, escrever a densidade de Hamiltoniana canônica HC

como

HC ≡ π∂0φ− L =
1

2
π2 +

1

2

(−→
∂ φ
)2

+
m2

2
φ2 − gLint (φ) . (2.107)

A fim de quantizarmos esse sistema, substituimos as funções campo φ
e momento canônico π por operadores campo φ̂ e momento canônico π̂ e
trocamos os parênteses de Poisson fundamentais, inclusive (2.106), por co-
mutadores:

[
φ̂(x), φ̂ (y)

]
x0=y0

= 0̂; (2.108)

[π̂(x), π̂ (y)]x0=y0 = 0̂; (2.109)[
φ̂(x), π̂ (y)

]
x0=y0

= iδ (x− y) 1̂, (2.110)

sendo o comutador definido como[
Â, B̂

]
≡ ÂB̂ − B̂Â. (2.111)

Uma condição necessária, embora não suficiente, para o equiĺıbrio ter-
modinâmico é a estacionariedade, isto é, a independência temporal. Assu-
mindo que o campo escalar esteja em equiĺıbrio termodinâmico, os operadores
campo e momento devem ser independentes do tempo. Sendo assim, podemos
calcular essas relações, digamos, para x0 = 0 e reescrevê-las simplesmente
como dependentes apenas das variáveis espaciais:

[
φ̂(x), φ̂ (y)

]
= 0̂; (2.112)

[π̂(x), π̂ (y)] = 0̂; (2.113)[
φ̂(x), π̂ (y)

]
= iδ (x− y) 1̂. (2.114)

A matriz densidade que descreve esse sistema é

ρ̂(β) = e−βĤ , (2.115)

sendo Ĥ o Hamiltoniano obtido pela integração em todo o espaço da den-
sidade de Hamiltoniana canônica (2.107) com as funções campo e momento
substitúıdas por operadores:
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Ĥ =

∫
dDx

[
1

2
π̂2 +

1

2

(−→
∂ φ̂
)2

+
m2

2
φ̂2 − gLint

(
φ̂
)]

. (2.116)

Conforme chamamos a atenção já no ińıcio desta seção, a matriz den-
sidade que descreve o campo escalar real em equiĺıbrio termodinâmico não
depende de nenhum potencial qúımico devido à ausência de simetrias inter-
nas, cont́ınuas e globais.

Podemos, ainda, considerar a presença de uma fonte externa clássica J =
J(x) para o campo escalar. A matriz densidade na presença da fonte externa
é

ρ̂s(β) = e−βĤT , (2.117)

sendo

ĤT = Ĥ + Ĥs (2.118)

com Ĥ dado por (2.116) e

Ĥs = −
∫

dDx J(x, τ)φ̂(x, τ) ≡
∫

dDx Ĥs(x, τ). (2.119)

De acordo com a equação (2.80), podemos escrever a dependência de
qualquer operador com o parâmetro associado à temperatura na presença de
fontes a partir de uma transformação de similaridade desse operador com a
matriz densidade com fontes. Em particular, para os operadores campo e
momento, temos

φ̂s(x, τ) = ρ̂(−1)
s (τ)φ̂(x)ρ̂s(τ); (2.120)

π̂s(x, τ) = ρ̂(−1)
s (τ)π̂(x)ρ̂s(τ). (2.121)

Aplicando essa transformação de similaridade a cada uma das equações
(2.112-2.114), vemos que seus segundos membros são invariantes por essa
transformação. Um comutador, por sua vez, se transforma da seguinte forma:

ρ̂(−1)
s (τ)

[
Â, B̂

]
ρ̂s(τ) = ρ̂(−1)

s (τ) Â B̂ ρ̂s(τ)− ρ̂(−1)
s (τ) B̂ Â ρ̂s(τ)

= ρ̂(−1)
s (τ) Â ρ̂s(τ)ρ̂

(−1)
s (τ) B̂ ρ̂s(τ)+

− ρ̂(−1)
s (τ) B̂ ρ̂s(τ)ρ̂

(−1)
s (τ) Â ρ̂s(τ)

= Âs(τ)B̂s(τ)− B̂s(τ)Âs(τ) =
[
Âs(τ), B̂s(τ)

]
.

(2.122)

31



Dessa forma, as equações (2.112-2.114) podem ser reescritas como

[
φ̂(x, τ), φ̂ (y, τ)

]
= 0̂; (2.123)

[π̂(x, τ), π̂ (y, τ)] = 0̂; (2.124)[
φ̂(x, τ), π̂ (y, τ)

]
= iδ (x− y) 1̂. (2.125)

Essas são as relações de comutação fundamentais para a quantização do
campo escalar real em equiĺıbrio termodinâmico.

2.2.1 Das equações de campo ao funcional gerador

Nesta seção, encontraremos o funcional gerador em equiĺıbrio termodinâmico
a partir das equações de campo.

As chamadas equações de campo em equiĺıbrio termodinâmico são equa-
ções análogas às equações de movimento de Heisenberg da teoria quântica
de campos num espaço-tempo de Minkowski. Na verdade, na ausência de
potenciais qúımicos (exemplo do qual o presente caso é), a parte da restrição
0 ≤ τ ≤ β, as equações de campo são idênticas às equações de movimento
num espaço-tempo Euclideano.

Derivando as expressões (2.120) e (2.121) com relação ao parâmetro τ e
utilizando a matriz densidade (2.117), temos:

∂φ̂s(x, τ)

∂τ
= −

[
φ̂s(x, τ), ĤT

]
; (2.126)

∂π̂s(x, τ)

∂τ
= −

[
π̂s(x, τ), ĤT

]
. (2.127)

A fim de calcularmos essas expressões, utilizamos o Hamiltoniano ĤT

dado por (2.118) e os comutadores fundamentais da teoria (2.123-2.125).
Dessa forma, temos

∂φ̂s(x, τ)

∂τ
= − iπ̂s(x, τ); (2.128)

∂π̂s(x, τ)

∂τ
= − i

{−→
∂ 2φ̂s (x, τ)−m2φ̂s (x, τ)+

+g
∂Lint

[
φ̂s (x, τ)

]
∂φ̂s (x, τ)

− J (x, τ) 1̂

⎫⎬⎭ . (2.129)
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A derivada de segunda ordem do campo φ̂ com respeito ao parâmetro
τ pode ser encontrada derivando-se a equação (2.128) com relação a τ e
utilizando (2.129). O resultado é uma equação independente do operador
momento canônico dada por

(
Δ+m2

)
φ̂s (x, τ)− g

∂Lint
[
φ̂s (x, τ)

]
∂φ̂s (x, τ)

= J (x, τ) 1̂. (2.130)

Nesta expressão, o operador derivativo Δ é definido como o negativo do
Laplaceano em D + 1 dimensões:

Δ ≡ − ∂2

∂τ 2
−−→∂ 2. (2.131)

Multiplicamos a equação (2.130) pela matriz densidade do sistema com
fontes externas pela esquerda:

(
Δ+m2

)
ρ̂s (β) φ̂

s (x, τ)− gρ̂s (β)
∂Lint

[
φ̂s (x, τ)

]
∂φ̂s (x, τ)

= J (x, τ) ρ̂s (β) .

(2.132)
Dada a definição (2.60), podemos substituir o operador associado com a

derivada da densidade de Lagrangeano por

∂Lint
[
φ̂s (x, τ)

]
∂φ̂s (x, τ)

= T

⎧⎨⎩∂Lint
[
φ̂s (x, τ)

]
∂φ̂s (x, τ)

⎫⎬⎭ . (2.133)

Com esse resultado e com o aux́ılio das relações (2.86) e (2.97), reescrevemos
a expressão (2.132) como

(
Δ+m2

) δρ̂s (β)

δJ (x, τ)
− g

∂Lint
[

δ
δJ(x,τ)

]
∂
[

δ
δJ(x,τ)

] ρ̂s (β) = J (x, τ) ρ̂s (β) . (2.134)

Tomando o traço dessa expressão e utilizando a definição (2.98) e dividindo
pela função de partição, obtemos

⎧⎨⎩(Δ+m2
) δ

δJ (x, τ)
− g

∂Lint
[

δ
δJ(x,τ)

]
∂
[

δ
δJ(x,τ)

]
⎫⎬⎭ZGF [J ] = J (x, τ)ZGF [J ] .

(2.135)
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Enfatizamos que substitúımos a equação diferencial operatorial (2.130)
por uma equação diferencial funcional. A vantagem mais evidente, além
da simplicidade técnica relativa alcançada, é que o funcional gerador, sendo
definido como um traço da matriz densidade, nos fornece todas as quanti-
dades f́ısicas que desejarmos, inclusive as termodinâmicas, mas não antes de
sermos capazes de calcular ZGF .

2.2.2 O funcional gerador em equiĺıbrio termodinâmi-

co

O funcional gerador pode nos fornecer todas as funções de Green da teoria
original, isto é, sem fontes externas. A função de partição da teoria original
nada mais é do que o funcional gerador calculado para fontes nulas.

Existem dois métodos básicos para se calcular o funcional gerador. O
primeiro deles, e certamente o mais comum, consiste em se calcular explici-
tamente o traço do segundo membro da definição (2.98). Isso é posśıvel pois
a matriz densidade do ensemble com fontes ρ̂s (β) é conhecida. A técnica
consiste em se efetuar o cálculo via integração funcional. Devido à operação
de traço, as integrações funcionais são realizadas sobre todas as configurações
de campo e de momento canônico, que são autovalores dos operadores cor-
respondentes. Certas condições de periodicidade sobre as configurações de
campo são implicadas pela operação de traço. Um outro método para se obter
ZGF consiste em se resolver a equação diferencial funcional explicitamente.
Tal método será nesta seção seguido.

Notamos que resolver a equação (2.135) para uma interação arbitrária
parece não trivial. Portanto, iniciaremos o cálculo para a situação de campo
livre, que é aparentemente mais simples.

O campo livre

A situação de campo livre é obtida fazendo-se g = 0 em (2.135). Denotemos
o funcional gerador do caso livre de ZF

GF [J ]. Esse funcional gerador satisfaz:

(
Δ+m2

) δZF
GF [J ]

δJ (x, τ)
= J (x, τ)ZF

GF [J ] . (2.136)

A fim de resolvermos essa equação diferencial funcional, aplicamos for-
malmente o inverso do operador diferencial Δ +m2 pela esquerda e ficamos
com
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δZF
GF [J ]

δJ (x, τ)
=
(
Δ+m2

)−1
J (x, τ)ZF

GF [J ] . (2.137)

Essa equação diferencial funcional se parece com a seguinte equação di-
ferencial ordinária:

dz (j)

dj
= ajz (j) , (2.138)

cuja solução é

z (j) = z(0)e
a
2
j2 . (2.139)

Adaptando essa solução para a equação funcional (2.137), temos:

ZF
GF [J ] = ZF

GF [0] exp

[
1

2

∫
β

dD+1x J (x, τ)
(
Δ+m2

)−1
J (x, τ)

]
. (2.140)

Nesta equação empregamos uma notação que será corrente em toda a tese:∫
β

dD+1x =

∫ β

0

dτx

∫
V

dDx, (2.141)

sendo que utilizaremos a notação τ para τx sempre que não houver confusão
e a integral em x é efetuada em todo o espaço D - dimensional, resultando
numa dependência impĺıcita do funcional gerador com o hipervolume V em
D dimensões.

Ao deduzirmos a solução para a equação (2.136), utilizamos um operador
que seria o inverso de Δ +m2. A fim de encontrarmos tal operador, consi-
deremos uma função arbitrária f (x, τx) com derivadas de terceira ordem em
todos os pontos do espaço-tempo considerado. Nessas condições, deve valer

f (x, τx) =
(
Δ+m2

)−1 (
Δ(x) +m2

)
f (x, τx)

=

∫
β

dD+1y
(
Δ+m2

)−1
(x, τx;y, τy)

(
Δ(y) +m2

)
f (y, τy)

=

∫
β

dD+1y
(
Δ(y) +m2

) (
Δ+m2

)−1
(x, τx;y, τy) f (y, τy) . (2.142)

Na última igualdade, realizamos duas integrações por partes. A fim de que
essa expressão esteja correta, devemos ter (assumindo que a representação
no espaço-tempo do operador inverso seja simétrico em τx e τy e em x e y)
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(
Δ(x) +m2

) (
Δ+m2

)−1
(x, τx;y, τy) = δ (τx − τy) δ(x− y). (2.143)

Essa expressão mostra que (Δ +m2)
−1

(x, τx;y, τy) satisfaz a mesma equa-
ção que a função de Green GF (x− y, τx − τy) do operador Δ +m2 satisfaz:

(
Δ(x) +m2

)
GF (x− y, τx − τy) = δ (τx − τy) δ(x− y). (2.144)

Portanto, essas duas funções devem ser iguais:

(
Δ+m2

)−1
(x, τx;y, τy) = GF (x− y, τx − τy) . (2.145)

Resta-nos, ainda, encontrar o termo ZF
GF [0] que aparece no funcional

gerador da teoria livre. De acordo com (2.99), essa quantidade é igual ao traço
da matriz densidade de um ensemble grão-canônico para o campo escalar real
sem fontes externas e sem auto-interação:

ZF
GF [0] = Tr

(
e−βĤ0

)
. (2.146)

O Hamiltoniano Ĥ0 que aparece nesta expressão é o Hamiltoniano do
sistema livre, que pode ser obtido fazendo-se g = 0 em (2.116):

Ĥ0 =
1

2

∫
dDx

[
π̂2 +

(−→
∂ φ̂
)2

+m2φ̂2

]
. (2.147)

Essas duas últimas expressões deixam claro que ZF
GF [0] nada mais é do

que a função de partição da teoria livre ZF (β).
Com todos esses resultados, escrevemos o funcional gerador do campo

escalar real livre como

ZF
GF [J ] = ZF (β) exp

[
1

2

∫
β

dD+1xdD+1yJ (x, τx)GF (x− y, τx − τy) J (y, τy)

]
.

(2.148)
Convém notar que o gerador funcional depende da função de partição livre

e ainda não a calculamos. A função de partição é imprescind́ıvel, especial-
mente quando estamos interessados em calcular quantidades termodinâmicas,
como a pressão ou a energia interna do sistema. Embora essa quantidade seja
important́ıssima para quantidades termodinâmicas, não a calcularemos ex-
plicitamente nesta seção. A razão para isso é que existem muitas quantidades,
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como as diversas funções de Green da teoria (que no caso livre é apenas uma),
que podem ser obtidas a partir do funcional gerador sem a necessidade de se
conhecer a função de partição explicitamente. Como um exemplo, tomemos a
função de Green do campo escalar livre GF (x− y, τx − τy). Essa quantidade
pode ser calculada através de

GF (x− y, τx − τy) =
1

ZF (β)

δ2ZF
GF [J ]

δJ (x, τx) δJ (y, τy)

∣∣∣∣
J=0

. (2.149)

Dada a equação (2.148), vemos que a função de partição acaba sendo
dividida por ela mesma. Dessa forma, a função de Green livre, embora
dependa de quantidades termodinâmicas (como a temperatura, por exemplo),
independe da função de partição. Essa mesma caracteŕıstica será partilhada
por outras funções de Green de teorias mais complicadas.

O caso auto-interagente

Retornaremos, agora, para o caso com auto-interação. Nesse caso, o fun-
cional gerador termodinâmico deve satisfazer a equação (2.135). Tentaremos
resolver essa equação funcional complicada com oseguinte Ansätz :

ZGF [J ] = A

[
δ

δJ

]
ZF
GF [J ] , (2.150)

sendo A
[
δ
δJ

]
um operador derivativo funcional por enquanto desconhecido.

Nosso objetivo nesta seção é encontrá-lo. Substituindo o Ansätz (2.150) na
equação funcional (2.135), encontramos:

J (x, τ)A

[
δ

δJ

]
ZF
GF [J ] = A

[
δ

δJ

]{(
Δ+m2

) δZF
GF [J ]

δJ (x, τ)
+

−g
∂Lint

[
δ

δJ(x,τ)

]
∂
[

δ
δJ(x,τ)

] ZF
GF [J ]

⎫⎬⎭ . (2.151)

Utilizando a equação (2.136) para o funcional gerador termodinâmico
livre, ficamos com

J (x, τ)A

[
δ

δJ

]
ZF
GF [J ] =A

[
δ

δJ

]⎧⎨⎩J (x, τ)− g
∂Lint

[
δ

δJ(x,τ)

]
∂
[

δ
δJ(x,τ)

]
⎫⎬⎭ZF

GF [J ] .

(2.152)
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Embora essa equação seja satisfeita pelo funcional gerador termodinâmico
livre ZF

GF (β), o operador que nele atua apenas depende de quantidades
que dependem exclusivamente da interação. Mas o funcional gerador ter-
modinâmico livre, por definição, não depende da interação. Logo, o opera-
dor que nele atua deve ser identicamente nulo para que a equação acima seja
satisfeita. Assim, temos a seguinte equação operatorial:

J (x, τ)A

[
δ

δJ

]
= A

[
δ

δJ

]
J (x, τ)− gA

[
δ

δJ

] ∂Lint [ δ
δJ(x,τ)

]
∂
[

δ
δJ(x,τ)

] , (2.153)

ou

A

[
δ

δJ

]
J (x, τ)− J (x, τ)A

[
δ

δJ

]
= gA

[
δ

δJ

] ∂Lint [ δ
δJ(x,τ)

]
∂
[

δ
δJ(x,τ)

] . (2.154)

O primeiro membro dessa equação pode ser escrito como um comutador:

[
A

[
δ

δJ

]
, J (x, τ)

]
= g

∂Lint
[

δ
δJ(x,τ)

]
∂
[

δ
δJ(x,τ)

] A

[
δ

δJ

]
. (2.155)

A fim de resolvermos essa equação, expandimos o operadorA em potências
da derivada funcional

A

[
δ

δJ

]
=

∞∑
n=0

an

∫
β

n∏
j=1

dD+1xj
δ

δJ
(
xj, τxj

) . (2.156)

Nesta equação, an são os coeficientes da expansão e, por definição,∫
β

0∏
j=1

dD+1xj
δ

δJ
(
xj, τxj

) = 1. (2.157)

Calculamos, agora, o comutador da fonte J com sua derivada funcional.
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Esse comutador atuando sobre um funcional F arbitrário fornece:[
δ

δJ (y, τy)
, J (x, τx)

]
F [J ] =

δ

δJ (y, τy)
{J (x, τx)F [J ]}+

−J (x, τx)
δF [J ]

δJ (y, τy)

=
δJ (x, τx)

δJ (y, τy)
F [J ] + J (x, τx)

δF [J ]

δJ (y, τy)
+

−J (x, τx)
δF [J ]

δJ (y, τy)

= δ (x− y) δ (τx − τy)F [J ] . (2.158)

Logo, conclúımos que[
δ

δJ (y, τy)
, J (x, τx)

]
= δ (x− y) δ (τx − τy) . (2.159)

Precisamos, ainda, calcular[
A

[
δ

δJ

]
, J (x, τx)

]
=

[ ∞∑
n=0

an

∫
β

[
n∏
j=1

dD+1yj
δ

δJ
(
yj, τyj

)] , J (x, τx)

]

=
∞∑
n=0

an

[∫
β

[
n∏
j=1

dD+1yj
δ

δJ
(
yj, τyj

)] , J (x, τx)

]
.

(2.160)

Estudemos o comutador
[∏n

j=1 Bj, C
]
. Quando n = 0 temos, por definição[

0∏
j=1

Bj, C

]
= [1, C] = 0. (2.161)

Quando n = 1: [
1∏
j=1

Bj, C

]
= [B1, C] . (2.162)

Para n = 2:[
2∏
j=1

Bj, C

]
= [B1B2, C] = B1B2C − CB1B2

= B1B2C − B1CB2 + B1CB2 − CB1B2

= B1 (B2C − CB2) + (B1C − CB1)B2

= B1 [B2, C] + [B1, C]B2. (2.163)
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Utilizando este resultado, encontramos para n = 3:[
3∏
j=1

Bj, C

]
= [B1B2B3, C]

= B1B2 [B3, C] + [B1B2, C]B3

= B1B2 [B3, C] + B1 [B2, C]B3 + [B1, C]B2B3.

(2.164)

E para n = 4:[
4∏
j=1

Bj, C

]
= [B1B2B3B4, C]

= B1B2B3 [B4, C] + B1B2 [B3, C]B4 + [B1B2, C]B3B4

= B1B2B3 [B4, C] + B1B2 [B3, C]B4 +

+B1 [B2, C]B3B4 + [B1, C]B2B3B4. (2.165)

Isso nos leva a supor o seguinte resultado geral:[
n∏
j=1

Bj, C

]
=

n∑
l=1

[
l−1∏
k=1

Bk

]
[Bl, C]

[
n∏

r=l+1

Br

]
. (2.166)

Uma vez mais, temos
j∏

k>j

Bk = 1. (2.167)

Verifiquemos se o resultado geral proposto (2.166) fornece o resultado
correto para n = 1:

[
1∏
j=1

Bj, C

]
=

1∑
l=1

[
l−1∏
k=1

Bk

]
[Bl, C]

[
1∏

r=l+1

Br

]

=

[
1−1∏
k=1

Bk

]
[B1, C]

[
1∏

r=1+1

Br

]
= [B1, C] . (2.168)

Este resultado é precisamente (2.162).
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Agora, assumindo (2.166) para n, testemos sua validade para n+ 1:[
n+1∏
j=1

Bj, C

]
=

[[
n∏
j=1

Bj

]
Bn+1, C

]

=

[
n∏
j=1

Bj

]
Bn+1C − C

[
n∏
j=1

Bj

]
Bn+1

=

[
n∏
j=1

Bj

]
Bn+1C −

[
n∏
j=1

Bj

]
CBn+1 +

+

[
n∏
j=1

Bj

]
CBn+1 − C

[
n∏
j=1

Bj

]
Bn+1

=

[
n∏
j=1

Bj

]
(Bn+1C − CBn+1) +

+

([
n∏
j=1

Bj

]
C − C

[
n∏
j=1

Bj

])
Bn+1

=

[
n∏
j=1

Bj

]
[Bn+1, C] +

[[
n∏
j=1

Bj

]
, C

]
Bn+1. (2.169)

Substituindo (2.166) no último termo dessa expressão:

[
n+1∏
j=1

Bj, C

]
=

[
n∏
j=1

Bj

]
[Bn+1, C] +

n∑
l=1

[
l−1∏
k=1

Bk

]
[Bl, C]

[
n∏

r=l+1

Br

]
Bn+1

=

[
n∏
j=1

Bj

]
[Bn+1, C] +

n∑
l=1

[
l−1∏
k=1

Bk

]
[Bl, C]

[
n+1∏
r=l+1

Br

]

=
n+1∑
l=n+1

[
l−1∏
k=1

Bk

]
[Bl, C]

[
n+1∏
r=l+1

Br

]
+

+
n∑
l=1

[
l−1∏
k=1

Bk

]
[Bl, C]

[
n+1∏
r=l+1

Br

]

=
n+1∑
l=1

[
l−1∏
k=1

Bk

]
[Bl, C]

[
n+1∏
r=l+1

Br

]
. (2.170)

Vemos que essa é justamente a relação (2.166) escrita para n+ 1 em vez
de n. Em outras palavras, sempre que (2.166) for válida para um certo n,
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ela será válida para n + 1. Por recursão, isso mostra que sempre que ela
for válida para um certo n, ela será válida para todo m > n. Além disso,
mostramos explicitamente sua validade para n = 1. Portanto, a suposição
(2.166) é válida para todo n ≥ 1. Assim, utilizando essa fórmula para (2.160),
encontramos:

[
A

[
δ

δJ

]
, J (x, τx)

]
=

∞∑
n=0

an

[∫
β

[
n∏
j=1

dD+1yj
δ

δJ
(
yj, τyj

)] , J (x, τx)

]

=
∞∑
n=1

an

[∫
β

[
n∏
j=1

dD+1yj
δ

δJ
(
yj, τyj

)] , J (x, τx)

]

=
∞∑
n=1

an

n∑
l=1

[∫
β

l−1∏
k=1

dD+1yk
δ

δJ (yk, τyk)

]
×

×
∫
β

dD+1yl

[
δ

δJ (yl, τyl)
, J (x, τx)

]
×

×
[∫

β

n∏
r=l+1

dD+1yr
δ

δJ (yr, τyr)

]
. (2.171)

Utilizando o resultado (2.159), temos:

∫
β

dD+1yl

[
δ

δJ (yl, τyl)
, J (x, τx)

]
=

∫
β

dD+1ylδ (yl − x) δ (τyl − τx) = 1.

(2.172)

Assim, [
A

[
δ

δJ

]
, J (x, τx)

]
=

∞∑
n=1

an

n∑
l=1

[∫
β

l−1∏
k=1

dD+1yk
δ

δJ (yk)

]
×

×
[∫

β

n∏
r=l+1

dD+1yr
δ

δJ (yr)

]

=
∞∑
n=1

an

n∑
l=1

∫
β

n∏
k �=l

dD+1yk
δ

δJ (yk)

=
∞∑
n=1

nan

∫
β

n−1∏
k=1

dD+1yk
δ

δJ (yk)

=
∂A
[
δ
δJ

]
∂
[
δ
δJ

] . (2.173)
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Com esse resultado, vemos que a equação (2.155) se torna

∂A
[
δ
δJ

]
∂
[
δ
δJ

] = g
∂Lint

[
δ

δJ(x,τ)

]
∂
[

δ
δJ(x,τ)

] A

[
δ

δJ

]
, (2.174)

cuja solução é

A

[
δ

δJ

]
= A0 exp

{
g

∫
β

dD+1x Lint
[

δ

δJ (x, τ)

]}
. (2.175)

A0 é um operador que pode ser determinado pela condição de que, de acordo
com o Änsatz (2.150), na ausência de interação A deve ser o operador iden-
tidade. Na ausência de interação temos g = 0 e

A(g=0)

[
δ

δJ

]
= A0 exp

{
0

∫
β

dD+1x Lint
[

δ

δJ (x, τ)

]}
= A0 = 1̂. (2.176)

Da equações (2.148), (2.150) e (2.176), encontramos o funcional gerador
termodinâmico completo da teoria:

ZGF [J ] =ZF (β) exp

{
g

∫
β

dDzLint
[

δ

δJ (z, τz)

]}
×

× exp

[∫
β

dDxdDyJ (x, τx)GF (x− y, τx − τx) J (y, τy)

]
.

(2.177)

A partir desse funcional gerador termodinâmico, todas as quantidades
f́ısicas, sejam elas funções de Green ou observáveis termodinâmicos, podem
ser calculados. Infelizmente, não existe uma expressão exata para o fun-
cional gerador termodinâmico (2.177). Técnicas de aproximações se fazem
necessárias. Na seção seguinte veremos brevemente a expansão perturbativa
de ZGF (β) e ainda estudaremos um método não perturbativo.

2.2.3 A teoria de perturbação modificada de Fradkin

Fradkin desenvolveu uma teoria de perturbação modificada para teoria de
campos à temperatura nula no espaço-tempo Euclideano [16]. Nesta seção,
extenderemos sua teoria para incluir efeitos térmicos.

Conforme vimos na subseção anterior, o funcional gerador termodinâmico
para o campo escalar real com uma autointeração arbitrária em (D + 1)
- dimensões espaço-temporais é dado pela equação (2.177). A função de
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partição da teoria completa, por sua vez, é obtida fazendo-se J = 0 no
funcional gerador termodinâmico (2.177):

Z (β) =ZF (β) exp

{
g

∫
β

dDzLint
[

δ

δJ (z, τz)

]}
×

× exp

[∫
β

dDxdDyJ (x, τx)GF (x− y, τx − τx) J (y, τy)

]∣∣∣∣
J=0

.

(2.178)

O funcional gerador termodinâmico da teoria livre é dado por (2.148).
Portanto, (2.177) pode ser escrito como

ZGF [J ] = exp

{
g

∫
β

dDzLint
[

δ

δJ (z, τz)

]}
ZF
GF [J ] (2.179)

e a função de partição como

Z (β) = exp

{
g

∫
β

dDzLint
[

δ

δJ (z, τz)

]}
ZF
GF [J ]

∣∣∣∣
J=0

. (2.180)

Contudo, para qualquer funcional F [J ], vale:

F [J ]ZF [J ]|J=0 = Tr
{
ρ̂F (β)T

{
F
[
φ̂
]}}

= ZF (β)
Tr
{
ρ̂F (β)T

{
F
[
φ̂
]}}

ZF (β)

= ZF (β)
〈
T
{
F
[
φ̂
]}〉

F
, (2.181)

sendo
〈
Ô
〉
F
a média do operador Ô no ensemble grão-canônico livre, isto é,

sem interação.
Vemos, assim, que a função de partição completa (2.180) pode ser escrita

como

Z (β) = ZF (β)

〈
T

{
exp

{
g

∫
β

dDzLint
[
φ̂ (z, τz)

]}}〉
F

. (2.182)

A teoria de perturbação ordinária consiste em escrever essa expressão
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como

Z (β) = ZF (β)

〈
T

{
exp

{
g

∫
β

dDzLint
[
φ̂ (z, τz)

]}}〉
F

= ZF (β)

〈
T

{ ∞∑
l=0

gl

l!

{∫
β

dDzLint
[
φ̂ (z, τz)

]}l}〉
F

= ZF (β)
∞∑
l=0

gl

l!

〈
T

{{∫
β

dDzLint
[
φ̂ (z, τz)

]}l}〉
F

= ZF (β)
∞∑
l=0

gl
zl (β)

l!
, (2.183)

sendo

zl (β) ≡
〈
T

{{∫
β

dDzLint
[
φ̂ (z, τz)

]}l}〉
F

, (2.184)

e truncar (2.183) em alguma potência da constante g.
Dada a condição (2.10), vemos imediatamente que

z0 (β) = 1.

A fim de reproduzirmos a teoria de perturbação modificada de Fradkin,
tomamos o logaritmo da função de partição e o escrevemos como

ln [Z (β)] ≡
∞∑
k=0

gkAk (β) . (2.185)

Utilizando a expansão (2.183), obtemos:

ln [Z (β)] = ln

[
ZF (β)

∞∑
l=0

gl
zl (β)

l!

]

= ln

{
ZF (β)

[
1 +

∞∑
l=1

gl
zl (β)

l!

]}

= ln [ZF (β)] + ln

[
1 +

∞∑
l=1

gl
zl (β)

l!

]
. (2.186)

Para −1 < x < 1 podemos expandir o segundo logaritmo do segundo
membro dessa expressão em série de Taylor de acordo com

ln (1 + x) = −
∞∑
r=1

(−x)r
r

. (2.187)
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Sob tal hipótese,

ln

[
1 +

∞∑
l=1

gl
zl (β)

l!

]
= −

∞∑
r=1

1

r

[
−

∞∑
l=1

gl
zl (β)

l!

]r
. (2.188)

Utilizaremos, agora, a expansão multinomial [33]:6(
m∑
j=1

aj

)n
=

∑
{nj}∑m

j=1 nj=n

n!∏m
k=1 nk!

m∏
l=1

anl
l . (2.189)

Com isso,[
−

∞∑
l=1

gl
zl (β)

l!

]r
= (−1)r

∑
{nj}∑∞

j=1 nj=r

r!
∏m

l′=1

[
gl

′ zl′ (β)
l′!

]nl′∏m
k=1 nk!

. (2.190)

Então, a equação (2.188) se torna

ln

[
1 +

∞∑
l=1

gl
zl (β)

l!

]
= −

∞∑
r=1

(−1)r
r

∑
{nj}∑∞

j=1 nj=r

r!
∏∞

l′=1

[
gl

′ zl′ (β)
l′!

]nl′∏∞
k=1 nk!

=
∞∑
r=1

(−1)r−1 (r − 1)!×

×
∑
{nj}∑∞

j=1 nj=r

{∏∞
l′=1 g

l′nl′
}∏∞

l′′=1

[
zl′′ (β)
l′′!

]nl′′∏∞
k=1 nk!

=
∞∑
r=1

∑
{nj}∑∞

j=1 nj=r

{ ∞∏
l′=1

gl
′nl′

}
×

× (−1)r−1 (r − 1)!

∏∞
l′′=1

[
zl′′ (β)
l′′!

]nl′′∏∞
k=1 nk!

=
∞∑
r=1

∑
{nj}

g
∑∞

l′=1 l
′nl′ (−1)

∑∞
j′=1 nj′−1 ×

×
( ∞∑
j=1

nj − 1

)
!

∞∏
k′=1

1

nk′ !

[
zk′ (β)

k′!

]nk′

. (2.191)

6Essa técnica na mecânica estat́ıstica é conhecida como expansão de cumulantes [32].
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Seja
∞∑
j=1

jnj ≡ r. (2.192)

Então, temos

ln [Z (β)] = ln [ZF (β)] + ln

[
1 +

∞∑
l=1

gl
zl (β)

l!

]

= ln [ZF (β)] +
∞∑
r=1

gr
∑
{nj}∑∞

j=1 jnj=r

(−1)
∑∞

j′=1 nj′−1 ×

×
( ∞∑
j=1

nj − 1

)
!

∞∏
k′=1

1

nk′ !

[
zk′ (β)

k′!

]nk′

.

(2.193)

Comparando este resultado com (2.185), encontramos

A0 (β) = ln [ZF (β)]

e, quando k > 0:

Ak (β) =
∑
{nj}∑∞

j=1 jnj=k

(−1)
∑∞

j′=1 nj′−1

( ∞∑
j=1

nj − 1

)
!

∞∏
k′=1

1

nk′ !

[
zk′ (β)

k′!

]nk′

.

(2.194)
Sendo essa equação complicada demais para se vislumbrar facilmente

qualquer tipo de implicação, calcularemos alguns termos explicitamente. Para
k = 1 temos que

∑∞
j=1 jnj = 1 implica n1 = 1 e nj �=1 = 0. Portanto:

A1 (β) = (−1)1−1 (1− 1)!
z1 (β)

1!
= z1 (β) . (2.195)

Para k = 2,
∑∞

j=1 jnj = 2 implica n1 = 2 e todos os outros nj = 0 ou
então n2 = 1 e todos os demais nj = 0. Então,

A2 (β) = (−1)2−1 (2− 1)!
1

2!

[
z1 (β)

1!

]2
+ (−1)1−1 (1− 1)!

1

1!

[
z2 (β)

2!

]1
= − [z1 (β)]

2

2
+

z2 (β)

2
=

1

2

{
z2 (β)− [z1 (β)]

2} . (2.196)
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No caso no qual k = 3,
∑∞

j=1 jnj = 3 implica no seguinte: i) n1 = 3 e
todos os outros nj = 0; ii) n1 = n2 = 1 e todos os outros nj = 0 e iii) n3 = 1
e todos os outros nj = 0, donde

A3 (β) = (−1)3−1 (3− 1)!
1

3!

[
z1 (β)

1!

]3
+

+(−1)1+1−1 (1 + 1− 1)!
1

1!1!

[
z1 (β)

1!

]1 [
z2 (β)

2!

]1
+

+(−1)1−1 (1− 1)!
1

1!

[
z3 (β)

3!

]1
=

1

3!

{
z3 (β)− 3z1 (β) z2 (β) + 2 [z1 (β)]

3} . (2.197)

Para k = 4 temos que
∑∞

j=1 jnj = 4 implica: i) n1 = 4 e os demais nj = 0;
ii) n2 = 2 e os outros nj = 0; iii) n1 = 2, n2 = 1 e todos os outros nj = 0; iv)
n1 = 1, n3 = 1 e todos os demais nj = 0 e, finalmente, v) n4 = 1 e os outros
nj = 0. Dessa forma

A4 (β) = (−1)4−1 (4− 1)!
1

4!

[
z1 (β)

1!

]4
+ (−1)2−1 (2− 1)!

1

2!

[
z2 (β)

2!

]2
+

+(−1)2+1−1 (2 + 1− 1)!
1

2!

[
z1 (β)

1!

]2
1

1!

[
z2 (β)

2!

]1
+

+(−1)1+1−1 (1 + 1− 1)!
1

1!

[
z1 (β)

1!

]1
1

1!

[
z3 (β)

3!

]1
+

+(−1)1−1 (1− 1)!
1

1!

[
z4 (β)

4!

]1
=

1

4!

{
z4 (β)− 4z1 (β) z3 (β)− 3 [z2 (β)]

2 +

+12 [z1 (β)]
2 z2 (β)− 6 [z1 (β)]

4} , (2.198)

e assim sucessivamente.
De (2.185) podemos escrever

Z (β) = exp

[ ∞∑
k=0

gkAk (β)

]
=

∞∏
k=0

eg
kAk(β) = ZF (β)

∞∏
k=1

eg
kAk(β), (2.199)

o que mostra que esta técnica não é a teoria de perturbação usual (2.183),
que consiste numa expansão da função de partição em série de potências.
Por exemplo, se conhecermos A2 (β) exatamente, estaremos levando em con-
sideração na função de partição termos de ordens muito superiores a g2.
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2.2.4 A função de Green não perturbativa

Semelhantemente ao que fizemos para a função de partição, podemos buscar
correções não perturbativas para a função de Green.

Com o aux́ılio de (2.179) e de (2.199), podemos escrever a função de
Green exata na forma

G (x− y, τx − τy) =
1

Z (β)

δ2ZGF [J ]

δJ (y, τy) δJ (x, τx)

∣∣∣∣
J=0

=
1

Z (β)

δ2

δJ (y, τy) δJ (x, τx)
×

× exp

{
g

∫
β

dDzLint
[

δ

δJ (z, τz)

]}
ZF [J ]

∣∣∣∣
J=0

=
ZF (β)

Z (β)

〈
T
{
φ̂ (x, τx) φ̂ (y, τy)×

× exp

{
g

∫
β

dDzLint
[
φ̂ (z, τz)

]}}〉
F

=

[ ∞∏
k=1

e−g
kAk(β)

]〈
T
{
φ̂ (x, τx) φ̂ (y, τy)×

×
∞∑
l=0

gl

l!

{∫
β

dDzLint
[
φ̂ (z, τz)

]}l}〉
F

=

[ ∞∏
k=1

e−g
kAk(β)

] ∞∑
l=0

gl

l!

〈
T
{
φ̂ (x, τx) φ̂ (y, τy)×

×
{∫

β

dDzLint
[
φ̂ (z, τz)

]}l}〉
F

=

[ ∞∏
k=1

e−g
kAk(β)

] ∞∑
l=0

gl

l!
wl (x,y; τx, τy) , (2.200)

sendo

wl (x,y; τx, τy) ≡
〈
T

{
φ̂ (x, τx) φ̂ (y, τy)

{∫
β

dDzLint
[
φ̂ (z, τz)

]}l}〉
F

.

(2.201)
Agora, escrevemos

ln [G (x− y, τx − τy)] ≡
∞∑
k=0

gk [Bk (x,y; τx, τy; β)− Ak (β)] . (2.202)
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Tomando o logaritmo de (2.200), obtemos

ln [G (x− y, τx − τy)] = ln

[ ∞∏
k=1

e−g
kAk(β)

]
+ ln

[ ∞∑
l=0

gl

l!
wl (x,y; τx, τy)

]

=
∞∑
k=1

ln
[
e−g

kAk(β)
]
+

+ ln

[
w0 (x,y; τx, τy) +

∞∑
l=1

gl

l!
wl (x,y; τx, τy)

]

=
∞∑
k=1

ln
[
e−g

kAk(β)
]
+ ln {w0 (x,y; τx, τy)×

×
[
1 +

∞∑
l=1

gl

l!

wl (x,y; τx, τy)

w0 (x,y; τx, τy)

]}

= −
∞∑
k=1

gkAk (β) + ln [w0 (x,y; τx, τy)] +

+ ln

[
1 +

∞∑
l=1

gl

l!

wl (x,y; τx, τy)

w0 (x,y; τx, τy)

]
.

Utilizando a mesma técnica empregada na subseção anterior, encontramos

ln

[
1 +

∞∑
l=1

gl

l!

wl (x,y; τx, τy)

w0 (x,y; τx, τy)

]
=

∞∑
r=1

∑
{nj}

g
∑∞

l′=1 l
′nl′ ×

× (−1)
∑∞

j′=1 nj′−1

( ∞∑
j=1

nj − 1

)
!×

×
∞∏
k′=1

1

nk′ !

[
wk′ (x,y; τx, τy)

k′!w0 (x,y; τx, τy)

]nk′

.

(2.203)

Novamente, seja
∞∑
j=1

jnj ≡ r. (2.204)
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Assim:

ln [G (x− y, τx − τy)] = ln [w0 (x,y; τx, τy)] + A0 (β)− A0 (β) +

+
∞∑
k=1

gk

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
{nj}∑∞

j=1 jnj=k

(−1)
∑∞

j′=1 nj′−1×

×
( ∞∑
j=1

nj − 1

)
!×

×
∞∏
k′=1

1

nk′ !

[
wk′ (x,y; τx, τy)

k′!w0 (x,y; τx, τy)

]nk′

− Ak (β)

}
.

(2.205)

Desta equação e de (2.202), identificamos

B0 (x,y; τx, τy; β) = ln [w0 (x,y; τx, τy)] + A0 (β)

= ln [w0 (x,y; τx, τy)] + ln [ZF (β)] (2.206)

e para todos os outros k:

Bk (x,y; τx, τy; β) =
∑
{nj}∑∞

j=1 jnj=k

(−1)
∑∞

j′=1 nj′−1

( ∞∑
j=1

nj − 1

)
!×

×
∞∏
k′=1

1

nk′ !

[
wk′ (x,y; τx, τy)

k′!w0 (x,y; τx, τy)

]nk′

. (2.207)

Tomando a exponencial de (2.202) encontramos:

G (x− y, τx − τy) = exp

{ ∞∑
k=0

gk [Bk (x,y; τx, τy; β)− Ak (β)]

}

= w0 (x,y; τx, τy)
∞∏
k=1

eg
k[Bk(x,y;τx,τy ;β)−Ak(β)].

(2.208)

De acordo com a definição (2.201):

w0 (x,y; τx, τy) =

〈
T

{
φ̂ (x, τx) φ̂ (y, τy)

{∫
β

dDzLint
[
φ̂ (z, τz)

]}0
}〉

F

=
〈
T
[
φ̂ (x, τx) φ̂ (y, τy)

]〉
F

= GF (x− y, τx − τy) . (2.209)
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Logo, a função de Green completa se escreve como

G (x− y, τx − τy) = GF (x− y, τx − τy)
∞∏
k=1

eg
k[Bk(x,y;τx,τy ;β)−Ak(β)]. (2.210)

De acordo com (2.207), a correção de ordem mais baixa da teoria de
perturbação modificada é

B1 (x,y; τx, τy; β) =
w1 (x,y; τx, τy)

w0 (x,y; τx, τy)
=

w1 (x,y; τx, τy)

GF (x− y, τx − τy)
. (2.211)

Utilizando também o resultado (2.195), temos:

G(eg) (x− y, τx − τy) =GF (x− y, τx − τy) e
g[B1(x,y;τx,τy ;β)−A1(β)]

=GF (x− y, τx − τy) e
g

[
w1(x,y;τx,τy)

GF (x−y,τx−τy)
−z1(β)

]
. (2.212)

Essa expressão indica que mesmo em ordem mais baixa de teoria de per-
turbação modificada, a função de Green completa depende de uma maneira
não linear da função de Green livre, propriedade não compartilhada pela
função correspondente na teoria de perturbação usual. Exemplos mais con-
cretos podem ser obtidos fixando-se o número de dimensões e a o termo de
auto-interação. Infelizmente, tais exemplos não serão inclúıdos nesta tese.

Neste caṕıtulo estabelecemos as bases do formalismo de Matsubara-Frad-
kin para a quantização de campos em equiĺıbrio termodinâmicos. Inciamos
com a construção da matriz densidade do ensemble grão-canônico, ensemble
preferencial em teoria de campos devido às cargas de Noether associadas a
simetrias internas. Apresentamos, também, o formalismo que consiste no
emprego de fontes clássicas externas ao problema f́ısico. Como um exemplo
simples, aplicamos o formalismo de Matsubara-Fradkin ao campo escalar
real em D dimensões espaciais com um termo de interação arbitrário. Por
fim, apresentamos a extensão da teoria de perturbação modificada de Fradkin
para situações de equiĺıbrio termodinâmico. Embora os resultados aqui apre-
sentados sejam preliminares, os resultados não perturbativos aqui obtidos
podem servir de alternativa aos processos de ressoma t́ıpicos das situações
com temperaturas não nulas, como aqueles apresentados em [34] e [35].
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Caṕıtulo 3

O campo eletromagnético de

Podolsky

Neste caṕıtulo estudaremos o campo eletromagnético de Podolsky. Limitar-
nos-emos ao caso de um espaço-tempo quadridimensional. Iniciaremos tra-
tando do regime clássico da teoria. Da aplicação do prinćıpio de gauge a
uma teoria contendo somente férmions, veremos como o campo de Podolsky
emerge como uma alternativa à teoria de Maxwell. A teoria de Podols-
ky depende de um parâmetro livre. Demonstraremos, então, que certas
condições f́ısicas limitam o sinal desse parâmetro. Como um preâmbulo para
a quantização da teoria eletrodinâmica de Podolsky, realizaremos a análise de
v́ınculos a la Dirac na parte fermiônica da teoria. De posse dos colchetes de
Dirac da parte fermiônica, utilizaremos o formalismo de Matsubara-Fradkin
para escrever as equações de campo quânticas fermiônicas da teoria. Intro-
duziremos, em seguida, o método do campo auxiliar de Nakanishi para se
obter as equações de campo quânticas termodinâmicas do campo de Podols-
ky. Como consequência desse método, veremos que a introdução de campos
extras - ou fantasmas - ocorre naturalmente. Então, encontraremos a re-
presentação de integração funcional da função de partição. Estudaremos,
em seguida, as equações de Dyson-Schwinger-Fradkin da teoria de Podols-
ky. Na sequência, estudaremos como a invariância de gauge das quantidades
termodinâmicas implicam as identidades de Ward-Fradkin-Takahashi.

3.1 O prinćıpio de gauge

Nesta seção, iniciaremos com uma teoria clássica para férmions de spin 1/2.
A densidade de Lagrangeana de Dirac que descreve tais férmions é
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LDirac = i (γμ)ab

[(
λ+ 1

2

)
ψa∂μψb +

(
λ− 1

2

)
∂μψaψb

]
−mfψaψa. (3.1)

Nesta expressão, γμ’s são as matrizes de Dirac que satisfazem

{γμ, γν}ab = 2δabg
μν , (3.2)

λ é um número real adimensional arbitrário, ψa = ψa(x) e ψa = ψa(x) são os
campos fermiônicos, que são também Grassmannianos, mf é um parâmetro
arbitrário com dimensão de energia e assumimos soma impĺıcita nos ı́ndices
a e b de 1 a 4.

Notamos que a densidade de Lagrangeana (3.1) é invariante pela seguinte
transformação U(1) global:

ψa(x)→ ψ′
a(x) = eiθψa(x); (3.3)

ψa(x)→ ψ
′
a(x) =ψa(x)e

−iθ, (3.4)

sendo θ um parâmetro constante real.
Essa simetria significa que os fenômenos f́ısicos não se alteram se modifi-

carmos o campo fermiônico por um fator de fase multiplicativo, contanto que
essa fase seja a mesma em todos os pontos do espaço e em todos os instantes
de tempo. Um dúvida permanece: é posśıvel escolher fases diferentes para
pontos distintos do espaço e instantes de tempo diferentes? Nesse caso, o
parâmetro da transformação U(1) deve depender do ponto do espaço-tempo
e a transformação se escreve como

ψa(x)→ ψ′
a(x) = eiθ(x)ψa(x); (3.5)

ψa(x)→ ψ
′
a(x) =ψa(x)e

−iθ(x), (3.6)

e a densidade de Lagrangeana de Dirac (3.1) se transforma como1

LDirac → L′
Dirac = LDirac − ∂μθ(x) (γ

μ)ab ψaψb �= LDirac, (3.7)

o que mostra que contrariamente ao caso da simetria global, os fenômenos
f́ısicos são diferentes se escolhermos fases diferentes para pontos distintos do
espaço-tempo.

1Sendo que L′
Dirac é a notação para LDirac com os campos ψ e ψ trocados por ψ′ e ψ

′
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A fim de encontrarmos uma densidade de Lagrangeana invariante sob uma
transformação U(1) local, recorremos ao prinćıpio de gauge [19]. Segundo
esse prinćıpio, devemos acrescentar à densidade de Lagrangeana (3.1) um
termo de interação entre os campos fermiônicos e um campo vetorial Aμ =
Aμ (x), chamado de campo de gauge, com a forma

LIG = −qeAμ (γ
μ)ab ψaψb, (3.8)

sendo qe um parâmetro adimensional arbitrário.
O campo de gauge também se transforma sob uma transformação U(1)

local, mas por ora desconhecemos como. Calculamos, dessa forma, a variação
da soma LDirac + LIG sob a transformação U(1) local:

LDirac + LIG → L′
Dirac + L′

IG =LDirac − ∂μθ(x) (γ
μ)ab ψaψb+

− qeA′
μ (γ

μ)ab ψaψb

=LDirac + LIG+

− qe

(
A′
μ −Aμ +

∂μθ

qe

)
(γμ)ab ψaψb. (3.9)

A fim de encontrarmos a lei de transformação do campo de gauge, impo-
mos a invariância dessa soma:

L′
Dirac + L′

IG = LDirac + LIG. (3.10)

Dessa exigência, encontramos a transformação do campo de gauge:

A′
μ(x) = Aμ(x)− ∂μ

[
θ(x)

qe

]
. (3.11)

Doravante, chamaremos a transformação U(1) local de transformação de
gauge U(1).

Notamos, assim, que para que a teoria fermiônica seja invariante de gauge,
ela não pode ser uma teoria livre: a interação entre os férmions e o campo de
gauge fez-se necessária. A fim de termos uma teoria completa, necessitamos
incluir um termo que descreve o campo de gauge livre. A densidade de
Lagrangeana do campo de gauge livre deve depender apenas do campo A,
de suas derivadas de quaisquer ordens e de eventuais parâmetros. Além
disso, essa densidade de Lagrangeana deve ser invariante de gauge, além de
covariante de Lorentz.
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Observamos que o tensor

Fμν ≡ ∂μAν − ∂νAμ (3.12)

é invariante de gauge, pois2

F ′
μν = ∂μA′

ν − ∂νA′
μ = ∂μAν − ∂μ∂ν

[
θ(x)

qe

]
− ∂νAμ + ∂ν∂μ

[
θ(x)

qe

]
= ∂μAν − ∂νAμ = Fμν . (3.13)

Então, uma possibilidade seria escrever um termo proporcional a FμνFμν ,
que é uma combinação invariante de Lorentz. De fato, a possibilidade mais
simples para o termo de gauge livre consiste na densidade de Lagrangeana
de Maxwell:

LM = −1

4
FμνFμν . (3.14)

Caso utilizássemos essa densidade de Lagrangeana teŕıamos a eletrodi-
nâmica ordinária, com elétrons e pósitrons interagindo com o campo eletro-
magnético de Maxwell.

Contudo, é um objetivo desta tese argumentar que a teoria de Maxwell
não é a única possibilidade. Uma derivada do tensor (3.12) também é invari-
ante de gauge. Podemos, então, acrescentar a (3.14) um termo que contém
derivadas do tensor F . Com isso, chegamos à densidade de Lagrangeana de
Podolsky [20, 21, 22]:

LP = −1

4
FμνFμν + λP∂μFμν∂ξF ξ

ν . (3.15)

O parâmetro λP é constante, real e possui dimensão de inverso de qua-
drado de energia. Ao campo A descrito por essa densidade de Lagrangeana
chamaremos campo eletromagnético de Podolsky. Nesta etapa, chamamos
a atenção para o fato de que devido ao tensor F depender de derivadas
de primeira ordem do campo de gauge, a teoria de Podolsky, que envolve
derivadas de primeira ordem desse tensor, contém derivadas de segunda or-
dem do campo eletromagnético. Chamamos, ainda, a atenção para o fato de
que qualquer termo invariante de Lorentz e de gauge que envolva derivadas
de segunda ordem do campo eletromagnético é idêntico ao termo que aparece
em (3.15) a menos de um termo que é uma derivada total, conforme demons-
trado por Cuzinatto, de Melo e Pompeia em [23].

2Assumimos nesta tese que o parâmetro θ possua derivadas de terceira ordem.
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À teoria descrita pela densidade de Lagrangeana

LGED = LDirac + LIG + LP (3.16)

chamaremos de eletrodinâmica generalizada. Essa teoria descreve elétrons e
pósitrons interagindo com o campo eletromagnético de Podolsky.

Ressaltamos que a eletrodinâmica de Podolsky é uma teoria invariante
de Lorentz e de gauge. Vimos que o campo de Podolsky surgiu da aplicação
do prinćıpio de gauge ao grupo U(1). A presença do parâmetro λP implicará
em previsões com a teoria de Podolsky que diferem das de Maxwell.

3.2 A interpretação do parâmetro de Podols-

ky

Na seção anterior encontramos o campo eletromagnético de Podolsky a partir
da aplicação do prinćıpio de gauge ao grupo U(1). Vimos que essa teoria
eletrodinâmica generalizada depende de um parâmetro intŕınseco do campo
de Podolsky. Esse parâmetro, denotado por λP , possui uma interpretação
f́ısica muito clara. Buscar essa interpretação é o objetivo da presente seção.

3.2.1 As equações de Podolsky

Iniciaremos esta seção buscando as equações de Podolsky, que são as equações
análogas às quatro equações de Maxwell. Notamos, primeiramente, que a
definição do tensor F pela equação (3.12) é a mesma em ambas as teorias.
Portanto, o tensor F de Podolsky também satisfaz a identidade de Bianchi:3

∂ξFμν + ∂μFνξ + ∂νFξμ = 0. (3.17)

Consideremos, também, a densidade de Lagrangeana de Podolsky com
fontes:

L∗
P = LP + jμA

μ, (3.18)

sendo

j = (ρ, j) (3.19)

a quadridensidade de corrente elétrica.

3De fato, utilizando a definição (3.12), temos ∂ξFμν + ∂μFνξ + ∂νFξμ = [∂ξ, ∂μ]Aν +

[∂μ, ∂ν ]Aξ + [∂ν , ∂ξ]Aμ = 0.
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As equações de Euler-Lagrange obtidas a partir dessa densidade de La-
grangeana são

(1 + 2λP�) ∂μFμν = jν . (3.20)

Nesta expressão, utilizamos o D’Alembertiano:

� ≡ ∂2

∂t2
−−→∂ 2. (3.21)

Definimos, agora, os campos elétrico E emagnético B através das relações:

Ej ≡F0j; (3.22)

Bj ≡ 1

2
εjklFkl. (3.23)

Nestas expressões, j, k e l assumem os valores de 1 a 3 e εjkl é o tensor de
Lèvi-Civita, um tensor totalmente antissimétrico com ε123 = 1.

Da identidade de Bianchi (3.17) e das equações de Euler-Lagrange (3.20),
encontramos as equações de Podolsky :

(1 + 2λP�)
−→
∂ · E = ρ; (3.24)
−→
∂ ·B =0; (3.25)

(1 + 2λP�)

(−→
∂ ×B− ∂E

∂t

)
= j; (3.26)

−→
∂ × E+

∂B

∂t
=0. (3.27)

Observamos que as equações (3.25) e (3.27) são idênticas às equações
correspondentes da teoria de Maxwell, pois estas decorrem da identidade
de Bianchi. As equações que dependem das fontes, por outro lado, são as
próprias equações de Euler-Lagrange da teoria. Estas são alteradas e depen-
dem explicitamente do parâmetro livre da teoria de Podolsky.

Chamamos a atenção para o fato de que as consequências f́ısicas da teoria
de Podolsky já podem ser observadas a partir dessas equações. No caso sem
fontes, isto é, com ρ = 0 e j = 0, as equações de Maxwell possuem a chamada
simetria de dualidade [17]. Essa dualidade consiste nas seguintes trocas:

E→B′; (3.28)

B→ − E′. (3.29)

58



Na presença das fontes, as equações de Maxwell não mais exibem essa
simetria. No entanto, pelas equações (3.24-3.27), vemos que o conjunto das
equações de Podolsky não exibe essa simetria sequer na ausência de fontes.

Ainda considerando a ausência de fontes, tomemos, como exemplo, a
equação (3.24). Na teoria de Maxwell, na ausência de fontes, essa equação

seria
−→
∂ ·E = 0, ou seja, o divergente do campo elétrico somente é não nulo na

presença de fontes. Contudo, de acordo com Podolsky, fazendo-se ρ = 0 em
(3.24), temos que a divergência do campo elétrico satisfaz a seguinte relação:

−→
∂ · E = −2λP�

−→
∂ · E. (3.30)

A existência de soluções não triviais dessa equação pode ser facilmente
verificada reescrevendo-a na seguinte forma:(

�+
1

2λP

)−→
∂ · E = 0. (3.31)

Essa equação indica que o divergente do campo elétrico na teoria de
Podolsky satisfaz a equação de Klein-Gordon com um parâmetro com di-
mensão de energia dado por 1/

√
2λP . Sendo a equação de Klein-Gordon

uma equação que descreve um campo livre, seu parâmetro com dimensão de
energia é interpretado como sendo a massa do campo. Claramente, assumi-
mos λP �= 0, caso contrário recaiŕıamos na teoria de Maxwell e a equação
acima não poderia ser escrita. Contudo, nesta etapa, ainda não conhecemos
o sinal do parâmetro. Se λP > 0, temos um campo escalar f́ısico, isto é,
com massa real. Caso contrário, temos um campo escalar taquiônico. No
entanto, qualquer que seja o caso, ressaltamos que existem soluções não tri-
viais de (3.31). Em outras palavras, na teoria de Podolsky, o divergente do
campo elétrico pode ser não-nulo mesmo na ausência de fontes.

Consideremos, agora, a presença da densidade de carga elétrica ρ em
(3.24), mas agora restringindo-nos ao caso estacionário. Neste caso, de acordo
com as equações (3.12) e (3.22), temos

E (x) = −−→∂ A0 (x) (3.32)

e a equação (3.24) se simplifica [20]:(
2λP

−→
∂ 2 − 1

)−→
∂ 2A0 (x) = ρ (x) . (3.33)

Para uma fonte puntual com carga elétrica q localizada em x = 0, a
solução dessa equação é4

4Ver apêndice (A) e equação (A.11).
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A0 (x) =
q

4π |x|

(
1− e

− |x|√
2λP

)
. (3.34)

Esse é o potencial eletrostático da teoria de Podolsky. Sua expressão
equivalente para Maxwell é simplesmente (4π |x|)−1. Observamos que ela é
modificada pela presença do parâmetro livre de Podolsky. Se λP > 0, temos
uma correção exponencialmente decrescente para o potencial eletrostático
de Maxwell. Por outro lado, se λP < 0, a correção é uma função senoidal
da distância. As implicações f́ısicas de cada uma dessas soluções são muito
diferentes uma da outra. Necessitamos conhecer o sinal do parâmetro λP .

A fim de determinarmos o sinal do parâmetro λP , consideraremos o tensor
densidade de energia da teoria de Podolsky livre na próxima seção.

3.2.2 Fixando o sinal do parâmetro livre

Nesta seção analisaremos a densidade de energia do campo de Podolsky livre.
Essa quantidade é facilmente obtida como uma componente do tensor densi-
dade de energia e momento. Infelizmente, como a teoria de Podolsky envolve
derivadas de ordem superior, o cálculo desse tensor é não trivial. Dedicamos
o apêndice B para apresentar um método apropriado para se calcular o tensor
densidade de energia e momento primeiramente para uma teoria arbitrária e,
em seguida, para a própria teoria de Podolsky. Assim, utilizando o resultado
(B.84),

T μν
P = −FμαFν

α +
1

4
gμνFαβFαβ + 2λP

(
−1

2
gμν∂αFαβ∂γFγ

β −Fμα�Fν
α+

−Fνα�Fμ
α −Fμα∂α∂βFβν −Fνα∂α∂βFβμ + ∂τF τμ∂γFγν

)
, (3.35)

obtemos a densidade de energia do campo de Podolsky livre como a compo-
nente T 00

P desse tensor. Utilizando as definições (3.22) e (3.23), encontramos

T 00
P = −F 0αF 0

α +
1

4
η00FαβF

αβ + 2λP

(
−1

2
η00∂αF

αβ∂γF
γ
β − F 0α�F 0

α+

−F 0α�F 0
α − F 0α∂α∂βF

β0 − F 0α∂α∂βF
β0 + ∂τF

τ0∂γF
γ0
)

=
1

2

{
E2 +B2 + 2λP

[(−→
∂ · E

)2
+

( ·
E−−→∂ ×B

)2

+

+4E·�E+ 4E · −→∂
(−→
∂ · E

)]}
. (3.36)
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Devido à presença dos dois últimos termos desta expressão, a densidade de
energia do campo de Podolsky livre, em prinćıpio, não é positiva-definida
no caso geral.

Restringindo-nos ao caso eletrostático, temos:

T 00
P (El) =

1

2

{
E2 + 2λP

{(−→
∂ · E

)2
+ 4
[
E · −→∂

(−→
∂ · E

)
− E·−→∂ 2E

]}}
.

(3.37)
Agora, notamos que

E · −→∂
(−→
∂ · E

)
− E·−→∂ 2E = E ·

[−→
∂
(−→
∂ · E

)
−−→∂ 2E

]
= E ·

[−→
∂ ×

(−→
∂ × E

)]
= Ejεjkl∂k

(−→
∂ × E

)l
= εjklEj∂k

(−→
∂ × E

)l
= ∂k

[
εjklEj

(−→
∂ × E

)l]
− εjkl∂kE

j
(−→
∂ × E

)l
= −∂k

[
εkjlEj

(−→
∂ × E

)l]
+

+εlkj∂kE
j
(−→
∂ × E

)l
= −∂k

[
E×

(−→
∂ × E

)]k
+
(−→
∂ × E

)2
= −−→∂ ·

[
E×

(−→
∂ × E

)]
+
(−→
∂ × E

)2
. (3.38)

Dessa forma, reescrevemos T 00
P (El) como

T 00
P (El) =

1

2

{
E2 + 2λP

[(−→
∂ · E

)2
+ 4
(−→
∂ × E

)2]}
+

− 4λP
−→
∂ ·
[
E×

(−→
∂ × E

)]
. (3.39)

De acordo com a equação (3.27), para o caso eletrostático temos
−→
∂ ×E =

0. Logo [20],

T 00
P (El) =

1

2

[
E2 + 2λP

(−→
∂ · E

)2]
. (3.40)
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No eletromagnetismo de Maxwell sem fontes, temos
−→
∂ · E = 0. No

entanto, conforme discutimos as consequências da equação (3.30), esse não
é necessariamente o caso para o eletromagnetismo de Podolsky. Portanto,
(3.40) é a densidade de energia do campo de Podolsky sem fontes para o caso
eletrostático.

Impomos que essa densidade de energia seja positiva definida para campos
elétricos não nulos:

T 00
P (El)

∣∣
E �=0

> 0. (3.41)

Essa hipótese implica na seguinte condição sobre o parâmetro livre λP :

λP > − E2

2
(−→
∂ · E

)2 , (3.42)

Essa inequação indica que esse parâmetro possui um certo limite infe-
rior, que depende da configuração do campo elétrico particular para cada
problema. Contudo, assumimos que esse parâmetro fosse constante, não um
funcional do campo elétrico. Notamos que o segundo membro da inequação
(3.42) é sempre negativo. Por conseguinte, para que o parâmetro λP seja
independente da configuração particular do campo, basta que se cumpra:

λP > 0. (3.43)

Assim, inspirados pelas equações (3.20), (3.31), (3.34) e (3.40), definimos

λP ≡
1

2m2
P

, (3.44)

sendo mP um parâmetro constante real não nulo com dimensão de energia.
Chamaremos mP de parâmetro de Podolsky. Em termos desse parâmetro,
reescrevemos (3.20), (3.31) e (3.34) como

( �
m2
P

+ 1

)
∂μFμν = jν ; (3.45)(

�+m2
P

)−→
∂ · E =0; (3.46)

A0 (x) =
q

4π |x|
(
1− e−mP |x|) ; (3.47)

A equação (3.46) indica que o parâmetro de Podolsky possa ser interpre-
tado num certo sentido como uma massa de um campo.

Na próxima seção nos aprofundaremos nessa interpretação ao analisarmos
os dois setores do campo de Podolsky.
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3.2.3 Os dois setores

Nesta seção, estudaremos os dois setores da teoria eletromagnética de Po-
dolsky.

Das equações (3.12) e (3.45), podemos escrever:(
�
m2
P

+ 1

)
(gμν�− ∂ν∂μ)Aμ = jν . (3.48)

Notamos que a solução completa dessa equação poderia ser escrita (ingênua
e) formalmente como

Aμ(x) = AH
μ (x) +

∫
d4yGμν (x, y) jν(y), (3.49)

sendo AH
μ (x) a solução geral da equação homogênea,(

�+m2
P

)
(gμν�− ∂ν∂μ)AH

μ (x) = 0, (3.50)

e Gμν (x, y) a função de Green que satisfaz:( �
m2
P

+ 1

)
(gμν�− ∂μ∂ν)(x) Gνξ (x, y) = δμξ δ(x− y). (3.51)

Contudo, o operador diferencial (�+m2
P ) (g

μν�− ∂μ∂ν) não possui in-
versa. Por conseguinte, não existe nenhuma função Gνξ (x, y) que satisfaça a
relação (3.51).

A fim de lidarmos com essa questão, impomos a condição de Lorenz ge-
neralizada sobre o campo de Podolsky [36]:(

�+m2
P

)
∂μA

μ = 0. (3.52)

Utilizando essa condição, podemos reescrever (3.48) como(
�+m2

P

)
�Aμ = m2

P j
μ. (3.53)

O operador (�+m2
P )� é inverśıvel, portanto nosso problema pode ser re-

solvido no caso geral.
Para a análise que desejamos realizar nesta etapa, consideremos a equação

(3.53) na ausência de fontes:(
�+m2

P

)
�Aμ = 0. (3.54)

Uma posśıvel solução dessa equação é

Aμ = Aμ
Max + Aμ

Pro, (3.55)
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sendo

�Aμ
Max = 0 (3.56)

e (
�+m2

P

)
Aμ
Pro = 0. (3.57)

Essas expressões mostram que Aμ
Max é um campo vetorial sem massa,

enquanto Aμ
Pro é um campo vetorial com massa mP . Dito de outra forma,

o campo eletromagnético clássico de Podolsky pode ser decomposto em uma
soma de um campo de Maxwell com um campo de Proca. Esses dois campos
são chamados de setores de Podolsky: Aμ

Max é seu setor sem massa enquanto
Aμ
Pro é seu setor massivo. A equação (3.57) fornece, ainda, uma interpretação

para o parâmetro de Podolsky: ele é a massa do setor massivo da teoria.
Nas seções seguintes trataremos da quantização da eletrodinâmica ge-

neralizada de Podolsky. Iniciaremos pela parte da teoria que depende dos
campos Grassmannianos ψ e ψ. Para esses campos utilizamos o processo
de quantização de Dirac. Para a parte do campo de Podolsky utilizaremos
o formalismo covariante de Nakanishi. Como um último tópico relacionado
ao regime clássico da teoria, estudaremos brevemente a carga conservada da
eletrodinâmica de Podolsky na próxima seção.

3.3 A carga clássica de Noether

Agora que já temos uma interpretação satisfatória para o parâmetro de Po-
dolsky, escrevemos a ação associada à densidade de Lagrangeana (3.16):

SGED
[
A, ψ, ψ

]
≡
∫

d4x (LDirac + LIG + LP ) . (3.58)

Por construção, essa ação é invariante sob transformações U(1) locais.
Consideremos, agora, uma transformação U(1) infinitesimal arbitrária global :

ψa (x) → ψ′
a (x) = ψa (x) + iδθψa (x) +O

(
δθ2
)
; (3.59)

ψa (x) → ψ
′
a (x) = ψa (x)− iψa (x) δθ +O

(
δθ2
)
. (3.60)

Sob essa tranformação, a ação (3.58) se transforma como
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S
[
A, ψ, ψ

]
→ S

[
A, ψ′, ψ

′]
= S

[
A, ψ, ψ

]
+ δθS

[
ψ, ψ

]
+O

(
δθ2
)
, (3.61)

sendo

δθS
[
ψ, ψ

]
=

∫
d4xδθ∂μ

[
ψa (γ

μ)ab ψb
]
. (3.62)

Dado que a ação (3.58) deve também ser invariante sob a transformação
global acima, devemos ter δθS = 0. Uma vez que a quantidade δθ é ar-
bitrária, pelo teorema fundamental do cálculo variacional devemos ter que a
quadricorrente

jμ (x) ≡ ψa (x) (γ
μ)ab ψb (x) (3.63)

satisfaz a equação de continuidade:

∂μj
μ (x) = 0. (3.64)

A equação de continuidade pode ser escrita na forma mais familiar em
termos da densidade j0 e da densidade de corrente associada j:

∂j0 (x)

∂t
= −−→∂ · j (x) . (3.65)

Integrando em todo espaço tri-dimensional, encontramos a relação:

dN (t)

dt
= −

∫
s

d2−→σ · j (x) , (3.66)

sendo a última integral calculada na superf́ıcie que engloba todo o espaço e

N (t) ≡
∫

d3x j0 (x) =

∫
d3xψa (x)

(
γ0
)
ab
ψb (x) . (3.67)

Agora, assumimos que a densidade de corrente esteja contida em todo o
volume, isto é

∫
s

d2−→σ · j (x) = 0. (3.68)

Essas últimas expressões mostram que a quantidade (3.67) é, na realidade,
independente do tempo:
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dN

dt
= 0. (3.69)

A quantidade N é chamada de carga de Noether e é a carga conservada
classicamente na teoria de Podolsky associada à transformação U(1) global,
que também é interna e cont́ınua [37].

Antes de finalizarmos esta seção, chamamos a atenção para o fato de
que a conservação da carga de Noether N é independente da presença do
campo de Podolsky. Isso se deve ao fato da variação da ação (3.62) devido à
variação U(1) global não depender do campo de gauge. Como consequência,
a mesma carga conservada seria obtida no caso livre ou, ainda, no caso no
qual considerássemos apenas os termos LDirac+LIG. Essa última propriedade
será explorada durante a quantização da parte fermiônica da teoria.

3.4 A quantização a la Dirac da parte fer-

miônica

Desenvolveremos, nesta seção, a quantização da parte da teoria eletrodinâmica
de Podolsky que depende dos campos fermiônicos. Iniciaremos com uma
análise dos v́ınculos da teoria clássica e, logo em seguida, utilizaremos o
prinćıpio de correspondência para quantizar esse setor da teoria de Podolsky.

3.4.1 Os v́ınculos da parte fermiônica

A fim de podermos quantizar a teoria de Podolsky, faremos um estudo clássico
dos v́ınculos da parte da teoria que envolve os campos fermiônicos.5 Para
tal fim, notamos que a densidade de Lagrangeana LP em (3.16) não depende
dos campos fermiônicos. Assim, a parte da teoria que descreve os férmions é
estudada através da densidade de Lagrangeana Lf , dada por:

Lf ≡ LGQED − LP = LDirac + Lint. (3.70)

Sendo a teoria de Podolsky diferente da teoria de Maxwell apenas na
parte correspondente ao campo eletromagnético livre, a densidade de La-
grangeana Lf descreve as partes fermiônicas de ambas as teorias. Por essa
razão, o conteúdo desta seção não é original, mas uma revisão dos v́ınculos
correspondentes à parte fermiônica da eletrodinâmica.

5O conteúdo desta subseção pode ser encontrado em [38, 39, 40, 41, 42].
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Para esse setor da eletrodinâmica generalizada de Podolsky, definimos os
momentos canônicos:

πa (x) ≡ ∂↪→Lf
∂
[
∂0ψa (x)

] ; (3.71)

πa (x) ≡ ∂↪→Lf
∂ [∂0ψa (x)]

, (3.72)

sendo a derivada Grassmanniana de um produto de campos Grassmannianos
definida através da relação

∂↪→ (AB)

∂C
=

∂↪→A

∂C
B − A

∂↪→B

∂C
. (3.73)

Calculando cada um dos momentos canônicos, encontramos:

πa (x) = i

(
λ− 1

2

)(
γ0
)
ab
ψb (x) ; (3.74)

πa (x) = −i
(
γ0
)
ba

(
λ+ 1

2

)
ψb (x) . (3.75)

Notamos, a partir dessas expressões, que nenhum desses momentos canô-
nicos depende da derivada temporal de seu campo conjugado. Uma vez que
uma função constante não é inverśıvel, não há como escrever as derivadas
temporais dos campos fermiônicos em termos de seus respectivos momentos
canônicos conjugados. Isso significa que a teoria descrita pela densidade de
Lagrangeana Lf é vinculada. Seus v́ınculos primários são

ϕa (x) ≡ πa (x)− i

(
λ− 1

2

)(
γ0
)
ab
ψb (x) ≈ 0; (3.76)

ϕa (x) ≡ πa (x) + i
(
γ0
)
ba

(
λ+ 1

2

)
ψb (x) ≈ 0. (3.77)

O śımbolo “≈”, neste contexto, significa “igualdade fraca” no sentido de
Dirac, isto é, a igualdade somente é válida na superf́ıcie dos v́ınculos.

A densidade de Hamiltoniana canônica para o setor fermiônico é definida
como:

Hf
C ≡ ∂0ψaπa + ∂0ψaπa − Lf . (3.78)
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Escrevendo explicitamente os momentos canônicos, ficamos com

Hf
C = −i

(
γj
)
ab

[(
1 + λ

2

)
ψa∂jψb −

(
1− λ

2

)
∂jψaψb

]
+

+mfψaψa + qe (γ
μ)abAμψaψb

= − i

2

(
γj
)
ab

(
ψa∂jψb − ∂jψaψb

)
+mfψaψa + qe (γ

μ)abAμψaψb +

− iλ

2

(
γj
)
ab
∂j
(
ψaψb

)
. (3.79)

Sendo o último termo uma derivada total, a Hamiltoniana canônica acaba
sendo independente de λ:

Hf
C ≡

∫
d3xHf

C

=

∫
d3x

[
− i

2

(
γj
)
ab

(
ψa∂jψb − ∂jψaψb

)
+mfψaψa + qe (γ

μ)abAμψaψb

]
.

(3.80)

De posse da Hamiltoniana canônica, definimos a Hamiltoniana primária
para o setor fermiônico:

Hf
P ≡ Hf

C +

∫
d3x
[
λa (x)ϕa (x) + ϕa (x)λa (x)

]
, (3.81)

sendo λa(x) e λa(x) os campos multiplicadores de Lagrange. Tendo em
vista que os v́ınculos (3.76) e (3.77) são Grassmannianos, também os são os
multiplicadores de Lagrange. A evolução temporal de qualquer quantidade
F (x) gerada pela Hamiltoniana primária fermiônica é obtida como solução
da seguinte equação:

·
F (x) =

{
F (x), Hf

P

}
B
. (3.82)

Sendo os parênteses de Berezin definidos para o caso de campos Grassman-
nianos como

{A (x) , C (y)}x0=y0B ≡
∫

d3z

[
∂↪→A (x)

∂ψa (z)

∂↪→C (y)

∂πa (z)
+

∂↪→C (y)

∂ψa (z)

∂↪→A (x)

∂πa (z)

]
+

+

∫
d3z

[
∂↪→A (x)

∂ψa (z)

∂↪→C (y)

∂πa (z)
+

∂↪→C (y)

∂ψa (z)

∂↪→A (x)

∂πa (z)

]
,

(3.83)
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sendo x0 = y0 = z0.
Os chamados parênteses de Berezin fundamentais decorrem imediata-

mente dessa definição:

{ψa (x) , ψb (y)}x0=y0B = 0; (3.84){
ψa (x) , ψb (y)

}x0=y0
B

= 0; (3.85)

{ψa (x) , πb (y)}x0=y0B = 0; (3.86)

{ψa (x) , πb (y)}x0=y0B = δabδ (x− y) ; (3.87){
ψa (x) , ψb (y)

}x0=y0
B

= 0; (3.88){
ψa (x) , πb (y)

}x0=y0
B

= δabδ (x− y) ; (3.89){
ψa (x) , πb (y)

}x0=y0
B

= 0; (3.90)

{πa (x) , πb (y)}x0=y0B = 0; (3.91)

{πa (x) , πb (y)}x0=y0B = 0; (3.92)

{πa (x) , πb (y)}x0=y0B = 0. (3.93)

Além disso, também podemos mostrar a seguinte relação:

{A (x) , C (y)D (z)}x0=y0=z0B = {A (x) , C (y)}x0=y0B D (z)+

− C (y) {A (x) , D (z)}x0=z0B . (3.94)

A fim de estudarmos a estrutura canônica desse setor da eletrodinâmica,
impomos as condições de consistência para os v́ınculos primários:

·
ϕa (x) ≈ 0; (3.95)
·
ϕa (x) ≈ 0. (3.96)

Dessas condições, encontramos as seguintes relações:

−
{
i
(
γj
)
ab
∂j − [mfδab + qe (γ

μ)abAμ(x)]
}
ψb (x) + i

(
γ0
)
ab
λb (x) ≈ 0;

(3.97)

−
{
i
(
γj
)
ba
∂j + [mfδba + qe (γ

μ)baAμ (x)]
}
ψb (x)− i

(
γ0
)
ba
λb (x) ≈ 0.

(3.98)

Uma vez que γ0 é sua própria inversa, encontramos os multiplicadores de
Lagrange:
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λa (x) ≈ − i
{
i
(
γ0γj

)
ab
∂j −

[
mf

(
γ0
)
ab
+ qe

(
γ0γμ

)
ab
Aμ (x)

]}
ψb (x) ;

(3.99)

λa (x) ≈ i
{
i
(
γ0γj

)
ba
∂j +

[
mf

(
γ0
)
ba
+ qe

(
γ0γμ

)
ba
Aμ (x)

]}
ψb (x) . (3.100)

Como todos os multiplicadores de Lagrange foram encontrados nesta
etapa, conclúımos que não há v́ınculos secundários nessa parte da teoria.

Com o intuito de classificarmos os v́ınculos primários, calculamos os
parênteses de Berezin entre todos eles:

{ϕa (x) , ϕb (y)}x0=y0B =0; (3.101)

{ϕa (x) , ϕb (y)}x0=y0B =0; (3.102)

{ϕa (x) , ϕb (y)}x0=y0B = i
(
γ0
)
ab
δ (x− y) . (3.103)

A existência de parênteses não nulos indica que esse conjunto de v́ınculos
é de segunda classe. Sendo assim, sobre a superf́ıcie dos v́ınculos, podemos
tornar os v́ınculos de segunda classe identicamente nulos. Por conseguinte,
observamos que a Hamiltoniana primária, gerador das translações temporais,
coincide com a Hamiltoniana canônica.

Agora, definimos a matriz C cujos elementos são (α, α′ ∈ N, tais que
1 ≤ α ≤ 8, 1 ≤ α′ ≤ 8, )

Cαα′ (x− y; x0) ≡ {Λα (x) ,Λα′ (y)}x0=y0B . (3.104)

Nesta expressão, temos (com a ∈ N tal que 1 ≤ a ≤ 4, )

Λa (x) ≡ϕa (x) ; (3.105)

Λa+4 (x) ≡ϕa (x) . (3.106)

Observamos que todos os elementos da matriz C são independentes do
tempo (x0) e escrevemos

C (x− y) =

[
0̂ iγ0

i (γ0)
T

0̂

]
δ (x− y) . (3.107)

sendo 0̂ = 01̂4×4.
Procuraremos, agora, a inversa dessa matriz. Ela deve satisfazer∫

d3zC−1 (x− z)C (z− y) = 1̂8×8δ (x− y) . (3.108)
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Supomos

C−1 (x− z) =

[
A B
D E

]
δ (x− z) , (3.109)

sendo A, B, D e E matrizes quadradas com 16 elementos. Assim:∫
d3zC−1 (x− z)C (z− y) =

∫
d3z

[
A B
D E

]
δ (x− z)×

×
[

0̂ iγ0

i (γ0)
T

0̂

]
δ (z− y)

=

[
iB (γ0)

T
iAγ0

iE (γ0)
T

iDγ0

]
δ (x− y)

= 1̂8×8δ (x− y) =

[
1̂4×4 0̂

0̂ 1̂4×4

]
δ (x− y) .

(3.110)

Temos então

iB
(
γ0
)T

= 1̂4×4; (3.111)

iAγ0 = 0̂; (3.112)

iE
(
γ0
)T

= 0̂; (3.113)

iDγ0 = 1̂4×4. (3.114)

Resolvemos três dessas equações imediatamente:

A = 0̂; (3.115)

E = 0̂; (3.116)

D = −iγ0. (3.117)

Quanto a (3.111), tomamos a transposta daquela equação:[
iB
(
γ0
)T]T

= i
[(
γ0
)T]T

(B)T = iγ0 (B)T =
(
1̂4×4

)T
= 1̂4×4. (3.118)

Multiplicando essa equação por −iγ0 pela direita, encontramos:

−iγ0iγ0 (B)T = (B)T = −iγ0. (3.119)

Tomando a transposta dessa expressão, obtemos:

B = −i
(
γ0
)T

. (3.120)
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Dessa forma, encontramos a inversa da matriz C:

C−1 (x− z) =

[
0̂ −i (γ0)

T

−iγ0 0̂

]
δ (x− z) . (3.121)

De posse da inversa da matriz dos parênteses de Berezin dos v́ınculos de
segunda classe, definimos os parênteses de Dirac entre duas quantidades F e
G arbitrárias como

{F (x) , G (y)}z0=y0D ≡ {F (x) , G (y)}z0=y0B +

−
∫
d3zd3w {F (x) ,Λα (z)}z0=y0B C−1

αα′ (z−w)×

× {Λα′ (w) , G (y)}z0=y0B . (3.122)

Devido à forma da matriz C−1, os parênteses de Dirac podem ser simpli-
ficados:

{F (x) , G (y)}x0=y0D = {F (x) , G (y)}x0=y0B +

+i

∫
d3z {F (x),ϕa (z)}x0=z0B

(
γ0
)T
ab
{ϕb (z),G (y)}z0=y0B +

+i

∫
d3z {F (x),ϕa (z)}x0=z0B

(
γ0
)
ab
{ϕb (z),G (y)}z0=y0B .

(3.123)

Utilizando essa expressão, encontramos os parênteses de Dirac fundamen-
tais :

{ψa (x) , ψb (y)}x0=y0D = 0; (3.124){
ψa (x) , ψb (y)

}x0=y0
D

= i
(
γ0
)
ab
δ (x− y) ; (3.125)

{ψa (x) , πb (y)}x0=y0D = 0; (3.126)

{ψa (x) , πb (y)}x0=y0D = δab

(
λ+ 1

2

)
δ (x− y) ; (3.127){

ψa (x) , ψb (y)
}x0=y0
D

= 0; (3.128){
ψa (x) , πb (y)

}x0=y0
D

= −δab
(
λ− 1

2

)
δ (x− y) ; (3.129){

ψa (x) , πb (y)
}x0=y0
D

= 0; (3.130)

{πa (x) , πb (y)}x0=y0D = 0; (3.131)

{πa (x) , πb (y)}x0=y0D = i

(
λ+ 1

2

)(
λ− 1

2

)(
γ0
)
ab
δ (x− y);(3.132)

{πa (x) , πb (y)}x0=y0D = 0. (3.133)
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Notamos ainda que os parênteses de Dirac fundamentais diferem muito
dos parênteses de Berezin fundamentais (3.84-3.93). Segundo o método de
quantização desenvolvido por Dirac, são os parênteses de Dirac, e não os
de Berezin, os que devem ser utilizados em consonância com o prinćıpio
de correspondência sempre que o sistema f́ısico apresentar v́ınculos. Na
seção seguinte, utilizaremos tal prinćıpio para quantizar a parte fermiônica
da eletrodinâmica em equiĺıbrio termodinâmico.

3.4.2 A quantização da parte fermiônica em equiĺıbrio

Na seção anterior revisamos a estrutura canônica da parte fermiônica da
eletrodinâmica. Agora, estudaremos a quantização desse setor das teorias de
Maxwell e Podolsky.

O prinćıpio de correspondência afirma que os parênteses de Dirac de cam-
pos Grassmannianos devem ser substitúıdos pelo anticomutador, definido
como {

Â, B̂
}
≡ Â B̂ + B̂ Â (3.134)

dividido por i juntamente com a substituição de campos por operadores.
Assim, o conjunto de parênteses de Dirac fundamentais (3.124-3.133) é subs-
titúıdo pelo seguinte conjunto:
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{
ψ̂a (x) , ψ̂b (y)

}
x0=y0

= 0̂; (3.135){
ψ̂a (x) , ψ̂b (y)

}
x0=y0

= −
(
γ0
)
ab
δ (x− y) 1̂; (3.136){

ψ̂a (x) , π̂b (y)
}
x0=y0

= 0̂; (3.137){
ψ̂a (x) , π̂b (y)

}
x0=y0

= iδab

(
λ+ 1

2

)
δ (x− y) 1̂; (3.138){

ψ̂a (x) , ψ̂b (y)
}
x0=y0

= 0̂; (3.139){
ψ̂a (x) , π̂b (y)

}
x0=y0

= −iδab
(
λ− 1

2

)
δ (x− y) 1̂; (3.140){

ψ̂a (x) , π̂b (y)
}
x0=y0

= 0̂; (3.141)

{π̂a (x) , π̂b (y)}x0=y0 = 0̂; (3.142){
π̂a (x) , π̂b (y)

}
x0=y0

= −
(
λ+ 1

2

)(
λ− 1

2

)(
γ0
)
ab
δ (x− y)̂1;

(3.143){
π̂a (x) , π̂b (y)

}
x0=y0

= 0̂. (3.144)

Os primeiros membros de todas essas equações exigem que os dois opera-
dores presentes em cada anticomutador sejam calculados no mesmo instante
de tempo. Os segundos membros dessas expressões são independentes do
tempo. Um sistema em equiĺıbrio termodinâmico satisfaz estacionariedade,
isto é, tal sistema f́ısico é independente do tempo. Para a eletrodinâmica
em equiĺıbrio termodinâmico, todos os operadores campos fermiônicos e seus
respectivos operadores momento devem ser independentes do tempo. Isso
significa, por exemplo, que ψ̂a (x, t1) = ψ̂a (x, t2) para todos os t1 e t2. Como
estamos lidando com uma situação de equiĺıbrio termodinâmico escolhemos,
sem perda de generalidade, x0 = y0 = 0 nas equações acima e reescrevemo-
nas de uma forma independente do tempo:
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{
ψ̂a (x) , ψ̂b (y)

}
= 0̂; (3.145){

ψ̂a (x) , ψ̂b (y)
}

= −
(
γ0
)
ab
δ (x− y) 1̂; (3.146){

ψ̂a (x) , π̂b (y)
}

= 0̂; (3.147){
ψ̂a (x) , π̂b (y)

}
= iδab

(
λ+ 1

2

)
δ (x− y) 1̂; (3.148){

ψ̂a (x) , ψ̂b (y)
}

= 0̂; (3.149){
ψ̂a (x) , π̂b (y)

}
= −iδab

(
λ− 1

2

)
δ (x− y) 1̂; (3.150){

ψ̂a (x) , π̂b (y)
}

= 0̂; (3.151)

{π̂a (x) , π̂b (y)} = 0̂; (3.152){
π̂a (x) , π̂b (y)

}
= −

(
λ+ 1

2

)(
λ− 1

2

)(
γ0
)
ab
δ (x− y)̂1; (3.153){

π̂a (x) , π̂b (y)
}

= 0̂. (3.154)

Conforme notamos no regime clássico, a Hamiltoniana canônica (3.80) é
o gerador das translações temporais. Sua versão quântica é

ĤC = − 1

2

∫
d3x

{
i

2

(
γj
)
ab

{[
ψ̂a (x) , ∂jψ̂b (x)

]
−
[
∂jψ̂a (x) , ψ̂b (x)

]}
+

−mf

[
ψ̂a (x) , ψ̂a (x)

]
− qe (γ

μ)ab Âμ (x)
[
ψ̂a (x) , ψ̂b (x)

]}
. (3.155)

Também podemos escrever o operador carga de Noether, que é a versão
quântica da carga (3.67):

N̂ =
1

2

∫
d3x
(
γ0
)
ab

[
ψ̂a (x) , ψ̂b (x)

]
. (3.156)

A matriz densidade correspondente à eletrodinâmica em equiĺıbrio ter-
modinâmico com fontes externas é

ρ̂s (β) = e−β(ĤT−μeN̂), (3.157)
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sendo ĤT = ĤC + ĤP + Ĥs, com ĤP sendo o Hamiltoniano associado ao
campo eletromagnético livre cuja única propriedade relevante para os nossos
propósitos nesta seção é que comuta com ĤC e Ĥs o Hamiltoniano das fontes
que, em conformidade com (2.39) e (2.40), é dado por

Ĥs = −
∫

d3x

{
J μ (x) Âμ (x) +

1

2

[
ηa (x) , ψ̂a (x)

]
+

1

2

[
ηa (x) , ψ̂a (x)

]}
.

(3.158)

Neste operador, J é a fonte do campo de gauge Â e η e η as fontes

Grassmannianas dos campos fermiônicos ψ̂ e ψ̂, respectivamente.
A quantidade μe que aparece na matriz densidade (3.157) é o potencial

qúımico associado à carga de Noether N̂ .
Realizando uma transformação de similaridade com a matriz densidade

ρ̂s (τ) no operador ĤT − μeN̂ e utilzando (2.80), vemos que esse operador é
invariante por essa transformação:

Ĥs
T − μeN̂

s = ρ̂−1
s (τ)

(
ĤT − μeN̂

)
ρ̂s (τ) = ĤT − μeN̂ . (3.159)

Aplicando essa mesma transformação a cada equação do conjunto de an-
ticomutadores fundamentais (3.145-3.154) e utilizando

ρ̂−1
s (τ)

{
Â, B̂

}
ρ̂s (τ) = ρ̂−1

s (τ)
(
ÂB̂ + B̂Â

)
ρ̂s (τ)

= ρ̂−1
s (τ) ÂB̂ ρ̂s (τ) + ρ̂−1

s (τ) B̂Â ρ̂s (τ)

= ρ̂−1
s (τ) Â ρ̂s (τ) ρ̂

−1
s (τ) B̂ ρ̂s (τ) +

+ρ̂−1
s (τ) B̂ ρ̂s (τ) ρ̂

−1
s (τ) Â ρ̂s (τ)

= Âs (τ) B̂s (τ) + B̂s (τ) Âs (τ)

=
{
Âs (τ) , B̂s (τ)

}
, (3.160)

que é válida para quaisquer operadores Â e B̂, obtemos o conjunto de anti-
comutadores fundamentais para a teoria em equiĺıbrio termodinâmico:
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{
ψ̂sa (x, τ) , ψ̂

s
b (y, τ)

}
= 0̂; (3.161){

ψ̂sa (x, τ) , ψ̂
s

b (y, τ)
}

= −
(
γ0
)
ab
δ (x− y) 1̂; (3.162){

ψ̂sa (x, τ) , π̂
s
b (y, τ)

}
= 0̂; (3.163){

ψ̂sa (x, τ) , π̂
s

b (y, τ)
}

= iδab

(
λ+ 1

2

)
δ (x− y) 1̂; (3.164){

ψ̂
s

a (x, τ) , ψ̂
s

b (y, τ)
}

= 0̂; (3.165){
ψ̂
s

a (x, τ) , π̂
s
b (y, τ)

}
= −iδab

(
λ− 1

2

)
δ (x− y) 1̂; (3.166){

ψ̂
s

a (x, τ) , π̂
s

b (y, τ)
}

= 0̂; (3.167)

{π̂sa (x, τ) , π̂sb (y, τ)} = 0̂; (3.168){
π̂sa (x, τ) , π̂

s

b (y, τ)
}

= −
(
λ+ 1

2

)(
λ− 1

2

)(
γ0
)
ab
δ (x− y)̂1;

(3.169){
π̂
s

a (x, τ) , π̂
s

b (y, τ)
}

= 0̂. (3.170)

Derivando a equação (2.80) com relação a τ , temos

∂F̂ s (τ)

∂τ
= −

[
F̂ s (τ) , ĤT − μeN̂

]
, (3.171)

sendo que particularizamos para a matriz densidade (3.157).
Utilizando essa expressão para os campos fermiônicos e os anticomuta-

dores fundamentais em equiĺıbrio, encontramos:

∂ψ̂sa (x, τ)

∂τ
=
(
γ0
)
ab

[
−i
(
γj
)
bc
∂jψ̂

s
c (x, τ) +mf ψ̂

s
b (x, τ)− μe

(
γ0
)
bc
ψ̂sc (x, τ)+

+qeÂs
μ (x, τ) (γ

μ)bc ψ̂
s
c (x, τ) + ηb (x, τ) 1̂

]
; (3.172)

∂ψ̂
s

a (x, τ)

∂τ
=
(
γ0
)
ba

[
−i
(
γj
)
bc
∂jψ̂

s

c (x, τ)−mf ψ̂
s

b (x, τ) + μe
(
γ0
)
cb
ψ̂
s

c (x, τ)+

−qe (γμ)cb Âs
μ (x, τ) ψ̂

s

c (x, τ) + ηb (x, τ) 1̂
]
. (3.173)

Uma vez que γ0 é sua própria inversa, podemos multiplicar cada uma
dessas equações respectivamente por (γ0)da e (γ0)ad e, então, obtemos
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[(
γ0
)
ab

∂

∂τ
+ i
(
γj
)
ab
∂j

]
ψ̂sb (x, τ) =

[
mfδab − μe

(
γ0
)
ab

]
ψ̂sb (x, τ)+

+ qeÂs
μ (x, τ) (γ

μ)ab ψ̂
s
b (x, τ) + ηa (x, τ) 1̂;

(3.174)[(
γ0
)
ba

∂

∂τ
+ i
(
γj
)
ba
∂j

]
ψ̂
s

b (x, τ) = −
[
mfδba − μe

(
γ0
)
ba

]
ψ̂
s

b (x, τ)+

− qe (γ
μ)ba Âs

μ (x, τ) ψ̂
s

b (x, τ) + ηa (x, τ) 1̂.

(3.175)

Observamos que os primeiros membros de ambas essas equações depen-
dem do operador γ0 ∂

∂τ
+ iγj∂j. Para teorias de campos à temperatura nula,

o correspondente operador tem a forma iγ0 ∂
∂t
+ iγj∂j que pode ser colocado

na forma abreviada iγμ∂μ. Contudo, o operador γ0 ∂
∂τ

+ iγj∂j aparentemente
não pode ser escrito numa forma similar, pois o termo proporcional a γ0

não é multiplicado pelo número i, enquanto que os demais termos o são. A
fim de podermos escrever esse operador numa forma compacta, definimos as
matrizes de Dirac Euclideanas :

γE0 ≡ γ0; (3.176)

γEj ≡ iγj. (3.177)

Essas matrizes satisfazem {
γEμ , γ

E
ν

}
ab
= 2δμνδab, (3.178)

conforme pode ser verificado com o uso da equação (3.2).
Escrevendo ∂/∂τ = ∂0, temos

γ0 ∂

∂τ
+ iγj∂j = γE0 ∂0 + γEj ∂j = γEμ ∂μ, (3.179)

sendo a soma impĺıcita nos ı́ndices gregos agora efetuadas na métrica Eu-
clideana. Dessa forma, os primeiros membros das equações (3.184) e (3.185)
são escritas numa forma covariante. No entanto, aquelas equações dependem
de um termo proporcional ao operador γμÂμ. Assim, em termos das matrizes
de Dirac Euclideanas, esse termo se torna

γμÂμ = γ0Â0 + γjÂj = γ0Â0 − γjÂj = γE0 Â0 + iγEj Âj

= − i
(
iγE0 Â0 − γEj Âj

)
(3.180)
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e novamente o número i nos impede de escrevermos as equações (3.184)
e (3.185) de uma forma covariante. A fim de resolvermos esse problema,
redefinimos o campo de gauge através de

Â0 ≡ iÂ0; (3.181)

Âj ≡ − Âj. (3.182)

Em termos desse novo campo, temos

γμÂμ = iγEμ Âμ, (3.183)

com a soma tomada sobre a métrica Euclideana.
Em termos dessas novas quantidades, as equações de campo (3.184) e

(3.185) são escritas como

(
γEμ
)
ab
∂μψ̂

s
b (x, τ) =

[
mfδab − μe

(
γ0
)
ab

]
ψ̂sb (x, τ)+

+ iqeÂ
s
μ (x, τ)

(
γEμ
)
ab
ψ̂sb (x, τ) + ηa (x, τ) 1̂; (3.184)(

γEμ
)
ab
∂μψ̂

s

b (x, τ) = −
[
mfδba − μe

(
γ0
)
ba

]
ψ̂
s

b (x, τ)+

− iqe (γ
μ)ba Â

s
μ (x, τ) ψ̂

s

b (x, τ) + ηa (x, τ) 1̂. (3.185)

Essas equações de campo podem ainda ser reescritas numa forma mais
apropriada:

{(
γEμ
)
ab
D̂(μe,qe)
μ

[
Âs
]
−mfδab

}
ψ̂sb (x, τ) = ηa (x, τ) 1̂; (3.186){(

γEμ
)
ba
D̂(−μe,−qe)
μ

[
Âs
]
+mfδba

}
ψ̂
s

b (x, τ) = ηa (x, τ) 1̂, (3.187)

com as seguintes definições

D̂(μe,qe)
μ

[
Âs
]
≡ 1̂∂(μe)

μ + iqeÂ
s
μ; (3.188)

∂(μe)
μ ≡ ∂μ + μeδμ0. (3.189)

Notamos que no formalismo de Matsubara-Fradkin o caráter Euclideano
do espaço-tempo emerge naturalmente. Além disso, ao compararmos as
equações (3.186) e (3.187), vemos que a equação de campo para o campo

ψ̂
s

a (x, τ) possui os parâmetros qe, mf e o potencial qúımico μe com sinais

opostos aos daqueles presentes na equação de campo para o campo ψ̂sb (x, τ).
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Iniciamos esta seção realizando uma análise clássica da estrutura canônica
da parte da eletrodinâmica, seja ela generalizada ou Maxwelliana, que envolve
os campos fermiônicos. Observamos que a teoria é vinculada e, fazendo uso
do formalismo de Dirac, definimos os parênteses de Dirac da teoria. De posse
destes, utilizamos o prinćıpio de correspondência para definirmos os antico-
mutadores fundamentais deste setor da teoria. Considerando uma situação
de equiĺıbrio termodinâmico, encontramos as equações de campo fermiônicas
para essa teoria. Na seção seguinte, consideraremos a quantização da parte
da teoria que concebe o campo do gauge.

3.5 O método do campo auxiliar de Nakani-

shi

Na seção anterior empregamos o formalismo de Dirac a fim de realizarmos
uma análise canônica e uma consequente quantização da parte da eletrodi-
nâmica que envolve os campos fermiônicos. É posśıvel aplicar essa mesma
técnica para a quantização do campo de gauge, seja ele o campo de Maxwell
ou o de Podolsky. No entanto, tal processo de quantização constitui-se numa
abordagem não covariante. Em outras palavras, desconsiderando-se os efeitos
térmicos, a quantização pelo método do Dirac quebra a invariância expĺıcita
de Lorentz. No caso da teoria em equiĺıbrio termodinâmico, a invariância
expĺıcita que é quebrada é a simetria SO (4), que seria uma espécie de “versão
Euclideana” do grupo de Lorentz. No formalismo de Dirac, a escolha de
gauge natural é o gauge de Coulomb no caso da teoria de Maxwell, ou uma
generalização dessa escolha para o caso de Podolsky. Em qualquer dos casos,
essas escolhas de gauge são não covariantes. Ainda assim, uma tal quebra
de covariância não é um grande problema. Ao se estudar o problema via
integração funcional é posśıvel passar de uma escolha de gauge não covariante
para uma covariante através, por exemplo, do Ansätz de Faddeev-Popov.
Como vimos na seção anterior, a análise da estrutura canônica de uma teoria
vinculada é extensa e complexa. A situação é ainda mais complicada quando
há v́ınculos de primeira classe no problema, como é o caso de teorias de
campos de gauge.

Uma abordagem mais simples consistiria em se quantizar o campo de
gauge mantendo intacta a invariância expĺıcita de SO (4). Dessa forma,
a passagem de uma escolha de gauge não covariante para uma covariante
seria desnecessária. Tal método foi desenvolvido por Nakanishi. Entre suas
vantagens, citamos que sequer a análise de Dirac necessita ser implementada.
Dessa forma, o método de Nakanishi é mais simples ao se estudar teorias de
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gauge em equiĺıbrio termodinâmico do que o processo de quantização de
Dirac.

Nesta seção aplicaremos o método de Nakanishi para a quantização do
campo de Podolsky em equiĺıbrio termodinâmico. Conforme vimos na parte
fermiônica, quando consideramos a quantização de campos em equiĺıbrio ter-
modinâmico, a estrutura Euclideana do espaço-tempo naturalmente emerge.
Sendo assim, consideraremos a versão Euclideana da densidade de Lagran-
geana de Podolsky (3.15):

LEP =
1

4
FμνFμν +

1

2m2
P

∂μFμν∂ξFξν . (3.190)

Conforme chamamos a atenção na seção 3.2.3, as equações de Euler-
Lagrange obtidas a partir da densidade de Lagrangeana de Podolsky sem
fixação de gauge (3.18) dependem de um operador diferencial não inverśıvel.
A teoria descrita pela densidade de Lagrangeana Euclideana acima partilha
dessa mesma caracteŕıstica, ou seja, as equações de Euler-Lagrange a partir
dela obtidas também dependem de um operador diferencial que não pode
ser invertido. Uma vez que estamos procurando uma teoria quântica em
equiĺıbrio termodinâmico e levando em consideração que as funções de Green,
que são, em śıntese, inversas de operadores, desempenham um papel crucial
em qualquer teoria quântica, conclúımos que temos um problema. A fim
de contornarmos essa dificuldade, consideremos o operador densidade de La-
grangeano de Nakanishi para a eletrodinâmica de Podolsky [43, 44]:

L̂N =
1

4
F̂ s
μνF̂

s
μν+

1

2m2
P

∂μF̂
s
μν∂ξF̂

s
ξν +

1

2

{
B̂, G

[
Âs
]}
− α

2
B̂2+

+
1

2

(
γEμ
)
ab

{(
λ+ 1

2

)[
ψ̂
s

a, ∂μψ̂
s
b

]
+

(
λ− 1

2

)[
∂μψ̂

s

a, ψ̂
s
b

]}
+

− 1

2

[
mfδab − μe

(
γ0
)
ab

] [
ψ̂
s

a, ψ̂
s
a

]
+ i

qe
2
Âs
μ

(
γEμ
)
ab

[
ψ̂
s

a, ψ̂
s
b

]
+

+ JμÂ
s
μ +

1

2

[
ηa, ψ̂

s
a

]
+

1

2

[
ηa, ψ̂

s

a

]
. (3.191)

Nesta expressão F̂μν ≡ ∂μÂν − ∂νÂμ, α é um número real arbitrário

adimensional não nulo conhecido como parâmetro de gauge covariante, B̂ é

chamado de campo auxiliar de Nakanishi, G
[
Â
]
é chamado de operador de

escolha de gauge e J0 = −iJ 0 e Jk = J k são as componentes do quadrivetor
Euclideano fonte clássica do campo de Podolsky.

Por definição, sob uma transformação de gauge,
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Âμ → Â′
μ = Âμ + ∂μf̂ , (3.192)

para qualquer operador escalar de SO(4) bem comportado f̂ , o operador
escolha de gauge satisfaz

G
[
Â
]
→ G

[
Â′
]
�= G

[
Â
]
. (3.193)

Se o campo auxiliar for o operador nulo, a densidade de Lagrangeano L̂N
é invariante sob transformações de gauge (3.192) desde que façamos as fontes
nulas. Nesse caso, temos simplesmente uma versão quântica mal definida de
nossa teoria original. Se, por outro lado, o campo auxiliar não for nulo,
mesmo que as fontes o sejam, o termo envolvendo o anticomutador de B̂ com
a escolha de gauge quebra explicitamente a invariância de gauge da densi-
dade de Lagrangeano acima. Veremos, a seguir, que essa quebra expĺıcita
da invariância U(1) pode levar a uma teoria quântica bem definida para a
eletrodinâmica generalizada.

3.5.1 O prinćıpio de Schwinger

A fim de construirmos uma teoria quântica termodinâmica para a eletrodi-
nâmica de Podolsky, consideremos o operador ação termodinâmica associado
à densidade de Lagrangeano (3.191):6

ŜN =

∫
β

d4x L̂N . (3.194)

Consideremos, também, variações infinitesimais mutuamente indepen-
dentes dos campos

ψ̂a → ψ̂′
a = ψ̂a + δψ̂a; (3.195)

ψ̂a → ψ̂
′
a = ψ̂a + δψ̂a; (3.196)

Âμ → Â′
μ = Âμ + δÂμ; (3.197)

B̂ → B̂′ = B̂ + δB̂. (3.198)

Essas variações induzem a seguinte variação no operador ação termodi-
nâmica:

6Na expressão (3.194) utilizamos a notação (2.141) com D = 3.
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ŜN → Ŝ ′
N = ŜN + δŜN . (3.199)

O prinćıpio de Schwinger afirma que a variação desse operador, a saber,
δŜN = Ŝ ′

N − ŜN , possui uma forma espećıfica [45, 46, 47, 48]:

δŜN =

∫
β

d4x ∂μV̂μ, (3.200)

sendo V̂μ um operador vetorial que depende, em prinćıpio, tanto dos cam-
pos quanto das suas variações. Invocando esse prinćıpio, encontramos as
seguintes equações de campo para as variações de cada campo:

{(
γEμ
)
ab
D̂(μe,qe)
μ

[
Âs
]
−mfδab

}
ψ̂sb (x, τ) = ηa (x, τ) 1̂; (3.201){(

γEμ
)
ba
D̂(−μe,−qe)
μ

[
Âs
]
+mfδba

}
ψ̂
s

b (x, τ) = ηa (x, τ) 1̂; (3.202)(
Δ

m2
P

+ 1

)
∂μF̂

s
μν −

δG∗
[
Âs
]

δÂs
ν

B̂ = i
qe
2

(
γEν
)
ab

[
ψ̂
s

a, ψ̂
s
b

]
+ Jν 1̂;

(3.203)

B̂ =
1

α
G
[
Âs
]
, (3.204)

com

B̂
δG
[
Â
]

δÂμ

ĥμ ≡
δG∗

[
Â
]

δÂμ

B̂ ĥμ + ∂μĝμ, (3.205)

sendo ĥμ qualquer operador vetorial (em particular, estaremos a seguir in-

teressados no caso em que ĥμ = Âμ) e ĝμ um operador vetorial funcional

apropriado que, em prinćıpio, depende de B̂, Âμ e ĥμ.
As equações (3.201) e (3.202) são exatamente as equações de campo

fermiônicas (3.186) e (3.187). Isso mostra que o emprego do prinćıpio de
Schwinger pode levar às equações de campo corretas da teoria.

Notamos, ainda, que a equação de campo (3.204) é exatamente solúvel

para o campo auxiliar. De fato, sua solução para B̂ é trivial, consistindo,
na verdade, da própria equação (3.204). Utilizando essa solução exata na
equação de campo (3.203), notamos que obtemos uma equação independente
do campo auxiliar:
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−
(

Δ

m2
P

+ 1

)
(δμνΔ+ ∂ν∂μ) Â

s
μ−

1

α

δG∗
[
Âs
]

δÂs
ν

G
[
Âs
]
= i

qe
2

(
γEν
)
ab

[
ψ̂
s

a, ψ̂
s
b

]
+

+ Jν 1̂. (3.206)

Assim como no caso de Minkowski, o operador δμνΔ + ∂ν∂μ não é in-
verśıvel. O passo crucial no método de Nakanishi consiste em se escolher

uma forma particular do operador G
[
Â
]
tal que o primeiro membro da

equação acima seja um operador convariante local inverśıvel que atue sobre
o campo de gauge. No caso Maxwelliano, essa escolha é a condição de Lorenz
Euclideana:

G
[
Â
]
= GL

[
Â
]
≡ ∂μÂμ. (3.207)

Para essa escolha:

B̂
δGL

[
Â
]

δÂμ

ĥμ = B̂
δ
(
∂νÂν

)
δÂμ

ĥμ = B̂ ∂μĥμ = −∂μB̂ ĥμ + ∂μ

(
B̂ĥμ

)

=
δG∗

L

[
Â
]

δÂμ

B̂ ĥμ + ∂μĝ
(L)
μ , (3.208)

o que nos leva a identificar:

δG∗
L

[
Â
]

δÂμ

= − ∂μ; (3.209)

ĝ(L)μ = B̂ĥμ. (3.210)

Substituindo o resultado para δG∗
L

[
Â
]
/δÂμ em (3.206), obtemos

−
(

Δ

m2
P

+ 1

){
δμνΔ+

[
1− 1

α

(
Δ

m2
P

+ 1

)−1
]
∂ν∂μ

}
Âs
μ= i

qe
2

(
γEν
)
ab
×

×
[
ψ̂
s

a, ψ̂
s
b

]
+ Jν 1̂.

(3.211)
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Podemos escrever (
Δ

m2
P

+ 1

)−1

= m2
P

(
Δ+m2

P

)−1
, (3.212)

sendo (Δ +m2
P )

−1
a função de Green do campo escalar livre (2.144) com

m2 = m2
P . Como tal função de Green é não local, o operador atuando no

campo Â na equação (3.211) é também não local e a condição de Lorenz
Euclideana falha como uma escolha de gauge apropriada para a teoria de
Podolsky.

Uma vez que a condição (3.207) revelou-se uma escolha que levou a uma
equação de campo não local, na seção seguinte procuraremos uma escolha
de gauge para a eletrodinâmica de Podolsky que cumpra os requisitos do
método de Nakanishi.

3.5.2 A condição de Lorenz generalizada

Na seção anterior vimos que a condição de Lorenz Euclideana, embora satis-
fatória na eletrodinâmica Maxwelliana, mostra-se inapropriada para o campo
de Podolsky. Em [36], Galvão e Pimentel estudaram a estrutura canônica da
eletrodinâmica generalizada clássica. Inspirados por aquele trabalho, tentare-
mos como escolha de gauge a condição de Lorenz Euclideana generalizada:

G
[
Â
]
= GGL

[
Â
]
≡
(

Δ

m2
P

+ 1

)
∂μÂμ. (3.213)

Logo,

B̂
δGGL

[
Â
]

δÂμ

ĥμ = B̂
δ
[(

Δ
m2

P
+ 1
)
∂νÂν

]
δÂμ

ĥμ = B̂

(
Δ

m2
P

+ 1

)
∂μĥμ

= −
(

Δ

m2
P

+ 1

)
∂μB̂+

+ ∂μ

[
B̂

(
Δ

m2
P

+ 1

)
ĥμ −

1

m2
P

(
∂νB̂∂μĥν − ∂μ∂νB̂ĥν

)]

=
δG∗

GL

[
Â
]

δÂμ

B̂ ĥμ + ∂μĝ
(GL)
μ . (3.214)

Desta expressão, identificamos
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δG∗
GL

[
Â
]

δÂμ

= −
(

Δ

m2
P

+ 1

)
∂μ; (3.215)

ĝ(GL)μ = B̂

(
Δ

m2
P

+ 1

)
ĥμ −

1

m2
P

(
∂νB̂∂μĥν − ∂μ∂νB̂ĥν

)
. (3.216)

Substituindo (3.215) na equação (3.206), encontramos a seguinte equação de
campo

P
(m2

P ,α)
μν Âs

ν (x, τ) = i
qe
2

(
γEμ
)
ab

[
ψ̂
s

a (x, τ) , ψ̂
s
b (x, τ)

]
+ Jμ (x, τ) 1̂, (3.217)

sendo que definimos o operador diferencial de Podolsky como:

P
(m2

P ,α)
μν ≡ −

(
Δ

m2
P

+ 1

){
Δδμν +

[
1− 1

α

(
Δ

m2
P

+ 1

)]
∂μ∂ν

}
. (3.218)

O operador diferencial correspondente a este na teoria de Maxwell, a
saber, δμνΔ +

(
1− 1

α

)
∂μ∂ν , pode ser tornado independente do termo ∂μ∂ν .

Isso é feito escolhendo o valor do parâmetro de gauge α como sendo igual
a 1. Esse é o chamado gauge de Feynmann-Stückelberg. Conforme notamos
pela definição acima, na teoria de Podolsky não há nenhum gauge no qual
isso ocorra.

Dada a definição do operador diferencial (3.218), vemos que o primeiro
membro da equação (3.217) consiste num operador diferencial covariante lo-
cal inverśıvel atuando sobre o campo de Podolsky. Isso mostra que a condição
de Lorenz Euclideana generalizada (3.213) é uma escolha de gauge apropri-
ada para a eletrodinâmica de Podolsky. Dessa forma, a equação (3.217)
constitui-se numa equação de campo da teoria em equiĺıbrio termodinâmico.
Uma vez que a solução exata da equação (3.204) foi utilizada, com o opera-
dor escolha de gauge dado pela condição de Lorenz Euclideana generalizada
(3.213), vemos que as equações de campo não dependem do campo auxiliar.
Isso justifica sua nomenclatura.

3.5.3 Os campos fantasmas

Consideremos o operador (3.191) sem os termos de fontes e com a escolha de
gauge (3.213):
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̂̃LNGL =
1

4
F̂ s
μνF̂

s
μν+

1

2m2
P

∂μF̂
s
μν∂ξF̂

s
ξν +

1

2

{
B̂, GGL

[
Âs
]}
− α

2
B̂2+

+
1

2

(
γEμ
)
ab

{(
λ+ 1

2

)[
ψ̂
s

a, ∂μψ̂
s
b

]
+

(
λ− 1

2

)[
∂μψ̂

s

a, ψ̂
s
b

]}
+

− 1

2

[
mfδab − μe

(
γ0
)
ab

] [
ψ̂
s

a, ψ̂
s
a

]
+ i

qe
2
Âs
μ

(
γEμ
)
ab

[
ψ̂
s

a, ψ̂
s
b

]
.

(3.219)

Conforme já comentamos, o motivo pelo qual adicionamos o termo que
depende do operador de escolha de gauge foi justamente promover uma que-
bra expĺıcita da simetria U(1) do eletromagnetismo de Podolsky. Sob uma
transformação U(1),

ψ̂sa (x, τ)→ ψ̂s′a (x, τ) = e−
i
qe

Λ̂s(x,τ)ψ̂sa (x, τ) ; (3.220)

ψ̂
s

a (x, τ)→ ψ̂
s′
a (x, τ) = ψ̂sa (x, τ) e

i
qe

Λ̂s(x,τ); (3.221)

Âs
μ (x, τ)→ Âs′

μ (x, τ) = Âs
μ (x, τ) + ∂μΛ̂

s (x, τ) (3.222)

B̂ (x, τ)→ B̂′ (x, τ) = B̂ (x, τ) , (3.223)

o operador densidade de Lagrangeano acima se transforma de acordo com

̂̃LNGL → ̂̃L′
NGL =

̂̃LNGL +
1

2

{
B̂,

(
Δ

m2
P

+ 1

)
ΔΛ̂s

}
, (3.224)

que é, no caso geral, diferente de (3.219). No entanto, se o operador Λ̂s for
tal que satisfaça a equação [44]

(
Δ+m2

P

)
ΔΛ̂s = 0̂, (3.225)

vemos que
̂̃LNGL é invariante. Essa simetria da teoria é chamada de simetria

de gauge residual.
A fim de levarmos o v́ınculo (3.225) em consideração na teoria, definimos

o seguinte operador:

L̂c ≡ L̂NGL + κλ̂s (x, τ)

(
Δ

m2
P

+ 1

)
ΔΛ̂s (x, τ) , (3.226)

sendo L̂NGL a densidade de Lagrangeano L̂N com a condição de Lorenz Eu-
clideana generalizada, κ um parâmetro real constante que deverá ser fixado
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posteriormente e λ̂s (x, τ) um operador multiplicador de Lagrange. Agora,
reescrevemos esse multiplicador de Lagrange de acordo com

λ̂s (x, τ) ≡ i Ĉ
s

(x, τ) υ. (3.227)

Nesta expressão, Ĉ
s

(x, τ) é um operador campo Grassmanniano e υ é uma
constante Grassmanniana. Assim, vemos que

κλ̂s (x, τ)

(
Δ

m2
P

+ 1

)
ΔΛ̂s (x, τ) = iκĈ

s

(x, τ) υ

(
Δ

m2
P

+ 1

)
ΔΛ̂s (x, τ)

= iκĈ
s

(x, τ)

(
Δ

m2
P

+ 1

)
Δ
[
υΛ̂s (x, τ)

]
= iκĈ

s

(x, τ)

(
Δ

m2
P

+ 1

)
ΔĈs (x, τ) ,

(3.228)

sendo Ĉs (x, τ) ≡ υΛ̂s (x, τ) outro operador campo Grassmanniano. Ĉ e Ĉ
são chamados de campos fantasmas.

Podemos reescrever o termo que depende dos fantasmas como

iκĈ
s
(

Δ

m2
P

+ 1

)
ΔĈs = iκ∂μĈ

s
(←−

∂ μ

−→
∂ ν

m2
P

+ δμν

)
∂νĈ

s +

+∂μ

{
iκ

[
Ĉ
s Δ

m2
P

(←−
∂ μ −

−→
∂ μ

)
Ĉs − Ĉ

s

∂μĈ
s

]}
,

(3.229)

sendo que escrevemos Ĉ
←−
∂ μ ≡ ∂μĈ e

−→
∂ μĈ ≡ ∂μĈ. Ao realizarmos variações

infinitesimais independentes em cada campo fantasma, vemos que o operador
compreendido entre as chaves no segundo membro dessa última expressão
será uma parte da definição do operador V̂μ da expressão (3.200). Como esse
operador vetorial não contribui para as equações de campo, consideraremos
doravante, sem perda de generalidade para os nossos propósitos, o seguinte
operador densidade de Lagrangeano:

L̂C ≡L̂c − ∂μ

{
iκ

[
Ĉ
s Δ

m2
P

(←−
∂ μ −

−→
∂ μ

)
Ĉs − Ĉ

s

∂μĈ
s

]}
= L̂NGL + iκ∂μĈ

s
(←−

∂ μ

−→
∂ ν

m2
P

+ δμν

)
∂νĈ

s. (3.230)
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Assumimos que a constante Grassmanniana υ atue no espaço dual do
espaço de Hilbert como o negativo dela mesma. Essa hipótese, juntamente
com a definição da transformação de gauge (3.220-3.223), implica na Her-

miticidade do campo fantasma Ĉ. Dessa propriedade e da Hermiticidade do
operador densidade de Lagrangeano, decorre:

[
iκ∂μĈ

s
(←−

∂ μ

−→
∂ ν

m2
P

+ δμν

)
∂νĈ

s

]†
= − iκ∂μĈ

s†
(←−

∂ μ

−→
∂ ν

m2
P

+ δμν

)
∂νĈ

s

= iκ∂μĈ
s
(←−

∂ μ

−→
∂ ν

m2
P

+ δμν

)
∂νĈ

s. (3.231)

A única forma dessa equação ser satisfeita é se o operador Ĉ for anti-
Hermiteano. Resumindo:

Ĉ† = Ĉ; (3.232)

Ĉ
†
= − Ĉ. (3.233)

A fim de encontrarmos as equações de campo fantasmagóricas, conside-
remos a inclusão das fontes fantasmagóricas, ou seja, os campos clássicos

Grassmannianos d (x, τ) e d (x, τ) que são fontes dos campos fantasmas Ĉ e

Ĉ, respectivamente:

L̂gs ≡ L̂C +
1

2

[
d, Ĉs

]
+

1

2

[
d, Ĉ

s]
. (3.234)

Realizando variações infinitesimais independentes em cada campo fan-
tasma, encontramos suas equações de campo:

iκ

(
Δ

m2
P

+ 1

)
ΔĈs (x, τ) = d (x, τ) 1̂; (3.235)

iκ

(
Δ

m2
P

+ 1

)
ΔĈ

s

(x, τ) = − d (x, τ) 1̂. (3.236)

Observamos que essas equações descrevem campos não interagentes. Essa
é uma consequência da escolha de gauge (3.213) ser linear no campo de Po-
dolsky. Se ao invés da condição de Lorenz Euclideana generalizada tivéssemos
escolhido uma condição não linear no campo eletromagnético, haveria in-
teração entre os fantasmas e o campo Â. Esse tipo de situação é muito comum
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em teorias de gauge não Abelianas. No presente caso, no entanto, os campos
fantasmas não interagem com os demais campos. Uma consequência dessa
propriedade é que as equações funcionais do funcional gerador termodinâmico
que dependem das fontes fantasmagóricas, ou de derivadas funcionais com
relação a essas fontes, não dependem das outras fontes ou de derivadas fun-
cionais com relação às outras fontes, conforme veremos na seção 3.6. Por
conseguinte, o funcional gerador termodinâmico pode ser escrito como um
produto de uma termo que depende apenas nas fontes fantasmagóricas com
um termo que depende de todas as outras fontes clássicas. Veremos, também,
uma outra consequência das equações de campo fantasmagóricas serem livres
na seção 3.8. Na referida seção, mostraremos que as equações de Dyson-
Schwinger-Fradkin da teoria de Podolsky não dependem das funções de Green
fantasmagóricas.

3.5.4 A carga e o potencial qúımico fantasmas

Na seção anterior introduzimos os campos fantasmas no problema com o
objetivo de levar em consideração o v́ınculo (3.225). Esse v́ınculo, por sua
vez, surgiu da invariância de gauge residual da teoria quântica. Contudo, a
introdução desses novos campos implementou, também, uma nova simetria no
problema. Observamos que (3.230) é invariante sob a seguinte transformação
global :

Ĉs (x, τ)→ Ĉs′ (x, τ) = eiθ0Ĉs (x, τ) ; (3.237)

Ĉ
s

(x, τ)→ Ĉ
s′
(x, τ) = Ĉ

s

(x, τ) e−iθ0 , (3.238)

sendo θ0 qualquer número real. Assim como ocorre com a simetria global
semelhante a essa dos campos fermiônicos, há um operador carga conservado
associado à esta invariância. Por se tratar de uma teoria com derivadas de
segunda ordem, o modo mais simples de se encontrar tal operador é encon-
trando primeiramente seu correspondente clássico. Encontrar essa função
clássica é nosso próximo objetivo.

A carga fantasma clássica

A fim de encontrarmos a carga fantasma, consideremos a seguinte densidade
de Lagrangeana:
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Lg = −iκ∂μC
(
ημν +

←−
∂ μ

−→
∂ ν

m2
P

)
∂νC

= −iκ∂μC∂μC −
iκ

m2
P

�C�C, (3.239)

sendo C e C campos Grassmannianos escalares de Lorentz, que chamaremos
de campos fantasmas clássicos. Nesta subseção, a soma impĺıcita é entendida
como sendo com a métrica de Minskowski novamente.

Essa densidade de Lagrangeana possui uma invariância U (1) global:

C → C ′ = eiθ0C; (3.240)

C → C
′
= Ce−iθ0 (3.241)

para todo número real θ0. Agora, consideremos uma variação com um
parâmetro infinitesimal δθ0:

C → C ′ = C + iδθ0C; (3.242)

C → C
′
= C − iCδθ0. (3.243)

Sob essa transformação, a ação associada a (3.239),

Sg ≡
∫

d4xLg, (3.244)

se escreve em primeira ordem no parâmetro como

Sg → Sg + δSg, (3.245)

sendo

δSg = − κδθ0

∫
d4x ∂μ

{
∂μCC − C∂μC −

1

m2
P

[
∂μ
(
�CC

)
+

−∂μ
(
C�C

)
+ 2∂μC�C − 2�C∂μC

]}
. (3.246)

Da imposição de que a ação seja invariante sob essa transformação in-
finitesimal, encontramos a seguinte equação de continuidade:

∂μgμ = 0, (3.247)
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sendo

gμ ≡κ

[
∂μCC − C∂μC −

1

m2
P

(
�∂μCC −�C∂μC + ∂μC�C − C�∂μC

)]
.

(3.248)

Assim como no caso da carga fermiônica, a integral espacial em todo o
volume da componente temporal desse quadrivetor é uma quantidade con-
servada:

∫
d3x g0 =κ

∫
d3x

[
∂0CC − C∂0C −

1

m2
P

(
�∂0CC −�C∂0C+

+∂0C�C − C�∂0C
)]

. (3.249)

Essa é a carga fantasma clássica. Embora ela seja uma constante do
movimento, essa não é a forma mais apropriada a partir da qual se escreveria
sua versão quântica fazendo-se uso do prinćıpio de correspondência. A forma
ideal de se escrever qualquer quantidade clássica que se queira quantizar é
escrevendo-a não em termos de seus campos e suas derivadas temporais, mas
em termos dos campos e de seus momentos canonicamente conjugados. A
densidade de Lagrangeana (3.239) envolve derivadas de segunda ordem dos
campos fantasmas. Portanto, sua estrutura canônica é mais complicada que
a de uma teoria descrita por uma densidade de Lagrangeana que envolve ape-
nas derivadas de primeira ordem dos campos. De acordo com o formalismo
apresentado no apêndice B, o tensor de densidade de energia e momento de
uma teoria de escalares com derivadas de segunda ordem é

T μν
g =

1∑
k=0

[
π(k)μ∂ν

(
∂̂(k)C

)
+ π(k)μ∂ν

(
∂̂(k)C

)]
− ∂ρf

μρν − gμνLg

= π(0)μ∂ν
(
∂̂(0)C

)
+ π(0)μ∂ν

(
∂̂(0)C

)
+

+π(1)μ∂ν
(
∂̂(1)C

)
+ π(1)μ∂ν

(
∂̂(1)C

)
− gμνLg. (3.250)

Nesta expressão, utilizamos o fato de que fμρν = 0 para campos escalares
de Lorentz e também
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π(0)μ ≡ Π
μ − ∂νΠ

μν
; (3.251)

π(0)μ ≡ Πμ − ∂νΠ
μν ; (3.252)

π(1)μ ≡ nνΠ
μν
; (3.253)

π(1)μ ≡ nνΠ
μν ; (3.254)

∂̂(k) ≡
{

1, k = 0;

∂̂, k = 1.
(3.255)

com

Π
μ ≡ ∂↪→Lg

∂ (∂μC)
− ∂ν

{
1

2

[
∂↪→Lg

∂ (∂μ∂νC)
+

∂↪→Lg
∂ (∂ν∂μC)

]}
; (3.256)

Πμ ≡ ∂↪→Lg
∂
(
∂μC
) − ∂ν

{
1

2

[
∂↪→Lg

∂
(
∂μ∂νC

) + ∂↪→Lg
∂
(
∂ν∂μC

)]} ; (3.257)

Π
μν ≡ 1

2

[
∂↪→Lg

∂ (∂ν∂μC)
+

∂↪→Lg
∂ (∂μ∂νC)

]
; (3.258)

Πμν ≡ 1

2

[
∂↪→Lg

∂
(
∂ν∂μC

) + ∂↪→Lg
∂
(
∂μ∂νC

)] ; (3.259)

∂̂ ≡ nμ∂μ; (3.260)

∂μ ≡ ∂μ − nμ∂̂. (3.261)

Definamos, agora:

L
μ ≡ ∂↪→Lg

∂ (∂μC)
; (3.262)

L
μν ≡ 1

2

[
∂↪→Lg

∂ (∂μ∂νC)
+

∂↪→Lg
∂ (∂ν∂μC)

]
; (3.263)

Lμ ≡ ∂↪→Lg
∂
(
∂μC
) ; (3.264)

Lμν ≡ 1

2

[
∂↪→Lg

∂
(
∂μ∂νC

) + ∂↪→Lg
∂
(
∂ν∂μC

)] . (3.265)

Com isso, podemos escrever:
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π(0)μ =L
μ − 2∂νL

μν
+ nνn

ρ∂ρL
μν
; (3.266)

π(0)μ =Lμ − 2∂νL
μν + nνn

ρ∂ρL
μν ; (3.267)

π(1)μ =nνL
μν
; (3.268)

π(1)μ =nνL
μν . (3.269)

Podemos, também, escrever o tensor de energia e momento (3.250) como:

T μν
g = π(0)μ∂ν

(
∂̂(0)C

)
+ π(0)μ∂ν

(
∂̂(0)C

)
+

+ π(1)μ∂ν
(
∂̂(1)C

)
+ π(1)μ∂ν

(
∂̂(1)C

)
− gμνLg

=
(
L
μ − 2∂ρL

μρ)
∂νC + ∂νC (Lμ − 2∂ρL

μρ)− gμνLg+
+ ∂ρ

[
nσn

ρ
(
L
μσ
∂νC + ∂νCLμσ

)]
�
(
L
μ − 2∂ρL

μρ)
∂νC + ∂νC (Lμ − 2∂ρL

μρ)− gμνLg. (3.270)

Nesta expressão, utilizamos a notação

A � B (3.271)

para indicar que

B = A+ ∂μW
μ (3.272)

para algum quadrivetor W .
Prosseguindo dessa forma:

T μν
g �

(
L
μ − ∂ρL

μρ)
∂νC + ∂νC (Lμ − ∂ρL

μρ)+

+ ∂ρ∂
νCLμρ + L

μρ
∂ρ∂

νC − gμνLg. (3.273)

A componente zero-zero desse tensor é a densidade de energia, que pode ser
escrita como

E = T 00
g �

(
L
0 − 2∂kL

0k − ∂0L
00
) ·
C +

·
C
(
L0 − 2∂kL

0k − ∂0L
00
)
+

+
··
CL00 + L

00 ··
C − Lg + ∂k

( ·
CL0k + L

0k ·
C

)
. (3.274)

A Hamiltoniana, por sua vez, é a integral da quantidade acima:
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H =

∫
d3xE

�
∫

d3x

[(
L
0 − 2∂kL

0k − ∂0L
00
) ·
C +

·
C
(
L0 − 2∂kL

0k − ∂0L
00
)
+

+
··
CL00 + L

00 ··
C − Lg + ∂k

( ·
CL0k + L

0k ·
C

)]
=

∫
d3x

[(
L
0 − 2∂kL

0k − ∂0L
00
) ·
C +

·
C
(
L0 − 2∂kL

0k − ∂0L
00
)
+

+
··
CL00 + L

00 ··
C − Lg

]
+

∫
d2sk

( ·
CL0k + L

0k ·
C

)
, (3.275)

sendo a última integral na superf́ıcie da fronteira da região que engloba todo
o espaço. Essa integral é nula por hipótese. Assim, podemos escrever a
densidade de energia como

E =
(
L
0 − 2∂kL

0k − ∂0L
00
) ·
C+

·
C
(
L0 − 2∂kL

0k − ∂0L
00
)
+L

00 ··
C+

··
CL00−Lg.

(3.276)
Essa expressão nos leva às seguintes identificações:

π ≡ L
0 − 2∂kL

0k − ∂0L
00
; (3.277)

π ≡ L0 − 2∂kL
0k − ∂0L

00; (3.278)

P ≡ L
00
; (3.279)

P ≡ L00, (3.280)

sendo cada um desses momentos canônicos conjugado respectivamente a cada

um dos campos C, C, D ≡
·
C e D ≡

·
C. Com o aux́ılio da densidade

de Lagrangeana (3.239) e das definições (3.262-3.265), calculamos cada um
desses momentos canônicos:

π = − iκ

(
�
m2
P

− 1

)
∂0C; (3.281)

π = iκ

(
�
m2
P

− 1

)
∂0C; (3.282)

P = iκ
�
m2
P

C; (3.283)

P = − iκ
�
m2
P

C. (3.284)
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Em termos dos campos e momentos conjugados, a carga fantasma clássica
conservada (3.249) é reescrita numa forma mais simples:

∫
d3x g0 = − i

∫
d3x
(
Cπ + πC +DP + PD

)
. (3.285)

Essa quantidade está, agora, escrita numa forma apropriada a partir da
qual sua versão quântica pode ser facilmente encontrada.

O potencial qúımico fantasma

A partir da carga fantasma clássica (3.285), escrevemos sua versão quântica:

Q̂ ≡ − i

2

∫
d3x
([

Ĉ, π̂
]
+
[
π̂, Ĉ

]
+
[
D̂, P̂

]
+
[
P̂ , D̂

])
, (3.286)

sendo que os operadores campos e momentos fantasmas satisfazem os seguintes
anticomutadores fundamentais:7

{
Ĉ (x) , π̂ (y)

}
= iδ (x− y) 1̂; (3.287){

Ĉ (x) , π̂ (y)
}

= iδ (x− y) 1̂; (3.288){
Ĉ (x) , π̂ (y)

}
= 0̂; (3.289){

Ĉ (x) , π̂ (y)
}

= 0̂; (3.290){
Ĉ (x) , Ĉ (y)

}
= 0̂; (3.291){

Ĉ (x) , Ĉ (y)
}

= 0̂; (3.292)

{π̂ (x) , π̂ (y)} = 0̂; (3.293){
π̂ (x) , π̂ (y)

}
= 0̂. (3.294)

Uma vez que existe um novo operador carga conservado no sistema as-
sociado a uma simetria interna, cont́ınua e global, devemos acrescentá-lo à
matriz densidade do problema. Assim, em vez de (3.157), a matriz densi-
dade que descreve o ensemble da eletrodinâmica generalizada em equiĺıbrio
termodinâmico é

7Assumimos que esses operadores não dependem do tempo pois estamos interessados

na situação de equiĺıbrio termodinâmico.
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ρ̂gs (β) ≡ exp
[
−β
(
ĤT − μeN̂ − μgQ̂

)]
. (3.295)

Nesta expressão, ĤT = ĤT + Ĥg + Ĥgs, sendo ĤT Hamiltoniano total

que aparece na matriz densidade (3.157), Ĥg o Hamiltoniano dos campos

fantasmas cuja forma expĺıcita não é relevante para os nossos propósitos e Ĥgs

o Hamiltoniano correspondente às fontes fantasmagóricas. Essa expressão
também depende do potencial qúımico fantasma μg, ou seja, o potencial
qúımico associado ao operador carga fantasma.

Visto que os campos fantasmas comutam com os demais campos do pro-
blema, essa matriz densidade pode ser reescrita na seguinte forma:

ρ̂gs (β) = exp
[
−β
(
Ĥg + Ĥgs − μgQ̂

)]
ρ̂s (β) . (3.296)

Definimos, também, a dependência de um operador arbitrário F̂ com a
temperatura através dessa nova matriz densidade como:

F̂ gs (τ) ≡ ρ̂−1
gs (τ) F̂ ρ̂gs (τ) . (3.297)

Contudo, devido à forma (3.296), notamos que para qualquer campo ŵj
que comute com os campos fantasmas, vale

ŵgs
j (τ)= ρ̂−1

gs (τ) ŵj ρ̂gs (τ)

= ρ̂−1
s (τ) exp

[
τ
(
Ĥg + Ĥgs − μgQ̂

)]
ŵj×

× exp
[
−τ
(
Ĥg + Ĥgs − μgQ̂

)]
ρ̂s (τ)

= ρ̂−1
s (τ) ŵj exp

[
τ
(
Ĥg + Ĥgs − μgQ̂

)]
×

× exp
[
−τ
(
Ĥg + Ĥgs − μgQ̂

)]
ρ̂s (τ)

=ρ̂−1
s (τ) ŵj ρ̂s (τ)= ŵs

j (τ) . (3.298)

Uma vez que o campo de Podolsky e os campos fermiônicos comutam
com os campos fantasmas, vemos que a dependência desses campos com a
temperatura obtida através de (2.80) com a matriz densidade (3.157) coin-
cide com a dependência via definição (3.297). Esta observação, na verdade,
serve de justificativa da razão pela qual os resultados obtidos anteriormente
para o campo de gauge e para os campos fermiônicos permanecem válidos,
mesmo que tenhamos ignorado, num primeiro momento, a presença de outros
campos, a saber, os fantasmas, no problema.
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Para os campos fantasmas, no entanto, a situação é mais complicada.
Primeiramente notamos que, assim como no caso de quaisquer outros cam-
pos, o operador carga fantasma deixa de ser conservado na presença das
fontes externas. Uma consequência imediata desse fato é que, em prinćıpio,

temos ρ̂gs (β) �= eβμgQ̂ exp
[
−β
(
ĤT − μeN̂

)]
. Contudo, notemos que existe

ainda uma forma alternativa às expressões (3.295) ou (3.296) para essa matriz
densidade:

ρ̂gs (β) = exp
[
−β
(
Ĥ + Ĥg − μeN̂ − μgQ̂

)]
Ŝg (β) . (3.299)

Nesta expressão, Ĥ = ĤT − Ĥs e Ŝg (β) é a generalização do operador Ŝ (β)
que inclui as fontes fantasmagóricas. Agora, notamos que

exp
[
−β
(
Ĥ + Ĥg − μeN̂ − μgQ̂

)]
= eβμgQ̂ρ̂P (β) , (3.300)

com

ρ̂P (β) ≡ exp
[
−β
(
Ĥ + Ĥg − μeN̂

)]
, (3.301)

pois a matriz densidade do primeiro membro de (3.300) não depende das
fontes fantasmagóricas. Logo:

ρ̂gs (β) = eβμgQ̂ρ̂P (β) Ŝg (β) . (3.302)

A fim de simplificarmos ainda mais a notação, definimos

ρ̂Ps (β) ≡ ρ̂P (β) Ŝg (β) . (3.303)

Logo,

ρ̂gs (β) = eβμgQ̂ρ̂Ps (β) . (3.304)

Antes de prosseguirmos, notamos que, para os campos que comutam com
os fantasmas, uma transformação de similaridade com (3.303) fornece:

ρ̂Ps (τ)
−1 ŵj ρ̂Ps (τ) = ŵs

j (τ) . (3.305)

Utilizando a definição (3.297) e a expressão (3.304), vemos que
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Ĉgs (x, τ) = ρ̂−1
gs (τ) Ĉ (x) ρ̂gs (τ)

= ρ̂−1
Ps (τ) e

−τμgQ̂ Ĉ (x) eτμgQ̂ρ̂Ps (τ) ; (3.306)

Ĉ
gs

(x, τ) = ρ̂−1
gs (τ) Ĉ (x) ρ̂gs (τ)

= ρ̂−1
Ps (τ) e

−τμgQ̂ Ĉ (x) eτμgQ̂ρ̂Ps (τ) . (3.307)

A fim de calcularmos essas expressões, utilizaremos a fórmula de Baker-
Hausdorff [31]:

e−τμgQ̂Ĉ (x) eτμgQ̂ = Ĉ (x)− τμg

[
Q̂, Ĉ (x)

]
+

+
(τμg)

2

2

[
Q̂,
[
Q̂, Ĉ (x)

]]
+ ...; (3.308)

e−τμgQ̂Ĉ (x) eτμgQ̂ = Ĉ (x)− τμg

[
Q̂, Ĉ (x)

]
+

+
(τμg)

2

2

[
Q̂,
[
Q̂, Ĉ (x)

]]
+ ... (3.309)

O operador carga fantasma (3.286) depende de somas de produtos de dois

operadores. Notemos, então, que, para quaisquer operadores Â, B̂ e D̂, vale[
ÂB̂, D̂

]
= Â

{
B̂, D̂

}
−
{
Â, D̂

}
B̂. (3.310)

A partir dessa identidade, do operador carga fantasma (3.286) e dos an-
ticomutadores fundamentais (3.287-3.294), calculamos:

[
Q̂, Ĉ (x)

]
= −Ĉ (x) ; (3.311)[

Q̂, Ĉ (x)
]

= Ĉ (x) . (3.312)

Uma vez que o comutador do operador carga fantasma com um campo
fantasma é proporcional ao próprio campo fantasma, as séries (3.308) e
(3.309) se simplificam:
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e−τμgQ̂Ĉ (x) eτμgQ̂ =

[
1 + τμg +

(τμg)
2

2
+

(τμg)
3

3!
+ ...

]
Ĉ (x)

=
∞∑
n=0

(τμg)
n

n!
Ĉ (x) = eτμgĈ (x) ; (3.313)

e−τμgQ̂Ĉ (x) eτμgQ̂ =

[
1 + (−τμg) +

(−τμg)2
2

+
(−τμg)3

3!
+ ...

]
Ĉ (x)

=
∞∑
n=0

(−τμg)n
n!

Ĉ (x) = e−τμgĈ (x) . (3.314)

Substituindo esses resultados nas expressões (3.306) e (3.307), encon-
tramos:

Ĉgs (x, τ) = eτμg ρ̂−1
Ps (τ) Ĉ (x) ρ̂Ps (τ) ; (3.315)

Ĉ
gs

(x, τ) = e−τμg ρ̂−1
Ps (τ) Ĉ (x) ρ̂Ps (τ) . (3.316)

Os campos fantasmas comutam com todos os termos do operador ρ̂Ps (τ),
salvo os que dependem do Hamiltoniano dos campos fantasmas e do Hamil-
toniano das fontes fantasmagóricas. Isso é equivalente ao que ocorre com os
campos que comutam com os fantasmas, sendo que aqueles campos comu-
tam com todos os campos, à exceção dos respectivos Hamiltonianos totais.
Naqueles casos, vale o resultado (3.305). Por essas razões, vemos que ex-
pressões semelhantes devem valer para os campos fantasmas, a saber,

ρ̂−1
Ps (τ) Ĉ (x) ρ̂Ps (τ) = Ĉs (x, τ) ; (3.317)

ρ̂−1
Ps (τ) Ĉ (x) ρ̂Ps (τ) = Ĉ

s

(x, τ) . (3.318)

Por fim, chegamos aos resultados [49]:

Ĉgs (x, τ) = eτμgĈs (x, τ) ; (3.319)

Ĉ
gs

(x, τ) = e−τμgĈ
s

(x, τ) . (3.320)

Vemos, dessa forma, que, diferentemente do que ocorre com campos que
comutam com os fantasmas, transformações de similaridade dos campos fan-
tasmas com a matriz densidade do sistema geram uma dependência expĺıcita
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desses campos com o potencial qúımico fantasma. Esse potencial qúımico,
por sua vez, precisou ser levado em conta no problema pois os campos fantas-
mas, que foram introduzidos na densidade de Lagrangeana do sistema para se
levar em conta o v́ınculo (3.225) que surgiu da presença da simetria de gauge
residual do problema, implicaram na presença de uma nova simetria na des-
crição do sistema f́ısico, dada pela invariância da densidade de Lagrangeana
(3.230) frente às transformações globais (3.237, 3.238).

3.6 Médias no ensemble de ordenamento de

campos

As equações (3.186), (3.187), (3.217), (3.235) e (3.236) formam o conjunto
das equações de campo da eletrodinâmica de Podolsky em equiĺıbrio ter-
modinâmico. Nessas equações está contida toda a informação do sistema
f́ısico. Caso seja posśıvel resolver esse sistema de equações operatoriais não
lineares, podeŕıamos calcular qualquer quantidade f́ısica que desejássemos.
No entanto, conforme vimos no exemplo do campo escalar na caṕıtulo ante-
rior, é conveniente encontrarmos o funcional gerador termodinâmico da teo-
ria, pois a partir dele também se pode calcular todas as quantidades f́ısicas
de interesse numa situação de equiĺıbrio. A fim de encontrarmos tal gera-
dor, multiplicamos cada uma das equações de campo pela matriz densidade
(3.295) e utilizamos as expressões (2.86) e (2.97). Procedendo dessa forma,
obtemos as seguintes equações equivalentes às equações de campo (3.186),
(3.187), (3.217), (3.235) e (3.236):
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[(
γEμ
)
ab
∂(μe)
μ −mfδab

] δρ̂gs (β)

δηb (x, τ)
= −iqe

(
γEμ
)
ab

δ2ρ̂gs (β)

δJμ (x, τ) δηb (x, τ)
+

+ηa (x, τ) ρ̂gs (β) ; (3.321)[(
γEμ
)
ba
∂(−μe)
μ +mfδba

] δρ̂gs (β)

δηb (x, τ)
= iqe

(
γEμ
)
ba

δ2ρ̂gs (β)

δJμ (x, τ) δηb (x, τ)
+

+ηa (x, τ) ρ̂gs (β) ; (3.322)

P
(m2

P ,α)
μν

δρ̂gs (β)

δJν (x, τ)
= iqe

(
γEμ
)
ab

δ2ρ̂gs (β)

δηa (x, τ) δηb (x, τ)
+

+Jμ (x, τ) ρ̂gs (β) ; (3.323)

iκ

(
Δ

m2
P

+ 1

)
Δ

δρ̂gs (β)

δd (x, τ)
= d (x, τ) ρ̂gs (β) ; (3.324)

−iκ
(

Δ

m2
P

+ 1

)
Δ

δρ̂gs (β)

δd (x, τ)
= d (x, τ) ρ̂gs (β) . (3.325)

De acordo com a equação (2.98), ao se tomar o traço da matriz densi-
dade sobre os estados f́ısicos do sistema, obtemos o funcional gerador ter-
modinâmico. Dessa forma, tomando-se o traço de cada uma dessas ex-
pressões, obtemos o conjunto de equações funcionais satisfeitas pelo funcional
gerador termodinâmico ZGF = ZGF

[
J, η, η, d, d

]
da teoria de Podolsky:

[(
γEμ
)
ab
∂(μe)
μ −mfδab

] δZGF
δηb (x, τ)

= −iqe
(
γEμ
)
ab

δ2ZGF
δJμ (x, τ) δηb (x, τ)

+

+ηa (x, τ)ZGF ; (3.326)[(
γEμ
)
ba
∂(−μe)
μ +mfδba

] δZGF
δηb (x, τ)

= iqe
(
γEμ
)
ba

δ2ZGF
δJμ (x, τ) δηb (x, τ)

+

+ηa (x, τ)ZGF ; (3.327)

P
(m2

P ,α)
μν

δZGF
δJν (x, τ)

= iqe
(
γEμ
)
ab

δ2ZGF
δηa (x, τ) δηb (x, τ)

+

+Jμ (x, τ)ZGF ; (3.328)

iκ

(
Δ

m2
P

+ 1

)
Δ

δZGF

δd (x, τ)
= d (x, τ)ZGF ; (3.329)

−iκ
(

Δ

m2
P

+ 1

)
Δ

δZGF
δd (x, τ)

= d (x, τ)ZGF . (3.330)

A vantagem desse sistema de equações sobre as equações de campo é que
a solução do conjunto de equações (3.326-3.330) é um funcional, ao invés de
um certo número de operadores campos.
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Conforme afirmamos anteriormente, as equações diferenciais funcionais
que envolvem derivadas funcionais com relação às fontes fantasmagóricas
não envolvem derivadas funcionais com relação às outras fontes.

Na subseção seguinte veremos que essas equações funcionais podem ser
convertidas em equações diferenciais envolvendo certos operadores que de-
sempenharão um papel crucial nesta tese.

3.6.1 Médias térmicas de certos operadores

Embora já sejamos capazes de resolver o sistema de equações funcionais
(3.326-3.330), nesta subseção buscaremos um conjunto de equações que rela-
cionam diversas médias térmicas de certos operadores especiais. Também
mostraremos algumas propriedades de tais operadores. Notemos que derivan-
do funcionalmente cada equação do sistema de equações funcionais (3.326-
3.330) com relação a uma fonte apropriada, encontramos um sistema de
equações diferenciais relacionando diversas médias térmicas:

δacδ (x− y) δ (τx − τy) =
[(
γEμ
)
ab
∂(μe)
μ −mfδab

]
x

〈
T
[
ψ̂c (y, τy) ψ̂b (x, τx)

]〉
+

− iqe
(
γEν
)
ab

〈
T
[
ψ̂c (y, τy) Âν (x, τx) ψ̂b (x, τx)

]〉
;

(3.331)

δacδ (x− y) δ (τx − τy) =
[(
γEμ
)
ba
∂(−μe)
μ +mfδba

]
x

〈
T
[
ψ̂c (y, τy) ψ̂b (x, τx)

]〉
+

+ iqe
(
γEν
)
ba

〈
T
[
ψ̂c (y, τy) Âν (x, τx) ψ̂b (x, τx)

]〉
;

(3.332)

δμξδ (x− y) δ (τx − τy) =P
(m2

P ,α)
μν (x)

〈
T
[
Âξ (y, τy) Âν (x, τx)

]〉
+

+ iqe
(
γEμ
)
ab

〈
T
[
Âξ (y, τy) ψ̂a (x, τx) ψ̂b (x, τx)

]〉
;

(3.333)

δ (x− y) δ (τx − τy) = iκ

(
Δ

m2
P

+ 1

)
Δx

〈
T
[
Ĉ (y, τy) Ĉ (x, τx)

]〉
;

(3.334)

δ (x− y) δ (τx − τy) = − iκ

(
Δ

m2
P

+ 1

)
Δx

〈
T
[
Ĉ (y, τy) Ĉ (x, τx)

]〉
.

(3.335)

As médias no ensemble que aparecem nos segundos membros dessas equa-

ções diferenciais acopladas são todas da forma
〈
T
[
φ̂r (y, τy) Φ̂

(a)
r′r′′ (x, τx)

]〉
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com a ∈ N tal que a = 1 ou a = 2, sendo φ̂r qualquer um dos campos e Φ̂
(a)
rr′

um campo quando a = 1 e um produto de dois campos quando a = 2. Sendo
assim, escrevemos

Φ̂
(a)
rr′ (x, τx) = δa1φ̂r (x, τx) + δa2φ̂r (x, τx) φ̂r′ (x, τx) . (3.336)

Utilizando a definição de ordenamento (2.60), temos:

〈
T
[
φ̂r (y, τy) Φ̂

(a)
r′r′′ (x, τx)

]〉
= θ (τy − τx)

〈
φ̂r (y, τy) Φ̂

(a)
r′r′′ (x, τx)

〉
+

± θ (τx − τy)
〈
Φ̂

(a)
r′r′′ (x, τx) φ̂r (y, τy)

〉
.

(3.337)

Concentrar-nos-emos na primeira média térmica do segundo membro dessa
expressão. Devido à definição de média no ensemble (2.35), temos para esse
termo:

〈
φ̂r (y, τy) Φ̂

(a)
r′r′′ (x, τx)

〉
=

Tr
[
ρ̂g (β) φ̂r (y, τy) Φ̂

(a)
r′r′′ (x, τx)

]
Tr [ρ̂g (β)]

, (3.338)

sendo ρ̂g (β) a matriz densidade (3.295) com as fontes externas nulas, ou seja,

ρ̂g (β) ≡ exp
[
−β
(
Ĥ− μeN̂ − μgQ̂

)]
, (3.339)

com Ĥ = ĤP + ĤC + Ĥg sendo o Hamiltoniano sem fontes.
Para os nossos propósitos é suficiente calcularmos o numerador do se-

gundo membro da equação acima. Esse numerador é o traço de um opera-
dor. Uma propriedade do traço é sua invariância por mudança de base. Isto
significa que podemos calculá-lo em qualquer base. Por conveniência, esco-
lhemos a base simultânea da energia e das demais quantidades conservadas,
a saber, o momento linear, a carga de Noether fermiônica e a carga fantasma.
Tal base, denotada por

|E,P, N,Ng〉 = |Υ〉 (3.340)

satisfaz as seguintes equações seculares:

104



Ĥ |Υ〉 =E |Υ〉 ; (3.341)

P̂k |Υ〉 =Pk |Υ〉 ; (3.342)

N̂ |Υ〉 =Ne |Υ〉 ; (3.343)

Q̂ |Υ〉 =Ng |Υ〉 , (3.344)

Utilizando as equações de autovalores (3.341), (3.343) e (3.344) e a matriz
densidade (3.339), vemos que o numerador do segundo membro de (3.338)
pode ser escrito como

Tr
[
ρ̂g (β) φ̂r (y, τy) Φ̂

(a)
r′r′′ (x, τx)

]
=

∫
dΥ
〈
Υ
∣∣∣exp [−β (Ĥ− μeN̂ − μgQ̂

)]
×

×φ̂r (y, τy) Φ̂(a)
r′r′′ (x, τx)

∣∣∣Υ〉
=

∫
dΥexp [−β (E − μeNe − μgNg)]×

×
〈
Υ
∣∣∣φ̂r (y, τy) Φ̂(a)

r′r′′ (x, τx)
∣∣∣Υ〉 .

(3.345)

Em (3.345), denotamos a medida de integração múltipla por

dΥ = cΥdE dP1 dP2 dP3 dNe dNg, (3.346)

sendo cΥ uma constante não nula apropriada.

A fim de calcularmos o valor esperado
〈
Υ
∣∣∣φ̂r (y, τy) Φ̂(a)

r′r′′ (x, τx)
∣∣∣Υ〉, re-

cordamos a expressão (3.297) que, para fontes nulas, se torna

F̂ (τ) = ρ̂−1
g (τ) F̂ ρ̂g (τ) . (3.347)

Dessa expressão, imediatamente notamos que F̂ = F̂ (0).
Então, inserindo a resolução da unidade entre os operadores de campo,

temos8

8A resolução da unidade é dada por 1 =
∫
dΥ |Υ 〉〈Υ|. No que segue, os autovalores

E′, P ′
k, N

′
e e N ′

g são associados ao estado |Υ′〉.
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〈
Υ
∣∣∣φ̂r (y, τy) Φ̂(a)

r′r′′ (x, τx)
∣∣∣Υ〉 =

∫
dΥ′
〈
Υ
∣∣∣φ̂r (y, τy)∣∣∣Υ′

〉〈
Υ′
∣∣∣Φ̂(a)

r′r′′ (x, τx)
∣∣∣Υ〉

=

∫
Υ′
〈
Υ
∣∣∣ρ̂−1
g (τy) φ̂r (y, 0) ρ̂g (τy)

∣∣∣Υ′
〉
×

×
〈
Υ′
∣∣∣ρ̂−1
g (τx) Φ̂

(a)
r′r′′ (x, 0) ρ̂g (τx)

∣∣∣Υ〉
=

∫
dΥ′ e−(τx−τy)[E−E′−μe(Ne−N ′

e)−μg(Ng−N ′
g)]×

×
〈
Υ
∣∣∣φ̂r (y, 0)∣∣∣Υ′

〉〈
Υ′
∣∣∣Φ̂(a)

r′r′′ (x, 0)
∣∣∣Υ〉 .
(3.348)

O operador momento P̂ é o gerador do grupo das translações espaciais.
Por essa razão, podemos escrever [44]:

φ̂r (y, 0) = e−iy·P̂φ̂r (0, 0) eiy·P̂. (3.349)

Devido a essa propriedade e à definição do operador Φ̂
(a)
r′r′′ , temos também

Φ̂
(a)
rr′ (x, 0) = δa1φ̂r (x, 0) + δa2φ̂r (x, 0) φ̂r′ (x, 0)

= δa1e
−ix·P̂φ̂r (0, 0) eix·P̂+δa2e−ix·P̂φ̂r (0, 0) eix·P̂e−ix·P̂φ̂r′ (0, 0) eix·P̂

= e−ix·P̂
[
δa1φ̂r (0, 0) + δa2φ̂r (0, 0) φ̂r′ (0, 0)

]
eix·P̂

= e−ix·P̂Φ̂(a)
rr′ (0, 0) e

ix·P̂. (3.350)

Substituindo esses resultados em (3.348), encontramos:

〈
Υ
∣∣∣φ̂r (y, τy) Φ̂(a)

r′r′′ (x, τx)
∣∣∣Υ〉 =

∫
dΥ′ e−(τx−τy)[E−E′−μe(Ne−N ′

e)−μg(Ng−N ′
g)]×

× ei(x−y)·(P−P′)×
×
〈
Υ
∣∣∣φ̂r (0, 0)∣∣∣Υ′

〉〈
Υ′
∣∣∣Φ̂(a)

r′r′′ (0, 0)
∣∣∣Υ〉 .
(3.351)

Um resultado semelhante pode ser obtido a partir da segunda média
térmica de (3.337). Para ela, temos
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〈
Φ̂

(a)
r′r′′ (x, τx) φ̂r (y, τy)

〉
=

Tr
[
ρ̂g (β) Φ̂

(a)
r′r′′ (x, τx) φ̂r (y, τy)

]
Tr [ρ̂g (β)]

, (3.352)

e

Tr
[
ρ̂g (β) Φ̂

(a)
r′r′′ (x, τx) φ̂r (y, τy)

]
=

∫
dΥexp [−β (E − μeNe − μgNg)]×

×
〈
Υ
∣∣∣Φ̂(a)

r′r′′ (x, τx) φ̂r (y, τy)
∣∣∣Υ〉 ,

(3.353)

com

〈
Υ
∣∣∣Φ̂(a)

r′r′′ (x, τx) φ̂r (y, τy)
∣∣∣Υ〉 =

∫
dΥ′ e(τx−τy)[E−E′−μe(Ne−N ′

e)−μg(Ng−N ′
g)]×

× e−i(x−y)·(P−P′)×
×
〈
Υ
∣∣∣Φ̂(a)

r′r′′ (0, 0)
∣∣∣Υ′
〉〈

Υ′
∣∣∣φ̂r (0, 0)∣∣∣Υ〉 .

(3.354)

Dessa forma, (3.337) se torna

〈
T
[
φ̂r (y, τy) Φ̂

(a)
r′r′′ (x, τx)

]〉
=

∫
dΥdΥ′

Tr [ρ̂g (β)]
exp [−β (E − μeNe − μgNg)]×

×
[
θ (τy − τx) e

i(x−y)·(P−P′) ×

× e−(τx−τy)[E−E′−μe(Ne−N ′
e)−μg(Ng−N ′

g)]×
×
〈
Υ
∣∣∣φ̂r (0, 0)∣∣∣Υ′

〉〈
Υ′
∣∣∣Φ̂(a)

r′r′′ (0, 0)
∣∣∣Υ〉+

± θ (τx − τy) e
−i(x−y)·(P−P′)×

× e(τx−τy)[E−E′−μe(Ne−N ′
e)−μg(Ng−N ′

g)]×
×
〈
Υ
∣∣∣Φ̂(a)

r′r′′ (0, 0)
∣∣∣Υ′
〉〈

Υ′
∣∣∣φ̂r (0, 0)∣∣∣Υ〉] .

(3.355)

Embora o segundo membro dessa equação tenha uma forma tão compli-
cada que à primeira vista podemos pensar que nada, ou pouca coisa, se possa
concluir a partir dele, notamos que ele não depende dos valores absolutos de
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x, y, τx e τy, mas apenas das diferenças x − y e τx − τy [13]. Portanto, é
conveniente definirmos as seguintes quantidades

〈
T
[
Âν (y, τy) Âμ (x, τx)

]〉
≡Dμν (x− y, τx − τy) ; (3.356)〈

T
[
ψ̂b (y, τy) ψ̂a (x, τx)

]〉
≡Sab (x− y, τx − τy) ; (3.357)〈

T
[
Ĉ (y, τy) Ĉ (x, τx)

]〉
≡G (x− y, τx − τy) . (3.358)

Da definição de ordenamento, temos também

〈
T
[
Âμ (x, τx) Âν (y, τy)

]〉
= Dνμ (y − x, τy − τx) ; (3.359)〈

T
[
ψ̂b (y, τy) ψ̂a (x, τx)

]〉
= −Sba (y − x, τy − τx) ; (3.360)〈

T
[
Ĉ (y, τy) Ĉ (x, τx)

]〉
= −G (y − x, τy − τx) . (3.361)

As médias no ensemble (3.356-3.358) são quantidades muito especiais e
desempenharão papéis cruciais nas seções seguintes. Na próxima subseção,
mostraremos que essas médias térmicas especiais satisfazem certas proprie-
dades de periodicidade.

3.6.2 As periodicidades das médias térmicas especiais

Na subseção anterior mostramos que as médias no ensemble de um or-
denamento de dois campos possui a propriedade de depender apenas das
diferenças dos parâmetros coordenada espacial e temperatura. Nesta seção
demonstraremos outras propriedades muito importantes dessas quantidades:
suas periodicidades. Para tal fim tomemos a definição (3.356) com τx = τ ,
0 < τ < β e τy = 0. Utilizando a definição de ordenamento (2.60) a pro-
priedade de ciclicidade do traço e a definição (3.347) temos [50, 51]:9

9A ciclicidade do traço consiste em Tr
(
ÂB̂
)
= Tr

(
B̂Â
)
, válida para quaisquer ope-

radores Â e B̂.
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Dμν (x− y, τ) =
〈
T
[
Âν (y, 0) Âμ (x, τ)

]〉
=
〈
Âν (y, 0) Âμ (x, τ)

〉
=

Tr
[
ρ̂g (β) Âμ (x, τ) Âν (y, 0)

]
Z (β)

=
Tr
[
Âν (y, 0) ρ̂g (β) Âμ (x, τ)

]
Z (β)

=
Tr
[
ρ̂g (β) ρ̂

−1
g (β) Âν (y, 0) ρ̂g (β) Âμ (x, τ)

]
Z (β)

=
Tr
[
ρ̂g (β) Âν (y, β) Âμ (x, τ)

]
Z (β, V, μe)

=
〈
Âν (y, β) Âμ (x, τ)

〉
=
〈
T
[
Âν (y, β) Âμ (x, τ)

]〉
= Dμν (x− y, τ − β) . (3.362)

Essa expressão mostra que a função Dμν (x, τ) é periódica na variável τ com
peŕıodo β. De uma forma muito semelhante, calculamos

Sab (x− y, τ) =
〈
T
[
ψ̂b (y, 0) ψ̂a (x, τ)

]〉
= −

〈
ψ̂a (x, τ) ψ̂b (y, 0)

〉
= −

〈
ψ̂b (y, β) ψ̂a (x, τ)

〉
= −Sab (x− y, τ − β) . (3.363)

Esse resultado mostra que, ao contrário de Dμν (x, τ), Sab (x, τ) é uma função
antiperiódica na variável τ com “peŕıodo” β.

Contudo, ao se repetir esses passos para (3.358), encontramos:

G (x− y, τ) = −
Tr
[
ρ̂g (β) ρ̂

−1
g (β) Ĉ (y, 0) ρ̂g (β) Ĉ (x, τ)

]
Z (β)

. (3.364)

Utilizando a equação (3.320) com fontes nulas, temos:

ρ̂−1
g (β) Ĉ (y, 0) ρ̂g (β) = Ĉ

g

(y, β) = e−βμgĈ (y, β) . (3.365)

Logo,

G (x− y, τ) = − e−βμgG (x− y, τ − β) . (3.366)
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Se ao invés de (3.358), tivéssemos partido de (3.361), obteŕıamos:

G (y − x,−τ) = − eβμgG (y − x, β − τ) . (3.367)

Agora, substituimos (3.358) e (3.361) em (3.334) e (3.335), encontramos:

iκ

(
Δ

m2
P

+ 1

)
ΔxG (x− y, τx − τy) = δ (x− y) δ (τx − τy) ; (3.368)

iκ

(
Δ

m2
P

+ 1

)
ΔxG (y − x, τy − τx) = δ (x− y) δ (τx − τy) . (3.369)

Essas duas expressões mostram que ambas as funções G (x− y, τx − τy)

e G (y − x, τy − τx) são funções de Green do operador iκ
(

Δ
m2

P
+ 1
)
Δ. Isso

fornece uma interpretação para essas funções. Além disso, isso mostra que
essas duas funções são iguais. Isso implica:

G (x− y, τ − β) = e2βμgG (x− y, τ − β) . (3.370)

Além da solução trivial μg = 0, vemos que o potencial qúımico fantasma deve
satisfazer:

μg =
inπ

β
, (3.371)

com n ∈ N. Uma vez que um potencial qúımico fantasma não nulo não é um
número real, a condição acima nos mostra que esse potencial qúımico não é
uma quantidade termodinâmica observável.

Substituindo (3.371) em (3.366), encontramos a seguinte equação

G (x− y, τ) = − e−inπG (x− y, τ − β) . (3.372)

Donde vemos que a periodicidade da função de Green G é condicionada à
escolha do valor do potencial qúımico: se n for par (ou o negativo de um
número par), a função G é antiperiódica; se, por outro lado, n for ı́mpar (ou
o negativo de um ı́mpar), essa função é periódica. Essa escolha, contudo, é
determinada pela própria estrutura do formalismo. A fim de determiná-la,
necessitamos estudar a função de partição da teoria.
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3.7 Representações de integração funcional

Na seção anterior encontramos o conjunto de equações funcionais que o
funcional gerador termodinâmico satisfaz. Nesta seção, mostraremos que
é posśıvel encontrar uma representação de integração funcional para o fun-
cional gerador que satisfaz o referido conjunto de equações funcionais. Além
disso, encontraremos, também, uma representação de integração funcional
para a função de partição da teoria.

3.7.1 O funcional gerador termodinâmico

A fim de encontrarmos uma representação de integração para o funcional ge-
rador termodinâmico, supomos a seguinte forma geral para tal representação:

ZGF
[
J, η, η, d, d

]
=

∫
DADψDψDCDC Z̃GF

[
A,ψ, ψ, C, C

]
×

× exp

[∫
β

d4x
(
JμAμ + ηaψa − ψaηa − Cd+ dC

)]
.

(3.373)

Nesta expressão DA ≡
3∏

σ=0

DAσ e DψDψ ≡
4∏

a=1

DψaDψa. A é um campo

não Grassmanniano, enquanto que os demais campos sobre os quais a inte-
gração é realizada são Grassmannianos. Chamaremos também, por questão
de conveniência, o campo A de campo de gauge, ou campo eletromagnético
ou de Podolsky, ψ e ψ de campos fermiônicos e C e C de fantasmas. A
meta de se encontrar o funcional gerador termodinâmico é alcançada uma
vez conhecida a função Z̃GF

[
A,ψ, ψ, C, C

]
e, em seguida, resolvida a integral

funcional múltipla (3.373).
Conforme veremos a seguir, a representação funcional geral (3.373) está

mal definida.
Das equações (2.103), (3.356), (3.357), (3.358) e (3.373), devemos ter10

10Escreveremos temporariamente Z̃GF

[
A,ψ, ψ,C,C

]
= Z̃GF .
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Dμν (x− y, τx − τy) =

∫
DADψDψDCDC Aμ (x, τx)Aν (y, τy) Z̃GF×

× exp

[∫
β

d4z
(
JξAξ + ηcψc − ψcηc − Cd+ dC

)]
(3.374)

Sab (x− y, τx − τy) =

∫
DADψDψDCDC ψa (x, τx)ψb (y, τy) Z̃GF×

× exp

[∫
β

d4z
(
JξAξ + ηcψc − ψcηc − Cd+ dC

)]
(3.375)

G (x− y, τx − τy) =

∫
DADψDψDCDC C (x, τx)C (y, τy) Z̃GF

× exp

[∫
β

d4z
(
JξAξ + ηcψc − ψcηc − Cd+ dC

)]
(3.376)

O resultado (3.362) mostra que a integração funcional sobre o campo
A deve ser realizada sobre todas as configurações de campo que satisfazem
condições periódicas de contorno, isto é, Aμ (x, 0) = Aμ (x, β). A equação
(3.363), por sua vez, nos mostra que as integrações funcionais sobre os
campo ψ e ψ devem ser feitas sobre todas as configurações antiperiódicas
ψa (x, 0) = −ψa (x, β) e ψa (x, 0) = −ψa (x, β). A expressão (3.372), por
outro lado, nos diz que as integrações funcionais sobre os campos C e C
satisfazem ou condições periódicas ou condições antiperiódicas, dependendo
do valor do potencial qúımico fantasma (3.371). Denotando integração so-
bre configurações periódicas pelo ı́ndice P , antiperiódicas por A− P e a que
depende do valor potencial qúımico fantasma por (μg), a representação de
integração funcional geral correta para o funcional gerador termodinâmico é,
ao invés de (3.373),

ZGF
[
J, η, η, d, d

]
=

∫
P

DA
∫
A−P

DψDψ
∫
(μg)

DCDC Z̃GF
[
A,ψ, ψ, C, C

]
×

× exp

[∫
β

d4x
(
JμAμ + ηaψa − ψaηa − Cd+ dC

)]
.

(3.377)

A fim de obtermos uma expressão completa para o funcional gerador
termodinâmico, precisamos encontrar a função Z̃GF

[
A,ψ, ψ, C, C

]
. A forma
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mais direta de se fazer isso é substituir a expressão (3.377) no conjunto de
equações funcional (3.326-3.330). Como a única função a ser determinada é

Z̃GF , esperamos que tal substituição nos forneça um conjunto de equações
para essa função. Substituindo (3.377) no sistema de equações funcionais
(3.326-3.330), encontramos

ηa (x, τ)ZGF =

∫
P

DA
∫
A−P

DψDψ
∫
(μg)

DCDC
{(

γEμ
)
ab
D(μe,qe)
μ [A] +

−mfδab}ψb (x, τ) Z̃GF×

× exp

[∫
β

d4y
(
JξAξ + ηcψc − ψcηc − Cd+ dC

)]
; (3.378)

ηa (x, τ)ZGF =

∫
P

DA
∫
A−P

DψDψ
∫
(μg)

DCDC
{(

γEμ
)
ba
D(−μe,−qe)
μ [A] +

+mfδba}ψb (x, τ) Z̃GF×

× exp

[∫
β

d4y
(
JξAξ + ηcψc − ψcηc − Cd+ dC

)]
; (3.379)

Jμ (x, τ)ZGF =

∫
P

DA
∫
A−P

DψDψ
∫
(μg)

DCDC
[
P
(m2

P ,α)
μν Aν (x, τ)+

−iqe
(
γEμ
)
ab
ψa (x, τ)ψb (x, τ)

]
Z̃GF×

× exp

[∫
β

d4y
(
JξAξ + ηcψc − ψcηc − Cd+ dC

)]
; (3.380)

d (x, τ)ZGF =

∫
P

DA
∫
A−P

DψDψ
∫
(μg)

DCDC iκ

(
Δ

m2
P

+ 1

)
ΔC (x, τ)×

× Z̃GF exp

[∫
β

d4y
(
JξAξ + ηcψc − ψcηc − Cd+ dC

)]
;

(3.381)

d (x, τ)ZGF =

∫
P

DA
∫
A−P
DψDψ

∫
(μg)

DCDC(−i)κ
(

Δ

m2
P

+ 1

)
ΔC (x, τ)×

× Z̃GF exp

[∫
β

d4y
(
JξAξ + ηcψc − ψcηc − Cd+ dC

)]
.

(3.382)

A definição do operador D
(μe,qe)
μ [A] é semelhante a (3.188):

D(μe,qe)
μ [A] ≡ ∂(μe)

μ + iqeAμ, (3.383)
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com ∂
(μe)
μ também dado por (3.189).

Sejam as quantidades:

S(A) ≡
1

2

∫
β

d4xAμ (x, τ)P
(m2

P ,α)
μν Aν (x, τ) ; (3.384)

S(ψ,ψ) ≡ −
∫
β

d4xψa (x, τ)
[(
γEμ
)
ab
∂(μe)
μ −mfδab

]
ψb (x, τ) ; (3.385)

S(C,C) ≡ − iκ

∫
β

d4x ∂μC (x, τ)

(
δμν +

←−
∂ μ

−→
∂ ν

m2
P

)
∂νC (x, τ) ; (3.386)

S(int) ≡ − iqe

∫
β

d4x
(
γEμ
)
ab
Aμ (x, τ)ψa (x, τ)ψb (x, τ) . (3.387)

As derivadas funcionais de algumas combinações dessas quantidades com
relação aos campos nos fornecem:

δ

δψa (x, τ)

(
S(ψ,ψ) + S(int)

)
= −

{(
γEμ
)
ab
D(μe,qe)
μ [A]−mfδab

}
ψb (x, τ) ;

(3.388)

δ

δψa (x, τ)

(
S(ψ,ψ) + S(int)

)
= −

{(
γEμ
)
ba
D(−μe,−qe)
μ [A] +mfδba

}
ψb (x, τ) ;

(3.389)

δ

δAμ (x, τ)

(
S(A) + S(int)

)
=P

(m2
P ,α)

μν Aν (x, τ)−iqe
(
γEμ
)
ab
ψa (x, τ)ψb (x, τ) ;

(3.390)

δS(C,C)

δC (x, τ)
= − iκ

(
Δ

m2
P

+ 1

)
ΔC (x, τ) ; (3.391)

δS(C,C)

δC (x, τ)
= iκ

(
Δ

m2
P

+ 1

)
ΔC (x, τ) . (3.392)

Notamos que, a menos de alguns sinais, os segundos membros dessas
equações são precisamente os termos que são integrados funcionalmente em
(3.378-3.382) juntamente com a Z̃GF e a exponencial que depende das fontes
clássicas.

Chamaremos a soma de todas as quantidades (3.384-3.387) de ação ter-

modinâmica e a denotaremos por ST = S
(β,μe,V )
T

[
A,ψ, ψ, C, C

]
:
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ST ≡S(A) + S(ψ,ψ) + S(C,C) + S(int)

=

∫
β

d4x

{
1

2
AμP

(m2
P ,α)

μν Aν − iκ∂μC

(
δμν +

←−
∂ μ

−→
∂ ν

m2
P

)
∂νC+

−ψa
[(
γEμ
)
ab
D(μe,qe)
μ [A]−mfδab

]
ψb

}
. (3.393)

Visto que S(C,C) não depende nem do campo de gauge nem dos cam-

pos fermiônicos e S(A), S(ψ,ψ) e S(int) não dependem dos campos fantasmas,

temos:

δS
(β,μe,V )
T

[
A,ψ, ψ, C, C

]
δψa (x, τ)

=
δ

δψa (x, τ)

(
S(ψ,ψ) + S(int)

)
; (3.394)

δS
(β,μe,V )
T

[
A,ψ, ψ, C, C

]
δψa (x, τ)

=
δ

δψa (x, τ)

(
S(ψ,ψ) + S(int)

)
; (3.395)

δS
(β,μe,V )
T

[
A,ψ, ψ, C, C

]
δAμ (x, τ)

=
δ

δAμ (x, τ)

(
S(A) + S(int)

)
; (3.396)

δS
(β,μe,V )
T

[
A,ψ, ψ, C, C

]
δC (x, τ)

=
δS(C,C)

δC (x, τ)
; (3.397)

δS
(β,μe,V )
T

[
A,ψ, ψ, C, C

]
δC (x, τ)

=
δS(C,C)

δC (x, τ)
. (3.398)

Com isso, todos os termos integrados em (3.378-3.382) dependerão de
derivadas funcionais da ação termodinâmica:
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ηa (x, τ)ZGF = −
∫
P

DA
∫
A−P

DψDψ
∫
(μg)

DCDC δST

δψa (x, τ)
Z̃GF×

× exp

[∫
β

d4y
(
JξAξ + ηcψc − ψcηc − Cd+ dC

)]
; (3.399)

ηa (x, τ)ZGF = −
∫
P

DA
∫
A−P

DψDψ
∫
(μg)

DCDC δST
δψa (x, τ)

Z̃GF×

× exp

[∫
β

d4y
(
JξAξ + ηcψc − ψcηc − Cd+ dC

)]
; (3.400)

Jμ (x, τ)ZGF =

∫
P

DA
∫
A−P

DψDψ
∫
(μg)

DCDC δST
δAμ (x, τ)

Z̃GF×

× exp

[∫
β

d4y
(
JξAξ + ηcψc − ψcηc − Cd+ dC

)]
; (3.401)

d (x, τ)ZGF = −
∫
P

DA
∫
A−P

DψDψ
∫
(μg)

DCDC δST

δC (x, τ)
Z̃GF×

× exp

[∫
β

d4y
(
JξAξ + ηcψc − ψcηc − Cd+ dC

)]
; (3.402)

d (x, τ)ZGF = −
∫
P

DA
∫
A−P
DψDψ

∫
(μg)

DCDC δST
δC (x, τ)

Z̃GF×

× exp

[∫
β

d4y
(
JξAξ + ηcψc − ψcηc − Cd+ dC

)]
. (3.403)

Resta-nos, ainda, reescrever os primeiros membros dessas expressões em
formas mais convenientes para os nossos propósitos.

Consideremos o primeiro membro de (3.401) e utilizemos a representação
(3.377) para o funcional gerador termodinâmico:
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Jμ (x, τ)ZGF =

∫
P

DA
∫
A−P

DψDψ
∫
(μg)

DCDC Z̃GF
[
A,ψ, ψ, C, C

]
×

× Jμ (x, τ) exp

[∫
β

d4x
(
JξAξ + ηcψc − ψcηc − Cd+ dC

)]
=

∫
P

DA
∫
A−P

DψDψ
∫
(μg)

DCDC Z̃GF
[
A,ψ, ψ, C, C

]
×

× δ

δAμ (x, τ)
exp

[∫
β

d4x
(
JξAξ + ηcψc − ψcηc − Cd+ dC

)]
=

∫
P

DA
∫
A−P

DψDψ
∫
(μg)

DCDC ×

× δ

δAμ (x, τ)

{
Z̃GF

[
A,ψ, ψ, C, C

]
×

× exp

[∫
β

d4x
(
JξAξ + ηcψc − ψcηc − Cd+ dC

)]}
+

−
∫
P

DA
∫
A−P

DψDψ
∫
(μg)

DCDC δZ̃GF
[
A,ψ, ψ, C, C

]
δAμ (x, τ)

×

× exp

[∫
β

d4x
(
JξAξ + ηcψc − ψcηc − Cd+ dC

)]
= −

∫
P

DA
∫
A−P

DψDψ
∫
(μg)

DCDC δZ̃GF
[
A,ψ, ψ, C, C

]
δAμ (x, τ)

×

× exp

[∫
β

d4x
(
JξAξ + ηcψc − ψcηc − Cd+ dC

)]
. (3.404)

Neste resultados utilizamos a derivação funcional do produto de dois fun-
cionais e o fato de que a integração funcional de uma derivada funcional total
é nula [57].

Para o caso dos campos Grassmannianos o resultado é um pouco diferente
do caso do campo de Podolsky. Explicitaremos os cálculos para o primeiro
membro de (3.399). Os demais casos são similares. Então:
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ηa (x, τ)ZGF =

∫
P

DA
∫
A−P

DψDψ
∫
(μg)

DCDC Z̃GF
[
A,ψ, ψ, C, C

]
×

× ηa (x, τ) exp

[∫
β

d4x
(
JξAξ + ηcψc − ψcηc − Cd+ dC

)]
= −

∫
P

DA
∫
A−P

DψDψ
∫
(μg)

DCDC Z̃GF
[
A,ψ, ψ, C, C

]
×

× δ

δψa (x, τ)
exp

[∫
β

d4x
(
JξAξ + ηcψc − ψcηc − Cd+ dC

)]
= −

∫
P

DA
∫
A−P

DψDψ
∫
(μg)

DCDC ×

× δ

δψa (x, τ)

{
Z̃GF

[
A,ψ, ψ, C, C

]
×

× exp

[∫
β

d4x
(
JξAξ + ηcψc − ψcηc − Cd+ dC

)]}
+

+

∫
P

DA
∫
A−P

DψDψ
∫
(μg)

DCDC δZ̃GF
[
A,ψ, ψ, C, C

]
δψa (x, τ)

×

× exp

[∫
β

d4x
(
JξAξ + ηcψc − ψcηc − Cd+ dC

)]
=

∫
P

DA
∫
A−P

DψDψ
∫
(μg)

DCDC δZ̃GF
[
A,ψ, ψ, C, C

]
δψa (x, τ)

×

× exp

[∫
β

d4x
(
JξAξ + ηcψc − ψcηc − Cd+ dC

)]
. (3.405)

Substituindo (3.404) e (3.405) nas expressões (3.399-3.403) encontramos

as seguintes equações que Z̃GF deve satisfazer:

118



δZ̃GF
[
A,ψ, ψ, C, C

]
δψa (x, τ)

= − δS
(β,μe,V )
T

[
A,ψ, ψ, C, C

]
δψa (x, τ)

Z̃GF
[
A,ψ, ψ, C, C

]
;

(3.406)

δZ̃GF
[
A,ψ, ψ, C, C

]
δψa (x, τ)

= − δS
(β,μe,V )
T

[
A,ψ, ψ, C, C

]
δψa (x, τ)

Z̃GF
[
A,ψ, ψ, C, C

]
;

(3.407)

δZ̃GF
[
A,ψ, ψ, C, C

]
δAμ (x, τ)

= − δS
(β,μe,V )
T

[
A,ψ, ψ, C, C

]
δAμ (x, τ)

Z̃GF
[
A,ψ, ψ, C, C

]
;

(3.408)

δZ̃GF
[
A,ψ, ψ, C, C

]
δC (x, τ)

= − δS
(β,μe,V )
T

[
A,ψ, ψ, C, C

]
δC (x, τ)

Z̃GF
[
A,ψ, ψ, C, C

]
;

(3.409)

δZ̃GF
[
A,ψ, ψ, C, C

]
δC (x, τ)

= − δS
(β,μe,V )
T

[
A,ψ, ψ, C, C

]
δC (x, τ)

Z̃GF
[
A,ψ, ψ, C, C

]
.

(3.410)

A solução desse conjunto de equações funcionais é

Z̃GF
[
A,ψ, ψ, C, C

]
= Z̃0e

−S(β,μe,V )
T [A,ψ,ψ,C,C], (3.411)

sendo Z̃0 uma constante.
Dessa forma, a representação de integração funcional do funcional gerador

termodinâmico da teoria de Podolsky (3.377) é

ZGF
[
J, η, η, d, d

]
= Z̃0

∫
P

DA
∫
A−P

DψDψ
∫
(μg)

DCDC e−ST [A,ψ,ψ,C,C] ×

× exp

[∫
β

d4x
(
JμAμ + ηaψa − ψaηa − Cd+ dC

)]
.

(3.412)

Ainda não se é, contudo, posśıvel calcular essa expressão, pois a periodi-
cidade dos campos C e C ainda é um mistério. A fim de solucionarmos esse
enigma, consideraremos, na próxima subseção, a função de partição da teoria
de Podolsky.
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3.7.2 A função de partição

Na subseção anterior encontramos uma representação de integração funcional
para o funcional gerador termodinâmico da eletrodinâmica de Podolsky. Essa
representação não está plenamente definida a menos que tenhamos alguma
forma não amb́ıgua de se escolher o valor do potencial qúımico fantasma.
Uma resposta para essa questão pode ser obtida analisando-se a função de
partição da teoria.

De acordo com a equação (2.99), a função de partição é um caso particular
do funcional gerador termodinâmico no qual todas as fontes externas são
tomadas como sendo a função identicamente nula. Procedendo dessa forma,
a função de partição é facilmente obtida de (3.412) como sendo:

Z (β) = Z̃0

∫
P

DA
∫
A−P

DψDψ
∫
(μg)

DCDC e−ST [A,ψ,ψ,C,C].

(3.413)

Essa é a função de partição completa da teoria. A partir dela, todas
as quantidades termodinâmicas podem ser calculadas. Contudo, não se é
posśıvel calculá-la exatamente. O primeiro empecilho encontrado ao se ten-
tar resolver as integrações funcionais presentes nessa representação de Z (β)
consiste em que não se pode resolver as integrações sobre os campos fantas-
mas, pois suas periodicidades ainda são desconhecidas. Segundo as definições
(3.393) e (3.383), o único termo na ação termodinâmica e, consequentemente,
na função de partição que envolve algum tipo de interação é o termo propor-
cional ao parâmetro qe. Em particular, notamos que as periodicidades dos
campos fantasmas não são afetadas pela interação. Em outras palavras, as
periodicidades de C e C são as mesmas tanto no caso com interação como
no caso livre. Dessa forma, sem perda de generalidade para nossos presentes
propósitos e por questão de simplicidade, consideremos no restante desta
subseção o caso livre, ou seja, o caso no qual qe = 0. Assim sendo, a função
de partição do problema livre é dada por:

ZF (β) = Z̃0

∫
P

DA
∫
A−P

DψDψ
∫
(μg)

DCDC e−S
F
T [A,ψ,ψ,C,C],

(3.414)

com
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SFT
[
A,ψ, ψ, C, C

]
≡
∫
β

d4x

{
1

2
AμP

(m2
P ,α)

μν Aν − iκ∂μC

(
δμν +

←−
∂ μ

−→
∂ ν

m2
P

)
∂νC+

−ψa
[(
γEμ
)
ab
∂(μe)
μ −mfδab

]
ψb

}
. (3.415)

A função de partição livre (3.414) pode ser resolvida exatamente. De fato,
utilizando as representações de integração funcional para os determinantes,
obtemos [62]:

ZF (β) = Z̃0DetP

[
P (m2

P ,α)
]− 1

2
det
(μe)

[
κ

(
Δ

m2
P

+ 1

)
Δ

]
×

× det
A−P

[(
γEμ
)
ab
∂(μe)
μ −mfδab

]
. (3.416)

Nesta expressão, Det denota o determinante sobre o espaço-tempo Eu-
clideano bem como sobre o espaço Hilbert, enquanto que det representa o
determinante sobre o espaço de Hilbert apenas. Os ı́ndices sob os determi-
nantes desta expressão indicam as periodicidades das funções sobre as quais
eles devem ser calculados. Assim, detP indicaria um determinante calcula-
dos sobre funções que satisfazem condições periódicas de contorno e detA−P ,
por outro lado, representa um determinante que deve ser calculado com o
aux́ılio de funções satisfazendo condições antiperiódicas de contorno. det(μe),
no entanto, indica um determinante que deve ser calculado sobre funções que
satisfazem condições de contorno periódicas ou antiperiódicas, dependendo
da escolha do valor do potencial qúımico fantasmas (3.371).

Que detE denote o determinante apenas nos ı́ndices do espaço-tempo
Euclideano. Com essa notação, consideremos o operador M dado por:

Mμν = Aδμν + B∂μ∂ν , (3.417)

sendo A e B operadores diferenciais escalares de SO(4). O determinante de
M no espaço-tempo Euclideano é
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det
E

(M) =

∣∣∣∣∣∣∣∣
A+ B∂2

0 B∂0∂1 B∂0∂2 B∂0∂3
B∂0∂1 A+ B∂2

1 B∂1∂2 B∂1∂3
B∂0∂2 B∂1∂2 A+ B∂2

2 B∂2∂3
B∂0∂3 B∂1∂3 B∂2∂3 A+ B∂2

3

∣∣∣∣∣∣∣∣
=
(
A+ B∂2

0

) ∣∣∣∣∣∣
A+ B∂2

1 B∂1∂2 B∂1∂3
B∂1∂2 A+ B∂2

2 B∂2∂3
B∂1∂3 B∂2∂3 A+ B∂2

3

∣∣∣∣∣∣+
−B∂0∂1

∣∣∣∣∣∣
B∂0∂1 B∂1∂2 B∂1∂3
B∂0∂2 A+ B∂2

2 B∂2∂3
B∂0∂3 B∂2∂3 A+ B∂2

3

∣∣∣∣∣∣+
+B∂0∂2

∣∣∣∣∣∣
B∂0∂1 A+ B∂2

1 B∂1∂3
B∂0∂2 B∂1∂2 B∂2∂3
B∂0∂3 B∂1∂3 A+ B∂2

3

∣∣∣∣∣∣+
−B∂0∂3

∣∣∣∣∣∣
B∂0∂1 A+ B∂2

1 B∂1∂2
B∂0∂2 B∂1∂2 A+ B∂2

2

B∂0∂3 B∂1∂3 B∂2∂3

∣∣∣∣∣∣ . (3.418)

Os determinantes das matrizes de nove elementos operatoriais que apare-
cem nessa expressão podem ser calculados como se os elementos fossem
números. Procedendo dessa maneira, obtemos:

∣∣∣∣∣∣
A+ B∂2

1 B∂1∂2 B∂1∂3
B∂1∂2 A+ B∂2

2 B∂2∂3
B∂1∂3 B∂2∂3 A+ B∂2

3

∣∣∣∣∣∣ = A3 + A2B
(
∂2
1 + ∂2

2 + ∂2
3

)
;

(3.419)∣∣∣∣∣∣
B∂0∂1 B∂1∂2 B∂1∂3
B∂0∂2 A+ B∂2

2 B∂2∂3
B∂0∂3 B∂2∂3 A+ B∂2

3

∣∣∣∣∣∣ = A2B∂0∂1; (3.420)

∣∣∣∣∣∣
B∂0∂1 A+ B∂2

1 B∂1∂3
B∂0∂2 B∂1∂2 B∂2∂3
B∂0∂3 B∂1∂3 A+ B∂2

3

∣∣∣∣∣∣ = −A2B∂0∂2; (3.421)

∣∣∣∣∣∣
B∂0∂1 A+ B∂2

1 B∂1∂2
B∂0∂2 B∂1∂2 A+ B∂2

2

B∂0∂3 B∂1∂3 B∂2∂3

∣∣∣∣∣∣ = A2B∂0∂3. (3.422)

Substituindo esses quatro resultados em (3.418), encontramos:
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det
E

(M) =
(
A+ B∂2

0

) [
A3 + A2B

(
∂2
1 + ∂2

2 + ∂2
3

)]
− B∂0∂1

(
A2B∂0∂1

)
+

+B∂0∂2
(
−A2B∂0∂2

)
− B∂0∂3

(
A2B∂0∂3

)
= A4 + A3B

(
∂2
0 + ∂2

1 + ∂2
2 + ∂2

3

)
= A4 + A3B∂α∂α

= A4 − A3B (−∂α∂α) = A4 − A3BΔ. (3.423)

Para o caso especial no qual o operador M é o operador diferencial de
Podolsky (3.218), temos

A = −
(

Δ

m2
P

+ 1

)
Δ; (3.424)

B = −
(

Δ

m2
P

+ 1

)[
1− 1

α

(
Δ

m2
P

+ 1

)]
(3.425)

O resultado acima, então, nos mostra que o seguinte resultado é obtido
quando se calcula o determinante do operador diferencial de Podolsky apenas
no espaço-tempo Euclideano:

det
E

[
P (m2

P ,α)
]
=

[
−
(

Δ

m2
P

+ 1

)
Δ

]4
−
[
−
(

Δ

m2
P

+ 1

)
Δ

]3
×

×
{
−
(

Δ

m2
P

+ 1

)[
1− 1

α

(
Δ

m2
P

+ 1

)]}
Δ

=

[
−
(

Δ

m2
P

+ 1

)
Δ

]4{
1−
[
1− 1

α

(
Δ

m2
P

+ 1

)]}
=

[(
Δ

m2
P

+ 1

)
Δ

]4 [
1

α

(
Δ

m2
P

+ 1

)]
. (3.426)

Sendo DetP

[
P (m2

P ,α)
]
= detP

{
detE

[
P (m2

P ,α)
]}

, escrevemos a função de

partição livre (3.416) como

ZF (β) = Z̃0 det
P

[
1

α

(
Δ

m2
P

+ 1

)]− 1
2

det
P

[(
Δ

m2
P

+ 1

)
Δ

]−2

×

× det
(μe)

[
κ

(
Δ

m2
P

+ 1

)
Δ

]
det
A−P

[(
γEμ
)
ab
∂(μe)
μ −mfδab

]
. (3.427)

O último determinante do segundo membro de (3.427) corresponde à
função de partição de férmions livres, denotada nesta tese por ZD (β):
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ZD (β) = det
A−P

[(
γEμ
)
ab
∂(μe)
μ −mfδab

]
. (3.428)

Uma vez que nos restringimos ao caso livre, temos um campo eletro-
magnético e um campo de Dirac livres em equiĺıbrio termodinâmico. Nessas
condições, a função de partição do sistema é um produto de uma função
de partição do campo de gauge por uma do campo de Dirac. Denotando a
primeira por ZP (β), (3.427) tem a forma

ZF (β) = ZP (β)ZD (β) , (3.429)

donde identificamos a função de partição do campo de Podolsky livre como:

ZP (β) = Z̃0 det
P

[
1

α

(
Δ

m2
P

+ 1

)]− 1
2

det
P

[(
Δ

m2
P

+ 1

)
Δ

]−2

×

× det
(μe)

[
κ

(
Δ

m2
P

+ 1

)
Δ

]
. (3.430)

A fim de escolhermos um valor para o potencial qúımico fantasma, nota-
mos que, à exceção do último termo, todos os demais determinantes dessa ex-
presão são calculados utilizando-se funções periódicas. Ademais, o operador

diferencial
(

Δ
m2

P
+ 1
)
Δ aparece não somente no termo cuja periodicidade

é ainda indefinida, mas também, total ou parcialmente, nos outros deter-
minantes que são calculados sobre funções periódicas. Com esses ind́ıcios,
impomos que o determinante det(μg) seja calculado também sobre funções
que satisfazem condições de contorno periódicas. Como essa periodicidade é
a mesma da função de Green fantasma (3.372), escolhemos o número n no po-
tencial qúımico fantasma (3.371) seja um número ı́mpar, a fim de que (3.372)
seja uma condição de periodicidade. Procedendo dessa forma, substitúımos
a notação det(μg) por detP e encontramos:

ZP (β) = Z̃0 det
P

(
m2
P

) 3
2 det

P

[(
κ2α
)− 1

3
(
Δ+m2

P

)]− 3
2

det
P

(Δ)−1 (3.431)

Recordemos que α é o parâmetro de gauge covariante. A fim de especi-
ficarmos um gauge covariante de SO(4) basta especificarmos um valor real
não nulo para α. Uma vez que a função de partição determina todas as
quantidades termodinâmicas e estas não dependem da escolha de gauge, a
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função de partição deve ser invariante por troca de gauges. Dessa forma, ela
não deve depender explicitamente do parâmetro α. Lembremos, também,
que o parâmetro κ foi introduzido na equação (3.226) como um dos fatores
do multiplicador de Lagrange associado ao v́ınculo advindo da simetria de
gauge residual. Seu valor permaneceu até o momento indeterminado. A
fim de tornarmos a função de partição da teoria independente do parâmetro
covariante de gauge, escolhemos o valor para o parâmetro κ como sendo

κ ≡ 1√
α
. (3.432)

Além disso, por conveniência, escolhemos a constante Z̃0 como tendo o valor11

Z̃0 = det
P

(mP )
−3 . (3.433)

Com essas escolhas para os dois parâmetros até então indeterminados, a
função de partição do campo de Podolsky livre se escreve na seguinte forma:

ZP (β) = det
P

(
Δ+m2

P

)− 3
2 det

P
(Δ)−1 (3.434)

Vemos, assim, que a função de partição do eletromagnetismo de Podolsky

é escrita como um produto de dois termos com a forma detP
(
Δ+M2

j

)−nj
2 ,

com j ∈ N, tal que 1 ≤ j ≤ 2. Esse termo constitui-se numa função de
partição de um campo bosônico livre com massa Mj e nj graus de liberdade.
Logo, ZP (β) é um produto de uma função de partição de um campo bosônico
com massa mP e com três graus de liberdade por uma função de partição
de um campo bosônico sem massa com dois graus de liberdade. Isso mostra
que o campo de Podolsky livre em equiĺıbrio termodinâmico comporta-se
como dois campos não interagentes: um campo de Proca com massa igual
à massa do setor massivo do campo de Podolsky e um campo vetorial sem
massa, isto é, um campo de Maxwell. O fato de esses dois campos não
interagirem um com o outro é uma consequência direta do fato da teoria
de Podolsky ser linear. Esse resultado foi obtido pela primeira vez por nós
em [27] por um método inteiramente diferente: o do tempo imaginário.12 A
forma apresentada aqui foi também derivada por nós em [53].

11A rigor, e essa “constante” pode ser função da constante de interação: Z̃0 = Z̃0 (qe)

e (3.433) seria válida para Z̃0 (0). Para nossos propósitos, essa distinção não possui

relevância.
12Nesse trabalho usamos a essência da técnica apresentada em [52].
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Devido à escolha feita para o potencial qúımico fantasma, conclúımos que
a função de Green fantasmagórica (3.372) é periódica com peŕıodo β,

G (x− y, τ) =G (x− y, τ − β) , (3.435)

e que o funcional gerador termodinâmico e a função de partição da teoria de
Podolsky se escrevem respectivamente como

ZGF
[
J, η, η, d, d

]
= det

P
(mP )

−3

∫
P

DADCDC
∫
A−P

DψDψ e−ST [A,ψ,ψ,C,C]×

× exp

[∫
β

d4x
(
JμAμ + ηaψa − ψaηa − Cd+ dC

)]
;

(3.436)

Z (β) = det
P

(mP )
−3

∫
P

DADCDC
∫
A−P

DψDψ e−ST [A,ψ,ψ,C,C].

(3.437)

Iniciamos esta seção com a proposta de uma representação de integração
funcional para o gerador funcional. Essa representação dependia de uma
função incógnita Z̃. Quase de imediato notamos que as periodicidades das
funções Dμν , Sab e G proibiam as integrações sobre os campos de serem ir-
restritas. Essas condições implicavam que a integração sobre o campo de
Podolsky deveria ser realizada sobre todas as configurações de campo que
satisfizessem condições de contorno periódicas na variável associada com a
temperatura cujos peŕıodos fossem β. Uma condição semelhante deveria
ser aplicada aos campos fermiônicos, contudo, no caso, as integrações deve-
riam ser realizadas sobre todas as condições de contorno antiperiódicas com
as mesmas caracteŕısticas. No entanto, devido à periodicidade da função
de Green fantasmagórica ser, naquela etapa, desconhecida, sab́ıamos ape-
nas que as integrações sobre os campos fantasmas deveriam ser restritas
a campos com alguma periodicidade espećıfica, porém não sab́ıamos qual.
Substituindo a representação integral no conjunto de equações diferenciais
funcionais que o gerador termodinâmico deveria satisfazer, encontramos um
sistema de equações funcionais para a função incógnita. Resolvendo tal sis-
tema, vimos que a função Z̃ é proporcional à exponencial do negativo de
uma quantidade que chamamos de ação termodinâmica. Possúıamos, as-
sim, uma representação de integração funcional para o funcional gerador
termodinâmico quase completa: restáva-nos ainda determinar a periodici-
dade dos campos fantasmas. Fazendo as fontes nulas no gerador funcional
encontramos a função de partição completa da teoria de Podolsky. Notamos,
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então, que a periodicidade dos campos fantasmas não depende do termo de
interação entre o campo de Podolsky e os campos fermiônicos. Restringimos
nossa análise ao caso sem interação, que é exatamente solúvel. Conforme
esperado, a função de partição da teoria livre se escreveu como um produto
de dois termos. Um deles é a função de partição de férmions livres. Por
conseguinte, identificamos o outro termo como sendo a função de partição do
campo de Podolsky livre. Utilizando algumas “pistas”, escolhemos a perio-
dicidade dos campos fantasmas como sendo, de fato, a periódica. Com isso,
a função de partição do campo de Podolsky livre, após escolhermos valores
apropriados para duas constantes que ainda precisavam ser determinadas, se
escreveu como o produto de duas funções de partição bosônicas não intera-
gentes: uma correspondente a um campo de Proca livre com massa igual
à massa do setor massivo do campo de Podolsky e outra correspondente a
um campo de Maxwell livre. Na seção seguinte estudaremos as equações de
Dyson-Schwinger-Fradkin da teoria de Podolsky.

3.8 As equações de Dyson-Schwinger-Fradkin

Nesta seção estudaremos um conjunto de equações conhecido como equações
de Dyson-Schwinger-Fradkin para a eletrodinâmica de Podolsky [54, 55, 56,
11]. Contudo, antes de iniciarmos a dedução de tais equações, notemos que
devido à simetria U(1) global, a ação termodinâmica (3.393) é invariante sob
as seguintes trocas simultâneas:13

ψa (x, τ)→ψ′
a (x, τ) = −ψa (x, τ) ; (3.438)

ψa (x, τ)→ψ
′
a (x, τ) = −ψa (x, τ) . (3.439)

Assim, temos:

〈
ψ̂a (x, τ)

〉
= det

P
(mP )

−3

∫
P

DADCDC
∫
A−P

DψDψ ψa (x, τ) e
−ST [A,ψ,ψ,C,C]

= − det
P

(mP )
−3

∫
P

DADCDC
∫
A−P
DψDψ ψa (x, τ) e

−ST [A,ψ,ψ,C,C]

= −
〈
ψ̂a (x, τ)

〉
, (3.440)

com um resultado semelhante válido para
〈
ψ̂a (x, τ)

〉
. Donde conclúımos

que as médias no ensemble de campos fermiônicos individuais são nulas:

13Essa transformação é uma transformação do tipo (3.3,3.4) com θ = π.
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〈
ψ̂a (x, τ)

〉
=
〈
ψ̂a (x, τ)

〉
=0. (3.441)

Uma vez que a ação termodinâmica (3.393) com interação não é invariante
pela troca Aμ → A′

μ = −Aμ, um resultado semelhante para a média do
campo de Podolsky somente é válido no caso livre. Porém, devido à forma
do operador (3.383), a seguinte relação vale:

D(μe,qe)
μ [A] = D(μe,−qe)

μ [−A] . (3.442)

Donde se pode mostrar que a média no térmica do operador campo de
Podolsky é uma função ı́mpar da constante de interação qe. De fato, deno-
tando a dependência com qe explicitamente e trocando todos os Aμ por −Aμ

nas integrais, temos:

〈
Âμ (x, τ)

〉
(qe)

= det
P

(mP )
−3

∫
P

DADCDC
∫
A−P

DψDψAμ (x, τ)×

× e−S
(qe)
T [A,ψ,ψ,C,C]

= − det
P

(mP )
−3

∫
P

DADCDC
∫
A−P

DψDψAμ (x, τ)×

× e−S
(qe)
T [−A,ψ,ψ,C,C]

= − det
P

(mP )
−3

∫
P

DADCDC
∫
A−P

DψDψAμ (x, τ)×

× e−S
(−qe)
T [A,ψ,ψ,C,C]

= −
〈
Âμ (x, τ)

〉
(−qe)

. (3.443)

Esse resultado mostra que medir a média térmica do operador campo
eletromagnético de Podolsky num certo ensemble é equivalente a medir a
média térmica do negativo desse campo num ensemble com todas as cons-
tantes qe com os sinais trocados.

Utilizando a técnica apresentada na seção 3.6.1, calculamos a média no
ensemble do campo de Podolsky:
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〈
Âμ (x, τ)

〉
=

Tr
[
ρ̂g (β) Âμ (x, τ)

]
Tr [ρ̂g (β)]

=

∫
dΥ

Tr [ρ̂g (β)]

〈
Υ
∣∣∣exp [−β (Ĥ− μeN̂ − μgQ̂

)]
×

× exp
[
τ
(
Ĥ− μeN̂ − μgQ̂

)]
e−ix·P̂Âμ (0, 0) e

ix·P̂×

× exp
[
−τ
(
Ĥ− μeN̂ − μgQ̂

)]∣∣∣Υ〉
=

∫
dΥ

Tr [ρ̂g (β)]
exp [−β (E − μeNe − μgNg)]×

× e−(τ−τ)(E−μeNe−μgNg)e−i(x−x)·P
〈
Υ
∣∣∣Âμ (0, 0)

∣∣∣Υ〉
=

∫
dΥ

Tr [ρ̂g (β)]

〈
Υ
∣∣∣exp [−β (Ĥ− μeN̂ − μgQ̂

)]
×

× Âμ (0, 0)
∣∣∣Υ〉

=
Tr
[
ρ̂g (β) Âμ (0, 0)

]
Tr [ρ̂g (β)]

=
〈
Âμ (0, 0)

〉
. (3.444)

Vemos, então, que a média térmica do campo de Podolsky não depende
dos parâmetros do espaço-tempo Euclideano. Sendo assim, denotamos:

〈
Âμ (x, τ)

〉
=
〈
Âμ

〉
. (3.445)

A fim de encontrarmos as equações de Dyson-Schwinger-Fradkin, defini-
mos uma quantidade como o logaritmo do funcional gerador termodinâmico:

W
[
J, η, η, d, d

]
≡ ln

{
ZGF

[
J, η, η, d, d

]}
. (3.446)

Definimos, também, as derivadas desse funcional:
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ϑμ (x, τx) ≡
δW
[
J, η, η, d, d

]
δJμ (x, τx)

; (3.447)

χa (x, τx) ≡
δW
[
J, η, η, d, d

]
δηa (x, τx)

; (3.448)

χa (x, τx) ≡
δW
[
J, η, η, d, d

]
δηa (x, τx)

; (3.449)

D[s]
μν (x,y; τx, τy) ≡

δϑμ (x, τx)

δJν (y, τy)
; (3.450)

S [s]
ab (x,y; τx, τy) ≡

δχa (x, τx)

δηb (y, τy)
. (3.451)

Escrevendo ZGF = eW nas equações funcionais (3.326) e(3.328) e uti-
lizando as quantidades definidas acima, encontramos:

Jμ (x, τx) =P
(m2

P ,α)
μν (x, τx)ϑν (x, τx)+

− iqe
(
γEμ
)
ab

[
S [s]
ba (x,x; τx, τx)− χb (x, τx)χa (x, τx)

]
; (3.452)

ηa (x, τx) =

{(
γEμ
)
ab
D(μe,qe)
μ

[
δ

δJ (x, τx)
+ ϑ (x, τx)

]
−mfδab

}
χb (x, τx) .

(3.453)

Derivando (3.452) e (3.453) funcionalmente com relação a Jν (y, τy) e
ηb (y, τy), respectivamente, e as utilizando uma vez mais, encontramos:

δμνδ (x− y) δ (τx − τy) =P
(m2

P ,α)
μξ (x, τx)D[s]

ξν (x,y; τx, τy)+

− iqe
(
γEμ
)
ab

δS [s]
ba (x,x; τx, τx)

δJν (y, τy)
; (3.454)

δabδ (x− y) δ (τx − τy) =

{(
γEμ
)
ac
D(μe,qe)
μ

[
δ

δJ (x, τx)
+ ϑ (x, τx)

]
+

−mfδac} S [s]
cb (x,y; τx, τy) . (3.455)

Agora, definimos os operadores tensor de polarização Π
[s]
μν e de massa Σ

[s]
ab

implicitamente através das seguintes relações:
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iqe
(
γEμ
)
ab

δS [s]
ba (x,x; τx, τx)

δJν (y, τy)
≡ −

∫
β

d4zΠ
[s]
μξ (x, z; τx, τz)D

[s]
ξν (z,y; τz, τy) ;

(3.456)

iqe
(
γEμ
)
ab

δS [s]
cb (x,y; τx, τy)

δJμ (x, τx)
≡ −

∫
β

d4zΣ[s]
ac (x, z; τx, τz)S

[s]
cb (z,y; τz, τy)

(3.457)

Com o aux́ılio desses operadores, as equações (3.454) e (3.455) mostram
que as quantidades (3.450) e (3.451) são as funções de Green completas da
teoria, isto é, aquelas que levam em consideração os efeitos de interação de
uma maneira exata:

[
D[s]
μν (x,y; τx, τy)

]−1
= δμξδ (x− y) δ (τx − τy)P

(m2
P ,α)

ξν (y, τy)+

+ Π[s]
μν (x,y; τx, τy) ; (3.458)[

S [s]
ab (x,y; τx, τy)

]−1

= δacδ (x− y) δ (τx − τy)
{(

γEμ
)
cb
D(μe,qe)
μ [ϑ (y, τy)] +

−mfδcb} − Σ
[s]
ab (x,y; τx, τy) . (3.459)

Chamaremos D[s]
μν de função de Green de Podolsky e S [s]

ab de função de

Green fermiônica. É importante ressaltar que essas duas quantidades são as
funções de Green completas da teoria inclusive, mas não somente, na presença
das fontes clássicas externas.

Ambos os operadores Π
[s]
μν e Σ

[s]
ab são definidos nas equações (3.456) e

(3.457) através de dependências impĺıcitas de derivadas funcionais da função
de Green fermiônica com respeito a uma fonte externa do campo de Podolsky.
Estudaremos, então, um termo desse tipo. Utilzando á fórmula (2.91) e a
definição (3.450):
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δS [s]
ab (x,y; τx, τy)

δJμ (z, τz)
=

∫
β

d4w
δϑν (w, τw)

δJμ (z, τz)

δS [s]
ab (x,y; τx, τy)

δϑν (w, τw)

=

∫
β

d4wD[s]
μν (z,w; τz, τw)×

× δ

δϑν (w, τw)

{{[
S [s]
ab (x,y; τx, τy)

]−1
}−1
}

= −
∫
β

d4wD[s]
μν (z,w; τz, τw)

∫
β

d4ud4vS [s]
ac (x,u; τx, τu)×

×
δ

{[
S [s]
cd (u,v; τu, τv)

]−1
}

δϑν (w, τw)
S [s]
db (v,y; τv, τy) . (3.460)

Definimos, agora, a função de vértice completa como

Γ
[s]
μ(ab) (x,y, z; τx, τy, τz) ≡ − i

qe

δ

{[
S [s]
ab (x,y; τx, τy)

]−1
}

δϑμ (z, τz)
. (3.461)

Substituindo (3.459) nessa definição, podemos escrever a função de vértice
na forma:

Γ
[s]
μ(ab) (x,y, z; τx, τy, τz) =

(
γEμ
)
ab
δ (x− y) δ (z− y) δ (τx − τy) δ (τz − τy)+

+
i

qe

δΣ
[s]
ab (x,y; τx, τy)

δϑμ (z, τz)
. (3.462)

Em termos dessa função, a derivada (3.460) se escreve como

δS [s]
ab (x,y; τx, τy)

δJμ (z, τz)
= −

∫
β

d4wd4ud4vD[s]
μν (z,w; τz, τw)S [s]

ac (x,u; τx, τu)×

×Γ[s]
ν(cd) (u,v,w; τu, τv, τw)S [s]

db (v,y; τv, τy) , (3.463)

Substituindo essa expressão nas definições (3.456) e (3.457), identificamos:
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Π[s]
μν (x,y; τx, τy) = (qe)

2 (γEμ )ab ∫
β

d4ud4v S [s]
bc (x,u; τx, τu)×

× Γ
[s]
ν(cd) (u,v,y; τu, τv, τy)S

[s]
da (v,x; τv, τx) ; (3.464)

Σ
[s]
ab (x,y; τx, τy) = − (qe)

2 (γEμ )ac ∫
β

d4ud4vD[s]
μν (x,u; τx, τu)×

× S [s]
cd (x,v; τx, τv) Γ

[s]
ν(db) (v,y,u; τv, τy, τu) . (3.465)

As equações (3.454) e (3.455), (3.458) e (3.459) e (3.464) e (3.465) são
todas versões distintas e equivalentes do que é conhecido como equações de
Dyson-Schwinger-Fradkin para a eletrodinâmica de Podolsky em equiĺıbrio
termodinâmico.

Os operadores tensor de polarização e de massa dependem implicitamente
da constante qe de uma maneira não trivial através das funções de Green e
de vértice completas. Contudo, esse operadores dependem explicitamente de
(qe)

2. Essa propriedade, aliada com a expressão (3.462) para a função de
vértice, mostra que no caso livre a função de vértice é proporcional a uma
matriz de Dirac Euclideana:

Γ
[s]
μ(ab) (x,y, z; τx, τy, τz)

∣∣∣
qe=0

=
(
γEμ
)
ab
δ (x− y) δ (z− y) δ (τx − τy) δ (τz − τy) .

(3.466)

Calculando as funções de Green completas (3.450) e (3.451) para o caso de
ausência de fontes externas e utilizando as equações (3.356), (3.357), (3.441)
e (3.445), vemos que as funções de Green sem fontes dependem apenas das
diferenças dos parâmetros espaço-temporais:

S [0]
ab (x,y; τx, τy) =Sab (x− y, τx − τy) ≡ Sab (x− y, τx − τy) ; (3.467)

D[0]
μν (x,y; τx, τy) =Dμν (x− y, τx − τy)−

〈
Âμ

〉〈
Âν

〉
≡Dμν (x− y, τx − τy) . (3.468)

Conclúımos, então, que as funções de Green completas da teoria são
funções afim das chamadas “médias térmicas especiais”, que são médias
térmicas de ordenamento de campos.
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3.8.1 As funções de Green no espaço de Fourier

Conforme vimos na seção 3.6.2, as funções de Green em equiĺıbrio termodi-
nâmico estão sujeitas a condições de periodicidade na variável τ . A rigor, as
expressões que utilizamos nesta seção apenas são válidas para a variável τ
restrita ao intervalo (0, β). A fim de que as funções de Green definidas acima
não entrem em conflito com as condições já estabelecidas, extenderemos seu
domı́nio de validade para todo τ ∈ R. A fim de realizarmos essa tarefa,
definiremos duas distribuições chamadas pentes de Dirac periódico Δ+

β (τ) e

antiperiódico Δ−
β (τ) como:14

Δ±
β (τ) ≡

∞∑
n=−∞

(±1)n δ (τ − nβ) (3.469)

e substituiremos toda “função”delta de Dirac δ(τ) numa equação de uma
função de Green apropriadamente por uma dessas novas distribuições. Com
isso, por exemplo, vemos que as funções de Green da eletrodinâmica de Po-
dolsky em equiĺıbrio termodinâmico satisfazem as seguintes equações:

δμνδ (x− y)Δ+
β (τx − τy) =

∫
β

d4z

[
δμξδ (x− z)Δ+

β (τx − τz)P
(m2

P ,α)
ξσ (z, τz)+

+Πμσ (x− z, τx − τz)]Dσν (z− y, τz − τy) ;
(3.470)

δabδ (x− y)Δ−
β (τx − τy) =

∫
β

d4z
{
δacδ (x− z)Δ−

β (τx − τz)×

×
{(

γEμ
)
cd
D(μe,qe)
μ

[〈
Â
〉]
−mfδcd

}
z
+

−Σad (x− z, τx − τz)} Sdb (z− y, τz − τy) .
(3.471)

A fim de clarificar o papel do equiĺıbrio termodinâmico, escreveremos
essas expressões no espaço de Fourier. Dadas as periodicidades das funções
de Green, as transformadas de Fourier dessas quantidades na coordenada τ
não serão dadas por integrais de Fourier, mas por séries:

14A razão para a nomenclatura é a seguinte: a primeira dessas distribuições definida

foi a periódica, mas não recebia nenhum adjetivo. Ela constitui-se de uma série de deltas

de Dirac igualmente espaçadas. Cada uma dessas deltas pode ser entendida como limites

apropriados de sequência de funções Gaussianas. O gráfico da série de um elemento ar-

bitrário dessa sequência com ı́ndice suficientemente grande lembra o desenho de um pente.

Os adjetivos vêm das seguintes propriedades: Δ±
β (τ − β) = ±Δ±

β (τ).
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Dμν (x, τx) =
+∞∑

n=−∞

∫
d3k

β (2π)3
D̃μν

(
k, ωBn

)
ei(ω

B
n τx+k·x); (3.472)

Sab (x, τx) =
+∞∑

n=−∞

∫
d3k

β (2π)3
S̃ab
(
k, ωFn

)
ei(ω

F
n τx+k·x); (3.473)

Δ+
β (τ) =

1

β

+∞∑
n=−∞

eiω
B
n τx ; (3.474)

Δ−
β (τ) =

1

β

+∞∑
n=−∞

eiω
F
n τx , (3.475)

sendo que definimos as frequências de Matsubara bosônicas e fermiônicas,
respectivamente, como:

ωBn ≡
2nπ

β
; (3.476)

ωFn ≡
(2n+ 1) π

β
, (3.477)

com n ∈ N.
Utilizando representações de Fourier semelhantes para os operadores de

massa e tensor de polarização, podemos reescrever (3.470) e (3.471) no espaço
de Fourier:

[
P̃
(m2

P ,α)
μξ

(
kBn
)
+ Π̃μξ

(
k, ωBn

)]
D̃ξν
(
k, ωBn

)
= δμν ;

(3.478)[
i
(
γEμ
)
ac

(
kFn
μ − iμeδμ0 + qe

〈
Âμ

〉)
−mfδac − Σ̃ac

(
k, ωFn

)]
S̃cb
(
k, ωFn

)
= δab.

(3.479)

Nestas expressões, kBnμ ≡
(
ωBn ,k

)
, kFnμ ≡

(
ωFn ,k

)
e P̃

(m2
P ,α)

μν é a transfor-
mada de Fourier do operador diferencial (3.218):

P̃
(m2

P ,α)
μν

(
kBn
)
≡ −

[(
kBn
)2

m2
P

+ 1

]{(
kBn
)2

δμν+

−
[
1− 1

α

((
kBn
)2

m2
P

+ 1

)]
kBnμ kBnν

}
, (3.480)
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com
(
kBn
)2 ≡ kBnμ kBnμ =

(
ωBn
)2

+ k2 ≥ 0.
O uso dos pentes de Dirac nos possibilitou escrever as equações das

funções de Green no espaço de Fourier de uma forma local. Ademais, es-
sas equações são similares às correspondentes da teoria usual, sem efeitos
térmicos, no espaço de Minkowski. As principais diferenças entre essas versão
são evidentes na equação (3.479), que depende explicitamente do potencial
qúımico μe e da média no ensemble do operador campo eletromagnético de
Podolsky.

Uma vez que a função de Green fantasmagórica é periódica, sua equação
no espaço de Fourier é

i√
α

[(
kBn
)2

m2
P

+ 1

] (
kBn
)2

G̃
(
ωBn ,k

)
= 1. (3.481)

Vemos que apesar dos campos fantasmas serem Grassmannianos, a função
de Green a eles associada depende de frequências de Matsubara bosônicas,
caracteŕıstica partilhada pelas funções de Green associadas a campos não
Grassmannianos.

3.9 As identidades de Ward-Fradkin-Takaha-

shi

Iniciamos este caṕıtulo construindo uma teoria clássica invariante de gauge
como motivação para se estudar a teoria de Podolsky. No entanto, ao se
estudar a quantização do campo eletromagnético, uma quebra expĺıcita da
simetria U(1) fez-se necessária. Uma dúvida permanece: apesar da quebra
expĺıcita da simetria de gauge no processo de quantização, a teoria quântica
obtida é ou não uma teoria de gauge? A fim de elucidarmos essa questão,
consideremos a seguinte transformação U(1) nas funções integradas na re-
presentação (3.436) para o funcional gerador termodinâmico :
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Aμ (x, τ) → A′
μ (x, τ) = Aμ (x, τ)− ∂μζ (x, τ) ;

(3.482)

ψa (x, τ) → ψ′
a (x, τ) = eiqeζ(x,τ)ψa (x, τ) ;

(3.483)

ψa (x, τ) → ψ
′
a (x, τ) = ψa (x, τ) e

−iqeζ(x,τ);

(3.484)

C (x, τ) → C ′ (x, τ) = C (x, τ) ; (3.485)

C (x, τ) → C
′
(x, τ) = C (x, τ) , (3.486)

sendo ζ (x, τ) uma função escalar de SO(4) real e periódica na variável τ com
peŕıodo β.

A medida de integração funcional do funcional gerador é invariante sob
essa transformação U(1) [57]. Portanto, o funcional gerador termodinâmico
se escreve como:

ZGF = det
P

(mP )
−3

∫
P

DADCDC
∫
A−P

DψDψe−ST×

× exp

{
−
∫
β

d4y

{
ζ

[
1

α

(
Δ

m2
P

+ 1

)2

Δ∂νAν + ∂νJν

]
+

−1

2
∂μζP

(m2
P ,α)

μν ∂νζ − ηa
(
eiqeζ − 1

)
ψa − ψa

(
e−iqeζ − 1

)
ηa

}}
×

×exp
[∫

β

d4x
(
JμAμ+ ηaψa− ψaηa− Cd+ dC

)]
. (3.487)

Visto que o funcional gerador termodinâmico era originalmente indepen-
dente da função ζ (x, τ), a seguinte relação deve valer:

δZGF
δζ (x, τx)

∣∣∣∣
ζ=0

= 0. (3.488)

Dessas duas últimas expressões, encontramos a seguinte equação:

[
1

α

(
Δ

m2
P

+ 1

)2

Δ∂μ
δ

δJμ
+ ∂μJμ + iqe

(
ηa

δ

δηa
− ηa

δ

δηa

)]
ZGF = 0. (3.489)

Escrevendo o funcional gerador termodinâmico como ZGF = eW , podemos
reescrever essa expressão como:
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∂μJμ (x, τx) = − 1

α

(
Δ

m2
P

+ 1

)2

Δ∂μϑμ (x, τx)+

− iqe [ηa (x, τx)χa (x, τx)− ηa (x, τx)χa (x, τx)] . (3.490)

Dessa expressão decorrem todas as identidades deWard-Fradkin-Takahashi
[58, 14, 15, 59].

3.9.1 A transversalidade do tensor de polarização de

Podolsky

A fim de encontrarmos uma das identidades de Ward-Fradkin-Takahashi,
calculemos a derivada funcional de (3.490) com relação ao campo ϑν (y, τy):

∂(x)
μ

δJμ (x, τx)

δϑν (y, τy)
= − 1

α

(
Δ

m2
P

+ 1

)2

Δ∂(x)
μ

δϑμ (x, τx)

δϑν (y, τy)
+

− iqe

[
δηa (x, τx)

δϑν (y, τy)
χa (x, τx) + ηa (x, τx)

δχa (x, τx)

δϑν (y, τy)
+

− δηa (x, τx)

δϑν (y, τy)
χa (x, τx)− ηa (x, τx)

δχa (x, τx)

δϑν (y, τy)

]
. (3.491)

De acordo com os comentários da seção anterior sobre as distribuições
pentes de Dirac,

δϑμ (x, τx)

δϑν (y, τy)
= δμνδ (x− y)Δ+

β (τx − τy) . (3.492)

Dessa mesma expressão, com ı́ndices e parâmetros trocados, temos:

δξνδ (z− y)Δ+
β (τz − τy) =

δϑξ (z, τz)

δϑν (y, τy)
=

∫
β

d4x
δϑξ (z, τz)

δJμ (x, τx)

δJμ (x, τx)

δϑν (y, τy)

=

∫
β

d4xD[s]
ξμ (z,x; τz, τx)

δJμ (x, τx)

δϑν (y, τy)
. (3.493)

Donde identificamos:

δJμ (x, τx)

δϑν (y, τy)
=
[
D[s]
μν (x,y; τx, τy)

]−1
. (3.494)

Dessa forma, a equação (3.491) é equivalente a
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∂(x)
μ

[
D[s]
μν (x,y; τx, τy)

]−1
= − 1

α

(
Δ

m2
P

+ 1

)2

Δ∂(x)
μ δμνδ (x− y)Δ+

β (τx − τy)+

− iqe

[
δηa (x, τx)

δϑν (y, τy)
χa (x, τx) + ηa (x, τx)

δχa (x, τx)

δϑν (y, τy)
+

− δηa (x, τx)

δϑν (y, τy)
χa (x, τx)− ηa (x, τx)

δχa (x, τx)

δϑν (y, τy)

]
.

(3.495)

De acordo com a definição (3.446), as derivadas funcionais de W definidas
pelas equações (3.448) e (3.449) são:

χa (x, τx) =
1

ZGF
[
J, η, η, d, d

] δZGF [J, η, η, d, d]
δηa (x, τx)

; (3.496)

χa (x, τx) =
1

ZGF
[
J, η, η, d, d

] δZGF [J, η, η, d, d]
δηa (x, τx)

. (3.497)

Fazendo-se as fontes externas nulas e utilizando (2.102), encontramos:

χa (x, τx)|s=0 =
〈
ψ̂a (x, τx)

〉
; (3.498)

χa (x, τx)|s=0 =
〈
ψ̂a (x, τx)

〉
. (3.499)

Então, de acordo com (3.441):

χa (x, τx)|s=0 = χa (x, τx)|s=0 = 0. (3.500)

Portanto, ao se fazer as fontes clássicas nulas na equação (3.495), obtemos a
seguinte relação:

∂(x)
μ [Dμν (x− y, τx − τy)]

−1 = − 1

α

(
Δ

m2
P

+ 1

)2

Δ∂(x)
ν δ (x− y)Δ+

β (τx − τy) .

(3.501)

A fim de facilitar a interpretação dessa equação, escreve-la-emos no espaço
de Fourier:
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kBnμ D̃−1
μν

(
k, ωBn

)
= − 1

α

[(
kBn
)2

m2
P

+ 1

]2 (
kBn
)2

kBnν . (3.502)

Notamos, agora, que o segundo membro dessa equação não depende da
constante de acoplamento qe. Portanto, ao se estudar o caso livre, ou seja,
o caso no qual qe = 0, basta substituir a inversa da função de Green de
Podolsky completa primeiro membro dessa relação pela inversa da função de
Green de Podolsky livre, que coincide com o operador diferencial de Podolsky
(3.480):

kBnμ P̃
(m2

P ,α)
μν

(
kBn
)
= − 1

α

[(
kBn
)2

m2
P

+ 1

]2 (
kBn
)2

kBnν . (3.503)

De acordo com a equação (3.478), a relação entre as inversas da função
de Green completa e da livre é:

D̃−1
μν

(
k, ωBn

)
= P̃

(m2
P ,α)

μν

(
kBn
)
+ Π̃μν

(
k, ωBn

)
. (3.504)

Substituindo a expressão (3.504) na equação (3.502) e levando (3.503) em
consideração, obtemos:

kBnμ Π̃μν

(
k, ωBn

)
= 0. (3.505)

Essa relação é conhecida como a transversalidade do tensor de polarização
da teoria de Podolsky em equiĺıbrio termodinâmico e é uma das identidades
de Ward-Fradkin-Takahashi [14, 15, 59].

3.9.2 A identidade de Ward

Consideremos a transformada funcional de Legendre do funcional W :

Γ
[
ϑ, χ, χ; d, d

]
≡W

[
J, η, η, d, d

]
−
∫
β

d4x [Jμϑμ + ηaχa − χaηa] . (3.506)

Derivando funcionalmente essa expressão com relação aos campos, vemos
que
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δΓ
[
ϑ, χ, χ; d, d

]
δϑμ (x, τx)

= − Jμ (x, τx) ; (3.507)

δΓ
[
ϑ, χ, χ; d, d

]
δχa (x, τx)

= ηa (x, τx) ; (3.508)

δΓ
[
ϑ, χ, χ; d, d

]
δχa (x, τx)

= ηa (x, τx) . (3.509)

Portanto, podemos escrever (3.490) em termos de derivadas da função
Γ
[
ϑ, χ, χ; d, d

]
:

∂μ
δΓ

δϑμ (x, τx)
=

1

α

(
Δ

m2
P

+ 1

)2

Δ∂μϑμ (x, τx) + iqe

[
δΓ

δχc (x, τx)
χc (x, τx)+

− δΓ

δχc (x, τx)
χc (x, τx)

]
. (3.510)

Derivando essa expressão com relação aos campos χa (y, τy) e χb (z, τz) e
tornando as fontes nulas na sequência, encontramos:

∂xμ
δ3Γ

δϑμ (x, τx) δχb (z, τz) δχa (y, τy)

∣∣∣∣
s=0

= iqe

[
δ2Γ

δχa (y, τy) δχb (x, τx)

∣∣∣∣
s=0

×

× δ (x− z)Δ−
β (τx − τz)+

+
δ2Γ

δχb (z, τz) δχa (x, τx)

∣∣∣∣
s=0

×

× δ (x− y)Δ−
β (τx − τy)

]
.

(3.511)

Semelhantemente ao caso da subseção anterior, as equações (3.451) e
(3.509) nos mostram que

δ2Γ
[
ϑ, χ, χ; d, d

]
δχb (z, τz) δχa (x, τx)

=
[
S [s]
ab (x,y; τx, τy)

]−1

. (3.512)

A derivada dessa equação com relação ao campo ϑμ (x, τx) é, de acordo com
(3.461), proporcional à função de vértice completa:
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δ3Γ

δϑμ (x, τx) δχb (z, τz) δχa (y, τy)
=

δ

{[
S [s]
ab (x,y; τx, τy)

]−1
}

δϑμ (z, τz)

= iqeΓ
[s]
μ(ab) (x,y, z; τx, τy, τz) . (3.513)

Logo, (3.511) é

∂(x)
μ Γμ(ab) (x,y, z; τx, τy, τz) = [Sab (x− z, τx − τz)]

−1 δ (x− y)Δ−
β (τx − τy)+

− [Sab (x− y, τx − τy)]
−1 δ (x− z)Δ−

β (τx − τz) .

(3.514)

No espaço de Fourier, essa relação se escreve como:

pBlμ Γ̃μ(ab)
(
k, ωFn ;p, ω

B
l

)
= S̃−1

ab

(
k+ p, ωFn + ωBl

)
− S̃−1

ab

(
k, ωFn

)
, (3.515)

que é conhecida como a identidade de Ward em equiĺıbrio termodinâmico
[58, 15]. A expressão acima deixa clara a dependência da função de vértice
no equiĺıbrio com os dois tipos de frequência de Matsubara, o bosônico e
o fermiônico e que a relação acima somente é válida quando se toma a
quadridivergência Euclideana de Γμ(ab) no espaço de Fourier com o quadrimo-
mento térmico bosônico pBl. Uma vez que as funções de Green fermiônicas
estão definidas a priori apenas para frequências de Matsubara fermiônicas,
é interessante chamar a atenção para o fato de que o termo correspon-
dente à frequência na primeira inversa da função de Green fermiônica do
segundo membro de (3.515) é uma frequência de Matsubara fermiônica, ape-
sar de ser uma soma de uma fermiônica com uma bosônica pois, ωFn + ωBl =
ωFn+l. A versão correspondente para temperatura nula seria pμΓμ(ab) (k, p) =
S−1
ab (k + p)−S−1

ab (k) [58]. No limite pμ → 0 essa identidade coincidiria com a
definição de uma derivada direcional e valeria a chamada identidade de Ward
diferencial, Γμ(ab) (k, 0) = ∂S−1

ab (k) /∂kμ. Na situação de equiĺıbrio, contudo,
não se pode escrever uma tal versão diferencial de (3.515) devido ao fato
de que as frequências de Matsubara são discretas e igualmente espaçadas,
donde não constituem pontos de acumulação, salvo realizada algum tipo de
extensão anaĺıtica. Extensões anaĺıticas são associadas com pequenos desvios
do equiĺıbrio. Portanto, na situação de equiĺıbrio termodinâmico propria-
mente dita, apenas vale a identidade de Ward na versão (3.515).

Iniciamos este caṕıtulo com o uso do prinćıpio de gauge Abeliano no
regime clássico. Vimos que o campo de Podolsky surge como uma alterna-
tiva natural para o usual campo de Maxwell. Estudando as propriedades
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clássicas do campo de Podolsky, fixamos o sinal de seu parâmetro livre e
vimos que ele pode ser decomposto num setor massivo e num sem massa.
Adentrando no domı́nio quântico, aplicamos o formalismo de quantização de
Dirac para a parte fermiônica da teoria. Sendo o campo eletromagnético
um campo de gauge, optamos por sua quantização via método de Nakanishi
e vimos, na sequência, como os campos fantasmas surgem da simetria de
gauge residual. A presença dos campos fantasmas implicou a existência de
uma nova simetria na teoria e, por conseguinte, de uma nova carga conser-
vada e de um novo potencial qúımico. Estudando médias térmicas, constata-
mos que ordenamentos de campos, que adiante seriam relacionados com as
funções de Green, possuem certas periodicidades espećıficas. Na sequência,
encontramos representações de integração funcional para o funcional gerador
termodinâmico e para a função de partição da teoria de Podolsky. Então,
escrevemos as equações de Dyson-Schwinger-Fradkin e encontramos repre-
sentações para as funções de Green no espaço de Fourier. Como último
tópico do caṕıtulo, estudamos as identidades de Ward-Fradkin-Takahashi da
teoria em equiĺıbrio, enfatizando a transversalidade do tensor de polarização
e a identidade de Ward em equiĺıbrio termodinâmico.
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Caṕıtulo 4

Implicações f́ısicas da teoria de

Podolsky

Nos caṕıtulos anteriores apresentamos a teoria geral da quantização da teo-
ria eletromagnética de Podolsky quando os efeitos térmicos são dominantes.
Neste caṕıtulo, estudaremos algumas consequências f́ısicas e implicações fenomenológicas
da eletrodinâmica de Podolsky em equiĺıbrio termodinâmico.

4.1 Correção na lei de Stefan-Boltzmann

Uma vez que o campo eletromagnético de Podolsky difere do de Maxwell por
conter impĺıcita e intrinsecamente um setor massivo, a massa desse campo
de Proca introduz uma escala de energia t́ıpica correspondente ao campo
de gauge. Em prinćıpio, esse campo de Proca deve afetar apreciavelmente
todos experimentos eletromagnéticos desde que as energias envolvidas sejam
comparáveis com a massa do campo de Podolsky. Um dos experimentos
mais marcantes da história da F́ısica diz respeito à radiação de corpo negro.
Pode-se dizer que a versão mais antiga da teoria quântica surgiu quando
Planck postulou a discretização dos posśıveis valores para as trocas de energia
entre os modos do campo eletromagnético e os osciladores constituintes do
próprio corpo negro. Com o advento há algumas décadas da interpretação
moderna das teorias de gauge, o mesmo fenômeno descrito por Planck é
entendido de uma maneira mais fundamental como sendo o próprio campo
quântico eletromagnético Maxwelliano em equiĺıbrio termodinâmico. Um dos
resultados desse arcabouço teórico é a lei de Stefan-Boltzmann, que diz que
a densidade de energia do campo eletromagnético em equiĺıbrio térmico é
proporcional à quarta potência da temperatura [60]. Nosso objetivo nesta
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seção é abordar o mesmo problema considerando o campo eletromagnético
de Podolsky em vez do de Maxwell a fim de obtermos alguma consequência
fenomenológica devido ao termo de derivadas de ordem superior do campo,
presente na densidade de Lagrangeana da teoria.

É posśıvel levar em consideração, pelo menos em algum ńıvel de apro-
ximação, os efeitos da interação do campo eletromagnético com os campos
fermiônicos para se obter uma teoria mais completa [61]. Os experimentos
relacionados à radiação de corpo negro, contudo, ainda não são capazes de
detectar tais correções quânticas. Por essa razão, limitar-nos-emos ao caso
de campos livres e como os campos fermiônicos livres não desempenham ne-
nhum papel na radiação de corpo negro, consideraremos nesta seção apenas
o campo de Podolsky livre.

4.1.1 A função de partição do campo de Podolsky livre

Conforme enfatizamos diversas vezes, a partir da função de partição se pode
calcular todas as quantidades termodinâmicas. Na verdade, todas as quan-
tidades termodinâmicas são determinadas pela derivada do logaritmo da
função de partição com respeito ao inverso da energia térmica. Por essa
razão, consideremos o logaritmo da função de partição do campo de Podols-
ky livre (3.434):

ln [ZP (β)] = − ln
[
det
P

(Δ)
]
− 3

2
ln
[
det
P

(
Δ+m2

P

)]
. (4.1)

Nossa primeira tarefa é calcular cada um desses determinantes.

O determinante de Δ

O cálculo desse determinante é conhecido. Contudo, como é relativamente
raro encontrá-lo em livros-textos, apresentaremos aqui os passos essenciais.

Utilizando uma representação funcional para o determinante, temos [62][
det
P

(Δ)
]− 1

2
=

∫
P

Dφ (x, τ) exp

[
−
∫
β

dx φ (x, τ)Δφ (x, τ)

]
, (4.2)

sendo φ (x, τ) uma função real e o ı́ndice P denotando integração funcional
restrita sobre todas as configurações de campos que satisfazem condições
periódicas de contorno com peŕıodo β:

φ (x, 0) = φ (x, β) . (4.3)

A fim de calcularmos o segundo membro dessa expressão, considere-
mos a transformada de Fourier do campo φ. Por questão de simplificação
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matemática, consideremos que o sistema encontra-se restrito a uma “caixa”com
volume V .

φ (x, τ) =

(
β

V

) 1
2 ∑
n,p

ei(ω
B
n τ+p·x)φ̃n (p) . (4.4)

A escolha incomum do fator multiplicativo garante que a quantidade
φ̃n (p) seja adimensional. Uma vez que escrevemos uma decomposição em
frequências de Matsubara bosônicas, temos uma transformada automatica-
mente periódica. Visto que estamos apenas analisando o caso do campo de
Podolsky nesta seção, por questões de simplificação de notação denotaremos
a frequência de Matsubara bosônica ωBn simplesmente por ωn.

Da condição de realidade do campo, encontramos

φ̃n (p) = φ̃−n (−p)∗ . (4.5)

Com isso,1

[
det
P

(Δ)
]− 1

2
=

∫ +∞

−∞

[∏
n′,p′

d
∣∣∣φ̃n′ (p′)

∣∣∣] exp[−β2
∑
n,p

(
ω2
n + p2

) ∣∣∣φ̃n (p)∣∣∣2
]

=

∫ +∞

−∞

[∏
n′,p′

d
∣∣∣φ̃n′ (p′)

∣∣∣]×
×
{∏
n,p

exp

[
−β2

(
ω2
n + p2

) ∣∣∣φ̃n (p)∣∣∣2]
}

=
∏
n,p

∫ +∞

−∞
d
∣∣∣φ̃n (p)∣∣∣ exp [−β2

(
ω2
n + p2

) ∣∣∣φ̃n (p)∣∣∣2]
=
∏
n,p

√
π

β2 (ω2
n + p2)

= C.
1√∏

n,p β
2 (ω2

n + p2)
. (4.6)

Nesta expressão, C é uma constante multiplicativa na função de partição
independente da temperatura e, por conseguinte, irrelevante para efeitos ter-
modinâmicos. Então:

1Nessa dedução utilizamos o resultado da integral Gaussiana:
∫ +∞
−∞ dxe−ax2

=
√

π
a ,

válido para a ∈ R tal que a > 0 ou para a = ib para qualquer b ∈ R.
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det
P

(Δ) =

{[
det
P

(Δ)
]− 1

2

}−2

=

⎡⎣ 1√∏
n,p β

2 (ω2
n + p2)

⎤⎦−2

=
∏
n,p

β2
(
ω2
n + p2

)
. (4.7)

Finalmente:

ln
[
det
P

(Δ)
]
= ln

[∏
n,p

β2
(
ω2
n + p2

)]
=
∑
n,p

ln
[
β2
(
ω2
n + p2

)]
. (4.8)

Esse é exatamente o cálculo realizado para a teoria de Maxwell.

O determinante de Δ+m2
P

Procedendo de maneira inteiramente análoga ao caso anterior, encontramos:

ln
[
det
P

(
Δ+m2

P

)]
=
∑
n,p

ln
[
β2
(
ω2
n + p2 +m2

P

)]
. (4.9)

Portanto, o logaritmo da função de partição do campo livre de Podolsky pode
ser escrito como

ln [ZP (β)] = −
∑
n,p

ln
[
β2
(
ω2
n + p2

)]
−3

2

∑
n,p

ln
[
β2
(
ω2
n + p2 +m2

P

)]
. (4.10)

Na próxima seção, calcularemos essas séries.

O logaritmo da função de partição

Concentrar-nos-emos no caso massivo. Os cálculos correspondentes a esta
etapa para o caso sem massa podem ser obtidos como um caso particular do
caso com massa diferente de zero. Assim:

ln
[
β2
(
ω2
n + p2 +m2

P

)]
= ln

{
β2

[(
2nπ

β

)2

+ p2 +m2
P

]}
= ln

[
(2nπ)2 + β2

(
p2 +m2

P

)]
= ln

[
(2nπ)2 + β2ω2 (p,mP )

]
, (4.11)
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com

ω (p,mP ) ≡
√
p2 +m2

P .

Consideremos a seguinte integral:

∫ [βω(p,mP )]2

1

dθ2

θ2 + (2nπ)2
=

∫ [βω(p,mP )]2+(2nπ)2

1+(2nπ)2

dα

α

= ln
[
β2ω2 (p,mP ) + (2nπ)2

]
− ln

[
1 + (2nπ)2

]
.

(4.12)

Esse cálculo fornece uma representação funcional para o termo que pre-
cisamos calcular:

ln
[
(2nπ)2 + β2ω2 (p,mP )

]
=

∫ [βω(p,mP )]2

1

dθ2

θ2 + (2nπ)2
+ ln

[
1 + (2nπ)2

]
.

(4.13)
Mas sendo o último termo independente de β, podemos abandoná-lo. Então:

∑
n,p

ln
[
β2
(
ω2
n + p2 +m2

P

)]
=
∑
n,p

ln
[
(2nπ)2 + β2ω2 (p,mP )

]
=
∑
n,p

∫ [βω(p,mP )]2

1

dθ2

θ2 + (2nπ)2

=
1

(2π)2

∑
p

∫ [βω(p,mP )]2

1

dθ2

[
+∞∑

n=−∞

1

n2 +
(
θ
2π

)2
]
.

(4.14)

Utilizando o resultado

+∞∑
n=−∞

1

n2 +
(
θ
2π

)2 =
2π2

θ

(
1 +

2

eθ − 1

)
, (4.15)

podemos escrever

∑
n,p

ln
[
β2
(
ω2
n + p2 +m2

P

)]
=

1

(2π)2

∑
p

∫ [βω(p,mP )]2

1

dθ2

[
+∞∑

n=−∞

1

n2 +
(
θ
2π

)2
]

=
1

2

∑
p

∫ [βω(p,mP )]2

1

dθ2

θ

(
1 +

2

eθ − 1

)
, (4.16)
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mas

dθ2

θ
=

2θdθ

θ
= 2dθ. (4.17)

Portanto:

∑
n,p

ln
[
β2
(
ω2
n + p2 +m2

P

)]
= −2

[
−
∑
p

∫ βω(p,mP )

1

dθ

(
1

2
+

1

eθ − 1

)]
.

(4.18)
Resolvendo a integral em θ, passando a série sobre p para o cont́ınuo e
abandonando termos irrelevantes para a termodinâmica, encontramos:

∑
n,p

ln
[
β2
(
ω2
n + p2 +m2

P

)]
= −2V

∫
d3p

(2π)3

{
−1

2
βω (p,mP )+

− ln
[
1− e−βω(p,mP )

]}
. (4.19)

Sendo essa expressão válida inclusiva para mP = 0, obtemos o termo associ-
ado ao setor sem massa como um caso particular desse resultado:

∑
n,p

ln
[
β2
(
ω2
n + p2

)]
= −2V

∫
d3p

(2π)3

{
−1

2
βω (p, 0)− ln

[
1− e−βω(p,0)

]}
.

(4.20)
Assim, toda a informação termodinâmica do campo de Podolsky livre

está contida na função de partição:

ln [ZP (β)] = 2V

∫
d3p

(2π)3

{
−1

2
βω (p, 0)− ln

[
1− e−βω(p,0)

]}
+

+3V

∫
d3p

(2π)3

{
−1

2
βω (p,mP )− ln

[
1− e−βω(p,mP )

]}
.

(4.21)

O termo V
∫

d3p

(2π)3

{
−1

2
βω (p,m)− ln

[
1− e−βω(p,m)

]}
corresponde ao lo-

garitmo da função de partição de um grau de liberdade de um campo bosônico
de massa m. Os fatores numéricos multiplicativos correspondem ao número
de graus de liberdade de cada campo: dois para o caso sem massa e três
para o setor massivo, conforme já hav́ıamos antecipado no caṕıtulo anterior.
Vale ressaltar que fatores multiplicativos, dependentes ou não da tempera-
tura, no logaritmo da função de partição têm consequências observáveis, ao

149



contrário de fatores numéricos multiplicativos independentes da temperatura
na própria função de partição. Estes traduzem-se como fatores aditivos in-
dependentes da temperatura no logaritmo da função de partição, que não
possuem implicações termodinâmicas.

A fim de calcularmos as integrais presentes em (4.21) notamos, primeira-
mente, que os termos do tipo βω

2
correspondem à energia do estado funda-

mental do campo de Podolsky (que, como ocorre com as teorias de campos
mais usuais, diverge) e podem ser ignorados na análise subsequente.

Uma vez que o problema possui simetria esférica no espaço de Fourier,
podemos calcular as integrais angulares presentes em (4.21) e escrever:

ln [ZP (β)] = ln [Z (β)]M + ln [Z (β)]P , (4.22)

com

ln [Z (β)]M ≡ − V

π2

∫ ∞

0

dp p2 ln
(
1− e−βp

)
; (4.23)

ln [Z (β)]P ≡ −3

2

V

π2

∫ ∞

0

dp p2 ln
[
1− e−βω(p,mP )

]
. (4.24)

Calcularemos, agora, cada um desses termos.

A integral do setor sem massa

Escrevendo p2 = 1
3
dp3

dp
e integrando por partes, podemos escrever o termo sem

massa como:

ln [Z (β)]M =
1

3

V

π2

∫ ∞

0

dpp3
d ln
(
1− e−βp

)
dp

. (4.25)

O termo dependente da derivada pode ser escrito como

d ln
(
1− e−βp

)
dp

=
d ln
(
1− e−βp

)
d (1− e−βp)

d
(
1− e−βp

)
dp

=
βe−βp

1− e−βp
. (4.26)

Visto que βp > 0 (a igualdade é um ponto de medida nula na integral
(4.23) e foi, de fato, exclúıda de seu integrando a fim de ele seja um número
real), temos e−βp < 1 e podemos utilizar a série geométrica,

1

1− e−βp
=

∞∑
n=0

e−nβp, (4.27)

donde

150



ln [Z (β)]M =
β

3

V

π2

∫ ∞

0

dpp3
∞∑
k=1

e−kβp. (4.28)

Sejam

x ≡ βp; (4.29)

p =
x

β
; (4.30)

dp =
dx

β
. (4.31)

Dessa forma,

ln [Z (β)]M =
1

3π2

V

β3

∫ ∞

0

dxx3

∞∑
k=1

e−kx. (4.32)

Definimos uma integral um pouco mais geral dessa série como

In ≡
∫ ∞

0

dxxn
∞∑
k=1

e−kx. (4.33)

A fim de resolvermos In, realizamos a seguinte mudança de variáveis:

y ≡ kx; (4.34)

x =
y

k
; (4.35)

dx =
dy

k
(4.36)

Então, In se decompõe num produto de uma integral por uma série:

In =

(∫ ∞

0

dyyne−y
)( ∞∑

k=1

1

kn+1

)
. (4.37)

Os elementos desse produto são independentes um do outro e são, ainda,
representações de duas funções especiais: a série é uma representação da
função zeta Riemman ζ(z) e a integral é uma representação da função gama
Γ(z):

∞∑
k=1

1

kn+1
= ζ (n+ 1) ; (4.38)∫ ∞

0

dyyne−y = Γ (n+ 1) . (4.39)
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Portanto:

In = Γ (n+ 1) ζ (n+ 1) . (4.40)

Substituindo esse resultado em (4.32), vemos que aquela expressão se
escreve numa forma simples:

ln [Z (β)]M =
1

3π2

V

β3
I3 =

1

3π2

V

β3
Γ (4) ζ (4) . (4.41)

Os valores particulares das duas funções especiais são:

Γ (4) = 3! = 6; (4.42)

ζ (4) =
π4

90
. (4.43)

Logo, obtemos o resultado:

ln [Z (β)]M =
π2

45

V

β3
. (4.44)

Esse é o logaritmo da função de partição da teoria de Maxwell. Caso
ignorássemos a contribuição de derivadas de segunda ordem caracteŕıstica
da teoria de Podolsky, a expressão acima descreveria a radiação de corpo
negro tal qual ela era estudada no ińıcio do século passado.

A integral do setor massivo

De uma forma semelhante ao caso sem massa, podemos escrever para a in-
tegral correspondente ao campo de Proca:

ln [Z (β)]P =
1

2

V

π2

∫ ∞

0

dpp3
d

dp
ln
[
1− e−βω(p,mP )

]
. (4.45)

Como e−βω(p,mP ) < 1, também podemos utilizar a série geométrica no
caso massivo:

d

dp
ln
[
1− e−βω(p,mP )

]
=

βpe−βω(p,mP )

ω (p,mP )

[
1

1− e−βω(p,mP )

]
=

βp

ω (p,mP )

∞∑
k=1

e−kβω(p,mP ). (4.46)
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Logo, o logaritmo da função de partição do setor massivo é

ln [Z (β)]P =
βV

2π2

∫ ∞

0

dp
p4

ω (p,mP )

∞∑
k=1

e−kβω(p,mP ). (4.47)

Reescrevendo a integral em termos de ω (p,mP ) =
√

p2 +m2
P ≡ ω, fi-

camos com

ln [Z (β)]P =
βV

2π2

∞∑
k=1

∫ ∞

mP

dω
(
ω2 −m2

P

) 3
2 e−kβω. (4.48)

Realizando a seguinte mudança de variável:

w ≡ ω

mP

, (4.49)

a expressão acima se torna

ln [Z (β)]P =
βm4

PV

2π2

∞∑
n=1

∫ ∞

1

dw
(
w2 − 1

)2− 1
2 e−nβmPw. (4.50)

Contudo, para n > −1/2, temos a seguinte representação para a função de
Bessel modificada do segundo tipo Kn (z) [33]:

Kn (z) =

√
π

Γ
(
n+ 1

2

) (z
2

)n ∫ ∞

1

e−zx
(
x2 − 1

)n− 1
2 dx, (4.51)

Logo, para n = 2 e z = nβmP , temos:

∫ ∞

1

dw
(
w2 − 1

)2− 1
2 e−nβmPw =

4Γ
(
5
2

)
√
π (nβmP )

2K2 (nβmP ) . (4.52)

Sendo

Γ

(
5

2

)
=

3
√
π

4
, (4.53)

obtemos o seguinte resultado:∫ ∞

1

dw
(
w2 − 1

)2− 1
2 e−nβmPw =

3K2 (nβmP )

(nβmP )
2 . (4.54)

Portanto, o logaritmo da função de partição de um campo de Proca livre
com massa mP é
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ln [Z (β)]P =
3

2

βm4
PV

π2

∞∑
n=1

K2 (nβmP )

(nβmP )
2 . (4.55)

Infelizmente, não há nenhuma forma fechada conhecida para a série que
aparece nessa expressão, o que significa que as propriedades termodinâmicas
de um campo vetorial massivo livre, ao contrário do que ocorre com um
campo de massa nula, somente podem ser conhecidas aproximadamente.

A densidade de Lagrangeana do campo de Podolsky livre (3.15) escrita
em termos da massa de Podolsky é

LP = −1

4
FμνFμν +

1

2m2
P

∂μFμν∂ξF ξ
ν . (4.56)

Tomando ingenuamente o limite da massa indo a infinito nessa densidade
de Lagrangeana recáımos no caso usual de Maxwell (3.14):

lim
mP→∞

LP = LM . (4.57)

Esse resultado simples indica que a teoria de Maxwell é um limite da
teoria de Podolsky: quando as energias envolvidas no problema f́ısico forem
despreźıveis frente à massa de Podolsky, a teoria de Maxwell é uma boa
aproximação.2 Sabemos que a teoria de Maxwell descreve muito bem to-
dos os fenômenos eletromagnéticos conhecidos, inclusive aqueles associados
à radiação de corpo negro. Nesse sentido, caso a teoria de Podolsky seja a teo-
ria fundamental da interação eletromagnética, conclúımos que os regimes de
energia investigados até o presente são muito menores do que a escala t́ıpica
do campo eletromagnético, a saber, mP . Para o campo de Maxwell livre
em equiĺıbrio termodinâmico existe apenas uma escala de energia: aquela
definida pela energia térmica T = β−1. Dessa discussão, conclúımos que
a massa de Podolsky deve ser muito maior do que os valores de energia
térmica até o momento estudados. Dessa forma, restringiremos nossa análise
aos casos nos quais as temperaturas sejam baixas o suficiente para a seguinte
condição se cumprir:

βmP � 1. (4.58)

Nesses regimes de energia, podemos aproximar a função de Bessel modi-
ficada do segundo tipo por

K2 (nβm) ∼
√

π

2nβm
e−nβm, (4.59)

2A sentença faz sentido caso se assuma que a teoria correta seja a de Podolsky.
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para n ∈ N tal que n �= 0.
Com essa aproximação, a série cujo resultado não se conhece se simplifica:

∞∑
n=1

K2 (nβmP )

(nβmP )
2 ∼

√
π

2

1

(βmP )
5
2

∞∑
n=1

(
e−βmP

)n
n

5
2

. (4.60)

Na aproximação de baixas temperaturas (4.58), vale e−βmP � 1. Con-

sequentemente, também vale
(
e−βmP

)n+1 �
(
e−βmP

)n
para todo n natural.

Logo, o termo dominante na série do segundo membro de (4.60) é o corres-
pondente a n = 1 e temos o seguinte resultado aproximado:

∞∑
n=1

K2 (nβmP )

(nβmP )
2 ∼

√
π

2

e−βmP

(βmP )
5
2

. (4.61)

Portanto, o logaritmo da função de partição de um campo de Proca para
temperaturas baixas o suficiente para que a energia térmica T = β−1 seja
muito inferior à massa mP do campo é

ln [Z (β)]P ∼ 3V

(
mP

2πβ

) 3
2

e−βmP . (4.62)

Agora que já calculamos, pelo menos aproximadamente, os logaritmos
das funções de partição associadas aos dois setores do campo de Podolsky,
podemos calcular as quantidades termodinâmicas que desejarmos.

4.1.2 A densidade de energia interna do campo quântico

de Podolsky

Substituindo os resultados (4.44) e (4.62) em (4.22), encontramos o logaritmo
da função de partição do campo de Podolsky livre na aproximação de baixas
temperaturas (4.58):

ln [ZP (β)] =
π2

45

V

β3
+ 3V

(
mP

2πβ

) 3
2

e−βmP . (4.63)

A densidade de energia interna do campo eletromagnético de Podolsky
livre é obtida através da expressão:

u (T ;mP ) ≡ −
1

V

∂ ln [ZP (β)]

∂β

∣∣∣∣
V

. (4.64)

Realizando esse cálculo, obtemos o seguinte resultado:
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u (T ;mP ) = σ (T,mP )T
4. (4.65)

Nesta expressão, a função σ (T,mP ) é

σ (T,mP ) ≡ σ0 + δσ
(mP

T

)
, (4.66)

sendo

σ0 ≡
π2

15
(4.67)

a constante de Stefan-Boltzmann e

δσ
(mP

T

)
=

45σ0√
8π7

(mP

T

) 5
2
e−

mP
T . (4.68)

O resultado obtido com a teoria de Maxwell, a saber,

u0 (T ) = σ0T
4, (4.69)

constitui-se na lei de Stefan-Boltzmann. As expressões (4.65) e (4.66), no
entanto, mostram que a teoria de Podolsky prevê uma correção nessa lei. Essa
correção depende tanto da temperatura T quanto da massa de Podolsky mP .
Conforme esperado, essa correção tende a zero quando a massa de Podolsky
é infinitamente maior do que a energia térmica:

lim
mP
T

→∞
δσ
(mP

T

)
= 0, (4.70)

donde recupera-se o resultado de Maxwell, ou seja, a lei de Stefan-Boltzmann:

lim
mP
T

→∞
u (T ;mP ) = u0. (4.71)

Entretanto, caso a massa de Podolsky seja finita, isto é, caso o campo
eletromagnético seja corretamente descrito pela teoria de Podolsky em detri-
mento da teoria Maxwelliana, a expressão (4.65), que é experimentalmente
verificável, pode ser usada para se detectar os efeitos do termo de derivadas
superiores no eletromagnetismo mesmo que o valor da massa de Podolsky seja
muito grande. Quanto mais alto o valor desse parâmetro, mais alta a tem-
peratura deve ser a fim de que a correção (4.68) na lei de Stefan-Boltzmann
seja mais facilmente acesśıvel experimentalmente.
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4.1.3 Limite termodinâmico para o parâmetro de Po-

dolsky

Na subseção anterior mostramos que a teoria de Podolsky prevê uma correção
na lei de Stefan-Boltzmann dada pela expressão (4.65) e argumentamos que
essa expressão pode ser utilizada para se buscar assinaturas da posśıvel ex-
istência do campo de Podolsky caso desvios do resultado calculado utilizando-
se o campo Maxwell sejam detectados em experimentos. Essa mesma ex-
pressão para a modificação da lei de Stefan-Boltzmann pode ser utilizada
com a finalidade de se estabelecer um limite para o parâmetro de Podolsky.
Prosseguindo nessa linha de pesquisa, reescrevemos a constante de Stefan-
Boltzmann (4.67) e a correção (4.68) no Sistema Internacional de Unidades:

σ0 =
1

4

π2

15

k4
B

�3c2
=

π2k4
B

60�3c2
; (4.72)

δσ

(
mP c

2

kBT

)
=

3

8π
√
2π

k4
B

�3c2

(
mP c

2

kBT

) 5
2

e
−mP c2

kBT . (4.73)

Ou seja, (
mP c

2

kBT

) 5
2

e
−mP c2

kBT =
8π
√
2π

3

�
3c2

k4
B

δσ

(
mP c

2

kBT

)
. (4.74)

A equação (4.66) nos permite interpretar δσ
(
mc2

kBT

)
como sendo o desvio

do valor esperado para a constante de Stefan-Boltzmann devido à presença
do setor massivo da teoria de Podolsky. Uma vez que até o momento nenhum
experimento detectou algum resultado sensivelmente diferente dos previstos

pela teoria de Maxwell, o termo δσ
(
mc2

kBT

)
deve ser no máximo igual ao erro

experimental do valor da constante de Stefan-Boltzmann pois, do contrário,
o resultado (4.65) estaria em conflito com os dados experimentais. Assim,
deve sempre valer:

O valor experimental para a constante de Stefan-Boltzmann é [63]

σexp = (5, 670277968± 0, 000040)× 10−8 W

m2K4
. (4.75)

Ou seja, o erro em sua medição é

δσexp = 4, 0.10−13 W

m2K4
. (4.76)

Conforme argumentamos, deve sempre valer:
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δσ

(
mP c

2

kBT

)
≤ δσexp, (4.77)

Substituindo essa condição na expressão (4.74) e utilizando

� = 1, 0545859.10−34Js; (4.78)

c = 2, 99792458.108
m

s
; (4.79)

kB = 1, 38066.10−23 J

K
, (4.80)

encontramos

(
mP c

2

kBT

) 5
2

e
−mP c2

kBT ≤ 8π
√
2π

3

�
3c2

k4
B

δσexp

= 2, 4367381.10−5. (4.81)

Logo, precisamos resolver a seguinte equação transcendental:

x
5
2 e −x = 2, 4367381.10−5, (4.82)

com x = mc2

kBT
.

Quatro soluções aproximadas para a equação acima são3

x1 ≈ −0, 0115272− 0, 00831657i; (4.83)

x2 ≈ −0, 0115272 + 0, 00831657i; (4.84)

x3 ≈ 0, 0143621; (4.85)

x4 ≈ 17, 8236. (4.86)

Uma vez que x é a razão entre a energia de repouso do fóton de Podolsky
pela energia térmica, ela deve ser um número real. Logo, as ráızes x1 e x2

estão exclúıdas. A solução x3 é menor do que 1. Contudo, nossos resultados
somente são válidos quando a energia de repouso associada ao setor massivo
de Podolsky for muito maior do que a energia térmica. Logo, essa solução
também está exclúıda. Por fim, verificamos que a solução x4 ≈ 17, 8236
cumpre todos os requisitos. Qualquer valor de x ≥ x4 satisfaz (4.81) Assim,
devemos ter:

3Agradecimentos a www.wolframalpha.com.
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mP c
2

kBT
≥ 17, 8236, (4.87)

ou seja,

mP c
2 ≥ 17, 8236kBT. (4.88)

Obtivemos, dessa forma, um limite inferior para a massa de Podolsky
dependente da temperatura. A fim de fixarmos esse valor, precisamos fixar
essa temperatura. Uma vez que estamos analisando a quantização do campo
eletromagnético livre em equiĺıbrio termodinâmico essa temperatura deve ser
a de algum corpo negro. Além disso, ela não pode ser muito alta, a fim de
termos garantida a validade da aproximação (4.58) realizada anteriormente.
A radiação cósmica de fundo em microondas satisfaz esses dois critérios: ela
já foi chamada do mais perfeito corpo negro até a data e sua temperatura
é extremamente baixa se comparada com a da grande maioria da matéria
conhecida no universo [64, 65]. Por essas razões, consideremos como objeto
de estudo a radiação cósmica de fundo em microondas. Sua temperatura é
T = 2, 725K. Assim, o limite (4.88) se torna:

mP c
2 ≥ 6, 50577.10−22J. (4.89)

Sendo
1eV = 1, 602189.10−19J, (4.90)

temos,abandonando novamente o Sistema Internacional de Unidades,

mP ≥ 4, 06055meV. (4.91)

Conclúımos, portanto, que os dados da radiação cósmica de fundo em
microondas impõem um limite termodinâmico inferior para o valor da massa
de Podolsky como sendo mP ∼ 4, 0meV . Dito de outra forma, qualquer
valor para a massa mP que seja superior a esse valor é compat́ıvel com os
experimentos associados à radiação de corpo negro.

A publicação desse resultado na Physical Review D rendeu-nos também
um destaque na seção “Our choice from the recent literature” da revista
Nature Physics [27].

4.2 O tensor de polarização

No caṕıtulo precedente definimos uma quantidade que denominamos “tensor
de polarização” da eletrodinâmica de Podolsky em equiĺıbrio termodinâmico
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(3.456). A quantidade correspondente na teoria sem efeitos térmicos é o
chamado “tensor de polarização do vácuo”. No entanto, as propriedades
f́ısicas desses dois operadores, embora com definições similares, são muito
distintas. Estudar algumas propriedades básicas desse tensor quando se está
numa situação de equiĺıbrio é o objetivo desta seção.

4.2.1 A forma geral do tensor de polarização em equi-

ĺıbrio

Da definição de ordenamento de campos não Grassmannianos e das equações
(3.356) e (3.359), temos:

Dμν (x, τ) = Dνμ (−x,−τ) . (4.92)

De acordo com (3.468), essa propriedade deve também ser compartilhada
pela função de Green de Podolsky:

Dμν (x, τ) = Dνμ (−x,−τ) . (4.93)

Utilizando a representação de Fourier (3.472) na expressão acima, mostramos
que

D̃μν
(
k, ωBn

)
= D̃νμ

(
−k,−ωBn

)
. (4.94)

Notamos, ainda, que a equação

D̃−1
μν

(
k, ωBn

)
D̃νξ
(
k, ωBn

)
= δμξ (4.95)

é válida para qualquer k e qualquer n ∈ N, em particular, é válida também
para

D̃−1
μν

(
−k,−ωBn

)
D̃νξ
(
−k,−ωBn

)
= δμξ. (4.96)

Utilizando a propriedades (4.94) nessa equação, ficamos com

δμξ = D̃−1
μν

(
−k,−ωBn

)
D̃ξν
(
k, ωBn

)
= D̃ξν

(
k, ωBn

)
D̃−1
μν

(
−k,−ωBn

)
. (4.97)

O segundo membro dessa equação deve ser igual a D̃ξν
(
k, ωBn

)
D̃−1
νμ

(
k, ωBn

)
,

donde identificamos:

D̃−1
νμ

(
−k,−ωBn

)
= D̃−1

μν

(
k, ωBn

)
. (4.98)
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Essa equação é válida para o inverso da função de Green de Podolsky com-
pleta. Sendo a função de Green de Podolsky livre um caso particular da
completa, também temos:

P̃
(m2

P ,α)
μν

(
k, ωBn

)
= P̃

(m2
P ,α)

νμ

(
−k,−ωBn

)
. (4.99)

Da equação (3.478), identificamos

D̃−1
μν

(
k, ωBn

)
= P̃

(m2
P ,α)

μν

(
kBn
)
+ Π̃μν

(
k, ωBn

)
, (4.100)

ou seja,

Π̃μν

(
k, ωBn

)
= D̃−1

μν

(
k, ωBn

)
− P̃

(m2
P ,α)

μν

(
kBn
)
. (4.101)

Logo, o tensor de polarização também possui a propriedade (4.94):

Π̃μν

(
k, ωBn

)
= Π̃νμ

(
−k,−ωBn

)
. (4.102)

Procuraremos, agora, a forma mais geral posśıvel para o tensor de po-
larização da eletrodinâmica generalizada de Podolsky em equiĺıbrio termo-
dinâmico. Π̃μν é um tensor de segunda ordem. Existe um número finito

de tensores de segunda ordem em termos dos quais Π̃μν possa ser escrito.
Caso estivéssemos na ausência de efeitos térmicos, teŕıamos apenas o ten-
sor métrico e o tensor de segunda ordem constrúıdo como um produto de
dois quadrimomentos. No entanto, na situação de equiĺıbrio termodinâmico,
temos ainda um outro quadrivetor dispońıvel. O sistema f́ısico em equiĺıbrio
termodinâmico constitui-se de um meio. No presente caso, esse meio é um
plasma, o chamado plasma relativ́ıstico e quântico de Podolsky. Devido à
presença desse plasma, existe um referencial distinto dos demais: o refer-
encial de repouso do meio. É nesse referencial que todas as nossas contas
foram feitas. Entretanto é, em prinćıpio, posśıvel realizar uma transformação
para outro referencial. Assim, num referencial arbitrário, temos os seguintes
objetos dispońıveis para através deles ou de combinações deles, formar um
tensor de segunda ordem:

• o tensor métrico Euclideano δμν ;

• o quadrimomento térmico kBn;

• a quadrivelocidade Euclideana u do meio;

• o tensor completamente antissimétrico em quatro dimensões: εμνξσ.
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Embora esse último tensor também esteja dispońıvel na situação de tem-
peratura nula, como o único quadrivetor com que ele pode ser contráıdo
naquele caso é o quadrimomento, temos εμνξσk

ξkσ = 0.
Portanto, a forma mais geral do tensor de polarização num referencial

arbitrário, denotado por Π̃g
μν

(
kBn, kBn · u

)
é

Π̃g
μν

(
kBn, kBn · u

)
= A′′ (kBn, kBn · u) δμν + B′′ (kBn, kBn · u) kBnμ kBnν

(kBn)2
+

+C ′′ (kBn, kBn · u) kBnμ uν

kBn · u +D′′ (kBn, kBn · u) kBnν uμ
kBn · u +

+E ′′ (kBn, kBn · u) (kBn)2 uμuν
(kBn · u)2

+

+I ′′
(
kBn, kBn · u

)
εμνξσ

kBnξ uσ

kBn · u. (4.103)

Nesta expressão, a · b ≡ a0b0 + a · b. As funções A′′, B′′, C ′′, D′′, E ′′ e I ′′

são escalares de SO(4). No referencial de repouso do meio uμ ∝ δμ0. Assim,
nesse referencial, escrevemos:

Π̃μν

(
k, ωBn

)
= A′ (k, ωBn ) δμν + B′ (k, ωBn ) kBnμ kBnν

(kBn)2
+ C ′ (k, ωBn ) kBnμ δν0

ωBn
+

+D′ (k, ωBn ) kBnν δμ0
ωBn

+ E ′ (k, ωBn ) (kBn)2 δμ0δν0
(ωBn )

2 +

+I ′
(
k, ωBn

)
ε0μνξ

kBnξ
ωBn

. (4.104)

Nesse referencial, valem as seguintes relações (3.505) e (4.102). Dessas
duas relações, temos

0 = kBnμ Π̃μν

(
k, ωBn

)
= kBnμ Π̃νμ

(
−k,−ωBn

)
, (4.105)

ou seja
kBnμ Π̃νμ

(
−k,−ωBn

)
= 0. (4.106)

Trocando kBn por −kBn nessa expressão, obtemos

−kBnμ Π̃νμ

(
k, ωBn

)
= 0. (4.107)

Dessa forma,

kBnν Π̃μν

(
k, ωBn

)
= 0. (4.108)
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Calculando Π̃νμ

(
−k,−ωBn

)
a partir de (4.104) e usando a propriedade

(4.102), encontramos as seguintes relações entre as diversas funções escalares:

A′ (−k,−ωBn ) = A′ (k, ωBn ) ; (4.109)

B′ (−k,−ωBn ) = B′ (k, ωBn ) ; (4.110)

C ′ (−k,−ωBn ) = D′ (k, ωBn ) ; (4.111)

D′ (−k,−ωBn ) = C ′ (k, ωBn ) ; (4.112)

E ′ (−k,−ωBn ) = E ′ (k, ωBn ) ; (4.113)

−I ′
(
−k,−ωBn

)
= I ′

(
k, ωBn

)
. (4.114)

Utilizando (3.505) e (4.111), encontramos a seguinte relação:

0 =
[
A′ (k, ωBn )+ B′ (k, ωBn )+ C ′ (−k,−ωBn )] kBnν +

+
[
C ′ (k, ωBn )+ E ′ (k, ωBn )] (kBn)2 δν0ωBn

. (4.115)

Agora, multiplicamos essa relação por kBnν �= 0 e encontramos:

A′ (k, ωBn )+B′ (k, ωBn ) = −C ′ (−k,−ωBn )−C ′ (k, ωBn )−E ′ (k, ωBn ) . (4.116)

Por outro lado, multiplicando (4.115) por δν0, obtemos:

A′ (k, ωBn )+B′ (k, ωBn ) = −C ′ (−k,−ωBn )−[C ′ (k, ωBn )+ E ′ (k, ωBn )] (kBn)2
(ωBn )

2 .

(4.117)
Igualando (4.116) com (4.117), podemos mostrar a seguinte equação:

C ′ (k, ωBn ) = −E ′ (k, ωBn ) . (4.118)

Dessa relação e de (4.108), temos uma nova expressão:

0 =
[
A′ (k, ωBn )+ B′ (k, ωBn )− E ′ (k, ωBn )] kBnμ +

+
[
E ′ (k, ωBn )− E ′ (−k,−ωBn )] (kBn)2 δμ0ωBn

. (4.119)

Tomando o produto escalar da equação acima com kBnμ �= 0:
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A′ (k, ωBn )+ B′ (k, ωBn ) = E ′ (−k,−ωBn ) . (4.120)

Tomando o produto escalar de (4.119) com δμ0, obtemos

A′ (k, ωBn )+ B′ (k, ωBn ) = E ′ (k, ωBn )
[
1−

(
kBn
)2

(ωBn )
2

]
+

+E ′ (−k,−ωBn ) (kBn)2
(ωBn )

2 . (4.121)

Igualando (4.120) com (4.121), mostramos:

E ′ (−k,−ωBn ) = E ′ (k, ωBn ) . (4.122)

De (4.120) e (4.122), temos ainda mais uma relação:

B′ (k, ωBn ) = E ′ (k, ωBn )− A′ (k, ωBn ) . (4.123)

Logo, a forma mais geral posśıvel do tensor de polarização no referencial
de repouso do meio é

Π̃μν

(
k, ωBn

)
= A′ (k, ωBn )

[
δμν −

kBnμ kBnν

(kBn)2

]
+

+E ′ (k, ωBn )
[
kBnμ kBnν

(kBn)2
−
(
kBnμ δν0 + kBnν δμ0

ωBn

)
+

(
kBn
)2

δμ0δν0

(ωBn )
2

]
+

+I ′
(
k, ωBn

)
ε0μνξ

kBnξ
ωBn

. (4.124)

Redefinindo as funções:

A′ (k, ωBn ) ≡A
(
k, ωBn

)
; (4.125)

E ′ (k, ωBn ) ≡B
(
k, ωBn

)
; (4.126)

I ′
(
k, ωBn

)
≡ I
(
k, ωBn

)
, (4.127)

reescrevemos o tensor (4.124) como4

4Para o caso da eletrodinâmica Maxwelliana, a expressão correspondente foi obtida por

Fradkin [15].
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Π̃μν

(
k, ωBn

)
= A

(
k, ωBn

) [
δμν −

kBnμ kBnν

(kBn)2

]
+

+B
(
k, ωBn

)[kBnμ kBnν

(kBn)2
−
(
kBnμ δν0 + kBnν δμ0

ωBn

)
+

(
kBn
)2

δμ0δν0

(ωBn )
2

]
+

+I
(
k, ωBn

)
ε0μνξ

kBnξ
ωBn

. (4.128)

Escrito nessa forma, o tensor de polarização da eletrodinâmica de Podols-
ky em equiĺıbrio termodinâmico é explicitamente transversal, uma vez que
todos os tensores que multiplicam as funções escalares A, B e I são transver-
sais. Essa é sua forma geral. Contudo, para fins práticos, faz-se necessário
calcular as funções escalares explicitamente. Isso pode ser feito, por exem-
plo, através do cálculo expĺıcito da equação (3.464). Conforme deduzimos,
as funções A e B devem satisfar as equações (4.109) e (4.113). É relativa-
mente fácil se escrever uma função escalar de kBn que satisfaça uma dessas

equações, visto que qualquer função de
(
kBn
)2

=
(
ωBn
)2

+ k2 basta. Para a
função I, contudo, a situação é mais sutil. Aparentemente, a única forma de
se escrever uma função escalar que satisfaça (4.114) é construindo-a de tal
forma que ela possua o mesmo sinal de kBn · u, ou seja, sendo uma função
ı́mpar dessa quantidade. Dessa forma, no referencial de repouso do meio,
teŕıamos I como uma função ı́mpar de ωBn , uma vez que no referencial de
repouso, kBn · u ∝ ωBn . No entanto, uma vez que a condição (4.102) foi de-
duzida no referencial de repouso do plasma, não há garantias de que ela valha
num referencial arbitrário como sendo dada pela troca de kBn por −kBn com
a quadrivelocidade do meio fixa. Se, porventura, a relação correspondente
em outro referencial envolvesse a troca de u por −u simultaneamente com
a troca correspondente em kBn, não haveria função que satisfizesse (4.114)
além da identicamente nula. O termo que multiplica a função B em (4.128)
nos diz que a quadrivelocidade não deve trocar de sinal (pelo menos não
u0), do contrário deveŕıamos trocar δμ0 por −δμ0, e isso violaria a condição
(4.113). Caso não tivéssemos recorrido à forma geral do tensor de polarização
num referencial arbitrário (4.103) como ponto de partida, não haveria justi-
ficativa para um termo dependente apenas de ωBn ser invariante de SO(4),
mas se comportaria apenas como a componente zero de um quadrivetor Eu-
clideano. Em todo o caso, essa questão merece uma análise mais profunda
que, infelizmente, não será realizada nesta tese.

Como um último tópico desta tese, consideremos a equação (3.464) na
ausência de fontes externas calculada para τx = τ , y = 0 e τy = 0:
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Πμν (x, τ) = (qe)
2 (γEμ )ab ∫

β

d4ud4v Sbc (x− u, τ − τu)×

× Γν(cd) (u,v,0; τu, τv, 0)Sda (v − x, τv − τ) . (4.129)

Notamos que o tensor de polarização pode, em prinćıpio, ser calculado
exatamente uma vez conhecidas a função de Green fermiônica completa da
teoria bem como a função de vértice completa. A fim de conhecermos essas
duas quantidades necessitaŕıamos, por exemplo, primeiramente do operador
de massa Σab e, então, substituir-lo-́ıamos em (3.459). Para calcularmos a
função de vértice, basta derivarmos o resultado com relação ao campo ϑμ
de acordo com (3.461). Para obtermos a função de Green completa, pre-
cisaŕıamos inverter a função (3.459). No entanto, de acordo com (3.465), o
cálculo do operador de massa depende não somente das próprias funções de
Green fermônica e de vértice completas, como também da função de Green
de Podolsky completa. Esta, por sua vez, seguindo (3.458), depende do
operador de polarização, que é justamente a função que desejamos calcu-
lar através da equação acima. Nenhum método de cálculo viável para esse
sistema de equações não lineares e acopladas conhecido com equações de
Dyson-Schwinger-Fradkin que forneça resultados exatos é conhecido para a
eletrodinâmica. Aproximações são necessárias.

A aproximação de ordem mais baixa em teoria de perturbação para esta
expressão consiste em substituir as funções de Green fermiônica e de vértice
completas por suas versões livres. Utilizando (3.466), a equação acima se
simplifica:

Π(qe)
2

μν (x, τ) = (qe)
2 (γEμ )ab (γEν )cd SFbc (x, τ)SFda (−x,−τ) . (4.130)

Essa forma simples revela uma propriedade notável da interação eletro-
magnética de Podolsky. Afirmamos no ińıcio do caṕıtulo que, caso a teoria
de Podolsky seja a descrição correta do eletromagnetismo é, em prinćıpio,
posśıvel realizar experimentos para detectar a presença do setor massivo do
campo eletromagnético. De fato, na seção anterior, estudamos como a lei de
Stefan-Boltzmann é modificada pelo campo de Podolsky e estabelemos um
limite inferior termodinâmico para o parâmetro livre da teoria. Esse limite
foi estabelecido na situação de campo eletromagnético livre. Ao se conside-
rar a interação, a equação (4.130) mostra um resultado inesperado: todos
os fenômenos eletromagnéticos que dependem exclusivamente do tensor de
polarização na teoria de Podolsky são indistingúıveis dos resultados previstos
pela teoria de Maxwell em ordem mais baixa de teoria de perturbação.
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Dessa forma, para se detectar a presença do parâmetro de Podolsky, ou
se estuda propriedades caracteŕısticas do campo eletromagnético livre, ou se
estuda propridades associadas ao operador de massa, ou se necessita ir além
da ordem mais baixa de teoria de perturbação para efeitos de polarização.

Iniciamos este caṕıtulo calculando explicitamente o logaritmo da função
de partição do campo quântico de Podolsky livre. Vimos que essa quantidade
era escrita como uma soma de um termo associado ao campo de Maxwell
usual com outro associado a um campo de Proca com massa mP . No caso
do setor sem massa, foi posśıvel calcular o logaritmo da função de partição
exatamente. Contudo, no caso do setor massivo, somente pudemos expressar
o resultado como séries de funções de Bessel. Considerando temperaturas
associadas a energias térmicas muito inferiores à massa de Podolsky, pudemos
calcular o logaritmo da função de partição do caso massivo aproximadamente.
Vimos, então, que a densidade de energia interna do campo de Podolsky nessa
aproximação induz uma correção mensurável na lei de Stefan-Boltzmann.
Utilizando dados experimentais para a constante de Stefan-Boltzmann e da
radiação cósmica de fundo em microondas foi posśıvel estabelecer um limi-
te para o parâmetro livre da teoria. Por fim, utilizando principalmente a
transversalidade do tensor de polarização, escrevemos a forma mais geral
desse tensor em equiĺıbrio termodinâmico.
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Caṕıtulo 5

Conclusões

5.1 O formalismo de Matsubara-Fradkin

No caṕıtulo 2 apresentamos o formalismo de Matsubara-Fradkin para a quan-
tização de teorias de campo em equiĺıbrio termodinâmico [29, 12, 13]. Esse
formalismo tem por base a matriz densidade do sistema e, por conseguinte, é
uma abordagem fundamental [30, 31]. Esse método é, também, baseado em
técnicas funcionais, que constituem-se num elegante formalismo para teorias
quânticas de campos. Uma outra caracteŕıstica marcante do formalismo de
Matsubara-Fradkin é que ele é em prinćıpio não perturbativo. Mais que isso,
ele é uma técnica exata. Por exemplo, a transversalidade do tensor de pola-
rização (3.505) obtida com o formalismo de Matsubara-Fradkin não apenas
é válida para todas as ordens de teoria de perturbação, mas como também
é válida mesmo que a teoria de perturbação não valha. Embora o tenhamos
apresentado para teoria de campos, esse formalismo não é restrito a ela.
De fato, Matsubara o desenvolveu em sua forma original para a mecânica
quântica e Fradkin resolveu aplicou a teoria para diversos exemplos não rela-
tiv́ısticos [29, 13]. Enquanto que a base do formalismo chamado de “do tempo
imaginário” repousa numa analogia entre a função de partição e a amplitude
de transição do vácuo para o vácuo da teoria à temperatura nula constata-
mos que o formalismo de Matsubara-Fradkin permite-nos encontrar repre-
sentações de integração funcional para a função de partição sem a necessidade
de se recorrer a nenhuma analogia [50, 53, 62]. Além disso, no formalismo do
tempo imaginário, faz-se necessário realizar-se de uma maneira ad hoc uma
continuação anaĺıtica conhecida como rotação de Wick na variável temporal
a fim de se obter o caráter Euclideano do espaço-tempo. Conforme vimos
nas equações (2.130), (3.186) e (3.187), essa propriedade emerge natural e
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automaticamente da estrutura teórica da abordagem de Matsubara-Fradkin.
Outra abordagem conhecida como “formalismo do tempo real” considera não
campos estáticos, mas dependentes do tempo. Ela é muito utilizada para se
descrever pequenos desvios da situação de equiĺıbrio [8, 51]. Porém, embora
não apresentada nesta tese, Fradkin desenvolveu uma extensão do formalismo
para tratar de campos dependentes do tempo sendo capaz, dessa forma, de
tratar situações levemente fora do equiĺıbrio de uma maneira similar ao for-
malismo do tempo real [13]. No terceiro caṕıtulo tratamos da quantização
em equiĺıbrio de uma teoria de gauge Abeliana. Vimos que a abordagem de
Matsubara-Fradkin aliada ao poderoso método de quantização de Nakanishi
nos permitiu obter uma descrição covariante do sistema quântico em todas
as etapas [53]. Isso é incomum. De fato, em [27], utilizando o formalismo
do tempo imaginário, quebramos a covariância de Lorentz a fim de poder-
mos escrever corretamente a representação de integração funcional da ampli-
tude de transição do vácuo para o vácuo e, logo em seguinda, fazendo uso
do chamado Änsatz de Faddeev-Popov, passamos de uma escolha de gauge
não covariante para uma covariante. Todo esse empenho é desnecessário no
método do campo auxiliar, pois todas as expressões são covariantes. Por fim,
no caṕıtulo 4 vimos que não somente a estrutura teórica da abordagem possui
um “aspecto” formal, como também é posśıvel obter a partir dela expressões
que fornecem valores que podem ser comparados com dados experimentais
[27].

5.2 A teoria de Podolsky

Esta tese trata da quantização da eletrodinâmica de Podolsky em equiĺıbrio
termodinâmico. Sendo assim, no segundo caṕıtulo, vimos como o campo
de Podolsky surge como uma alternativa ao de Maxwell a partir do próprio
prinćıpio de gauge. Vimos, na expressão (3.15), que a densidade de La-
grangeana da teoria de Podolsky contém um termo que depende de derivadas
de segunda ordem do campo eletromagnético. Por essa razão, a estrutura
canônica da teoria é mais rica e mais interessante [24, 36]. Vimos também
que a teoria depende de um parâmetro livre que mais adiante foi chamado de
massa de Podolsky. Apesar do campo conter uma massa, ele se decompõe em
dois de tal forma que existem na teoria um setor sem massa e um massivo de
uma tal maneira que a teoria como um todo é invariante de gauge. De fato,
em [23], Cuzinatto, de Melo e Pompeia mostraram que a teoria de Podolsky
é a única extensão posśıvel do eletromagnetismo usual que contém termos de
derivadas de segunda ordem que mantém intactas as duas simetrias básicas
da interação eletromagnética: a de gauge U(1) e a de Lorentz. Visto que
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as equações de Podolsky (3.24-3.27) diferem das de Maxwell, o eletromag-
netismo de Podolsky prevê resultados diferentes dos de Maxwell para alguns
experimentos, conforme já foi proposto por Cuzinatto, de Melo, Medeiros e
Pompeia [26]. Assim, o argumento da navalha de Occam, que afirma, basi-
camente, que se duas teorias explicam os mesmos fenômenos devemos optar
pela mais simples, pode não se aplicar. Ao estudar a quantização da teoria
em equiĺıbrio termodinâmico no formalismo de Matsubara-Fradkin, optamos
pelo método covariante de Nakanishi. Esse método, enquanto mantém a
covariância de SO(4), quebra a simetria de gauge explicitamente. Vimos,
então, que os campos fantasmas surgem devido à simetria de gauge residual
e introduzem automaticamente uma nova invariância no problema. A essa
nova simetria é associado um operador carga de Noether conservado e, a ele,
um potencial qúımico. Conforme mostramos, as funções de Green da teoria
satisfazem certas condições de periodicidade na variável τ . Essa propriedade
implica que o potencial qúımico fantasma é um número imaginário puro e,
portanto, não é observável termodinâmico. Escrevemos representações de
integração funcional para o funcional gerador termodinâmico e da função de
partição completos da teoria. Encontramos o conjunto de equações conhe-
cido como equações de Dyson-Schwinger-Fradkin da teoria de Podolsky em
equiĺıbrio termodinâmico e mostramos que as transformadas de Fourier das
funções de Green dependem das frequências de Matsubara (3.476) e (3.477)
[53]. Notamos, agora, que no limite de temperatura nula T → 0 ou, equi-
valentemente, β →∞, as frequências de Matsubara tanto bosônicas quanto
fermiônicas se tornam densas na reta real. Conforme essas frequências se
tornam cont́ınuas, as somas sobre as frequências de Matsubara se tornam in-
tegrais. Visto que as funções de Green são periódicas ou antiperiódicas com
“peŕıodo” β, nesse limite elas se tornam funções periódicas ou antiperiódicas
com “peŕıodo” infinito, ou seja, funções aperiódicas. Tomando, também,
o limite μe → 0, todas as equações envolvendo funções de Green, como as
equações de Dyson-Schwinger-Fradkin ou as identidades de Ward-Fradkin-
Takahashi se tornam versões Euclideanas daquelas encontradas para a teo-
ria de Podolsky à temperatura nula no espaço-tempo de Minkowski encon-
tradas em [66]. Por essa razão afirmamos no caṕıtulo introdutório que a
teoria quântica de campos em Minkowski seria um caso particular da teoria
de campos em equiĺıbrio termodinâmico e não o contrário. Retornando ao
caso com temperatura e potencial qúımico não nulos, mostramos as identi-
dades de Ward-Fradkin-Takahashi em equiĺıbrio termodinâmico, com ênfase
na transversalidade do tensor de polarização (3.505) e na identidade de Ward
(3.515). Nesta última ficou evidenciada uma caracteŕıstica do equiĺıbrio:
sendo as frequências de Matsubara quantidades discretas, não se é posśıvel
escrever a forma diferencial da identidade de Ward, a menos que se recorra
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a continuações anaĺıticas, que estão associadas a desvios do equiĺıbrio, ou se
tome o limite descrito acima, no qual a temperatura tende a zero e também
não se tem equiĺıbrio termodinâmico. No caṕıtulo 4 calculamos explicita-
mente a função de partição do campo de Podolsky livre. Esse cálculo somente
foi posśıvel porque assumimos a condição de temperaturas associadas a en-
ergias térmicas despreźıveis frente à massa de Podolsky (4.58). Em seguida,
calculamos a densidade de energia interna do campo e mostramos que o
setor massivo da teoria de Podolsky induz uma correção na lei de Stefan-
Bolztmann. Essa correção pode, em prinćıpio, ser mensurável e foi utilizada,
em conjunção com dados experimentais da constante de Stefan-Boltzmann e
da radiação cósmica de fundo em microondas, para se estabelecer um limite
mı́nimo para o valor do parâmetro de Podolsky. Esse valor limite advindo
da termodinâmica é mP ∼ 4meV [27]. Esse valor pode ser melhorado com o
mesmo tipo de experimento, bastando para isso se construir ou se encontrar
um corpo negro tão preciso quanto a radiação cósmica de fundo em microon-
das mas que apresente uma temperatura maior. Se a temperatura se elevar
muito, contudo, os efeitos quânticos da eletrodinâmica precisarão ser levados
em conta, especialmente se a temperatura do corpo negro for tal que a ener-
gia térmica associada seja comparável à massa do elétron [61]. Na sequência,
utilizamos a transversalidade do tensor de polarização (3.505), que é uma
das identidades de Ward-Fradkin-Takahashi deduzidas no caṕıtulo 3, para se
escrever a forma mais geral desse tensor na situação de equiĺıbrio.

5.3 Perspectivas futuras

Como projetos futuros estudaremos certas propriedades clássicas do campo
de Podolsky que ainda não são muito bem entendidas. A ausência da sime-
tria de dualidade nas equações de Podolsky podem, talvez, fornecer alguma
pista sobre a não observação de monopolos magnéticos [17]. Outra simetria
presente no eletromagnetismo Maxwelliano e ausente no de Podolsky cujas
implicações não são bem entendidas é a de escala, visto que a massa de
Podolsky define um comprimento Compton caracteŕıstico.

No regime quântico da teoria de Podolsky, pretendemos estudar a renor-
malizabilidade da teoria, tanto à temperatura nula quanto na situação de
equiĺıbrio térmico. Nesse último caso, também pretendemos estudar alguns
fenômenos t́ıpicos de F́ısica dos plasmas, como a blindagem de Debye e os-
cilações coletivas. Analisando atentamente as equações (3.452-3.455), ve-
mos que elas são muito semelhantes àquelas da eletrodinâmica com “vácuo
instável”[67]. A principal diferença ocorre que, ao se fazer as fontes nulas,
uma posśıvel média térmica não nula para o campo eletromagnético atua-
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ria como um campo clássico externo constante. Campos eletromagnéticos
clássicos não possuem significados f́ısicos contanto que não estejam na pre-
sença de objetos quânticos, como ocorre no caso do efeito Aharonov-Bohm
[68]. Pretendemos, assim, investigar a questão de se um posśıvel valor não
nulo para a média térmica do campo alteraria drasticamente o comporta-
mento do plasma de Podolsky. Também temos a intenção de aplicar a teoria
de perturbação modificada de Fradkin para uma teoria auto-interação es-
pećıfica do campo escalar, como por exemplo, a interação λφ4, e também
aplicá-la ao eletromagnetismo de Podolsky calculando, dessa forma, tanto
correções não perturbativas para a função de partição como também estu-
dando efeitos não perturbativos nas funções de Green.

Planejamos, ainda, extender o formalismo de Matsubara-Fradkin e a
teoria de perturbação modificada de Fradkin para teorias de gauge não
Abelianas, com a esperança de que o emprego dessas duas técnicas em con-
junto possa lançar alguma luz sobre a questão da transição de fase da cro-
modinâmica quântica de uma fase que exibe confinamento para uma descon-
finada.

5.4 Comentários finais

Nesta tese apresentamos o formalismo de Matsubara-Fradkin e o aplicamos
à teoria eletromagnética de Podolsky. As contribuições originais desta tese
consistem na extensão da teoria de perturbação modificada de Fradkin para
a situação de equiĺıbrio termodinâmico e a quantização da eletrodinâmica de
Podolsky em equiĺıbrio termodinâmico, que consiste de quase todo o caṕıtulo
3 e da totalidade do caṕıtulo 4 [27, 53].
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Apêndice A

O potencial eletrostático de

Podolsky

Neste apêndice encontraremos o potencial eletrostático da teoria de Podolsky.
Assumindo λP �= 0, podemos reescrever (3.33) como(−→

∂ 2 − 1

2λP

)−→
∂ 2A0 (x) =

ρ (x)

2λP
. (A.1)

Consideremos uma carga puntual q localizada na origem,

ρ (x) = qδ (x) , (A.2)

e escrevamos as transformadas de Fourier do potencial eletrostático e da
densidade de carga:

δ (x) =
1

(2π)3

∫
d3k eik·x; (A.3)

A0 (x) =
1

(2π)3

∫
d3k Ã0 (k) e

ik·x. (A.4)

Substituindo essa transformadas em (A.1) e utilizando a independência
linear das funções exponenciais, encontramos:

Ã0 (k) =
1

2λP

q

k2
(
k2 + 1

2λP

) . (A.5)

Com isso, podemos calcular (A.4):
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A0 (x) =
1

2λP

1

(2π)3

∫
d3k

q

k2
(
k2 + 1

2λP

)eik·x
=

1

2λP

2πq

(2π)3

∫ ∞

0

dk
k2

k2
(
k2 + 1

2λP

) ∫ 1

−1

d (cos θ) eikr cos θ

=
1

2λP

q

(2π)2

∫ ∞

0

dk
1(

k2 + 1
2λP

) (eikr − e−ikr

ikr

)

=
1

2λP

q

2π2r

∫ ∞

0

dk
sin (kr)

k
(
k2 + 1

2λP

)
=

1

2λP

q

(2π)2 r

∫ ∞

−∞
dk

sin (kr)

k
(
k2 + 1

2λP

) , (A.6)

com r ≡ |x|.
No limite ε→ 0+, a última integral é substitúıda por

∫ ∞

−∞
dk

sin (kr)

(k + iε)
(
k2 + 1

2λP

) =
1

2i

⎡⎣∫ ∞

−∞
dk

eikr

(k + iε)
(
k2 + 1

2λP

)+
−
∫ ∞

−∞
dk

e−ikr

(k + iε)
(
k2 + 1

2λP

)
⎤⎦ . (A.7)

O cálculo de cada integral pode ser realizado com o aux́ılio do teorema
dos reśıduos de Cauchy e do lema de Jordan, resultando em:

∫ ∞

−∞
dk

eikr

(k + iε)
(
k2 + 1

2λP

) = −2πiλP e
− r√

2λP ; (A.8)

∫ ∞

−∞
dk

e−ikr

(k + iε)
(
k2 + 1

2λP

) = 2πiλP e
− r√

2λP − 4πiλP . (A.9)

Portanto,∫ ∞

−∞
dk

sin (kr)

(k + iε)
(
k2 + 1

2λP

) = 2πλP

(
1− e

− r√
2λP

)
. (A.10)
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Finalmente, o potencial eletrostático de Podolsky (A.6) é

A0 (x) =
q

4π |x|

(
1− e

− |x|√
2λP

)
. (A.11)
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Apêndice B

O tensor densidade de energia e

momento simétrico de uma

teoria com derivadas de

segunda ordem

Neste apêndice calcularemos o tensor densidade de energia e momento da
teoria de Podolsky livre. Iniciamos com a teoria geral de se calcular o ten-
sor de energia e momento simétrico para densidades de Lagrangeanas com
derivadas de segunda ordem [69, 70, 71].

B.1 Teoria geral

Seja L uma densidade de Lagrangeana que depende de certos campos e de
suas derivadas de primeira e segunda ordens:

L = L
[
φ, ∂φ, ∂2φ

]
. (B.1)

A variação intŕınseca δ0 dessa densidade de Lagrangeana satisfaz

[δ0, ∂] = 0. (B.2)
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Assim,

δ0L =
∂L

∂φa
δ0φ

a +
∂L

∂ (∂μφa)
δ0 (∂μφ

a) +
∂L

∂ (∂μ∂νφa)
δ0 (∂μ∂νφ

a)

=
∂L

∂φa
δ0φ

a +
∂L

∂ (∂μφa)
∂μ (δ0φ

a) +
1

2

[
∂L

∂ (∂μ∂νφa)
+

∂L

∂ (∂ν∂μφa)

]
×

× ∂μ∂ν (δ0φ
a) . (B.3)

Podemos escrever

∂L

∂ (∂μφa)
∂μ (δ0φ

a) = ∂μ

[
∂L

∂ (∂μφa)
δ0φ

a

]
− ∂μ

[
∂L

∂ (∂μφa)

]
δ0φ

a, (B.4)

e

l1 ≡ 1

2

[
∂L

∂ (∂μ∂νφa)
+

∂L

∂ (∂ν∂μφa)

]
∂μ∂ν (δ0φ

a)

= ∂ν

{
1

2

[
∂L

∂ (∂μ∂νφa)
+

∂L

∂ (∂ν∂μφa)

]
∂μ (δ0φ

a)

}
+

−∂ν
{
1

2

[
∂L

∂ (∂μ∂νφa)
+

∂L

∂ (∂ν∂μφa)

]}
∂μ (δ0φ

a)

= ∂ν

{
1

2

[
∂L

∂ (∂μ∂νφa)
+

∂L

∂ (∂ν∂μφa)

]
∂μ (δ0φ

a)

}
+

−∂μ
{
∂ν

{
1

2

[
∂L

∂ (∂μ∂νφa)
+

∂L

∂ (∂ν∂μφa)

]}
δ0φ

a

}
+

+∂μ∂ν

{
1

2

[
∂L

∂ (∂μ∂νφa)
+

∂L

∂ (∂ν∂μφa)

]}
δ0φ

a. (B.5)

Então,

δ0L=

{
∂L

∂φa
− ∂μ

[
∂L

∂ (∂μφa)

]
+∂μ∂ν

{
1

2

[
∂L

∂ (∂μ∂νφa)
+

∂L

∂ (∂ν∂μφa)

]}}
δ0φ

a+

+ ∂μ [Π
μ
aδ0φ

a +Πμν
a ∂ν (δ0φ

a)] , (B.6)

sendo

Πμ
a ≡ ∂L

∂ (∂μφa)
− ∂ν

{
1

2

[
∂L

∂ (∂μ∂νφa)
+

∂L

∂ (∂ν∂μφa)

]}
; (B.7)

Πμν
a ≡ 1

2

[
∂L

∂ (∂ν∂μφa)
+

∂L

∂ (∂μ∂νφa)

]
. (B.8)
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Agora, definimos

∂̂ ≡ nμ∂μ; (B.9)

∂μ ≡ ∂μ − nμ∂̂. (B.10)

n é um vetor unitário constante tipo tempo:

nμnμ = 1. (B.11)

Com essas definições, vemos que

∂μ = ∂μ + nμ∂̂ − nμ∂̂ = ∂μ − nμ∂̂ + nμ∂̂ (B.12)

= ∂μ + nμ∂̂. (B.13)

Assim, temos

Πμν
a ∂ν (δ0φ

a) = Πμν
a

(
∂ν + nν ∂̂

)
(δ0φ

a)

= Πμν
a ∂ν (δ0φ

a) + nνΠ
μν
a ∂̂ (δ0φ

a) ; (B.14)

Πμν
a ∂ν (δ0φ

a) = ∂ν (Π
μν
a δ0φ

a)− ∂νΠ
μν
a δ0φ

a; (B.15)

Πμν
a ∂ν (δ0φ

a) = Πμν
a ∂ν (δ0φ

a) + nνΠ
μν
a ∂̂ (δ0φ

a) (B.16)

= ∂ν (Π
μν
a δ0φ

a)− ∂νΠ
μν
a δ0φ

a + nνΠ
μν
a ∂̂ (δ0φ

a) . (B.17)

Com isso, podemos escrever

Πμ
aδ0φ

a +Πμν
a ∂ν (δ0φ

a) = Πμ
aδ0φ

a + ∂ν (Π
μν
a δ0φ

a) +

−∂νΠμν
a δ0φ

a + nνΠ
μν
a ∂̂ (δ0φ

a) (B.18)

= (Πμ
a − ∂νΠ

μν
a ) δ0φ

a + nνΠ
μν
a ∂̂ (δ0φ

a) +

+∂ν (Π
μν
a δ0φ

a) . (B.19)

Substituindo esse resultado na equação (B.6), encontramos

δ0L =

{
∂L

∂φa
−∂μ

[
∂L

∂ (∂μφa)

]
+∂μ∂ν

{
1

2

[
∂L

∂ (∂μ∂νφa)
+

∂L

∂ (∂ν∂μφa)

]}}
δ0φ

a +

+∂μ

[
(Πμ

a − ∂νΠ
μν
a ) δ0φ

a + nνΠ
μν
a ∂̂ (δ0φ

a)
]
+ ∂μ∂ν (Π

μν
a δ0φ

a) . (B.20)
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Restringiremos nossa análise aos casos nos quais as variações façam o
último termo dessa expressão satisfazer:

l2 ≡
∫
R

dD+1x ∂μ∂ν (Π
μν
a δ0φ

a) =

∫
B

dσμ∂ν (Π
μν
a δ0φ

a)

=

∫
V

dDx∂ν
(
Π0ν
a δ0φ

a
)
=

∫
V

dDx
(
∂ν − nν ∂̂

) (
Π0ν
a δ0φ

a
)

=

∫
V

dDx
[
∂ν
(
Π0ν
a δ0φ

a
)
− nν ∂̂

(
Π0ν
a δ0φ

a
)]

=

∫
V

dDx
[
∂0
(
Π00
a δ0φ

a
)
+ ∂j

(
Π0j
a δ0φ

a
)
− nνnμ∂

μ
(
Π0ν
a δ0φ

a
)]

=

∫
V

dDx
[
∂0
(
Π00
a δ0φ

a
)
+ ∂j

(
Π0j
a δ0φ

a
)
− n0n0∂

0
(
Π00
a δ0φ

a
)]

=

∫
V

dDx
[
∂0
(
Π00
a δ0φ

a
)
+ ∂j

(
Π0j
a δ0φ

a
)
− ∂0

(
Π00
a δ0φ

a
)]

=

∫
V

dDx∂j
(
Π0j
a δ0φ

a
)
=

∫
S

dsj
(
Π0j
a δ0φ

a
)
= 0, (B.21)

sendo R a região que engloba todo o espaço-tempo (D+1) - dimensional, V
denota a fronteira dessa região, ou seja, um hiper-volume D - dimensional e
S a hipersuperf́ıcie que delimita V . Nesta expressão, utilizamos um vetor n
do tipo n = (1,0).

A condição acima significa que consideramos apenas variações tais que o
vetor cujas componentes espaciais são Π0j

a δ0φ
a sejam ortogonais à hipersu-

perf́ıcie S.
Com esses resultados, temos

l3 ≡
∫
R

d4x ∂μ [Π
μ
aδ0φ

a +Πμν
a ∂ν (δ0φ

a)]

=

∫
B

dσμ

[
(Πμ

a − ∂νΠ
μν
a ) δ0φ

a + nνΠ
μν
a ∂̂ (δ0φ

a)
]

=

∫
B

dσμ

[
(Πμ

a − ∂νΠ
μν
a ) δ0φ

a + nνΠ
μν
a δ0

(
∂̂φa
)]

=

∫
B

dσμ

[
π(0)μ
a δ0φ

a + π(1)μ
a δ0

(
∂̂φa
)]

=

∫
B

dσμ

N−1∑
k=0

π(k)μ
a δ0

(
∂̂(k)φa

)
. (B.22)

Nesta expressão, temos N = 2 como o número máximo das ordens das
derivadas envolvidas no problema. Temos, também, as seguintes definições:
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π(0)μ
a ≡ Πμ

a − ∂νΠ
μν
a ; (B.23)

π(1)μ
a ≡ nνΠ

μν
a ; (B.24)

∂̂(k) ≡
{

1, k = 0;

∂̂, k = 1.
(B.25)

Definimos, agora, a quantidade G que chamaremos de gerador :

G =

∫
B

dσμ

[
N−1∑
k=0

π(k)μ
a δ0

(
∂̂(k)φa

)
+ L δxμ

]
. (B.26)

Introduzimos a variação total δ:

δφa = δ0φ
a+ φa (x)− φ′a (x) = δ0φ

a+ ∂ξφ
a (x) δxξ − 1

2
εαβSabαβφ

b (x) . (B.27)

Para as derivadas dos campos, temos um relação similar:

δ
(
∂̂(k)φa

)
= δ0

(
∂̂(k)φa

)
+ ∂ξ

(
∂̂(k)φa

)
δxξ − 1

2
εαβSabαβ

(
∂̂(k)φb

)
. (B.28)

Resolvendo essa expressão para a derivada na forma

δ0

(
∂̂(k)φa

)
= δ
(
∂̂(k)φa

)
− ∂ξ

(
∂̂(k)φa

)
δxξ +

1

2
εαβSabαβ

(
∂̂(k)φb

)
. (B.29)

Com isso, podemos reescrever o gerador como

G =

∫
B

dσμ

{
N−1∑
k=0

[
π(k)μ
a δ

(
∂̂(k)φa

)
− π(k)μ

a ∂ξ

(
∂̂(k)φa

)
δxξ+

+
1

2
εαβπ(k)μ

a Sabαβ

(
∂̂(k)φb

)]
+ L δxμ

}
. (B.30)

Analogamente ao caso de derivadas de primeira ordem, definimos

fμλν(k) ≡
1

2

[
π(k)μ
α Sλναβ∂̂

(k)φβ + π(k)ν
α Sλμαβ ∂̂

(k)φβ + π(k)λ
α Sνμαβ∂̂

(k)φβ
]
, (B.31)

sendo Sλραβ = gλμgρνSαβμν . Podemos mostrar as seguintes propriedades de f :
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ελνf
μλν
(k) =

1

2
ελνπ

(k)μ
α Sλναβ∂̂

(k)φβ; (B.32)

fλμν(k) = − fμλν(k) . (B.33)

Seja

δxξ = εξμx
μ + aξ. (B.34)

Assim,

∂ (δxξ)

∂xρ
= εξμδ

μ
ρ = εξρ. (B.35)

Então,

fμξρ(k) εξρ = fμρξ(k) ερξ = −f
μρξ
(k) εξρ = −f

μρξ
(k)

∂ (δxξ)

∂xρ

= −
∂
(
fμρξ(k) δxξ

)
∂xρ

+
∂fμρξ(k)

∂xρ
δxξ. (B.36)

Integrando o primeiro termo numa hipersuperf́ıcie S fornece:

∫
σ

dσμ
∂
(
fμρξ(k) δxξ

)
∂xρ

=
1

2

∫
σ

dσμ
∂
(
fμρξ(k) δxξ

)
∂xρ

+
1

2

∫
σ

dσμ
∂
(
fμρξ(k) δxξ

)
∂xρ

=
1

2

∫
σ

dσμ
∂
(
fμρξ(k) δxξ

)
∂xρ

+
1

2

∫
σ

dσρ
∂
(
fρμξ(k) δxξ

)
∂xμ

,

(B.37)

ou seja

∫
σ

dσμ∂ρ

(
fμρξ(k) δxξ

)
=

1

2

∫
σ

dσμ∂ρ

(
fμρξ(k) δxξ

)
−1

2

∫
σ

dσρ∂μ

(
fμρξ(k) δxξ

)
. (B.38)

Integrando essa expressão em duas hipersuperf́ıcies σ(2) e σ(1) e calculando a
diferença resulta em
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t4 ≡
∫
σ(2)

dσμ∂ρ

(
fμρξ(k) δxξ

)
−
∫
σ(1)

dσμ∂ρ

(
fμρξ(k) δxξ

)
=

1

2

∫
σ(2)

dσμ∂ρ

(
fμρξ(k) δxξ

)
− 1

2

∫
σ(2)

dσμ∂ρ

(
fμρξ(k) δxξ

)
+

+
1

2

∫
σ(1)

dσμ∂ρ

(
fμρξ(k) δxξ

)
− 1

2

∫
σ(1)

dσμ∂ρ

(
fμρξ(k) δxξ

)
=

1

2

[∫
σ(2)

dσμ∂ρ

(
fμρξ(k) δxξ

)
−
∫
σ(1)

dσμ∂ρ

(
fμρξ(k) δxξ

)]
+

−1

2

[∫
σ(2)

dσρ∂μ

(
fμρξ(k) δxξ

)
−
∫
σ(1)

dσρ∂μ

(
fμρξ(k) δxξ

)]

=
1

2

∫
R

dD+1x∂μ∂ρ

(
fμρξ(k) δxξ

)
− 1

2

∫
R

dD+1x∂ρ∂μ

(
fμρξ(k) δxξ

)
=

1

2

∫
R

dD+1x [∂μ, ∂ρ]
(
fμρξ(k) δxξ

)
= 0. (B.39)

Uma vez que o termo ∂ρ

(
fμρξ(k) δxξ

)
é nulo entre duas hipersuperf́ıcies,

ele não contribui para o gerador. Então, podemos escrever G simplesmente
como

G =

∫
B

dσμ

[
N−1∑
k=0

π(k)μ
α δ

(
∂̂(k)φα

)
− T μν δxν

]
, (B.40)

sendo que definimos o tensor densidade de energia e momento como

T μν ≡
N−1∑
k=0

[
π(k)μ
α ∂ν

(
∂̂(k)φα

)
− ∂ρ

(
fμρν(k)

)]
− gμνL. (B.41)

Para uma transformação de Poincaré:

δxν = ενξx
ξ + aν ; (B.42)

δ
(
∂̂(k)φα

)
=0 (B.43)

e o gerador se escreve como
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F = −
∫
B

dσμT
μν δxν = −

∫
B

dσμT
μν
(
ενξx

ξ + aν
)

= −ενξ
∫
B

dσμT
μνxξ −

∫
B

dσμT
μνaν . (B.44)

Agora, definimos

P ν ≡
∫
B

dσμT
μν ; (B.45)

Jνξ ≡
∫
B

dσμM
μνξ; (B.46)

Mμνξ ≡ T μνxξ − T μξxν . (B.47)

Assim,

ενξ

∫
B

dσμT
μνxξ =

1

2
ενξ

∫
B

dσμT
μνxξ − 1

2
εξν

∫
B

dσμT
μνxξ

=
1

2
ενξ

∫
B

dσμT
μνxξ − 1

2
ενξ

∫
B

dσμT
μξxν

=
1

2
ενξ

∫
B

dσμ
(
T μνxξ − T μξxν

)
=

1

2
ενξ

∫
B

dσμM
μνξ =

1

2
ενξJ

νξ. (B.48)

Com isso,

G = −aνP ν − 1

2
ενξJ

νξ. (B.49)

Sendo G um gerador, temos

∂μT
μν =0; (B.50)

∂μM
μνξ = 0. (B.51)

Dessas expressões, decorre

∂μM
μνξ = ∂μ

(
T μνxξ − T μξxν

)
= ∂μ

(
T μνxξ

)
− ∂μ

(
T μξxν

)
= ∂μT

μνxξ + T μν∂μx
ξ − ∂μT

μξxν − T μξ∂μx
ν

= T μν∂μx
ξ − T μξ∂μx

ν = T μνδμ
ξ − T μξδμ

ν

= T ξν − T νξ = 0. (B.52)
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O resultado (B.52) mostra que o tensor densidade de energia e momento
calculado dessa forma é automaticamente simétrico.

B.2 O tensor densidade de energia e momento

de Podolsky

A densidade de Lagrangeana da teoria de Podolsky livre é

LP = −1

4
FμνF

μν + λP∂μF
μξ∂νF

ν
ξ, (B.53)

sendo λP um parâmetro real constante com dimensão de inverso de energia
quadrada.

O tensor densidade de energia e momento dessa teoria dado por (B.41) é

T μν
P =

1∑
k=0

[
π(k)μ
α ∂ν

(
∂̂(k)Aα

)
− ∂ρ

(
fμρν(k)

)]
− ημνLP . (B.54)

Nesta expressão, temos

π(0)μ
α ≡Πμ

α − ∂νΠ
μν
α ; (B.55)

π(1)μ
α ≡nνΠ

μν
α , (B.56)

com

Πμ
α ≡

∂L

∂ (∂μAα)
− ∂ν

{
1

2

[
∂L

∂ (∂μ∂νAα)
+

∂L

∂ (∂ν∂μAα)

]}
; (B.57)

Πμν
α ≡ 1

2

[
∂L

∂ (∂ν∂μAα)
+

∂L

∂ (∂μ∂νAα)

]
(B.58)

e

fμγν(k) ≡
1

2

[
π(k)μ
α Sαγνβ ∂̂(k)Aβ + π(k)ν

α Sαγμβ ∂̂(k)Aβ + π(k)γ
α Sανμβ ∂̂(k)Aβ

]
. (B.59)

Para um campo vetorial a quantidade Sαγνβ é dada por

Sαγνβ = ηαγδνβ − ηανδγβ . (B.60)

Agora, definimos
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L μ
α ≡

∂L

∂ (∂μAα)
; (B.61)

L μξ
α ≡ 1

2

[
∂L

∂ (∂μ∂ξAα)
+

∂L

∂ (∂ξ∂μAα)

]
. (B.62)

Em termos dessas duas quantidades, podemos escrever

π(0)μ
α =L μ

α − 2∂ξL
μξ
α + nξ∂̂L

μξ
α (B.63)

π(1)μ
α =nξΠ

μξ
α = nξL

μξ
α . (B.64)

Com isso, T μν
P se torna

T μν
P �

(
L μ
α − 2∂ξL

μξ
α

)
∂νAα − ∂ρ

(
fμρν(0) + fμρν(1)

)
− ημνLP , (B.65)

sendo que o śımbolo � indica, nesta tese, que os dois membros de uma
equação são iguais a menos da adição de um termo que é uma derivada total
- conferir a equação (3.271).1

Agora, calculamos

fμγν(0) =
1

2

[
π(0)μ
α Sαγνβ ∂̂(0)Aβ + π(0)ν

α Sαγμβ ∂̂(0)Aβ + π(0)γ
α Sανμβ ∂̂(0)Aβ

]
;

(B.66)

fμγν(1) =
1

2

[
π(1)μ
α Sαγνβ ∂̂(1)Aβ + π(1)ν

α Sαγμβ ∂̂(1)Aβ + π(1)γ
α Sανμβ ∂̂(1)Aβ

]
,

(B.67)

sendo

π(0)μ
α Sαγνβ ∂̂(0)Aβ =

(
L μ
α − 2∂ξL

μξ
α + nξ∂̂L

μξ
α

)
Sαγνβ Aβ; (B.68)

π(1)μ
α Sαγνβ ∂̂(1)Aβ = nξL

μξ
α Sαγνβ ∂̂Aβ. (B.69)

Assim, a soma de (B.66) com (B.67) é

1Como as quantidades f́ısicas energia e momento são obtidas através de integrais desse

tensor, termos aditivos derivativos totais podem sempre ser ignorados sob o argumento de

que ao se realizar a integração, as primitivas de tais termos são assumidas ortogonais à

(hiper)superf́ıcie que engloba o sistema f́ısico.
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fμγν(0) + fμγν(1) =
1

2

[(
π(0)μ
α Sαγνβ Aβ + π(1)μ

α Sαγνβ ∂̂Aβ
)
+

+
(
π(0)ν
α Sαγμβ Aβ + π(1)ν

α Sαγμβ ∂̂Aβ
)
+

+
(
π(0)γ
α Sανμβ Aβ + π(1)γ

α Sανμβ ∂̂Aβ
)]

. (B.70)

Cada uma das somas entre parênteses pode ser escrita como

π(0)μ
α Sαγνβ Aβ + π(1)μ

α Sαγνβ ∂̂Aβ �
(
L μ
α − 2∂ξL

μξ
α

)
Sαγνβ Aβ. (B.71)

Com isso, (B.70) se torna

fμγν(0) + fμγν(1) �
1

2

[(
L μ
α − 2∂ξL

μξ
α

)
Sαγνβ Aβ +

(
L ν
α − 2∂ξL

νξ
α

)
Sαγμβ Aβ+

+
(
L γ
α − 2∂ξL

γξ
α

)
Sανμβ Aβ

]
. (B.72)

Dessa forma, podemos escrever (B.65) como

T μν
P =

(
L μ
α − 2∂ξL

μξ
α

)
∂νAα − ημνLP +

−1

2
∂γ
{[(

Lγμ − 2∂ξL
γμξ
)
−
(
Lμγ − 2∂ξL

μγξ
)]

Aν+

−
[(
Lνμ − 2∂ξL

νμξ
)
+
(
Lμν − 2∂ξL

μνξ
)]

Aγ +

+
[(
Lγν − 2∂ξL

γνξ
)
+
(
Lνγ − 2∂ξL

νγξ
)]

Aμ
}
. (B.73)

Agora, calculamos:

Lγμ = −F μγ; (B.74)

Lγμξ = λP
(
2ημξ∂τF

τγ − ημγ∂τF
τξ − ηξγ∂τF

τμ
)
; (B.75)

Lγμ − 2∂ξL
γμξ = −F μγ − 2λP (2∂μ∂τF

τγ − ∂γ∂τF
τμ) . (B.76)

Assim,

T μν
P = −

[
F μ
γ + 2λP

(
2∂μ∂τF

τ
γ − ∂γ∂τF

τμ
)]

(∂νAγ − ∂γAν)− ημνLP +

− (1 + 2λP�) ∂τF
τμAν − λP∂

γ
[(
∂μ∂τF

τ
γ + ∂γ∂τF

τμ
)
Aν+

+(∂μ∂τF
τν + ∂ν∂τF

τμ)Aγ −
(
∂ν∂τF

τ
γ + ∂γ∂τF

τν
)
Aμ
]
. (B.77)
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Utilizaremos, agora, as equações de Euler-Lagrange (3.20) para fontes
nulas:

(1 + 2λP�) ∂τF
τμ = 0. (B.78)

Com o aux́ılio dessa equação, podemos reescrever (B.77) como

T μν
P � F μ

γF
γν − ημνLP + 2λP

(
2∂μ∂τF

τ
γ − ∂γ∂τF

τμ
)
F γν . (B.79)

Contudo,

2λP
(
2∂μ∂τF

τ
γ − ∂γ∂τF

τμ
)
F γν � 4λP∂

μ∂τF
τ
γF

γν+2λP∂τF
τμ∂γF

γν . (B.80)

Utilizando a identidade de Bianchi (3.17), podemos escrever

∂μF γν = ∂γF μν + ∂νF γμ. (B.81)

Dessa forma,

4λP∂
μ∂τF

τ
γF

γν � 4λP∂
τF μγ∂τF

ν
γ − 4λP∂

γF τμ∂τF
ν
γ , (B.82)

e

T μν
P = F μ

γF
γν − ημνLP + 2λP

(
2∂τF μγ∂τF

ν
γ − 2∂γF τμ∂τF

ν
γ + ∂τF

τμ∂γF
γν
)
.

(B.83)
Escrito nesta forma, o tensor densidade de energia e momento da teoria de
Podolsky é explicitamente simétrico.

Substituindo a densidade de Lagrangeana (B.53) nessa última expressão
podemos mostrar que

T μν
P = −F μαF ν

α +
1

4
ημνFαβF

αβ + 2λP

(
−1

2
ημν∂αF

αβ∂γF
γ
β − F μα�F ν

α+

−F να�F μ
α − F μα∂α∂βF

βν − F να∂α∂βF
βμ + ∂τF

τμ∂γF
γν
)
. (B.84)

Através dessa expressão podemos calcular a densidade de energia do
campo de Podolsky livre em termos dos campos elétrico e magnético.
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