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Resumo

Nesta tese estudaremos a eletrodinamica quantica de Podolsky em equi-
librio termodinamico no formalismo de Matsubara-Fradkin. Uma vez que a
eletrodinamica de Podolsky é uma teoria de gauge, quantizar-la-emos com
o método do campo auxiliar de Nakanishi, que é uma técnica invariante
de Lorentz. Mostraremos que no caso do campo de Podolsky livre uma
correcao a lei de Stefan-Boltzmann é esperada e utilizaremos dados da ra-
diacao cosmica de fundo em microondas para limitar os possiveis valores
do parametro de Podolsky. Investigaremos, também, as equacoes de Dyson-
Schwinger-Fradkin e as identidades de Ward-Fradkin-Takahashi da teoria em
equilibrio termodinamico.

Palavras Chaves: Formalismo de Matsubara-Fradkin para teorias quanticas
de campos em equilibrio termodinamico; densidade de Lagrangeana com
derivadas de segunda ordem; eletrodinamica de Podolsky; quantizagao de
teorias de gauge; campo auxiliar de Nakanishi; modificacao na lei de Stefan-
Boltzmann.

Area do conhecimento: Teoria de Campos.

v



Abstract

In this thesis we study Podolsky quantum electrodynamics in thermody-
namic equilibrium via Matsubara-Fradkin formalism. Since Podolsky elec-
trodynamics is a gauge theory, we quantize it using Nakanishi’s auxiliary field
method, which is a Lorentz invariant procedure. For the case of free Podol-
sky field we show that a correction to the Stefan-Boltzmann law is expected
and we set a thermodynamical limit for the Podolsky parameter using data
from the cosmic microwave background radiation. We also study the Dyson-
Schwinger-Fradkin equations and the Ward-Fradkin-Takahashi identities of
the theory in thermodynamic equilibrium.

Keywords: Matsubara-Fradkin formalism for quantum field theories in ther-
modynamic equilibrium; Lagrangian density with second-order derivatives;
Podolsky electrodynamics; quantization of gauge theories; Nakanishi’s aux-
iliary field; modification of Stefan-Boltzmann law.

Knowledge field: Field theory.



Last of all Hurin stood alone. Then he cast aside his shield, and wielded
an aze two-handed; and it s sung that the axe smoked in the black blood of
the troll-guard of Gothmog until it withered, and each time that he slew Hurin
cried: ‘Auré entuluva! Day shall come again!’ Seventy times he uttered that
cry; but they took him at last alive, by the command of Morgoth, for the Orcs
grappled him with their hands, which clung to him still though he hewed off
their arms; and ever their numbers were renewed, until at last he fell buried
beneath them. Then binding him, they dragged him to Angband with mockery.

The Silmarillion, de J. R. R. Tolkien
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Capitulo 1

Introducao

1.1 Comentarios iniciais

Compreender a mecanica quantica ¢é dificil; comprender a teoria quantica de
campos, mais dificil. A razao pode ser a dificuldade técnica envolvida. A
razao pode ser puramente interpretativa. Para mim, ¢ uma amélgama de
ambas.

Do ponto de vista técnico, a dificuldade é enorme. Enquanto que os ob-
servaveis da mecanica quantica sao associados a operadores de um espaco de
Hilbert, as quantidades correspondentes na teoria de campos sao distribuicoes
operatoriais (2, 3, 4]. E um trabalho drduo manter a consisténcia matematica
enquanto se visa obter resultados que possam ser comparados com dados ex-
perimentais. Essa tarefa é tao ardua que ela chega a ser rara. Em geral,
trabalhos matematicamente rigorosos tendem a provar propriedades formais
da estrutura tedrica de uma teoria de campos [5]. Por outro lado, embo-
ra nao seja uma regra de maneira alguma geral, trabalhos voltados para a
fenomenologia seguem a tendéncia de nao focar no formalismo matematico
da teoria. Esta tese recai num limbo entre esses dois extremos: ela nao é for-
mal e nao tem quase nenhuma fenomenologia. Ela é, no entanto, em primeiro
lugar uma tentativa de se esclarecer alguns topicos basicos de teoria de cam-
pos, em especial, nas situagoes de equilibrio termodinamico. Esse assunto
é tratado como uma subarea da teoria de campos mas, do ponto de vista
abordado nesta tese, a situacao ¢ inversa: da situagao de equilibrio pode-se
obter os resultados de temperatura nula, mas a reciproca nao vale. Matema-
ticamente, esta tese é simplificada demais: distribuigoes sao ingenuamente
tratadas como funcoes. Além disso, pouco conhecimento prévio de teoria
quantica de campos é necessario para acompanhar a exposicao. Esta tese foi



escrita com a intencao de ser um guia para quem conheca mecanica quantica
e teoria classica de campos.

A quantidade de trabalhos voltados para interpretacoes da teoria quantica
de campos é praticamente nula se comparada com o montante de literatura
voltada para interpretacoes da mecanica quantica. E bem verdade que muito
provavelmente alguma extensao ou adaptagao da interpretacao de Copenha-
gen da mecanica quantica se aplique a teoria de campos. Mas teoria de cam-
pos nao ¢ mecanica quantica. Teoria de campos é uma teoria com seus efeitos
e implicagoes fisicas proprios e, dentre os mais surpreendentes, distintos da
fenomenologia da mecanica quantica [6]. Enquanto que a mecéanica quantica
¢ uma teoria geral, com atomos e elétrons descritos pela mesma equacao,
na teoria de campos cada objeto de estudo é descrito por um campo. A
descricao de um tunico atomo do ponto de vista de teoria de campos é, até
o presente, um problema em aberto. Na mecanica quantica, o quadrado do
modulo da funcao de onda possui uma interpretagao probabilistica. Na teoria
de campos, nao ha funcoes de onda. Na mecanica quantica, o principio de in-
certeza de Heisenberg sustenta que nao faz sentido atribuir significado fisico
simultaneo aos observaveis posicao e momento de um sistema. Na teoria de
campos, por outro lado, “posicao” nao é, a rigor, um observavel. Existem,
ainda, muitas outras diferencas entre as teorias, mas o exposto provavelmente
ja sirva para indicar que as teorias sao muito distintas e que a interpretagao
usual da mecanica quantica enfrenta algumas dificuldades que sao muitas
vezes ignoradas ao se estudar teorias de campos.

A fim de se evitar o algumas vezes enfadonho procedimento teérico de
se calcular amplitudes de espalhamento no regime perturbativo, Stueckel-
berg e Feynmann desenvolveram uma espécie de atalho: o recurso conhecido
como grafos de Feynmann. Nessa abordagem, em vez de se calcular termos e
mais termos advindos da aplicagao do teorema de Wick para um processo ou
entao de se calcular diversas derivadas funcionais de um funcional gerador
complicado, basta desenhar uma quantidade finita de grafos topologicamente
inequivalentes e, entao, fazer-se uso das chamadas regras de Feynmann para
se obter precisamente os mesmos resultados fornecidos pelas outras abor-
dagens. Nao ha a menor duvida do valor dessa técnica: muito tempo é
poupado e grandes avancos na comparacao das previsoes tedricas com dados
experimentais foram e vem sendo obtidos através de seu emprego. Infeliz-
mente, interpretacoes equivocadas e razoavelmente difundidas desses grafos
levam a conceitos fisicos erroneos. O principal problema, na minha opiniao,
surge ao se atribuir a cada linha de um grafo o significado de representar
uma particula. As linhas internas de um grafo seriam uma representacao da
realidade objetiva durante um processo de colisao, por exemplo, segundo a
referida visao. No entanto, do ponto de vista de uma interpretacao positivis-



ta, apenas quantidades que possam ser medidas possuem significado fisico.
O evento da colisao nao pode ser medido, mas apenas os estados inicial e
final dos campos. Por essa razao, atribuir significado fisico as linhas dos
grafos de Feynmann nao esta de acordo com visoes positivistas. Sendo a in-
terpretagao de Copenhagen positivista, seriamos forcados a abandonéa-la em
teoria de campos, bem como quaisquer de suas possiveis adaptagoes. Uma
vez que a visao mencionada afirma a existéncia de uma realidade que nao
pode ser medida, a saber, as configuragoes das particulas durante processos
de colisao, essa interpretacao teria um cardater realista. Nao é dificil, con-
tudo, argumentar que uma visao realista desse tipo nao possui consisténcia.
Consideremos qualquer grafo de qualquer teoria que possua um loop interno.
Segundo a visao realista, esse loop é interpretado como constituindo-se da
criacao de um par de particula e antiparticula com sua subsequente mutua
aniquilagao. Porém, segundo as regras de Feynmann, esses eventos de criagao
e de aniquilagao sao integrados em todo o espago-tempo. Ou seja, os even-
tos de criacao e de aniquilagao de pares devido a colisao que sao causados
pelo estado inicial e contribuem para o final nao ocorrem somente durante
o processo de colisao mas em todo o ponto do espaco em todo o instante de
tempo. Teriamos, assim, nao apenas particulas voando com velocidades e
energias arbitrdrias, mas também as particulas do estado inicial causando
a criagao de um par, digamos, cinco minutos depois do estado final ter sido
medido viajando, entao, no tempo para se aniquilar dez bilhoes de anos atras
e contribuindo para o resultado final. Para evitar esse tipo de equivoco, os
grafos nao serao utilizados nesta tese. Todo este paragrafo, entretanto, foi
incluido com a finalidade de chamar a atencao do leitor para essa questao,
que ¢ deliberadamente ignorada na grande maioria dos livros-textos sobre
teoria de campos.

Esta tese tem um carater construtivo, sendo que pouco conhecimento
prévio dos assuntos abordados sao necessarios. Os operadores de campo,
por exemplo, apresentados nesta tese podem, sem muitos problemas, serem
entendidos como os operadores da mecanica quantica, com a extensao de que
a0 invés de um parametro temos um nimero maior correspondente ao niimero
de dimensoes espaco-temporais. De antemao afirmo que esta tese ficou mais
longa do que eu gostaria, mas confesso que nao fora a urgéncia do tempo,
ela ainda seria um pouco maior. Devido a pressao temporal, alguns assuntos
que eu gostaria de abordar ficaram de fora, dentre eles destaco a renorma-
lizabilidade da teoria de Podolsky em equilibrio termodinamico, as solucoes
nao perturbativas para as fungoes de Green e os fenomenos caracteristicos de
Fisica de plasmas, como a blindagem de Debye e oscilagoes coletivas [7, 8, 9].



1.2 A teoria termodinamica

A termodinamica é uma teoria desenvolvida no século XIX com o objetivo de
se descrever processos envolvendo trocas de calor entre objetos macroscopicos.
Seus desenvolvedores nao conheciam a estrutura atomica da matéria, por-
tanto o desenvolvimento da termodinamica se deu com bases puramente
empiricas e macroscépicas, salvo raras excegoes. As leis basicas da ter-
modinamica, todavia, fazem mencao apenas a quantidades macroscdpicas,
como o volume do sistema e a sua energia interna.

Um conceito central na teoria termodinamica ¢ o chamado estado de
equilibrio termodinamico. E dificil dar uma descricao precisa do que seja
esse estado. Na maioria dos casos, sua definicao é a posteriori: a ter-
modinamica somente pode ser aplicada a sistemas que estejam em equilibrio
termodinamico. Se eventualmente num determinado caso particular a teo-
ria termodinamica previr resultados contraditos pelos dados experimentais,
o sistema nao estd num estado de equilibrio [10].

Embora falte uma definicao precisa do conceito de equilibrio termodina-
mico, algumas de suas propriedades sao conhecidas. Primeiramente, ele é um
estado macroscopicamente estaciondrio. Isso significa que, contanto que ape-
nas sejam realizados experimentos que mecam quantidades macroscépicas,
os resultados sao independentes do tempo. Isso nao implica que o sis-
tema seja microscopicamente independente do tempo. De fato, ele nao é.
Mesmo quando um determinado gas esta em equilibrio termodinamico, suas
moléculas constituintes estao descrevendo trajetérias complexas devido as
incomensuraveis colisoes mutuas. No entanto, no caso de teoria de campos,
embora campos sejam objetos quanticos, assumi-los independentes do tempo
é uma hipotese que simplifica a abordagem e garante, por exemplo, que
medic¢oes de uma funcao dos campos no ensemble realizada em dois instantes
distintos fornegam os mesmos resultados. A segunda propriedade fundamen-
tal consiste na auséncia de memoéria do sistema. Dito de outra forma, dado
um sistema em equilibrio termodinamico, por medicoes sobre o sistema é
impossivel saber como ele chegou ao estado de equilibrio. Estudaremos no
capitulo 4 a radiacao césmica de funda em microondas, que constitui-se do
campo eletromagnético quantico em equilibrio termodinamico. A questao de
como a radiacao de fundo atingiu a condicao de equilibrio nao é abordada
pela termodinamica.

Nesta tese a conexao da estatistica quantica com a termodinamica é feita
via limite termodinamico. Neste processo, pela aplicacao de limites apropri-
ados encontra-se equacoes envolvendo termos que sao, entao, identificados
com quantidades termodinamicas. Desse ponto de vista, nao se pode de-
duzir as leis da termodinamica a partir de leis que governam os fenémenos



microscopicos, mas somente se pode fazer uma espécie de associacao entre
quantidades microscopicas e macroscépicas. O teorema H de Boltzmann
mostra como a segunda lei da termodinamica emerge a partir de uma teo-
ria microscépica. No entanto, existe uma discussao sobre a validade desse
teorema, uma vez que para se pode resolver as equacoes, Bolztmann fez a
hipétese de caos molecular e essa hipotese, por si s6, quebra a invariancia
temporal. Dito de outra forma, a fim de demonstrar a quebra da simetria
temporal, Boltzmann supos a quebra da simetria temporal. Essa questao
também nao é tratada nesta tese.

1.3 Um tributo a E. S. Fradkin

Grande parte do conteudo desta tese é profundamente influenciada pelos
trabalhos de E. S. Fradkin. Fradkin foi pioneiro em diversas areas da Fisica
Tedrica mas, infelizmente, seu nome permanece esquecido. Apenas para
citar alguns dos seus feitos, ele desenvolveu a formulagao funcional da teoria
quantica de campos e estatistica quantica [11, 12]. Logo apds Matsubara
estabelecer as bases do formalismo baseado na matriz densidade do ensemble
canonico para o tratamento da mecanica quantica em equilibrio térmico,
Fradkin extendeu seu formalismo para descrever teorias quanticas de campos
no ensemble grao-canonico langando, assim, as bases para a quantizacao de
campos em equilibrio termodinamico [12, 13]. Fradkin também encontrou o
sistema de equagoes renormalizadas das fungoes de Green obtidos por Dyson
e Schwinger [11]. Nesse sistema de equagoes, Dyson conjecturou em 1949 uma
certa relacao, que foi provada no ano seguinte por Ward e ficou conhecida
como identidade de Ward. Alguns anos mais tarde e antes de Takahashi,
Fradkin provou todas as demais identidades conhecidas como identidades de
Ward-Fradkin- Takahashi [14, 15]. Fradkin codescobriu independentemente
de Landau e de Pomeranchuk o problema da carga nula da eletrodinamica
quantica. Fradkin inventou a teoria de perturbagao modificada que leva seu
nome [16]. Ele foi pioneiro no estudo da interagao fraca e teorias de gauge
nao Abelianas, desenvolveu um método de quantizacao de teorias vinculadas,
estudou teorias conformes, supergravidade, cordas e teorias de unificacao.
Por seus feitos e por sua inspiragao, esta tese ¢ um tributo ao seu nome.

LConsultar o apéndice de [1] para a lista completa.



1.4 Em defesa de Maxwell

Eletromagnetismo ¢ sinonimo de J. C. Maxwell. Todo o desenvolvimento tec-
noldgico e cientifico da humanidade deve-se, em grande parte, a teoria eletro-
magnética resumida nas quatro equagoes de Maxwell e na for¢ga de Lorentz
[17]. Circuitos de computadores, transmissoes de informacao por fibras éticas
e por ondas eletromagnéticas, celulares, internet sem fio, lasers, cartoes
magnéticos, cameras de seguranca, sistemas de navegacao por satélite, sondas
espaciais, correios eletronicos, radiografias, ressonancias magnéticas, fornos
microondas, tudo isso tem por base a teoria de Maxwell. A versao quantica
da eletrodinamica Maxwelliana, juntamente com corre¢oes devido aos de-
mais campos do Modelo Padrao das Particulas Elementares mantém, hoje,
o recorde de previsao mais precisa de uma teoria ja desenvolvida [18]. Sendo
assim, ha algo de errado com essa teoria?

Nao.

Pelo menos se ha, ainda nao detectamos. Todas as previsoes da teoria
estao de acordo com os dados experimentais. Nao existe no momento a
necessidade de se estender a teoria, ou de adapta-la, ou ainda de substitui-la
por outra totalmente diferente.

Se assim, por qual razao estar-se-ia a teoria eletromagnética de Podolsky?

1.5 Sobre a necessidade de se estudar a teoria
de Podolsky

A razao principal devido a qual a teoria de Maxwell é estudada é que ela exibe
as duas simetrias basicas empiricamente fundamentais do eletromagnetismo:
a de Lorentz e a de gauge [19]. Uma alternativa razoavelmente conhecida
para a teoria de Maxwell é a eletrodinamica massiva, na qual o campo de
Maxwell é substituido por um campo de Proca. Se a massa desse campo
for suficientemente diminuta, é possivel, pelo menos em principio, descrever
todos os resultados experimentais tao bem quanto a versao Maxwelliana.
No entanto, a presenca de uma massa no campo de gauge, nao importando
quao pequena seja ela, quebra explicitamente a simetria de gauge. Entao, a
menos que a simetria observada nos experimentos seja uma simetria apro-
ximada, a eletrodinamica massiva nao pode fundamentalmente descrever a
eletrodinamica observada. A teoria de Podolsky, por outro lado, embora en-
volva um setor de Proca, é uma teoria que exibe as duas simetrias fundamen-
tais do eletromagnetismo, a saber, a de Lorentz e a de gauge [20, 21, 22]. Por
ajustes apropriados do parametro livre da teoria seria, em principio, possivel



descrever todos os resultados experimentais do eletromagnetismo pelo menos
tao bem quanto a teoria de Maxwell.

A resposta mais simples, entao, para a questao levantada no inicio da
secao anterior € que a teoria de Maxwell nao é a unica que, em principio,
esta de acordo com todos os dados experimentais, nao é a Unica capaz de
descrever os circuitos de computadores e sistemas de navegacao e nao ¢é a
unica que pode manter o recorde de previsao mais precisa. A teoria de
Maxwell nao é nada mais do que um limite, um caso especial da teoria de
Podolsky. Além disso, de acordo com Cuzinatto, de Melo e Pompeia em
[23], a teoria de Podolsky é a tunica extensao possivel do eletromagnetismo
usual que contém derivadas de segunda ordem e que mantém a simetria de
gauge e de Lorentz. Sendo Podolsky uma teoria de derivadas de ordens
superiores, sua estrutura tedrica é mais fascinante [24]. De fato, utilizando a
teoria de Podolsky, J. Frenkel resolveu o antigo e famoso problema do “4/3
da eletrodinamica classica”[25]. Esse mesmo problema, do ponto de vista
da teoria de Maxwell, permanece nao solucionado. Conforme indicado por
Cuzinatto, de Melo, Medeiros e Pompeia em [26] com diversas propostas
experimentais, a teoria de Podolsky pode ser fenomenologicamente testada.
Na realidade, uma de suas implicagoes experimentais ¢ um dos resultados
desta tese [27].

Finalizando esta se¢ao, parece-me conveniente citar Sir A. S. Eddington
[28]:2

The law that entropy always increases - the second law of thermodynamics
- holds, I think, the supreme position among the laws of Nature. If someone
points out to you that your pet theory of the universe is in disagreement with
Mazwell’s equations - then so much the worse for Mazwell’s equations. If it
is found to be contradicted by observation - well, these experimentalists do
bungle things sometimes. But if your theory is found to be against the second
law of thermodynamics I can give you no hope; there is nothing for it but to
collapse in deepest humiliation.

Com esse pensamento em mente, estudaremos justamente as questoes
termodinamicas da teoria de Podolsky nesta tese.

2Traducdo: “A lei de que a entropia sempre cresce - a segunda lei da termodinamica, -
possui, penso eu, a posi¢ao suprema entre as leis da Natureza. Se alguém lhe mostrar que
a sua teoria simples do universo estd em desacordo com as equagoes de Maxwell - entao
azar das equagoes de Maxwell. Caso se descubra que ela é contradita pela observacao -
bem, esses experimentais fazem coisas tolas de vez em quando. Mas caso se descubra que
sua teoria viola a segunda lei da termodinamica eu nao posso te dar esperancas; nao resta

nada para ela além de se afundar na mais profunda humilhagao.”
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1.6 Como ler esta tese

E impossivel para um autor saber de antemao quem lera seu trabalho. Eu
fiz, contudo, algumas suposi¢oes sobre o leitor. Nem o formalismo nem a
teoria aqui apresentados sao, em geral, conhecidos. Entao, suponho que o
leitor tenha interesse principalmente por pelo menos um desses dois topicos.
Se o interesse do leitor for o formalismo de Matsubara-Fradkin, recomendo
a leitura do capitulo 2. Nele o formalismo é apresentado dos primoérdios, ini-
ciando com a apresentacao da matriz densidade de um ensemble em equilibrio
termodinamico. O capitulo é finalizado com um exemplo de um campo
escalar real com interacao arbitraria. Caso o leitor esteja interessado na
quantizagao da eletrodinamica usual de Maxwell, basta recorrer ao terceiro
capitulo tomando o limite mp — oo (ou, equivalentemente, A\p — 0) em
todas as expressoes sempre que o limite existir. Procedendo dessa forma, o
leitor encontrard as expressoes correspondentes na teoria Maxwelliana. Se,
por outro lado, o interesse principal do leitor for a teoria de Podolsky, sua
emersao a partir do principio de gauge é apresentada na secao 3.1 e suas carac-
teristicas mais basicas na secao 3.2. No restante do capitulo 3 é apresentada
a quantizacao da teoria de Podolsky em equilibrio termodinamico. Algumas
implicagoes fenomenolégicas da eletrodinamica de Podolsky em equilibrio
sao encontradas no capitulo 4. As conclusoes sao apresentadas no ultimo
capitulo.



Capitulo 2

Fundamentos da quantizacao de
campos em equilibrio

termodinamico

Neste capitulo estudaremos o formalismo de Matsubara-Fradkin da quan-
tizagdo de campos em equilibrio termodinamico [29, 12, 13]. Iniciaremos
o capitulo introduzindo o conceito de matriz densidade, um operador que
contém toda a informagao a respeito do sistema quantico estudado [30]. A
formulagao da Mecanica Quantica em termos desse operador nao é restrita
aos casos dos estados puros (situagoes comumente descritas na Mecanica
Quantica nao-relativistica pela equagdo de Schrodinger), mas também de-
screve sistemas em situagoes mais gerais [31]. Dentre tais situagoes, desta-
camos a de equilibrio termodinamico [32]. A fim de descrevermos um sistema
quantico em equilibrio, introduziremos o conceito de ensemble, que nada mais
¢ do que o conjunto de estados sobre os quais as medicoes sao realizadas.
Como desejamos estudar o sistema quantico em equilibrio, especializar-nos-
emos no caso do ensemble grao-canonico. Esse ensemble é um dos possiveis
conjuntos de estados que descrevem uma situacao de equilibrio termodina-
mico. A seguir, estudaremos os analogos da evolucao temporal em equilibrio
sendo que com o auxilio da matriz densidade encontraremos a equagao satis-
feita pelo funcional gerador. A partir dessa quantidade, que estd relacionada
intimamente com a matriz densidade, todas as fungoes de Green da teoria
quantica podem ser obtidas.



2.1 A matriz densidade

O que segue é valido para o caso relativistico, contudo, nao é uma formulacao
covariante de Lorentz.

A matriz densidade p, um operador funcional dos operadores campos e
momentos canonicamente conjugados aos campos, contém toda a informacao
de um sistema quantico. O ensemble, por sua vez, é o conjunto de estados
no qual as medigoes sao realizadas. Em diversas situacoes estamos interes-
sados em ensembles puros e a descricao da Mecanica Quantica é feita de
maneira usual - com a equagao de Schrodinger, no caso da teoria quantica
nao relativistica. Contudo, em muitas outras situagoes, estamos interessados
em conjuntos de estados que nao podem ser descritos de uma maneira tao
simples. Em todos os casos, o ensemble é completamente definido uma vez
dada a matriz densidade do sistema. No que segue, estudaremos a matriz
densidade normalizada 0.! Com essa matriz, a média no ensemble de um
operador arbitrario A é

<21> =Tr (521) , (2.1)
sendo Tr o trago.
No caso especial no qual o ensemble é puro, a matriz densidade é dada
pelo projetor

or = 1£){¢l, (2.2)

sendo |£) o estado do sistema fisico (que assumimos normalizado: (£|€) = 1).

~

Neste caso, vemos que a média no ensemble de um operador A reduz-se ao

£):
(4), = 1 (2rd) =1 (l6)(el A) = D ule) (€| 4] ba)
_ Z<g‘fx bn> <bn|5>:<5’ﬁ‘§>. (2.3)

Nesta expressao calculamos o traco numa base ortonormal arbitraria for-
mada pelos vetores {|b,)} e utilizamos a resolu¢ao da unidade nessa mesma
base,

seu valor esperado no referido estado <§ ‘A\

1= |bn) (bal. (2.4)

LA diferenca entre as matrizes densidade normalizada e nio normalizada ficara clara

no que segue.

10



Vemos, dessa forma, que a média num ensemble puro coincide com a
média obtida na teoria quantica usual. Assim sendo, nao necessitamos da
matriz densidade para descrever os resultados, embora a teoria da matriz
densidade também forneca corretamente os resultados neste caso. Contudo,
em geral, a matriz densidade nao pode ser escrita na forma (2.2). Sua forma
geral é

oG = ng‘@\Pj, (2.5)
J

sendo w; > 0 satisfazendo » . w; = 1, a soma indo de 1 a um nimero
que depende das caracteristicas particulares do ensemble em questao e gp,
matrizes densidade de ensembles puros

or; = &)l (2.6)

Vemos que a média nesse ensemble geral é

<21>G =Tr <§G21\> =Tr Z ij)\P].A\ = ijTr (@\ij>
J J
=3 w, <2>£_ (2.7)
§ J

e notamos que a igualdade (2.3) nao é satisfeita, mas em seu lugar obtemos
uma média de valores esperados de ensembles puros definida pelo conjunto
dos pesos estatisticos {w;}.

Uma vez apresentada a matriz densidade e o conceito de ensemble, estu-
daremos um dos ensembles que caracterizam o equilibrio termodinamico.

2.1.1 O ensemble grao-candnico

Uma teoria de campos pode apresentar um certo numero de simetrias. De
acordo com o teorema de Noether, associada a cada simetria continua do
sistema estudado existe uma quantidade, chamada de carga de Noether, que
é conservada. A existéncia de quantidades conservadas numa teoria limita
drasticamente seu comportamento, uma vez que a conservacao de uma quan-
tidade fisica constitui-se em um vinculo que o sistema deve respeitar. A fim
de clarificar as ideias, consideremos o exemplo da teoria Newtoniana para
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a mecanica de particulas. Consideremos, ainda, que esse sistema fisico seja
conservativo. Nesse caso, o sistema ¢ invariante por translagoes temporais e,
pela versao do teorema de Noether para particulas nao relativisticas, a ener-
gia se conserva. Entao, de todas as trajetorias concebiveis para cada uma das
particulas, somente podem ser fisicamente realizadas aquelas que nao violam
o vinculo de conservacao da energia. O mesmo ocorre para uma teoria classica
de campos: caso existam simetrias no problema e, consequentemente, cargas
de Noether associadas ao sistema, de todas as configuragoes de campos ima-
gindveis, o sistema fisico somente exibe aquelas que respeitem a conservacao
de cada uma das cargas. A versao quantica dessa propriedade existe: para
uma teoria quantica de campos com um certo ntumero de simetrias, tere-
mos um certo nimero de operadores cargas de Noether.? A conservacao
de cada um desses operadores sao vinculos aos quais o sistema esta sujeito.
Quando os elementos de um subconjunto dessas simetrias forem simetrias
internas, continuas e globais, o formalismo desenvolvido por Matsubara e
Fradkin inclui os operadores cargas de Noether associados a elas na matriz
densidade através da inclusao de multiplicadores de Lagrange. Esses mul-
tiplicadores de Lagrange sao, posteriormente, identificados com os diversos
potenciais quimicos do problema. As quantidades termodinamicas indepen-
dentes utilizadas na descricao do sistema sao, entao, a temperatura 7' = 71,
os potenciais quimicos {/;} e o hipervolume em D dimensées V. O ensemble
descrito por tais quantidades é chamado de ensemble grao-canonico.
Podemos encontrar a matriz densidade nesse ensemble impondo que as
médias no ensemble dos operadores Hamiltoniano H e cargas de Noether

{Nj} coincidam com os valores da energia interna do sistema e dos valores

termodinamicos para as cargas de Noether, respectivamente,
<ﬁ1> ~ U (2.8)
gc
() = N, (2.9)
gc

sendo <A> a média no ensemble calculada com a matriz densidade 9, =

gc
TV {1 ~ .
§§]C i 4o ensemble grao-canonico.

Além dessas condigoes, impomos uma condicao de normalizacao da matriz

2Pode ocorrer que uma teoria exiba uma certa simetria no regime cldssico e nao a

apresente em sua versao quantica. Esse fenomeno é chamado de anomalia.
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densidade tal que a média no ensemble da identidade seja 1:3

<T>gc — 1. (2.10)

Essa condicao ¢é extremamente importante, pois garante que as médias no
ensemble de operadores multiplos da identidade sejam exatamente iguais ao
fator de proporcionalidade entre eles e a identidade. Conforme veremos nas
proximas secoes, estudaremos a quantizagao do campo escalar na presenca
de fontes externas cldssicas J(7,x). No espaco de Hilbert, essas quantidades
sao um miltiplo da identidade: J(r, X)/l\ De acordo com a condicao acima,
a média no ensemble dessa fonte classica coincide com seu valor cléssico:

<J(T, x)T> = J(r,%).
gc
Definimos a entropia S de um sistema quantico através da seguinte ex-
pressao:

= — (In(3,0)),, - (2.11)

Essa definicao é a versao quantica da entropia de Gibbs.

Ao se variar infinitesimalmente as quantidades termodinamicas usadas
para se definir o ensemble grao-candnico, quais sejam, a temperatura 7', o
volume V' e os potenciais quimicos {f;}, de acordo com

T — T =T+ T; (2.12)
Voo V=V 46V (2.13)
fj = = i+ opy, (2.14)

a matriz densidade, ou seja, o proprio ensemble grao-canonico original, muda
de acordo com:
SOVl _y STV Srrsmvaviin ) Homh) _ 50V 155 (915
Qgc - Ogc - Qgc - Qgc + QQC‘ ( . )
Consequentemente, a média no ensemble de qualquer operador muda, pois
o proprio ensemble mudou. Contudo, é hipétese da teoria termodinamica
que a entropia seja invariante sob essa troca, contanto que o novo ensem-
ble seja ainda um ensemble grao-candnico. Portanto, como condicao vinda

da termodinamica, impomos que a variagao da entropia (2.11), com a ma-
triz densidade sujeita aos vinculos (2.8-2.10), seja nula. A implementagao

3A condigao (2.10) juntamente com a definigdo de média no ensemble (2.1) sdo justa-
mente as expressoes que caracterizam a normalizacao do que chamamos de matriz densi-
dade normalizada.
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dos vinculos é feita através da adicao de multiplicadores de Lagrange, que
chamaremos de A\, {)\Nj} e A\1. Assim, impomos

5 [Al <1>gc + Ay <H>gc + A, <Nj>gc —(In (Qgc»gc} ~0. (2.16)
Utilizando a definicao de média no ensemble:

6 { T [Ny + AoBoe H + A, 0Ny = B (@) | = Te{ [0 = 1) T+
Ao H + Ay, N +
— In (2ge)] 00}

= 0.  (2.17)
Uma vez que 6py. € arbitrario, devemos ter
(M = DT+ A H + Ay, N; — In (3ye) = 0, (2.18)
sendo 0 = 01. Também podemos escrever
I (Gpe) = (M — 1)1+ A\gH + Ay, Nj. (2.19)
A solucao dessa equagao é
G0 = =D H Ay, N e,\1—1€/\UI§+ANjﬁj7 (2.20)

sendo que utilizamos o fato de que a identidade comuta com todos os opera-
dores existentes.
Agora, impomos a condi¢ao de normalizagao (2.10):

(1) = T (8,d) = Tr(3,0)
gc
M1y (e*Uﬁ“Njﬁj) — 1. (2.21)

Dessa expressao, encontramos a primeira relagao entre os multiplicadores de
Lagrange:

Ml = L : (2.22)
Ty (6)\UH+)\Nij>

ou seja,

1 o
A =In | 1=l [T (MTONT) ] (223)
Tr (e UHTAN; j)
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A fim de encontrarmos os demais multiplicadores de Lagrange, multipli-
camos a equagao (2.19) por —p,., tomamos o trago e utilizamos os vinculos
(2.8-2.9):

—Tr [2ge In (2ge)] = 5 =In [Tr (e’\Ug“Njﬁj)] =AU = AN NG (2.24)
Multiplicamos esse resultado pela temperatura:

TS =TIn [Tr (eAUﬁHNJNj)} —TAyU = TAn,Nj, (2.25)

T [Tr (4075 %) | = “TAGU = TS = TAx, NG, (2.26)

Comparamos essa expressao com a equacao termodinamica que define o
grao-potencial Q (T, V, {p;}):

QT Vi Aws}) =U =TS — N (2.27)
Assim, identificamos:
OTV{ps}) = —T[Te (XA, (2.28)
o= =5 (2.29)
ou seja, o
QT V,{u;}) = =Tn {Tr [e*ﬂ(H*wNﬂ] } . (2.31)

Com isso, a matriz densidade normalizada do ensemble grao-canonico se

escreve como o
o~ B(H—1;N;)

Tr [e—ﬁ(ﬁ—ﬂjﬁj)] '

@%g{,‘/,{uj}) —

(2.32)

Notamos que a matriz densidade normalizada é completamente especi-
ficada uma vez conhecido o operador exp [—6 <H — /Lij)]. Chamaremos
esse operador de matriz densidade nao normalizada ﬁgf’w{“j}) = pyc do en-
semble grao-canonico

Py = e P15, (2.33)

Em termos desse operador, a matriz densidade normalizada (2.32) e a
média no ensemble (2.1) se escrevem respectivamente como
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Pyc

Oge =y o) (2.34)
<21> :%. (2.35)

Além disso, recordemos que o potencial termodinamico Q (7, V, {u;}) é
escrito como

QT V{u}) = =T [Z(T,V{p;})], (2.36)

sendo Z (T,V,{y;}) a funcdo de particao. De posse da fungao de particao
podemos calcular todas as quantidades termodinamicas. Com o auxilio das
equagoes (2.31), (2.33) e (2.36), identificamos

Z(T,Vi{u;}) = Tr (pge) - (2.37)

Vemos, assim, que a partir da matriz densidade nao normalizada no en-
semble canonico, doravante chamada apenas de matriz densidade, todas as
quantidades termodinamicas podem ser calculadas.

2.1.2 Sobre a inclusao de fontes

Consideremos uma teoria de campos cujo Hamiltoniano seja H. Em geral,
essa teoria terd um certo nimero de operadores cargas de Noether associados
a simetrias internas globais. Denotaremos esse conjunto de operadores cargas

~

de Noether por {Nj}.4 Por esses operadores serem cargas de Noether, eles

sao conservados, donde eles comutam com o Hamiltoniano,

[ff, Nj] -0, Vi (2.38)

Consideremos, agora, que além dos campos quanticos usuais, tenhamos a
presenca de fontes classicas externas no nosso problema. O que sao fontes?
Fontes sao campos que aparecem na densidade de Lagrangeana do problema
na forma s(x)p(z), sendo s(x) a fonte e p(r) o campo do qual s(x) é a
fonte. Essas fontes sao classicas porque elas sao fungoes, nao operadores.

4Esse conjunto pode ser vazio.
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Mais precisamente, suas representacoes no espago de Hilbert sao funcoes
multiplicadas pela identidade, isto ¢, s(z)1. Essas fontes sdo ditas externas
porque seus Uinicos aparecimentos na densidade de Lagrangeana do problema
sao em termos do tipo s(x)p(z). Em outras palavras, suas dinamicas nao
sao consideradas.

Caso estivéssemos tratando de um problema clédssico, a inclusao de termos
de fonte alteraria a energia do problema, ou seja, alteraria a Hamiltoniana do
mesmo. Como estamos tratando de um problema quantico, um novo termo é
adicionado ao Hamiltoniano do problema. Denotaremos esse termo por H,:

H, = / H, (x)d"z, (2.39)
sendo a densidade de Hamiltoniano das fontes dada por
~ 1 ~ o~
Ho () = =57 |53 () 65 () = (=) 6 (x) 55 ()] (2.40)
J
com P; =1 quando a fonte s; comuta com seu campo associado e P; = —1

quando ela for uma varidavel Grassmanniana.

Uma questao a ser destacada é que embora os operadores cargas de
Noether comutem com o Hamiltoniano H, estes nao comutam, em principio,
com o Hamiltoniano das fontes H,. Sendo assim, se definissemos o Hamilto-
niano total Hy como a soma dos Hamiltonianos do sistema sem fontes com
o Hamiltoniano das fontes, isto é,

Hr=H + H,, (2.41)
terfamos como uma regra geral
[ﬁ[T, Nj] £0. (2.42)

A fim de tratarmos o problema de campos quanticos em equilibrio ter-
modinamico na presenca de fontes externas, consideremos a seguinte matriz

densidade

5. (8) = exp [=8 (Hr — ;)] (2.43)

sendo que assumimos a soma implicita em j tal que todas as cargas conser-
vadas associadas a simetrias internas globais sejam incluidas. Fssa matriz
densidade depende da temperatura, do hipervolume D-dimensional e dos po-
tenciais quimicos mas, por conveniéncia de notacao, somente sua dependéncia
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com a temperatura esta explicitada no primeiro membro. Derivando essa ex-
pressao com relacao a 3, temos

95 (8) _
op
Esta expressao é conhecida como equacgao de Bloch.

A fim de encontrarmos a matriz densidade do sistema com fontes externas,
suponhamos o seguinte Ansdtz:

— (Fr = 1;N;) 5 (8). (2.44)

. (B)=75(8)S(B), (2.45)

sendo p () a matriz densidade do sistema sem fontes externas em equilibrio
termodinamico

5(8) = exp |6 (- ;)] (2.46)
Esse operador satisfaz a equacao de Bloch com o Hamiltoniano sem fontes:

Ip (B o SN~

PO (- ) 05). (2.47)

Derivando o Ansétz (2.45) e utilizando as equagoes de Bloch (2.44) e
(2.47), obtemos

Bl0) _ g <5>%ﬁ>
= (A -n ) <ﬁ>+ﬁ<5>%ﬁ)
= —(H+H - H - 1) ﬁsw)m(m%m
= —(Br—wN,)p (5)+ﬁsﬁs(ﬂ)+p(6)%ﬁm (2.48)
o que implica
%mz—ﬁl (8) Hp(B) S (5). (2.49)

O inverso da matriz densidade é dado por p~'(8) = p(—f3). Para qual-
quer operador F' definimos sua dependéncia com a temperatura através de
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uma transformacao de similaridade com a matriz densidade do ensemble sem
fontes:

F(ry=p ' (n)Fp(r). (2.50)
Assim:

S(B) & oz

35 =—H,(8)S(B). (2.51)

Essa expressao mostra que S depende unicamente de Hy ().
Dessa forma, reescrevemos a equagao (2.51), trocando a variavel 8 por 7:

ag@ = —H,(r)S(r). (2.52)

Integrando essa equagao de 0 a 3, encontramos

. N B .
S(B)—S(0) = —/ drHg (1) S (7). (2.53)
0
Das expressoes (2.43), (2.45) e (2.46) vemos que
Ps(0)=1=75(0)5(0) = 5(0). (2.54)
Portanto, ficamos com
N ~ B .
§(8) =1- / dril, (r) 8 (7). (2.55)
0

Essa equagao é uma versao quantica de uma equagao do tipo de Volterra. A
solucao da equacao classica pode ser obtida por meio de iteracao. Tentando
essa mesma técnica, encontramos
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X {T—/DTZ drsH, (1) (T—)]} (2.56)

Procedendo indefinidamente, observamos que a solugao para o operador
S pode ser escrita na seguinte forma:

SB =T+ (-1 H/T' dr;H, (13, (2.57)
o 0 = . (2.58)

Definindo a func¢ao degrau de Heaviside 0(7) e o ordenamento 7" respec-
tivamente como

o(r) = 1, se 7 >0,
1 0, nos demais casos;

0(1 — 1) A(m1) B(2) + 6(72 — 1) B(12) A(m1), se 71 # 7;
A()B(12), se 11 = Ty;

(2.59)

T [A\<Tl)§(7'2)] =
(2.60)

com o sinal negativo utilizado quando ambos os campos forem Grassmannia-
nos e o positivo nos demais casos, podemos reescrever o operador S como

- B
S(B) = 1+Z(n1!) /O [Hde

J=1

= T{exp [—/Oﬁdrﬁs (7‘):|}, (2.61)
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Podemos escrever o Hamiltoniano das fontes em termos de um operador
densidade de Hamiltoniano da seguinte forma

H,(r) = / dPaH, (7). (2.62)

Agora, definimos:

G(rm) =T {exp [— / dr i, (7)} } | (2.63)

Claramente, R R
3(8,0)=3(8). (2.64)
Com esse novo operador, temos a equagao quantica de Volterra (2.55):
. ~ B .
§(8,0)=T- / dri. (1) 8 (,0). (2.65)
0
Temos, também
§(rr)=1- / dr L, (1) 8 (r1, 7). (2.66)

Derivando essa expressao com relagao a 7:

% = —H,(1)S(r.7). (2.67)

Resolvendo essa equagao por iteracao, encontramos

’

Jj=1

§(T,T’):T+Z(—1>nn/ i deﬁs(Tj), (268)
n=1 j T
com Ty = T, Ou seja:

§(7’, ™y=T {exp [—/ dﬁfls (7'1)1 } , (2.69)
conforme haviamos definido.

Derivando funcionalmente S (7,7’) com relacao a fonte s; (x, 7,), encon-
tramos:
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6S(rr) _ 8 ){I- /;dﬁﬁfsm)?(ﬁm')}

(53]' <X7 Tx) 55]' (X? T

— / dl(SH—()S(ﬁJ/)_/ dﬁﬁjs(ﬁ)w

dsj (x,7y) 055 (X, 72)

_ / Tl/d Y330 (y = %) 6 (1 = 72) i (y,7) 8 (m, ™) +
- [ anii, () D)

ds;j (x,7,) ~
() B(m — )3 () § (7 ) +

T o /
_/ drH, (1) M

985 (X, Ty)
(2.70)
Da equagao (2.66) com 7" = 7,, temos
S(7,7) :T—/ drH, (1) S (11,72) . (2.71)

Agora, multiplicamos essa equagao por &Ej (x,72) S (T, T'):

~ A~

S (7,72) 65 (%,72) 8 (10, 7') = b (x,70) 8 (70, 7') +
/dﬁ (1) S (71, 70) &5 (x,72) S (10, 7).
z (2.72)

Ou seja

~

¢j (X, Tx) §(7—a:a 7—/) = ‘/S\(T> T:c) aj (Xa Tx) §(7—xa 7—/) +
+ /T dTlf/'\Is (11) §(7’1, ) qgj (%, T2) §(7’$, .o (2.73)

Tz
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Logo:

55 (1,7)

ds; (X, Ty)

=0(7=7.)0 (7. — ) 0 (x,72) § (r2, ') +
T S (r,7)
/TdﬁH( )T i

—0(1—7) 0 (1o — ) S (7, 70) &; (x,70) S (T, 7') +
+0(r—7,)0(rp — ) / driH, (1) S (11, 72) %

Tx

~ ~ T - 63\ (7_17 7_/)
X Qi (X, Ty S Te, T / dr HS ) — 7 274
¢] ( ) ( ) » 1 ( 1) (SS] (X, 7-;1:) ( )
A fim de resolvermos essa equacao, supomos:
85 (,7) o R R
os; (x,70) - ‘ G
ey OIS )6 k) S ). (275)

Resta-nos, agora, substituir tal Ansdtz em (2.74) a fim de verificarmos
sua consisténcia:

5S (1,7")

58], (X,Tx) :9(7—_7-90)9(7-1‘ _T)S(T’Tw) ¢j (XaTx)S(Tm )+

FO(r—7)0(n, —T’)/Tdﬁ (1) 8 (rm) %

X ¢j (X> T:t Txa

>\

xe(ﬁ—fx)e(fm—f)sm,rx)q?(x ) S (72, 7)
ZQ(T—Tx)Q(TI—T)S(TTx)¢j<x 2) S (Tx,T,)—F

+9(T—Tx)e(7x—7’)/7dﬁ 5 (1) S (11, 72) ¥

X
<
£
&

@)

(T2, T') — / ’ dﬁf-\fs (11) 0 (11 — 72) X
0 (t — ) S (11, 70) &5 (X, 70) S (0, 7') +
— / driH, (1) 0 (1 — 72) 0 (1o — 7') S (71, 7) X

X 0 (x,7) S (1, 7). (2.76)
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Com isso,

5S (1,7")

53]’ (X,Tx) :9(7—_7_30>9(7_96 _T>S(T77—CL‘) ¢j (X7TI)S<7—I7 )+

—}-Q(T—Tz)Q(Tx—T,)/TdTl s (T )§(T1,Tz)><

X (Ej (X, T2) S\(Tx, "+
—0(r, — 1) / drH, (1) S (11, 72) &; (x,72) S (70, 7)
=0 (1 — 1) 0 (1o — ) S (1, 72) 65 (%, 70) S (72, T') (2.77)

0 que mostra que nossa suposicao € consistente e correta.
Assim, para 0 < 7,:

s =0 =) 8 () (x,7) 8 (7.0)
—0(r =) 8(,7) 817, 0) 3 (7, 0) x
5 () By (5,0 () 5 (70
=0(r~ )5 (r.1) 5 (72.0) [p(7) § (7.0)] &, (x.0) x
X 0 (72) S (72,0) . (2.78)

Uma vez que S (7,0) = S (7), temos

—1

=0(r=7)8(r,7) 5 (7.0) [p(m) S (m)] 45 (x,0) x

x p(12) S (12)
) S (7,72) S (72,0) 2" (72) &, (x,0) P () . (2.79)

55 (7,0)
ds; (x,7y)

=0 (1 — s
Agora, definimos, para qualquer operador 2
B (r) = .t (1) F (7). (2.80)
que difere de (2.50) devido & presenca do termo de fontes.® Assim,

85 (7,0)

555 (%,7) =0 (7 — 72) S(7,72) S (72, 0) ¢ (X, 72) - (2.81)

~

5Uma vez que p; ! (1) = ps (—7), notamos que F* (0) = F.
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Utilizando a definigdo (2.63) para 7 > 7., temos

{exp - / drH, (T)”T{exp {— /O i, <T)H
- T{exp _ / drH, (7)1 exp [— /0 dri, (T)]}
{eXp B / ar i, (7) — /0 il (T)H

= S(r,0). (2.82)

S(r,7)8(7,0) = T

Logo,
(x, 7). (2.83)

Uma vez que S (7,0) = S (7), encontramos o resultado

BO e
55]. (X>Tx) _0( x)S( )Qb]( ’ x) (284)

Com isso, a derivada funcional da matriz densidade com fontes com relacao
a uma das fontes é

-~

ops (1) ) NS P 0S5 (1)
0s; (X, 7) 085 (%, 7y) [p (TES ”ﬂ =07 35, (X, 72)
=0 (T - Tx) ﬁ(T) S (T) ¢j (Xa Tm)
= - B ()BT (2.85)
Para 7 = 8 > 7., encontramos
0ps (B) oy s
m =05 () ¢j (X, 7z) . (2.86)

Calcularemos, agora, a derivada funcional do produto da matriz densi-
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dade com fontes com um operador Fs (1) arbitrario:

e POF0)] - s en R0
0B
h 551(X,Tx)j (1) F(0) ps (1) +
+7s (B) gs[f? (21 F(0)p, (1) +
5 ()7 (1) P 0) % (287)

sendo que o sinal positivo é utilizado quando a fonte comuta com o operador
F' e o negativo usado quando esses objetos anti-comutam um com o outro.
Para qualquer matriz inversivel M, temos

MM =1, (2.88)
A derivada dessa expressao é
saran _soety, o 9(1)
= M+M ' — = =0. 2.
0s 0s + 0s 0s 0 (2:89)
Ou seja,
§(M™Y) _0M
——M=—-M"—. 2.90
0s 0s ( )

Multiplicando essa expressao pela inversa de M pela direita, encontramos a
férmula:

5 (M) M

5o = MM (2.91)
Com isso,
m [ﬁs () F* (7)] Z(Sf(s—}iﬁé)ptl (1) F (0) s (1) +
=507 () G () P 07 () +
0ps (7)

£0 B (N F (O 55

=7 () (x,) 51 (1) F (0) s (7) +
= Pa (B) P51 (1) 0(7 = 72) Pu (7) 5 (%, 72)
X Py (7) F(0) s (7) +

+ 5, (B) 5 (1) F(0)0 (1 — 7)) s (1) 65 (%, 72)
(2.92)

26



ou seja

J

0s; (x,7y)

(5.8 F* ()] =5, (8) {85 (5, 72) F* () = 0.7 = )

(2.93)
Se 1, > T, temos
0 R ~ R - .
553‘ (X, Ta:) [ps (5) F (T)] y = Ps (5) ¢j (X, Tx) F (7') . (294)

Por outro lado, se 7 > 7, temos

J

ds; (X, Ty)

7. (8) F = 78 {8 xm) P (1) +

6} (x,7) B (7) £ F* (1) 85 (x,72) |
= 5. (B)F* (1) ¢} (x,7a) . (2.95)
Podemos resumir esses resultados como

J

ds; (x,7y)

)| = 58) |00 —7)6) (xm) P (1) +

~

0 (7 — ) F* (7) & (x,7) |

— (BT [5; (x,7,) F* (T)] . (2.96)

5. (8)

Logo, a derivada funcional de segunda ordem da matriz densidade com fontes
é

O3 [50)]
ds; (y,my) 0s; (x,7y) dsi (y,my) 195 (x,7s)
)

- o) 7. (885 (x,7.)]

= AT v G xm)|.  (297)

Seja o funcional gerador termodinamico Zgp [{s;}] = Zg’;”j}’v [{s;}] de-
finido como
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Zer [{s;}) = Tr[p. (8] (2.98)

Notamos, em particular, que a funcao de particao pode ser obtida a partir
de Zgr simplesmente fazendo-se as fontes nulas:

Zar {5 =0} = Tr[ps (B)]l o = Tr [P (B)] = Z (B) - (2.99)

Tomando o trago da equagao (2.86), obtemos

59.8) ] 0T B ()] _ 6Zar (sl T e o -
o |:5Sj (XaTx):| B (SS]' (X,Tz) N 5Sj (X,Tm) =T Ps (ﬁ) ¢]( ) x) :

(2.100)

Calculando essa expressao para fontes nulas e dividindo pela fungao de particao,
encontramos:

U T3 ] — L 0Zar s}
7™ P O% 7] = 205 5

Nesta expressao, o indice s foi retirado, pois quando as fontes sao nu-
las ps (8) = p(B), e a definigao (2.50) foi utilizada. Contudo, utilizando a
equagao (2.35), o primeiro membro dessa expressao coincide com a média
térmica de &5]- (x,7,). Logo,

(2.101)

s=0

f _ L 0Zgr [{s}]
<¢j (X’Tx)> - Z(B) 6si(x,7.) ‘ 0 (2.102)
Da mesma forma, podemos escrever a partir de (2.97):
3 3 1 0°Zar [{s;}]
<T [cbl (v, 7) &5 (%, n)D =709 55y ) 5SjJ(X’Tx) ~ (2.103)

Vemos, portanto, que é possivel obter médias no ensemble de campos e
de ordenamentos de campos a partir do funcional gerador termodinamico.

Até a presente secao tratamos da teoria geral da quantizagao de campos.
A fim de tornar mais clara a apresentacao do método de Matsubara-Fradkin,
em especial o papel das fontes cldssicas, no restante deste capitulo restringir-
nos-emos ao caso do campo escalar.
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2.2 O campo escalar real

Consideremos um campo escalar real classico ¢ com auto-interacao arbitraria
num espago-tempo (D + 1)-dimensional. Tal campo é descrito pela seguinte
densidade de Lagrangeana

L= %(‘ngaugb - %m2¢2 + gLint (). (2.104)

Nesta expressao, m é um parametro real com dimensao de energia, g
¢ um parametro real arbitrdario adimensional e L, (¢) é a densidade de
Lagrangeana de interagao cuja forma é, em principio, arbitrdria no entanto,
por uma questao de simplicidade, restrigimo-nos aos casos nos quais ela nao
depende das derivadas do campo.

Nos casos nos quais a densidade de Lagrangena de interacao é uma funcao
par do campo, o sistema possui uma invariancia Zs, que consiste em substi-
tuir ¢ por —¢ no presente caso. Tal simetria, embora seja interna, é também
discreta. Para um tnico campo escalar real aparentemente nao se pode ter
simetrias internas, continuas e globais, razao pela qual nao ha cargas de
Noether associadas a tais simetrias. De antemao ja notamos que nao havera
potencial quimico envolvido na descricao de um campo escalar real quanti-
zado em equilibrio térmico. Ainda assim, a simplicidade técnica associada ao
se estudar o campo escalar real é atrativa o suficiente para o considerarmos
nosso primeiro objeto de estudo nesta tese.

Associado ao campo ¢(x) temos o seu momento canonicamente conjugado

m(x):

_ oL o) — 0¢(x)
m(x) = Do Oo(x) : (2.105)

ot

Visto que a relacao entre o momento canonico e a derivada temporal
do campo € linear ela é evidentemente inversivel e, sendo ¢ o inico campo
envolvido no problema, vemos que nao ha vinculos. Evidencia-se aqui uma
das vantagens de se estudar o campo escalar real. Veremos no proximo
capitulo que a quantizacao, e mesmo o estudo cléassico, de teorias vinculadas
se apresentam como grandes dificuldades e enormes desafios. Voltando ao
caso do campo escalar, os tnicos parénteses de Poisson fundamentais nao
nulos sao

{p(z), 7 (y)}p " =d(x—y). (2.106)
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Podemos, também, escrever a densidade de Hamiltoniana canonica Hq
como

1 1 2 2
Ho=rono—L=om+5(06) + 00" — gl (9).  (2107)

A fim de quantizarmos esse sistema, substituimos as funcoes campo ¢
e momento canonico m por operadores campo ¢ e momento canonico 7 e
trocamos os parénteses de Poisson fundamentais, inclusive (2.106), por co-
mutadores:

6(x), (y)LO:yO =0 (2.108)
(@), T (9)]syyo =0 (2.109)
(6(2). 7 (y)] L =ibx-y)l (2.110)

sendo o comutador definido como
[21, B} — AB - BA. (2.111)

Uma condi¢ao necessaria, embora nao suficiente, para o equilibrio ter-
modinamico é a estacionariedade, isto é, a independéncia temporal. Assu-
mindo que o campo escalar esteja em equilibrio termodinamico, os operadores
campo e momento devem ser independentes do tempo. Sendo assim, podemos
calcular essas relagoes, digamos, para xrqg = 0 e reescreve-las simplesmente
como dependentes apenas das variaveis espaciais:

[$(X),$(.V)} =0; (2.112)
7(x), 7 (y)] =0; (2.113)
[60x). 7 (v)] =i (x = )1 (2.114)

A matriz densidade que descreve esse sistema é

) = e, (2.115)
sendo H o Hamiltoniano obtido pela integracao em todo o espaco da den-

sidade de Hamiltoniana canonica (2.107) com as fungoes campo e momento
substituidas por operadores:
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ﬁfi/&%{%ﬁ+%(3@2+%;&—ygm<@}. (2.116)

Conforme chamamos a atencao ja no inicio desta secao, a matriz den-
sidade que descreve o campo escalar real em equilibrio termodinamico nao
depende de nenhum potencial quimico devido a auséncia de simetrias inter-
nas, continuas e globais.

Podemos, ainda, considerar a presenca de uma fonte externa cléssica J =
J(x) para o campo escalar. A matriz densidade na presenga da fonte externa
é

5,(8) = ePir, 2.117)
sendo
Hy = H + H, (2.118)
com H dado por (2.116) e
= / Pz J(x, 7)d(x, 7) = / P Hy(x, 7). (2.119)

De acordo com a equagao (2.80), podemos escrever a dependéncia de
qualquer operador com o parametro associado a temperatura na presenca de
fontes a partir de uma transformacao de similaridade desse operador com a
matriz densidade com fontes. Em particular, para os operadores campo e
momento, temos

& (x,7) = P V(7)S(x).(7) (2.120)
#(x,7) = 20 ()R ()Pu(7): (2.121)

Aplicando essa transformacao de similaridade a cada uma das equacoes
(2.112-2.114), vemos que seus segundos membros sao invariantes por essa
transformacao. Um comutador, por sua vez, se transforma da seguinte forma:

31



Dessa forma, as equagoes (2.112-2.114) podem ser reescritas como

6(x,7), 6 (y.7)| =D (2.123)
7 (x,7), 7 (y,7)] =0; (2.124)
{Eﬁx, 7.7 (y, T)} —id (x —y)1. (2.125)

Essas sao as relacoes de comutacao fundamentais para a quantizacao do
campo escalar real em equilibrio termodinamico.

2.2.1 Das equacgoes de campo ao funcional gerador

Nesta secao, encontraremos o funcional gerador em equilibrio termodinamico
a partir das equacoes de campo.

As chamadas equacoes de campo em equilibrio termodinamico sao equa-
¢oes analogas as equacoes de movimento de Heisenberg da teoria quantica
de campos num espago-tempo de Minkowski. Na verdade, na ausencia de
potenciais quimicos (exemplo do qual o presente caso ¢), a parte da restrigao
0 < 7 < j3, as equagoes de campo sao idénticas as equagoes de movimento
num espago-tempo Euclideano.

Derivando as expressoes (2.120) e (2.121) com relagao ao parametro 7 e
utilizando a matriz densidade (2.117), temos:

% = [, B (2.126)
W _ [ﬁS(x, 7), ﬁT} . (2.127)

A fim de calcularmos essas expressoes, utilizamos o Hamiltoniano ﬁ[T
dado por (2.118) e os comutadores fundamentais da teoria (2.123-2.125).
Dessa forma, temos

% _ i ) (2.128)
) _ (35 () - mB )+

DL {55 (x, T)]

~ —J(x, 7)1} . 2.129
5 (x.7) (x,7) (2.129)

+g
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A derivada de segunda ordem do campo g/b\ com respeito ao parametro
7 pode ser encontrada derivando-se a equagao (2.128) com relacdo a 7 e
utilizando (2.129). O resultado é uma equagao independente do operador
momento canonico dada por

DLt [g?ss (x, T)}
0¢* (x,7)

Nesta expressao, o operador derivativo A é definido como o negativo do
Laplaceano em D + 1 dimensoes:

= J(x,7)1. (2.130)

(A + m2) ggs (x,7)—g

2
= —% £ (2.131)

Multiplicamos a equagao (2.130) pela matriz densidade do sistema com
fontes externas pela esquerda:

OLint [qgs (x, 7')}

A +m?) p, &° X, T) — gps —~
(A +m?) ps () 6" (x,7) — gps (B) 53 o 7)

= J(x,7)ps (B) -

(2.132)
Dada a definigao (2.60), podemos substituir o operador associado com a
derivada da densidade de Lagrangeano por

OLun | |7 (x.7)] I 7 )] . (2.133)
09* (x,7) 09° (x,7)

Com esse resultado e com o auxilio das relagoes (2.86) e (2.97), reescrevemos
a expressao (2.132) como

9 a‘szf #
() e [‘2 ] W (B)=J (7P (F). (2.131)
’ |57t

Tomando o trago dessa expressao e utilizando a definigdo (2.98) e dividindo
pela funcao de particao, obtemos

L |7
0 (1) Y a[L]

0J(x,7)

(A +m?) Zar|J) = J(x,7) Zar[J].

(2.135)
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Enfatizamos que substituimos a equacao diferencial operatorial (2.130)
por uma equacao diferencial funcional. A vantagem mais evidente, além
da simplicidade técnica relativa alcangada, é que o funcional gerador, sendo
definido como um traco da matriz densidade, nos fornece todas as quanti-
dades fisicas que desejarmos, inclusive as termodinamicas, mas nao antes de
sermos capazes de calcular Zgp.

2.2.2 O funcional gerador em equilibrio termodinami-
co

O funcional gerador pode nos fornecer todas as fungoes de Green da teoria
original, isto é, sem fontes externas. A funcao de partigao da teoria original
nada mais é do que o funcional gerador calculado para fontes nulas.

Existem dois métodos basicos para se calcular o funcional gerador. O
primeiro deles, e certamente o mais comum, consiste em se calcular explici-
tamente o traco do segundo membro da defini¢ao (2.98). Isso é possivel pois
a matriz densidade do ensemble com fontes p, (5) é conhecida. A técnica
consiste em se efetuar o calculo via integracao funcional. Devido a operacao
de traco, as integracoes funcionais sao realizadas sobre todas as configuracoes
de campo e de momento canonico, que sao autovalores dos operadores cor-
respondentes. Certas condi¢oes de periodicidade sobre as configuragoes de
campo sao implicadas pela operacao de traco. Um outro método para se obter
Zar consiste em se resolver a equacgao diferencial funcional explicitamente.
Tal método sera nesta secao seguido.

Notamos que resolver a equagao (2.135) para uma interagao arbitraria
parece nao trivial. Portanto, iniciaremos o calculo para a situacao de campo
livre, que é aparentemente mais simples.

O campo livre

A situagao de campo livre é obtida fazendo-se g = 0 em (2.135). Denotemos
o funcional gerador do caso livre de Z£ . [J]. Esse funcional gerador satisfaz:

0ZEp V]
0J (x,7)
A fim de resolvermos essa equacao diferencial funcional, aplicamos for-

malmente o inverso do operador diferencial A 4+ m? pela esquerda e ficamos
com

(A +m?) =J(x,7) 25 1] (2.136)
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5ZgF [J] -1

—CE = (A+m?) T ZER ). 2.137

ey = (B mt) ) 2 ] (2.137)
Essa equagao diferencial funcional se parece com a seguinte equacao di-

ferencial ordinaria:

ds (i
22— a0, (2.138)

cuja solucao é
2 (§) = 2(0)e2?”. (2.139)

Adaptando essa solucao para a equagao funcional (2.137), temos:

ZEr 1) = ZER [0] exp B /ﬁ APz T (x,7) (A+m?) T T (x,7)| . (2.140)

Nesta equacao empregamos uma notagao que sera corrente em toda a tese:

B
/dD“x:/ drw/de, (2.141)
B 0 1%

sendo que utilizaremos a notacao 7 para 7, sempre que nao houver confusao
e a integral em x ¢é efetuada em todo o espago D - dimensional, resultando
numa dependéncia implicita do funcional gerador com o hipervolume V' em
D dimensoes.

Ao deduzirmos a solucao para a equagao (2.136), utilizamos um operador
que seria o inverso de A +m?. A fim de encontrarmos tal operador, consi-
deremos uma fungao arbitraria f (x,7,) com derivadas de terceira ordem em
todos os pontos do espacgo-tempo considerado. Nessas condigoes, deve valer

f(x, 1) = (A + m2)71 (A(”) + m2) f(x,72)

= /BdD“y (A+m?) 7 (x, 75y, 7)) (AW +m?) f(y,7,)

_ / APy (AY 4 m?) (A + ) (o) f(yo ). (2.142)
B

Na ultima igualdade, realizamos duas integracoes por partes. A fim de que
essa expressao esteja correta, devemos ter (assumindo que a representacao
no espaco-tempo do operador inverso seja simétrico em 7, e 7, e em X e y)
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(A(a:) + m2) (A + mz)*l (X, Y, Ty) -4 (Tx — Ty) 5(X — y). (2.143)

Essa expressao mostra que (A + m2)_1 (x, 743y, Ty) satisfaz a mesma equa-
¢ao que a fungao de Green Gr (x —y, 7, — 7,) do operador A + m? satisfaz:

(A(x) +m*)Gr(x—y, 7o — 7)) =0 (7o — 7)) 6(x — y). (2.144)

Portanto, essas duas fungoes devem ser iguais:

(A+m2)_1 (X, 703y, 7y) =Gp (X —y, 7o —Ty) . (2.145)

Resta-nos, ainda, encontrar o termo ZZ&,[0] que aparece no funcional
gerador da teoria livre. De acordo com (2.99), essa quantidade é igual ao trago
da matriz densidade de um ensemble grao-canonico para o campo escalar real
sem fontes externas e sem auto-interacao:

ZE (0] = T <e—5ﬁ°) . (2.146)

O Hamiltoniano [/:70 que aparece nesta expressao ¢ o Hamiltoniano do
sistema livre, que pode ser obtido fazendo-se g = 0 em (2.116):

77 1 D, . |22 =72\? 272
Hozi/dx{ﬂJr(@qﬁ) +mq§}. (2.147)
Essas duas tltimas expressoes deixam claro que Z% [0] nada mais é do
que a fungao de particao da teoria livre Zp(f3).
Com todos esses resultados, escrevemos o funcional gerador do campo
escalar real livre como

1
20 )= Ze(8)esp g [ 44002y (0,12 G (x = y.m. = ) T (1,7,
B

(2.148)

Convém notar que o gerador funcional depende da funcao de particao livre

e ainda nao a calculamos. A funcao de particao é imprescindivel, especial-
mente quando estamos interessados em calcular quantidades termodinamicas,
como a pressao ou a energia interna do sistema. Embora essa quantidade seja
importantissima para quantidades termodinamicas, nao a calcularemos ex-
plicitamente nesta secao. A razao para isso é que existem muitas quantidades,
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como as diversas fungdes de Green da teoria (que no caso livre é apenas uma),
que podem ser obtidas a partir do funcional gerador sem a necessidade de se
conhecer a fungao de partigao explicitamente. Como um exemplo, tomemos a
funcao de Green do campo escalar livre Gp (x —y, 7, — 7). Essa quantidade
pode ser calculada através de

1 82 ZEeJ]
Zp(B) 07 (x,7) 0T (¥, 7)) | ;o

Dada a equag@o (2.148), vemos que a funcdo de particdo acaba sendo
dividida por ela mesma. Dessa forma, a funcao de Green livre, embora
dependa de quantidades termodinamicas (como a temperatura, por exemplo),
independe da funcao de particao. Essa mesma caracteristica sera partilhada
por outras funcoes de Green de teorias mais complicadas.

GF (X —Y, Tz — Ty) = (2149)

O caso auto-interagente

Retornaremos, agora, para o caso com auto-interacao. Nesse caso, o fun-
cional gerador termodinamico deve satisfazer a equagao (2.135). Tentaremos
resolver essa equacao funcional complicada com oseguinte Ansdatz:

Zor ] = A {%] ZEn 1. (2.150)

sendo A [%} um operador derivativo funcional por enquanto desconhecido.
Nosso objetivo nesta se¢ao é encontra-lo. Substituindo o Ansétz (2.150) na
equagao funcional (2.135), encontramos:

sl zgn = al ] {(avme el
L |77
o]

6J(x,7)

ZE[J] p . (2.151)

Utilizando a equacao (2.136) para o funcional gerador termodinamico
livre, ficamos com

1A |5 e =a | | e -
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Embora essa equacao seja satisfeita pelo funcional gerador termodinamico
livte ZL, (B), o operador que nele atua apenas depende de quantidades
que dependem exclusivamente da interacao. Mas o funcional gerador ter-
modinamico livre, por defini¢cao, nao depende da interagao. Logo, o opera-
dor que nele atua deve ser identicamente nulo para que a equacao acima seja
satisfeita. Assim, temos a seguinte equacao operatorial:

EARSYEAT >9Am%, i
0J 0J a[%}

ou

A[2) st s a[ 2] <aa 2] % 154

O primeiro membro dessa equacao pode ser escrito como um comutador:

4[] n)] - % 2 e

A fim de resolvermos essa equacao, expandimos o operador A em poténcias
da derivada funcional

LSJ} Zan/HdD+1 ]M( 0 (2.156)

XJ,Tm)

Nesta equacao, a,, sao os coeficientes da expansao e, por definicao,

D+1,,. 0
/Hd M( =1 (2.157)

Xj, T, )

Calculamos, agora, o comutador da fonte J com sua derivada funcional.
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Esse comutador atuando sobre um funcional F' arbitrario fornece:

0 5
Ty e | FUL = gy i ) P +
SF[J]
—J (x,7;) m
= T i ) oL
Y (Y7Ty>F[J} I 00m) 0J (y,7y)
SF[J]
—J (X, 7s) m
= 0(x—y)o(n—7) FlJ]. (2.158)
Logo, concluimos que
)
[m’ e T“”)] =0(x-y)o(r—7). (2.159)

Precisamos, ainda, calcular

{A [%},J(x,m] - [ian / :]ﬁldlmyj% T (%,72)

n=0 B yJ"Tyj)_ |

oo [ n 5 7] T

= an APy —— 1, J (%, 72)
; [/ﬂ _]'1;[1 6J (yJ’Tyj)_

(2.160)

Estudemos o comutador [H?Zl B;, C} . Quando n = 0 temos, por defini¢ao

0
[IB.c|=01cl=o0 (2.161)
=1
Quando n = 1:
1
[IB.c| =1B:.C]. (2.162)
j=1
Para n = 2:

- [BlBQ,C] - BlBQC - CBlBQ

[IB;.c

j=1

- BlBQC - BchQ + BchQ - CBlBQ
= B, (B,C — CBy) + (B,C — CBy) B,
- Bl [BQ, C] + [Bl, C] BQ. (2163)
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Utilizando este resultado, encontramos para n = 3:

3
[IB;.c
j=1

= [B1ByBs, (]

B1B, [Bs, C] + [B1 B>, C] By
= BBy [Bs,C] + By [Bsy,C] Bs + [By,C] ByBs.

(2.164)
E para n = 4:
4
HB]',C — [BlBgB3B4,C]
j=1

— BlBng [B4, C] + BlB2 [B3, C} B4 + [BlBQ, C] B3B4
— ByByBs By, C| 4 BB, [Bs,C] By +
+ By [Bs, C] BsBy + [By, C] ByB3B,. (2.165)

Isso nos leva a supor o seguinte resultado geral:

j=1

Uma vez mais, temos

-1
B,
1

n

-3

=1

n

Il 5

r=[+1

(B, C] (2.166)

k=

ﬁBk =1 (2.167)

k>j

Verifiquemos se o resultado geral proposto (2.166) fornece o resultado
correto para n = 1:

1 1 -1 1
[IB.c| = > Bi|[B.Cl| ] B
j=1 =1 Lk=1 r=l+1
1-1 1
= Bi| [B,C] | [ B/| =[B1.C]. (2.168)
k=1 r=1+1

Este resultado é precisamente (2.162).
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Agora, assumindo (2.166) para n, testemos sua validade para n + 1:

n+1

II5:.c
j=1

+

LJ

j=1
113

1

115

113

Lj=1

115

7j=1
1151

J=1

n

[13

j=1

TL+17
B,iC —C || Bj| Buna
j=1
By1C — HB] CBpy1 +
Jj=1
i1 CBusi — C ] Bi| Busa
j=1

n

B,+1C —CB,p1) +

> Bn+1
7=1

113

j=1

B.

J

,C

n+17

Substituindo (2.166) no tltimo termo dessa expressao:

n+1

I8¢
j=1

Lj=1

Lj=1
n+1

D

l=n+1

2
=1

n+1

2

=1

HBJ
HBJ

(-1 T  n T
By, C +Z [15:| B.c1| [ B
J Lk=1 _ Lr=I+1 |
[1—1 T [ n+1 T
By, C +Z [15:| B.c1| [ B
| Lk=1 _ Lr=I+1 |
— n+1
HBk B.C1 | ] B
k=1 r=l+1
n+1
HBk B.Cl| ] B
= r=I[+1
n+1
HBk B.Cl| [] B
r=Il+1

n+1~

(2.169)

Bn+1

(2.170)

Vemos que essa é justamente a rela¢ao (2.166) escrita para n + 1 em vez
de n. Em outras palavras, sempre que (2.166) for vélida para um certo n,
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ela serd valida para n + 1. Por recursao, isso mostra que sempre que ela
for valida para um certo n, ela sera valida para todo m > n. Além disso,
mostramos explicitamente sua validade para n = 1. Portanto, a suposicao
(2.166) é valida para todon > 1. Assim, utilizando essa férmula para (2.160),
encontramos:

o0 B 5 T 7
ap dPy. I (X, Ty)
;) _/B ]1_[1 100 (v.7) (yj’TyJ) |
o0 B n 5 T
a, dP+t I (X, Ty)
; _/ﬂ ]1:[1 o (¥ ;) |
00 n -1 5
a, dD—i—l %
; =1 [/;8 g ykd‘] (yk? TZ/k)]

1)
x [ dPtt {—,J X,Tm} X
/ﬁ W 5Ty o)

) D+1 0
X [//3 I mi] . (2.171)

r=l+1

Utilizando o resultado (2.159), temos:

o
Pt {—,J X,Tx:|:/dD+1 0(y1 —x)0 (1, — 7)) = 1.
L7 sry | = [ a0, )

Assim,

|

J

67

| ]

(2.172)
- X Z[/ [ it |
dIAIREE y»]
— ;anZ/BngHy 570
_ in /ﬁH bh, 5ny>
_ aﬁ[g], (2.173)



Com esse resultado, vemos que a equacao (2.155) se torna

0A[8] _ 0w [st] | 2]

I RN R v

2.174
57 (2.174)

cuja solucao é

A l%} = Ay exp {g/ﬁdD“a: Lint lﬁ] } (2.175)

Ag ¢ um operador que pode ser determinado pela condigao de que, de acordo
com o Ansatz (2.150), na auséncia de interagao A deve ser o operador iden-
tidade. Na auséncia de interacao temos g =0 e

A= {%] = Agexp {O/BdD“a: Lint {%} } = Ao = 1. (2.176)

Da equagoes (2.148), (2.150) e (2.176), encontramos o funcional gerador
termodinamico completo da teoria:

Zor ) = Zr (B) exp {g /ﬁ 0P L {ﬁ} } x

X exp {/ dPxdPyJ (x,72) Gp (x—y,Te — 72) J (y, Ty):| )
B
(2.177)

A partir desse funcional gerador termodinamico, todas as quantidades
fisicas, sejam elas funcoes de Green ou observaveis termodinamicos, podem
ser calculados. Infelizmente, nao existe uma expressao exata para o fun-
cional gerador termodinamico (2.177). Técnicas de aproximagoes se fazem
necessarias. Na secao seguinte veremos brevemente a expansao perturbativa
de Zgr (B) e ainda estudaremos um método nao perturbativo.

2.2.3 A teoria de perturbacao modificada de Fradkin

Fradkin desenvolveu uma teoria de perturbagao modificada para teoria de
campos a temperatura nula no espaco-tempo Euclideano [16]. Nesta segao,
extenderemos sua teoria para incluir efeitos térmicos.

Conforme vimos na subsecao anterior, o funcional gerador termodinamico
para o campo escalar real com uma autointeragao arbitraria em (D + 1)
- dimensoes espago-temporais é dado pela equacao (2.177). A funcao de
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particao da teoria completa, por sua vez, é obtida fazendo-se J = 0 no
funcional gerador termodinamico (2.177):

Z(8) = Zr (B) exp {g [ [ﬁ] } .

X exp [ / PP 2dPy] (x,72) Gr (% — 3,70 — 72) J (3, m}
B

J=0
(2.178)

O funcional gerador termodinamico da teoria livre é dado por (2.148).
Portanto, (2.177) pode ser escrito como

Zar [J] = exp { g /B dP 2Ly {%} } ZE [ (2.179)

z,T:)

e a funcao de particao como

Z(8) = exp {g /ﬁ AP L [ﬁ} } ZEp 1)

Contudo, para qualquer funcional F'[J], vale:

(2.180)

J=0

FINZell,e = T{pe(®T{F 9]
)

= Zr ()
— Zr (B) <T {F [gb] }>F (2.181)

sendo <O> a média do operador O no ensemble grao-canonico livre, isto é,
F

sem interacao.
Vemos, assim, que a funcdo de particdo completa (2.180) pode ser escrita

Z(8) = Zr (B) <T {exp {g/BdDzﬁmt [a(z, Tz)] }}>F (2.182)

A teoria de perturbacao ordinaria consiste em escrever essa expressao
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CcOo1mo

20) = ze(3)(1{enfo [aet 5] }})

. { /B dDzL'mt (z Tz }F>
{ /ﬁ dDzzm (z,72) }>

A (2.183)

2 (8) = <T{{ /B 4L [3(2.7.)] }l}> , (2.184)

e truncar (2.183) em alguma poténcia da constante g.
Dada a condi¢ao (2.10), vemos imediatamente que

A fim de reproduzirmos a teoria de perturbacao modificada de Fradkin,
tomamos o logaritmo da funcao de particao e o escrevemos como

sendo

=> g"AL(B). (2.185)
k=0

Utilizando a expansao (2.183), obtemos:

00 2 ﬁ
Ze(9)3 2k )]

=0
= In {ZF

1+§:glzl ”
= In[Zr ()] +In 1+ZZ'Z’ ] (2.186)

Para —1 < x < 1 podemos expandir o segundo logaritmo do segundo
membro dessa expressao em série de Taylor de acordo com

n(l+ax) i

n[Z(B)] = In

(2.187)



Sob tal hipotese,
[e'e} p [e'e] 1 oo - ﬁ T
T ST
=1 ) r=1 =1 ’

Utilizaremos, agora, a expansao multinomial [33]:°

(;a]) = {;} Hk ] Ha : (2.189)
Z;n:llnj_n

In

Com isso,
o0 r T vaB]™
2 (B) ., 1= [9 7
Y, — (-1) | (2.190)
Z] 1=

Entao, a equagao (2.188) se torna

1 2 (B) ny
1)7‘ T'Hl’ 1 [l llu }

1 - lzl(/g) - _ - (_
" 1+ZZ19 ! ; r {7% [T, m!

:Z D" r—1)! x

r=1
{H 4 ny } H |:Zl// ] nyn
=19 =1 | "
x>
[Tz, ma!

{n;}
Z?i1 ng=r

r=1  {n;} r=1
Z] 1 y=r
nl//
[T |22
x (—1)" (r —1)!
(=D (r=1)! T e
= DD R (R
r=1 {n;}

/

(Z n; — 1> I1 n’t/' {Z’Ckf‘ﬁ)]nk - (2.191)

6Essa técnica na mecanica estatistica é conhecida como expansdo de cumulantes [32].
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Seja

> jny=r. (2.192)
j=1

Entao, temos

W(Z(8)] = Wn[Zr(8)+n

— 124 (5)
1+ ;gll—!]
= In[Zr (6 +Zg Z (_1)ij’:1n]-/—1 y

r=1 {nJ}
Z] 1Jng=r
1 2! (ﬁ) "
(ST [59]
k=1
(2.193)
Comparando este resultado com (2.185), encontramos
Ao () = In[ZF (B)]
e, quando k > O:
L [z (B)]™
_ Z -y n o —1 k
A (B) = Z (=D)== (an—1> an,![ ] ] :
{n;} k=
Z;ilj”j:k
(2.194)

Sendo essa equacao complicada demais para se vislumbrar facilmente
qualquer tipo de implicacao, calcularemos alguns termos explicitamente. Para
k =1 temos que Z‘;‘;ljnj = 1 implica n; = 1 e njx; = 0. Portanto:

_ z
A = - ) (2.195)

Para k£ = 2, Z;’iljnj = 2 implica n; = 2 e todos os outros n; = 0 ou

entao ny = 1 e todos os demais n; = 0. Entao,

2-1 I ’ 1-1 L |z '
Ay (B) = (-1) (2—1)!5{ ff)} + (-1 (1- 1)‘ﬁ{ 2('6)}

- -2 @ - @) (2196)
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No caso no qual k& = 3, Z;; jn; = 3 implica no seguinte: i) ny = 3 e
todos os outros n; = 0; ii) ny = ny = 1 e todos os outros n; = 0 e iii) ng =1
e todos os outros n; = 0, donde

a) = 7t e-nm 20

(=) (11— 1) {Zlﬁ} {22(5)}1+

1! ! 2!
+(—1)1 "1— 1)!% {Z‘”’g—@]
= {23 ) =321 (8) 22 (B) + 2 [z (B)]*} - (2.197)

Para k = 4 temos que > 7| jn; = 4 implica: i) n, = 4 e os demais n; = 0;
ii) ny = 2 e os outros n; = 0; iii) ny = 2, ny = 1 e todos os outros n; = 0; 1v)

n1 =1, ng =1 e todos os demais n; = 0 e, finalmente, v) ny = 1 e os outros
n; = 0. Dessa forma

A = ()Tl {MTH—D - 2'[ 52+ ]

TR T

+ (-1 @2+ 1-1)!

+( 1)1+1 1<1+1_1

'H

- {Z4 — 4z (B) 23 (B) — 322 (B))* +
+12[21 (B)] % (B) =6z (8)]'}, (2.198)

e assim sucessivamente.
De (2.185) podemos escrever

~on |3

0 que mostra que esta técnica nao é a teoria de perturbagao usual (2.183),
que consiste numa expansao da funcao de particao em série de poténcias.
Por exemplo, se conhecermos A, () exatamente, estaremos levando em con-
sideracao na funcao de particao termos de ordens muito superiores a g>.

+(—1)1_1 (1-1)!

o0

— H eI AR(B) _ Zr (B) H egkAk(B)7 (2.199)

k=0 k=1
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2.2.4 A funcao de Green nao perturbativa

Semelhantemente ao que fizemos para a funcao de particao, podemos buscar
correcoes nao perturbativas para a funcao de Green.

Com o auxilio de (2.179) e de (2.199), podemos escrever a funcao de
Green exata na forma

% Zar [J]
8) 37 (y,7,)0J (x,72)
(52
B) 3T (y, )00 (%, 72)

T

),

- (T{6(x7)0(y.7) x
ad
<T{<?> (%) 6 (v 7) %

Gx—y,7,—1) =

Z J=0

1
(
1
A

J=0

Z ()

ol

= [ﬁ e 9" Ak(B)

ZTZ

|—1

— [H e=9" A ﬂ)] Zﬂwl X, Y Tu, Ty) s (2.200)

sendo

w (X, Y37, 7y) = <T {$ (x.7) & (y.7,) { / AP Lins [3(2,7.) }

Agora, eScrevernos

(2F201)

hiGx-—y,mn—7)= ng (B (X,¥; 7w, 73 B) — A (B)] - (2.202)
k=0
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Tomando o logaritmo de (2.200), obtemos

In

hGx-y,7m—7) = [H e~ AP | ¢

S [e—gmk(ﬁ)} 4

k=1

Zg—w (X,¥; Ty Ty)
l‘ l Y xy ly

=0

+1n

l
Wo (X Y; Ta, 7_y + Z _wl X, Y5 T, Ty)]
_ Z n [efgmk(m} +In {wo (X, y: 7y 7)) X

k=1
1+Zg wl X, yaTl‘va)]}

I wy (X,y; T, 7y)

= — ngAk (B) 4+ In [wo (X, y; 7, 7y)| +

+In

1+Zg wl X, Y;Tzﬁy)]_

I wo (X, ¥ 7%, 7y)

Utilizando a mesma técnica empregada na subse¢ao anterior, encontramos

oo l o
g w (X,¥; e, Ty) S i,
In {1+ = = ger=1"" X
— 1wy (x,y;Tm,Ty)] ;{nzj}

x (—1 21’1 7' (an—l)

5 ﬁ 1 Wy (X, ¥ e, Ty) !
nk/' ’

/
=1 k "LU() X y?TCL‘7Ty)

(2.203)

Novamente, seja

> jny=r. (2.204)
j=1
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Assim:

nGx-y,7m—"1) = Infw(x,y;7:.7)] + A (8) — Ao (B) +

D SR E S
k=1

g}
Zj:l jnj=k

x(inj_l>!x

wy (X, ¥ 7wy 7y) |
— A .
~ H nk/ {k/lwo (x y,Tx,Ty):| K (5)}

(2.205)
Desta equagao e de (2.202), identificamos
BO (Xa NANE'D Ty; 5) = ln [UJQ (Xa Y, Tx, Ty)] + AO (B)
= In [wo (X,¥; T, 7y)| + In[ZF (5)] (2.206)
e para todos os outros k:
By, (X,Y;szTy;ﬁ) = Z ( Z]I ny—1 (Zn] B 1)
{n;}
Z;'>o1jnj:lC
Wy (X, Y, Tvay> o

. 2.207
x H nk/ {k"wo (x y,Tx,Ty):| ( )

Tomando a exponencial de (2.202) encontramos:

Gx—y,m—1) = exp{ng[Bk(X,y;Tx,Ty;ﬁ)—Akw)]}

k=0
oo
k: . .
= wo (X, ¥;Tes Ty) H 09" [Br(x.y37a 738) — Ak (8)]
k=1

(2.208)

De acordo com a defini¢ao (2.201):

wo (X,¥: Ty 7)) = <T{$(X7Tx)$(yﬁy){/BdDZEi"t [a(z’n)}}o}>

~ -~

= (T[¢xm)o(v.m)])
= Gp(x—y,7—T7y). (2.209)
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Logo, a funcao de Green completa se escreve como

G(x—y,70—7)=Gpx—y,7—1,) [ e Broeymenid=Al  (2.210)
k=1

De acordo com (2.207), a corre¢do de ordem mais baixa da teoria de
perturbagao modificada é

w1 (X7 Y Ta,s Ty) w1 (X7 Y Te,s Ty)
B 1T B) = — . 2.911
1Y T i) = e i) T Gk —yim =y 2D

Utilizando também o resultado (2.195), temos:

G (X —y,Tp — Ty) =Gp(x—y, T — Ty) eIB1(X,yiTz,7y38) = A1(B)]

wl(x,y;-rz,ry) _
=Grp(xX—-Yy, 7 — 7)) eg{GF(x—Y»Tw—fy) 1(5)} _

(2.212)
Essa expressao indica que mesmo em ordem mais baixa de teoria de per-
turbacao modificada, a fungao de Green completa depende de uma maneira
nao linear da funcao de Green livre, propriedade nao compartilhada pela
funcao correspondente na teoria de perturbagao usual. Exemplos mais con-
cretos podem ser obtidos fixando-se o nimero de dimensoes e a o termo de
auto-interacao. Infelizmente, tais exemplos nao serao incluidos nesta tese.
Neste capitulo estabelecemos as bases do formalismo de Matsubara-Frad-
kin para a quantizacao de campos em equilibrio termodinamicos. Inciamos
com a construgao da matriz densidade do ensemble grao-canonico, ensemble
preferencial em teoria de campos devido as cargas de Noether associadas a
simetrias internas. Apresentamos, também, o formalismo que consiste no
emprego de fontes classicas externas ao problema fisico. Como um exemplo
simples, aplicamos o formalismo de Matsubara-Fradkin ao campo escalar
real em D dimensoes espaciais com um termo de interagao arbitrario. Por
fim, apresentamos a extensao da teoria de perturbacao modificada de Fradkin
para situagoes de equilibrio termodinamico. Embora os resultados aqui apre-
sentados sejam preliminares, os resultados nao perturbativos aqui obtidos
podem servir de alternativa aos processos de ressoma tipicos das situagoes
com temperaturas nao nulas, como aqueles apresentados em [34] e [35].
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Capitulo 3

O campo eletromagnético de
Podolsky

Neste capitulo estudaremos o campo eletromagnético de Podolsky. Limitar-
nos-emos ao caso de um espaco-tempo quadridimensional. Iniciaremos tra-
tando do regime classico da teoria. Da aplicacao do principio de gauge a
uma teoria contendo somente férmions, veremos como o campo de Podolsky
emerge como uma alternativa a teoria de Maxwell. A teoria de Podols-
ky depende de um parametro livre. Demonstraremos, entao, que certas
condicoes fisicas limitam o sinal desse parametro. Como um preambulo para
a quantizacao da teoria eletrodinamica de Podolsky, realizaremos a andlise de
vinculos a la Dirac na parte fermionica da teoria. De posse dos colchetes de
Dirac da parte fermionica, utilizaremos o formalismo de Matsubara-Fradkin
para escrever as equagoes de campo quanticas fermionicas da teoria. Intro-
duziremos, em seguida, o método do campo auxiliar de Nakanishi para se
obter as equacoes de campo quanticas termodinamicas do campo de Podols-
ky. Como consequéncia desse método, veremos que a introducao de campos
extras - ou fantasmas - ocorre naturalmente. Entao, encontraremos a re-
presentacao de integracao funcional da fungao de particao. Estudaremos,
em seguida, as equagoes de Dyson-Schwinger-Fradkin da teoria de Podols-
ky. Na sequéncia, estudaremos como a invariancia de gauge das quantidades
termodinamicas implicam as identidades de Ward-Fradkin-Takahashi.

3.1 O principio de gauge

Nesta secao, iniciaremos com uma teoria classica para férmions de spin 1/2.
A densidade de Lagrangeana de Dirac que descreve tais férmions é
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A+1 A

Lo = 100 | (250 ) B+ (257 ) s = misn 3)

Nesta expressao, v*’s sao as matrizes de Dirac que satisfazem

{7“7 fYV}ab — 25abg‘uy, (32)

A é um niimero real adimensional arbitrario, v, = ¥,(z) e ¥, = ¥, () sdo os
campos fermionicos, que sao também Grassmannianos, my ¢ um parametro
arbitrario com dimensao de energia e assumimos soma implicita nos indices
aebdelad.

Notamos que a densidade de Lagrangeana (3.1) é invariante pela seguinte
transformagao U(1) global:

Yal@) = U, (x) = ey ();
Do(2) = Uyw) =Py (x)e™™,

sendo ¢ um parametro constante real.

Essa simetria significa que os fendmenos fisicos nao se alteram se modifi-
carmos o campo fermionico por um fator de fase multiplicativo, contanto que
essa fase seja a mesma em todos os pontos do espaco e em todos os instantes
de tempo. Um duavida permanece: é possivel escolher fases diferentes para
pontos distintos do espaco e instantes de tempo diferentes? Nesse caso, o
parametro da transformacgao U(1) deve depender do ponto do espago-tempo
e a transformacao se escreve como

wa(x) — Q/}é(x) = ew(x)wa(x)3
Vo(2) = Uy (x) = Py ()@, (3.6)

e a densidade de Lagrangeana de Dirac (3.1) se transforma como?

['Dirac — ElDirac = 'CDirac - a,ue(x) (fyﬂ)ab anb 7é ‘CDiram (37)

0 que mostra que contrariamente ao caso da simetria global, os fenomenos
fisicos sao diferentes se escolhermos fases diferentes para pontos distintos do
espaco-tempo.

!

, B —_ —
'Sendo que £';,,. ¢ a notagao para Lpjrq. com os campos 9 e ¢ trocados por ¢’ e 1
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A fim de encontrarmos uma densidade de Lagrangeana invariante sob uma
transformagao U(1) local, recorremos ao principio de gauge [19]. Segundo
esse principio, devemos acrescentar a densidade de Lagrangeana (3.1) um
termo de interacao entre os campos fermionicos e um campo vetorial A, =
A, (z), chamado de campo de gauge, com a forma

ﬁ]G - _QBA;L (fy'u)ab anl)? (38)

sendo ¢, um parametro adimensional arbitrario.

O campo de gauge também se transforma sob uma transformagao U(1)
local, mas por ora desconhecemos como. Calculamos, dessa forma, a variacao
da soma Lpirqe. + L1 sob a transformacao U(1) local:

Lpirac + L1g — ElDirac + E/IG = LDirac — @ﬂ(w) (”Yu)ab anlﬂ‘
- qu:}, <7M)ab anb

:'CDirac + LIG_’_
0,0
— e (AL - A, + -+

e

> (Vu)ab Ea%- (3.9)

A fim de encontrarmos a lei de transformacao do campo de gauge, impo-
mos a invariancia dessa soma:

/Dirac + £,IG = ‘CDirac + £IG- (310)

Dessa exigéncia, encontramos a transformacao do campo de gauge:

0(x)
A, (2) = Au(x) — 0, { " ] : (3.11)
Doravante, chamaremos a transformagao U(1) local de transformacao de

gauge U(1).

Notamos, assim, que para que a teoria fermionica seja invariante de gauge,
ela nao pode ser uma teoria livre: a interacao entre os férmions e o campo de
gauge fez-se necessaria. A fim de termos uma teoria completa, necessitamos
incluir um termo que descreve o campo de gauge livre. A densidade de
Lagrangeana do campo de gauge livre deve depender apenas do campo A,
de suas derivadas de quaisquer ordens e de eventuais parametros. Além
disso, essa densidade de Lagrangeana deve ser invariante de gauge, além de
covariante de Lorentz.
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Observamos que o tensor

Fuw = 0, A, — 0, A, (3.12)
¢ invariante de gauge, pois?
: : : 0(x) 0(z)
Fl =0, — M, = 0, A, — 0,0, [q—} — 0,4, + 8,0, {_
=0, A, — 0, A, = Fu. (3.13)

Entao, uma possibilidade seria escrever um termo proporcional a F,,, F*¥,
que é uma combinacao invariante de Lorentz. De fato, a possibilidade mais

simples para o termo de gauge livre consiste na densidade de Lagrangeana
de Maxwell:

1
Lor == F" Fow. (3.14)

Caso utilizassemos essa densidade de Lagrangeana teriamos a eletrodi-
namica ordindaria, com elétrons e positrons interagindo com o campo eletro-
magnético de Maxwell.

Contudo, é um objetivo desta tese argumentar que a teoria de Maxwell
nao ¢ a tnica possibilidade. Uma derivada do tensor (3.12) também ¢ invari-
ante de gauge. Podemos, entao, acrescentar a (3.14) um termo que contém
derivadas do tensor F. Com isso, chegamos a densidade de Lagrangeana de
Podolsky [20, 21, 22]:

1
Lp=—7F""Fu+ ApO, FM OcF°,. (3.15)

O parametro Ap é constante, real e possui dimensao de inverso de qua-
drado de energia. Ao campo A descrito por essa densidade de Lagrangeana
chamaremos campo eletromagnético de Podolsky. Nesta etapa, chamamos
a atencao para o fato de que devido ao tensor F depender de derivadas
de primeira ordem do campo de gauge, a teoria de Podolsky, que envolve
derivadas de primeira ordem desse tensor, contém derivadas de segunda or-
dem do campo eletromagnético. Chamamos, ainda, a atencao para o fato de
que qualquer termo invariante de Lorentz e de gauge que envolva derivadas
de segunda ordem do campo eletromagnético é idéntico ao termo que aparece
em (3.15) a menos de um termo que é uma derivada total, conforme demons-
trado por Cuzinatto, de Melo e Pompeia em [23].

2 Assumimos nesta tese que o parametro @ possua derivadas de terceira ordem.
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A teoria descrita pela densidade de Lagrangeana

Laep = Lpirac + Lic +Lp (3.16)

chamaremos de eletrodinamica generalizada. Essa teoria descreve elétrons e
positrons interagindo com o campo eletromagnético de Podolsky.

Ressaltamos que a eletrodinamica de Podolsky é uma teoria invariante
de Lorentz e de gauge. Vimos que o campo de Podolsky surgiu da aplicagao
do principio de gauge ao grupo U(1). A presenga do parametro Ap implicara
em previsoes com a teoria de Podolsky que diferem das de Maxwell.

3.2 A interpretacao do parametro de Podols-
ky

Na secao anterior encontramos o campo eletromagnético de Podolsky a partir
da aplica¢ao do principio de gauge ao grupo U(1). Vimos que essa teoria
eletrodinamica generalizada depende de um parametro intrinseco do campo
de Podolsky. Esse parametro, denotado por Ap, possui uma interpretacao
fisica muito clara. Buscar essa interpretagao é o objetivo da presente secao.

3.2.1 As equacoes de Podolsky

Iniciaremos esta secao buscando as equacoes de Podolsky, que sao as equagoes
analogas as quatro equacgoes de Maxwell. Notamos, primeiramente, que a
definigao do tensor F pela equagao (3.12) é a mesma em ambas as teorias.
Portanto, o tensor F de Podolsky também satisfaz a identidade de Bianchi:?
OcFyw + 0y Fue + 0, F¢, = 0. (3.17)
Consideremos, também, a densidade de Lagrangeana de Podolsky com
fontes:
p=Lp+juAY, (3.18)

sendo

j=(p.J) (3.19)

a quadridensidade de corrente elétrica.

3De fato, utilizando a definigao (3.12), temos ¢ F, + O Fre + O Fep = [0, 0] Ay +
(O, 0] Ag + [0y, 0¢] Ay = 0.
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As equacoes de Euler-Lagrange obtidas a partir dessa densidade de La-
grangeana sao

(1+2Xxp0) 0, F* = j". (3.20)
Nesta expressao, utilizamos o D’Alembertiano:

= @ ~ (3.21)

Definimos, agora, os campos elétrico E e magnético B através das relagoes:

BV = F%, (3.22)

) 1 .
Bl = éejkl]-"kl. (3.23)
Nestas expressoes, j, k e [ assumem os valores de 1 a 3 e ¢/* ¢ o tensor de
Levi-Civita, um tensor totalmente antissimétrico com €'? = 1.
Da identidade de Bianchi (3.17) e das equagoes de Euler-Lagrange (3.20),
encontramos as equacoes de Podolsky:

(14+2\p0) 3 -E = 3.24)

T .B-= (3.25)

(1 +22p0) (a «p_ 2L > (3.26)
Txe+B o (3.27)

ot

Observamos que as equagoes (3.25) e (3.27) sao idénticas as equagoes
correspondentes da teoria de Maxwell, pois estas decorrem da identidade
de Bianchi. As equagbes que dependem das fontes, por outro lado, sao as
proprias equagoes de Euler-Lagrange da teoria. Estas sao alteradas e depen-
dem explicitamente do parametro livre da teoria de Podolsky.

Chamamos a atencao para o fato de que as consequéncias fisicas da teoria
de Podolsky ja podem ser observadas a partir dessas equagoes. No caso sem
fontes, isto é, com p = 0 e j = 0, as equacoes de Maxwell possuem a chamada
simetria de dualidade [17]. Essa dualidade consiste nas seguintes trocas:

E - B'; (3.28)
B —E. (3.29)
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Na presenca das fontes, as equacgoes de Maxwell nao mais exibem essa
simetria. No entanto, pelas equagoes (3.24-3.27), vemos que o conjunto das
equagoes de Podolsky nao exibe essa simetria sequer na auséncia de fontes.

Ainda considerando a auséncia de fontes, tomemos, como exemplo, a
equagao (3.24). Na teoria de Maxwell, na auséncia de fontes, essa equagao

seria 0 -E = 0, ou seja, o divergente do campo elétrico somente é nao nulo na
presenca de fontes. Contudo, de acordo com Podolsky, fazendo-se p = 0 em
(3.24), temos que a divergéncia do campo elétrico satisfaz a seguinte relagao:
%
J.E=-2\,00 -E. (3.30)
A existéncia de solugbes nao triviais dessa equacao pode ser facilmente
verificada reescrevendo-a na seguinte forma:

2\p

Essa equacao indica que o divergente do campo elétrico na teoria de
Podolsky satisfaz a equacao de Klein-Gordon com um parametro com di-
mensao de energia dado por 1/4/2Ap. Sendo a equacao de Klein-Gordon
uma equacao que descreve um campo livre, seu parametro com dimensao de
energia ¢ interpretado como sendo a massa do campo. Claramente, assumi-
mos A\p # 0, caso contrario recairfamos na teoria de Maxwell e a equagao
acima nao poderia ser escrita. Contudo, nesta etapa, ainda nao conhecemos
o sinal do parametro. Se Ap > 0, temos um campo escalar fisico, isto €,
com massa real. Caso contrario, temos um campo escalar taquionico. No
entanto, qualquer que seja o caso, ressaltamos que existem solucoes nao tri-
viais de (3.31). Em outras palavras, na teoria de Podolsky, o divergente do
campo elétrico pode ser nao-nulo mesmo na auséncia de fontes.

Consideremos, agora, a presenca da densidade de carga elétrica p em
(3.24), mas agora restringindo-nos ao caso estaciondrio. Neste caso, de acordo
com as equagoes (3.12) e (3.22), temos

(D + i) J-E=0. (3.31)

E(x) = — 8 Ao (x) (3.32)
e a equacao (3.24) se simplifica [20]:
(mﬁ? -1) T2 40 (x) = p (x). (3.33)

Para uma fonte puntual com carga elétrica ¢ localizada em x = 0, a
solucao dessa equacao é*

4Ver apéndice (A) e equacao (A.11).
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Ay (x) = —1 (1 —e l’;w) . (3.34)

T dr x|

Esse é o potencial eletrostatico da teoria de Podolsky. Sua expressao
equivalente para Maxwell é simplesmente (47 [x|)™". Observamos que ela é
modificada pela presenca do parametro livre de Podolsky. Se Ap > 0, temos
uma correcao exponencialmente decrescente para o potencial eletrostatico
de Maxwell. Por outro lado, se A\p < 0, a correcao é uma funcao senoidal
da distancia. As implicacoes fisicas de cada uma dessas solucoes sao muito
diferentes uma da outra. Necessitamos conhecer o sinal do parametro Ap.

A fim de determinarmos o sinal do parametro Ap, consideraremos o tensor
densidade de energia da teoria de Podolsky livre na proxima se¢ao.

3.2.2 Fixando o sinal do parametro livre

Nesta secao analisaremos a densidade de energia do campo de Podolsky livre.
Essa quantidade é facilmente obtida como uma componente do tensor densi-
dade de energia e momento. Infelizmente, como a teoria de Podolsky envolve
derivadas de ordem superior, o calculo desse tensor é nao trivial. Dedicamos
o apéndice B para apresentar um método apropriado para se calcular o tensor
densidade de energia e momento primeiramente para uma teoria arbitraria e,
em seguida, para a propria teoria de Podolsky. Assim, utilizando o resultado
(B.84),

17 (6% v 1 17 (6% 1 17 (8 « v
TH = —FF A g FuF 4 20 (—ﬁg“ 0. FP0,F, — FreOF, +
—FUOFY, — Fr0,05F — Fr0,05F % + 0, F "0, F "), (3.35)

obtemos a densidade de energia do campo de Podolsky livre como a compo-
nente 73° desse tensor. Utilizando as definigoes (3.22) e (3.23), encontramos

1 1
Te" = —FEL 4 el 4+ 200 (—57]00(%}7“5&,]7'}; — FOOF+

—F°OFY — F*0,05F"° — F*0,0F™ + 0, F™°0, F°)
2

(@5)+(e-TxB) +

VAE-OE + 4E- 0 (5) )|} (3.36)

1
— 5{E2+B2+2)\p
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Devido a presenga dos dois 1ltimos termos desta expressao, a densidade de
energia do campo de Podolsky livre, em principio, nao é positiva-definida
no caso geral.
Restringindo-nos ao caso eletrostatico, temos:

0 —
778(}31) =3

Agora, notamos que

5 {e e {(7 ) +1[p-F (7 B) w7}

(3.37)

E-0(7 E)-EJE = B-[7(7 E)- 58]
E- [0 x (9 xE)|
B, (3§ x B ' oMpig, CE E)l
d [EJME] (7 E)ll — Mo (T x E)l
-9 {5’“le1' CE Eﬂ +
4 oy I (5) <E)
0 [Ex (7 E)]k+ (7 E)2
~F-[Bx (IxB)]+ (T xB) . B39
Dessa forma, reescrevemos Tl como
790 :% {E2 20 {(3 : E>2 14 (3 x E>2] } +
D Ex (3 <E)]. (3.39)
De acordo com a equagiio (3.27), para o caso eletrostético temos @ x B =
0. Logo [20],

TJQPEZ) -

DN | —

[EQ 2 (3 - E>2] . (3.40)
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No eletromagnetismo de Maxwell sem fontes, temos 3 -E = 0. No
entanto, conforme discutimos as consequéncias da equacao (3.30), esse nao
é nmecessariamente o caso para o eletromagnetismo de Podolsky. Portanto,
(3.40) ¢ a densidade de energia do campo de Podolsky sem fontes para o caso
eletrostatico.

Impomos que essa densidade de energia seja positiva definida para campos
elétricos nao nulos:

0
7'19(E1>}E¢0 > 0. (3.41)
Essa hipdtese implica na seguinte condigao sobre o parametro livre Ap:

E2
—,
2(7 &)

Essa inequagao indica que esse parametro possui um certo limite infe-
rior, que depende da configuracao do campo elétrico particular para cada
problema. Contudo, assumimos que esse parametro fosse constante, nao um
funcional do campo elétrico. Notamos que o segundo membro da inequagao

(3.42) é sempre negativo. Por conseguinte, para que o pardmetro A\p seja
independente da configuracao particular do campo, basta que se cumpra:

Ap > — (3.42)

Ap > 0. (3.43)
Assim, inspirados pelas equagoes (3.20), (3.31), (3.34) e (3.40), definimos

1
Ap = —— (3.44)
2m?%’
sendo mp um parametro constante real nao nulo com dimensao de energia.
Chamaremos mp de parametro de Podolsky. Em termos desse parametro,

reescrevemos (3.20), (3.31) e (3.34) como

O
(m% ’ (3.45)
(O+m}) d -E=0; (3.46)
T pmelxly.
Ap (x) prp (1—e ) (3.47)

A equacao (3.46) indica que o parametro de Podolsky possa ser interpre-
tado num certo sentido como uma massa de um campo.

Na proxima se¢ao nos aprofundaremos nessa interpretagao ao analisarmos
os dois setores do campo de Podolsky.
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3.2.3 Os dois setores

Nesta secao, estudaremos os dois setores da teoria eletromagnética de Po-
dolsky:.
Das equagoes (3.12) e (3.45), podemos escrever:

(%%;—%1)(g“ﬂ]——@”@“)AM::j”. (3.48)

P

Notamos que a solugao completa dessa equagao poderia ser escrita (ingénua
e) formalmente como

o) = A1)+ [ d*9G () 7). (3.49

sendo Af () a solucao geral da equagao homogénea,

(O+m}) (g0 —0"9") All(x) = 0, (3.50)

e G (z,y) a fungao de Green que satisfaz:
- 1) (¢™d—0"0"),, G = 0t0 3.51
m—%ﬂL (g0 — ) @) Gue (2, y) = 0¢0(x — y). (3.51)

Contudo, o operador diferencial (O + m%) (¢"*TJ — O*9”) ndo possui in-
versa. Por conseguinte, ndo existe nenhuma fungao G,¢ (z,y) que satisfaga a
relacao (3.51).

A fim de lidarmos com essa questao, impomos a condi¢ao de Lorenz ge-
neralizada sobre o campo de Podolsky [36]:

(O+mp) 0,A" = 0. (3.52)
Utilizando essa condigao, podemos reescrever (3.48) como

(O + mp) OA* = mp . (3.53)

O operador (O + m%) 0 é inversivel, portanto nosso problema pode ser re-
solvido no caso geral.

Para a analise que desejamos realizar nesta etapa, consideremos a equacao
(3.53) na auséncia de fontes:

(O+m3) 04" = 0. (3.54)

Uma possivel solucao dessa equacao é
At = AR+ AL (3.55)
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sendo

A%, =0 (3.56)

(O+mp) A, =0. (3.57)

Essas expressoes mostram que A’ é um campo vetorial sem massa,
enquanto A, é um campo vetorial com massa mp. Dito de outra forma,
o campo eletromagnético classico de Podolsky pode ser decomposto em uma
soma de um campo de Maxwell com um campo de Proca. Esses dois campos
sao chamados de setores de Podolsky: Af, —é seu setor sem massa enquanto
Al é seu setor massivo. A equagao (3.57) fornece, ainda, uma interpretagao
para o parametro de Podolsky: ele é a massa do setor massivo da teoria.

Nas secoes seguintes trataremos da quantizacao da eletrodinamica ge-
neralizada de Podolsky. Iniciaremos pela parte da teoria que depende dos
campos Grassmannianos 1 e 1. Para esses campos utilizamos o processo
de quantizacao de Dirac. Para a parte do campo de Podolsky utilizaremos
o formalismo covariante de Nakanishi. Como um tltimo topico relacionado
ao regime classico da teoria, estudaremos brevemente a carga conservada da
eletrodinamica de Podolsky na préxima secao.

3.3 A carga classica de Noether

Agora que ja temos uma interpretacao satisfatéria para o parametro de Po-
dolsky, escrevemos a agao associada a densidade de Lagrangeana (3.16):

Sewp [A,0,7] = / 02 (Lpiae + Lic+ Lp) (3.58)

Por construgao, essa agao é invariante sob transformagoes U(1) locais.
Consideremos, agora, uma transformagao U(1) infinitesimal arbitraria global:

ba(x) = g ()
Ga (@) = U, (@)

Sob essa tranformagao, a agao (3.58) se transforma como

Vo (2) + 600, (z) + O (66%) ; (3.59)
U, (x) — i, (z) 60 + O (66°) . (3.60)
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S[A v, 0] — va%ﬂ
= S[A Y, 0] + 68 [0, 9] + O (56%), (3.61)

sendo

505 [, 7] = / 040600, [T, (1) 1] (3.62)

Dado que a acao (3.58) deve também ser invariante sob a transformacao
global acima, devemos ter dpS = 0. Uma vez que a quantidade 06 é ar-
bitraria, pelo teorema fundamental do cdlculo variacional devemos ter que a
quadricorrente

" (@) = g (2) (V) 4 ¥ (2) (3.63)

satisfaz a equacao de continuidade:

8,4" (x) = 0. (3.64)

A equacao de continuidade pode ser escrita na forma mais familiar em
termos da densidade j° e da densidade de corrente associada j:

ajoaix) —_F ). (3.65)

Integrando em todo espacgo tri-dimensional, encontramos a relagao:

d]\;t@) __ / 27 i (x), (3.66)

sendo a ultima integral calculada na superficie que engloba todo o espago e

Nz [def @) = [ E05,@) () 0@ G

Agora, assumimos que a densidade de corrente esteja contida em todo o
volume, isto é

/d2? jz)=0. (3.68)

Essas tltimas expressoes mostram que a quantidade (3.67) é, na realidade,
independente do tempo:
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dN
— = 0. 3.69

A quantidade N é chamada de carga de Noether e é a carga conservada
classicamente na teoria de Podolsky associada a transformagao U(1) global,
que também ¢ interna e continua [37].

Antes de finalizarmos esta secao, chamamos a atencao para o fato de
que a conservacao da carga de Noether N ¢ independente da presenca do
campo de Podolsky. Isso se deve ao fato da variagdo da agao (3.62) devido a
variagao U(1) global nao depender do campo de gauge. Como consequéncia,
a mesma carga conservada seria obtida no caso livre ou, ainda, no caso no
qual considerassemos apenas os termos L p;rqc+L1g. Essa tltima propriedade
serd explorada durante a quantizacao da parte fermionica da teoria.

3.4 A quantizacao a la Dirac da parte fer-
mionica

Desenvolveremos, nesta secao, a quantizacao da parte da teoria eletrodinamica
de Podolsky que depende dos campos fermionicos. Iniciaremos com uma
analise dos vinculos da teoria classica e, logo em seguida, utilizaremos o
principio de correspondéncia para quantizar esse setor da teoria de Podolsky.

3.4.1 Os vinculos da parte fermionica

A fim de podermos quantizar a teoria de Podolsky, faremos um estudo classico
dos vinculos da parte da teoria que envolve os campos fermionicos.® Para
tal fim, notamos que a densidade de Lagrangeana Lp em (3.16) nao depende
dos campos fermionicos. Assim, a parte da teoria que descreve os férmions é
estudada através da densidade de Lagrangeana L, dada por:

‘Cf = ‘CGQED - ‘cP = ‘CDirac + Eint- (370)

Sendo a teoria de Podolsky diferente da teoria de Maxwell apenas na
parte correspondente ao campo eletromagnético livre, a densidade de La-
grangeana Ly descreve as partes fermionicas de ambas as teorias. Por essa
razao, o conteudo desta secao nao ¢é original, mas uma revisao dos vinculos
correspondentes a parte fermionica da eletrodinamica.

50 conteido desta subsecao pode ser encontrado em [38, 39, 40, 41, 42].
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Para esse setor da eletrodinamica generalizada de Podolsky, definimos os
momentos canonicos:

_ 0Ly
Tq (3}’) = m, (371)
7o () = T 00t (@] (3.72)

sendo a derivada Grassmanniana de um produto de campos Grassmannianos
definida através da relagao

0., (AB)  0_.A 0_,B
Se = e B AT (3.73)

Calculando cada um dos momentos canonicos, encontramos:

ra() = i (%) (29)., s (1) : (3.74)

A+1\ —
M) = =i (% (5 ) Bolo) (3.75)

Notamos, a partir dessas expressoes, que nenhum desses momentos cano-
nicos depende da derivada temporal de seu campo conjugado. Uma vez que
uma funcao constante nao ¢ inversivel, nao ha como escrever as derivadas
temporais dos campos fermionicos em termos de seus respectivos momentos
canonicos conjugados. Isso significa que a teoria descrita pela densidade de
Lagrangeana L é vinculada. Seus vinculos primdrios sao

b)) = m@-i(25) ()@ G
P, (x) = T (x)+i <70)ba (%) 1, (x) = 0. (3.77)

O simbolo “~”, neste contexto, significa “igualdade fraca” no sentido de
Dirac, isto é, a igualdade somente ¢é vélida na superficie dos vinculos.
) )
A densidade de Hamiltoniana canonica para o setor fermionico é definida
como:

HL, = OppaTo + 00,70 — L. (3.78)
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Escrevendo explicitamente os momentos canonicos, ficamos com

A 1+ 2\ — L=A\ o~
e = =il | (S5 Bom - (57 o] +

Mg, ta + g (1) gy Auaths
i

= 75 (’yj)ab (@aaﬂ/}b - aj%aq/}b) + mfaadja + Qe (’V'u)ab Au%ﬁ/}b +

>
(V) 0 05 (Wats) - (3.79)

A
2

Sendo o ultimo termo uma derivada total, a Hamiltoniana canonica acaba

sendo independente de A:

HY = / AP,
N /d?’x |:_% (’yj)ab (@aajwb - aj@aiﬂb) + mfaawa + de (fyu)ab Aﬂgawb '
(3.80)

De posse da Hamiltoniana canonica, definimos a Hamiltoniana primdria
para o setor fermionico:

H = H} + /d3x [ X (2) @u (2) + B, (2) Ao ()] (3.81)

sendo A,(z) e Ao(z) os campos multiplicadores de Lagrange. Tendo em
vista que os vinculos (3.76) e (3.77) sdo Grassmannianos, também os sao os
multiplicadores de Lagrange. A evolucao temporal de qualquer quantidade
F(z) gerada pela Hamiltoniana primaria fermionica é obtida como solugao
da seguinte equacao:

F(z) = {F(m), H;;}B. (3.82)

Sendo os parénteses de Berezin definidos para o caso de campos Grassman-
nianos como

To=yo __ 3 &%A(:z:) &%C(y) 8HC(y) 8%14(:15)
@), Cwrs ™ = / dz[awm) 0 (z) | Ovn (o) am(z)]

. / ) {8%14 (2)0.C(y) ~ 0.C(y) &%A(QJ)]’

O, (2) Oma(2) N, (z) O0mg(2)
(3.83)

68



sendo g = yo = 2p.
Os chamados parénteses de Berezin fundamentais decorrem imediata-
mente dessa definicao:

{va (@), 0 ()}~ = 0 (3.84)
{va (2), 0, ()} " = 0; (3.85)
{ta (@), m W)} = 0; (3.86)
{a (), 7 (Y)}5~" = dud (x—¥); (3.87)
{0 (@), &)}, " = 0 (3.88)
(Vo (@), m ()} " = dad(x—y); (3.89)
{0.(@), B W)}, " =0 (3.90)
{ma (), m ()}~ 0; (3.91)
{ma (). 7 (y)} " 0; (3.92)
{Ta (2), T (W)} = 0. (3.93)

Além disso, também podemos mostrar a seguinte relacao:

{A(2),Cy) D)} ={A@),C ) " D(2) +
—CW{A(), D)} (3.94)

A fim de estudarmos a estrutura canonica desse setor da eletrodinamica,
impomos as condicoes de consisténcia para os vinculos primarios:

Pa () = 0; (3.95)
Pa (2) =0 (3.96)
Dessas condigoes, encontramos as seguintes relagoes:
—{0(v) 05 = [msap + g (0") o Au(@)] } 0 () +3 (1), Ao (2) =05
(3 97)
{0 (7),0 05 + [Mg000 + e (V) Au ()]} 0y (2) — i (17),,, 2o (2) = (3 .

Uma vez que ~° é sua prépria inversa, encontramos os multiplicadores de
Lagrange:
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Ao (@) = —i{i(1"),, 01 = [my (47), + 0 (1°9") 1 Au (@)] } 2 () ;
(3.99)

o (2) i {i (yovj)ba 9; + [my (7°) b T e (+*7*) b A ()] } ¥, (z). (3.100)

Como todos os multiplicadores de Lagrange foram encontrados nesta
etapa, concluimos que nao ha vinculos secundarios nessa parte da teoria.

Com o intuito de classificarmos os vinculos primarios, calculamos os
parénteses de Berezin entre todos eles:

{pa (@), 00 (¥) 15" =0 (3.101)
{#a (@) 8 ()} ™" =0; (3.102)
{a (@), WE ™ =i (1"),, 0 (x—y). (3.103)

A existéncia de parénteses nao nulos indica que esse conjunto de vinculos
é de segunda classe. Sendo assim, sobre a superficie dos vinculos, podemos
tornar os vinculos de segunda classe identicamente nulos. Por conseguinte,
observamos que a Hamiltoniana priméria, gerador das translagoes temporais,
coincide com a Hamiltoniana canonica.

Agora, definimos a matriz C' cujos elementos sao (a,a’ € N, tais que
1<a<8 1<a<8,))

Coow (x—y;20) = {As (), Ao ()}~ (3.104)

Nesta expressao, temos (com a € IN tal que 1 < a <4,)

Aa () = 0a (2); (3.105)
Aara () =9, (2) - (3.106)

Observamos que todos os elementos da matriz C' sao independentes do
tempo (xg) e escrevemos

0} I(x—y). (3.107)

sendo 0 = 014x4.
Procuraremos, agora, a inversa dessa matriz. Ela deve satisfazer

/d?’zC’1 (x—2)C(z—y) = lasd (x—y). (3.108)
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Supomos

Ctx-a)= | plotx-a),

sendo A, B, D e E matrizes quadradas com 16 elementos. Assim:

/d3z0_1(x—z)0(z—y) - /d?’z{é g}é(x—z)x

g <76°>T ES R

[e=]

iB(°)" iAy°

Y
S (x —
iE ()" iDA° =)

(3.109)

= /1\8><85(X_Y): F4AX4 . ]5(X—Y)-

0 /1\4><4

Temos entao

B (VO)T = /]-\4><4;
i A0 0;

) (70)T = 0
iDVO = T4x4-

Resolvemos trés dessas equacoes imediatamente:

A 6;
E = 6;
D = —iy’.

Quanto a (3.111), tomamos a transposta daquela equagao:

T

i8] =i [60)7] B =B = (Ta) = Taea
Multiplicando essa equacao por —in" pela direita, encontramos:
—i%" (B)" = (B)" = —i".
Tomando a transposta dessa expressao, obtemos:
B=—i(")".
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Dessa forma, encontramos a inversa da matriz C"

-~ . onNT
C’_l(x—z):[ 0 1(1)}5<x—z). (3.121)
—1y 0

De posse da inversa da matriz dos parénteses de Berezin dos vinculos de
segunda classe, definimos os parénteses de Dirac entre duas quantidades F' e
G arbitrarias como

{F @), G~ ={F(2).GW)}s™" +
- [@ad o F @) A ()} O

o (2 — W) X
X {Ao (0),G (y)} 5 . (3.122)

Devido & forma da matriz C~!, os parénteses de Dirac podem ser simpli-
ficados:

{F(z),Gy)}p™ = {F(x),Gy)}g "+

H [P AP (@i DN 0055 ()G W)+

i / 02 {F ()7, ()17 (1) {gn ()G (1)} 57",
(3.123)

Utilizando essa expressao, encontramos os parénteses de Dirac fundamen-
tais:

{Wa (@), 4 ()™ = 0; (3.124)
{tha (), 0y ()} " = i(7°),,0(x—y); (3.125)
{tba (2),m (W)}~ = O; (3.126)
{o (), 7 ()} " = O (%) S(x—y); (3.127)
(o (@), 0y ()}, " = 0 (3.128)
{¥, (z),m (v) ?:yo = —Ow (%)5(X—y); (3.129)
(@), T (W)}, " = 0 (3.130)
{ma (@), my)}p ™" = O (3.131)
{ma (z), 7 (y)}p " = z‘(A;LlXAgl) (7°),, 0 (x — y)(3.132)
{Ta(x), T (y)}p ™ = 0 (3.133)
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Notamos ainda que os parénteses de Dirac fundamentais diferem muito
dos parénteses de Berezin fundamentais (3.84-3.93). Segundo o método de
quantizacao desenvolvido por Dirac, sao os parénteses de Dirac, e nao os
de Berezin, os que devem ser utilizados em consonancia com o principio
de correspondéncia sempre que o sistema fisico apresentar vinculos. Na
secao seguinte, utilizaremos tal principio para quantizar a parte fermionica
da eletrodinamica em equilibrio termodinamico.

3.4.2 A quantizagao da parte fermionica em equilibrio

Na secao anterior revisamos a estrutura canonica da parte fermionica da
eletrodinamica. Agora, estudaremos a quantizacao desse setor das teorias de
Maxwell e Podolsky.

O principio de correspondéncia afirma que os parénteses de Dirac de cam-
pos Grassmannianos devem ser substituidos pelo anticomutador, definido
como

{E,E} —AB+BA (3.134)
dividido por i juntamente com a substituicao de campos por operadores.

Assim, o conjunto de parénteses de Dirac fundamentais (3.124-3.133) é subs-
tituido pelo seguinte conjunto:
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= 0 (3.135)

= —("),0x—y)1; (3.136)

= 0 (3.137)

= 0 (3.139)

)
)
)
@ B}, = i (A ) - (3.139)
}
)
)

{@a (@), m )y = i <%) S(x—y)T; (3.140)
{%@%%@ ey =0 (3.141)
{Fa (), 7 (W) }apmyy = O (3.142)
F@mw) = -(5)(55) 0N - v
(3.143)
{%@%%w&m% = 0. (3.144)

Os primeiros membros de todas essas equacoes exigem que os dois opera-
dores presentes em cada anticomutador sejam calculados no mesmo instante
de tempo. Os segundos membros dessas expressoes sao independentes do
tempo. Um sistema em equilibrio termodinamico satisfaz estacionariedade,
isto é, tal sistema fisico é independente do tempo. Para a eletrodinamica
em equilibrio termodinamico, todos os operadores campos fermionicos e seus
respectivos operadores momento devem ser independentes do tempo. Isso
significa, por exemplo, que v, (x,t1) = ¥, (X, t2) para todos os t; e to. Como
estamos lidando com uma situagao de equilibrio termodinamico escolhemos,
sem perda de generalidade, o = yo = 0 nas equacoes acima e reescrevemo-
nas de uma forma independente do tempo:
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{fa). B} = B (3.145)
{003} = (1), 0x-3T; (3.146)
{ta0) 7 (v)} = O (3.147)
(T R} = iow () sx-) 1 (3.148)
{00} = 0 (3.149)
(0.0 7 ()} = it (%)Mx—yﬁ; (3.150)
{%(X),%b(y)} = 0; (3.151)
{7 (%), B (y)} = 0; (3.152)
o mw} = - (25)(25) 0)ad - vl G153
{Fa). Ty} = 0 (3.154)

Conforme notamos no regime classico, a Hamiltoniana canénica (3.80) é
o gerador das translagoes temporais. Sua versao quantica é

- -4 [ {300,550~ 0. 500

g [0 (%) G (0] = e () A () [0, (). T ()] . (3.155)

Também podemos escrever o operador carga de Noether, que é a versao
quantica da carga (3.67):

-~

N = % / &P (1)), [% (x), 0y (x)] . (3.156)

A matriz densidade correspondente a eletrodinamica em equilibrio ter-
modinamico com fontes externas é

P (8) = e P(Hn=neN), (3.157)
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sendo I/-jT = f-\](; + H p+ ﬁs, com H p sendo o Hamiltoniano associado ao
campo eletromagnético livre cuja tnica propriedade relevante para os nossos
propdsitos nesta secao é que comuta com He e H; o Hamiltoniano das fontes
que, em conformidade com (2.39) e (2.40), ¢ dado por

A== [ @000 4,60+ 5 [1.00. 0] + 5 [10 00 T 0] |
(3.158)

Neste operador, J ¢é a fonte do campo de gauge A e n e n as fontes

Grassmannianas dos campos fermionicos 12 e 1), respectivamente.

A quantidade p. que aparece na matriz densidade (3.157) é o potencial
quimico associado a carga de Noether N.

Realizando uma transformagao de similaridade com a matriz densidade
ps (1) no operador Hy — p.N e utilzando (2.80), vemos que esse operador é
invariante por essa transformacao:

~ ~

He — uN°* =571 (7) (?IT - ueﬁ) 5 (1) = Hy — p.N. (3.159)

Aplicando essa mesma transformagao a cada equagao do conjunto de an-
ticomutadores fundamentais (3.145-3.154) e utilizando

i {4 B} 5. = 5 (n) (AB+BA)p.(7)
= 7' (M ABp,(r) + 5, () BAR, (7)
= B MA@ (M Bp )+

B
- {Es (r), B° (7)} , (3.160)

que é valida para quaisquer operadores A e B, obtemos o conjunto de anti-
comutadores fundamentais para a teoria em equilibrio termodinamico:
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»

@I)

{ a 7Tb y7 )
{72 (X T) 7 (y,7)

{ 7Tb (v, 7)

{AZ ), s (v, 7 )} = 0 (3.161)

{AZ ) By (v, )} = —(1"),0(x—y)1; (3.162)

(i) 70} = 0 (3.163)

{AZ Ty, T )} = i0ap (%)5( -y 1 (3.164)

{0t G lym)} = 6 (3.165)

{ia 3 (¥, 7 )} = —ila <%>§(x—y)i (3.166)
e

I
)
N
had
—_
o
(0]
N~—

—— ——
I

(3.169)
(7). 7 (y.7) 0. (3.170)
Derivando a equagao (2.80) com rela¢ao a 7, temos
aﬁs s e ~
B (T) - = |:F8 (7—> ) HT - ,ueN:| 5 (3171)
-

sendo que particularizamos para a matriz densidade (3.157).
Utilizando essa expressao para os campos fermionicos e os anticomuta-
dores fundamentais em equilibrio, encontramos:

~

WLET)  (9),, [ ()10 08 06 7) 4 g ) — e (), 2 ) +
e (6,7) (1), 02 (,7) 4+ (x,7) 1 5 (3.172)

PeLOT)  (39),, [0 (), 009 () = gy () e (2°), B G 7) +
e (1) A 0, 7) D (3,7) + 7, (,7) T (3.173)

Uma vez que 7" é sua prépria inversa, podemos multiplicar cada uma
~ . 0 0 ~
dessas equacoes respectivamente por (v”),, e (7),4 €, entdo, obtemos
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[(vo)ab 5 107w 8]-] G (x,7) = [mydas = e (1°) ) 8 (1) +

+ @ (%, 7) (V) D5 (%, 7) 10 (x,7) T
(3.174)

[(’Yo)ba % +i(v),, 5]'] 0y (6,7) = = [mga = e (1°),] 9 (6,7) +

e () A (%, 7) Uy (%, 7) + 7 (3, 7) T,
(3.175)

Observamos que os primeiros membros de ambas essas equacoes depen-
dem do operador ’y + i’ 0;. Para teorlas de campos a temperatura nula,
o correspondente operador tem a forma z*y —|— z*y] (9J que pode ser colocado
na forma abreviada ¢y#9,. Contudo, o operador A0 a + 17 0; aparentemente
nao pode ser escrito numa forma similar, pois o termo proporc10na1 a 0
nao é multiplicado pelo nimero 4, enquanto que os demais termos o sao. A
fim de podermos escrever esse operador numa forma compacta, definimos as
matrizes de Dirac Euclideanas:

% = 7% (3.176)
o= (3.177)

Essas matrizes satisfazem
{77} = 200, (3.178)

conforme pode ser verificado com o uso da equagao (3.2).
Escrevendo 0/01 = 0y, temos

0 0

~° . +iv0; = 0, +7; bo; = 75(9“, (3.179)
sendo a soma implicita nos indices gregos agora efetuadas na métrica Eu-
clideana. Dessa forma, os primeiros membros das equagoes (3.184) e (3.185)
sao escritas numa forma covariante. No entanto, aquelas equagoes dependem
de um termo proporcional ao operador v#.4,,. Assim, em termos das matrizes

de Dirac Euclideanas, esse termo se torna

~

VA, =AMy + A = AOA — AT A = AP A+ i B A
= —i (z’ﬁﬁ“ —7 ﬁf) (3.180)
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e novamente o numero ¢ nos impede de escrevermos as equagoes (3.184)
e (3.185) de uma forma covariante. A fim de resolvermos esse problema,
redefinimos o campo de gauge através de

o) 2
|||

i A (3.181)
— A (3.182)

Em termos desse novo campo, temos

’y“A = i, A (3.183)

com a soma tomada sobre a métrica Euclideana.
Em termos dessas novas quantidades, as equagoes de campo (3.184) e
(3.185) sdo escritas como

(97 o Oty (%, 7) = [y — e (1°),
+ iqeg‘; (x,7) 'yf)ab Uy (%, 7) + na (X, 1, (3.184)
(V2) B0y (%, 7) = = [0 — e (1°),] By (3, 7) +
b (X, 7))+ 7, (x,7) 1. (3.185)

Essas equagoes de campo podem ainda ser reescritas numa forma mais
apropriada:

[(68),, D=t [B] = mgon} G o) =ma (e )T (3186)
{(0F), D= [ 8] 4 g} 0 (x,7) =7, (6 1) T, (3.187)

com as seguintes definigoes

DL;U'E,qe) [AS] = 18/3/"‘6) + quAfU (3188)
8,5“6) = 8# + H’E(SMO' (3189)

Notamos que no formalismo de Matsubara-Fradkin o carater Kuclideano
do espaco-tempo emerge naturalmente. Além disso, ao compararmos as
equagoes (3.186) e (3.187), vemos que a equacao de campo para o campo
~s
Y, (x,7) possui os parametros ¢., my e o potencial quimico p. com sinais
opostos aos daqueles presentes na equagao de campo para o campo ¥} (X, 7).
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Iniciamos esta secao realizando uma anélise classica da estrutura canonica
da parte da eletrodinamica, seja ela generalizada ou Maxwelliana, que envolve
os campos fermionicos. Observamos que a teoria é vinculada e, fazendo uso
do formalismo de Dirac, definimos os parénteses de Dirac da teoria. De posse
destes, utilizamos o principio de correspondéncia para definirmos os antico-
mutadores fundamentais deste setor da teoria. Considerando uma situacao
de equilibrio termodinamico, encontramos as equagoes de campo fermionicas
para essa teoria. Na se¢ao seguinte, consideraremos a quantizacao da parte
da teoria que concebe o campo do gauge.

3.5 O método do campo auxiliar de Nakani-
shi

Na secao anterior empregamos o formalismo de Dirac a fim de realizarmos
uma analise canonica e uma consequente quantizacao da parte da eletrodi-
namica que envolve os campos fermionicos. E possivel aplicar essa mesma
técnica para a quantizacao do campo de gauge, seja ele o campo de Maxwell
ou o de Podolsky. No entanto, tal processo de quantiza¢ao constitui-se numa
abordagem nao covariante. Em outras palavras, desconsiderando-se os efeitos
térmicos, a quantizacao pelo método do Dirac quebra a invariancia explicita
de Lorentz. No caso da teoria em equilibrio termodinamico, a invariancia
explicita que é quebrada é a simetria SO (4), que seria uma espécie de “versao
Euclideana” do grupo de Lorentz. No formalismo de Dirac, a escolha de
gauge natural é o gauge de Coulomb no caso da teoria de Maxwell, ou uma
generalizagao dessa escolha para o caso de Podolsky. Em qualquer dos casos,
essas escolhas de gauge sao nao covariantes. Ainda assim, uma tal quebra
de covariancia nao é um grande problema. Ao se estudar o problema via
integracao funcional é possivel passar de uma escolha de gauge nao covariante
para uma covariante através, por exemplo, do Ansdtz de Faddeev-Popov.
Como vimos na se¢ao anterior, a andalise da estrutura canonica de uma teoria
vinculada é extensa e complexa. A situacao é ainda mais complicada quando
ha vinculos de primeira classe no problema, como é o caso de teorias de
campos de gauge.

Uma abordagem mais simples consistiria em se quantizar o campo de
gauge mantendo intacta a invariancia explicita de SO (4). Dessa forma,
a passagem de uma escolha de gauge nao covariante para uma covariante
seria desnecessaria. Tal método foi desenvolvido por Nakanishi. Entre suas
vantagens, citamos que sequer a analise de Dirac necessita ser implementada.
Dessa forma, o método de Nakanishi é mais simples ao se estudar teorias de
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gauge em equilibrio termodinamico do que o processo de quantizacao de
Dirac.

Nesta se¢ao aplicaremos o método de Nakanishi para a quantizacao do
campo de Podolsky em equilibrio termodinamico. Conforme vimos na parte
fermionica, quando consideramos a quantizacao de campos em equilibrio ter-
modinamico, a estrutura Euclideana do espago-tempo naturalmente emerge.
Sendo assim, consideraremos a versao Euclideana da densidade de Lagran-
geana de Podolsky (3.15):

1 1

re — ZFWFW + M@Fwaﬁ@. (3.190)
Conforme chamamos a atencao na secao 3.2.3, as equacoes de Euler-
Lagrange obtidas a partir da densidade de Lagrangeana de Podolsky sem
fixagao de gauge (3.18) dependem de um operador diferencial nao inversivel.
A teoria descrita pela densidade de Lagrangeana Euclideana acima partilha
dessa mesma caracteristica, ou seja, as equacoes de Euler-Lagrange a partir
dela obtidas também dependem de um operador diferencial que nao pode
ser invertido. Uma vez que estamos procurando uma teoria quantica em
equilibrio termodinamico e levando em consideragao que as func¢oes de Green,
que sao, em sintese, inversas de operadores, desempenham um papel crucial
em qualquer teoria quantica, concluimos que temos um problema. A fim
de contornarmos essa dificuldade, consideremos o operador densidade de La-

grangeano de Nakanishi para a eletrodinamica de Podolsky [43, 44]:

~ 1~ s 178 1 s s Lo s )
Ly =-FF g OnF e, + 5 {B.¢|2|}- S8

4w ;w

. wf)ab{(“l) [Fad] + (*37) [ 3]+

1 s de 7 s
5 [mféab—ue( ). [wa,w | +i% A (o)., [0 ] +
+ ALt 5 [ﬁmwi] t3 [na,m : (3.191)
Nesta expressao ﬁw = 6,,,& — &,A\H, « é um numero real arbitrario

adimensional nao nulo conhecido como parametro de gauge covariante, B é

chamado de campo auziliar de Nakanishi, G A| é chamado de operador de

escolha de gauge e Jy = —iJ° e J, = J* sao as componentes do quadrivetor
Euclideano fonte classica do campo de Podolsky.
Por defini¢ao, sob uma transformacao de gauge,
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A, = A=A, +0,f, (3.192)

para qualquer operador escalar de SO(4) bem comportado j/"\, o operador
escolha de gauge satisfaz
G [E] e m £ [21} . (3.193)
Se o campo auxiliar for o operador nulo, a densidade de Lagrangeano L N
é invariante sob transformagoes de gauge (3.192) desde que fagamos as fontes
nulas. Nesse caso, temos simplesmente uma versao quantica mal definida de
nossa teoria original. Se, por outro lado, o campo auxiliar nao for nulo,
mesmo que as fontes o sejam, o termo envolvendo o anticomutador de B com
a escolha de gauge quebra explicitamente a invariancia de gauge da densi-
dade de Lagrangeano acima. Veremos, a seguir, que essa quebra explicita
da invariancia U(1) pode levar a uma teoria quantica bem definida para a
eletrodinamica generalizada.

3.5.1 O principio de Schwinger

A fim de construirmos uma teoria quantica termodinamica para a eletrodi-
namica de Podolsky, consideremos o operador a¢ao termodinamica associado
& densidade de Lagrangeano (3.191):5

Sy = / d'z L. (3.194)
B

Consideremos, também, wvariacoes infinitesimais mutuamente indepen-
dentes dos campos

o =V, = tha + 6ba; (3.195)
ECL _>Ea = ECL + 5@[1; (3'196)
A, = Al = A, +0A,; (3.197)
B — B =B+ 6B. (3.198)

Essas variagoes induzem a seguinte variacao no operador agao termodi-
namica:

6Na expressao (3.194) utilizamos a notacao (2.141) com D = 3.
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Sy — Sy = Sy + 65y (3.199)

O principio de Schwinger afirma que a variagao desse operador, a saber,
Sy = S — Sn, possui uma forma especifica [45, 46, 47, 48]:

5Sy = / d'zd,V,, (3.200)
B

sendo V), um operador vetorial que depende, em principio, tanto dos cam-
pos quanto das suas variagoes. Invocando esse principio, encontramos as
seguintes equacoes de campo para as variagoes de cada campo:

{ () D) [ 2] = mgbun } 05 (x,7) = (1) T (3.201)
{080 Do) [A] 4 mgdun } 0 (1) =77, (x,7) T (3202
(& e)am- S5 o ] o
’ (3.203)
B= éG [ES} , (3.204)
CcOo1ml
_5G m Y e [ﬂ R
B—t1h, = Bh, + 0,3, (3.205)

A, A,

sendo /ﬁu qualquer operador vetorial (em particular, estaremos a seguir in-
teressados no caso em que Eu = A\u) e g, um operador vetorial funcional
apropriado que, em principio, depende de E, ﬁu e Eu.

As equagoes (3.201) e (3.202) sao exatamente as equagoes de campo
fermionicas (3.186) e (3.187). Isso mostra que o emprego do principio de
Schwinger pode levar as equagoes de campo corretas da teoria.

Notamos, ainda, que a equagdo de campo (3.204) é exatamente soluvel
para o campo auxiliar. De fato, sua solucao para Bé trivial, consistindo,
na verdade, da propria equagao (3.204). Utilizando essa solugao exata na
equagao de campo (3.203), notamos que obtemos uma equagao independente
do campo auxiliar:
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_ (% + 1)(6WA +9,0,) A%~ ééi#G [gs} :i% (%) ap [ia{D\b] +
V +J,1. (3.206)

Assim como no caso de Minkowski, o operador ¢,,A + 0,0, nao é in-
versivel. O passo crucial no método de Nakanishi consiste em se escolher

uma forma particular do operador G [A\} tal que o primeiro membro da

equacao acima seja um operador convariante local inversivel que atue sobre
o campo de gauge. No caso Maxwelliano, essa escolha é a condi¢ao de Lorenz
FEuclideana:

G |A] = 6, 4] = 9,4, (3.207)

A, A, e
5G| A

LA[ ] Bh, + 0,3, (3.208)

A,

o que nos leva a identificar:

3G [ﬁ]
— = = — @L; (3209)
A,

9V = Bh,. (3.210)

Substituindo o resultado para dG7, [Z] / 52[# em (3.206), obtemos

A 1/ A -t
(Z ) [1- (A )
mp a \Mmp

AERTER

%[00 03] + 1.
(3.211)
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Podemos escrever

-1
(% + 1> =m% (A +m2)", (3.212)
mp

sendo (A +m2)~" a funcao de Green do campo escalar livre (2.144) com
m? = m%. Como tal fungao de Green é nao local, o operador atuando no
campo A na equacao (3.211) é também nio local e a condicio de Lorenz
Euclideana falha como uma escolha de gauge apropriada para a teoria de
Podolsky.

Uma vez que a condicdo (3.207) revelou-se uma escolha que levou a uma
equacao de campo nao local, na secao seguinte procuraremos uma escolha
de gauge para a eletrodinamica de Podolsky que cumpra os requisitos do

método de Nakanishi.

3.5.2 A condicao de Lorenz generalizada

Na secao anterior vimos que a condigao de Lorenz Euclideana, embora satis-
fatoria na eletrodinamica Maxwelliana, mostra-se inapropriada para o campo
de Podolsky. Em [36], Galvao e Pimentel estudaram a estrutura canonica da
eletrodinamica generalizada cléssica. Inspirados por aquele trabalho, tentare-
mos como escolha de gauge a condi¢cao de Lorenz Euclideana generalizada:

G |A] = Gar |4 = (ﬁ—g + 1) 9, A, (3.213)
P
Logo,
- . -
e, s

(A I R P .
+0, {B (W + 1) by — — (&,Bauh,, - @L&,Bhyﬂ

P P
oG |A|
= #HB hy + 0,550 (3.214)

Desta expressao, identificamos
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6Gy, |4 A
— L (W + 1) Dy (3.215)

dA, P
/A R 1 PR PN
GL
@8 ) B (m_% + 1) hy — m_% <8l,38uhl, — (‘L&,Bh,,) ) (3.216)

Substituindo (3.215) na equagao (3.206), encontramos a seguinte equagao de
campo

S

Pﬁy%’a)gf/ (x,7) = Z% (Wf)ab [Ea (x,7) ,1@? (x, 7')] + J, (x, 1, (3.217)

sendo que definimos o operador diferencial de Podolsky como:

o A N
plree) = _ (m—% 4 1> {A(SW 4 [1 - (m—% + 1)} auay}. (3.218)

O operador diferencial correspondente a este na teoria de Maxwell, a
saber, 0,,A + (1 — i) 0,0, pode ser tornado independente do termo 0,0, .
Isso é feito escolhendo o valor do parametro de gauge o como sendo igual
a 1. Esse é o chamado gauge de Feynmann-Stickelberg. Conforme notamos
pela definicao acima, na teoria de Podolsky nao ha nenhum gauge no qual
isso ocorra.

Dada a defini¢do do operador diferencial (3.218), vemos que o primeiro
membro da equagao (3.217) consiste num operador diferencial covariante lo-
cal inversivel atuando sobre o campo de Podolsky. Isso mostra que a condicao
de Lorenz Euclideana generalizada (3.213) é uma escolha de gauge apropri-
ada para a eletrodinamica de Podolsky. Dessa forma, a equagao (3.217)
constitui-se numa equacao de campo da teoria em equilibrio termodinamico.
Uma vez que a solugao exata da equagao (3.204) foi utilizada, com o opera-
dor escolha de gauge dado pela condi¢ao de Lorenz Euclideana generalizada
(3.213), vemos que as equagoes de campo nao dependem do campo auxiliar.
Isso justifica sua nomenclatura.

3.5.3 Os campos fantasmas

Consideremos o operador (3.191) sem os termos de fontes e com a escolha de
gauge (3.213):
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Lnar =~ F3,Fs + oz O Fe + 5 {B.Gay [ 2]} - S8+

4 ,uzz

168 { (4) B+ (50) )

- [ 5006 — tte (7°) ) [¢“’¢S] +2q6AS () [ﬁﬂ;ﬂ '

2
(3.219)

Conforme ja comentamos, o motivo pelo qual adicionamos o termo que
depende do operador de escolha de gauge foi justamente promover uma que-
bra explicita da simetria U(1) do eletromagnetismo de Podolsky. Sob uma
transformagao U(1),

05 (x,7) = B¢ (x,7) =€ ae NG (x 1) (3.220)
Do (%,7) = by (%,7) = s, (x, 7) €3 7, (3.221)
A5 (x,7) = A (x,7) = A3 (x,7) + 0,A° (x,7) (3.222)

B(x,7) = B (x,7) =B (x,7), (3.223)

o operador densidade de Lagrangeano acima se transforma de acordo com

= =/ e 1(~ A ~

Lyar — ‘CNGL = Lnar, + = {B, (—2 -+ 1) AAS} , (3.224)
2 mp

que é, no caso geral, diferente de (3.219). No entanto, se o operador A® for

tal que satisfaca a equacao [44]

(A +m?) AR® =0, (3.225)
vemos que L ~ar € invariante. Essa simetria da teoria é chamada de simetria

de gauge residual.
A fim de levarmos o vinculo (3.225) em consideracdo na teoria, definimos

o seguinte operador:

L.= Lyar + kX (x,7) (AQ + 1) AN (x,7), (3.226)

mp

sendo Ly a densidade de Lagrangeano Ly com a condi¢ao de Lorenz Eu-
clideana generalizada, x um parametro real constante que devera ser fixado
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posteriormente e 2s (x,7) um operador multiplicador de Lagrange. Agora,
reescrevemos esse multiplicador de Lagrange de acordo com

X (x, 1) =iC (x,7)v. (3.227)

s
Nesta expressao, C' (x,7) é um operador campo Grassmanniano e v é uma
constante Grassmanniana. Assim, vemos que

sendo C* (x,7) = vA® (x,7) outro operador campo Grassmanniano. C' e C
sao chamados de campos fantasmas.
Podemos reescrever o termo que depende dos fantasmas como

<_
=s A ~ s ~
o8 (2 1) a0 - o (@@%) 0,0+
ms mp
B A s 2\ A S04 A
+au{ZH {Cm—%(au— au)c —OE)MCH,
(3.229)

sendo que escrevemos U% § = @L@ e 5) H(/Z\’ = aué . Ao realizarmos variacoes
infinitesimais independentes em cada campo fantasma, vemos que o operador
compreendido entre as chaves no segundo membro dessa ultima expressao
serd uma parte da defini¢do do operador V,, da expressao (3.200). Como esse
operador vetorial nao contribui para as equacoes de campo, consideraremos
doravante, sem perda de generalidade para os nossos propositos, o seguinte
operador densidade de Lagrangeano:

~ ~ = A = =\ As =4 As
cczzc—au{m{om—(au—au)c—ca,p”

— Excr +i60,C ( Lt 5W> 8,C". (3.230)



Assumimos que a constante Grassmanniana v atue no espago dual do
espaco de Hilbert como o negativo dela mesma. Essa hipdtese, juntamente
com a defini¢ao da transformagao de gauge (3.220-3.223), implica na Her-
miticidade do campo fantasma C. Dessa propriedade e da Hermiticidade do
operador densidade de Lagrangeano, decorre:

= = t = =
= 0,0, o~ =t 0,0, o~
ik0,C ( :121; —|—5W> 0,C%| = —ikd,C ( :ﬁ? +(5W> 0,C
= (9,7, -
=1irk0,C -~ + 0, | 0,C°. (3.231)
P

A tnica forma dessa equacgao ser satisfeita é se o operador C' for anti-
Hermiteano. Resumindo:

ct=C; (3.232)
=1 =
C =-0C. (3.233)

A fim de encontrarmos as equacoes de campo fantasmagoricas, conside-
remos a inclusao das fontes fantasmagoricas, ou seja, os campos classicos

Grassmannianos d (x,7) e d (x,7) que sao fontes dos campos fantasmas C' e
C, respectivamente:

-~

L,o=1Llc+ % [El, 58] + % [dﬁs] . (3.234)

Realizando variacoes infinitesimais independentes em cada campo fan-
tasma, encontramos suas equagoes de campo:

A ~ ~

iK <—2 + 1> AC* (x,7) =d (x,7) 1; (3.235)
mp

(A =5 - ~

iRk (—2 + 1) AC (x,7)= —d(x,7) 1. (3.236)
mp

Observamos que essas equacoes descrevem campos nao interagentes. Essa
¢ uma consequéncia da escolha de gauge (3.213) ser linear no campo de Po-
dolsky. Se ao invés da condicao de Lorenz Euclideana generalizada tivéssemos
escolhido uma condi¢ao nao linear no campo eletromagnético, haveria in-
teracao entre os fantasmas e o campo A. Esse tipo de situacao é muito comum
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em teorias de gauge nao Abelianas. No presente caso, no entanto, os campos
fantasmas nao interagem com os demais campos. Uma consequéncia dessa
propriedade é que as equacoes funcionais do funcional gerador termodinamico
que dependem das fontes fantasmagoéricas, ou de derivadas funcionais com
relacao a essas fontes, nao dependem das outras fontes ou de derivadas fun-
cionais com relacao as outras fontes, conforme veremos na secao 3.6. Por
conseguinte, o funcional gerador termodinamico pode ser escrito como um
produto de uma termo que depende apenas nas fontes fantasmagoricas com
um termo que depende de todas as outras fontes cldssicas. Veremos, também,
uma outra consequéncia das equagoes de campo fantasmagoricas serem livres
na secao 3.8. Na referida secao, mostraremos que as equacoes de Dyson-
Schwinger-Fradkin da teoria de Podolsky nao dependem das fung¢oes de Green
fantasmagoricas.

3.5.4 A carga e o potencial quimico fantasmas

Na secao anterior introduzimos os campos fantasmas no problema com o
objetivo de levar em consideracao o vinculo (3.225). Esse vinculo, por sua
vez, surgiu da invariancia de gauge residual da teoria quantica. Contudo, a
introducao desses novos campos implementou, também, uma nova simetria no
problema. Observamos que (3.230) é invariante sob a seguinte transformacao
global:

C* (x,7) = C¥ (x,7) = €C* (x,7); (3.237)
=S =s/ ~s

C (x,7)=C (x,7)=0C (x,7)e ", (3.238)

sendo #y qualquer ntmero real. Assim como ocorre com a simetria global
semelhante a essa dos campos fermionicos, hd um operador carga conservado
associado a esta invariancia. Por se tratar de uma teoria com derivadas de
segunda ordem, o modo mais simples de se encontrar tal operador é encon-
trando primeiramente seu correspondente classico. Encontrar essa funcao
classica é nosso proximo objetivo.

A carga fantasma classica

A fim de encontrarmos a carga fantasma, consideremos a seguinte densidade
de Lagrangeana:
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H
L, = —ikdC <mw+ aﬁ”) a,C

2
mp

= —ikd"CO,C — %D@DO, (3.239)

P

sendo C e C' campos Grassmannianos escalares de Lorentz, que chamaremos
de campos fantasmas classicos. Nesta subsecao, a soma implicita é entendida
como sendo com a métrica de Minskowski novamente.

Essa densidade de Lagrangeana possui uma invariancia U (1) global:

C — ' =¢he, (3.240)
C — C =Ceito (3.241)

para todo numero real ;. Agora, consideremos uma variagdo com um
parametro infinitesimal 06,:

C = C'=C+id0,C, (3.242)
C — O =C—iCsb,. (3.243)

Sob essa transformagao, a agao associada a (3.239),

Sy = /d4x L,, (3.244)

se escreve em primeira ordem no parametro como

Sy — Sy + 08, (3.245)
sendo
_ 1 _
0S5, = — m&@o/d‘lx o {GMCC - C9,C — — [0, (OCC) +
P
-0, (COC) +20,00C - 20C0,C) } . (3.246)

Da imposi¢ao de que a acao seja invariante sob essa transformacgao in-
finitesimal, encontramos a seguinte equacao de continuidade:

g, = 0, (3.247)

91



sendo

g = 0,00 ~C0,C ~ — (0,00 — T09,C +0,00C ~ 00, 0) |
P
(3.248)

Assim como no caso da carga fermionica, a integral espacial em todo o
volume da componente temporal desse quadrivetor é uma quantidade con-
servada:

/dgilf Jgo =K / d333' |:80€C — 6800 — m—12 (Daoéc — DU@OC—F
P

+0,COC — COd,C)] - (3.249)

Essa é a carga fantasma cldssica. Embora ela seja uma constante do
movimento, essa nao é a forma mais apropriada a partir da qual se escreveria
sua versao quantica fazendo-se uso do principio de correspondéncia. A forma
ideal de se escrever qualquer quantidade classica que se queira quantizar é
escrevendo-a nao em termos de seus campos e suas derivadas temporais, mas
em termos dos campos e de seus momentos canonicamente conjugados. A
densidade de Lagrangeana (3.239) envolve derivadas de segunda ordem dos
campos fantasmas. Portanto, sua estrutura canonica é mais complicada que
a de uma teoria descrita por uma densidade de Lagrangeana que envolve ape-
nas derivadas de primeira ordem dos campos. De acordo com o formalismo
apresentado no apéndice B, o tensor de densidade de energia e momento de
uma teoria de escalares com derivadas de segunda ordem é

<3
Il
] -

[ﬁ(k)uau (5(1:)0) 1 aBmgy <§(/~c)5>} — O, — gL,

0

g (9OC) + 7O (HOT) +

\
3 =

g (B0 + 7 (9T — gL, (3.250)

Nesta expressao, utilizamos o fato de que f*?” = 0 para campos escalares
de Lorentz e também
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O = -1, (3.251)
rOr = T =g, (3.252)
RO = T (3.259)
= (3.254)
N 1, kK=0;
(k) — A’ I
s {0, -y (3.255)
Ccom
T a‘—WCg B 1 a(_wcg a{_wcg ‘
I = 8 (9,C) 004 3 59.0.0) T 38.0.0) | (3.256)
9(0,C) 210(0.0.C)  9(9,0,C)
= 1 8<_>£,g a‘—ng ‘
b= 2{8(8@0) 9(0,0,C)]" (3.258)
™ = 6Dt 56T (3.259)
210(2,0.C) ~ 9(9,0.0)
% = dmmd (3.261)
Definamos, agora:
TH . ac_>£g .
b= 9(9,C)’ (3.262)
T 1 &%Eg a(_)ﬁg
b= 2{ (0,0,C) +8(3V3MC) ) (3.263)
vo= S ; (3.264)
2(9,C)
210(0,0,0)  9(0,0,C)

Com isso, podemos escrever:
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7O =T" —20,T" + n,n9,L"; (
7 On — 99 LM+ n,n’o,LM"; (3.267
7 — nyfw; (

(

gk —p [

Podemos, também, escrever o tensor de energia e momento (3.250) como:

7;#1/ — 7 Ongv <§(O)C> + 7 Onrgr <§(0)5> +
+ 70 (J0C) 4+ g (VT - gL,
= (L" = 20,L"") 0"C + 9"C (1" — 20,L") — g" L+
+ 9, [non” (L' 0"C + 0"CL")]
= (L' —20,0"") 0"C + 0"C (L* — 20,LM") — g"' L, (3.270)

Nesta expressao, utilizamos a notagao

A=B (3.271)

para indicar que

B=A+9,W" (3.272)

para algum quadrivetor W.
Prosseguindo dessa forma:

T =< (L" = 0,L") 0" C + 0"C (L" — 9,LM") +
+0,0"CL" + 1'9,0°C — g"'L,. (3.273)

A componente zero-zero desse tensor é a densidade de energia, que pode ser
escrita como

=T = (T' = 20,7 — aL™) C + T (L = 20, L% — 0, L%) +
+CLY +2°C - £, + 0, (m% + EOkC) . (3.274)

A Hamiltoniana, por sua vez, é a integral da quantidade acima:
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H = /d?’xé'

= / &3z [(ZO — 99,1 — aozoo) C40 (L° — 20, L% — 3,L°°) +
+OLY L T°C — £, + 0, (éLOk + Z‘”“C*)}

- / d*x [(ZO —20,L" — L") C + T (L0 — 20, L% — 0,L%) +

Lo+ V¢ - cgl + / sy <6L°’c + Z”’“O) , (3.275)

sendo a ultima integral na superficie da fronteira da regiao que engloba todo
o espago. Essa integral é nula por hipotese. Assim, podemos escrever a
densidade de energia como

¢ = (L’ -20,L" - L") C+C (L' = 20,L" — L")+ L"C+TLY - L,

(3.276)
Essa expressao nos leva as seguintes identificagoes:
7 =1 — 26kZ0k - aOZOO; (3.277)
= L°—20,L% — 9L (3.278)
P = 1" (3.279)
P = L™ (3.280)

)
sendo cada um desses momentos canonicos conjugado respectivamente a cada
um dos campos C, C, D = C e D = C. Com o auxilio da densidade

de Lagrangeana (3.239) e das definigoes (3.262-3.265), calculamos cada um
desses momentos canonicos:

| _
mp
, O
T=IK <—2 - 1) 0 C; (3.282)
mp
P =ik—C; (3.283)
P
O
P=—ir—C. (3.284)
mp



Em termos dos campos e momentos conjugados, a carga fantasma classica
conservada (3.249) é reescrita numa forma mais simples:

/d3:cgo = —i/d3x (Cr+7C+ DP+ PD). (3.285)

Essa quantidade esta, agora, escrita numa forma apropriada a partir da
qual sua versao quantica pode ser facilmente encontrada.

O potencial quimico fantasma
A partir da carga fantasma cldssica (3.285), escrevemos sua versao quantica:
O=— %/d% ([6 %] + [%, 6] + [E, 13] n [?, f)]), (3.286)

sendo que os operadores campos e momentos fantasmas satisfazem os seguintes
anticomutadores fundamentais:”

{7} = ibx-yT (3.287)
(0.7} = i6x-yT (3.288)
{Cx). 7y} = 0 (3.28)
{5(x),%(y)} _— (3.290)
{x.Cw} =0 (3.291)
{Cx.Cw} =0 (3.202)
{7 x),7(y)} = 0 (3.293)
{%(x),%(y)} -0 (3.204)

Uma vez que existe um novo operador carga conservado no sistema as-
sociado a uma simetria interna, continua e global, devemos acrescenta-lo a
matriz densidade do problema. Assim, em vez de (3.157), a matriz densi-
dade que descreve o ensemble da eletrodinamica generalizada em equilibrio
termodinamico é

7Assumimos que esses operadores nao dependem do tempo pois estamos interessados

na situagao de equilibrio termodinamico.
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Pus (8) = exp |5 (Bir — poN = 1,Q) | (3.295)

Nesta expressao, I/E\}IT = }AIT + PAIg + Hgs, sendo HT Hamiltoniano total
que aparece na matriz densidade (3.157), H o Hamiltoniano dos campos
fantasmas cuja forma explicita nao é relevante para os nossos propésitos e H gs
o Hamiltoniano correspondente as fontes fantasmagoricas. Essa expressao
também depende do potencial quimico fantasma pg, ou seja, o potencial
quimico associado ao operador carga fantasma.

Visto que os campos fantasmas comutam com os demais campos do pro-
blema, essa matriz densidade pode ser reescrita na seguinte forma:

s (8) = exp | =8 (A, + Hyo — 1,Q) | 7.(8). (3.296)

Definimos, também, a dependéncia de um operador arbitrario F' com a
temperatura através dessa nova matriz densidade como:

Fos (1) = 51 (1) F e (1) - (3.297)

Contudo, devido a forma (3.296), notamos que para qualquer campo w;
que comute com os campos fantasmas, vale

WP (T)=Pys (T) W; gs ()
=it () exp |7 (Hy + Hys — 1,Q) | %
X exp [ (H + H qu)} s (7)
=77t (1) By exp |7 (ﬁg + Hy, — 1,Q)] %
X exp [ (H v H MQQ)} L (7)
=p, ' (T) W; ps (T)= W} (T) . (3.298)

Uma vez que o campo de Podolsky e os campos fermionicos comutam
com os campos fantasmas, vemos que a dependéncia desses campos com a
temperatura obtida através de (2.80) com a matriz densidade (3.157) coin-
cide com a dependéncia via defini¢ao (3.297). Esta observacao, na verdade,
serve de justificativa da razao pela qual os resultados obtidos anteriormente
para o campo de gauge e para os campos fermionicos permanecem validos,
mesmo que tenhamos ignorado, num primeiro momento, a presenca de outros
campos, a saber, os fantasmas, no problema.
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Para os campos fantasmas, no entanto, a situacao ¢ mais complicada.
Primeiramente notamos que, assim como no caso de quaisquer outros cam-
pos, o operador carga fantasma deixa de ser conservado na presenca das
fontes externas. Uma consequéncia imediata desse fato é que, em principio,

temos pys (B) # eBraQ exp [—6 <]ﬁIT — ,ue]\7 )} Contudo, notemos que existe

ainda uma forma alternativa as expressoes (3.295) ou (3.296) para essa matriz
densidade:

P (8) = exp |~ (H + Hy - pN = 1,@) | 5, (8). (3.299)
Nesta expressao, H=Hp—H,e :S'; (B) é a generalizacao do operador §(5)
que inclui as fontes fantasmagoricas. Agora, notamos que
exp |~ (H+ Hy — peN = 1,Q) | =™ %p (). (3.300)
com
pr (8) = exp | = (H + Hy— pN) |, (3.301)

pois a matriz densidade do primeiro membro de (3.300) ndo depende das
fontes fantasmagoricas. Logo:

Pus (B) = ™99 (8) 5, (B). (3.302)

A fim de simplificarmos ainda mais a notacao, definimos

prs (8)=pr (8) S, (B). (3.303)
Logo,

Pys (8) = #9900, (). (3.304)

Antes de prosseguirmos, notamos que, para os campos que comutam com
os fantasmas, uma transformacao de similaridade com (3.303) fornece:

pes (1) @;pps (1) = @5 (7). (3.305)

Utilizando a definicao (3.297) e a expressao (3.304), vemos que

98



C% (x,7) = Py (1) C (%) Pys (7)

= ppl(m)e ™R C (x) e 9, (1) ; (3.306)
=4gs o ~ =N
C (x,7) = P (1) C (%) Pys (7)

= Pt (r) e Q0 (x) €U, (7). (3.307)

A fim de calcularmos essas expressoes, utilizaremos a férmula de Baker-
Hausdorff [31]:

o~ THeQ O (x) €9 =C (x) — Tt [@’ C (x)} +

+ % 0.[0.C)|]+ (3.308)
e 0T (x) e =C () = 711, [Q,C ()] +

+ % Q. (0.0 + - (3.309)

O operador carga fantasma (3.286) depende de somas de produtos de dois
operadores. Notemos, entao, que, para quaisquer operadores A, B e D, vale

{Eé, ﬁ} = E{E, f)} - {X, f)} B. (3.310)

A partir dessa identidade, do operador carga fantasma (3.286) e dos an-
ticomutadores fundamentais (3.287-3.294), calculamos:

0.0 = -Cx); (3.311)
[@,ﬁ(x)} - C(x). (3.312)
Uma vez que o comutador do operador carga fantasma com um campo

fantasma é proporcional ao préprio campo fantasma, as séries (3.308) e
(3.309) se simplificam:
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e—fugéa (x) ewg@ — |14 7y + (T/;g) 4 (Tl;‘g) + . 6(X)
.S (w?) O (x) = e (x): (3.313)
e~ nl
P ~ — 2 — 3 =
e 0 (x) €9 = |1+ (—Tp,) + ( T;g) + ( 7;'19) + ... C(x)
= > ETS B g = el ). (3.314)
n=0 ’

Substituindo esses resultados nas expressoes (3.306) e (3.307), encon-
tramos:

?98 (x,7) = e™ap,) (T)éA(x)ﬁps (1) (3.315)
C (x,7) = e ™ (1) C (X) Pps (7). (3.316)

Os campos fantasmas comutam com todos os termos do operador pp; (7),
salvo os que dependem do Hamiltoniano dos campos fantasmas e do Hamil-
toniano das fontes fantasmagoricas. Isso é equivalente ao que ocorre com os
campos que comutam com os fantasmas, sendo que aqueles campos comu-
tam com todos os campos, a excecao dos respectivos Hamiltonianos totais.
Naqueles casos, vale o resultado (3.305). Por essas razoes, vemos que ex-
pressoes semelhantes devem valer para os campos fantasmas, a saber,

(x) pps (1) =C* (%, 7); (3.317)
(x) pps (1) =C (x,7). (3.318)

Prs (7)

Qb o

Pps (7)

Por fim, chegamos aos resultados [49]:

C% (x,7) = e™(C%(x,7); (3.319)
Ugs(x,T) = e_T“gas(x,T). (3.320)

Vemos, dessa forma, que, diferentemente do que ocorre com campos que
comutam com os fantasmas, transformacoes de similaridade dos campos fan-
tasmas com a matriz densidade do sistema geram uma dependéncia explicita
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desses campos com o potencial quimico fantasma. Esse potencial quimico,
por sua vez, precisou ser levado em conta no problema pois os campos fantas-
mas, que foram introduzidos na densidade de Lagrangeana do sistema para se
levar em conta o vinculo (3.225) que surgiu da presenca da simetria de gauge
residual do problema, implicaram na presenca de uma nova simetria na des-
crigao do sistema fisico, dada pela invariancia da densidade de Lagrangeana
(3.230) frente as transformagoes globais (3.237, 3.238).

3.6 Meédias no ensemble de ordenamento de
campos

As equagoes (3.186), (3.187), (3.217), (3.235) e (3.236) formam o conjunto
das equacoes de campo da eletrodinamica de Podolsky em equilibrio ter-
modinamico. Nessas equacoes esta contida toda a informacao do sistema
fisico. Caso seja possivel resolver esse sistema de equagoes operatoriais nao
lineares, poderiamos calcular qualquer quantidade fisica que desejassemos.
No entanto, conforme vimos no exemplo do campo escalar na capitulo ante-
rior, é conveniente encontrarmos o funcional gerador termodinamico da teo-
ria, pois a partir dele também se pode calcular todas as quantidades fisicas
de interesse numa situacao de equilibrio. A fim de encontrarmos tal gera-
dor, multiplicamos cada uma das equacoes de campo pela matriz densidade
(3.295) e utilizamos as expressoes (2.86) e (2.97). Procedendo dessa forma,
obtemos as seguintes equagoes equivalentes as equacoes de campo (3.186),
(3.187), (3.217), (3.235) e (3.236):

101



dpgs (B)
6d (x,7)
dpgs (B)
dd (x,T)

A
mp
A
—iK (—2 + 1) A
mp

: 0%pgs (B)

e 0o 57, ) o, .7

+1a (X, 7) Dgs () ; (3.321)
%pys (B)

b 6.Jy (x,7) Oy (%, 7)

+q (X,7) Pgs (B) ;

0%pys (B)

ige (v7)
(3.322)

14e (75)@ e (x,7) 07, (x,7) +

+Ju (%,7) Dgs (8) 5 (3.323)
d (x,7) pys (B) ; (3.324)
d(%,7) e (8) (3.325)

De acordo com a equagao (2.98), ao se tomar o trago da matriz densi-
dade sobre os estados fisicos do sistema, obtemos o funcional gerador ter-
modinamico. Dessa forma, tomando-se o traco de cada uma dessas ex-
pressoes, obtemos o conjunto de equacgoes funcionais satisfeitas pelo funcional
gerador termodinamico Zgr = Zap [J, 7,1, d,c_l] da teoria de Podolsky:

i 0Zar

[(Vf ) O — mf5ab] 57 (.7
e 0ZGF

(O 070+ a5

m2 e} 5Z
P(u P ) GF
g 6J, (x,7)

1K (AZ + 1) A EZGF
mP (Sd (X> T)

—iK (A2 + 1) A 0Zar

m5 dd (x, )

3 Zarp
ab 5‘]# (Xa 7—) 6ﬁb <X7 7_)
+1a (X, 7) Zar; (3.326)

—ige (/)

% Zar
ba §J, (x,7)0n, (%, 7)
+ﬁa (X7 T) ZGF7

iqe (7))
(3.327)

2 Zcp

ab 577(1 (Xa 7—) 5ﬁb <X7 7—)

ige (v7)

+J# (X, T) ZGF; (3328)
d(x,7) Zgr; (3.329)
E(X, 7') ZGF‘ (3330)

A vantagem desse sistema de equagoes sobre as equagoes de campo é que
a solugao do conjunto de equagoes (3.326-3.330) é um funcional, ao invés de

um certo numero de operadores campos.



Conforme afirmamos anteriormente, as equacoes diferenciais funcionais
que envolvem derivadas funcionais com relagao as fontes fantasmagoricas
nao envolvem derivadas funcionais com relacao as outras fontes.

Na subse¢ao seguinte veremos que essas equacoes funcionais podem ser
convertidas em equacoes diferenciais envolvendo certos operadores que de-
sempenharao um papel crucial nesta tese.

3.6.1 Meédias térmicas de certos operadores

Embora ja sejamos capazes de resolver o sistema de equagoes funcionais
(3.326-3.330), nesta subsegao buscaremos um conjunto de equagoes que rela-
cionam diversas médias térmicas de certos operadores especiais. Também
mostraremos algumas propriedades de tais operadores. Notemos que derivan-
do funcionalmente cada equacao do sistema de equagoes funcionais (3.326-
3.330) com relagdo a uma fonte apropriada, encontramos um sistema de
equagoes diferenciais relacionando diversas médias térmicas:

0acd (X —y)0 (T — 7y) = [( >ab 0,8”5 mféab:| x<T [@c (v, 7) {Zj\b (x, 7—:0)} > +

— i (1), (T [0 (vom) A () o 7))
(3.331)

[ (y,7y) i (x Tz>i|>+
A

v (X, 72) 126 (x, Tx)] > ;
(3.332)

Guc (x = 3)8 (72 = 1) = [ (3£),, 05+ m s (T
+ iq. (Vf)ba <T |:7$c (v, 7)

2
mp,Q

8,68 (¢~ ¥)6 (o — 7,) = PP @) (T [ (y.m) &, (7)) ) +
e (1), (T [Ae (7, 7) 0 (6, 72) 0 (7))

(3.333)
5(x—y)d(r —7,) =ik (mﬁ + 1) A, <T [6(y,7y)6(x,7x)}>;
" (3.334)
§(x—y)8 (1, — 1) = — ik (% n 1) A, <T [6(y,ry)6(x,@)]>.
" (3.335)

As médias no ensemble que aparecem nos segundos membros dessas equa-

coes diferenciais acopladas sao todas da forma <T [Zsr (v, 7) EI\DS,C,?,, (x, Tx>:|>
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com a € N tal que a =1 ou a = 2, sendo gg,, qualquer um dos campos e @ff;}
um campo quando a = 1 e um produto de dois campos quando a = 2. Sendo
assim, escrevemos

@5‘2 (x,7,) = (5(11&5\,« (x,7:) + 5a2$T (%, T2) qgr/ (%, Ts) - (3.336)

Utilizando a definigdo de ordenamento (2.60), temos:

(7[00 (3,7 B (x| ) =0 7y = 72) (B0 (3, 7) B (5,7 ) +

+0 (7'93 - Ty) <{I\>£(}7),// (X, Tx) ¢r (y> Ty)> .
(3.337)

Concentrar-nos-emos na primeira média térmica do segundo membro dessa
expressao. Devido a definicao de média no ensemble (2.35), temos para esse
termo:

T (7, (8) 6, (3,7) 85 (x,72)
5, (9) |

sendo p, (/) a matriz densidade (3.295) com as fontes externas nulas, ou seja,

(6 (ym) B (x.7) ) = (3.338)

5y (8) = exp |8 (H - uN - 1,Q)] (3.339)

com H = H p+ ﬁ]c + ﬁlg sendo o Hamiltoniano sem fontes.

Para os nossos propédsitos ¢ suficiente calcularmos o numerador do se-
gundo membro da equacgao acima. Esse numerador é o traco de um opera-
dor. Uma propriedade do trago é sua invariancia por mudanca de base. Isto
significa que podemos calculd-lo em qualquer base. Por conveniéncia, esco-
lhemos a base simultanea da energia e das demais quantidades conservadas,
a saber, o momento linear, a carga de Noether fermionica e a carga fantasma.
Tal base, denotada por

E,P.N,N,) = |Y) (3.340)

satisfaz as seguintes equacoes seculares:
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oY) =E|T); (3.341)
Pe|T) = P |T) ; (3.342)
N|T) =N, |T); (3.343)
Q|Y) =N,|T), (3.344)

Utilizando as equagoes de autovalores (3.341), (3.343) e (3.344) e a matriz
densidade (3.339), vemos que o numerador do segundo membro de (3.338)
pode ser escrito como

~

Tr [ﬁg (8) (/b\r (v, ) <I>ffﬂ~ (x, Tz)i| = /dT <T ‘exp [—ﬁ (]ﬁl — Me]/\\f _ Mg@)] x
X (y,7y) @(,),, (x,7.) T>

= /dTeXp [—B (E - :ueNe - :ugNg)] X

< ( T).

o~

(7)) (x,7)

(3.345)
Em (3.345), denotamos a medida de integracao multipla por
dY = exdE dP, dP, dPs dN, dN,, (3.346)
sendo cy uma constante nao nula apropriada.
A fim de calcularmos o valor esperado <T ‘cﬁr (y,7y) @572,, (x,72) T>, re-
cordamos a expressao (3.297) que, para fontes nulas, se torna
F(r)=p," (1) Fpy(7). (3.347)

Dessa expressao, imediatamente notamos que F' = F (0).
Entao, inserindo a resolu¢ao da unidade entre os operadores de campo,
temos®

8A resolugao da unidade é dada por 1 = [dY |Y)(Y|. No que segue, os autovalores

E', P, N, e N, sao associados ao estado |Y”).
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o~

O (y,Ty)(I)(, v (X, 72) a)

T[4 (v.7) (7| T)

{r

:/ ) (1|8
/T T‘pg (Ty Qbr(y’ 0) pg (1y) T>X

(vl v)

/d ~(re=7y) [E—E' —pe(Ne=N{) =g (Ng =Ny )] o
x (T

O operador momento P é o gerador do grupo das translacoes espaciais.
Por essa razao, podemos escrever [44]:

72) 1), (x,0) 5, (72)

o (v, 0) ') (1"

39, (x, 0)‘ T).
(3.348)

& (v,0) = ¥Pg (0,0)e¥ P, (3.349)

Devido a essa propriedade e a definicao do operador @ng,,, temos também

0') (x,0) = 6110y (%, 0) + dazhy (%, 0) b (x,0)
— 5a16—zx-P¢r (07 0) ezx-P+6a26—zx~P¢r (07 0) eix-l?’e—ix-l?'gb\w (0’ 0) eix

= €_ix.13 5a1$’r (07 0) + 5CL2$T (07 O) (g"'l <O’ 0)] e !
_ e—ix-f’(/f)gﬁ? (0,0) ™. (3.350)

Substituindo esses resultados em (3.348), encontramos:

<T

~

o (y, 1y) <I>(,),, (x,7:)

/ T/ — Ta;_Ty) E E' H/e(Ne ) MQ(NQ_N;])] X

/
X e i(x— y)PP)><

><< r(o,o)‘r><r’

Um resultado semelhante pode ser obtido a partir da segunda média
térmica de (3.337). Para ela, temos

39, (0, 0)‘ T>
(3.351)
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o T (5,981 (x.7) 6 (v.7)|
< rir! (X7 7—96) (bv" (Y7 Ty)> - Tr [ﬁg (5)] ’

(3.352)

~ A~

Tr (7, (8) 85 (x,72) & (v,7,)| = / A exp B (E — N, — iy N,)] %

><<T T>,

(3.353)

(I)ff’?” (X, T:c) ¢r (Ya Ty)

com

~

<T‘(b7(n(/lgn (X7 Tx) ¢T <y7 Ty)

¥) - / Y o) [ (NN (N3] o

W e ix=y)(P=P') o
X <T

Dessa forma, (3.337) se torna

3, (0, 0)‘ ) (7

6:(0,0)| ).
(3.354)

(7 [b o) B ()] ) = [ e exw (28 (B = Ve = )]

X [6 (1y — 72) elx—y) (P—P")

% o= o=y [E=E'—pe(Ne=N)—pg (Ng—Ny )|

< (1[5 0.0 1) (¥[8 0,0 T) +

+ 0 (7, — 7)) eIV PP

X e(Tx_Ty)[E_E,_Ne(Ne—Né)—Mg(Ng_Né)] X

« <T ‘@S,’Z,, (0,0)’ T’> <T’ %. (0,0)‘ T>} .
(3.355)

X

Embora o segundo membro dessa equacao tenha uma forma tao compli-
cada que a primeira vista podemos pensar que nada, ou pouca coisa, se possa
concluir a partir dele, notamos que ele nao depende dos valores absolutos de
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X, Yy, Tz € Ty, mas apenas das diferengas x —y e 7, — 7, [13]. Portanto, ¢
conveniente definirmos as seguintes quantidades

<T [ﬁy (v, 7) A\u (x, Tx) > =D, (X—y, 7 —Ty); (3.356)
<T [ib (v, 7y) YZQ (x, Tx) > =S (X—y,7e —Ty); (3.357)
(T[Cy.m)Cxm)])=6x-ym-1). (3.358)

Da defini¢ao de ordenamento, temos também

<T [,Z,L (x,72) A, (, Ty>: > = Dy (y-x.7—7);  (3.359)
(1[0 m)buxm)]) = =Sy —x7-7)5  (3:360)
<T [é (y,7,)C (x, TI): > — Gy-x7—7).  (3.361)

As médias no ensemble (3.356-3.358) sao quantidades muito especiais e
desempenharao papéis cruciais nas secoes seguintes. Na proxima subsecao,
mostraremos que essas médias térmicas especiais satisfazem certas proprie-
dades de periodicidade.

3.6.2 As periodicidades das médias térmicas especiais

Na subsecao anterior mostramos que as médias no ensemble de um or-
denamento de dois campos possui a propriedade de depender apenas das
diferencas dos parametros coordenada espacial e temperatura. Nesta secao
demonstraremos outras propriedades muito importantes dessas quantidades:
suas periodicidades. Para tal fim tomemos a defini¢ao (3.356) com 7, = T,
0 <7< pBer =0. Utilizando a definicao de ordenamento (2.60) a pro-
priedade de ciclicidade do trago e a definigao (3.347) temos [50, 51]:°

9A ciclicidade do traco consiste em Tr (ﬁﬁ) =Tr (Eﬁ), valida para quaisquer ope-

radores A e B.
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Duw(x=y.7) = (T |4, y.04,x7)|) = (4 (04 xm)
T {3, (8) A, (x,7) A, (3,0)]

T |4, (v,0)7, () A (x,7)]

(
™[5, (5) 75" (5

J
- Z(6)
T [, (8) A, (. 8) A, (x,7)]
- Z(8.V.e)
= (A0 A exn) = (T[4 (v.0) 4, (x7)] )
= D, (x—-y,7—-0). (3.362)

Essa expressao mostra que a funcao D, (x,7) é periédica na varidavel 7 com
periodo 3. De uma forma muito semelhante, calculamos

S (x = y,7) = (T [0 (5,0) 0 (x,7)] ) = = (0 (x,7) 1 (3,0))
= (% (y.5) B, (%, 7)) = —Sw(x—y, 7= B). (3363

Esse resultado mostra que, ao contrario de D,,, (x,7), Sap (X, 7) é uma fungao
antiperiddica na variavel 7 com “periodo” f.
Contudo, ao se repetir esses passos para (3.358), encontramos:

~

Tr |7, (8) 5, (B) C (v,0) 5, (B) C (x, 7)

Ggx—y,7)=— Z(5) (3.364)
Utilizando a equagao (3.320) com fontes nulas, temos:
~1 = R _:9 o *ﬁﬂgz
Py (B)C(y,0)p4 (B) =C (y,8) = e C(y,B). (3.365)
Logo,
Gx—y,7)=—eMG(x—y,7-p). (3.366)
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Se ao invés de (3.358), tivéssemos partido de (3.361), obterfamos:

Gly—x,—7)=—e"G(y—x,6-71). (3.367)

Agora, substituimos (3.358) e (3.361) em (3.334) e (3.335), encontramos:

(mﬁ T 1) AG(x—y.m—1) =6(x—y)b(r—7);  (3.368)
P

(mﬁ T 1) AG(y — %7, —7) =6 (x—y)b(r—7).  (3.369)
P

Essas duas expressoes mostram que ambas as fungoes G (x —y, 7, — 7))
e G(y —x,7, — 7;) sao fungoes de Green do operador ix <n% + 1) A. TIsso
P

fornece uma interpretacao para essas funcoes. Além disso, isso mostra que
essas duas funcoes sao iguais. Isso implica:

Gx—y,7—0)=eMGx—y,7—p). (3.370)

Além da solugao trivial i, = 0, vemos que o potencial quimico fantasma deve
satisfazer:

o= "5 (3.371)

com n € IN. Uma vez que um potencial quimico fantasma nao nulo nao é um
nimero real, a condicao acima nos mostra que esse potencial quimico nao é
uma quantidade termodinamica observavel.

Substituindo (3.371) em (3.366), encontramos a seguinte equagao

Gx—y,7)=—e"G(x—y,7—f). (3.372)

Donde vemos que a periodicidade da funcao de Green G é condicionada a
escolha do valor do potencial quimico: se n for par (ou o negativo de um
numero par), a fungao G é antiperiédica; se, por outro lado, n for impar (ou
o negativo de um impar), essa fungao é periddica. Essa escolha, contudo, é
determinada pela propria estrutura do formalismo. A fim de determina-la,
necessitamos estudar a funcao de particao da teoria.
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3.7 Representacoes de integracao funcional

Na secao anterior encontramos o conjunto de equacoes funcionais que o
funcional gerador termodinamico satisfaz. Nesta secao, mostraremos que
¢é possivel encontrar uma representacao de integracao funcional para o fun-
cional gerador que satisfaz o referido conjunto de equagoes funcionais. Além
disso, encontraremos, também, uma representacao de integracao funcional
para a fungao de particao da teoria.

3.7.1 O funcional gerador termodinamico

A fim de encontrarmos uma representacao de integracao para o funcional ge-
rador termodinamico, supomos a seguinte forma geral para tal representacao:

ZCF'LLnaﬁadaa}::L/:EnyﬂhawlﬂﬁzxjéiHTLAawaaiclzjlX

X exp {/ d*x (JuAu +NyVa — @ana —Cd —i—EC’) )
B

(3.373)

3 _ 4 _

Nesta expressao DA = [[ DA, e DYDY = [ DY, D). A é um campo
=0 a=1

nao Grassmanniano, enquanto que os demais campos sobre os quais a inte-

gragao é realizada sao Grassmannianos. Chamaremos também, por questao
de conveniéncia, o campo A de campo de gauge, ou campo eletromagnético
ou de Podolsky, 1 e ¢ de campos fermionicos e C' e C de fantasmas. A
meta de se encontrar o funcional gerador termodinamico é alcangada uma
vez conhecida a funcao Zgp [A, v, 1, C, 6] e, em seguida, resolvida a integral
funcional multipla (3.373).

Conforme veremos a seguir, a representagao funcional geral (3.373) estd
mal definida.

Das equagoes (2.103), (3.356), (3.357), (3.358) e (3.373), devemos ter!”

10Escreveremos temporariamente ZGF [AJ/J,E, C,m = ZGF.
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D, (x—-y,7—1) = /DA'DEDQ&DUDC’ A, (x, 1) A (y, 7y) ZGFX

X exp [/ d*z (J£A£ +abe — ,n. — Cd + EC)}
B
(3.374)

Sap (X =y, 70 —T,) = / DADYDYDCDC Y, (X, 72) Uy (v, 7)) Zarx

X exp [/ d*z (JgAg + e — Y. — Cd + EC)}
g
(3.375)
GxX—y,7w—7) = /,DAIDED¢D6,DC C(x,7) c (y,7) ZGF

X exp {/ d*z (J§A§ +Ntbe — P m. — Cd + EC’)}
B
(3.376)

O resultado (3.362) mostra que a integracao funcional sobre o campo
A deve ser realizada sobre todas as configuracoes de campo que satisfazem
condigbes periddicas de contorno, isto é, A, (x,0) = A, (x,5). A equagdo
(3.363), por sua vez, nos mostra que as integracoes funcionais sobre os
campo 1 e ¢ devem ser feitas sobre todas as configuracoes antiperiddicas
Vo (x,0) = =9, (x,8) e ¥, (x,0) = =1, (x,8). A expressdo (3.372), por
outro lado, nos diz que as integracoes funcionais sobre os campos C e C
satisfazem ou condigoes periddicas ou condigoes antiperiddicas, dependendo
do valor do potencial quimico fantasma (3.371). Denotando integracao so-
bre configuragoes peridédicas pelo indice P, antiperiddicas por A — P e a que
depende do valor potencial quimico fantasma por (p,), a representacao de
integracao funcional geral correta para o funcional gerador termodinamico é,
ao invés de (3.373),

Zer [Ton,7,d,d] = / pA [ DiDe [ DODC Zar [A,0,75,0.C) x
A—P

Hg)
X exp {/ d*x (JuAu + Ny — Vona — Cd + C_ZC):|
B
(3.377)

A fim de obtermos uma expressao completa para o funcional gerador
termodinamico, precisamos encontrar a funcao Zgp [A ., C, T A forma
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mais direta de se fazer isso é substituir a expressao (3.377) no conjunto de
equagoes funcional (3.326-3.330). Como a tnica fungao a ser determinada é
ZGF, esperamos que tal substituicao nos forneca um conjunto de equacoes
para essa fungao. Substituindo (3.377) no sistema de equagoes funcionais
(3.326-3.330), encontramos

ab M

Mo (X, T ZGF_/DA/A DyDy [ DCDC {( EY D) [A] +
P

Hg)
—mf0ap} Py (X, T) Zap X

X exp { / d'y (JeAe +Tetpe — Yo — Cd + 30)} . (3.378)

ﬁa (X) T) ZG'F - / DA . PD¢D77D DCDC {( ) Dl(L_Ne,—Qe) [A] +

ba
(kg)

+mf0ba } Uy (X, T) Zarx

X exp { / d*y (JeAe + e — ¥ — Cd + EO)} . (3.379)

Jo (X, 7) Zap = / DA N DYDY DC’DC{ plree) g, (x,7)+
P

(kg)

—ige (V) . Ya (X, 7) W (XJ)} Zarx

X exp { / d*y (JeAe + Tobe — Yo — Cd + E(J)} ; (3.380)

A
d(x,7) Zar = / DA/ DyDyp DCDC ik (— + 1) AC (x,7) X
A-P (1g) m

xzmmﬂffuk&+mm—%m4%+&ﬂ;
B
(3.381)

E(X,T)ZGF_/DA/ DDy )DCDO( i)k (%H) AC (x,7) x

g mp

x&wm{/&ﬂk&+m%—%m—aﬂﬂm}
B
(3.382)

A definicio do operador D% [A] ¢ semelhante a (3.188):

Dﬁﬂev‘]e) [A] = algue) +ig.A,, (3.383)
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com 9 também dado por (3.189).
Sejam as quantidades:

S(ay E% /ﬁd% Ao, 7) P 4, (3, 7) (3.384)

S(ﬂ’@) = — /,Bd‘l.’ll'aa (X,T) [(’yf)ab al(ﬁe) — mf(sab:| % (X,T); (3385)
9,7

Sy = — ir / d20,0 (. 7) (60 + 222 ) 0,0 (1) (3.386)
() 8 mp

S(int) = — iqe/ﬁd% (yf)ab A, (x,7) 0, (x,7) Uy (x,7). (3.387)

As derivadas funcionais de algumas combinagoes dessas quantidades com
relacao aos campos nos fornecem:

5
50 r) (Som) + Sonn) = = { (040 0, DL [A] = b | (x,7):
' (3.388)
5 _
3 (%, 7) <S(w v) T S(mt)> = - {(ﬁ)m Dy [A] + mf5ba} Uy (%,7) 5
(3.389)
1) m3,«a . —
A (e 7 (S + Sann) =PI A, (7= (4F) 1, B (6, 7) s (3,7):
H )
(3.390)
35S0
% — ik <m% n 1) AC (x,7) (3.391)
53S0
— Ei’CT) iK <m% + 1) AT (x, 7). (3.392)

Notamos que, a menos de alguns sinais, os segundos membros dessas
equagoes sao precisamente os termos que sao integrados funcionalmente em
(3.378-3.382) juntamente com a Zgp e a exponencial que depende das fontes
classicas.

Chamaremos a soma de todas as quantidades (3.384-3.387) de ac¢do ter-
modinamica e a denotaremos por St = S;B’“e’v) [A, ¥, 1), C,m:
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St =54y + 5y 3) T S(cp) T S

1w 9,
- / d*x {ﬁA#P,fﬁ” P’“>AV — iK0,C <6W + T‘; ”) 9,C+
B

2
P

D | (4F) 5y DY) [A] = mydin| 1 (3.393)

Visto que S c0) nao depende nem do campo de gauge nem dos cam-
pos fermionicos e Siay, S (v73) © S(int) nao dependem dos campos fantasmas,
temos:

65’(:87#5,‘/) A - C 6
T 5@[ (XwT;b C] -5 ?X . (Stu) + Senn ) (3.394)
68§71 [A, 4,9, C,C 5
T 51/)E (x,7) ] = 50 7] <S(¢@) + S(mt)) : (3.395)
655V [A,4,9,C,C] 5
0A, (x,7) T 6A,(x,7) (Scay + Seinny) + (3.396)
58;&“67‘/) [A7 wvaa C; 6] _ 55(0,6) ) (3 397>
0C (x,7) 0C (x,7) :
655" [A,4,9,C.C] _ 95(co) a0
0C (x,7) 6C (x,7) .

Com isso, todos os termos integrados em (3.378-3.382) dependerao de
derivadas funcionais da acao termodinamica:
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Na (X, 7) Zagr = / DA DDy DCDC LZGF
A-P .“g) 5@1’ ( )
X exp { / d'y (JeAe + e — Y — Cd + 30)} ;(3.399)
_ 6ST
Na (X> T) ZG’F = / DA D@DD'I/J DCDC ZGF X
A—-P (g) 5% ( X, )
X exp { / d'y (JeAe +Tebe — Yone — Cd + 30)} ;(3.400)

3Sr
(x,7)

X exp [/ d'y (JeAe + e — Yo — Cd + 80)} . (3.401)

ZGFX

J, (x,7) ZGF:/DA/A Pwm/ DCDC —L oy

d(x,7) Zgr = /DA DYDY DCDC _55 ZGFX
A-P .“g) 50 (X T)
X exp {/ dly (JgAg + 1. — Ecnc —Cd+ C_ZO):| ;(3.402)
- 0ST
d(x,7) Zgr = /DA/ DYDY DCDC’—ZGFX
(1g) oC ( )

X exp { / d*y (JeAe + Totbe — ¥ene — Cd + ch)} . (3.403)
B

Resta-nos, ainda, reescrever os primeiros membros dessas expressoes em
formas mais convenientes para os nossos propositos.

Consideremos o primeiro membro de (3.401) e utilizemos a representagao
(3.377) para o funcional gerador termodinamico:
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T (X,7) Zar = / DA [ DYDY | DCDC Zar [A 0,0, C,C] x
P

A-P (g)

x J, (x,7)exp [/ d*z (JeAe + b — one — Cd + c_iC’)}

/ DA DYDY DODCZGF[ 0, 0,0,C] x
A-P

(1g)

/ DA DYDYy | DODC x

A P (1g)
W {ZGF (A, ¢p,4,C,C] x
X exp { / o (JeAe +Tbe — Do — Cd + EC)] } +

ZGF[ ¢¢CT
dA, (x,7)

/ DA DYDYy | DCDC
A—P

Ng)
X exp [/ d*z (JEAg + 1,0 — Ecnc —Cd+ EC)}

ZGF[ @01/),07
0A, (x,7)

/ DA DYDYy | DCDC
A—P

(kg)

X exp { / d*z (JeAe + M tbe — e — Cd + EC)] . (3.404)
g

Neste resultados utilizamos a derivacao funcional do produto de dois fun-
cionais e o fato de que a integracao funcional de uma derivada funcional total
¢ nula [57].

Para o caso dos campos Grassmannianos o resultado ¢ um pouco diferente
do caso do campo de Podolsky. Explicitaremos os calculos para o primeiro
membro de (3.399). Os demais casos sao similares. Entao:
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e (%,7) Zap = / pA [ DDy [ DODC Zep [A0, 5,0, T x

A-P (1g)

X 1 (X, T) exp {/ d*z (JeAe + Tobe — Yon. — Cd + EC)}

/ DA DYDY DODC Zar [A, 0,0, C,C] %
A-P

(kg)

exp {/ d*z (JgAg +Ntbe — P n. — Cd + EC)}
,7) 8

E
/ DYDY DCDC x

(1g)

{ZGF ¢7$7 Ca a] X
X exp [/ d*z (JeAe + b — e — Cd + EC)] } +

§Zar [A, )
/ DA DYDYy | DODC 24 [4,9,4,C,C] x
A—-P (1g) 5wa (X7 T)
X exp [/ d*z (JeAe + b — e — Cd + C_ZC)]
§Zar [A 0, 0,C,C
/ DA DYDYy | DCDC - [_,w,w,c, ‘] X
A-P (Mg 57% <X7 7-)

X exp { / d'a (JeAe + e — Y. — Od + ch)} . (3.405)
B

Substituindo (3.404) e (3.405) nas expressoes (3.399-3.403) encontramos
as seguintes equacoes que Zgr deve satisfazer:
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5ZG’F [Aﬂ%% O?@ o 55{%’&“67‘/) [ w %O T

— — ZG’ ) ’l7Z}7 Ev C) C ;
5, (x,7) 5%, (x,7) o4 (7 |
3.406
5ZGF [A7¢)E7 O?ﬂ o 55;“6#6"/) [ 77Z) 1/} O T - X
5¢a (X; 7') o 5¢a (X7 T) ZGF |: 777b’ 1/}7 07? ’ )
3.407
5ZGF |:A7 w7w7 C,UJ - 65’5“5’#67‘/) |: w w7 C _J - .
§AN(X7T) - 5A“( ’ ) ZGF[ 7w7w707(CY_‘|7 )
3.408
8 Zar [A,0,9,C,C) 38§V (A ,%, C, C] _
— = - Z, s ¥ 707 C )
6C (x,7) 6C (x,7) Zar [A0,¥ (T |
3.409
0Zcr (A, 9,C.C)  §8¥" V) [A,4,9,0,C) - -
0C (x,7) T 0C (x,7) Zor [4 7%1/1707(@ ’ |
3.410
A solucao desse conjunto de equacoes funcionais é
ZGF [A7¢7E7 C? 6] = ZUQ_S(TB‘M&V) [A,d),@,(],é]’ (3411)

sendo Z) uma constante.
Dessa forma, a representacao de integracao funcional do funcional gerador
termodinamico da teoria de Podolsky (3.377) é

Zop [Tn,d,d) = Zg / DA | DYDY ( )DUDCe‘ST[AW"’C’C] x
P -P Hg

X exp [/ d*z (JuAu + N e — Y ne — Cd + c_iC’)
B
(3.412)

Ainda nao se é, contudo, possivel calcular essa expressao, pois a periodi-
cidade dos campos C' e C' ainda é um mistério. A fim de solucionarmos esse

enigma, consideraremos, na préoxima subsecao, a fungao de particao da teoria
de Podolsky.
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3.7.2 A funcgao de particao

Na subsecao anterior encontramos uma representacao de integracao funcional
para o funcional gerador termodinamico da eletrodinamica de Podolsky. Essa
representacao nao estd plenamente definida a menos que tenhamos alguma
forma nao ambigua de se escolher o valor do potencial quimico fantasma.
Uma resposta para essa questao pode ser obtida analisando-se a fungao de
particao da teoria.

De acordo com a equagao (2.99), a fungao de particao é um caso particular
do funcional gerador termodinamico no qual todas as fontes externas sao
tomadas como sendo a func¢ao identicamente nula. Procedendo dessa forma,
a fungao de partigao é facilmente obtida de (3.412) como sendo:

Z(B) = Z / DA / DDy | DODC e SrlAv.cd],
P A-P (1g)

(3.413)

Essa é a funcao de particao completa da teoria. A partir dela, todas
as quantidades termodinamicas podem ser calculadas. Contudo, nao se é
possivel calcula-la exatamente. O primeiro empecilho encontrado ao se ten-
tar resolver as integragoes funcionais presentes nessa representacao de Z ()
consiste em que nao se pode resolver as integragoes sobre os campos fantas-
mas, pois suas periodicidades ainda sao desconhecidas. Segundo as definicoes
(3.393) e (3.383), o inico termo na agao termodinamica e, consequentemente,
na fungao de particao que envolve algum tipo de interagao é o termo propor-
cional ao parametro ¢.. Em particular, notamos que as periodicidades dos
campos fantasmas nao sao afetadas pela interacao. Em outras palavras, as
periodicidades de C' e C' sdo as mesmas tanto no caso com interacio como
no caso livre. Dessa forma, sem perda de generalidade para nossos presentes
propositos e por questao de simplicidade, consideremos no restante desta
subsecao o caso livre, ou seja, o caso no qual ¢. = 0. Assim sendo, a fungao
de partigao do problema livre é dada por:

Z09) = % [pa [ oypy | popoesHiened,
- Hg
(3.414)

Cco1
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1w 9,7
SE[A,4,4,C,C] = / d'a {ﬁAupﬁfp’“>Ay — ik8,C <5W+ . ) 9,C+

8 mp
~, [(ﬁ)w o) — mf5ab] @Db} : (3.415)

A fungao de partigao livre (3.414) pode ser resolvida exatamente. De fato,
utilizando as representacoes de integracao funcional para os determinantes,
obtemos [62]:

1
L (6) :Z/()Detp [P(m%),a)] ’ det |:I£ <A2 + 1) A:| X
(ke) mp
x det | (1) ,, 0 = m ) (3.416)

Nesta expressao, Det denota o determinante sobre o espaco-tempo Eu-
clideano bem como sobre o espaco Hilbert, enquanto que det representa o
determinante sobre o espago de Hilbert apenas. Os indices sob os determi-
nantes desta expressao indicam as periodicidades das funcoes sobre as quais
eles devem ser calculados. Assim, detp indicaria um determinante calcula-
dos sobre funcoes que satisfazem condicoes periddicas de contorno e det4_p,
por outro lado, representa um determinante que deve ser calculado com o
auxilio de fungoes satisfazendo condicoes antiperiddicas de contorno. det,,),
no entanto, indica um determinante que deve ser calculado sobre funcoes que
satisfazem condicoes de contorno peridédicas ou antiperidédicas, dependendo
da escolha do valor do potencial quimico fantasmas (3.371).

Que detg denote o determinante apenas nos indices do espacgo-tempo
Euclideano. Com essa notacao, consideremos o operador M dado por:

M,, = Ab,, + B9,d,, (3.417)

sendo A e B operadores diferenciais escalares de SO(4). O determinante de
M no espaco-tempo Euclideano é

121



A+ B3 B, Bdd,  Bdds
Bdw, A+ B0 B30, B,
By, B, A+ B Bods
B By,  Bddy A+ BO2

B0,0s Bd,d; A+ BO3

360(91 B6182 38183
—BOyo, |BOyOy, A+ B3  Bdys |+
B8y Bdd; A+ Bo?
Bdwd, A+ B3? B0,

+B0y0y |BOyO2  B010, B0y0s |+
B8y Bd0; A+ Bo?
B0, A+ BO? B0,

—BOyOs |BOyO, BOO, A+ BO3|.
Baoag Bala‘} BaQa?)

dgt (M) =

(3.418)

Os determinantes das matrizes de nove elementos operatoriais que apare-
cem mnessa expressao podem ser calculados como se os elementos fossem

nuameros. Procedendo dessa maneira, obtemos:

A+ B®? BOwo, B0,

Bod, A+Bo2 Bdhds | = A+ AB (02 + 02+ ) ;

B;  Bdd; A+ Bo?

B0Oy0, B0,0, B0103
B(%@Q A + B@S 38283 - A2B8081;
B0y0s BOyds A+ B2

Boyd, A+ B®> B0,
B8032 Balag 38283 = —A2B8002;
Bdyd; BdOy; A+ B
Bdyd, A+ B B9,

Bdydy, B0y A+ BOZ = A?B0y0s.
B0y0s  Bo0s B0,0;

Substituindo esses quatro resultados em (3.418), encontramos:
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det (M) = (A+ Bog) [A®+ A’B (07 + 95 + 03)] — BOod: (A*Bdpdr) +
+B0y0s (—AQB&)@Q) — B@Oag (AQBGOO;;)

A*+ A’B (95 + 07 + 05 + 05) = A* + A’B0,0,

At — A3B (—0,0,) = A* — A*BA. (3.423)

Para o caso especial no qual o operador M é o operador diferencial de
Podolsky (3.218), temos

A= (2 1A 3.424
(o +1) (8.424)
B = —(%+1> [1—&(%+1)} (3.425)

O resultado acima, entao, nos mostra que o seguinte resultado é obtido
quando se calcula o determinante do operador diferencial de Podolsky apenas
no espaco-tempo Euclideano:

R A ) e

Sendo Detp [P(m%”o‘)] = detp {detE [P(m%’o‘ ]}, escrevemos a funcao de

partigao livre (3.416) como

= 1/ A K A B

A E

x det {/{ (m—% + 1) A} det | (3),, ) — mydw| . (3.427)
O dltimo determinante do segundo membro de (3.427) corresponde a

fungao de particao de férmions livres, denotada nesta tese por Zp (3):
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Zp (B) = det, [(vf)ab o) — mféab] . (3.428)

Uma vez que nos restringimos ao caso livre, temos um campo eletro-
magnético e um campo de Dirac livres em equilibrio termodinamico. Nessas
condicoes, a funcao de particao do sistema é um produto de uma funcao
de particao do campo de gauge por uma do campo de Dirac. Denotando a
primeira por Zp (f), (3.427) tem a forma

Zr(B)=Zp(B) Zp (B) (3.429)

donde identificamos a funcao de particao do campo de Podolsky livre como:

- 1/ A 3 A 2

A
x det {/’i (—2 + 1> A} : (3.430)
(NE) mP

A fim de escolhermos um valor para o potencial quimico fantasma, nota-
mos que, a excecao do iltimo termo, todos os demais determinantes dessa ex-
presao sao calculados utilizando-se fungoes periddicas. Ademais, o operador

diferencial (m% + 1> A aparece nao somente no termo cuja periodicidade
P

¢ ainda indefinida, mas também, total ou parcialmente, nos outros deter-
minantes que sao calculados sobre fungoes periddicas. Com esses indicios,
impomos que o determinante det(,,) seja calculado também sobre fungoes
que satisfazem condigoes de contorno periddicas. Como essa periodicidade é
a mesma da funcao de Green fantasma (3.372), escolhemos o niimero n no po-
tencial quimico fantasma (3.371) seja um nimero impar, a fim de que (3.372)
seja uma condicao de periodicidade. Procedendo dessa forma, substituimos
a notagao det,,) por detp e encontramos:

(NI

Zp(B) = Zy d}gt (m?g)% det [(/ﬁza)fé (A+ mzp)] )

e det (A" (3.431)

Recordemos que « é o parametro de gauge covariante. A fim de especi-
ficarmos um gauge covariante de SO(4) basta especificarmos um valor real
nao nulo para . Uma vez que a funcao de particao determina todas as
quantidades termodinamicas e estas nao dependem da escolha de gauge, a
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funcao de particao deve ser invariante por troca de gauges. Dessa forma, ela
nao deve depender explicitamente do parametro . Lembremos, também,
que o parametro x foi introduzido na equagao (3.226) como um dos fatores
do multiplicador de Lagrange associado ao vinculo advindo da simetria de
gauge residual. Seu valor permaneceu até o momento indeterminado. A
fim de tornarmos a funcao de particao da teoria independente do parametro
covariante de gauge, escolhemos o valor para o parametro £ como sendo

K

%. (3.432)

Além disso, por conveniéncia, escolhemos a constante Z, como tendo o valor!!

Zy = det (mp) 2. (3.433)

Com essas escolhas para os dois parametros até entao indeterminados, a
funcao de particao do campo de Podolsky livre se escreve na seguinte forma:

Zp () = det (A +m3) " det (A) ™" (3.434)

Vemos, assim, que a fungao de partigao do eletromagnetismo de Podolsky

é escrita como um produto de dois termos com a forma detp (A + M ]-2)_7],
com j € IN, tal que 1 < j < 2. Esse termo constitui-se numa funcao de
particao de um campo bosonico livre com massa M; e n; graus de liberdade.
Logo, Zp () é um produto de uma fungao de partigdo de um campo bosonico
com massa mp e com trés graus de liberdade por uma funcao de particao
de um campo bosonico sem massa com dois graus de liberdade. Isso mostra
que o campo de Podolsky livre em equilibrio termodinamico comporta-se
como dois campos nao interagentes: um campo de Proca com massa igual
a massa do setor massivo do campo de Podolsky e um campo vetorial sem
massa, isto é, um campo de Maxwell. O fato de esses dois campos nao
interagirem um com o outro é uma consequéncia direta do fato da teoria
de Podolsky ser linear. Esse resultado foi obtido pela primeira vez por nés
em [27] por um método inteiramente diferente: o do tempo imaginério.'? A
forma apresentada aqui foi também derivada por nés em [53].

A rigor, e essa “constante” pode ser funcao da constante de interacdo: Zo = Zy (ge)
e (3.433) seria valida para Z;(0). Para nossos propdsitos, essa distingdo néo possui

relevancia.
12Nesse trabalho usamos a esséncia da técnica apresentada em [52].
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Devido a escolha feita para o potencial quimico fantasma, concluimos que
a fungao de Green fantasmagorica (3.372) ¢é periédica com periodo 3,

Gx—y,7)=G(x—-y.,7—f), (3.435)

e que o funcional gerador termodinamico e a funcao de particao da teoria de
Podolsky se escrevem respectivamente como

Zar |7, d.d] = dgt (me )_3/ PAPCDC 4 DYDy ¢S4V 0]
P -P

X exp |:/ d4._'L' (J:“AN + ﬁaq/)a - Eana - Ud + EC’) ;
B
(3.436)
Z (B) = det (mp)g/ DADCDC DDy e~ 5r[AwH.CC]
F P A-P
(3.437)

Iniciamos esta se¢ao com a proposta de uma representacao de integragao
funcional para o gerador funcional. Essa representacao dependia de uma
funcao incognita Z. Quase de imediato notamos que as periodicidades das
fungoes D,,,, Sa e G proibiam as integragoes sobre os campos de serem ir-
restritas. Essas condi¢oes implicavam que a integracao sobre o campo de
Podolsky deveria ser realizada sobre todas as configuragoes de campo que
satisfizessem condicoes de contorno periddicas na variavel associada com a
temperatura cujos periodos fossem . Uma condicao semelhante deveria
ser aplicada aos campos fermionicos, contudo, no caso, as integracoes deve-
riam ser realizadas sobre todas as condicoes de contorno antiperiédicas com
as mesmas caracteristicas. No entanto, devido a periodicidade da funcao
de Green fantasmagorica ser, naquela etapa, desconhecida, sabiamos ape-
nas que as integracoes sobre os campos fantasmas deveriam ser restritas
a campos com alguma periodicidade especifica, porém nao sabiamos qual.
Substituindo a representagao integral no conjunto de equacoes diferenciais
funcionais que o gerador termodinamico deveria satisfazer, encontramos um
sistema de equagoes funcionais para a fungao incégnita. Resolvendo tal sis-
tema, vimos que a funcao Z é proporcional a exponencial do negativo de
uma quantidade que chamamos de acao termodinamica. Possuiamos, as-
sim, uma representacao de integracao funcional para o funcional gerador
termodinamico quase completa: restdva-nos ainda determinar a periodici-
dade dos campos fantasmas. Fazendo as fontes nulas no gerador funcional
encontramos a func¢ao de particao completa da teoria de Podolsky. Notamos,
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entao, que a periodicidade dos campos fantasmas nao depende do termo de
interacao entre o campo de Podolsky e os campos fermionicos. Restringimos
nossa analise ao caso sem interacao, que é exatamente soltivel. Conforme
esperado, a funcao de particao da teoria livre se escreveu como um produto
de dois termos. Um deles é a funcao de particao de férmions livres. Por
conseguinte, identificamos o outro termo como sendo a fungao de particao do
campo de Podolsky livre. Utilizando algumas “pistas”, escolhemos a perio-
dicidade dos campos fantasmas como sendo, de fato, a periddica. Com isso,
a funcao de particao do campo de Podolsky livre, apds escolhermos valores
apropriados para duas constantes que ainda precisavam ser determinadas, se
escreveu como o produto de duas funcoes de particao bosonicas nao intera-
gentes: uma correspondente a um campo de Proca livre com massa igual
a massa do setor massivo do campo de Podolsky e outra correspondente a
um campo de Maxwell livre. Na secao seguinte estudaremos as equacoes de
Dyson-Schwinger-Fradkin da teoria de Podolsky.

3.8 As equacoes de Dyson-Schwinger-Fradkin

Nesta se¢ao estudaremos um conjunto de equagoes conhecido como equacoes
de Dyson-Schwinger-Fradkin para a eletrodinamica de Podolsky [54, 55, 56,
11]. Contudo, antes de iniciarmos a deducao de tais equagoes, notemos que
devido a simetria U(1) global, a agdo termodinamica (3.393) é invariante sob
as seguintes trocas simultaneas:!

Vo (X,7) =0 (X, 7) = =1, (X, 7); (3.438)

Vo (X,7) =9, (%,7) = =1, (x,7). (3.439)

Assim, temos:

<{Z]\a (x, T)> = det (mp)~° /PDADﬁDC - DYDY U, (x,7) o~ Sr[A%$,0.0]

— ~dgt () [ DADEDC [ DTG, (xS
P P AP

— @ (x, T)>, (3.440)

com um resultado semelhante valido para <@a (x, 7‘)> Donde concluimos

que as médias no ensemble de campos fermionicos individuais sao nulas:

13Essa transformacio é uma transformacio do tipo (3.3,3.4) com 6 = 7.
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~

@a (x, T)> - @a (x, T)> —0. (3.441)

Uma vez que a a¢ao termodinamica (3.393) com interagao nao é invariante
pela troca A, — A}, = —A,, um resultado semelhante para a média do
campo de Podolsky somente é valido no caso livre. Porém, devido a forma
do operador (3.383), a seguinte relacao vale:

Dl(jﬁe;q‘e) [A] — DISN87_QE) [_A] . (3442)

Donde se pode mostrar que a média no térmica do operador campo de
Podolsky é uma funcao impar da constante de interacao g.. De fato, deno-
tando a dependéncia com ¢, explicitamente e trocando todos os A, por —A,
nas integrais, temos:

<21H (x,T)> = det (mp) /P DADCDC | DiDy A, (x,7) %

(qe) A—P

% €,S<qu> [Aw 3,00

= — det (mp)® / DADCDC | DUDy A, (x,7) x
P P A-P
X e_séﬁ]e) I:_Avwvavo76:|

= —det (mp)~* / DADCDC DYDY A, (x,7) ¥
P P A-P
% =S¢ [Aww.0C]

= — (4, (x 7)>(—q5> . (3.443)

Esse resultado mostra que medir a média térmica do operador campo
eletromagnético de Podolsky num certo ensemble é equivalente a medir a
média térmica do negativo desse campo num ensemble com todas as cons-
tantes g, com os sinais trocados.

Utilizando a técnica apresentada na segao 3.6.1, calculamos a média no
ensemble do campo de Podolsky:
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_ Tr (7, (8) A, (x,7)]
R RG]

- [ w5ty (e [ (B 05 - )]
X exp [7’ <I?]I — uej\\f — ,ug@ﬂ e_ix'ﬁzzl\u (0,0) e* Py
X exp [—7‘ (Iﬁl — ue]/\\f — ,ug@ﬂ ‘ T>

= / ﬁ?m] exp [—f (E — peNe — p1gNg)] X
D) e (1], 0,0 )

= [ 5ty (T lee [ (B 05 - m2)]
X ﬁu (0,0)‘ T>

T [ﬁ;ﬁf;gz?;;(’vo)] = (4, (0,0)). (3.444)

Vemos, entao, que a média térmica do campo de Podolsky nao depende
dos parametros do espago-tempo Euclideano. Sendo assim, denotamos:

(A7) = (4,). (3.445)

A fim de encontrarmos as equagoes de Dyson-Schwinger-Fradkin, defini-
mos uma quantidade como o logaritmo do funcional gerador termodinamico:

w [Jﬂ?,ﬁ, daa] =In {ZGF [Jﬂ%ﬁ, daa] } . (3446)

Definimos, também, as derivadas desse funcional:
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ow [Jﬂ?,ﬁaCLﬂ .

P (%, 72) = — ACEINE (3.447)
%) = A, (3449
Yo (X, 7)) = 5W5[ﬁ‘i’ (7; ﬁTj . (3.449)
DI (x,y; 70, 7y) = %; (3.450)
85;] (X,¥;Tw, Ty) = %})’TZE}) (3.451)

Escrevendo Zgr = e nas equagoes funcionais (3.326) e(3.328) e uti-

lizando as quantidades definidas acima, encontramos:

J, (67) = PP (70 0, (x,7) +

e (1) [SH (67 m) = X0 (%7 T (7|5 (3452)

)
Na (X, 7,) = {(Vf)ab DLMG:‘I@) {m + 7 (x, Tx):| - mféab} Xb (X, ) -
(3.453)

Derivando (3.452) e (3.453) funcionalmente com relagao a J, (y,7,) e
n (y, 7,), respectivamente, e as utilizando uma vez mais, encontramos:

8l (X —y) 8 (1, — 7)) = P&"’” (%, 7) DY) (X, 3 Ty 7,) +

(585 (X, X5 Ty, To)

— 1q, (’yf)ab 5T, (y) Ty) ; (3454)
0
dabd (X —y)0 (T — 1)) = {(yf)ac DELN&Qe) [m + 9 (x,72) | +
—M0ac SC[Z} (X, ¥ Tay Ty) - (3.455)

Agora, definimos os operadores tensor de polarizagao H,[f,}, e de massa ng

implicitamente através das seguintes relacgoes:
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(585 (X, X3 Ty Te)

1qe (%L )a 5., (y7 Ty) =

(x,2: 70, 7.) Dgy (2,¥5 72, 7,)

»@\

(3.456)
. 586[8 (x, ym,;,T . .
1qe (Vf)ab 6‘]# (X, Tx . = /Bd422[ X Z;T:z:?Tz) Sc[b] (Zay;TzaTy)
(3.457)

Com o auxilio desses operadores, as equagoes (3.454) e (3.455) mostram
que as quantidades (3.450) e (3.451) sao as fungoes de Green completas da
teoria, isto é, aquelas que levam em consideracao os efeitos de interagao de
uma maneira exata:

—1 m%,,a
D (x,y: 70 7,)] ™ = b8 (x — )6 (e — 1) PUF™) (3,7 +

+ I (%, 55727 5 (3.458)
S yime )| =dad (x=y) 8 = 1) { (3F),, DY) [0 (y,7)] +
_mfacb} - ng (Xa NANED Ty) . (3459)

Chamaremos D de fungao de Green de Podolsky e SH de fungao de
Green fermionica. E importante ressaltar que essas duas quantidades sao as
funcoes de Green completas da teoria inclusive, mas nao somente, na presenca
das fontes classicas externas.

Ambos os operadores HL] E[g sao definidos nas equagoes (3.456) e
(3.457) através de dependéncias implicitas de derivadas funcionais da funcao
de Green fermionica com respeito a uma fonte externa do campo de Podolsky.

Estudaremos, entao, um termo desse tipo. Utilzando & férmula (2.91) e a
defini¢ao (3.450):
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08 (X, ¥iTe7) / 300 (W T0) 08,5 (%, yi 7. 73)
0J, (z,7.) Js 0J(z,1.) 0V, (W, Ty)

— /Bd4wD£f,l (2, W; T, Ty) X

Xm {{ [Sfj (va;TwaTy)} _1}1}

— —/Lgd‘*wl);[fl], (Z,W;TZ,Tw)/ﬁd4ud4USL[fc} (x,u; 7y, Tu) X

) { [S([j (u, v; 7y, Ty)i| _1} ’
Sk

x 30, (W, 7a) db

(V,y;70,7y) . (3.460)
Definimos, agora, a funcao de vértice completa como

; o { [SLE‘Z] (X,¥; Tas Ty)] _1}

461
e 00, (z,7,) (3-461)

Substituindo (3.459) nessa defini¢do, podemos escrever a func¢ao de vértice
na forma:

ngab) (X, Y% Ta, Ty, 72) = (V1) , 0 (X —¥) 6 (2= y) 0 (7 — 1) 6 (T2 — 7)) +

i 08 (x,yi 7 Ty)

w00, (z7) (3.462)

Em termos dessa fungao, a derivada (3.460) se escreve como

08 (%, y; 7,
ab (X7 YT ,Ty) E— d4wd4ud4vD[8] (Z, W T, Tw) S[s] (X, w T, Tu) %
(SJM (Z, Tz) 3 v ac
XFI[,S(]cd) (u7 V7 W7 T’LLJ T’U? TU)) 81[1?2] (V, Y7 T’U; Ty) 9 (3463)

Substituindo essa expressao nas definigoes (3.456) e (3.457), identificamos:
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H,[f}/ (X,Y: 7oy Ty) = (%)2 (Vf)ab /B d*ud*v Slgi] (X, 5 Ty, Ty ) X

X T (W VY37, T, 7)) Sit (VX3 T, )5 (3.464)
E([zszl (X, ¥ 70, Ty) = — (qe)? (’yf)ac/d‘lud%D (X, U5 7y, Ty) X

X Sif (%, Vi 7, 7) rLSdb) (V,y, W7y, 7y Tu) - (3.465)

As equagoes (3.454) e (3.455), (3.458) e (3.459) e (3.464) e (3.465) sao
todas versoes distintas e equivalentes do que é conhecido como equacoes de
Dyson-Schwinger-Fradkin para a eletrodinamica de Podolsky em equilibrio
termodinamico.

Os operadores tensor de polarizacao e de massa dependem implicitamente
da constante g. de uma maneira nao trivial através das fungoes de Green e
de vértice completas. Contudo, esse operadores dependem ezplicitamente de
(¢.)*. Essa propriedade, aliada com a expressio (3.462) para a funcdo de
vértice, mostra que no caso livre a funcao de vértice é proporcional a uma
matriz de Dirac Euclideana:

= (1) 0 (X =¥) 8 (2—y)0 (e = 7)) 8 (T2 — 7).
(3.466)

FE(]ab) (X7 Y7 Z; T, Ty7 Tz)

qe_o

Calculando as fungoes de Green completas (3.450) e (3.451) para o caso de
auséncia de fontes externas e utilizando as equagoes (3.356), (3.357), (3.441)
e (3.445), vemos que as fungdes de Green sem fontes dependem apenas das
diferencas dos parametros espacgo-temporais:

S (%, Y172, 7y) =Sy (X — y, 70 — ) =Su(x—y,7m—7);  (3.467)
D (X, y; 70, 7y) = Dy (x — y, 70 — <A#> < >
D#V (X — Y, T — Ty) (3468)

Concluimos, entao, que as funcoes de Green completas da teoria sao
funcoes afim das chamadas “médias térmicas especiais”, que sao médias
térmicas de ordenamento de campos.
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3.8.1 As funcgoes de Green no espago de Fourier

Conforme vimos na secao 3.6.2, as funcoes de Green em equilibrio termodi-
namico estao sujeitas a condigoes de periodicidade na variavel 7. A rigor, as
expressoes que utilizamos nesta secao apenas sao validas para a variavel 7
restrita ao intervalo (0, 3). A fim de que as fungdes de Green definidas acima
nao entrem em conflito com as condigoes ja estabelecidas, extenderemos seu
dominio de validade para todo 7 € R. A fim de realizarmos essa tarefa,
definiremos duas distribuicoes chamadas pentes de Dirac periodico AE(T) e
antiperiddico A5 (7) como:™*

oo
Af(r)= ) (£1)"6 (1 —np) (3.469)
n=-—00
e substituiremos toda “fungao”delta de Dirac 0(7) numa equagao de uma
funcao de Green apropriadamente por uma dessas novas distribui¢oes. Com
isso, por exemplo, vemos que as funcoes de Green da eletrodinamica de Po-
dolsky em equilibrio termodinamico satisfazem as seguintes equagcoes:

30 0 =) 8 (1 = 1) = [ @'z ae0 0= 2) 85 (7= ) P )+
B
Hl,p (x—2,7% —7.)| Doy (2 —y, 72 — 7y) ;
(3.470)

dabd (X —y) Ag (10 — 7)) = /ﬁd4z {8400 (x — 2) Ag (1, — T2) X

X {(Vf)cd Dyt [<E>] - mf5cd}z+

Yo (X — 2,7 —T)} S (2 —y, 7, — 7).
(3.471)

A fim de clarificar o papel do equilibrio termodinamico, escreveremos
essas expressoes no espaco de Fourier. Dadas as periodicidades das funcoes
de Green, as transformadas de Fourier dessas quantidades na coordenada 7
nao serao dadas por integrais de Fourier, mas por séries:

A razdo para a nomenclatura é a seguinte: a primeira dessas distribuicoes definida
foi a periédica, mas nao recebia nenhum adjetivo. Ela constitui-se de uma série de deltas
de Dirac igualmente espacadas. Cada uma dessas deltas pode ser entendida como limites
apropriados de sequéncia de fungoes Gaussianas. O grafico da série de um elemento ar-
bitrario dessa sequéncia com indice suficientemente grande lembra o desenho de um pente.

Os adjetivos vém das seguintes propriedades: A§ (tr—p) = :I:A?,E (7).
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d3k - 5
Dy (X, 72) = Z / e (K, w?) i), (3.472)

n=—0oo

d3k 3 ,
Sap (X, 72) Z / e b (K, wl) elrimatlex), (3.473)

n=—oo

Z e (3.474)

n=-—o00
—+00
1

Ay (1) == Z elne, (3.475)

n=—oo

sendo que definimos as frequéncias de Matsubara bosonicas e fermionicas,
respectivamente, como:

.
g
2

S

(3.476)

S

2nt+1)m
5

Sy

(3.477)

&

com n € IN.

Utilizando representacoes de Fourier semelhantes para os operadores de
massa e tensor de polarizac¢ao, podemos reescrever (3.470) e (3.471) no espago
de Fourier:

|:P/EZLP a) (kP™) + T, (k,wf)] De, (k,w?) =0,

(3.478)

i O, (k8 o e (A)) = msbe =S (k)] S 1) =
(3.479)

o~ 2
Nestas expressoes, k" = (w? k), ki = (wh k) e P,E;np’a) ¢ a transfor-

mada de Fourier do operador diferencial (3.218):

()’

ﬁ‘u(;n%’co (an) = _ +1 {(an)Q 5,uu+

2
P
i Bn) 2
. 1_1(<k ) )
(6% mp

kf“kf“} , (3.480)
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com (kB")2 = kf”kf” = (wf)Q +k%>0.

O wuso dos pentes de Dirac nos possibilitou escrever as equagoes das
fungdes de Green no espago de Fourier de uma forma local. Ademais, es-
sas equacoes sao similares as correspondentes da teoria usual, sem efeitos
térmicos, no espaco de Minkowski. As principais diferencas entre essas versao
sao evidentes na equagao (3.479), que depende explicitamente do potencial
quimico p. e da média no ensemble do operador campo eletromagnético de
Podolsky.

Uma vez que a funcao de Green fantasmagorica é periddica, sua equacao
no espaco de Fourier é

i [(sz”)2

Va

Vemos que apesar dos campos fantasmas serem Grassmannianos, a fungao
de Green a eles associada depende de frequéncias de Matsubara bosonicas,
caracteristica partilhada pelas fungoes de Green associadas a campos nao
Grassmannianos.

(K2 G (0P %) = 1. (3.481)

1
m%+

3.9 Asidentidades de Ward-Fradkin-Takaha-
shi

Iniciamos este capitulo construindo uma teoria classica invariante de gauge
como motivacao para se estudar a teoria de Podolsky. No entanto, ao se
estudar a quantizagao do campo eletromagnético, uma quebra explicita da
simetria U(1) fez-se necessaria. Uma duvida permanece: apesar da quebra
explicita da simetria de gauge no processo de quantizacao, a teoria quantica
obtida é ou nao uma teoria de gauge? A fim de elucidarmos essa questao,
consideremos a seguinte transformagao U(1) nas fungbes integradas na re-
presentacao (3.436) para o funcional gerador termodinamico :
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Ay(x,7) = AL(x,7)=A,(x,7) = 0 (x,7);

(3.482)
Yo (x,7) = 4 (x,7) = 9Ty (x,7)

(3.483)
Do (X,7) = Uy (x,7) =, (x,7) e 9C0);

(3.484)
Cx 1) = Cx71)=C(x7); (3.485)
Ckx,7) = C(x,7)=C(x,7), (3.486)

sendo ¢ (x,7) uma fungao escalar de SO(4) real e periédica na varidvel 7 com
periodo £3.

A medida de integracao funcional do funcional gerador ¢ invariante sob
essa transformacao U(1) [57]. Portanto, o funcional gerador termodinamico
se escreve Como:

Zap = d}gt (mp)g/ DADCDC DYDipe T x
P

A-P
xexp{—/ﬁd‘ly {C

1 m%,a . — .
_5 ;LCPM(V a >6VC - ﬁa (ellIEC - 1) ¢a - wa (eilqeg - 1) na}} X

1/ A 2
- <—2 + 1) AD, A, +0,J,| +
[0} m

P

Xexp { / d*z (Jy A+ Tgtba— Yna— Cd + Ezc)} : (3.487)
g

Visto que o funcional gerador termodinamico era originalmente indepen-
dente da fungao ¢ (x,7), a seguinte relagao deve valer:

0Zar
el =0. 3.488
0C (x, ) =0 ( )

Dessas duas tltimas expressoes, encontramos a seguinte equagao:

Zer = 0. (3.489)

1/ A ? 5 A 5
a (m_% + 1) Aa‘ua +8“J#+qu <na6_ﬁa _na(s_na)

Escrevendo o funcional gerador termodinamico como Zgr = ¢, podemos
reescrever essa expressao como:

137



2
Oy (x,73) = — — (m— + 1) AOW, (%, T,) +

1/ A
o \m2

— iqe [To (X, T2) Xa (X, T2) — 10 (X, 72) X, (X, 72)] . (3.490)

Dessa expressao decorrem todas as identidades de Ward-Fradkin-Takahashi
[58, 14, 15, 59].

3.9.1 A transversalidade do tensor de polarizacao de
Podolsky

A fim de encontrarmos uma das identidades de Ward-Fradkin-Takahashi,
calculemos a derivada funcional de (3.490) com relagao ao campo v, (y, 7,):

0, (x,7) 1 (A )2 0, (x,7s)
o) p A ) +1] Al 2 2]
"od, (y,Ty)
) _ 0Xa (X, )
—Xa (X, Tz) + o \XsTx) <o 7~
.7 + 7, ) e T

_ X, (X, Ty
Xa (%, 72) = 1l (%, 70) S Ey T; . (3.491)
v y 'y

De acordo com os comentarios da secao anterior sobre as distribuicgoes
pentes de Dirac,

00, (x,72)
60, (y, )

Dessa mesma expressao, com indices e parametros trocados, temos:

=00 (X —y) AF (7o — 7y) - (3.492)

V¢ (z,T,) ¢ (z,1,) 0J,, (X, 7,)
, N At - _ §\4 :/d4 §\4 A=
Pt (@ =¥) B (7 =) = 5 1y ) = ), 6, k) 39, (3, my)
0J, (X, 72)
= [ &*2D" (z,x; 7., 7,) o 3.493
/ﬂ o S (493
Donde identificamos:
0J, (x,73) -1

50, (3. LD oy G4

Dessa forma, a equagao (3.491) é equivalente a
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" s -1 1/ A 2 .
o DL (x,y;7,7)] = - - (m—% + 1) A 6,0 (x —y) Af (1o — 7)) +

. 0N, (X, 72) _ 0Xa (X, 72)
We | = 7 Xa\X, Ty + a\XTx) 57—~
|f5191/ (ya Ty) X ( ) n ( ) 6191/ (Y7 Ty)

0N (X, ) _ 0X, (X, Tz)

T ca /.. _\Xa XyTx) = Na \XsTz) =07~

5191/ (Y7 Ty)X ( ) ,r] ( ) 6191/ (Y7 Ty)
(3.495)

De acordo com a defini¢ao (3.446), as derivadas funcionais de W definidas
pelas equagoes (3.448) e (3.449) sao:

1 §Zcr [J,n,7,d,d
Ya (Xa Tx) - — “r [ - ] X (3496)
ZGF [Janvnadvﬂ 57711 (X7 Tx)
1 §Zcr [J,n,7,d,d
Xa (X, 7) = or [).1,7,d.d] (3.497)

ZGF [J7n7ﬁ7 d7a 5ﬁa (X7T$)

Fazendo-se as fontes externas nulas e utilizando (2.102), encontramos:

T (5,7 = (0 (7)) (3.495)
Xo (%, 7o)y = @a (x, Tx)> . (3.499)

Entao, de acordo com (3.441):

Xo (% 7o)l o = Xa (X, T2)| = = 0. (3.500)

Portanto, ao se fazer as fontes cldssicas nulas na equagao (3.495), obtemos a
seguinte relacao:

_ 1/ A ?
O Dy (x—y, 70— 1) = — - (m—2 + 1) A (x —y) AF (1o — 7).
P

(3.501)

A fim de facilitar a interpretacao dessa equacao, escreve-la-emos no espaco
de Fourier:
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2

(KB kBn, (3.502)

Bniy—1 B 1 ( Bn)2
k# D,uy (k,wn) = _E m% +1

Notamos, agora, que o segundo membro dessa equacao nao depende da
constante de acoplamento g.. Portanto, ao se estudar o caso livre, ou seja,
o caso no qual g. = 0, basta substituir a inversa da funcao de Green de
Podolsky completa primeiro membro dessa relagao pela inversa da funcao de
Green de Podolsky livre, que coincide com o operador diferencial de Podolsky
(3.480):

2

(KB kEm (3.503)

(2 o an 2
kfnpﬂ(y P ) (an) _ _l [( 2) 41

a | mp

De acordo com a equacao (3.478), a relagdo entre as inversas da funcao
de Green completa e da livre é:

Bt (,w?) = B (697) + 1, (k wf) (3.504)

Substituindo a expressao (3.504) na equagao (3.502) e levando (3.503) em
consideracao, obtemos:

kML (k,wf) = 0. (3.505)

Essa relacao é conhecida como a transversalidade do tensor de polarizagao
da teoria de Podolsky em equilibrio termodinamico e é uma das identidades
de Ward-Fradkin-Takahashi [14, 15, 59].

3.9.2 A identidade de Ward

Consideremos a transformada funcional de Legendre do funcional W:

r [ﬁa X7Y7 d,C_Z] =W [Ja 777ﬁ» d?ﬂ - /d4l’ [‘]Mﬂu + ﬁaXa - Yana] : (3506>
B

Derivando funcionalmente essa expressao com relagao aos campos, vemos
que
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ol’ [197 X7X7 da C_i]

59, (%,72) = —J,(x,7); (3.507)
ol’ [197X7Y7 d,C_Z] _

(5Xa (X, Tx) - 77(1 (X7 TI) i (3508)
T [0, x,X; d., d]

AT =N (X, T2) - (3.509)

Portanto, podemos escrever (3.490) em termos de derivadas da fungao
I [Y,x,%;d.d:

or 1/ A 2 ST
% 22 ) A ,
8#51% (x,72) o (m% + ) 00, (X, 7)) + 1qe [—5Xc = TI)XC (x,72) +
6T
v )~ : 51
X, (x, T:r)Xc (x, Tx):| (3.510)

Derivando essa expressdao com relagao aos campos X, (y,7,) € x»(z,7:) e
tornando as fontes nulas na sequéncia, encontramos:

e 5T —ig { 5T "
: 0, (X, 72) 0Xs (2, 72) 6X, (¥, Ty) =0 ‘ X, (¥, Ty) oxp (X, 7z) s=0
xé(x—z)AE (Te — 7o) +
L 5% "
OXs (2, T2) OX, (X, T2) =0
X 5(X—y)AE (Tx—Ty)} )
(3.511)

Semelhantemente ao caso da subsegdo anterior, as equagoes (3.451) e
(3.509) nos mostram que

(52F [797 X5 X da ﬂ
5Xb (Z7 TZ) 5Ya (X7 Tﬂﬁ)

-1
= [5([;2] (X, Y5 7, Ty)] : (3.512)

A derivada dessa equacao com relagdo ao campo v, (x,7,) é, de acordo com
(3.461), proporcional a funcao de vértice completa:
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ST ) { [Sl[j,] (X,y;szTy>:|_1}

&&M (X> T:c) 5Xb (Za Tz) 5Ya (y> Ty) B 579# <Z7 Tz)
=g, %y, 7, 7). (3.513)

Logo, (3.511) ¢

Gl(f)I‘u(ab) (X,¥,2; 70, Ty, T2) = [Sap (X — 2,7, — 7‘Z)]71 d(x—y) Ay (T — Ty) +
— [Sap (x—y, 70 — Ty)]_l d(x—1z) A (Te — 7).
(3.514)

No espaco de Fourier, essa relagao se escreve como:

P Ty (k,wlipowf) =8, (k+pwf +wf) -8, (kw)), (3515)

que é conhecida como a identidade de Ward em equilibrio termodinamico
[58, 15]. A expressao acima deixa clara a dependéncia da funcao de vértice
no equilibrio com os dois tipos de frequéncia de Matsubara, o bosonico e
o fermionico e que a relagao acima somente é valida quando se toma a
quadridivergencia Euclideana de I';,(4) no espaco de Fourier com o quadrimo-
mento térmico bosonico p?!. Uma vez que as funcoes de Green fermionicas
estao definidas a priori apenas para frequencias de Matsubara fermionicas,
¢ interessante chamar a atencao para o fato de que o termo correspon-
dente a frequéncia na primeira inversa da funcao de Green fermionica do
segundo membro de (3.515) é uma frequéncia de Matsubara fermionica, ape-
sar de ser uma soma de uma fermionica com uma bosonica pois, w! + wf =
wr 41~ A versao correspondente para temperatura nula seria p*I", ) (k, p) =
St (k+p)—S8,' (k) [58]. No limite p, — 0 essa identidade coincidiria com a
definicao de uma derivada direcional e valeria a chamada identidade de Ward
diferencial, T ) (k,0) = 08" (k) /Ok*. Na situagao de equilibrio, contudo,
nao se pode escrever uma tal versao diferencial de (3.515) devido ao fato
de que as frequéncias de Matsubara sao discretas e igualmente espacadas,
donde nao constituem pontos de acumulagao, salvo realizada algum tipo de
extensao analitica. Extensoes analiticas sao associadas com pequenos desvios
do equilibrio. Portanto, na situagao de equilibrio termodinamico propria-
mente dita, apenas vale a identidade de Ward na versao (3.515).

Iniciamos este capitulo com o uso do principio de gauge Abeliano no
regime cléssico. Vimos que o campo de Podolsky surge como uma alterna-
tiva natural para o usual campo de Maxwell. Estudando as propriedades
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classicas do campo de Podolsky, fixamos o sinal de seu parametro livre e
vimos que ele pode ser decomposto num setor massivo e num sem massa.
Adentrando no dominio quantico, aplicamos o formalismo de quantizacao de
Dirac para a parte fermionica da teoria. Sendo o campo eletromagnético
um campo de gauge, optamos por sua quantizacao via método de Nakanishi
e vimos, na sequéncia, como os campos fantasmas surgem da simetria de
gauge residual. A presenca dos campos fantasmas implicou a existéncia de
uma nova simetria na teoria e, por conseguinte, de uma nova carga conser-
vada e de um novo potencial quimico. Estudando médias térmicas, constata-
mos que ordenamentos de campos, que adiante seriam relacionados com as
funcoes de Green, possuem certas periodicidades especificas. Na sequéncia,
encontramos representacgoes de integragao funcional para o funcional gerador
termodinamico e para a funcao de particao da teoria de Podolsky. Entao,
escrevemos as equagoes de Dyson-Schwinger-Fradkin e encontramos repre-
sentacoes para as funcoes de Green no espaco de Fourier. Como ltimo
tépico do capitulo, estudamos as identidades de Ward-Fradkin-Takahashi da
teoria em equilibrio, enfatizando a transversalidade do tensor de polarizacao
e a identidade de Ward em equilibrio termodinamico.
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Capitulo 4

Implicacoes fisicas da teoria de
Podolsky

Nos capitulos anteriores apresentamos a teoria geral da quantizacao da teo-

ria eletromagnética de Podolsky quando os efeitos térmicos sao dominantes.

Neste capitulo, estudaremos algumas consequéncias fisicas e implicagoes fenomenoldgicas
da eletrodinamica de Podolsky em equilibrio termodinamico.

4.1 Correcao na lei de Stefan-Boltzmann

Uma vez que o campo eletromagnético de Podolsky difere do de Maxwell por
conter implicita e intrinsecamente um setor massivo, a massa desse campo
de Proca introduz uma escala de energia tipica correspondente ao campo
de gauge. Em principio, esse campo de Proca deve afetar apreciavelmente
todos experimentos eletromagnéticos desde que as energias envolvidas sejam
comparaveis com a massa do campo de Podolsky. Um dos experimentos
mais marcantes da histéria da Fisica diz respeito a radiacao de corpo negro.
Pode-se dizer que a versao mais antiga da teoria quantica surgiu quando
Planck postulou a discretizagao dos possiveis valores para as trocas de energia
entre os modos do campo eletromagnético e os osciladores constituintes do
proprio corpo negro. Com o advento ha algumas décadas da interpretacgao
moderna das teorias de gauge, o mesmo fenomeno descrito por Planck é
entendido de uma maneira mais fundamental como sendo o préprio campo
quantico eletromagnético Maxwelliano em equilibrio termodinamico. Um dos
resultados desse arcabouco tedrico é a lei de Stefan-Boltzmann, que diz que
a densidade de energia do campo eletromagnético em equilibrio térmico é
proporcional a quarta poténcia da temperatura [60]. Nosso objetivo nesta
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secao ¢ abordar o mesmo problema considerando o campo eletromagnético
de Podolsky em vez do de Maxwell a fim de obtermos alguma consequéncia
fenomenoldgica devido ao termo de derivadas de ordem superior do campo,
presente na densidade de Lagrangeana da teoria.

E possivel levar em consideragao, pelo menos em algum nivel de apro-
ximagao, os efeitos da interagao do campo eletromagnético com os campos
fermionicos para se obter uma teoria mais completa [61]. Os experimentos
relacionados a radiacao de corpo negro, contudo, ainda nao sao capazes de
detectar tais correcoes quanticas. Por essa razao, limitar-nos-emos ao caso
de campos livres e como os campos fermionicos livres nao desempenham ne-
nhum papel na radiagao de corpo negro, consideraremos nesta secao apenas
o campo de Podolsky livre.

4.1.1 A funcao de particao do campo de Podolsky livre

Conforme enfatizamos diversas vezes, a partir da funcao de particao se pode
calcular todas as quantidades termodinamicas. Na verdade, todas as quan-
tidades termodinamicas sao determinadas pela derivada do logaritmo da
funcao de particao com respeito ao inverso da energia térmica. Por essa
razao, consideremos o logaritmo da fungao de particao do campo de Podols-
ky livre (3.434):

n[Zp (8)] = — In [dgt (A)] - gln [dgt (A+ m%)} . (4.1)

Nossa primeira tarefa é calcular cada um desses determinantes.

O determinante de A

O calculo desse determinante é conhecido. Contudo, como é relativamente
raro encontra-lo em livros-textos, apresentaremos aqui os passos essenciais.
Utilizando uma representagao funcional para o determinante, temos [62]

[t (A)}_é _ /P Do (%, 7) exp {— /ﬁ v 6 (1) AG(x 7). (4.2)

sendo ¢ (x,7) uma fungao real e o indice P denotando integracao funcional
restrita sobre todas as configuracoes de campos que satisfazem condicoes
periddicas de contorno com periodo f:

¢ (x,0) = (x,5). (4.3)

A fim de calcularmos o segundo membro dessa expressao, considere-
mos a transformada de Fourier do campo ¢. Por questao de simplificacao
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matematica, consideremos que o sistema encontra-se restrito a uma “caixa’com
volume V.

oxn= () % DTG ), (44)

A escolha incomum do fator multiplicativo garante que a quantidade
on (p) seja adimensional. Uma vez que escrevemos uma decomposicao em
frequéncias de Matsubara bosonicas, temos uma transformada automatica-
mente peridédica. Visto que estamos apenas analisando o caso do campo de
Podolsky nesta secao, por questoes de simplificacao de notacao denotaremos
a frequéncia de Matsubara bosonica w? simplesmente por w,.

Da condicao de realidade do campo, encontramos

Com isso,!

ap] = [T |l exp[ 23 (w4 <p>\2]
R S 4 _ n,p
- /+OO H d 571’( X
- | n/,p’ J

n ()

{Hexp{ B2 (w? + p?) 2}}

— H/_:Od bn (p)’exp {—ﬁQ (w? + p?) |dn (P) 21

N g\/ﬁ? (w2 +p?) \/H 32 w2+p). (46)

Nesta expressao, C' é uma constante multiplicativa na funcao de particao
independente da temperatura e, por conseguinte, irrelevante para efeitos ter-
modinamicos. Entao:

Nessa deducao utilizamos o resultado da integral Gaussiana: fj—z dre=o®" = \/g,

valido para a € R tal que a > 0 ou para a = b para qualquer b € R.
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Finalmente:

In [d}gt (A)} =1In [H B? (wy +p?)

Esse é exatamente o calculo realizado para a teoria de Maxwell.

=> W[# (wi+p?)].  (48)

O determinante de A + m%

Procedendo de maneira inteiramente andloga ao caso anterior, encontramos:
In [det (A+mjp } Zln (8% (wi +p° +m})]. (4.9)

Portanto, o logaritmo da funcao de partl(;ao do campo livre de Podolsky pode
ser escrito como

n[Zp ()] = =) In[8* (v} +p°)] —; > I [B (wh +p*+mp)]. (4.10)

n?p

Na préxima secao, calcularemos essas séries.

O logaritmo da fungao de partigao

Concentrar-nos-emos no caso massivo. Os calculos correspondentes a esta

etapa para o caso sem massa podem ser obtidos como um caso particular do
caso com massa diferente de zero. Assim:
e\ 2
ln [ﬁ2 ((4.!721 + p2 -+ m%)] = ln {ﬂQ [(7) —+ p2 + m% }
= 1 [(2n7r)2 + 52 (p2 + m%)}

= In [(2717?)2 + B°w? (p,mp)] (4.11)
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COo1ml

w(p,mp) = /P + m3.

Consideremos a seguinte integral:
/[Bw(p,mp)]2 462 /[Bw(p7mp)]2+(2mr)2 do
1 02 + (2717‘()2 1+(2nm)? E
= In[fw* (p,mp) + (2n7r)2] —In[1+ (2n7r)2} .
(4.12)

Esse célculo fornece uma representagao funcional para o termo que pre-
cisamos calcular:

dp? 9
m+ln [1+(2n7r) }
(4.13)

Mas sendo o ultimo termo independente de 5, podemos abandonéa-lo. Entao:

) 5 o [Bw(p,mp)]
In [(2n7)” + B°w?® (p, mp)] :/
1

S [A 240t md)] = 3o [@nn)? A% ()

n,p

[Bw(p,mp)]? 62
B Z/l 02 + (2nm)°

n7p
1 /[ﬁW(PMP)}2 oo 1
= —— d6? _.
(2m)* ; 1 nz_:oo n®+ (£ ?

7(r4.14)

Utilizando o resultado

+oo
1 22 2
= 1 .
> 9(+&4» (4.15)

W+ (5)

pOdGHlOS escrever

9/ 9 ) 5 - 1 [Bw(p,mp))? ) oo 1
d [ (wi+p*+mp)] = (2@22/1 do [Z —9)2]

2 (_
n,p p n=—o0 N° T 27

1 [Bw(p,mp)]? 462 92
_§Z[ 7@+&4)@m

P
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mas

— =7 — 246 (4.17)

Portanto:

Bw(p,mp)
S I [8 (w2 + p? 4+ md)] = -2 [_Z/I d9(%+€91_1)].

n,p P
(4.18)

Resolvendo a integral em 6, passando a série sobre p para o continuo e

abandonando termos irrelevantes para a termodinamica, encontramos:

3
Zln (62 (W2 + P>+ m3)] = —2V/(;l7£3 {—%ﬁw(p,mp)—F
n,p

—In [l — e Plemo]l, (4.19)

Sendo essa expressao valida inclusiva para mp = 0, obtemos o termo associ-
ado ao setor sem massa como um caso particular desse resultado:

d? 1
p3 {—iﬂw (p,0) —In [1— e’ﬂw(”’o)] } .

Zln (8% (w2 +p%)] = —QV/W

(4.20)

Assim, toda a informagao termodinamica do campo de Podolsky livre
esta contida na funcao de particao:

d3p

(2m)°

d? 1 Buw(p.mp
+3V/(2—7f>3{—§/3w(p,mp)—ln[l—@5(7 )}}

In[Zp ()] = 2V / {—%ﬁw(p,o)—hl [1—eﬂw<p’0>]}+

(4.21)

O termo V [ (;ljr’)og —%ﬁw (p,m) —In [1 — e_ﬁw(p’m)” corresponde ao lo-
garitmo da funcao de particao de um grau de liberdade de um campo bosonico
de massa m. Os fatores numéricos multiplicativos correspondem ao nimero
de graus de liberdade de cada campo: dois para o caso sem massa e trés
para o setor massivo, conforme ja haviamos antecipado no capitulo anterior.
Vale ressaltar que fatores multiplicativos, dependentes ou nao da tempera-

tura, no logaritmo da funcao de parti¢ao tém consequéncias observaveis, ao
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contrario de fatores numéricos multiplicativos independentes da temperatura
na propria funcao de particao. Estes traduzem-se como fatores aditivos in-
dependentes da temperatura no logaritmo da funcao de particao, que nao
possuem implicagoes termodinamicas.

A fim de calcularmos as integrais presentes em (4.21) notamos, primeira-
mente, que os termos do tipo %“ correspondem a energia do estado funda-
mental do campo de Podolsky (que, como ocorre com as teorias de campos
mais usuais, diverge) e podem ser ignorados na andlise subsequente.

Uma vez que o problema possui simetria esférica no espaco de Fourier,

podemos calcular as integrais angulares presentes em (4.21) e escrever:

I [Zp (B)] = [Z (B)] 5 + W [Z (B)]p, (4.22)
Vo[ 5 N

In[Z(P),, = =y dp p*In (1 —e ), (4.23)

n[Z(B)], = —g% Ooo dp p*In [1 — e~ Pleme)] (4.24)

Calcularemos, agora, cada um desses termos.

A integral do setor sem massa

E do p? = 142 o d d
screvendo p ap © integrando por partes, podemos escrever o termo sem

3
massa Ccomo:

1V din(1—efP)

In|Z =—-— d 4.25
02l = g [ (425)

O termo dependente da derivada pode ser escrito como
din(1—e )  din(l1—e)d(1—e )  Berr (4.26)

dp d(1—e PP dp 1 —e B

Visto que Bp > 0 (a igualdade é um ponto de medida nula na integral
(4.23) e foi, de fato, excluida de seu integrando a fim de ele seja um nimero
real), temos e~ < 1 e podemos utilizar a série geométrica,

o0

1 —n,

n=0

donde
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k=1
Sejam
x = fBp; (4.29)
x
P= g (4.30)
dp = %x. (4.31)
Dessa forma,
1LV [~ N
n[Z (B)],, = T /0 dra® et (4.32)
k=1

Definimos uma integral um pouco mais geral dessa série como

I, = / dra™ ) e (4.33)
0 k=1

A fim de resolvermos I,,, realizamos a seguinte mudanca de variaveis:

y = kx; (4.34)
)
- 4,
x i (4.35)
d
dv = ?y (4.36)

Entao, I, se decompoe num produto de uma integral por uma série:

I, = ( /O h dyy"ey) (i #) . (4.37)

Os elementos desse produto sao independentes um do outro e sao, ainda,
representacoes de duas funcoes especiais: a série é uma representacao da
fungao zeta Riemman ((z) e a integral é uma representagao da fun¢ao gama

I'(z2):

=1
> 7 = (1) (4.38)
k=1
/00 dyy"e™ = I'(n+1). (4.39)
0



Portanto:

L, =T(n+1)((n+1). (4.40)

Substituindo esse resultado em (4.32), vemos que aquela expressao se
escreve numa forma simples:

012 (s = 57555 = gra 5T D). (1.41)

Os valores particulares das duas fungoes especiais sao:

I'(4) = 31=6 (4.42)
4
T
C(4) = 90" (4.43)
Logo, obtemos o resultado:
2V

Esse é o logaritmo da funcao de particao da teoria de Maxwell. Caso
ignorassemos a contribuicao de derivadas de segunda ordem caracteristica
da teoria de Podolsky, a expressao acima descreveria a radiacao de corpo
negro tal qual ela era estudada no inicio do século passado.

A integral do setor massivo

De uma forma semelhante ao caso sem massa, podemos escrever para a in-
tegral correspondente ao campo de Proca:
1V [ d
In[Z =—— [ dpp’—In [l — e Pelbmr)] 4.45
[Z(B))p =53 o [ ] (4.45)
Como e #“®mr) < 1 também podemos utilizar a série geométrica no
caso Mmassivo:

a In [1— e‘ﬁ“’(Pva)} _ BpeBwpmp) 1
dp W (p, mP) 1— e*ﬁw(nm},)
Bp SN o)
= P e w(p,mp ) 446
ST £ (1.46)
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Logo, o logaritmo da func¢ao de particao do setor massivo é

_ BV = Pt N ko)
(2 (B)]p = 5 /O dpm;e . (4.47)

Reescrevendo a integral em termos de w (p,mp) = /p> + m% = w, fi-
camos com

In[Z(B)]p = 26— h dw (w* — m?g)% e kb, (4.48)

TTME;
—

mp

Realizando a seguinte mudanca de variavel:

w

= 4.49
w=2 (4.49)
a expressao acima se torna
6mPV -3 —nfmpw
In[Z (B) 23 Z dw (w? — 1)*72 g nimre, (4.50)

Contudo, para n > —1/2, temos a seguinte representacao para a func¢do de
Bessel modificada do sequndo tipo K, (z) [33]:

K, (z) = F(n—\/j—%) <§>n /100 e (2° — 1)"7% dx, (4.51)

Logo, para n = 2 e z = nfmp, temos:

ar (3)

/ dw (w2 — 1)27% e AmPY —
1

Sendo

r (g) = %, (4.53)

obtemos o seguinte resultado:
3Ky (npmp)

h dw (w? —1)272 enbmrw —
[ ( ) (nﬁmP)Z

Portanto, o logaritmo da funcao de particao de um campo de Proca livre
com massa mp ¢

(4.54)

153



3BMEV = K
(2 (3) = 5P S Ty
n=1

Infelizmente, nao ha nenhuma forma fechada conhecida para a série que
aparece nessa expressao, o que significa que as propriedades termodinamicas
de um campo vetorial massivo livre, ao contrario do que ocorre com um
campo de massa nula, somente podem ser conhecidas aproximadamente.

A densidade de Lagrangeana do campo de Podolsky livre (3.15) escrita
em termos da massa de Podolsky é

(4.55)

1 1
Lp=—F"F,, +-—50 -Pwaé}—gu' (4.56)
4 M omE T
Tomando ingenuamente o limite da massa indo a infinito nessa densidade
de Lagrangeana recaimos no caso usual de Maxwell (3.14):

mp—00

Esse resultado simples indica que a teoria de Maxwell é um limite da
teoria de Podolsky: quando as energias envolvidas no problema fisico forem
despreziveis frente a massa de Podolsky, a teoria de Maxwell é uma boa
aproximacao.? Sabemos que a teoria de Maxwell descreve muito bem to-
dos os fenomenos eletromagnéticos conhecidos, inclusive aqueles associados
a radiacao de corpo negro. Nesse sentido, caso a teoria de Podolsky seja a teo-
ria fundamental da interagao eletromagnética, concluimos que os regimes de
energia investigados até o presente sao muito menores do que a escala tipica
do campo eletromagnético, a saber, mp. Para o campo de Maxwell livre
em equilibrio termodinamico existe apenas uma escala de energia: aquela
definida pela energia térmica T = B~!. Dessa discussao, concluimos que
a massa de Podolsky deve ser muito maior do que os valores de energia
térmica até o momento estudados. Dessa forma, restringiremos nossa analise
a0s €asos Nos quais as temperaturas sejam baixas o suficiente para a seguinte
condicao se cumprir:

ﬁmp > 1. (458)

Nesses regimes de energia, podemos aproximar a funcao de Bessel modi-
ficada do segundo tipo por

Ky (nfm) ~ /ﬁe—nﬁm, (4.59)

2A sentenca faz sentido caso se assuma que a teoria correta seja a de Podolsky.
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paran € IN tal que n # 0.
Com essa aproximacao, a série cujo resultado nao se conhece se simplifica:

= Ko (nfime) \[ ) 1
nz::l (nBmp)’ (Bmp) % ; ni (4.60)

L\)

Na aproximacgio de baixas temperaturas (4.58), vale e=#™? < 1. Con-

sequentemente, também vale (e_meP)7le1 < (e‘ﬁmP )n para todo n natural.
Logo, o termo dominante na série do segundo membro de (4.60) é o corres-
pondente a n = 1 e temos o seguinte resultado aproximado:

. K, (nffmp) T e Pme
Do ST (4.61)
n=1 (nﬁmp) <6mp)2

Portanto, o logaritmo da funcao de particao de um campo de Proca para

temperaturas baixas o suficiente para que a energia térmica 7' = B! seja
muito inferior a massa mp do campo é

In[Z (B)]p ~ 3V (% 5) e~ hme, (4.62)

Agora que ja calculamos, pelo menos aproximadamente, os logaritmos
das fungoes de particao associadas aos dois setores do campo de Podolsky,
podemos calcular as quantidades termodinamicas que desejarmos.

4.1.2 A densidade de energia interna do campo quantico
de Podolsky

Substituindo os resultados (4.44) e (4.62) em (4.22), encontramos o logaritmo
da funcao de particao do campo de Podolsky livre na aproximacao de baixas
temperaturas (4.58):

2 3
1n[zp(5)]:2—5;/3 +3V (2 6) ePmp, (4.63)

A densidade de energia interna do campo eletromagnético de Podolsky
livre é obtida através da expressao:

W (Tomp) = _ L 12 (3]

V op

Realizando esse cdlculo, obtemos o seguinte resultado:

. (4.64)
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u(T;mp) = o (T,mp) T*. (4.65)

Nesta expressao, a fun¢ao o (T, mp) é

o (T,mp) =0+ do (%) : (4.66)
sendo
2
T
= — 4.67
=15 (4.67)

a constante de Stefan-Boltzmann e

oo () = 20 () e (4.68)

O resultado obtido com a teoria de Maxwell, a saber,

uo (T) = 0T, (4.69)

constitui-se na lei de Stefan-Boltzmann. As expressoes (4.65) e (4.66), no
entanto, mostram que a teoria de Podolsky prevé uma corre¢ao nessa lei. Essa
correcao depende tanto da temperatura T" quanto da massa de Podolsky mp.
Conforme esperado, essa correcao tende a zero quando a massa de Podolsky
¢ infinitamente maior do que a energia térmica:

mp

1m150<7¢):o, (4.70)

mp
T—)OO

donde recupera-se o resultado de Maxwell, ou seja, a lei de Stefan-Boltzmann:

lim w(T;mp) = up. (4.71)

WLP
£ =00

Entretanto, caso a massa de Podolsky seja finita, isto é, caso o campo
eletromagnético seja corretamente descrito pela teoria de Podolsky em detri-
mento da teoria Maxwelliana, a expressao (4.65), que é experimentalmente
verificavel, pode ser usada para se detectar os efeitos do termo de derivadas
superiores no eletromagnetismo mesmo que o valor da massa de Podolsky seja
muito grande. Quanto mais alto o valor desse parametro, mais alta a tem-
peratura deve ser a fim de que a corre¢ao (4.68) na lei de Stefan-Boltzmann
seja mais facilmente acessivel experimentalmente.
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4.1.3 Limite termodinamico para o parametro de Po-
dolsky

Na subsecao anterior mostramos que a teoria de Podolsky prevé uma correcao
na lei de Stefan-Boltzmann dada pela expressao (4.65) e argumentamos que
essa expressao pode ser utilizada para se buscar assinaturas da possivel ex-
istéencia do campo de Podolsky caso desvios do resultado calculado utilizando-
se o campo Maxwell sejam detectados em experimentos. Essa mesma ex-
pressao para a modificacao da lei de Stefan-Boltzmann pode ser utilizada
com a finalidade de se estabelecer um limite para o parametro de Podolsky.
Prosseguindo nessa linha de pesquisa, reescrevemos a constante de Stefan-
Boltzmann (4.67) e a corregao (4.68) no Sistema Internacional de Unidades:

172 Kk} w2k,

70T L115mE T 60me’ (4.72)

2 4 2\ 5 2

mpc 3 ky (mpc*\? _mpe
oo| —— | = kBT | 4.73
7 ( kT ) S7/2n I3 ( kT ) -’ (4.73)

Ou seja,
5
2\ 2 mpc2 3.2 2

mpc - - 87r\/27rh40 50 mpc . (4.74)

mc?
kT

do valor esperado para a constante de Stefan-Boltzmann devido a presenca
do setor massivo da teoria de Podolsky. Uma vez que até o momento nenhum
experimento detectou algum resultado sensivelmente diferente dos previstos

A equagao (4.66) nos permite interpretar do ( ) como sendo o desvio

m02
kpT

experimental do valor da constante de Stefan-Boltzmann pois, do contrario,
o resultado (4.65) estaria em conflito com os dados experimentais. Assim,
deve sempre valer:

O valor experimental para a constante de Stefan-Boltzmann é [63]

pela teoria de Maxwell, o termo do < ) deve ser no mdximo igual ao erro

-8
Texp = (5,670277968 £ 0,000040) x 10 Y (4.75)

Ou seja, o erro em sua medigao é
§0ep = 4,0.1071 W (4.76)

Conforme argumentamos, deve sempre valer:
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B

Substituindo essa condi¢do na expressao (4.74) e utilizando

ho = 1,0545859.10734 Js;
¢ = 299792458108
S

J
kg = 1, 38066.10‘%’},

encontramos

mpc? P mp? 8w/ 21 B3 c?
e kBT S 4 Jexp
kT 3 kL

= 2,4367381.107°.

Logo, precisamos resolver a seguinte equacao transcendental:

z2e % = 2,4367381.107,

mc?
kgT"

Quatro solucoes aproximadas para a equacao acima sao

com r =
3

1~ —0,0115272 — 0,00831657:;
zo ~ —0,0115272 + 0,00831657:;
23 ~ 0,0143621;

z, ~ 17,8236.

(4.77)

Uma vez que x é a razao entre a energia de repouso do féton de Podolsky
pela energia térmica, ela deve ser um ntumero real. Logo, as raizes x; e x9
estao excluidas. A solucao x3 é menor do que 1. Contudo, nossos resultados
somente sao validos quando a energia de repouso associada ao setor massivo
de Podolsky for muito maior do que a energia térmica. Logo, essa solucao
também estd excluida. Por fim, verificamos que a solucao =, =~ 17,8236
cumpre todos os requisitos. Qualquer valor de x > x4 satisfaz (4.81) Assim,

devemos ter:

3 Agradecimentos a www.wolframalpha.com.
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mpc?

> 17,8236, (4.87)
B

ou seja,

mpc” > 17, Bl. .
2 > 17.8236kgT 4.88

Obtivemos, dessa forma, um limite inferior para a massa de Podolsky
dependente da temperatura. A fim de fixarmos esse valor, precisamos fixar
essa temperatura. Uma vez que estamos analisando a quantizacao do campo
eletromagnético livre em equilibrio termodinamico essa temperatura deve ser
a de algum corpo negro. Além disso, ela nao pode ser muito alta, a fim de
termos garantida a validade da aproximagao (4.58) realizada anteriormente.
A radiagao césmica de fundo em microondas satisfaz esses dois critérios: ela
ja foi chamada do mais perfeito corpo negro até a data e sua temperatura
¢ extremamente baixa se comparada com a da grande maioria da matéria
conhecida no universo [64, 65]. Por essas razoes, consideremos como objeto
de estudo a radiacao césmica de fundo em microondas. Sua temperatura é
T =2,725K. Assim, o limite (4.88) se torna:

mpc? > 6,50577.10722J. (4.89)

Sendo
leV =1,602189.10" 1%, (4.90)

temos,abandonando novamente o Sistema Internacional de Unidades,

mp > 4,06055meV. (4.91)

Concluimos, portanto, que os dados da radiagao césmica de fundo em
microondas impoem um limite termodinamico inferior para o valor da massa
de Podolsky como sendo mp ~ 4,0meV. Dito de outra forma, qualquer
valor para a massa mp que seja superior a esse valor é compativel com os
experimentos associados a radiagao de corpo negro.

A publicacao desse resultado na Physical Review D rendeu-nos também

um destaque na secao “Our choice from the recent literature” da revista
Nature Physics [27).

4.2 O tensor de polarizacao

No capitulo precedente definimos uma quantidade que denominamos “tensor
de polarizacao” da eletrodinamica de Podolsky em equilibrio termodinamico
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(3.456). A quantidade correspondente na teoria sem efeitos térmicos é o
chamado “tensor de polarizacao do vdcuo”. No entanto, as propriedades
fisicas desses dois operadores, embora com defini¢oes similares, sao muito
distintas. Estudar algumas propriedades basicas desse tensor quando se esta
numa situacao de equilibrio é o objetivo desta secao.

4.2.1 A forma geral do tensor de polarizacao em equi-
librio

Da definicao de ordenamento de campos nao Grassmannianos e das equagoes
(3.356) e (3.359), temos:

Dy (x,7) = Dy (—x, —7). (4.92)

De acordo com (3.468), essa propriedade deve também ser compartilhada
pela fungao de Green de Podolsky:

D,, (x,7)=D,, (—x,—T). (4.93)

Utilizando a representacao de Fourier (3.472) na expressao acima, mostramos
que

Dy (k,w?) =D, (—k, —w?). (4.94)
Notamos, ainda, que a equagao
D, (k,w?) Dye (k,w?) = 6, (4.95)

é valida para qualquer k e qualquer n € IN, em particular, é valida também
para

D, (—k, —w?) D¢ (—k, —w?) = be. (4.96)

Utilizando a propriedades (4.94) nessa equagao, ficamos com

due = 75;1,1 (—k, —w?) De, (k,w?) = De, (k,w?) D! (-k,—wl). (4.97)

%

O segundo membro dessa equacao deve ser igual a 155,, (k,w,ﬁB ) 15;1} (k,(,ujlB ),
donde identificamos:

D1 (—k,—wy) = D} (k,wl). (4.98)

ian n n
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Essa equagao ¢é valida para o inverso da funcao de Green de Podolsky com-
pleta. Sendo a funcao de Green de Podolsky livre um caso particular da
completa, também temos:

Bl (k,w?) = Blree) (—k, —wP). (4.99)
Da equacao (3.478), identificamos
Dot (kwf) = BUFY (180 411, (k wf) (4.100)
ou seja,
M, (k.w?) = Dyl (kwf) - BUPY (65) (4.101)

Logo, o tensor de polariza¢ao também possui a propriedade (4.94):
M, (k,w?) =1L, (—k, —w?). (4.102)

Procuraremos, agora, a forma mais geral possivel para o tensor de po-
larizagao da_eletrodinamica generalizada de Podolsky em equilibrio termo-
dinamico. II,, é um tensor de segunda ordem. Existe um ntimero finito
de tensores de segunda ordem em termos dos quais ﬁ;w possa ser escrito.
Caso estivéssemos na ausencia de efeitos térmicos, teriamos apenas o ten-
sor métrico e o tensor de segunda ordem construido como um produto de
dois quadrimomentos. No entanto, na situacao de equilibrio termodinamico,
temos ainda um outro quadrivetor disponivel. O sistema fisico em equilibrio
termodinamico constitui-se de um meio. No presente caso, esse meio é um
plasma, o chamado plasma relativistico e quantico de Podolsky. Devido a
presenca desse plasma, existe um referencial distinto dos demais: o refer-
encial de repouso do meio. E nesse referencial que todas as nossas contas
foram feitas. Entretanto é, em principio, possivel realizar uma transformagao
para outro referencial. Assim, num referencial arbitrario, temos os seguintes
objetos disponiveis para através deles ou de combinacoes deles, formar um
tensor de segunda ordem:

e o tensor métrico Euclideano 9,,;
e 0 quadrimomento térmico k2";
e a quadrivelocidade Euclideana u do meio;

e o tensor completamente antissimétrico em quatro dimensoes: €,,¢,.
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Embora esse tltimo tensor também esteja disponivel na situacao de tem-

peratura nula, como o unico quadrivetor com que ele pode ser contraido
naquele caso é o quadrimomento, temos Em,ggk’g k® = 0.

Portanto, a forma mais geral do tensor de polarizagao num referencial
arbitrario, denotado por I19,, (k5" kB . u) é

ﬁZV (an7 an . 'LL)

" B B " B B anklj/Bn
= A" (KP" kP u) 6, + B” (K2 KR u) L

GO
n1.Bn anuV n1.Bn kfnu
O (KPR ) T D (g )
k;B”)2u U
E// an k,Bn_ ( [
+ ( ’ u) (an . u>2
an .
I (KPR ) ey (4.103)

Nesta expressao, a-b = agby +a-b. As funcoes A", B”, C", D", E" ¢ 1"

sao escalares de SO(4). No referencial de repouso do meio wu, o 6,0. Assim,
nesse referencial, escrevemos:

= B / B / B kfnkfn ' B kf”é,,o
1L, (kw) = A (kw?)duw+ B (kw)) (i5n)? +C (k,wn)w—B-l-
an(; (an)2 A 051/0
B v 0 B n
+D' (kwy) =5 5“ + E (k,w,) T
/ B kan
—I—] (k, wn) 6()”1,5@. (4104)

Nesse referencial, valem as seguintes relacoes (3.505) e (4.102). Dessas
duas relacoes, temos

0= kP, (k,w?) = k5L, (<k, —w?)

(4.105)
ou seja B
kDML, (—k, —wy) = 0. (4.106)
Trocando kP" por —kP" nessa expressao, obtemos
—kPrL, (k,w?) = 0. (4.107)
Dessa forma,
kP, (k,wP) = 0. (4.108)
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Calculando ﬁvu (—k, —wf) a partir de (4.104) e usando a propriedade
(4.102), encontramos as seguintes relacgoes entre as diversas fungoes escalares:

A (=k,—wP) = A (k,w)); (4.109)
B' (=k, —w}) B (k,wp); (4.110)
C'(-k,—w?) = D'(kw?); (4.111)
D' (=k,—w)) ' (k,wl); (4.112)
E'(-k,—wp) = F (kw)); (4.113)
—I'(-k,—wp) = I'(kw)). (4.114)
Utilizando (3.505) e (4.111), encontramos a seguinte relacao:
0= [4"(kwl)+ B (kwy)+C (~k,—wl)] )"+
! B / B (an)Z 6u0
+ [0 (k,wy) + B (k,wy)) | ~—F— (4.115)

n

Agora, multiplicamos essa relacao por k5" # 0 e encontramos:

A (k,wl)+B (k,w)) = -C" (-k,—w])-C" (k,w?)—E (k,w?). (4.116)

Por outro lado, multiplicando (4.115) por 4,0, obtemos:

A (k,w))+B' (k,wy) = —C" (=k, —w})=[C" (k,w?) + E' (k,w?)]

Igualando (4.116) com (4.117), podemos mostrar a seguinte equagao:

' (k,wl) = —E' (k,w?). (4.118)
Dessa relacao e de (4.108), temos uma nova expressao:
0 = [A(kw))+B (kw))—E (kw)] k)" +
(an>2 8,0

B
Wy

+[E (kw)) = B (=, —w/)]

(4.119)

Tomando o produto escalar da equacao acima com k‘f” #0:
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A (k,wl) + B (k,w?) = FE' (=k, —w}) . (4.120)

Tomando o produto escalar de (4.119) com §,,, obtemos

/ b / B / B (an)2
A (k,wn)+B (k,wn) = F (k,wn) 1— ()2 +

k,Bn 2

+E' (—k, —w)) ((WB))Z : (4.121)
Igualando (4.120) com (4.121), mostramos:
E'(-k,—w?) = E' (k,w}). (4.122)
De (4.120) e (4.122), temos ainda mais uma relacao:

B (k,w)) =FE (kw,) — A (k,wl). (4.123)

Logo, a forma mais geral possivel do tensor de polarizacao no referencial
de repouso do meio é

. anan
1L, (k,w)) = A (k,w) [(SW - ”2]
(k5™)
KBEE (kB0 + k260 (K5™)? 640000
B 14 v UM o
+E (k,w?) [ (‘;BH)Q _< " B )+ P
an
1 (k,wh) song—B. (4.124)
Redefinindo as fungoes:
A (k,wl) =A(kwl); (4.125)
E' (k,w)) =B (k,wl); (4.126)
I' (k,wP) =1 (k,w?), (4.127)

reescrevemos o tensor (4.124) como?!

4Para o caso da eletrodinamica Maxwelliana, a expressao correspondente foi obtida por
Fradkin [15].
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I, (k,w?) = A (k,w?) |4 _ kY
"z y Wn y YMn uv (an)Q
kBB (KBS0 + kB0 (KP")? 6,000
+B(k,wf)[<‘;Bn>2_< " . " >+ (Wf)‘;
an
+1 (k,wP) sowg(j—B. (4.128)

n

Escrito nessa forma, o tensor de polarizacao da eletrodinamica de Podols-
ky em equilibrio termodinamico é explicitamente transversal, uma vez que
todos os tensores que multiplicam as funcoes escalares A, B e [ sao transver-
sais. Essa é sua forma geral. Contudo, para fins praticos, faz-se necessario
calcular as fungoes escalares explicitamente. Isso pode ser feito, por exem-
plo, através do calculo explicito da equagao (3.464). Conforme deduzimos,
as funcoes A e B devem satisfar as equacoes (4.109) e (4.113). E relativa-
mente facil se escrever uma funcao escalar de k%" que satisfaca uma dessas
equagoes, visto que qualquer funcao de (k;B")2 = (wf )2 + k2 basta. Para a
funcao I, contudo, a situagao é mais sutil. Aparentemente, a tnica forma de
se escrever uma fungao escalar que satisfaga (4.114) ¢é construindo-a de tal
forma que ela possua o mesmo sinal de k%" - u, ou seja, sendo uma funcéo
impar dessa quantidade. Dessa forma, no referencial de repouso do meio,
terfamos I como uma fungao fmpar de w?, uma vez que no referencial de
repouso, kB - u o< w?. No entanto, uma vez que a condigao (4.102) foi de-
duzida no referencial de repouso do plasma, nao ha garantias de que ela valha
num referencial arbitrario como sendo dada pela troca de k%" por —k®" com
a quadrivelocidade do meio fiza. Se, porventura, a relacao correspondente
em outro referencial envolvesse a troca de u por —u simultaneamente com
a troca correspondente em kP", ndao haveria fungao que satisfizesse (4.114)
além da identicamente nula. O termo que multiplica a fun¢do B em (4.128)
nos diz que a quadrivelocidade nao deve trocar de sinal (pelo menos nao
up), do contrario deverfamos trocar 6, por —d,9, e isso violaria a condigdo
(4.113). Caso nao tivéssemos recorrido a forma geral do tensor de polarizacao
num referencial arbitrério (4.103) como ponto de partida, nao haveria justi-
ficativa para um termo dependente apenas de w? ser invariante de SO(4),
mas se comportaria apenas como a componente zero de um quadrivetor Eu-
clideano. Em todo o caso, essa questao merece uma analise mais profunda
que, infelizmente, nao sera realizada nesta tese.

Como um tultimo tépico desta tese, consideremos a equagao (3.464) na
auséncia de fontes externas calculada para 7, =7,y =0 e 7, = 0:

165



., (x,7) = (%)2 (Wf)ab /ﬁ d*ud*v Spe (x —u, 7 — 7,) X
X I'y(ea) (w,v,0; 7y, 7,0) Sgo (V—%x,7, — 7). (4.129)

Notamos que o tensor de polarizacao pode, em principio, ser calculado
exatamente uma vez conhecidas a funcao de Green fermionica completa da
teoria bem como a fun¢ao de vértice completa. A fim de conhecermos essas
duas quantidades necessitariamos, por exemplo, primeiramente do operador
de massa ¥, e, entao, substituir-lo-famos em (3.459). Para calcularmos a
fungao de vértice, basta derivarmos o resultado com relagao ao campo ¥,
de acordo com (3.461). Para obtermos a funcao de Green completa, pre-
cisarfamos inverter a fungao (3.459). No entanto, de acordo com (3.465), o
calculo do operador de massa depende nao somente das préoprias funcoes de
Green fermonica e de vértice completas, como também da funcao de Green
de Podolsky completa. Esta, por sua vez, seguindo (3.458), depende do
operador de polarizacao, que é justamente a funcao que desejamos calcu-
lar através da equacgao acima. Nenhum método de calculo viavel para esse
sistema de equacoes nao lineares e acopladas conhecido com equacoes de
Dyson-Schwinger-Fradkin que forneca resultados exatos é conhecido para a
eletrodinamica. Aproximagoes sao necessarias.

A aproximacao de ordem mais baixa em teoria de perturbacao para esta
expressao consiste em substituir as funcoes de Green fermionica e de vértice
completas por suas versoes livres. Utilizando (3.466), a equagao acima se
simplifica:

0" (x,7) = (g0)° (%) (1) o St (06,7) Sk (=%, 7). (4.130)

Essa forma simples revela uma propriedade notavel da interacao eletro-
magnética de Podolsky. Afirmamos no inicio do capitulo que, caso a teoria
de Podolsky seja a descricao correta do eletromagnetismo é, em principio,
possivel realizar experimentos para detectar a presenca do setor massivo do
campo eletromagnético. De fato, na se¢ao anterior, estudamos como a lei de
Stefan-Boltzmann é modificada pelo campo de Podolsky e estabelemos um
limite inferior termodinamico para o parametro livre da teoria. Esse limite
foi estabelecido na situacao de campo eletromagnético livre. Ao se conside-
rar a interagao, a equagao (4.130) mostra um resultado inesperado: todos
os fenomenos eletromagnéticos que dependem ezclusivamente do tensor de
polarizacao na teoria de Podolsky sao indistinguiveis dos resultados previstos
pela teoria de Maxwell em ordem mais baixa de teoria de perturbacao.
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Dessa forma, para se detectar a presenca do parametro de Podolsky, ou
se estuda propriedades caracteristicas do campo eletromagnético livre, ou se
estuda propridades associadas ao operador de massa, ou se necessita ir além
da ordem mais baixa de teoria de perturbacao para efeitos de polarizacao.

Iniciamos este capitulo calculando explicitamente o logaritmo da funcao
de particao do campo quantico de Podolsky livre. Vimos que essa quantidade
era escrita como uma soma de um termo associado ao campo de Maxwell
usual com outro associado a um campo de Proca com massa mp. No caso
do setor sem massa, foi possivel calcular o logaritmo da funcao de particao
exatamente. Contudo, no caso do setor massivo, somente pudemos expressar
o resultado como séries de fungoes de Bessel. Considerando temperaturas
associadas a energias térmicas muito inferiores a massa de Podolsky, pudemos
calcular o logaritmo da funcao de partigao do caso massivo aproximadamente.
Vimos, entao, que a densidade de energia interna do campo de Podolsky nessa
aproximacao induz uma correcao mensuravel na lei de Stefan-Boltzmann.
Utilizando dados experimentais para a constante de Stefan-Boltzmann e da
radiagao césmica de fundo em microondas foi possivel estabelecer um limi-
te para o parametro livre da teoria. Por fim, utilizando principalmente a
transversalidade do tensor de polarizacao, escrevemos a forma mais geral
desse tensor em equilibrio termodinamico.
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Capitulo 5

Conclusoes

5.1 O formalismo de Matsubara-Fradkin

No capitulo 2 apresentamos o formalismo de Matsubara-Fradkin para a quan-
tizagado de teorias de campo em equilibrio termodinamico [29, 12, 13]. Esse
formalismo tem por base a matriz densidade do sistema e, por conseguinte, é
uma abordagem fundamental [30, 31]. Esse método é, também, baseado em
técnicas funcionais, que constituem-se num elegante formalismo para teorias
quanticas de campos. Uma outra caracteristica marcante do formalismo de
Matsubara-Fradkin é que ele é em principio nao perturbativo. Mais que isso,
ele é uma técnica exata. Por exemplo, a transversalidade do tensor de pola-
rizacao (3.505) obtida com o formalismo de Matsubara-Fradkin ndo apenas
é valida para todas as ordens de teoria de perturbacao, mas como também
é valida mesmo que a teoria de perturbacao nao valha. Embora o tenhamos
apresentado para teoria de campos, esse formalismo nao é restrito a ela.
De fato, Matsubara o desenvolveu em sua forma original para a mecanica
quantica e Fradkin resolveu aplicou a teoria para diversos exemplos nao rela-
tivisticos [29, 13]. Enquanto que a base do formalismo chamado de “do tempo
imaginario” repousa numa analogia entre a funcao de partigao e a amplitude
de transicao do vacuo para o vacuo da teoria a temperatura nula constata-
mos que o formalismo de Matsubara-Fradkin permite-nos encontrar repre-
sentagoes de integracao funcional para a funcao de partigao sem a necessidade
de se recorrer a nenhuma analogia [50, 53, 62]. Além disso, no formalismo do
tempo imaginario, faz-se necessario realizar-se de uma maneira ad hoc uma
continuacgao analitica conhecida como rotacao de Wick na variavel temporal
a fim de se obter o carater Euclideano do espaco-tempo. Conforme vimos
nas equagoes (2.130), (3.186) e (3.187), essa propriedade emerge natural e
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automaticamente da estrutura tedrica da abordagem de Matsubara-Fradkin.
Outra abordagem conhecida como “formalismo do tempo real” considera nao
campos estaticos, mas dependentes do tempo. Ela é muito utilizada para se
descrever pequenos desvios da situagao de equilibrio [8, 51]. Porém, embora
nao apresentada nesta tese, Fradkin desenvolveu uma extensao do formalismo
para tratar de campos dependentes do tempo sendo capaz, dessa forma, de
tratar situacoes levemente fora do equilibrio de uma maneira similar ao for-
malismo do tempo real [13]. No terceiro capitulo tratamos da quantizagao
em equilibrio de uma teoria de gauge Abeliana. Vimos que a abordagem de
Matsubara-Fradkin aliada ao poderoso método de quantizacao de Nakanishi
nos permitiu obter uma descricao covariante do sistema quantico em todas
as etapas [53]. Isso ¢ incomum. De fato, em [27], utilizando o formalismo
do tempo imagindario, quebramos a covariancia de Lorentz a fim de poder-
mos escrever corretamente a representacao de integracao funcional da ampli-
tude de transicao do vacuo para o vacuo e, logo em seguinda, fazendo uso
do chamado Ansatz de Faddeev-Popov, passamos de uma escolha de gauge
nao covariante para uma covariante. Todo esse empenho é desnecessario no
método do campo auxiliar, pois todas as expressoes sao covariantes. Por fim,
no capitulo 4 vimos que nao somente a estrutura teorica da abordagem possui
um “aspecto” formal, como também é possivel obter a partir dela expressoes
que fornecem valores que podem ser comparados com dados experimentais

27].

5.2 A teoria de Podolsky

Esta tese trata da quantizacao da eletrodinamica de Podolsky em equilibrio
termodinamico. Sendo assim, no segundo capitulo, vimos como o campo
de Podolsky surge como uma alternativa ao de Maxwell a partir do préprio
principio de gauge. Vimos, na expressao (3.15), que a densidade de La-
grangeana da teoria de Podolsky contém um termo que depende de derivadas
de segunda ordem do campo eletromagnético. Por essa razao, a estrutura
canodnica da teoria é mais rica e mais interessante [24, 36]. Vimos também
que a teoria depende de um parametro livre que mais adiante foi chamado de
massa de Podolsky. Apesar do campo conter uma massa, ele se decompoe em
dois de tal forma que existem na teoria um setor sem massa e um massivo de
uma tal maneira que a teoria como um todo é invariante de gauge. De fato,
em [23], Cuzinatto, de Melo e Pompeia mostraram que a teoria de Podolsky
é a unica extensao possivel do eletromagnetismo usual que contém termos de
derivadas de segunda ordem que mantém intactas as duas simetrias béasicas
da interagao eletromagnética: a de gauge U(1) e a de Lorentz. Visto que
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as equagoes de Podolsky (3.24-3.27) diferem das de Maxwell, o eletromag-
netismo de Podolsky prevé resultados diferentes dos de Maxwell para alguns
experimentos, conforme ja foi proposto por Cuzinatto, de Melo, Medeiros e
Pompeia [26]. Assim, o argumento da navalha de Occam, que afirma, basi-
camente, que se duas teorias explicam os mesmos fenomenos devemos optar
pela mais simples, pode nao se aplicar. Ao estudar a quantizacao da teoria
em equilibrio termodinamico no formalismo de Matsubara-Fradkin, optamos
pelo método covariante de Nakanishi. Esse método, enquanto mantém a
covariancia de SO(4), quebra a simetria de gauge explicitamente. Vimos,
entao, que os campos fantasmas surgem devido a simetria de gauge residual
e introduzem automaticamente uma nova invariancia no problema. A essa
nova simetria ¢ associado um operador carga de Noether conservado e, a ele,
um potencial quimico. Conforme mostramos, as funcoes de Green da teoria
satisfazem certas condigoes de periodicidade na variavel 7. Essa propriedade
implica que o potencial quimico fantasma é um numero imaginario puro e,
portanto, nao é observavel termodinamico. Escrevemos representacoes de
integracao funcional para o funcional gerador termodinamico e da funcao de
particao completos da teoria. Encontramos o conjunto de equagoes conhe-
cido como equagoes de Dyson-Schwinger-Fradkin da teoria de Podolsky em
equilibrio termodinamico e mostramos que as transformadas de Fourier das
fungdes de Green dependem das frequéncias de Matsubara (3.476) e (3.477)
[53]. Notamos, agora, que no limite de temperatura nula 7" — 0 ou, equi-
valentemente, § — o0, as frequéncias de Matsubara tanto bosonicas quanto
fermionicas se tornam densas na reta real. Conforme essas frequéncias se
tornam continuas, as somas sobre as frequéncias de Matsubara se tornam in-
tegrais. Visto que as func¢oes de Green sao periddicas ou antiperidédicas com
“periodo” f, nesse limite elas se tornam funcgoes periddicas ou antiperiddicas
com “periodo” infinito, ou seja, funcoes aperiddicas. Tomando, também,
o limite p. — 0, todas as equacoes envolvendo fungoes de Green, como as
equagoes de Dyson-Schwinger-Fradkin ou as identidades de Ward-Fradkin-
Takahashi se tornam versoes Euclideanas daquelas encontradas para a teo-
ria de Podolsky a temperatura nula no espaco-tempo de Minkowski encon-
tradas em [66]. Por essa razdo afirmamos no capitulo introdutério que a
teoria quantica de campos em Minkowski seria um caso particular da teoria
de campos em equilibrio termodinamico e nao o contrario. Retornando ao
caso com temperatura e potencial quimico nao nulos, mostramos as identi-
dades de Ward-Fradkin-Takahashi em equilibrio termodinamico, com énfase
na transversalidade do tensor de polarizagao (3.505) e na identidade de Ward
(3.515). Nesta ultima ficou evidenciada uma caracteristica do equilibrio:
sendo as frequéncias de Matsubara quantidades discretas, nao se é possivel
escrever a forma diferencial da identidade de Ward, a menos que se recorra
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a continuagoes analiticas, que estao associadas a desvios do equilibrio, ou se
tome o limite descrito acima, no qual a temperatura tende a zero e também
nao se tem equilibrio termodinamico. No capitulo 4 calculamos explicita-
mente a funcao de particao do campo de Podolsky livre. Esse calculo somente
foi possivel porque assumimos a condi¢ao de temperaturas associadas a en-
ergias térmicas despreziveis frente a massa de Podolsky (4.58). Em seguida,
calculamos a densidade de energia interna do campo e mostramos que o
setor massivo da teoria de Podolsky induz uma correcao na lei de Stefan-
Bolztmann. Essa corregao pode, em principio, ser mensuravel e foi utilizada,
em conjuncao com dados experimentais da constante de Stefan-Boltzmann e
da radiacao cosmica de fundo em microondas, para se estabelecer um limite
minimo para o valor do parametro de Podolsky. Esse valor limite advindo
da termodinamica ¢ mp ~ 4meV [27]. Esse valor pode ser melhorado com o
mesmo tipo de experimento, bastando para isso se construir ou se encontrar
um corpo negro tao preciso quanto a radiacao cosmica de fundo em microon-
das mas que apresente uma temperatura maior. Se a temperatura se elevar
muito, contudo, os efeitos quanticos da eletrodinamica precisarao ser levados
em conta, especialmente se a temperatura do corpo negro for tal que a ener-
gia térmica associada seja comparavel a massa do elétron [61]. Na sequéncia,
utilizamos a transversalidade do tensor de polarizagao (3.505), que é uma
das identidades de Ward-Fradkin-Takahashi deduzidas no capitulo 3, para se
escrever a forma mais geral desse tensor na situacao de equilibrio.

5.3 Perspectivas futuras

Como projetos futuros estudaremos certas propriedades classicas do campo
de Podolsky que ainda nao sao muito bem entendidas. A auseéncia da sime-
tria de dualidade nas equacoes de Podolsky podem, talvez, fornecer alguma
pista sobre a nao observagao de monopolos magnéticos [17]. Outra simetria
presente no eletromagnetismo Maxwelliano e ausente no de Podolsky cujas
implicagoes nao sao bem entendidas é a de escala, visto que a massa de
Podolsky define um comprimento Compton caracteristico.

No regime quantico da teoria de Podolsky, pretendemos estudar a renor-
malizabilidade da teoria, tanto a temperatura nula quanto na situacao de
equilibrio térmico. Nesse tltimo caso, também pretendemos estudar alguns
fenomenos tipicos de Fisica dos plasmas, como a blindagem de Debye e os-
cilagoes coletivas. Analisando atentamente as equagoes (3.452-3.455), ve-
mos que elas sao muito semelhantes aquelas da eletrodinamica com “vacuo
instavel”[67]. A principal diferenca ocorre que, ao se fazer as fontes nulas,
uma possivel média térmica nao nula para o campo eletromagnético atua-
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ria como um campo classico externo constante. Campos eletromagnéticos
classicos nao possuem significados fisicos contanto que nao estejam na pre-
senca de objetos quanticos, como ocorre no caso do efeito Aharonov-Bohm
[68]. Pretendemos, assim, investigar a questao de se um possivel valor nao
nulo para a média térmica do campo alteraria drasticamente o comporta-
mento do plasma de Podolsky. Também temos a intencao de aplicar a teoria
de perturbagao modificada de Fradkin para uma teoria auto-interacao es-
pecifica do campo escalar, como por exemplo, a interacao A¢*, e também
aplica-la ao eletromagnetismo de Podolsky calculando, dessa forma, tanto
correcoes nao perturbativas para a funcao de particao como também estu-
dando efeitos nao perturbativos nas funcoes de Green.

Planejamos, ainda, extender o formalismo de Matsubara-Fradkin e a
teoria de perturbacao modificada de Fradkin para teorias de gauge nao
Abelianas, com a esperanca de que o emprego dessas duas técnicas em con-
junto possa lancar alguma luz sobre a questao da transicao de fase da cro-
modinamica quantica de uma fase que exibe confinamento para uma descon-

finada.

5.4 Comentarios finais

Nesta tese apresentamos o formalismo de Matsubara-Fradkin e o aplicamos
a teoria eletromagnética de Podolsky. As contribuicoes originais desta tese
consistem na extensao da teoria de perturbacao modificada de Fradkin para
a situacao de equilibrio termodinamico e a quantizacao da eletrodinamica de
Podolsky em equilibrio termodinamico, que consiste de quase todo o capitulo
3 e da totalidade do capitulo 4 [27, 53].
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Apeéendice A

O potencial eletrostatico de
Podolsky

Neste apéndice encontraremos o potencial eletrostatico da teoria de Podolsky.
Assumindo Ap # 0, podemos reescrever (3.33) como

(32 - i) T2 40 (x) = L (;;) (A1)

Consideremos uma carga puntual g localizada na origem,

p(x) =qd(x), (A.2)

e escrevamos as transformadas de Fourier do potencial eletrostatico e da
densidade de carga:

1 3 ikex.

J(x) = (27r)3/d ke, (A.3)
1 314 ik-x

Ay (x) = (271')3/d k Ap (k) e™ ™. (A.4)

Substituindo essa transformadas em (A.1) e utilizando a independéncia
linear das fungoes exponenciais, encontramos:

Ay (k) = QiP - <k2q+ L) . (A.5)

Com isso, podemos calcular (A.4):
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1 1 q -
A x — 3]{? ik-x
0( ) 2AP (27‘(‘)3/ k2 <k2+ﬁ)e
P

1 2 > k2 ! ,
= T 7TQ3/ dk’—/ d(COSQ) ezkrcos@
2 P (27T> 0 k2 (k2 + ﬁ) 1
1 [e'S) 1 ikr _ _—ikr
_ —LQ/ dk (e _— )
2)\]3 (27‘(‘) 0 (k.?_i_L) ikr
P
_ %2:270 /Oodk Sin(k‘r)1
" ok <k2 + o

IR I
2Ap (2m)° 1 J o

(A.6)

com r = |z|.
No limite € — 07, a 1ltima integral é substituida por

00 . 00 ikr
/ Ik sin (kr) _ l / i e n
o (ko) (R4 g) B S (o) (B4 )

00 —ikr
_ / dh—F | A7)
—oo (k4 ig) <k2 + %>

O calculo de cada integral pode ser realizado com o auxilio do teorema
dos residuos de Cauchy e do lema de Jordan, resultando em:

oo ikr _r

/ dk : ‘ . = —27mipe VPP, (A.8)
—00 (k‘ —+ 15) (k/‘Q + m)
e’} —ikr r

/ dk c = 2rmidpe VPP —dmidp.  (A9)
oo (k+1ig) (k:2 + ﬁ)

Portanto,

o0 in (k __r

/ gl S (k) = 27 \p (1 —e ﬁ) . (A.10)

o (k+ i) <k2 + ﬁ)
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Finalmente, o potencial eletrostatico de Podolsky (A.6) é

Ao (x) = 47Tq|x| <1 _ e‘%) | (A.11)
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Apendice B

O tensor densidade de energia e
momento simétrico de uma
teoria com derivadas de

segunda ordem

Neste apéndice calcularemos o tensor densidade de energia e momento da
teoria de Podolsky livre. Iniciamos com a teoria geral de se calcular o ten-
sor de energia e momento simétrico para densidades de Lagrangeanas com
derivadas de segunda ordem [69, 70, 71].

B.1 Teoria geral

Seja L uma densidade de Lagrangeana que depende de certos campos e de
suas derivadas de primeira e segunda ordens:

L= L[¢,00,0%] . (B.1)

A variacao intrinseca §y dessa densidade de Lagrangeana satisfaz

[00, 0] = 0. (B.2)

176



Assim,

oL . oL ) oL )
=5 T a0 ) T g0, 00
oL oL 1 oL oL
— 0+ — )
=952 ¥ gm0 P09 l 500,0,67) 900, Wj "
% 8,8, (§00°) (B.3)

Podemos escrever

oL o oL J o oI, )
0(0,0%) 9 (609") = 0y, {a(a#gba)‘doﬁé } O {8(au¢a)} do”, (B.4)

1 oL oL .
h=3 [a@auasa) " a@am)] 010 (408")

Aslo Ik <8?i¢a>] 2 (00 | +

o {1 [ <88§V¢ o <aai¢a>] } O (00")

- {1{ 570, (w) <8ai¢a>}a“<5°¢a>}+
{ {H 7005 <aa§¢¢a>”5“¢a}+
1
3
00

oL .
{ T8 T M } 50", (B.5)

Il
S5}

Entao,
oL oL 1] oL oL .
hol= {% O [a <am>] Ou {5 [a 00,00 " @WJ }} S+
10, [[0,6" + 110, (06)]. (B.6)
sendo
oL 1 oL oL
m = 2% 5= : .
“ = 500" {2 {awpama)*a(aﬁm” (B1)
o1 oL oL
" = 5{a<auam>+a<auau¢a>1' (B5)
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Agora, definimos

0 = n"0,; (B.9)

2, = 0,—n,0. (B.10)

=

n € um vetor unitario constante tipo tempo:

n'n, = 1. (B.11)

Com essas defini¢oes, vemos que

8, = 0,+n,0—n,0 =20, —n,0+n,0 (B.12)
= 9, +n,0. (B.13)

Assim, temos

129, (500" = I (9, +n,d) (06")

= II"9, (6o0") + n, 11" (890") : (B.14)

179, (66%) = 9, (II"5y¢%) — O, 11" 50" (B.15)

119, (500%) = TI™9, (666%) + n,I1 9 (56%) (B.16)

= 9, (IT"™6¢") — O, T1™ 606" + n, ITH D (606%) . (B.17)

Com isso, podemos escrever
000" + 11570, (609") = 115009" + 0, (117"009") +
— 9, 11" 800" + n, 1™ (80" (B.18)
= (% — 9,I1") 6o¢" + n, 14D (d0¢") +
+0, (T4 606") (B.19)

Substituindo esse resultado na equagao (B.6), encontramos

b = {%‘8“ {@gf@)} ‘”{ { <aagy¢> <a?i¢a>]}}5°¢”

0 | (T = 0, T b0 + 1D (806" | + 8,8, (1000°) . (B.20)
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Restringiremos nossa andlise aos casos nos quais as variacoes facam o
ultimo termo dessa expressao satisfazer:

Iy = /RdD“?U 90, (HZ”50¢“)=/Bd0uQV (115" 000*)
= [ aPe0, () = [ P (0, —n,0) (M6i0)
_ /V dPx |9, (T2806") — n,d (T2 000"
- /V 0Pz [0y (I1%660%) + 0, (19666%) — nym, " (11%506°)]
- /v dP [0 (T1%806%) + 8 (I%606") — ngned® (106,6%)]
= [ e o (o) + 0, (M800°) — 0 (166)]

= / dPz0; (1Y 5o9") = / ds; (I1Y69") = 0, (B.21)
14 S

sendo R a regiao que engloba todo o espago-tempo (D + 1) - dimensional, V'
denota a fronteira dessa regiao, ou seja, um hiper-volume D - dimensional e
S a hipersuperficie que delimita V. Nesta expressao, utilizamos um vetor n
do tipo n = (1,0).

A condigao acima significa que consideramos apenas variacoes tais que o
vetor cujas componentes espaciais sdo I1%§,¢® sejam ortogonais a hipersu-
perficie S.

Com esses resultados, temos

Iy = / d*z 0, [I148o¢" + 114, (509")]
R
_ / oy, [ (11 — 0,112 o6 + 0, T1D (500"
B L

_ /d (112 — 9,112) 606" + n, 11270, (90" )|

- /B do,, :7r30>“50¢“+7rgl>ﬂ<50 (5¢G)]

N-1
_ B, (9F ¢ ) . '
/Bdaugwa 0( gb) (B.22)

Nesta expressao, temos N = 2 como o numero maximo das ordens das
derivadas envolvidas no problema. Temos, também, as seguintes defini¢oes:
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rOr = — 9,11 (B.23)

e = ,,th (B.24)
~ 1, k=0,

® = )= ’ B.2
0 { d, k=1 (B-25)

Definimos, agora, a quantidade G que chamaremos de gerador:

N-1
G = / do, [Z QLN <5(k)¢a> +L §m“] . (B.26)
B k=0

Introduzimos a variacdo total d:

56" = 006" +6° () — 6" (x) = g + 0 (x) 0% — Le"SEhe" (a) . (B2T)

Para as derivadas dos campos, temos um relacao similar:

5 (5<k>¢a> — 5 (5<’f>¢a) + 0 (5<k>¢“) dat — %50‘552% (5<k>¢b) . (B.28)

Resolvendo essa expressao para a derivada na forma

5% (5<k>¢a> < %a> ( ¢a) St + gaﬁsab <a<k ¢b) (B.29)

Com isso, podemos reescrever o gerador como

G~ [ {3 07 (945) - i (00r)
—I—;s (Fmgat (a<k ¢b>] +L 5:5“}. (B.30)

Analogamente ao caso de derivadas de primeira ordem, definimos

fl = % TGN IE GF 4 7 E IR G 4 rAGEIEI G| - (B.31)

sendo Sig = g’\“gp”Sfj,fi . Podemos mostrar as seguintes propriedades de f:
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&TAyf&))\V = gamg’wsggé(%ﬂ; (B.32)
Joh" = =" (B.33)
Seja
(Sl'f = Egul'u + Qg. (B34)
Assim,
0 (dxe)
oo Cend = Eep- (B.35)
Entao,
9 (dx)
Ti'eeo = Sileme = =Sl eco = =I5
oz,
) (fupé&c ) o Lt
(k) 8 f(k)
= - Oxe. B.36
Oz, + Oz, e ( )

Integrando o primeiro termo numa hipersuperficie S fornece:

] ) ( f(’;sf&rg) L ) ( fgg;ffsxg) e ) ( fgg;fag;g)

/g u oxr - 5/(, On oxr +§/0 n oxr
g0 (f (;5‘55505) v 9 (f&‘ﬁ%xs)
B 5/0 O e i 5/0 T ggn

ou seja

1 1
/ doyd, (fiffoe ) = 5 / o, ( f(fg;ﬁ(sa:g)—§ / Ao, (fifome) - (B.39)

Integrando essa expressao em duas hipersuperficies o(3) e o1y e calculando a
diferenca resulta em
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Ly

/ do,d, (f(’;’;%xg) - / do,d, (f&’;£5xg>

o(2) I(1)

1 1
= 5 / do,, (f(’ff)&(s:Q)—g / do,, (i 0e ) +
2(2)

9(2)
1 1
+§/ dduap (f(’;:;f§$€> — 5/ dO',uap (f(/zpf(h%)
(1)

(1)

_ % [/ do,0, (f(%g(;xg) _/ do,0, <f€;£€5$£>
9(2)

+

(1)

_% [/ do,0), <f&/;55$5> _/ do,0, <f(f;££5x5>
o(2) 7

(©)
1 1

_ D+1 023 _ = D+1 Hp§
= 5 /R dP+120,0, (f(k) 51;5) > /R dP+120,0, (f(k) 5935)

_ 1 D+1 3 _
= 3 /R P12, 8,) (fg;;; 53:5) —0. (B.39)

Uma vez que o termo 0, ( f(’fsfdxg) é nulo entre duas hipersuperficies,

ele nao contribui para o gerador. Entao, podemos escrever G simplesmente
como

N—-1
G= [ do, [Z Rl (5“%@) _ 5%] , (B.40)

B k=0
sendo que definimos o tensor densidade de energia e momento como

T = Nzl [wgfwau <5<k>¢a> ~ 9, < f(’;f)”ﬂ — "L (B.41)

Para uma transformacao de Poincaré:

ox, = gygxg + ay; (B.42)
5 <§<k>¢a) ~0 (B.43)

e o0 gerador Se escreve como
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F = —/ do,T" 6z, = —/ do,T" (5V5x§—|—al,)
B B

= —eu / do, T" x* — / do, 7" a,. (B.44)
B B

Agora, definimos

— /daMT’“’; (B.45)
B
J*e = / do, M"*; (B.46)
B
MMWe = Tt — Tréy, (B.47)
Assim,
- 1 voe L v €
eve | do,T"2> = —epe | do,T"2> — ze¢, | do,T"x
B 2 B 2 B
1 1
= —5,,5/ daMT“”:zcé — —5,,5/ daMT“ExV
2 B 2 B
1
= §5u5/Bd‘7u (T"2¢ — TH2")
1 we _ 1 e
B
Com isso,
v 1 173
G=—a,P"— §5V§J . (B.49)

Sendo G um gerador, temos

9, T = 0; (B.50)
9, M = 0. (B.51)

Dessas expressoes, decorre

M = 9, (Tt —T"a") = 9, (T"a*) — 0, (T"z")
= 8HT“”x€ + T’“’é?uac5 — 8MT“595” — T“gaux”
= TMOat —THo,a" = THo,5 — T'6,"
= T% - T" =0. (B.52)
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O resultado (B.52) mostra que o tensor densidade de energia e momento
calculado dessa forma ¢ automaticamente simétrico.

B.2 O tensor densidade de energia e momento
de Podolsky

A densidade de Lagrangeana da teoria de Podolsky livre é

1
LP fr— —ZF#VFHV + ApaﬂF“Eal/FV7 (B53)

sendo A\p um parametro real constante com dimensao de inverso de energia
quadrada.
O tensor densidade de energia e momento dessa teoria dado por (B.41) é

1 =3 [t (394%) 9, (70)] - wLe. (B5)

Nesta expressao, temos

m =10, — 0,112 B.55)
mot =, I, B.56)
com
p— 92 1 '
Ha _8(8MA01) 8V{2 {a(auayAa) + 6(6V6MAO‘):|}7 (B57)
1 oL oL
p — -
"= 2 L’?(&,GMAQ) + a(augyAa)] (B.58)
e

v = % [Wék)u STWHN AP 4 n 0 SEMPE) 4P 4 105G 49) (B 59)
Para um campo vetorial a quantidade S5 é dada por

ST = 8 — 18], (B.60)

Agora, definimos
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oL

L= —w——: B.61
“ T 0(0,A%) ( )
1 oL oL

LM = : B.62
@ =3 |0(0,0iA%)  9(0:0,A7) (B:62)

Em termos dessas duas quantidades, podemos escrever
701 — L# — 20: L} + neOL M (B.63)
i = ne I M = ne LM<, (B.64)

Com isso, Th” se torna

TH = (L = 20L15) A" = 0, (£ + S8 ) =" Lo, (B6Y)

sendo que o simbolo =< indica, nesta tese, que os dois membros de uma
equacao sao iguais a menos da adi¢ao de um termo que é uma derivada total
- conferir a equagao (3.271).!

Agora, calculamos

1 N N ~
i = 5[OSy aOAT 1+ x O SEHHO AT 1 n 005350 A7)
(B.66)
1 N N ~
=5 [ﬂgm S AV AP 4 7D g AP 4 (DY gar ) Aﬁ] 7
(B.67)
sendo

TOnSEr e AP = (L; — 20, L} + ngé\La“g) S§A% (B.68)

(67

amSEM AP = L FESSVOAP. (B.69)

(67

Assim, a soma de (B.66) com (B.67) é

1Como as quantidades fisicas energia e momento sdo obtidas através de integrais desse
tensor, termos aditivos derivativos totais podem sempre ser ignorados sob o argumento de
que ao se realizar a integragao, as primitivas de tais termos sao assumidas ortogonais a

(hiper)superficie que engloba o sistema fisico.
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1 ~
Z (0 gavv A8 (Dpgavw 5 4B

5 [(Wa HSg AP + SN OA )—i—
(0)v oy B (v gavey AB
+(7ra Sy A” + 7, Sy 8A>+
-

(nlrs3a8 + 7 (s59A%)| . (B70)

oy + 1" =

Cada uma das somas entre parénteses pode ser escrita como

W&O)“SEVVAB + W&l)usg'yl/aAﬁ - (Lall« _ 28§La'u§) S;'YVA/B (B?l)

Com isso, (B.70) se torna

(

1 = 4 (L= 20CL%) S A7+ (LY — 20L29) S A7+

+ (L) —20:L)%) S5 A7 . (B.72)
Dessa forma, podemos escrever (B.65) como
Ty = (Lf —20L}5) 0"A* — " Lp +
_%av { [(LW _ 28§LW§) _ (LW _ QagL’Wf)} AV +
(L7 = 20 L7€) + (L — 20,L7€)] A7 +
+ [(L" = 20,L7) + (L — 20,L"¢)] A} (B.73)
Agora, calculamos:
L = —F#*; (B.74)
L = \p (277“58TF” — "0, FT¢ — 17578TF”‘) ; (B.75)
L — 28§L“"‘g —F*M —2\p (2010, F™ — 070, F™). (B.76)
Assim,
Ty = — [F’; +2\p (26“87FT7 — GVGTFT”)} (VAT — VAY) — " Lp +

— (14 2Xp0) 0, F™"A” = \pd" [(0"0,F7, + 0,0, F ™) A"+

+(0"0-F™ + 00, F ™) A, — (V0. F7, + 0,0, F™) A*] . (B.77)
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Utilizaremos, agora, as equagdes de Euler-Lagrange (3.20) para fontes
nulas:

(1+2\p0) 0, F™ =0, (B.78)

Com o auxilio dessa equagao, podemos reescrever (B.77) como

TR =< FEFY — g Lp + 2\p (2010, F7, — 0,0,F™") F”.  (B.79)
Contudo,
2\p (2010, FT — 0,0, F™") F < 4A\pd" 0. F T F""+2\p0. FT"0, F". (B.80)
Utilizando a identidade de Bianchi (3.17), podemos escrever

OF = I FM 4 5 FP (B.81)

Dessa forma,

ANpO" O P F7" < AApO" F*MO B — AXpd" F™HO-F, (B.82)

e
Tp" = FLF" — " Lp +2)\p (28TF“787F’; —200F™0F) + 8TFT“87FW) .

(B.83)
Escrito nesta forma, o tensor densidade de energia e momento da teoria de
Podolsky é explicitamente simétrico.

Substituindo a densidade de Lagrangeana (B.53) nessa tultima expressao
podemos mostrar que

1 1
T = PR 4 " Fas 7+ 2\p (—inwaaFaﬁang — FrOFY +
—FYOF" — FF0,05F% — F*0,05F°" + 0. F™0,F") . (B.84)

Através dessa expressao podemos calcular a densidade de energia do
campo de Podolsky livre em termos dos campos elétrico e magnético.
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