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The extended Drinfel’'d algebra (ExDA) is the underlying symmetry of non-Abelian duality
in the low-energy effective theory of string theory. Non-Abelian U-dualities in maximal
supergravities have been studied well, but there has been no study on non-Abelian dualities
in half-maximal supergravities. We construct the ExDA for half-maximal supergravities in
d > 4. We also find an extension of the homogeneous classical Yang—Baxter equation in
these theories.

Subject Index B11, B20

1. Introduction

Recently, the Poisson—Lie (PL) 7-duality [1] has been clarified and extended by using duality-
covariant formulations of supergravities, such as double field theory (DFT) [2-6] and excep-
tional field theory (EFT) [7-14]. The initial progress was made in Ref. [15], and further clarifi-
cations of the PL 7-duality were made in Refs. [16,17]. More recently, the PL 7-duality in the
presence of higher-derivative corrections has been studied in Refs. [18-20].

The PL T-duality is based on a Lie algebra, called the Drinfel’d double, which is closely re-
lated to the O(D, D) T-duality group. An extension of the Drinfel’d double that is based on the
SL(5) U-duality group was proposed in Refs. [21,22]: the exceptional Drinfel’d algebra (EDA).
In Ref. [23], the SL(5) EDA was extended to the case of the E¢ U-duality group, and it was fur-
ther extended up to the Eg) U-duality group in Ref. [24]. In Ref. [24], the EDA was formulated
in terms of both M-theory and type IIB theory. Using these algebras, various concrete exam-
ples of non-Abelian U-dualities among solutions in 11-dimensional supergravity and type [I1B
supergravity were provided in Ref. [25]. The non-Abelian U-duality in the membrane sigma
model was also studied in Ref. [26]. However, at this time, non-Abelian U-dualities have been
studied only in maximal supergravities.

If we consider heterotic or type I supergravities compactified on a D-torus 7° (D = 10 —
d), we can realize d-dimensional half-maximal supergravities. The purpose of this paper is
to provide the algebraic basis for non-Abelian dualities in half-maximal supergravities. In d
> 5, the duality group has been known to be G = R" x O(D, D + n), and it is enhanced to
G = SL(2) x O(6, 6 + n) in d = 4. Extended field theories (ExFT) associated with these duality
groups are known as the heterotic DFT [2-4,27-29] or the SL(2) DFT [30]. Here, using these
ExFTs and the general construction [24] of extended Drinfel’d algebras (ExDA) for a wide class
of the duality group G, we construct the half-maximal ExXDA

TjoTy= XAéé Te. (1)
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By the definition, any ExDA has a maximally isotropic subalgebra g generated by 7, (which is
a Lie algebra). Using a group element g = e ™« € G = exp g, we can systematically construct
generalized frame fields E;” € G x R* that satisfy the algebra

[E; Eglo = — X35 Ee )

where|[ -, - |p denotes the generalized Lie derivative (or the D-bracket) in EXFT. For each duality
group G we identify the parameterization of the generalized frame fields, and find that they
consist of several generalized Poisson—Lie structures, such as 7" and /.

In Ref. [31], the embedding tensors of half-maximal gauged supergravity (with n = 0) were
obtained by acting a Z, truncation on the embedding tensors of maximal gauged supergravity.
Using the same Z, truncation, the SL(2) DFT (with n = 0) can be derived from the E7»7) EFT
[30]. Similarly, we can obtain various half-maximal ExFTs from the Ep 1 1(p 1 1) EFT through
a Z, truncation (see Refs. [32,33] for related works). Then, as one may naturally expect, we can
obtain the half-maximal ExDA from an Ep ; 1(p + 1) EDA through the Z, truncation. However,
the converse is not true. The Leibniz identities (or the quadratic constraints) in the maximal
theory are stronger than in the half-maximal theory and not all of the embedding tensors in
the half-maximal supergravity have an uplift to the maximal supergravity. The uplift condition
has been discussed, for example, in Refs. [31,34,35]. In this paper we study the condition that a
half-maximal ExDA can be uplifted to a maximal EDA (for simple cases D < 3). We then find
some concrete examples where the uplift condition is violated.

In the case of the Drinfel’d double, it is known that some of the Leibniz identities can be
regarded as the cocycle condition. By considering the coboundary ansatz which automatically
satisfies the cocycle condition, the dual structure constants f,” can be expressed by using the
structure constants f,,;,¢ and a skew-symmetric tensor 7%. In that case, the other Leibniz identi-
ties are equivalent to the (modified) classical Yang—Baxter equations (CYBE) for 7. Similarly,
in any ExDA, we can express some of the Leibniz identities as the cocycle condition. We iden-
tify the coboundary ansatz for the half-maximal ExDAs and obtain the generalized CYBE as
a sufficient condition for the Leibniz identities to be satisfied.

This paper is organized as follows. In Sect. 2, we fix our convention on the half-maximal
ExFTs in d > 4 by defining the generalized Lie derivative. In Sect. 3, we construct the half-
maximal ExDA in each dimension. We then identify the whole set of Leibniz identities. After
that, the cocycle condition, coboundary ansatz, and the generalized CYBE are identified for
each ExDA. We also discuss the relation between a half-maximal ExDA and an Ep 4 1p + 1)
EDA. In Sect. 4, we show the explicit parameterization of the generalized frame fields £ AAM
by introducing generalized Poisson-Lie structures. We then show that the generalized frame
fields satisfy the algebra [E;, Ezlp = — X Bé E¢. In Sect. 5, we discuss a reduction of the half-
maximal ExDA to a Leibniz algebra called DD [36], and study the condition that the DD*
can be uplifted to the half-maximal ExDA. We also study the conditions for a half-maximal
ExDA to be uplifted to an EDA. In Sect. 6, we find various non-trivial examples of the half-
maximal ExDA. Some are uplifted EDAs, some are uplifted to embedding tensors which do
not have the form of EDA. Section 7 is devoted to conclusions and discussion.

A Mathematica notebook EDA.nb can be found as an ancillary file on arXiv [37]. This com-
putes X Bé for given structure constants (such as f,,;¢ and £,,%) and the generalized frame fields
E AM for a given parameterization of the group element, such as g = e 7,
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2. Generalized Lie derivative in half-maximal ExFT

In this section we consider the half-maximal EXFT in d > 4 where the duality group is!

_|rRixOoD, D40 (@d=5),

9= 1SL2) x 0.6+ 1) (d=4).

3
where D = 10 — d and we have added the subscript ; to R™ to indicate that this scale symmetry is
related to the dilaton in heterotic supergravity. In these ExFTs, we parameterize the generalized
coordinates as

7

) XM — (x’”, X ,xm) (d = 6),
M= (M x) = (2, 2T, X, X)) (d = 5), 4)
XM = (xim T ) (d = 4),

where M =1, ..., 2D + nis the vector index for O(D, D +n),m=1, ..., D,T = i,...,n and
@ = 4, — is the index for an SL(2) doublet. On the extended space, infinitesimal diffeomor-
phisms are generated by the generalized Lie derivative [2-4,27-30,32]°

Eow s = vV agw i — W ogy iy o 0w, )

Here, the Y-tensor Yé‘?f is defined as

"MVape (d > 6).
IR ANIN A ~MN ~R —
Ypf\g\/ = nf .771{,@ + g nPQA. ' (d=)53), (6)
8% 80 N npg +2€%P €5 83N (d = 4),
wheree,_ =€t~ =1, and
0 0o &
s _ [nun O » [0 & _ (0 5 (')"\
77M]§;= 0 O s UMN: 8P 0 5 NMN = TJ )
N gm0 0
NS MN 0 . n 0 8M 0 0 67’;”\
AN _ (1 AUV — P N =10 7 o] (7
* 0 0) r N0 ) s 0 0

In this paper we raise or lower the index Z using the Kronecker delta 47 .

We denote the generators of the duality group G collectivelyasz; (@ = 1, ... , dim G). By using
the matrix representations of #; and their duals 4 (whose definition is given in Appendix A),
the Y-tensor can also be expressed as

Vot =63 8] + 1N )" + Basy 8y (Ba= 7). (8)

This shows that the generalized Lie derivative generates an infinitesimal (coordinate-dependent)
duality rotation and a scale symmetry Rt with weight B,

B =N o WM L VY (1) WN = Ba 05V 7) (10) M W, ©)

where (V)4 = af,VQ (l‘i)QP and (¢y) M’V = _SANZ/ is the generator of the scale symmetry R

'In d = 6, it is also possible to consider the duality group G = O(D + 1, D + 1 + n) (see Sect. 2.1).
2We can also consider deformations of the generalized Lie derivative similar to Ref. [27], but here we
consider the undeformed (or ungauged) theories.
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2.1 Section condition
For consistency of the EXFT, we impose the section condition,

YV oy ® 5 = 0. (10)

In d > 6, this is equivalent to ™" 9;; ® dy = 0, and as is well known in DFT, there is only one
solution of the section condition up to an O(D, D + n) rotation:

Im # 0. (11)
In d = 5, the section condition is decomposed into two conditions,
Moy ®dy=0, 9y ®3 =0, (12)

and there are two inequivalent solutions [32],

(i) 9 #0, (i) 9. #0. (13)
The former gives a five-dimensional section while the latter gives a one-dimensional section. In
d = 4, the section condition is decomposed as [30]

N 9 @ 9y =0, €% Baar ® Bz, = O, (14)
and again there are two inequivalent solutions [30],
(i) 9m #0, (i) 941 #0. (15)

The former is a six-dimensional solution while the latter is a two-dimensional solution.

In d =5 (and d = 4), the first solution (i) is suitable for describing heterotic/type I theory
compactified on 77, where x”* (and x*") play the role of coordinates on 7?. It is the same for
the solution in d > 6. On the other hand, the second solution (ii) in d = 4, 5 describes a 7P —*4
compactification of six-dimensional (2,0) supergravity [30,32]. This series of solutions reduces
to the O-dimensional solution in d = 6, where the duality group becomes G = O(5, 5 + n) and
the ExFT describes the six-dimensional (2,0) supergravity. In this paper we restrict ourselves
to the former solution. For simplicity, in the following, when we consider d = 4 we may use a
shorthand notation such as x”" = x*™ and 9,,, = 9.

2.2 Generalized Lie derivative
In d > 6, under the section 9,, # 0, the generalized Lie derivative reduces to
) [v, w]™
£, WM = vewl —w. vt , (16)
Ve W 4 3V Wy — WH(AV) + w1 30t
where we have parameterized the generalized vector fields as, for example,

M — (vm, vE, vm), (17)

and have denoted v- = v" 9, and (dv),,, = 2 9},v,). Here, two scale transformations, [Rj (con-
tained in the second term of Eq. (9)) and R™ (the last term of Eq. (9)), are cancelled out and
the generalized Lie derivative generates an infinitesimal O(D, D + n) transformation similar to
DFT.
In d = 5, under section (i), we have
[V, W]m
vowl —w vt
Ve Wi 4 3V Wy — WH(AV) + W1 30t
Vw4 0, w*

LM — : (18)
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where we parameterized the generalized vector fields as
VM = (Vm, VI, Vi, V*)- (19)
In this case, a combination of R} and R™ generates the scale transformation d,,»” w* in the last
line. Due to this scale transformation, the last component w* behaves as a scalar density.
In d = 4, under section (i), we find
[V+, W+1m

F wT" 4 €45 0" WP
vttt T

£y WM = o (20)
vEew T — oyt 4 €55 0" whL ’
vt W+m + amv+n W+n — oyt (dv+)nm + W+I avarZ
v w8 w T — W (A ) 4+ W 3,0 4 €45 0,07 WP,
where we have used the parameterization
M +m -m AT T + -
V =(v"’,v’”,v ,V ,vm,vm). (21)

Due to the combination of part of the SL(2) transformation and the scale symmetry R™, the
minus components v~ behave as tensor densities.
In the following, we denote the generalized Lie derivative as
[V, Wlp = £, W, (22)
which is called the D-bracket and is not skew symmetric: [V, W]p # —[W, V]p. The antisym-
metric part is known as the C-bracket,
V. Wle=3EW —EwV) = =W, Vi, (23)

although we do not use this bracket in this paper.

3. Half-maximal ExDA

In this section we construct the half-maximal ExDA by using the generalized Lie derivative in-
troduced in the previous section. We then study the Leibniz identities of the EXDA in Sect. 3.2.
In Sect. 3.3, some of the Leibniz identities are interpreted as the cocycle condition. By con-
sidering the coboundary-type ExDA, we find the generalized CYBE in Sect. 3.4. The relation
between the half-maximal ExDA and the Ep 1 (p 1 1) EDA is detailed in Sect. 3.5.

3.1 Algebra
An ExDA is a Leibniz algebra

¢
TjoTy=X;p Te (24)
with generators 7'; transforming in the vector representation of the duality group G. Similar to
the curved index M, we decompose the “flat” index A as

Ty=(T,, T;, T (d = 6),
T/i == (TA, T*) - (T;lv T[a Taa T:k) (d = 5)’ (25)
T(JtA = (Tota, TOtI’ Tota) (d = 4)’

where A=1,....2D+n,I=1,... ,i,a=1, ..., D, and & = +, —. We raise or lower the index
I or A using 8 or n 4, respectively.’ To simplify the notation in d = 4, we may denote the index

3145 has the same matrix form as 7.
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T, as T,. The structure constants X ; BC are defined such that certain generalized frame fields
E AM € G x R" exist satisfying the same algebra by means of the D-bracket,
[E;, Ezlp = —X ;35 Ep. (26)

In general, the coefﬁcients on the right-hand side are non-constant and are called the gener-
ahzed fluxes X ;3C, but here we consider the case where the generalized fluxes are constant:
X ;¢ = X; BC In such a situation, Eq. (26) can be regarded as the condition for generalized
parallelizability [38,39], and the inverse E MA of the generalized frame fields plays the role of
the twist matrix for the generalized Scherk—Schwarz reduction. The construction of such gen-
eralized frame fields is discussed in Sect. 4, and here we focus on finding the explicit form of
the structure constants X I;é

By the definition of the D-bracket and Eq. (26) (see Ref. [24] for a general discussion), the
structure constants should be expressed as*

X35¢ =55 + (5" (1) " — Ba Qp " (10)5° (27
by using some constants 2 ;3¢ which can be understood as the Weitzenbdck connection,
C_p Mgp N ¢
WAB =E;" Ep dnEy, (28)
evaluated at a certain point: Q ;¢ = W, | . Infact, there is a special point xo where E ;" =
82 E, > and we choose x as such a point. Then, since we are choosing the section a,, # 0, the

only non-vanishing components of € ; Bé are Q, éé. Moreover, because of E AM € G x R" and
Eq. (28), the constants 3 are generally expanded as

Qaj}c = Qaa ([a)f;c + an (ZO)BC- (29)
Now, we require that the generators 7, form a subalgebra g,
TyoTy,= fabc T.. (30)

This requirement gives a strong constraint on 2,%, and in the following we determine the explicit
form of 2,. Using this 2, and the relation in Eq. (27), we can compute the structure constants
of the EXDA X ;;C.

In the following, we decompose the O(D, D + n) generators (see Appendix A for more details)
as

Ryja aa
{ﬁvRL[pKalazle.]’ Rt[laR_\/ljz} (31)

We also denote the R} generator in d > 5 as R, and the SL(2) generators in d = 4 as R* . Using
these generators, we determine the explicit form of €2,% in each dimension.

3.1.1 ExDA ind> 6. In d > 6, the requirement in Eq. (30) is satisfied if Q,% and 2,° are
expanded as

QS ty = (kabc —Za 82) Kbc + %falj Riy+ fabl RII; + %fabe Rype, an =—Z, (32)
without using generators R and R““. We note that since R, is proportional to ¢y, we have
absorbed the structure constant associated with R, into Z,. By substituting these into Eq. (27),

4The matrices (t,, B , (t“) I3 °and (to) BC have the same form as the curved ones, such as (¢;) MN Since
(1) 3¢ and (1)3€ are invariant tensors and E ;! € G x R*, we can convert the flat indices to the curved
indices using EAM, e.g. (t“)DE (t,,)BC ENB ECP EQD E R = (td)QR ()"

SHere, a is to be understood as 4+« in d = 4.
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the matrices (X ;) BC =X; gé are found as
Xo= fa K+ 5 1" Roc + "1 R + 5 fu" Riy — Za (K + 19),
Xr = f1K% — fu! Ry — Z, Ry,
X = 1K~ [ Ry + (4 foc® — 225, 84) R, (33)
where £, = 2 ki, and K = K“,. Then, the algebra in Eq. (24) becomes
TooTy = fu' T,
Tyo Ty = —fafs To + fur™ Tk + Za T,
T,oT) = T+ fX Ty — fu > T +22, T,
TioTy=fi'1 T.— for" Tx — Zp 11,
TroTy=fus T +61;Z. T,
TyoTh=—f'T¢
T Ty = —fy" To = fu™® Tk + (foe" + 284 Ze = 28! Zy) T,
ToT;=f"5TF,
T¢o Tt = febT° (34)
This is the Leibniz algebra of the half-maximal ExDA in d > 6. We note that the symmetric

part k(¢ does not appear in the algebra.
We can neatly express the structure constants X ; I;C = X,5¢ as

Xap© = FapS + nup €€ + €485 — 85 &5, (35)
where the components of the 3-form Fypc = F43” npc = Fapcyand & 4 are
Fa' = fu' +85Zp = 85 Zay  Fux = fux,  Fu'=—f'00  E= 10
Fipe = Fyx = Fiy = F* = F™ =0,  £&4=(Z.0,0). (36)

If we set n = 0, the half-maximal ExDA reduces to the Leibniz algebra DD © that plays a key
role in the Jacobi-Lie T-plurality [36].

3.1.2 ExDAind=25. Ind=>5, the requirement in Eq. (30) is satisfied by
Qu ta = (fu+ ko) Ri + (kav” — Za85) K’ + 5 fu™ Ry + fu"1 Ry + 5 fu™ Ree,
Q) =1 (fut ki) = Za (37)
The embedding tensors can be obtained as
Xo= far' K e+ 37 fu" Roc + f"1 Ry + 37 fu Ry = Zo (K +10) + fu (Re + § 10),
X; = 1K — fu! Ry — Z, R + £ (R + 1 00),
X = iK% — [ R+ (L foe =220 88) R + i (Ro + 1 10),  Xo=0.  (38)

Again, only the antisymmetric part f,, = 2 kj,;© appears in the embedding tensor, although
Q.* and Q,° contain the symmetric part kap)© as well.

%The DD studied in Ref. [36] contains additional vector-type structure constants Z¢.
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We find that the generators T4 = (T,, T;, T%) form the subalgebra given in Eq. (34). The
products including the additional generator T, can be found as

T,oT.=(Zi—f)Te, TioTu=—f5T., ToT.=—f“T,
T.oT,=0, T.oT; =0, T,oT"=0. (39)
We can neatly express the non-vanishing components of the structure constants X ; Bé as
Xap© = FapS + nap €€ + €485 — 65 &5, X" = =284 =304, (40)
where F,3¢ and & 4 are the same as Eq. (36), and
9a =3 (fa—3Za "1, 14). (41)

We can compare Eq. (40) with Ref. [40, Eq. (3.6)]. Our F 43¢ and £ 4 correspond to their —f 5
and —% &4. The embedding tensor & 45 of Ref. [40] is not present in our ExDA. On the other
hand, our 9 is not present there because the trombone symmetry R* has not been gauged in
Ref. [40].

3.1.3 ExDAind=4. Ind=4, we find that
Q-i—aa ly = faaﬁ Raﬂ + (kabc —Z, 5167) Kbc + zl!fau RIJ + fabl Ré + zl!fabc Rbc:
Q+a0 = fa-i—Jr — Za, fa++ =—fo-~ = % (kbab + fa) (42)
is consistent with Eq. (30). Using these parameterizations, we find:

Xea=far" K'e+ fo- T R+ 35 [ Roe + [P 1 R + 55 fu™ Ry

+ fu (R4 + S 10) — Za (K + 1), (43)
Xoo=—fo-TKy— fu- " (RY4 + S00) + fuRT_, (44)

Xor = f"1 K% — fur’ Ry — Z, R + £ (RY4 + % o), (45)
X_r=f1R"_— fo-* Ry, (46)

Xy = [ Ko = i R+ (5 fo = 225 85) R + fu"* (R4 + % 1o), 47)
X_@= fka RY_ 4 f, + RP, (48)

We note that the constants Bé of the form

Q05 = kad® (K%) 5 +kaad (RY 4+ 110) ;€ (49)

contribute to X ;3¢ only through the antisymmetric part k¢ = % fa¢ and, again, the sym-
metric part k()¢ does not show up in X; I;C. Accordingly, the subalgebra g with the structure
constants f,;¢ is a Lie algebra. Moreover, f,+~ does not appear in X; Bé, and we ignore f, .~
in the following discussion.

8/37

220z Aeniged g uo Jasn yayjol|qigiesusz-As3a Aq 9522/ 19/v L A€ 1.0/1/220z/e101ne/dayd/wod dnoolwepese//:sdiy woj papeojumo(q



PTEP 2022, 013B14 Y. Sakatani

The explicit form of the half-maximal ExDA is as follows:
Toa o Top =85 fur’ Tpe — €ap fa Tp + 85 fu ' Tup — 85 fo " Thas
Toa o Tpr = 85 (=157 The + fur™ Tox + Za Tps) + 85 fa " Tus — €ap fu T 1,
Toao Ty" = 87 (f Tpe + 1" Tox — fu Ty +2 2, Ty")
—€ap fa T-"+ 85 fu T IO+ 8, 8) fo ' T,
Tor o Tgp = 8 (/"1 Tpe — for™ Tox — Z Tpr) — €ap fa'1 Tob — 8y fo-T T,
Tur o Tpy =85 (fers + 815 Ze) TS — €up a1 Ty + 8, 81y fo ™ TS,
Toyro Tg" = =87 f.01 Tp — €up 41 TV,
T, o Tgy = =87 [ /3™ Tpe + f5 Tps — (foc" + 281 Zc — 28 Z) T3]
— €ap fa" Top+ 8, (85 fou ™ = 80 fo-T) T4,
T, "0 Ty =87 f.97 Ts — €up f0" T_,
T, o TpP = 85 £.9° Ty — enp fu™ T (50)
A more explicit expression is given in Appendix B. It is noted that the generators T4 = (T,
T, T+%) form a subalgebra which has the same form as Eq. (34).
Now we can compare the algebra with the embedding tensor known in ' = 4, d = 4 gauged

supergravity [40]. Using the trombone gauging 3, 4 [30], we can parameterize the structure con-
stants X ;3¢ as’

X3S =08] Fouap® — 5 (858 &un — 85 81 &pa — 8} nan &y + €up 85 Esa€”)

+ 85 8% Vup — 8} na Vg — 8 8 Vs (51)
By comparing this with Egs. (43)—(48), we find
Foas® = Fa5S, F_45¢ =0,
Eva= (fu S'1. ™). 4= (fau".0,0),
Sa=3(fa=2Z0 ', /"), Oa=—3(fu-T.0,0), (52)

where F,;5€ is the same as in Eq. (36). In our case, it may be more convenient to redefine & ; as
£; — 3&; — ;. This yields

X3¢ =08 Foyup® — (850 6un — 8501 &pa — 8} nap by + €up 85 Esa€”)

+2(8] 9pa — 8 Daa) 8%, (53)
where
Fyap® = Fi5°, F_45° =0,
S-’rA = (Zav 09 0)’ S—A = (fa—+7 07 0)7
19-1‘14 = % (fa - 2Zuv fbbh fbba)9 ﬂ—A == _% (fa—Jr’ 0’ 0) (54)

This neatly summarizes the structure constants of the half-maximal ExDA in d = 4.
In the literature, antisymmetric tensors

Qjp = €ap 4B, Qf = —€ap NAB (55)

"For our convenience, we have chosen the sign of F, 3¢ and &, to be the opposite of that in
Refs. [30,40].
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are used to raise or lower the indices 4, B. For example, if we consider (¢,) i = (ta) AC Qej
we can check that this satisfies (¢,) ;5 = (#4)34- Using this index convention, we find that the
so-called intertwining tensor Z¢ ;3 = X 130 = X4 3" Qpe takes the form

ZCAB: _%(la)/ié [@C‘a+2(ta)éD ﬁb]' (56)
This can be compared with the intertwining tensor in d = 4 maximal supergravity [41] because
the half-maximal supergravity can be realized as a Z, truncation of the maximal supergravity
(see Sect. 3.5). Our generators ¢ ¢, correspond to their —12“¢,, and our ® ;“ ¢, corresponds to
their © 1, = [0 ;2 + 8 (1) 1% ¥ 3] 1. Then, our intertwining tensor, Eq. (56), can be expressed
as

Zegp = —75 (t)15[O¢" — 16 ()" 9] (57)
in thir notation. This expression matches [41, Eq. (3.34)] and gives a non-trivial consistency

check of our computation.

3.2 Leibniz identities
Since the D-bracket satisfies the Leibniz identities, the ExDA should satisfy

LX,Y, Z)=Xo(YoZ)—(XoY)oZ—Yo(XoZ)=0 (58)

for arbitrary generators X, Y, Z of the half-maximal ExDA. We find here the full set of identities
by substituting the generators 7; into X, Y, and Z.

3.2.1  Leibniz identities in d > 5. By brute force computation, we identify the whole set of
Leibniz identities in d > 6:

Ja'Ze=0,  fi' fat =0, S S 21N k=0, iz =0,
fu foxy = 0, 2 11 forr + 2 fia1 fan® = far® fa1+ 2 fa1 Ziny = 0,
fz. =0, 4 11" fie™ = St L2 L M+ 4 £ Zy = 0,
S s 2w fhn =0, LA f 280 S =0, £ =0, (59)
In d = 5, the Leibniz identities involving the generator T, additionally give®
far' fe=0, S 1 fo = fars B+ Za 1,
S fed” = L2 (fe = fua®) + L1 L S S =0 (60)

3.2.2  Leibniz identities in d = 4. In d = 4, the identification of the whole set of Leibniz
identities is complicated. However, we find that the combination

L(Tq, T*", Typ) + L(T_g, Tppp, T™) =0 (61)
is equivalent to
Ja-T (s — Zp) =0, (62)

and this shows that there are two branches: f, _* =0 and f, = Z,.

8The third identity can be also expressed as f, f,* = f,*1 f.61 + ful fa9“ +2Z, f. .
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fu—1 =0:In this case, the whole set of Leibniz identities are exactly the same as those in d =
S:
fabcfc = Oa fabc Zc = 0, f[abefc]ed = 07 fabc fclj + 2faK[I be]K = 0,
flrzy =0, 1 fo = fus 16+ Za 1, fulu Jouk) =0,
2 fid fors + 2 fiat faw — S Sa1 42 fia1 Ziy = O,
fabc Z.= 0, 4ﬁaelc fb]ed] - fabe feCd + 2fa[01 fbd]I + 4f[aal Zb] =0,
faCd fcdb = fabc (f; - fcdd) + facl cbla fabc fcIJ + 2fac[ll fcbll] =0,
f;:dl fdbc + 2fad[b fdc]l — 0’ f})ul chb — O, fe[ab fdc]e —0. (63)
fu_T1 # 0: Here, the Leibniz identities require very strong constraints on the other structure
constants in a non-trivial manner. Since it is not easy to identify the identities for general f,, _ T,

let us perform a GL(D) redefinition of generators such that f, - becomes f,_© = §!. In this
case, we find that the general solution of the Leibniz identities is

fa' =2Z85, = flr=00 =0, fu=Za (64)
They are independent of the particular direction @ = 1, and as one may naturally expect, if
Eq. (64) is satisfied, the Leibniz identities are always satisfied for any f, ~*. We thus conclude
that the most general half-maximal ExDA in the branch f, _* # 0 is given by Eq. (64), with
fa_T arbitrary.
Using the general expression in Eq. (53), we can express the structure constants as

XABC =08) 85 Epa — 8 85 Ean + nan S} &S, (65)
where §,.4(= —2 9q4) takes the form
§+A = (Za,O, 0), %-—A = (fa—+v 0’ 0)7 (66)

and Z, and f,, _* can take arbitrary values.
This half-maximal ExXDA contains a subalgebra generated by {7, = T..,, T% = T “} which
is independent of the structure constants f, _*:
TyoTy=2Ty—Zy Ty, TooT'=Z,T"+Z.8°T°, T oTy=T"cT"=0. (67)

When Z, # 0 we can choose a particular basis Z, = —§!. For example, for D = 3 this Leibniz
algebra DD* corresponds to the Jacobi-Lie bialgebra ({5, —2 T''}|{1, 0}) of Ref. [42].

3.3 Coboundary ExDA
Here we explain that some of the Leibniz identities can be understood as the cocycle condition.
Then, following the general discussion of Ref. [24], we find the explicit form of the coboundary
ansatz which automatically solves the cocycle condition.
Let us decompose the embedding tensor as
XA:@)Aala—{-ﬁAlo. (68)

In d > 6 (where A= A), the generator R, contained in {z,} is proportional to 7y, and this ex-
pression is to be understood under the identification

04" =0, Va=—&4. (69)

We then introduce a grading, called the level, to each generator ¢, of the duality group G as in
Table 1.
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Table 1. The level for each generator of the duality group G.

Level /, ) -1 0 1 2

la Ruyas R! R., R4, K, Ry, R Ru®

The level can be also defined by [K, ¢,] = L, t,, and the commutator of a level-p generator
and a level-¢g generator has level p 4+ ¢. In particular, when [p + ¢| > 2 the level-p and level-
g generators commute with each other. The level-0 generators form a subalgebra, and all of
the generators transform under some representations of the subalgebra. Using this level, we
decompose the embedding tensor ®, (which means ®,, in d = 4) into two parts,

O, =00 +0,. (70)
Here, ®” contains the level-0 generators while ©, contains the negative-level generators. More
explicitly, we have

0 (d > 6),

O = (fu* — Zu85) K'e+ L £ Riy + { fu R, (d =5), (71)
faR+++fa7+R_+ (d =4),

Ou = L 12 Rpe + 21 Ry (72)

By considering the level, the Leibniz identity [X;, X3] = —X; Eé X for A = aand B = b can
be decomposed into

0=0", 6]+ fu O, (73)
0= fabc Ve, (74)
0=[00,8)] - [0, 8] + fur' B + [Bus &4]. (75)
The relations in Egs. (73) and (74) are equivalent to
S faa” =0, fur £ +2 15 £y =0, Ja'Ze=0 (d=4), (76)
Ja' fe=0 (d=4,5), 2 fia-" S S’ St =0 (d =4, (77)

while the relation in Eq. (75) corresponds to
2 11 forr + 2 fia1 fan© — fan® faC1 + 2 fia1 Zisy = 0,

4 11 fre™ = S £+ 218 SN+ 4 S Zy = 0. (78)
In order to clarify the structure of Eq. (75), let us define an operation
x-f =120, (79)

where x = x“ T, € g and f'is an element of the duality algebra g (G = exp g). Using Eq. (73),
we can show that this operation satisfies

x- - -y (x-f)=[xyl-f (80)
Then, using the notation
f(x)=x"@,, @81)
we can express Eq. (75) as the cocycle condition
S1f(e,y)=x-fO)—y- ()= f([x. 0D — [/ (%), f(O)] = 0. (82)
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The family of coboundary operators §,, satisfying §,,, 1 8, = 0 can be systematically constructed
(see Ref. [24]) and, in particular, &y can be found as

Sor(x) = x4 (2 —1) @flo) = [r, x4 @510)] + % [r, [r, x4 @flo)]] + .- (83)

forr=r‘t, e g
Now, to get a trivial solution to the cocycle condition, let us suppose that the 1-cocycle f(x)
is given by a coboundary ansatz:

) =x10,=8r(x) (& 0,=cY D). (84)

Since @, is a linear combination of the negative-level generators, this identification is possible
only when r has the form

r=r{ R+ 51" Ry, (85)

Using this r and Eq. (72), we can identify the structure constants as
fablzfacbr;_faljrg_zar? (86)
=2 [ 8T fud g 4 S g =2 Za (87)

When the structure constants f,”; and £,”¢ have this form, we call the ExDA a coboundary
ExDA. In the following, we denote the structure constants X ;3 as X';;¢ when we stress that
the ExDA is of coboundary type.

3.4 Classical Yang—Baxter equations
The coboundary ansatz in Eq. (84) is sufficient for the cocycle condition in Eq. (78), but the
whole set of Leibniz identities is still not ensured. In the case of the Drinfel’d double, the closure
of the algebra further implies the homogeneous CYBE for r¢*.°

Let us denote the structure constants X ; l;é with £,/ = £, = 0 as X; Bé,

o C_ y..C
Xig =Xip

et (89)

which is supposed to satisfy the Leibniz identities
fubc fc =0, fabc Z.=0, f[abe fc]ed =0, fabc ch +2 faK[I be]K =0. (89)

We then consider a constant duality rotation and define
%55 = RPRE (R7C X (90)

RAAE — (er‘; R! e%r’”’ Rab)/ié e G. 1)
This X ; Bé obviously satisfies the Leibniz identities because X ; Eé does. One can easily see that
X3¢ coincides with X 3¢, but the other components do not match and the algebra defined by

X ;3¢ is not an ExXDA. Now we require that all the components coincide,

Xip¢ = %55 (92)
Then, we get a coboundary ExDA X; B,C that automatically satisfies the Leibniz identities.
By explicitly computing all of the components of Eq. (92) in d > 6, we find that Eq. (92) is

To be more precise, we can relax the homogeneous CYBE to the modified CYBE for the closure, but
here we do not consider such relaxations and consider only a sufficient condition for the closure.
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equivalent to the following set of conditions for 4 and r:

MZo=0, rZy=0,  fuury=0, (93)
1y rjfbc ( %SKL ry rL) Jors =0, (94)
20 fod 14+ fo 1 — L LEE b =0, (95)
3l Pl o, — 388 Ja Pyl i = 0, (96)

In d = 5 there is an additional condition,

r?(fbab"i_fa):faljr?- (97)
In d = 4 there are two branches, f, "t =0and f, _* # 0. When f, _* = 0, we find that
(" + 38" ) (oo + fo) = 1! fud® (98)

in addition to Egs. (93)-(97). When f, _* # 0, where the structure constants are given by
Eq. (64), the condition in Eq. (92) is equivalent to

14 Z, =0, " Z, =0, 1 fut =0, 0t =0, (99)

which leads to f,’; = f,’ = 0 as expected. The conditions in Egs. (93)~(96) may be regarded
as the homogeneous CYBE for 7§ and r“’ Indeed, they reduce to the standard homogeneous
CYBE whenn=0and Z, =0.

3.5 Relationto Ep 4 (p+1) EDA

In the particular case n = 0, the half-maximal supergravity can be reproduced from the maximal

supergravity through a 7, truncation [30,31]. We consider here reproducing the half-maximal

ExDA with n = 0 through a truncation of the Ep ; i(p + 1) EDA in the type IIB picture [24].
The Ep + 1(p + 1) EDA (D < 6) in the type IIB picture is generated by

TA — {Ta, Ta Til/iz'az’ T\%S ’ Tal.»-a(,,a}, (100)
wherea=1,..., D and ¢ = 1, 2. For convenience, we show the explicit form of the EDA for

D < 4 (the algebra for higher D is given in [24, Sect. 6]):
TaoTo = fan° Tc,
2o TP = fa To+ fap” TP — fa” T§ +2Za T

Ty o TP1DDs — f00ibbs 1oy 3 v fa[yblbz Tabﬂ 3 flor TPbsle g 7 ibas,

T2o Ty = fp,2° T, + 25[6;, fo! TS+ foo? TS +4Zo 80 T2,

T2oTP =—f2T5 — foa! €yp T + S €up for0,® TP — 260p Zo T,
T2 o 7o — 3 gl b1 Thabsle,
Ta%E o T = foa@mad 6”7 f[b| [aia; 5a3 TC

3 fool TERBC 43 f [ g palae: 416 7 58 pRad,
T2 —fe ajaasb Tc +3 fc[alaz Taslbe
TaBa Tb1b2b3 _ _3 fmaslby pbbile, (101)
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For the general case D < 6 we introduce a 7, action
{Ta, ]"la’ Tzal‘..as’ T1~~6,a} N +{Ta’ Tla’ Tzal‘“as’ Tal‘..a(,,a}’
(73 T T {1 T T, (102

which is an element of Ep  1(p + 1), and truncate the Z,-odd generators. Under this Z, action,
the Ep 4 1(p + 1) generators,

1 Ry, ..a Rézi a 1 2 Ralaz Ra134 a---a
{Ral...aév \1/4j4’ «/12727R ZvR 1 \2/? 9 ﬁ 9Rll 6}7 (103)
have odd parity while the other Z,-even generators,
2 Ria, pl R 1a.a
(R o S RN K2, B, RE 2L, (104)

form a subgroup that coincides with the duality group G of the half-maximal theory with n
= 0. In d > 4, the relation between the O(D, D) generators {5—‘%, K%, 5;} and the Z,-even
generators can be identified as

K% =K% — 82 (1 K°c+ 1 RY), R = —R%®, Ry =—Rl. (105)
In d = 4, the SL(2) generators R*g can be identified as
R'.={K%+1RY, R_=-Ry° R ;=R (106)
In d > 5, the generators R?_ and R3'"® vanish and we identify the R generator as
R, =3 K%+ iR (107)

Now we turn off the structure constants associated with Z,-odd generators,
ag]bz = a?ln'bG = fa’ = f2' = 0. (108)
Then the embedding tensors X4 of the EDA associated with the Z,-even generators 7; are
Xa= fa® RO +2 far' RYy + 4 f22 RE o 4 fad O RE o — Za (R% + 10),
X2 =~ o K — 5 [forn,® + 283, (fon" +2 Zoy) ] R™,
XEU8 = o200 RO (foo® + fin! — 6.Z) BRI,
XOAR = % R fab g (109)
while those associated with the Z,-odd generators are
X5 = g [forns® = 268, (four' = 2Z,))] Ry'™.
xhen = 3 e gEP 3 g e gk g 7, gamab,
XA = 1Ofb[la.az Raaash | (foo® — forl — 6 Zb) R*’;‘l'“asb. (110)

Here we have defined K2, = K2, + B, to. By comparing Eq. (109) with Egs. (43)—(48) under
the identification in Egs. (105)—(107) and the identification of generators
I.=Ta, T'=T¢ (d > 6),
T,=Ty, T'=T8 T.=T,"7 (d=75), (111
Toa=Ta, TO=T2 T.o=dew.0 Ty ™, T9=T"% (d=4),

we can identify the structure constants of the half-maximal ExDA (the left-hand side) with
those of the EDA (the right-hand side) as

far' = fa®  f= 2 Zi=Zat+ifa' @=4),
fo=fa" + 52 fa' =DZy (d=4,5), fot=fat d=4). (112
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In this way, the half-maximal ExXDA with n = 0 can be obtained from the Ep 4 1(p 4+ 1) EDA
through the 7, truncation. However, we note that, due to the truncation, the closure conditions
(i.e. the Leibniz identities) can become weaker. In other words, not all of the half-maximal
ExDA (with n = 0) can be embedded into the Ep 1(p + 1) EDA through Eq. (111). Further
details on this point are discussed in Set. 5.2.

4. Generalized frame fields

In this section we construct the generalized frame fields E AM which satisfy the algebra
[E; Eglp = —X; I;C E.. Before we get into the details, let us introduce several setups that are
common to all dimensions.

We construct a group element g = ¥ 7« € G and define the left-/right-invariant 1-form/vector
fields as
C=0dx"T, =g 'dg, r=r"dx" T, =dgg ", yreb =sb=emib - (113)
We then define a matrix M /ié (g) through
¢ e Ti=MPQT; (114)
where the product > is defined as
e Ti=e" T =T+ X" Tho Tj+ L X" Tho (X Too Ty) +-- - . (115)

By its construction, the matrix M AE (g) enjoys the following three properties [24]:

MBg=1)=68 (116)
Xi:C = M2 MyE M) C XpF (algebraic identity), (117)
M ;P(gh) = M;C(g) M:P(h)  (multiplicativity), (118)

where the first one follows from the last one by choosing g =/ = 1. In Eq. (118), by considering
an infinitesimal left translation g = 1 + €¢“ T, we obtain the differential identity

M P DM )P = X 47, (119)
where D, = ¢/ 0,,. Combining the algebraic and the differential identities, we also find that
V(M) P MpP = X, 10 (120)

In the following, we elucidate these relations in each dimension. Then, we construct the gener-
alized frame fields in Sect. 4.2. In Sect. 4.2.3, we show that the generalized frame fields satisfy
the relation [E ;, Eglp = —X ;3¢ E.

4.1 Generalized Poisson—Lie structures
4.1.1 d=5. In this case we can parameterize the matrix M Ajg as
MPE=M; 4.2, M=cTiRe "R (121)
A = D (K+10) o=A (RitButo) o= 3 B Riy g—ea” K (122)
When d > 6 we have R, + B, t) = 0 and X does not appear. In d = 5, their explicit matrix forms

are given by
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a,’ 0 0 0
A 0 e 2w/’ 0 0
A.B = , 123
A 0 0 ef2A(a71)ba 0 ( )
0 0 et A
0 0 0
87 0 0
B — 124
n"‘b +53 5KL g n,’j) —mg §K7 s 0o (124)
0 0 1

where w;’ € O(n), i.e. 8xr w/X w;* = 8;;7. In d > 6, they can be obtained by truncating the last

row/column.
The property in Eq. (116) shows that, at the unit element g = 1 (whose position is called xy),
we have

a a d=5
A(xo) = 78(x0) = 7(x0) = 0 ‘B av0),  al(xo) =85 o (x0)=8]. (125)
In d > 6, the algebraic identity in Eq. (117) is equivalent to

aad abe ﬁlec = fabd ad(?v aab 6()IK CUJL fbKL = fal./'v aab Zh = Zas (126)
A aac (ail)dbfch wIJ = fabl - faIJ an + facb 7T]C - Za 77;7’ (127)

e—2A aae (a—l)fb (a—l)gc fefg
— fabc _ 2fad[b7.[c]d _ 2Za7_[bc + 2fa[b17_[c]1 + fad[bnc][ nld + fa]J JT;) ”J’ (128)

far iy =0, Z,mi =0, Zynh =0, (129)
focmlws =2 'y m + fors ™ = 3 forg m wf, (130)

fcab 7TIC +2fcd[anb]c nld +2fc[a17Tb]C +f[ajn,b]Jn,c
+ fog 7V (P — LK ml) =0, (131)

3fd[ab (JTC]d + %JTC]I d) + 3fd [a bldl ( cle + lﬂ,f]n,el) . 67T[ab7fc]d Zd
+ 2 fyla 7o (nc]d + ZnC]J d) f v ”1 7y (m ( i + 5 L 7K 7 d) =0. (132)

In d = 5 we additionally have

al fo = fo famii = f1 =P o £ (133)
The relation in Eq. (118) is equivalent to
(agn)a” = (ag)a (@), (g’ = (@ (@n)k”, Agr = Ag+ Ay, (134)
(7an); = (me) + 7% (a), " Gy (o), (135)
7 =@ e (a") @ (a) Pl e Mol (m) (a") P u)s.  (136)
Agh =Arg+ A, (onlyind =5). (137)
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This may be interpreted as multiplicativity (see, for example, Ref. [43]). The differential identity
in Eq. (119) is equivalent to

D,y = _fabd aq”, DawIJ = _faIK wKJ, DA =Z,, (138)
Daﬂlb:fab1+facbn;_faljnjj_zanlba (139)
Danbc — fabc + 2fad[b7_[|d|c] + st fa[bl 77.'5] _ 2Z,17Tbc, (140)
D, = f, (onlyind =5). (141)

Moreover, if we define the (generalized) Poisson—Lie structures as
a"m = e?d g e ey, ) =et o’ ey, (142)

the relation in Eq. (120) shows nice properties under an infinitesimal right translation:

£.a° = —ay’ fud’, £,0r = —or 1,7, £,A =2, (143)
£, = flve = £l At + Z ), (144)

£, 7 = v+ s £ A 42z, 7 (145)
£,0=f, (onlyind =)5). (146)

4.1.2 d=4. Ind=4 we can parameterize the matrix M AE as

MPE=M; 4.2, M=c7iRe "R (147)
A = A (K+10) o=v R4 e—l(R+++% ) e—% B" Riy e—aab Ky (148)
namely
A Al agl 0 0 b 0
AAB —e? 0 e 2 0P wr’ 0 . AP = ( _1 1), (149)
- 2 ez
0 0 e 28 5,8 (a 1) ©Y
) 8880 0 0
;% = 88 mh sbs] 0 |. (150)
88 (m? + L 8KEmg l)  —sB i 8K 5By

where w;/ € O(n). At the unit element g = 1, we have
A(x0) = y(x0) = A(xo) = mf(xo) = 7(x0) = 0, a,"(x0) =85, @’ (x0)=8]. (151)
The algebraic identity is complicated in d = 4. If we define

A4 56 = XagP Mp© — M52 MGE XS, (152)
the algebraic identity 4., 1+ = 0 gives a,? a° f3. = f? as¢, and A4, ¢ =0 gives
a’ fo-t =M (fuu T+ v fa) (153)
Then, A_, 1,7 = 0 further gives

v (far" =2 fla8y) = 0, (154)
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which shows that y can be non-zero only when f,;,¢ takes the special form £, =2 f|, 5,‘)”]. This
is consistent with the discussion in Sect. 3.2.2. The field y is produced by the structure constant
fa—7, and the non-vanishing f, _ strongly restricts the other structure constants. If we choose
the branch f,, _* = 0 (where y = 0), we can identify the whole set of algebraic identities. We
find that the algebraic identity in Eq. (117) is equivalent to Egs. (126)—(133) and

for =2 fille x4 fiy 7+ L oyt (155)

If we instead choose the other branch, 1, _* = 0, the algebraic identity is equivalent to

alZy=0,  alfit = (fut v fa). (156)
The multiplicativity in Eq. (118) can be easily identified. In general, it is equivalent to
(agn)a” = (aga’ (an).”, (wg)r” = (@)™ (0)x”, (157)
heh =g+, Ag=ABg+ Dy e =vgt+ ey, (158)
(en) = () + 7 (a), " (m); (d),”, (159)
ng”,f = ﬂg“b + e 2 (a;l)c" (a;l)d bn,fd +e A a)éj (ng)[la (a;l)cb] (7715 - (160)

The differential identity in Eq. (119) reads

Daay’ = — fun s, Doy = — fur i, (161)
Diy = fa-" + fay, Dik=fo, DiA=2Z,, (162)
D} = fo'1+ fa 7§ — fur W) — Zam], (163)
D™ = £ 42 [l 71 1 87 b, ) 2 7, 5, (164)

If we define the (generalized) Poisson—Lie structures as Eq. (142), Eq. (120) gives

£,ay ==y ful.  £0r = -0 [N, (165)
£,y = et ft, £,A = fa, £, A =27, (166)
L] = L = £+ Z ) (167)
£, = flevrvi 481 1,0, nﬁm vZ] +2Z, 7™, (168)

4.1.3  Poisson—Lie structure for coboundary ExDAs. For a general half-maximal ExDA, in
order to find the explicit form of 7;" and 7" we need to compute the adjoint-like action,
Eq. (114). However, when the ExDA is a coboundary ExDA, we can generally solve the dif-
ferential equations in Eqgs. (144) and (145) (or Egs. (167) and (168) in d = 4). The solutions
are

m __ _a.m A.a J _m mn __ ab (.m n 2A m n A 1] a__[m g
=1Vl —etrje’ e, " =" (i) -t el ey) et o rfat el (169)
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By using £, v} = fu V', £,,¢)' = 0, and the differential identities, one can easily see that they
indeed satisfy Eqs. (144) and (145) (or Egs. (167) and (168) in d = 4). They also satisfy 7} (xy) =
0 and 7" (x0) = 0.

4.2 Generalized frame fields
The generalized frame fields E ;¥ are constructed as

EM=MPByM (170)

by using certain generalized frame fields V/;M . Here, by choosing VAAM appropriately, we can

show that the E ; satisfy the frame algebra
[E4. Eglp = — X35 Ee. (171)

The explicit forms of the generalized frame fields VAM and E AM in each dimension are found
in the following subsections.

4.2.1 d=5. In this case we introduce a set of generalized vector fields as

i 00

; 0 s 0 0 _ .
M= o o« o | 24 = |det 4] (172)
0 0 0 e

Here, we note that the last row/column vanishes in d > 6. We also note that e~2¢ behaves as a
scalar density, which is consistent with the comments below Eq. (19). We can easily show that
they satisfy the algebra

Vi Vilo = X3 Ve (173)
where X ABC denotes the structure constants of the half-maximal ExDA X ABC with only
fu’ and f, = fu? (i.e. the other structure constants are truncated). Then, using Eq. (170)
and the parameterization of M ;#, we find that the generalized frame fields are given
by

o 0 0 0
. b ,m YA 0 0
EM = ab 1711152 b e—A . KI = o-2A ’ (174)
—(7? + 385 ngn]) el —etrfw e *Ary, 0
0 0 0 eth

where we have defined 2 = A — 2d and used €7 = a,” v} and r%, = (¢~ '), €2,. If we consider

the generalized vector fields E AAM 9y, they can be decomposed as

Ea = €y,

E, =¢ 23, (175)

m — §J .m
where 7' = & .
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422 d=4. Ind= 4 we consider

) seP v 0 0 0

viMt=el 0  sfsf 0 | st E( ) e = |det 4|, (176)
0 0 sqP e

which again satisfy the algebra in Eq. (173) in d = 4. We then obtain the generalized frame fields

as

) rof e 0 0
E;M = py ﬁn, ¢ e Ao w7 0 . (177
—AP (n“b +3 L §KL TE nf) e — e A 0,P TR kT e AP e
where
55( ¢ 0) A=h—2d. (178)
—e 2 y ez

4.2.3  Generalized parallelizability. Now we show the relation in Eq. (171), i.e. the generalized
parallelizability. This can be shown by using the above parameterizations of £ AM , the defini-
tion of the generalized Lie derivative, the algebraic identities, and the differential identities.
However, this requires a relatively long calculation. Here we show the relation by following the
general proof given in Ref. [24].

Let us define the Weitzenbdck connection associated with VA~M as

WS =V v Vo v, (179)
Then, the Weitzenbock connection €2 ; BC associated with E M can be expressed as
Q.5 =M;P [ ME (MY W F o+ V™ (Mo M1)€, (180)

and the generalized fluxes X ;5 ¢ associated with E; M become
X =25 -2+ viEe, L. (181)
Our task is to prove that XAEC = X/Iéé. ) )
Since we are choosing the section 8,, # 0, we have W ;¢ = ‘Sff W, ¢, where the matrix
(W, )B =W Cis glven by
Wa=kp' K'c + kao (R+ Bato), k= Vv 8Ly, (182)
Here, R = R, ind > 5while R= R, ind=4,and R + B, ty = 0in d > 6. Using the differential
identity

VM (M oy M) =81 (a™") X3¢ (183)
and the algebraic identity
(@ X5 = M2 (M1)€ X 5F, (184)
the Weitzenbock connection €2 ; Bé can be expressed as
@5 = MP MgE (MR, @40 =09 (4),C, (185)
Qa = Wa + X, = X, + kpf Kbc + kdad (R + Ba ZO)- (186)
Now, we find a key identity,
Q= Xo + ko K'c + ki (R+ Ba to), (187)
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which can be easily seen in each dimension by comparing the explicit forms of €, and X, (for
example, Eqs. (37) and (43) in d = 4). Using ki = k) = %fabc; this becomes

Q. = Qu + ki [KPe + 82 (R + Bato)]- (188)

Moreover, as we observed in Sect. 3.1, the symmetric part k() of k., does not contribute to
the generalized fluxes. Taking this into account, we can conclude that

Q5" = i + N S, (189)
where N/ ; EC (which contains k(,)“) does not contribute to the generalized fluxes:
"~ Nl + Y5 Npi” =0 (190)

Then, using the duality invariance of the Y-tensor, we find
Xi5¢ = M MF (M) (2,45 = 04" + Y5 2:.47)

= M2 ME (M) X = X5C (191)
This completes the proof that the generalized fluxes X ; Bé coincide with the structure constants
X ;3 of the half-maximal EXDA.

Before closing this section, let us comment on the non-geometric R-fluxes. By looking at the
structure constants of the half-maximal ExDA, we find that X**¢ = 0 and X;;* = 0. Then, the
generalized parallelizability shows that X“** = 0 and X, = 0. Here, X% is known as the non-
geometric R-flux and X, will also be a similar quantity. By computing these fluxes without
using the algebraic or differential identity, we find

—e? €Zl (U]K C()JL X = 27'[[’} 3,17'[5/]' + (nmn + % P 77.'2) 0,wKT a)KJ
+ 81 (" + LK ) 9, (192)
—eth et er Xt = 3 (gle 4 Lt 71" (9,7 + 7 9,1V, (193)

For example, if we set n = 0, the disappearance of these fluxes reduces to
37ty = 0, (194)

mn

which shows that 7" is a Poisson tensor. We thus regard

2nfy Oy + (™ + %rrmL 7)) Opwky @ g+ 81y (7™ + %n’”K mr) A =0, (195)

3. (w19 4 Ldl ) (3,77 4 7 o, 7V) = 0 (196)

as the definition of the generalized Poisson tensors.

5. Subalgebra and upliftability

In this section we restrict ourselves to the simplest case, n = 0.

5.1 Subalgebra DD*

As mentioned in Sect. 3.1, the half-maximal EXDA in d > 6 is exactly the DD, whose algebra
is

TooTy=fu'T.. T'oT"=f"T"
1,0 Tb = fabc T; _faab T°+227, Tb»
ToTy=—f"To+ (fo" + 285 Zc — 260 Zy) T°. (197)
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The Leibniz identities can be summarized as

ﬁabe fc]ed =0, 4 f[ae[C fb]ed] - fabe fe(’d +4 ﬁaCd Zb] =0, (198)

fe[ab fdc]e = Oa fabc Zc = 0» fabc Zc =0. (199)

If we consider d = 5, 4, the DD is realized as a subalgebra of the half-maximal ExDA. How-
ever, the Leibniz identities in Egs. (60) or (63) of the half-maximal ExDA give additional con-
ditions on the structure constants of the DD,

faCd fadb = fabc Nes Jar‘ne=0 (na = fo— fabb)- (200)
This shows that a DD which does not satisfy Eq. (200) cannot be embedded into (or uplifted
to) a half-maximal ExDA in d = 5, 4. Since f, (or n,) does not appear in the subalgebra in
Eq. (197), it can be chosen arbitrarily such that the uplift condition in Eq. (200) is satisfied.
Here, we consider three sufficient conditions for the conditions in Eq. (200) to be satisfied.

 If we consider a DD™ satisfying

fabcfbcd = 0’ (201)

we can always find the trivial solution of Eq. (200), namely 5, = 0 (or f,, = f.»"). Therefore,
an arbitrary DD™ satisfying Eq. (201) can be embedded into a half-maximal ExDA.
 Let us also consider a DD where the dual algebra is unimodular,

ik =o. (202)
In this case, the condition in Eq. (200) reduces to
Ja' fe=0, [ S =0, (203)

where we have used Eq. (199). Again, due to the existence of the trivial solution f, =0, a
DD with f3%* = 0 always has an uplift into a half-maximal ExDA.
o If we define

ta = fat fa', (204)
we find that the condition in Eq. (200) is equivalent to
Jap® & =0, 315 foc = fu g (205)
This shows that a DD™ satisfying
340 £ = 0 (206)

also has an uplift into a half-maximal ExDA (with £, = —f,;").

5.2 Upliftability to EDA
As discussed in Sect. 3.5, a Z truncation of an Ep 4 (p + 1) EDA gives a half-maximal ExDA.
However, similar to the discussion given in the previous subsection, not all of the half-maximal
ExDAs can be uplifted to an Ep ; (p + 1) EDA. Here we identify the condition that the half-
maximal ExDA can be uplifted to an Ep ; 1(p + 1) EDA by restricting ourselves to the cases D
<3(G.ed=>17).

For D < 3 the EDA is given by Eq. (101) with ;0 = 0. As explained in Sect. 3.5, this EDA
contains the half-maximal ExDA as a subalgebra when f5;? = 0 is satisfied. The whole set of
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Leibniz identities of the EDA can be found as
f[abe fc]ed = 0, fayﬂfbﬂ(S _fbyﬂ faﬂ(S ‘i‘falbcfc;/(S = 0’ fabC Zc = 0, (207)

4 frad®! fio2' — fap® faS% = 2 fraw® fiogs'” — 4 Zpa S0 =0, (208)
[o2 foa? #2120 Ze =0, £ S50 -2 fu70 £ =0, (209)
fClCzafb((;tlc2 =4fb)a/cf0ay- (210)
When fa1? = fa! = ag‘bz = 0 are satisfied, the identification
fabc=fabca fabc= - ali)c’ Za=Za+%fall (211)

shows that the conditions in Egs. (207)—(209) are equivalent to the Leibniz identities of the half-
maximal ExDA given in Eq. (59). The condition in Eq. (210) additionally requires the following
condition on the structure constants of the half-maximal ExDA:

fac’]cz fclczb = fabc Ne, fabc Ne = 0, (212)
where 1, = 4 f,1'. Namely, Eq. (212) is the uplift condition for D < 3 and, interestingly, this
has the same form as Eq. (200). If we can find a certain n, satisfying this condition, the half-
maximal ExDA can be embedded into the EDA with Z, and fz! given by

Za=Z2Zy— % Na, fal1 = 21; Na- (213)

If there is no solution for n,, the half-maximal EDA does not have an uplift to EDA. For
example, if f;,., /> = 0 1s satisfied, there is a trivial solution n, = 0 and the half-maximal
ExDA (or a DD™) has an uplift to EDA.

We note that the uplift condition in Eq. (212) is not duality covariant. It is not even symmetric
under £, <>f.%. Accordingly, the uplift condition in EQ. (212) (or Eq. (200)) depends on the
choice of the Manin triple. Even if a Manin triple (g|g) is upliftable, the dual (§|g) may not be
upliftable. The same Drinfel’d double may have another inequivalent Manin triple (g'|§"), but
to check its upliftability, we again need to look at the condition in Eq. (212).

A similar uplift condition which is duality covariant has been discussed in Refs. [31,34,35,44].
By assuming the absence of the trombone gauging, the condition for an embedding tensor of
half-maximal supergravity to be upliftable to that of maximal supergravity can be written as

Fypc FABC = 0. (214)

For the half-maximal ExDA, this can also be expressed as
S £ = 0. (215)
The similarity between Eqs. (212) and (215) was pointed out in Ref. [45]. As discussed in
Refs. [34,35], the condition in Eq. (214) is a consequence of the section condition in DFT (if
we assume the absence of the dilaton flux F), and a violation of this condition is a sign of
non-geometry. In the context of the PL 7-duality, for any Drinfel’d double we can construct
the generalized frame fields E4¥ satisfying the algebra [E,, Eg]lp = — X3¢ E¢ in such a way
that the £4Y depend only on the physical coordinates. Then, a natural question is why the sec-
tion condition can be broken. The answer is related to the DFT dilation. Assuming the absence

of the dilaton flux F, the DFT dilaton has the general form e=>¢ = ¢~ |det £ |. This depends
only on the physical coordinates, but when we have /,* # 0 we need to shift the derivative of
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the dilaton as [16]
dyd — dyd + (0, I™), =1 fham (216)

This vector field I should be identified as the Killing vector field in the generalized supergravity
equations of motion, and the Killing equations are equivalent to the section condition of DFT
[46,47]. The Killing equations for the metric, the B-field, and A are ensured by the Leibniz
identities, but the Killing equation for the dilaton, in particular

£rin|deted| = 1 filrem g, 6, = =1 £ f..0 =0, (217)
is not ensured. Indeed, under the Leibniz identities, Eq. (217) is exactly the condition in
Eq. (215).

In the next section we consider concrete examples where the condition in Eq. (215) is vio-
lated. There, assuming F4 = 0, the DFT dilaton indeed breaks the section condition. Since the
condition in Eq. (215) is broken, the algebra does not have an uplift to any EDA with vanishing
trombone gauging. However, if the uplift condition in Eq. (212) is satisfied, the half-maximal
ExDA can be embedded into an EDA. This is possible because the EDA has a non-vanishing
trombone gauging, and the condition in Eq. (214) does not apply. Thus, the two conditions in
Eqgs. (212) and (214) are different conditions. If one repeats the analysis of Refs. [31,34,35,44]
by allowing for the trombone gauging, one may find the upliftablity condition that modifies the
condition in Eq. (214). Then the condition will be weaker than Eq. (212).

6. Examples

In this section we show several examples of half-maximal ExDAs. We begin with four low-
dimensional examples with n = 0, where the half-maximal ExXDA are DD*/ After that, we
consider more complicated examples with n > 0.

6.1 Examples withn =0
Example 1 (5.iii|69|b) Let us consider a Manin triple (5.7ii|69|b) (b # 0) [48] whose structure
constants are

f3® = —b, fis' = —b, fiP =1, £ =1 (218)
We also introduce Abelian generators {74, 7%} and consider an eight-dimensional Lie algebra.
By introducing the coordinates x”* = (x, y, z, w) and a parameterization g = e* 71 e’ 2 e 3 " 14
the right-invariant vector fields and the Poisson—Lie structure become

1 0 0 0 0 XA, g
0 1 0 0 LIES ) 0 x 0
= : m— | T2 . A=0. (19
¢ bx by 1 0 g _y x 0 0 (19
0 0 0 1 0 0 0 0

They construct the generalized frame fields £, that satisfy [E4, Ezlp = — X453 Ec.
This ExDA satisfies /1% f,,°> = —2band /> f,;' = —2b, and by introducing

m=n =0, n3 = —2b, n4 @ arbitrary (220)

the uplift condition in Eq. (212) is satisfied. Thus, this is upliftable to an SO(5, 5) EDA.
Example 2 (6¢)5.iii|b)
Let us consider the 7-dual of the previous example,

sl =1, fist=1, £ =—b, fi? =—b. (221)
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Using the same parameterization as in the previous example, we obtain

1 0 0 0 0 ) _py 0
0 1 0 0 b=y (2) by 0
eam — ’ mn _ | — ) —0y , A=0. (222)
-y —x 1 0 bx by 0 0
0 0 0 1 0 0 0 0

In this case, the uplift condition cannot be satisfied for any f, and this does not have an uplift
to the SO(5, 5) EDA. However, since the condition in Eq. (215) is satisfied, this can be uplifted
to some flux configuration in maximal supergravity. The explicit form of the algebra can be
found by acting 7-dualities in all directions on the SO(5, 5) EDA obtained in the previous
example (we choose 14 = 0 for simplicity). The algebra is generated by {7, 7.2, T#®%}, and
the non-vanishing products can be found as follows:

TioTy=T, TioT}=-bTs, TioT}=-T, Tiol{=hbT,
Ti o T22 _ —T23, Ti o T2 _ _p T22, Ti o T124 _ —T134, Ti o T134 _ bT24,
Tholh=T, Toll=-T Tol}t=-bTs, ThoT}=>bT,
T o T21 _ —T23, T o T123 szl’ T o 7124 _ T234, T o T34 _ bT24,
Tioli=-T, Tolh=-T, TGoll=T, ToT?=T.,
Ty o T21 _ T22, Ty o T22 _ Tzl’ Ty o T134 _ T234, Ty o T34 _ T134,
T oTi=bTy, Ty oTh=T, T/ oThi=-T T!oT{=-bT],
Tll 5 T21 — 73, Tll o T23 — _b Tzl’ Tll 5 T24 — 724 Tll o T2 — pT124,
TPoTi =T, TfoTh=bT;, TfoTi=-T!, TioT{=-bTo
le o T22 — 72 le o T23 —_b Tzz’ le o T24 — 134 le o T — _pT124,
TPoTi=—bT, TloTh=-bT, T{oT{=>bT! T oT?=>bT{,
Tl3 o T23 — b T23, Tl3 o T24 — b T24, T13 o T3 — lezs’ T13 o T124 — bTm,
ToTh=T), T)oTi=-T T,oT!=-T3 T'oT}=-T%
Tzz oT) = T23, T22 oTs = _Tzl’ T22 5 le =73, T22 5 Tl4 — 1%
T23oT11=bT21, T23oT12=bT22, T230T13=bT23, T23oT14=bT24,

T8 o7 = szz’ T' 86T =—b Tzl, T123 4 T13 — _pT'B, T8, T14 — _pT1%

(223)

This algebra satisfies the Leibniz identities. The subalgebra generated by {7, = T, T = T2}
is the Lie algebra of (6¢|5.iii|b), and this is an uplift of the Manin triple (6¢|5.7ii|b).
According to Ref. [24], the structure constants of the SO(5, 5) EDA are given by

Xas® = O, (1) — [ ()4 (1) + 85 8] 0. (224)
where © 4% and ¥4 are defined as
4% = P 4P QP Oa =1+ Ba) 24" — Bu 2" (ta) A7 (225)

by using the structure constants Q4% and €4 and a certain projector P 48 - Here, by consider-
ing the section condition, 2 4% and 2 4° are supposed to have only the physical components £2,%
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and ©,°. However, the algebra given in Eq. (223) is based on another section. If we construct
the physical component Q5 and ©,° by using

=1 ft=1 AP =3 =% =4 (226)
and also introduce the dual components of Q4% and ©4° as
Q% =2RY Q=1 (227)

the resulting X 43¢ reproduce the algebra in Eq. (223).

In summary, the Manin triple in Eq. (221) does not satisfy the condition in Eq. (212) and
is not uplifted to any EDA. However, since the section condition in Eq. (215) is satisfied, it is
uplifted to a flux configuration, Eq. (223), in maximal supergravity.

Example 3 ({3.v, % (X> — X3)}1{3, 0}) Let us consider a coboundary-type DD,

=1, Mml=1 A=, f12 =1,

£ =1, £ =1, Zy=13, Zz=-1. (228)
This satisfies the uplift condition in Eq. (212) if we introduce
na=1(0,28,2-2¢). (229)

Indeed, this half-maximal ExDA is uplifted to the SL(5) EDA with the structure constants

fisl=1 fa'=1, il =1 fir=1fo =1, fir =1
Z,=5  Zy=-2% m'=5 =L (230)
Example 4 (3|3.i|b) According to the classification of the six-dimensional Drinfel’d doubles
[48] there are 22 Drinfel’d doubles; among these, three Drinfel’d doubles, DD3, DD4, and DDS,
break the condition in Eq. (215). The corresponding Manin triples are (7,|71/410), (6461/4.1|b),

and (3/3.i|b). Here we consider (3|3.i|b) as an example.
The structure constants are given by

firt =1, fid = -1, fi3' =1, fird =1,
fHP==b  fiP=-b pHP=-b fP=-b b#0), (231)

and one can check that the condition in Eq. (215) is broken: £,” f;.* = 8 b.
In order to show that the section condition is violated, let us construct the generalized frame
fields by using the parameterizations x”" = (x, y, z) and g = e B e’ 2 e¥71 . We find

1 —y—z —y—z 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
EM = : 232
4 0 b(y+z) by+z) 1 0 0 (232)
—b(y+z) b(y+zP b(y+zP y+z 1 0
—b(y+z) b(y+z? b(y+z? y+z 0 1

and this, of course, does not break the section condition. Requiring the absence of the dilaton
flux F4, the DFT dilaton takes the form

e 2! = |det el | = e, (233)
and the vector field 7 given in Eq. (216) becomes
I=1pMvr=ba,. (234)
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Then we can clearly see that the dilaton d(x) is not isometric along the /-direction. In other
words, if we include the 7 into the DFT dilaton, we find d = —x + b X, and this clearly breaks
the section condition: 9, ™ d # 0.

Although the condition in Eq. (215) is broken, the condition in Eq. (212) is satisfied for n, =
(4, &, —&) with an arbitrary &. Choosing & = 0 and using Eq. (213), we find that this ExXDA can
be uplifted to the SL(5) EDA with

firr=-1, fil=-1, fiyy=-1, fis’=-1,
L =b it =07 =b i =021 =5 fu =1, (235)

which has non-vanishing trombone gauging X45° # 0. Using x” = (x, y, z) and g=
e e’ 2 e T we obtain the generalized frame fields as

e 0 0
EM = e 34 |deteZ’}% i ey Ao 1, 0
0 _351/6431”326‘3])‘53 ral raz raB
N [my "2 T ms]
1 -y—z —y—z| 0 00, 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 00 0 0 0 0
0 by+z) b(y+2)| 1 0 0: 0 0 0 0
_|=b(+z) b(y+z2)? by+2)P|y+z 10 0 0 0 0
“l-b+z2) b(yH+z? b+ y+z 0 1 0 0 0 0
0 0 0 [0 00 e o o | 0
0 0 0 0 00,e¥y+2) e 0 0
0 0 0 0 0 01eX(y+2) 0 e 0
0 0 0 0 00 0 be*(y+z) —be*(y+z2)| ¥

(236)

which is an uplift of Eq. (232).
If we consider (7,|7/,1b) and (6,]64/,.1|b), both conditions in Eqs. (212) and (215) are broken,
and we do not find any uplift to the maximal theory.

6.2 Examples withn # 0
Example 5 Let us consider a half-maximal EDA in d = 4 satisfying f,,’; # 0 and ¢ =0,

fit=1, fisy=-1, fis° =1, fi'=1, fie’ =-1,
f123:1, f126:2, f425:_1, f435: 1’ f524: 1’ f534:_1’
1’1 = pr. flr=a, Zi=-% fi=-1 (237)

This satisfies the Leibniz identities. The structure constants f,”; can be expressed as in Eq. (86)
by using
r% = %p;, r% = —-2g¢y, (238)

but £,” cannot be expressed as in Eq. (87), and this algebra is not of coboundary type.
If we provide the parameterization

X" =(x,920,0,v%), g=cleheBelligfdTsedTs, (239)
we find

w’ =87, et =e", e 24 = ¢, y =0, (240)
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1 0 O 0 0 0 0
0 e 0 0 0 0 2(1—e7)py
o 0 0 ef 0 0 0 o 2(e2 —1)g;
“ 710 0 0 —sing —cotbcosp cschcosg |’ T T 0 '
0 0 0 cos¢p —cotfsing cschsing 0
0 0 O 0 1 0 0
(241)
0 0 0 0 0 0
0 2 [sinh(x/2)(4prq' +3)—2prq'sinhx] 0 —e ™
= 0 0 T = o
0 0 0
0 0
o)

Then, the resulting generalized frame fields £ A~M satisfy the algebra [E;, Ezlp = — X Bé Eg.

Example 6 Let us consider the branch f, _* = p, # 0 in d = 4 with f,;,° # 0. Performing a
redefinition of the generators T, we can always realize Z, = f, = 8} and f,,¢ =2 8[10 8;)- Using
the parameterization

Y'=(x,)) (i=2,...,6), g=e Tl " (243)
we find the general expression for various tensors:
e,/ " =diag(l,e™, ..., e "), wr’ =87, et =e", e 2 =e2,
y = (" —1)p +ex(p2y2+---+p6y6), =" =0. (244)

They construct the generalized frame fields satisfying [E;, Eglp = —X; BC Ee.
Example 7 Here we consider an example with f;,;; # 0. For example, if we consider d = 7 and
n = 3, we find that the ExDA with

fid =1, il =1, fist =1, fiiz=1, Sy =1, fiiz =1 (245)

satisfies the Leibniz identities. Using X = (x, y, z) and g = e* 11 e’ "2 ¢ I, we obtain

1 0 0
eV =] sinxtany  cosx —%; , A=nl'=7"=0,
: COoS X
cosxtany sinx o5y
COSXCOSzZ—sinxsinysinz —sinXxsinycosz —cosxsinz —sinxcosy
w = cos ysinz COS Y COS z —siny
cosxsinysinz 4 sinxcosz  cOSXSinycosz — sinxsinz COS X COS Y

(246)

This ExDA has vanishing f,** and £,,’;, and we can consider the Yang—Baxter deformation,
1.e. the O(3, 6) transformation given by Eq. (91). However, in this case there is no solution to
the homogeneous CYBE, i.e. Egs. (94)—(98).

Example 8 Here we consider the case where T, o T), = f,,¢ T, is a non-semisimple Lie algebra,

fit=1, fizd =1, f112=f113=%2- (247)
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In this case, we find a solution of the homogeneous CYBE:

0 0 0 0 0 0
‘=% -5 %] =10 0 ) (248)
Boh % 0 0
These produce the structure constants f,,”; and £, through Eqs. (86) and (87) as
St =%, fi*s =, 1 =—%, fita=m, AP =mn,  (249)

where 13 does not appear in the structure constants (similar to the case of Abelian Yang—Baxter
deformation).
Using the deformed half-maximal ExXDA and the parameterization

X" =(x, 2), g=eNeheh (250)

Wwe can compute various tensors:

sin x sin x
0 0 cosx = 2
e"=10 e* 0], w! = ik cos? (3) el | A =0,
in -1 2
00 e e el o (3)
e " ni(e* —cosx) n2(1—e* cos x)
V2 V2
7" =10 Ze¥(sinx—e"+1) Z(e“sinx+e'-1)|,
0 FHe(sinx+e"—1) L(e'sinx—e+1)
0 0 O
7™ =iy sinhxcos® (3) |0 0 1. (251)
0 -1 0
These construct the generalized frame fields satisfying [E ;, Ezlp = —X; ¢ E;.

7. Conclusions

We have constructed the ExDA for half-maximal supergravities in d > 4. Then, following the
general discussion in Ref. [24], we have proven that the half-maximal ExDA systematically pro-
vides a set of generalized frame fields £ AM satisfying [E, Ezlp = — X Eé Es. We have also
computed the generalized CYBE associated with the half-maximal ExDA, and provided the
general form of the generalized Poisson—Lie structures for coboundary-type ExDAs.

A possible future direction is to extend the half-maximal EXDA to d = 3. In d = 3, the duality
group is G = O(D + 1, D 4+ 1 + n) and the corresponding EXFT has been studied in Ref. [49].
In d > 4, the half-maximal ExDA with n = 0 was obtained by truncating 2° ~ ¢ generators from
the generators of the Ep ; 1(p + 1) EDA via the Z, truncation. In d = 3, the number of Z,-odd
generators becomes 2'° ~ ¢ and the dimension of the half-maximal ExDA with n = 0 should be
(248 — 297 3) = 120. Then, the generators can be parameterized as T = T4, 4,] [49] where A
=1, ..., 2(D + 1) denotes the vector index of O(D + 1, D 4 1). In Ref. [24], the Eg) EDA in
the type IIB picture has already been determined, and it will not be difficult to determine the
explicit form of the half-maximal ExDA (with n = 0) through the Z, truncation. Its further
extension to n > 0 will also be straightforward.

Another interesting direction is to study the Z, truncation of the Ep  (p+ 1) EDA in the
M-theory picture. The Z, projection in Eq. (102) corresponds to putting the S-dual of O9-
planes (and the S-dual of D9-branes) in type IIB theory. Under U-duality transformations,
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O9-planes can be mapped to certain orientifold planes in M-theory. They introduce a different
Z, projection which reduces the Ep (p+ 1) EDA in the M-theory picture to a certain half-
maximal ExDA. It will be interesting to find the explicit form of such a half-maximal ExDA.
Here we have concentrated on algebra and the generalized frame fields £ AM . Using E AM
and a constant matrix 7{ ;3, we can construct the generalized metric 5 of the ExFT, and
by using some parameterization of the generalized metric, we can identify the corresponding
supergravity fields. Then, we can study the extension of the PL 7-duality, which rotates the
generators of the Drinfel'd double. A redefinition 7; — T, = C AB Ty (C Aé € G) can map a
half-maximal ExDA to another half-maximal ExDA, and the new generators T’ //I construct new

generalized frame fields £ ;fM . Then, we obtain a new generalized metric 7{/M i which describes
the dual background. It isimportant future work to prove that the non-Abelian duality H , 5 —
’H;M is a symmetry of EXFT. To this end, it will be useful to study the flux formulation of
ExFTs in detail. In addition, H ;5 can be parameterized in terms of several theories, such as
heterotic/TP, type 1/TP, or type II/K3x TP 4. To study non-Abelian dualities among these
theories, it is important to study the parameterizations in detail. Moreover, to find various
examples of non-Abelian duality, it is also important to study the classification of inequivalent
redefinitions of generators, similar to Ref. [48].
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Appendix A. Conventions

A.1 Summary of indices

Here we summarize the convention for various indices used in this paper. The generalized co-
ordinates in the half-maximal ExFTs are parameterized as

M = X x) (d = 6),
M= (M, x) = (¥, xF, X, X*) (d =5), (A1)
o oM _ = (xo, X7, x4,) d = 4),

where M=1,...,2D+n,ZT=1,...,i,m=1,...,D,and & = +, —, with D = 10 — d. The
index Z may be raised/lowered by using the Kronecker delta 677. In the Ep 1 1(p + 1) EFT in the
type IIB picture, the generalized coordinates are denoted as xM.

The generators of the half-maximal ExDA are parameterized as

Ty= (T, T;. T (d = 6),
Ti=\(Ty, T.) =(To, T, T°. T,)  (d =5), (A2)
Tys = (Taav Tor, Taa) (d=4),

whereA=1,....2D+n, I =1,... ,n,a=1,...,D,and « =+, —. The index I is raised/lowered
by using the Kronecker delta §;;. The generators of the Ep 1 (p 1 1) EDA in the type IIB picture
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are parameterized as

TA — {Ta, Taa’ Til/‘;aS’ T{};s ’ Tal-»»a(,,a}, (A3)
wherea=1,...,D and @ = 1, 2. Here, the multiple indices are totally antisymmetric. When
we make the matrix representation, the indices are further decomposed as

Tama IS LU g laga
Ta={To T2, T, T, I T paveasal, (A4)

The generalized Poisson—Lie structures 77" and 7}" are related to 7 and mf asin Eq. (142).
Sometimes we also use notation such as 7 = 82 7" and w;* = w;’ §2.

A.2 Duality algebra ind > 5
In d > 5, the duality group is R x O(D, D + n) and the generators are decomposed as

Ra a7 /1 d
(tah = {Ro. %2 RE K™y, B R, 22 L (A3)
wherea =1, ..., D. The R, is the generator of [R; and it commutes with other generators. The

other O(D, D + n) generators satisfy the following algebra:
[K, Kl =6, K'qg — 85 K, [K%, Rk ] =0, [K%, Rg] =6, R,
[K“, R 1= —8“RE, [K%, Rl =28 R, [K%, Reg) = —28% Ry,
[Ris, Rxkr] = =2 (8kyr R — 81y Rik). [Ru, RY=0, [Ry, Ra] =0,
[Ris. Ri] = =208k 87 R [Rys. RE]= =260 6,10 R,
[R?, R“]=0, [R™ Re)=—48¢K" [R® Ri]=0, [R" RE]=—28""6l'R],
[Rap: Rl =0, [Rap, RE] =0,  [Rap, RY] = —2 k1 87, Ry,
[RY, Rb1 = —8;; R, [RY, R]] = —8] K%y — 8¢ 8"8 Rix, [R, R]] = —8" Ry (A6)

In d =5, we can construct the matrix representations of these generators in the vector repre-
sentation as follows:

0 0 0
0 & 0 0
R, = ! : A7
1 50 (A7)
0 0 0 =2
885 0 0 0 0 0 0 0
‘ 0o 0 0 0 0 8xr8) =88k 0 0
Ky = . Ryxr= L K . (A8
: 0 0 —848 0 = 1o 0 0 0 (A8)
0o 0 0 0 0 0 0 0
0 0 289° 0 0 0 0 0
00 0 0 0 0 0 0
R = , R, . = , A9
00 0 0 =282 0 0 0 (A9)
00 0 0 0 0 0 0
0 885 0 0 0 0 0 0
0 0  —8g;8 0 x| -85k 0 0 0
RS = b RK = c vl Al10
=10 o 0 ol ‘ 0 s 0 0 (A10)
0 0 0 0 0 0 0 0

In d > 6, we can obtain the matrix representations by truncating the last row/column of the
above matrices. Consequently, the generator R, is proportional to the identity matrix.
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We also define the dual generators as

() = | R B2 RS Ky, 2 RE Bz ], (A1)

where R* = —(d — 2) R, and K,” = —K?,. Then the Y-tensor computed from Eq. (8) coincides
with the Z-truncation of the Y-tensorin Ep , (p 4 1) EFT.

A.3 Duality algebra ind =4
We denote the generators of the duality group G = SL(2) x O(6, 6 + n) collectively as

o Raa 1 R a Rau
{ta}z{R o 2 R K, R RS ﬁ} (A12)

where a, b=1, ...,6,1,J=1, ..., n and o, p = +, —. The SL(2) generators R*s (R*, = 0)
satisfy the commutation relations
[Ralg, Ryg] = (SE Ra(g - 5? Rylg, [Raﬂ, (OthCI‘S)] =0, (A13)

and the other O(6, 6 + n) generators satisfy the same algebra as Eq. (A6). Their matrix repre-
sentations are as follows:

(51 o — Log8Y) ) 0 0
R s = 0 (81 87 — 15867) 8] 0 . (A19)
0 0 (o7 8f — L0287) 8
865csh 0 0 0 0 0
Ky = 0 0 0 , Rikr= |0 8 (8kr8] —81187%) O], (Al5)
0 0 —382s4s; 0 0 0
0 0 2886 0 0 0
R>=10 0 0 , R\, = 0 0 0], (A16)
0 0 0 268 55'1112 0 0
0 8B8css 0 ) 0 0 0
R, =10 0 —sxrdfsc |, RE=|-sfsbsK 0 0 (A17)
0 0 0 0 sK7sbsa 0
We also define the dual generators as
a o aya a a 1J R, ay
{t }= { 2’ R«/L2 RlaKal 2’ If[aRLIv JL } (A18)
where
R, = —RP,, K} =—-K",. (A19)
These satisfy, for example,
(1), (ta)e® = —(Z +n) 55, (A20)
s (24 n) 68 sy — Loz el et 0
) € (1)F = @ %>~ 2 % ), A21
(1) (1) ( ’ ey (A21)
where 57‘;’ is a restriction of 85 to O(6, 6 + n) generators. We also find
(") 1 (t)¢” = =28 (P31)) %" — 4 (Praa) " (A22)
where we have defined the projectors to the adjoint representations as
(Pan)i’e” = s (0.8) — ey ) 8562 (e =1=¢"), (A23)

(Paraa))i”c” = 585 8 (85 88 — nac n®?).
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Appendix B. Explicit form of half-maximal ExDA

In this appendix we summarize the explicit form of the half-maximal ExDA in each dimension.
In d > 6, the half-maximal ExDA is given by

TyoTy= fu'T.,

TooTy=—f1 T+ far™ Tk + Za Ty,

T,oTP = T, + f,PX T — f,0 T +22, T,

TioTy=fi't T.— for" Tx — Zy T,

TroTy=feg T +81;Z.TC,

T oTh=—f' T

T0Ty=—fi"T.— " Tx + (foc" + 28 Zc —28° Z) T,

ToTy= [T,

ToTh = £, 1°, (B1)

wherea,b=1,...,D=10—-dand ,J=1, ..., n.
In d =5, there is an additional generator 7T, and the ExDA has the form

T,0Ty, = fu‘ T,

TooTy=—f T+ fur Tk + Za Ty,

TooT’ = fT.+ f" T — fu ' T +22, T,
T,oT.=(Zy— fu) T,

TroTy= /1 T — for* Tx = Z, T,

TroTy= fuy T +681;Z. T,
TroTh=—f' T

TyoT.=—f5T.,

T Ty =—/"T.— [y Tx + (foc" + 281 Zc — 28 Zp) T,
T'oTy=f"TF"

T4 T — fcab T

T'oT.=—f“T,

T,0T,=0,
T,o0T;=0,
T.oTb =0,
T.oT, =0. (B2)
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In d = 4, the half-maximal ExDA has the following form:

Tioo Ty = fup’ The

Tiao Ty = fu ' Ty + (fur — fu}) T-es

Teao Try = —fus Toe + far® Tik + Za Th,

Tiao Ty =—1sTc+ fo- " Tog+ fus" Tk +(Za — f0) T-y.
Togo T4 = [ Toe+ X Tog = fu" T + 22, T,

Touo TP = fT_ e+ [ T+ fu " T = fu" T+ 22, — f) T,
T aoTiy=—fp-" Tha+ fuTop,

T yoT p=—fp " Tu+ fuo" Ty,

T yoTvy=foaT-y,

T qoT y=fo" Ty,

T ,oT"= 52fc—+ T.°+ f, T-",

T ol =f * T +8f TT°

TiroTep = f5'1 Toe — for Tox — Zp Ty,

TeoTy=fp's Tee — f1 T — for" Tk — Zy Ty,

TiyoTyy= fous T + 381, Z. T, S,

TypoTl y=—f5T g+ feg T-“+ 61y Z. T,

TiroT) =—f01 T,

TypoTl =—f0r T — £ T2,

TroTw=f 1T — fo-" Thr,

T ol y=—f" T,

T yoTyy=f 1T g+ 681 fou " T.,

T ol =208 f-" T,

T 0T = f5T20,

T oT"=0,

T %0 Top = —fp™ Toc — ™ Tix + (foc" + 285 Ze — 26% Zp) T,
T ol y=—f," Toe — £ Ty — [ T + (fo + 280 Ze — 280 Zp) T,
T Ty = 15T,

T\ oT j=—f"“T 5+ f 5T,
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T\ T+b = fcab T,

T.90T b= fcab T.¢— f Tt

T_%0 Top= [ Top+ (8 fou ™ =8 %) TuS,
T 0T y= (8 fou™ =8 fo-t) T,

T “oTyy=f ATy,

T,a o T,J = 0,
T 96 T+b — fcca T,b,
T % T"=0. (B3)
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