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The extended Drinfel’d algebra (ExDA) is the underlying symmetry of non-Abelian duality
in the low-energy effective theory of string theory. Non-Abelian U-dualities in maximal
supergravities have been studied well, but there has been no study on non-Abelian dualities
in half-maximal supergravities. We construct the ExDA for half-maximal supergravities in
d ≥ 4. We also find an extension of the homogeneous classical Yang–Baxter equation in
these theories.
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1. Introduction
Recently, the Poisson–Lie (PL) T-duality [1] has been clarified and extended by using duality-
covariant formulations of supergravities, such as double field theory (DFT) [2–6] and excep-
tional field theory (EFT) [7–14]. The initial progress was made in Ref. [15], and further clarifi-
cations of the PL T-duality were made in Refs. [16,17]. More recently, the PL T-duality in the
presence of higher-derivative corrections has been studied in Refs. [18–20].

The PL T-duality is based on a Lie algebra, called the Drinfel’d double, which is closely re-
lated to the O(D, D) T-duality group. An extension of the Drinfel’d double that is based on the
SL(5) U-duality group was proposed in Refs. [21,22]: the exceptional Drinfel’d algebra (EDA).
In Ref. [23], the SL(5) EDA was extended to the case of the E6(6) U-duality group, and it was fur-
ther extended up to the E8(8) U-duality group in Ref. [24]. In Ref. [24], the EDA was formulated
in terms of both M-theory and type IIB theory. Using these algebras, various concrete exam-
ples of non-Abelian U-dualities among solutions in 11-dimensional supergravity and type IIB
supergravity were provided in Ref. [25]. The non-Abelian U-duality in the membrane sigma
model was also studied in Ref. [26]. However, at this time, non-Abelian U-dualities have been
studied only in maximal supergravities.

If we consider heterotic or type I supergravities compactified on a D-torus TD (D ≡ 10 −
d), we can realize d-dimensional half-maximal supergravities. The purpose of this paper is
to provide the algebraic basis for non-Abelian dualities in half-maximal supergravities. In d
≥ 5, the duality group has been known to be G = R+ × O(D, D + n), and it is enhanced to
G = SL(2) × O(6, 6 + n) in d = 4. Extended field theories (ExFT) associated with these duality
groups are known as the heterotic DFT [2–4,27–29] or the SL(2) DFT [30]. Here, using these
ExFTs and the general construction [24] of extended Drinfel’d algebras (ExDA) for a wide class
of the duality group G, we construct the half-maximal ExDA

TÂ ◦ TB̂ = XÂB̂
Ĉ TĈ. (1)
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By the definition, any ExDA has a maximally isotropic subalgebra g generated by Ta (which is
a Lie algebra). Using a group element g = exa Ta ∈ G ≡ exp g, we can systematically construct
generalized frame fields EÂ

M̂ ∈ G × R+ that satisfy the algebra

[EÂ, EB̂]D = −XÂB̂
Ĉ EĈ, (2)

where [ · , · ]D denotes the generalized Lie derivative (or the D-bracket) in ExFT. For each duality
group G we identify the parameterization of the generalized frame fields, and find that they
consist of several generalized Poisson–Lie structures, such as πmn and πm

I .
In Ref. [31], the embedding tensors of half-maximal gauged supergravity (with n = 0) were

obtained by acting a Z2 truncation on the embedding tensors of maximal gauged supergravity.
Using the same Z2 truncation, the SL(2) DFT (with n = 0) can be derived from the E7(7) EFT
[30]. Similarly, we can obtain various half-maximal ExFTs from the ED + 1(D + 1) EFT through
a Z2 truncation (see Refs. [32,33] for related works). Then, as one may naturally expect, we can
obtain the half-maximal ExDA from an ED + 1(D + 1) EDA through the Z2 truncation. However,
the converse is not true. The Leibniz identities (or the quadratic constraints) in the maximal
theory are stronger than in the half-maximal theory and not all of the embedding tensors in
the half-maximal supergravity have an uplift to the maximal supergravity. The uplift condition
has been discussed, for example, in Refs. [31,34,35]. In this paper we study the condition that a
half-maximal ExDA can be uplifted to a maximal EDA (for simple cases D ≤ 3). We then find
some concrete examples where the uplift condition is violated.

In the case of the Drinfel’d double, it is known that some of the Leibniz identities can be
regarded as the cocycle condition. By considering the coboundary ansatz which automatically
satisfies the cocycle condition, the dual structure constants fa

bc can be expressed by using the
structure constants fab

c and a skew-symmetric tensor rab. In that case, the other Leibniz identi-
ties are equivalent to the (modified) classical Yang–Baxter equations (CYBE) for rab. Similarly,
in any ExDA, we can express some of the Leibniz identities as the cocycle condition. We iden-
tify the coboundary ansatz for the half-maximal ExDAs and obtain the generalized CYBE as
a sufficient condition for the Leibniz identities to be satisfied.

This paper is organized as follows. In Sect. 2, we fix our convention on the half-maximal
ExFTs in d ≥ 4 by defining the generalized Lie derivative. In Sect. 3, we construct the half-
maximal ExDA in each dimension. We then identify the whole set of Leibniz identities. After
that, the cocycle condition, coboundary ansatz, and the generalized CYBE are identified for
each ExDA. We also discuss the relation between a half-maximal ExDA and an ED + 1(D + 1)

EDA. In Sect. 4, we show the explicit parameterization of the generalized frame fields EÂ
M̂

by introducing generalized Poisson–Lie structures. We then show that the generalized frame
fields satisfy the algebra [EÂ, EB̂]D = −XÂB̂

Ĉ EĈ. In Sect. 5, we discuss a reduction of the half-
maximal ExDA to a Leibniz algebra called DD+ [36], and study the condition that the DD+

can be uplifted to the half-maximal ExDA. We also study the conditions for a half-maximal
ExDA to be uplifted to an EDA. In Sect. 6, we find various non-trivial examples of the half-
maximal ExDA. Some are uplifted EDAs, some are uplifted to embedding tensors which do
not have the form of EDA. Section 7 is devoted to conclusions and discussion.

A Mathematica notebook EDA.nb can be found as an ancillary file on arXiv [37]. This com-
putes XÂB̂

Ĉ for given structure constants (such as fab
c and fa

bc) and the generalized frame fields
EÂ

M̂ for a given parameterization of the group element, such as g = exa Ta .
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2. Generalized Lie derivative in half-maximal ExFT
In this section we consider the half-maximal ExFT in d ≥ 4 where the duality group is1

G =
{

R+
d × O(D, D + n) (d ≥ 5),

SL(2) × O(6, 6 + n) (d = 4),
(3)

where D ≡ 10 − d and we have added the subscript d to R+ to indicate that this scale symmetry is
related to the dilaton in heterotic supergravity. In these ExFTs, we parameterize the generalized
coordinates as

xM̂ =

⎧⎪⎨⎪⎩
xM = (

xm, xI, xm
)

(d ≥ 6),(
xM, x∗) = (

xm, xI, xm, x∗) (d = 5),
xα̇M = (

xα̇m, xα̇I, xα̇
m
)

(d = 4),
(4)

where M = 1, … , 2D + n is the vector index for O(D, D + n), m = 1, … , D, I = 1̇, . . . , ṅ, and
α̇ = +, − is the index for an SL(2) doublet. On the extended space, infinitesimal diffeomor-
phisms are generated by the generalized Lie derivative [2–4,27–30,32]2

£̂VW M̂ = V N̂ ∂N̂W M̂ − W N̂ ∂N̂V M̂ + Y M̂P̂
Q̂N̂

∂P̂V Q̂ W N̂ . (5)

Here, the Y-tensor Y M̂P̂
Q̂N̂

is defined as

Y M̂N̂
P̂Q̂

=

⎧⎪⎨⎪⎩
ηMN ηPQ (d ≥ 6),
η̂M̂N̂

∗ η̂∗
P̂Q̂

+ η̂M̂N̂
R η̂R

P̂Q̂
(d = 5),

δα̇

δ̇
δ

β̇

γ̇ ηMN ηPQ + 2 εα̇β̇ εγ̇ δ̇ δMN
PQ (d = 4),

(6)

where ε+− = ε+− = 1, and

η̂∗
M̂N̂

≡
(

ηMN 0
0 0

)
, η̂P

M̂N̂
≡

(
0 δP

M

δP
N 0

)
, ηMN ≡

⎛⎜⎝ 0 0 δn
m

0 δIJ 0
δm

n 0 0

⎞⎟⎠,

η̂M̂N̂
∗ ≡

(
ηMN 0

0 0

)
, η̂M̂N̂

P ≡
(

0 δM
P

δN
P 0

)
, ηMN ≡

⎛⎜⎝ 0 0 δm
n

0 δIJ 0
δn

m 0 0

⎞⎟⎠. (7)

In this paper we raise or lower the index I using the Kronecker delta δIJ .
We denote the generators of the duality groupG collectively as tȧ (ȧ = 1, . . . , dimG ). By using

the matrix representations of tȧ and their duals tȧ (whose definition is given in Appendix A),
the Y-tensor can also be expressed as

Y M̂N̂
P̂Q̂

= δM̂
P̂

δN̂
Q̂

+ (tȧ)P̂
N̂ (tȧ)Q̂

M̂ + βd δM̂
Q̂

δN̂
P̂

(
βd ≡ 1

d−2

)
. (8)

This shows that the generalized Lie derivative generates an infinitesimal (coordinate-dependent)
duality rotation and a scale symmetry R+ with weight βd,

£̂VW M̂ = V N̂ ∂N̂W M̂ + (∂V )ȧ (tȧ)N̂
M̂ W N̂ − βd (∂P̂V P̂) (t0)N̂

M̂ W N̂, (9)

where (∂V )ȧ ≡ ∂P̂V Q̂ (tȧ)Q̂
P̂ and (t0)M̂

N̂ ≡ −δN̂
M̂

is the generator of the scale symmetry R+.

1In d = 6, it is also possible to consider the duality group G = O(D + 1, D + 1 + n) (see Sect. 2.1).
2We can also consider deformations of the generalized Lie derivative similar to Ref. [27], but here we

consider the undeformed (or ungauged) theories.
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2.1 Section condition
For consistency of the ExFT, we impose the section condition,

Y M̂N̂
P̂Q̂

∂M̂ ⊗ ∂N̂ = 0. (10)

In d ≥ 6, this is equivalent to ηMN ∂M ⊗ ∂N = 0, and as is well known in DFT, there is only one
solution of the section condition up to an O(D, D + n) rotation:

∂m 
= 0. (11)

In d = 5, the section condition is decomposed into two conditions,

ηMN ∂M ⊗ ∂N = 0, ∂M ⊗ ∂∗ = 0, (12)

and there are two inequivalent solutions [32],

(i) ∂m 
= 0, (ii) ∂∗ 
= 0. (13)

The former gives a five-dimensional section while the latter gives a one-dimensional section. In
d = 4, the section condition is decomposed as [30]

ηMN ∂α̇M ⊗ ∂β̇N = 0, εα̇β̇ ∂α̇[M| ⊗ ∂β̇|N] = 0, (14)

and again there are two inequivalent solutions [30],

(i) ∂+m 
= 0, (ii) ∂±1 
= 0. (15)

The former is a six-dimensional solution while the latter is a two-dimensional solution.
In d = 5 (and d = 4), the first solution (i) is suitable for describing heterotic/type I theory

compactified on TD, where xm (and x+m) play the role of coordinates on TD. It is the same for
the solution in d ≥ 6. On the other hand, the second solution (ii) in d = 4, 5 describes a TD − 4

compactification of six-dimensional (2,0) supergravity [30,32]. This series of solutions reduces
to the 0-dimensional solution in d = 6, where the duality group becomes G = O(5, 5 + n) and
the ExFT describes the six-dimensional (2,0) supergravity. In this paper we restrict ourselves
to the former solution. For simplicity, in the following, when we consider d = 4 we may use a
shorthand notation such as xm ≡ x+m and ∂m ≡ ∂+m.

2.2 Generalized Lie derivative
In d ≥ 6, under the section ∂m 
= 0, the generalized Lie derivative reduces to

£̂VW M̂ =

⎛⎜⎝ [v, w]m

v · wI − w · vI

v · wm + ∂mvn wn − wn (dv)nm + wI ∂mvI

⎞⎟⎠, (16)

where we have parameterized the generalized vector fields as, for example,

V M̂ = (
vm, vI, vm

)
, (17)

and have denoted v · ≡ vm ∂m and (dv)mn ≡ 2 ∂[mvn]. Here, two scale transformations, R+
d (con-

tained in the second term of Eq. (9)) and R+ (the last term of Eq. (9)), are cancelled out and
the generalized Lie derivative generates an infinitesimal O(D, D + n) transformation similar to
DFT.

In d = 5, under section (i), we have

£̂VW M̂ =

⎛⎜⎜⎜⎝
[v, w]m

v · wI − w · vI

v · wm + ∂mvn wn − wn (dv)nm + wI ∂mvI

v · w∗ + ∂mvm w∗

⎞⎟⎟⎟⎠, (18)
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where we parameterized the generalized vector fields as

V M̂ = (
vm, vI, vm, v∗). (19)

In this case, a combination of R+
d and R+ generates the scale transformation ∂mvm w∗ in the last

line. Due to this scale transformation, the last component w∗ behaves as a scalar density.
In d = 4, under section (i), we find

£̂VW M̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

[v+, w+]m

[v+, w−]m + εα̇β̇ ∂nvα̇n wβ̇m

v+ · w+I − w+ · v+I

v+ · w−I − w− · v+I + εα̇β̇ ∂nvα̇n wβ̇I

v+ · w+
m + ∂mv+n w+

n − w+n (dv+)nm + w+
I ∂mv+I

v+ · w−
m + ∂mv+n w−

n − w−n (dv+)nm + w−
I ∂mv+I + εα̇β̇ ∂nvα̇n wβ̇

m

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (20)

where we have used the parameterization

V M̂ = (
v+m, v−m, v+I, v−I, v+

m, v−
m
)
. (21)

Due to the combination of part of the SL(2) transformation and the scale symmetry R+, the
minus components v−M behave as tensor densities.

In the following, we denote the generalized Lie derivative as

[V,W ]D ≡ £̂VW, (22)

which is called the D-bracket and is not skew symmetric: [V, W]D 
= −[W, V]D. The antisym-
metric part is known as the C-bracket,

[V,W ]C ≡ 1
2

(
£̂VW − £̂W V

) = −[W,V ]C, (23)

although we do not use this bracket in this paper.

3. Half-maximal ExDA
In this section we construct the half-maximal ExDA by using the generalized Lie derivative in-
troduced in the previous section. We then study the Leibniz identities of the ExDA in Sect. 3.2.
In Sect. 3.3, some of the Leibniz identities are interpreted as the cocycle condition. By con-
sidering the coboundary-type ExDA, we find the generalized CYBE in Sect. 3.4. The relation
between the half-maximal ExDA and the ED + 1(D + 1) EDA is detailed in Sect. 3.5.

3.1 Algebra
An ExDA is a Leibniz algebra

TÂ ◦ TB̂ = XÂB̂
Ĉ TĈ, (24)

with generators TÂ transforming in the vector representation of the duality group G. Similar to
the curved index M̂, we decompose the “flat” index Â as

TÂ =

⎧⎪⎨⎪⎩
TA = (

Ta, TI , T a
)

(d ≥ 6),(
TA, T∗

) = (
Ta, TI , T a, T∗

)
(d = 5),

TαA = (
Tαa, TαI , Tα

a
)

(d = 4),
(25)

where A = 1, … , 2D + n, I = 1̇, . . . , ṅ, a = 1, … , D, and α = +, −. We raise or lower the index
I or A using δIJ or ηAB, respectively.3 To simplify the notation in d = 4, we may denote the index

3ηAB has the same matrix form as ηMN.
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T+a as Ta. The structure constants XÂB̂
Ĉ are defined such that certain generalized frame fields

EÂ
M̂ ∈ G × R+ exist satisfying the same algebra by means of the D-bracket,

[EÂ, EB̂]D = −XÂB̂
Ĉ EĈ. (26)

In general, the coefficients on the right-hand side are non-constant and are called the gener-
alized fluxes X ÂB̂

Ĉ, but here we consider the case where the generalized fluxes are constant:
X ÂB̂

Ĉ = XÂB̂
Ĉ. In such a situation, Eq. (26) can be regarded as the condition for generalized

parallelizability [38,39], and the inverse EM̂
Â of the generalized frame fields plays the role of

the twist matrix for the generalized Scherk–Schwarz reduction. The construction of such gen-
eralized frame fields is discussed in Sect. 4, and here we focus on finding the explicit form of
the structure constants XÂB̂

Ĉ.
By the definition of the D-bracket and Eq. (26) (see Ref. [24] for a general discussion), the

structure constants should be expressed as4

XÂB̂
Ĉ = 
ÂB̂

Ĉ + (ta)D̂
Ê (ta)B̂

Ĉ 
ÊÂ
D̂ − βd 
D̂Â

D̂ (t0)B̂
Ĉ (27)

by using some constants 
ÂB̂
Ĉ which can be understood as the Weitzenböck connection,

WÂB̂
Ĉ ≡ EÂ

M̂ EB̂
N̂ ∂M̂EN̂

Ĉ, (28)

evaluated at a certain point: 
ÂB̂
Ĉ = WÂB̂

Ĉ
∣∣
x=x0

. In fact, there is a special point x0 where EÂ
m =

δa
Â

Ea
m,5 and we choose x0 as such a point. Then, since we are choosing the section ∂m 
= 0, the

only non-vanishing components of 
ÂB̂
Ĉ are 
aB̂

Ĉ. Moreover, because of EÂ
M̂ ∈ G × R+ and

Eq. (28), the constants 
aB̂
Ĉ are generally expanded as


aB̂
Ĉ = 
a

a (ta)B̂
Ĉ + 
a

0 (t0)B̂
Ĉ. (29)

Now, we require that the generators Ta form a subalgebra g,

Ta ◦ Tb = fab
c Tc. (30)

This requirement gives a strong constraint on 
a
a, and in the following we determine the explicit

form of 
a
a. Using this 
a

a and the relation in Eq. (27), we can compute the structure constants
of the ExDA XÂB̂

Ĉ.
In the following, we decompose the O(D, D + n) generators (see Appendix A for more details)

as {
Ra1a2√

2!
, RI

a, Ka1
a2, RIJ, Ra

I ,
Ra1a2√

2!

}
. (31)

We also denote the R+
d generator in d ≥ 5 as R∗ and the SL(2) generators in d = 4 as Rα

β . Using
these generators, we determine the explicit form of 
a

a in each dimension.

3.1.1 ExDA in d ≥ 6. In d ≥ 6, the requirement in Eq. (30) is satisfied if 
a
a and 
a

0 are
expanded as


a
a ta = (

kab
c − Za δc

b

)
Kb

c + 1
2! fa

IJ RIJ + fa
b

I RI
b + 1

2! fa
bc Rbc, 
a

0 = −Za (32)

without using generators Ra
I and Ra1a2 . We note that since R∗ is proportional to t0, we have

absorbed the structure constant associated with R∗ into Za. By substituting these into Eq. (27),

4The matrices (ta)B̂
Ĉ , (ta)B̂

Ĉ , and (t0)B̂
Ĉ have the same form as the curved ones, such as (tȧ)M̂

N̂ . Since
(ta)B̂

Ĉ and (ta)B̂
Ĉ are invariant tensors and EÂ

M̂ ∈ G × R
+, we can convert the flat indices to the curved

indices using EÂ
M̂ , e.g. (ta)D̂

Ê (ta)B̂
Ĉ EN̂

B̂ EĈ
P̂ EQ̂

D̂ EÊ
R̂ = (tȧ)Q̂

R̂ (tȧ)N̂
P̂.

5Here, a is to be understood as +a in d = 4.
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the matrices (XÂ)B̂
Ĉ ≡ XÂB̂

Ĉ are found as

Xa = fab
c Kb

c + 1
2! fa

bc Rbc + fa
b

I Rb
I + 1

2! fa
IJ RIJ − Za (K + t0),

XI = fa
b

I Ka
b − faI

J Ra
J − Za Ra

I ,

X a = fb
ca Kb

c − fb
aI Rb

I + ( 1
2 fbc

a − 2 Z[b δa
c]

)
Rbc, (33)

where fab
c ≡ 2 k[ab]

c and K ≡ Ka
a. Then, the algebra in Eq. (24) becomes

Ta ◦ Tb = fab
c Tc,

Ta ◦ TJ = − fa
c

J Tc + faJ
K TK + Za TJ,

Ta ◦ T b = fa
bc Tc + fa

bK TK − fac
b T c + 2 Za T b,

TI ◦ Tb = fb
c

I Tc − fbI
K TK − Zb TI ,

TI ◦ TJ = fcIJ T c + δIJ Zc T c,

TI ◦ T b = − fc
b

I T c,

T a ◦ Tb = − fb
ac Tc − fb

aK TK + (
fbc

a + 2 δa
b Zc − 2 δa

c Zb
)

T c,

T a ◦ TJ = fc
a

J T c,

T a ◦ T b = fc
ab T c (34)

This is the Leibniz algebra of the half-maximal ExDA in d ≥ 6. We note that the symmetric
part k(ab)

c does not appear in the algebra.
We can neatly express the structure constants XÂB̂

Ĉ = XAB
C as

XAB
C = FAB

C + ηAB ξC + ξA δC
B − δC

A ξB, (35)

where the components of the 3-form FABC ≡ FAB
D ηDC = F[ABC] and ξA are

Fab
c = fab

c + δc
a Zb − δc

b Za, FaJK = faJK , FaJ
c = − fa

c
J, Fa

bc = fa
bc,

Fabc = FIJK = FIJ
c = FI

bc = F abc = 0, ξA ≡ (
Za, 0, 0

)
. (36)

If we set n = 0, the half-maximal ExDA reduces to the Leibniz algebra DD+ 6 that plays a key
role in the Jacobi–Lie T-plurality [36].

3.1.2 ExDA in d = 5. In d = 5, the requirement in Eq. (30) is satisfied by


a
a ta = (

fa + kba
b) R∗ + (kab

c − Za δc
b) Kb

c + 1
2! fa

IJ RIJ + fa
b

I RI
b + 1

2! fa
bc Rbc,


a
0 = 1

3

(
fa + kba

b) − Za. (37)

The embedding tensors can be obtained as

Xa = fab
c Kb

c + 1
2! fa

bc Rbc + fa
b

I Rb
I + 1

2! fa
IJ RIJ − Za (K + t0) + fa

(
R∗ + 1

3 t0
)
,

XI = fa
b

I Ka
b − faI

J Ra
J − Za Ra

I + fa
a

I
(
R∗ + 1

3 t0
)
,

X a = fb
ca Kb

c − fb
aI Rb

I + ( 1
2 fbc

a − 2 Z[b δa
c]

)
Rbc + fb

ba (
R∗ + 1

3 t0
)
, X∗ = 0. (38)

Again, only the antisymmetric part fab
c ≡ 2 k[ab]

c appears in the embedding tensor, although

a

a and 
a
0 contain the symmetric part k(ab)

c as well.

6The DD+ studied in Ref. [36] contains additional vector-type structure constants Za.
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We find that the generators TA ≡ (Ta, TI, Ta) form the subalgebra given in Eq. (34). The
products including the additional generator T∗ can be found as

Ta ◦ T∗ = (Za − fa) T∗, TI ◦ T∗ = − fc
c

I T∗, T a ◦ T∗ = − fc
ca T∗,

T∗ ◦ Tb = 0, T∗ ◦ TJ = 0, T∗ ◦ T b = 0. (39)

We can neatly express the non-vanishing components of the structure constants XÂB̂
Ĉ as

XAB
C = FAB

C + ηAB ξC + ξA δC
B − δC

A ξB, XA∗∗ = −2 ξA − 3 ϑA, (40)

where FAB
C and ξA are the same as Eq. (36), and

ϑA ≡ 1
3

(
fa − 3 Za, fb

b
I , fb

ba). (41)

We can compare Eq. (40) with Ref. [40, Eq. (3.6)]. Our FAB
C and ξA correspond to their −fAB

C

and − 1
2 ξA. The embedding tensor ξAB of Ref. [40] is not present in our ExDA. On the other

hand, our ϑA is not present there because the trombone symmetry R+ has not been gauged in
Ref. [40].

3.1.3 ExDA in d = 4. In d = 4, we find that


+a
a ta ≡ faα

β Rα
β + (

kab
c − Za δc

b

)
Kb

c + 1
2! fa

IJ RIJ + fa
b

I RI
b + 1

2! fa
bc Rbc,


+a
0 ≡ fa++ − Za, fa++ = − fa−− = 1

2

(
kba

b + fa
)

(42)

is consistent with Eq. (30). Using these parameterizations, we find:

X+a = fab
c Kb

c + fa−+ R−+ + 1
2! fa

bc Rbc + fa
b

I Rb
I + 1

2! fa
IJ RIJ

+ fa
(
R++ + 1

2 t0
) − Za (K + t0), (43)

X−a = − fb−+ Kb
a − fa−+ (

R++ + 1
2 t0

) + fa R+−, (44)

X+I = fa
b

I Ka
b − faI

J Ra
J − Za Ra

I + fa
a

I
(
R++ + 1

2 t0
)
, (45)

X−I = fa
a

I R+− − fa−+ Ra
I , (46)

X+a = fb
ca Kb

c − fb
aI Rb

I + ( 1
2 fbc

a − 2 Z[b δa
c]

)
Rbc + fb

ba (
R++ + 1

2 t0
)
, (47)

X−a = fb
ba R+− + fb−+ Rab. (48)

We note that the constants 
+aB̂
Ĉ of the form


+aB̂
Ĉ = kad

e (
Kd

e
)

B̂
Ĉ + kda

d (
R++ + 1

2 t0
)

B̂
Ĉ (49)

contribute to XÂB̂
Ĉ only through the antisymmetric part k[ab]

c = 1
2 fab

c and, again, the sym-

metric part k(ab)
c does not show up in XÂB̂

Ĉ. Accordingly, the subalgebra g with the structure
constants fab

c is a Lie algebra. Moreover, fa +− does not appear in XÂB̂
Ĉ, and we ignore fa +−

in the following discussion.
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The explicit form of the half-maximal ExDA is as follows:

Tαa ◦ Tβb = δ+
α fab

c Tβc − εαβ fa T−b + δ−
β fa−+ Tαb − δ−

α fb−+ Tβa,

Tαa ◦ TβJ = δ+
α

(− fa
c

J Tβc + faJ
K TβK + Za TβJ

) + δ−
β fa−+ TαJ − εαβ fa T−J,

Tαa ◦ Tβ
b = δ+

α

(
fa

bc Tβc + fa
bK TβK − fac

b Tβ
c + 2 Za Tβ

b)
− εαβ fa T−b + δ−

β fa−+ Tα
b + δ−

α δb
a fc−+ Tβ

c,

TαI ◦ Tβb = δ+
α

(
fb

c
I Tβc − fbI

K TβK − Zb TβI
) − εαβ fd

d
I T−b − δ−

α fb−+ TβI ,

TαI ◦ TβJ = δ+
α

(
fcIJ + δIJ Zc

)
Tβ

c − εαβ fd
d

I T−J + δ−
α δIJ fc−+ Tβ

c,

TαI ◦ Tβ
b = −δ+

α fc
b

I Tβ
c − εαβ fd

d
I T−b,

Tα
a ◦ Tβb = −δ+

α

[
fb

ac Tβc + fb
aJ TβJ − (

fbc
a + 2 δa

b Zc − 2 δa
c Zb

)
Tβ

c]
− εαβ fd

da T−b + δ−
α

(
δa

b fc−+ − δa
c fb−+)

Tβ
c,

Tα
a ◦ TβJ = δ+

α fc
a

J Tβ
c − εαβ fd

da T−J,

Tα
a ◦ Tβ

b = δ+
α fc

ab Tβ
c − εαβ fd

da T−b. (50)

A more explicit expression is given in Appendix B. It is noted that the generators TA ≡ (T+a,
T+I, T+a) form a subalgebra which has the same form as Eq. (34).

Now we can compare the algebra with the embedding tensor known in N = 4, d = 4 gauged
supergravity [40]. Using the trombone gauging ϑαA [30], we can parameterize the structure con-
stants XÂB̂

Ĉ as7

XÂB̂
Ĉ = δ

γ

β FαAB
C − 1

2

(
δC

A δ
γ

β ξαB − δC
B δγ

α ξβA − δ
γ

β ηAB ξC
α + εαβ δC

B ξδA εδγ
)

+ δC
A δ

γ

β ϑαB − δ
γ

β ηAB ϑC
α − δ

γ

β δC
B ϑαA. (51)

By comparing this with Eqs. (43)–(48), we find

F+AB
C = FAB

C, F−AB
C = 0,

ξ+A = (
fa, fb

b
I , fb

ba), ξ−A = (
fa−+, 0, 0

)
,

ϑ+A = 1
2

(
fa − 2 Za, fb

b
I , fb

ba), ϑ−A = − 1
2

(
fa−+, 0, 0

)
, (52)

where FAB
C is the same as in Eq. (36). In our case, it may be more convenient to redefine ξÂ as

ξÂ → 1
2 ξÂ − ϑÂ. This yields

XÂB̂
Ĉ = δ

γ

β FαAB
C − (

δC
A δ

γ

β ξαB − δC
B δγ

α ξβA − δ
γ

β ηAB ξC
α + εαβ δC

B ξδA εδγ
)

+ 2
(
δγ
α ϑβA − δ

γ

β ϑαA
)
δC

B , (53)

where

F+AB
C = FAB

C, F−AB
C = 0,

ξ+A = (
Za, 0, 0

)
, ξ−A = (

fa−+, 0, 0
)
,

ϑ+A = 1
2

(
fa − 2 Za, fb

b
I , fb

ba), ϑ−A = − 1
2

(
fa−+, 0, 0

)
. (54)

This neatly summarizes the structure constants of the half-maximal ExDA in d = 4.
In the literature, antisymmetric tensors


ÂB̂ ≡ εαβ ηAB, 
ÂB̂ ≡ −εαβ ηAB (55)

7For our convenience, we have chosen the sign of FαAB
C and ξαA to be the opposite of that in

Refs. [30,40].
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are used to raise or lower the indices Â, B̂. For example, if we consider (ta)ÂB̂ ≡ (ta)Â
Ĉ 
ĈB̂

we can check that this satisfies (ta)ÂB̂ = (ta)B̂Â. Using this index convention, we find that the
so-called intertwining tensor ZĈÂB̂ ≡ X(ÂB̂)Ĉ = X(ÂB̂)

D̂ 
D̂Ĉ takes the form

ZĈÂB̂ = − 1
2 (ta)ÂB̂

[

Ĉ

a + 2 (ta)Ĉ
D̂ ϑD̂

]
. (56)

This can be compared with the intertwining tensor in d = 4 maximal supergravity [41] because
the half-maximal supergravity can be realized as a Z2 truncation of the maximal supergravity
(see Sect. 3.5). Our generators ta ta correspond to their −12 ta ta, and our 
Â

a ta corresponds to
their 
̂Â

a ta ≡ [

Â

a + 8 (ta)Â
B̂ ϑB̂

]
ta. Then, our intertwining tensor, Eq. (56), can be expressed

as

ZĈÂB̂ = − 1
2 (ta)ÂB̂

[

Ĉ

a − 16 (ta)Ĉ
D̂ ϑD̂

]
(57)

in thir notation. This expression matches [41, Eq. (3.34)] and gives a non-trivial consistency
check of our computation.

3.2 Leibniz identities
Since the D-bracket satisfies the Leibniz identities, the ExDA should satisfy

L(X, Y, Z) ≡ X ◦ (Y ◦ Z) − (X ◦ Y ) ◦ Z − Y ◦ (X ◦ Z) = 0 (58)

for arbitrary generators X, Y, Z of the half-maximal ExDA. We find here the full set of identities
by substituting the generators TÂ into X, Y, and Z.

3.2.1 Leibniz identities in d ≥ 5. By brute force computation, we identify the whole set of
Leibniz identities in d ≥ 6:

fab
c Zc = 0, f[ab

e fc]e
d = 0, fab

c fc
IJ + 2 fa

K[I fb
J]

K = 0, fa
b

I Zb = 0,

fa
b

[I| fb|JK] = 0, 2 f[a
cJ fb]IJ + 2 f[a|d I fd |b]

c − fab
d fd

c
I + 2 f[a|cI Z|b] = 0,

fa
bc Zc = 0, 4 f[a

e[c fb]e
d ] − fab

e fe
cd + 2 fa

[c
I fb

d ]I + 4 f[a
cd Zb] = 0,

fa
bc fcIJ + 2 fa

c
[I| fc

b|J] = 0, fa
d

I fd
bc + 2 fa

d [b fd
c]

I = 0, fe
[ab fd

c]e = 0. (59)

In d = 5, the Leibniz identities involving the generator T∗ additionally give8

fab
c fc = 0, fa

b
I fb = faIJ fb

bJ + Za fb
b

I ,

fa
cd fcd

b = fa
bc (

fc − fcd
d) + fa

c
I fc

bI , fb
a

I fc
cb = 0. (60)

3.2.2 Leibniz identities in d = 4. In d = 4, the identification of the whole set of Leibniz
identities is complicated. However, we find that the combination

L(T−a, T +b, T+b) + L(T−a, T+b, T +b) = 0 (61)

is equivalent to

fa−+ ( fb − Zb) = 0, (62)

and this shows that there are two branches: fa −+ = 0 and fa = Za.

8The third identity can be also expressed as fc fa
cb = fa

bI fc
c

I + fca
b fd

dc + 2 Za fc
cb.
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fa −+ = 0: In this case, the whole set of Leibniz identities are exactly the same as those in d =
5:

fab
c fc = 0, fab

c Zc = 0, f[ab
e fc]e

d = 0, fab
c fc

IJ + 2 fa
K[I fb

J]
K = 0,

fa
b

I Zb = 0, fa
b

I fb = faIJ fb
bJ + Za fb

b
I , fa

b
[I| fb|JK] = 0,

2 f[a
cJ fb]IJ + 2 f[a|d I fd |b]

c − fab
d fd

c
I + 2 f[a|cI Z|b] = 0,

fa
bc Zc = 0, 4 f[a

e[c fb]e
d ] − fab

e fe
cd + 2 fa

[c
I fb

d ]I + 4 f[a
cd Zb] = 0,

fa
cd fcd

b = fa
bc (

fc − fcd
d) + fa

c
I fc

bI , fa
bc fcIJ + 2 fa

c
[I| fc

b|J] = 0,

fa
d

I fd
bc + 2 fa

d [b fd
c]

I = 0, fb
a

I fc
cb = 0, fe

[ab fd
c]e = 0. (63)

fa −+ 
= 0: Here, the Leibniz identities require very strong constraints on the other structure
constants in a non-trivial manner. Since it is not easy to identify the identities for general fa −+,
let us perform a GL(D) redefinition of generators such that fa −+ becomes fa−+ = δ1

a . In this
case, we find that the general solution of the Leibniz identities is

fab
c = 2 Z[a δc

b], fa
bc = fa

b
I = fa

I
J = 0, fa = Za. (64)

They are independent of the particular direction a = 1, and as one may naturally expect, if
Eq. (64) is satisfied, the Leibniz identities are always satisfied for any fa −+. We thus conclude
that the most general half-maximal ExDA in the branch fa −+ 
= 0 is given by Eq. (64), with
fa −+ arbitrary.

Using the general expression in Eq. (53), we can express the structure constants as

XÂB̂
Ĉ = δγ

α δC
B ξβA − δ

γ

β δC
A ξαB + ηAB δ

γ

β ξC
α , (65)

where ξαA
(= −2 ϑαA

)
takes the form

ξ+A = (
Za, 0, 0

)
, ξ−A = (

fa−+, 0, 0
)
, (66)

and Za and fa −+ can take arbitrary values.
This half-maximal ExDA contains a subalgebra generated by {Ta ≡ T+a, T a ≡ T+a} which

is independent of the structure constants fa −+:

Ta ◦ Tb = Za Tb − Zb Ta, Ta ◦ T b = Za T b + Zc δb
a T c, T a ◦ Tb = T a ◦ T b = 0. (67)

When Za 
= 0 we can choose a particular basis Za = −δ1
a . For example, for D = 3 this Leibniz

algebra DD+ corresponds to the Jacobi–Lie bialgebra ({5, −2 T 1}|{1, 0}) of Ref. [42].

3.3 Coboundary ExDA
Here we explain that some of the Leibniz identities can be understood as the cocycle condition.
Then, following the general discussion of Ref. [24], we find the explicit form of the coboundary
ansatz which automatically solves the cocycle condition.

Let us decompose the embedding tensor as

XÂ = 
Â
a ta + ϑÂ t0. (68)

In d ≥ 6 (where Â = A), the generator R∗ contained in {ta} is proportional to t0, and this ex-
pression is to be understood under the identification


A
∗ = 0, ϑA = −ξA. (69)

We then introduce a grading, called the level, to each generator ta of the duality group G as in
Table 1.
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Table 1. The level for each generator of the duality group G.

Level la −2 −1 0 1 2

ta Ra1a2 RI
a R∗, Rα

β, Ka
b, RIJ Ra

I Ra1a2

The level can be also defined by [K, ta] = la ta, and the commutator of a level-p generator
and a level-q generator has level p + q. In particular, when |p + q| > 2 the level-p and level-
q generators commute with each other. The level-0 generators form a subalgebra, and all of
the generators transform under some representations of the subalgebra. Using this level, we
decompose the embedding tensor 
a (which means 
+a in d = 4) into two parts,


a = 
(0)
a + 
̃a. (70)

Here, 
(0)
a contains the level-0 generators while 
̃a contains the negative-level generators. More

explicitly, we have


(0)
a = (

fab
c − Za δc

b

)
Kb

c + 1
2! fa

IJ RIJ +

⎧⎪⎨⎪⎩
0 (d ≥ 6),
fa R∗ (d = 5),
fa R++ + fa−+ R−+ (d = 4),

(71)


̃a = 1
2! fa

bc Rbc + fa
b

I Rb
I . (72)

By considering the level, the Leibniz identity [XÂ, XB̂] = −XÂB̂
Ĉ XĈ for Â = a and B̂ = b can

be decomposed into

0 =
[

(0)

a , 

(0)
b

]
+ fab

c 
(0)
c , (73)

0 = fab
c ϑc, (74)

0 =
[

(0)

a , 
̃b

]
−

[



(0)
b , 
̃a

]
+ fab

c 
̃c + [

̃a, 
̃b

]
. (75)

The relations in Eqs. (73) and (74) are equivalent to

f[ab
e fc]d

f = 0, fab
c fc

IJ + 2 fa
K[I fb

J]
K = 0, fab

c Zc = 0 (d ≥ 4), (76)

fab
c fc = 0 (d = 4, 5), 2 f[a|−+ f|b] + fab

c fc−+ = 0 (d = 4), (77)

while the relation in Eq. (75) corresponds to

2 f[a
cJ fb]IJ + 2 f[a|d I fd |b]

c − fab
d fd

c
I + 2 f[a|cI Z|b] = 0,

4 f[a
e[c fb]e

d ] − fab
e fe

cd + 2 fa
[c

I fb
d ]I + 4 f[a

cd Zb] = 0. (78)

In order to clarify the structure of Eq. (75), let us define an operation

x · f ≡
[

f , xa 
(0)
a

]
, (79)

where x ≡ xa Ta ∈ g and f is an element of the duality algebra g (G = exp g). Using Eq. (73),
we can show that this operation satisfies

x · (y · f ) − y · (x · f ) = [x, y] · f . (80)

Then, using the notation

f (x) ≡ xa 
̃a, (81)

we can express Eq. (75) as the cocycle condition

δ1 f (x, y) ≡ x · f (y) − y · f (x) − f ([x, y]) − [ f (x), f (y)] = 0. (82)
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The family of coboundary operators δn satisfying δn+1 δn = 0 can be systematically constructed
(see Ref. [24]) and, in particular, δ0 can be found as

δ0r(x) ≡ xa (eadr −1) 
(0)
a =

[
r, xa 
(0)

a

]
+ 1

2!

[
r,

[
r, xa 
(0)

a

]]
+ · · · (83)

for r = ra ta ∈ g.
Now, to get a trivial solution to the cocycle condition, let us suppose that the 1-cocycle f(x)

is given by a coboundary ansatz:

f (x) ≡ xa 
̃a = δ0r(x)
(⇔ 
a = eadr 
(0)

a

)
. (84)

Since 
̃a is a linear combination of the negative-level generators, this identification is possible
only when r has the form

r = ra
I RI

a + 1
2! rab Rab. (85)

Using this r and Eq. (72), we can identify the structure constants as

fa
b

I = fac
b rc

I − faI
J rb

J − Za rb
I , (86)

fa
bc = 2 r[b|d fad

|c] + δIJ fad
[b rc]

I rd
J + fa

IJ rb
I rc

J − 2 Za rbc. (87)

When the structure constants fa
b

I and fa
bc have this form, we call the ExDA a coboundary

ExDA. In the following, we denote the structure constants XÂB̂
Ĉ as XÂB̂

Ĉ when we stress that
the ExDA is of coboundary type.

3.4 Classical Yang–Baxter equations
The coboundary ansatz in Eq. (84) is sufficient for the cocycle condition in Eq. (78), but the
whole set of Leibniz identities is still not ensured. In the case of the Drinfel’d double, the closure
of the algebra further implies the homogeneous CYBE for rab.9

Let us denote the structure constants XÂB̂
Ĉ with fa

b
I = fa

bc = 0 as X̊ÂB̂
Ĉ,

X̊ÂB̂
Ĉ ≡ XÂB̂

Ĉ
∣∣

fa
b

I= fa
bc=0, (88)

which is supposed to satisfy the Leibniz identities

fab
c fc = 0, fab

c Zc = 0, f[ab
e fc]e

d = 0, fab
c fc

IJ + 2 fa
K[I fb

J]
K = 0. (89)

We then consider a constant duality rotation and define

XÂB̂
Ĉ ≡ RÂ

D̂ RB̂
Ê (R−1)F̂

Ĉ X̊D̂Ê
F̂ , (90)

RÂ
B̂ ≡ (

era
I RI

a e
1
2 rab Rab

)
Â

B̂ ∈ G. (91)

This XÂB̂
Ĉ obviously satisfies the Leibniz identities because X̊ÂB̂

Ĉ does. One can easily see that
XaB̂

Ĉ coincides with XaB̂
Ĉ, but the other components do not match and the algebra defined by

XÂB̂
Ĉ is not an ExDA. Now we require that all the components coincide,

XÂB̂
Ĉ = XÂB̂

Ĉ. (92)

Then, we get a coboundary ExDA XÂB̂
Ĉ that automatically satisfies the Leibniz identities.

By explicitly computing all of the components of Eq. (92) in d ≥ 6, we find that Eq. (92) is

9To be more precise, we can relax the homogeneous CYBE to the modified CYBE for the closure, but
here we do not consider such relaxations and consider only a sufficient condition for the closure.
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equivalent to the following set of conditions for ra
I and rab:

ra
I Za = 0, rab Zb = 0, fa[IJ ra

K] = 0, (93)

rb
I rc

J fbc
a + (

rab + 1
2 δKL ra

K rb
L

)
fbIJ = 0, (94)

2 rac fcd
b rd

I + rbc fcI
J ra

J − 1
4 fc

KL rc
I ra

K rb
L = 0, (95)

3 r[a|d | rb|e| fde
c] − 3

4 δIJ fde
[a rb|d | rc]

I re
J = 0. (96)

In d = 5 there is an additional condition,

ra
I

(
fba

b + fa
) = faI

J ra
J . (97)

In d = 4 there are two branches, fa −+ = 0 and fa −+ 
= 0. When fa −+ = 0, we find that(
rab + 1

2 δIJ ra
I rb

J

) (
fcb

c + fb
) = rcd fcd

a (98)

in addition to Eqs. (93)–(97). When fa −+ 
= 0, where the structure constants are given by
Eq. (64), the condition in Eq. (92) is equivalent to

ra
I Za = 0, rab Zb = 0, ra

I fa−+ = 0, rab fb−+ = 0, (99)

which leads to fa
b

I = fa
bc = 0 as expected. The conditions in Eqs. (93)–(96) may be regarded

as the homogeneous CYBE for ra
I and rab. Indeed, they reduce to the standard homogeneous

CYBE when n = 0 and Za = 0.

3.5 Relation to ED + 1(D + 1) EDA
In the particular case n = 0, the half-maximal supergravity can be reproduced from the maximal
supergravity through a Z2 truncation [30,31]. We consider here reproducing the half-maximal
ExDA with n = 0 through a truncation of the ED + 1(D + 1) EDA in the type IIB picture [24].

The ED + 1(D + 1) EDA (D ≤ 6) in the type IIB picture is generated by

TA =
{

Ta, T a
α , T a1a2a3√

3!
, T

a1 ···a5
α√

5!
, T a1···a6,a

}
, (100)

where a = 1, . . . , D and α = 1, 2. For convenience, we show the explicit form of the EDA for
D ≤ 4 (the algebra for higher D is given in [24, Sect. 6]):

Ta ◦ Tb = fab
c Tc,

Ta ◦ T b
β = fa

cb
β Tc + faβ

γ T b
γ − fac

b T c
β + 2 Za T b

β ,

Ta ◦ T b1b2b3 = fa
cb1b2b3 Tc + 3 εγ δ fa

[b1b2
γ T b3]

δ − 3 fac
[b1 T b2b3]c + 4 Za T b1b2b3,

T a
α ◦ Tb = fb

ac
α Tc + 2 δa

[b fc]α
γ T c

γ + fbc
a T c

α + 4 Zc δ
[a
b T c]

α ,

T a
α ◦ T b

β = − fc
ab
α T c

β − fcα
γ εγβ T cab + 1

2 εαβ fc1c2
a T c1c2b − 2 εαβ Zc T abc,

T a
α ◦ T b1b2b3 = −3 fc

a[b1
α T b2b3]c,

T a1a2a3 ◦ Tb = − fb
ca1a2a3 Tc − 6 εγ δ f[b|[a1a2

γ δ
a3]
|c] T c

δ

+ 3 fbc
[a1 T a2a3]c + 3 fc1c2

[a1 δ
a2
b T a3]c1c2 + 16 Zc δ

[a1

b T a2a3c],

T a1a2a3 ◦ T b
β = − fc

a1a2a3b T c
β + 3 fc

[a1a2
β T a3]bc,

T a1a2a3 ◦ T b1b2b3 = −3 fc
a1a2a3[b1 T b2b3]c. (101)
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For the general case D ≤ 6 we introduce a Z2 action{
Ta, T a

1 , T a1···a5
2 , T 1···6,a} → +{

Ta, T a
1 , T a1···a5

2 , T a1···a6,a
}
,{

T a
2 , T a1a2a3, T a1···a5

1

} → −{
T a

2 , T a1a2a3, T a1···a5
1

}
, (102)

which is an element of ED + 1(D + 1), and truncate the Z2-odd generators. Under this Z2 action,
the ED + 1(D + 1) generators,{

R1
a1···a6

,
Ra1 ···a4√

4!
,

R2
a1a2√

2!
, R1

2, R2
1,

R
a1a2
2√

2!
, Ra1 ···a4√

4!
, Ra1···a6

1

}
, (103)

have odd parity while the other Z2-even generators,{
R2

a1···a6
,

R1
a1a2√

2!
, R1

1, Ka
b,

R
a1a2
1√

2!
, Ra1···a6

2

}
, (104)

form a subgroup that coincides with the duality group G of the half-maximal theory with n
= 0. In d ≥ 4, the relation between the O(D, D) generators

{ Rab√
2!
, Ka

b,
Rab√

2!

}
and the Z2-even

generators can be identified as

Ka
b ≡ Ka

b − δa
b

( 1
8 Kc

c + 1
2 R1

1
)
, Rab ≡ −Rab

1 , Rab ≡ −R1
ab. (105)

In d = 4, the SL(2) generators Rα
β can be identified as

R++ ≡ 1
8 Ka

a + 1
2 R1

1, R+− ≡ −R1···6
2 , R−+ ≡ R2

1···6. (106)

In d ≥ 5, the generators R2
1···6 and Ra1···a6

2 vanish and we identify the R+
d generator as

R∗ ≡ 1
8 Ka

a + 1
2 R1

1. (107)

Now we turn off the structure constants associated with Z2-odd generators,

fa
b1b2
2 = fa

b1···b6
1 = fa1

2 = fa2
1 = 0. (108)

Then the embedding tensors XA of the EDA associated with the Z2-even generators TÂ are

Xa = fab
c K̃b

c + 2 fa1
1 R1

1 + 1
2! fa

b1b2
1 R1

b1b2
+ fa

1···6
2 R2

1···6 − Za
(
K̃b

b + t0
)
,

X a
1 = − fb

ca
1 K̃b

c − 1
2!

[
fb1b2

a + 2 δa
[b1

(
fb2]1

1 + 2 Zb2]
)]

Rb1b2
1 ,

X a1···a5
2 = − fb

ca1···a5
2 K̃b

c + (
fbc

c + fb1
1 − 6 Zb

)
Ra1···a5b

2 ,

X a1···a6,a = − fb
a1···a6
2 Rab

1 − fb
ab
1 Ra1···a6

2 , (109)

while those associated with the Z2-odd generators are

X a
2 = − 1

2!

[
fb1b2

a − 2 δa
[b1

(
fb2]1

1 − 2 Zb2]
)]

Rb1b2
2 ,

X a1a2a3 = −3 fb
[a1a2
1 Ra3]b

2 − 3
2 fb1b2

[a1 Ra2a3]b1b2 − 4 Zb Ra1a2a3b,

X a1···a5
1 = 10 fb

[a1a2
1 Ra3a4a5]b + (

fbc
c − fb1

1 − 6 Zb
)

Ra1···a5b
1 . (110)

Here we have defined K̃a
b ≡ Ka

b + βd t0. By comparing Eq. (109) with Eqs. (43)–(48) under
the identification in Eqs. (105)–(107) and the identification of generators⎧⎪⎨⎪⎩

Ta = Ta, T a = T a
1 (d ≥ 6),

Ta = Ta, T a = T a
1 , T∗ = T 1···5

2 (d = 5),
T+a = Ta, T+a = T a

1 , T−a = 1
5! εab1···b5 T b1···b5

2 , T−a = T 1···6,a (d = 4),
(111)

we can identify the structure constants of the half-maximal ExDA (the left-hand side) with
those of the EDA (the right-hand side) as

fab
c = fab

c, fa
bc = − fa

bc
1 , Za = Za + 1

2 fa1
1 (d ≥ 4),

fa = fab
b + 8−D

2 fa1
1 − D Za (d = 4, 5), fa−+ = fa

1···6
2 (d = 4). (112)
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In this way, the half-maximal ExDA with n = 0 can be obtained from the ED + 1(D + 1) EDA
through the Z2 truncation. However, we note that, due to the truncation, the closure conditions
(i.e. the Leibniz identities) can become weaker. In other words, not all of the half-maximal
ExDA (with n = 0) can be embedded into the ED + 1(D + 1) EDA through Eq. (111). Further
details on this point are discussed in Set. 5.2.

4. Generalized frame fields
In this section we construct the generalized frame fields EÂ

M̂ which satisfy the algebra
[EÂ, EB̂]D = −XÂB̂

Ĉ EĈ. Before we get into the details, let us introduce several setups that are
common to all dimensions.

We construct a group element g = exa Ta ∈ G and define the left-/right-invariant 1-form/vector
fields as

� = �a
m dxm Ta = g−1 dg, r = ra

m dxm Ta = dg g−1, vm
a �b

m = δb
a = em

a rb
m. (113)

We then define a matrix MÂ
B̂(g) through

g−1 � TÂ ≡ MÂ
B̂(g) TB̂, (114)

where the product � is defined as

g � TÂ ≡ exb Tb◦ TÂ = TÂ + xb Tb ◦ TÂ + 1
2! xb Tb ◦ (

xc Tc ◦ TÂ

) + · · · . (115)

By its construction, the matrix MÂ
B̂(g) enjoys the following three properties [24]:

MÂ
B̂(g = 1) = δB̂

Â
, (116)

XÂB̂
Ĉ = MÂ

D̂ MB̂
Ê (M−1)F̂

Ĉ XD̂Ê
F̂ (algebraic identity), (117)

MÂ
B̂(gh) = MÂ

Ĉ (g) MĈ
B̂(h) (multiplicativity), (118)

where the first one follows from the last one by choosing g = h = 1. In Eq. (118), by considering
an infinitesimal left translation g = 1 + εa Ta, we obtain the differential identity

MÂ
D̂ Dc(M−1)D̂

B̂ = XcÂ
B̂, (119)

where Da ≡ em
a ∂m. Combining the algebraic and the differential identities, we also find that

vm
c ∂m(M−1)Â

D̂ MD̂
B̂ = XcÂ

B̂. (120)

In the following, we elucidate these relations in each dimension. Then, we construct the gener-
alized frame fields in Sect. 4.2. In Sect. 4.2.3, we show that the generalized frame fields satisfy
the relation [EÂ, EB̂]D = −XÂB̂

Ĉ EĈ.

4.1 Generalized Poisson–Lie structures
4.1.1 d ≥ 5. In this case we can parameterize the matrix MÂ

B̂ as

MÂ
B̂ = �Â

Ĉ AĈ
B̂, � ≡ e−πa

I RI
a e− 1

2! πab Rab, (121)

A ≡ e� (K+t0 ) e−λ (R∗+βd t0 ) e− 1
2! βIJ RIJ e−αa

b Ka
b . (122)

When d ≥ 6 we have R∗ + βd t0 = 0 and λ does not appear. In d = 5, their explicit matrix forms
are given by
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AÂ
B̂ ≡

⎛⎜⎜⎜⎝
aa

b 0 0 0
0 e−� ωI

J 0 0
0 0 e−2�(a−1)b

a 0
0 0 0 eλ−�

⎞⎟⎟⎟⎠, (123)

�Â
B̂ ≡

⎛⎜⎜⎜⎝
δb

a 0 0 0
πb

I δJ
I 0 0

−(
πab + 1

2 δKL πa
K πb

L

) −πa
K δKJ δa

b 0
0 0 0 1

⎞⎟⎟⎟⎠, (124)

where ωI
J ∈ O(n), i.e. δKL ωI

K ωJ
L = δIJ . In d ≥ 6, they can be obtained by truncating the last

row/column.
The property in Eq. (116) shows that, at the unit element g = 1 (whose position is called x0),

we have

�(x0) = πa
I (x0) = πab(x0) = 0

(d=5)= λ(x0), aa
b(x0) = δb

a, ωI
J (x0) = δJ

I . (125)

In d ≥ 6, the algebraic identity in Eq. (117) is equivalent to

aa
d ab

e fde
c = fab

d ad
c, aa

b ωI
K ωJ

L fbKL = faIJ, aa
b Zb = Za, (126)

e−� aa
c (a−1)d

b fc
d

J ωI
J = fa

b
I − faIJ πbJ + fac

b π c
I − Za πb

I , (127)

e−2� aa
e (a−1) f

b (a−1)g
c fe

f g

= fa
bc − 2 fad

[b π c]d − 2 Za πbc + 2 fa
[b

I π c]I + fad
[b π c]I πd

I + fa
IJ πb

I π c
J , (128)

fa[IJ πa
K] = 0, Za πa

I = 0, Zb πba = 0, (129)

fbc
a πb

I π c
J = 2 fb

a
[I πb

J] + fbIJ πba − 1
2 fbIJ πaK πb

K , (130)

fc
ab π c

I + 2 fcd
[a πb]c πd

I + 2 fc
[a

I πb]c + fe
[a

J πb]Jπ e
I

+ fcIJ π [a|J (
π c|b] − 1

2 πb]K π c
K

) = 0, (131)

3 fd
[ab (

π c]d + 1
6 π c]I πd

I

) + 3 fde
[a πb|d | (π c]e + 1

3 π
c]
I π eI) − 6 π [ab π c]d Zd

+ 2 fd
[a

I πb|I| (π c]d + 1
4 π c]J πd

J

) + 1
4 fd

IJ π
[a
I πb

J

(
π c]d + 1

2 π c]K πd
K

) = 0. (132)

In d = 5 we additionally have

aa
b fb = fa, fa πa

I = fa
a

I − e−� ωI
J fa

a
J . (133)

The relation in Eq. (118) is equivalent to

(agh)a
b = (ag)a

c (ah)c
b, (ωgh)I

J = (ωg)I
K (ωh)K

J, �gh = �g + �h, (134)

(
πgh

)a
I = (

πg
)a

I + e−�g
(
a−1

g

)
b

a (πh)b
J

(
ωg

)
I

J, (135)

πab
gh = πab

g + e−2�g
(
a−1

g

)
c

a (
a−1

g

)
d

b π cd
h + e−�g ωIJ

g

(
πg

)[a
I

(
a−1

g

)
c

b] (πh)c
J , (136)

λgh = λg + λh (only in d = 5). (137)
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This may be interpreted as multiplicativity (see, for example, Ref. [43]). The differential identity
in Eq. (119) is equivalent to

Daab
c = − fab

d ad
c, DaωI

J = − faI
K ωK

J, Da� = Za, (138)

Daπ
b
I = fa

b
I + fac

b π c
I − faI

J πb
J − Za πb

I , (139)

Daπ
bc = fa

bc + 2 fad
[b π |d |c] + δIJ fa

[b
I π

c]
J − 2 Za πbc, (140)

Daλ = fa (only in d = 5). (141)

Moreover, if we define the (generalized) Poisson–Lie structures as

πmn ≡ e2� πab em
a en

b, πm
I ≡ e� πa

J ωJ
I em

a , (142)

the relation in Eq. (120) shows nice properties under an infinitesimal right translation:

£vaab
c = −ab

d fad
b, £vaωI

J = −ωIK fa
KJ, £va� = Za, (143)

£vaπ
m
I = fa

b
I vm

b − fa
J

I πm
J + Za πm

I , (144)

£vaπ
mn = fa

bc vm
b vn

c + δIJ fa
b

I π
[m
J vn]

b + 2 Za πmn, (145)

£vaλ = fa (only in d = 5). (146)

4.1.2 d = 4. In d = 4 we can parameterize the matrix MÂ
B̂ as

MÂ
B̂ = �Â

Ĉ AĈ
B̂, � ≡ e−πa

I RI
a e− 1

2! πab Rab, (147)

A ≡ e� (K+t0 ) e−γ R−+ e−λ (R+++ 1
2 t0 ) e− 1

2! βIJ RIJ e−αa
b Ka

b, (148)

namely

AÂ
B̂ ≡ e

λ
2

⎛⎜⎝λα
β aa

b 0 0
0 e−� λα

β ωI
J 0

0 0 e−2� λα
β (a−1)b

a

⎞⎟⎠, λα
β ≡

(
e− λ

2 0
− e− λ

2 γ e
λ
2

)
, (149)

�Â
B̂ ≡

⎛⎜⎝ δβ
α δb

a 0 0
δβ
α πb

I δβ
α δJ

I 0
−δβ

α

(
πab + 1

2 δKL πa
K πb

L

) −δβ
α πa

K δKJ δβ
α δa

b

⎞⎟⎠, (150)

where ωI
J ∈ O(n). At the unit element g = 1, we have

λ(x0) = γ (x0) = �(x0) = πa
I (x0) = πab(x0) = 0, aa

b(x0) = δb
a, ωI

J (x0) = δJ
I . (151)

The algebraic identity is complicated in d = 4. If we define

AÂ,B̂
Ĉ ≡ XÂB̂

D̂ MD̂
Ĉ − MÂ

D̂ MB̂
Ê XD̂Ê

Ĉ, (152)

the algebraic identity A+a, +b
+c = 0 gives aa

d ab
e fde

c = fab
d ad

c, and A+a, −b
+c = 0 gives

aa
b fb−+ = e−λ

(
fa−+ + γ fa

)
. (153)

Then, A−a, +b
+c = 0 further gives

γ
(

fab
c − 2 f[a δc

b]

) = 0, (154)
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which shows that γ can be non-zero only when fab
c takes the special form fab

c = 2 f[a δc
b]. This

is consistent with the discussion in Sect. 3.2.2. The field γ is produced by the structure constant
fa −+, and the non-vanishing fa −+ strongly restricts the other structure constants. If we choose
the branch fa −+ = 0 (where γ = 0), we can identify the whole set of algebraic identities. We
find that the algebraic identity in Eq. (117) is equivalent to Eqs. (126)–(133) and

fb πba = 2 fbc
[a π c]b + fb

a
I πbI + 1

2 fbIJ πaI πbJ . (155)

If we instead choose the other branch, fa −+ 
= 0, the algebraic identity is equivalent to

aa
b Zb = 0, aa

b fb−+ = e−λ
(

fa−+ + γ fa
)
. (156)

The multiplicativity in Eq. (118) can be easily identified. In general, it is equivalent to

(agh)a
b = (ag)a

c (ah)c
b, (ωgh)I

J = (ωg)I
K (ωh)K

J, (157)

λgh = λg + λh, �gh = �g + �h, γgh = γg + eλg γh, (158)

(
πgh

)a
I = (

πg
)a

I + e−�g
(
a−1

g

)
b

a (πh)b
J

(
ωg

)
I

J, (159)

πab
gh = πab

g + e−2�g
(
a−1

g

)
c

a (
a−1

g

)
d

b π cd
h + e−�g ωIJ

g

(
πg

)[a
I

(
a−1

g

)
c

b] (πh)c
J . (160)

The differential identity in Eq. (119) reads

Daab
c = − fab

d ad
c, DaωI

J = − faI
K ωK

J, (161)

Daγ = fa−+ + fa γ , Daλ = fa, Da� = Za, (162)

Daπ
b
I = fa

b
I + fac

b π c
I − faI

J πb
J − Za πb

I , (163)

Daπ
bc = fa

bc + 2 fad
[b π |d |c] + δIJ fa

[b
I π

c]
J − 2 Za πbc. (164)

If we define the (generalized) Poisson–Lie structures as Eq. (142), Eq. (120) gives

£vaab
c = −ab

d fad
b, £vaωI

J = −ωIK fa
KJ, (165)

£vaγ = eλ fa−+, £vaλ = fa, £va� = Za, (166)

£vaπ
m
I = fa

b
I vm

b − fa
J

I πm
J + Za πm

I , (167)

£vaπ
mn = fa

bc vm
b vn

c + δIJ fa
b

I π
[m
J vn]

b + 2 Za πmn. (168)

4.1.3 Poisson–Lie structure for coboundary ExDAs. For a general half-maximal ExDA, in
order to find the explicit form of πm

I and πmn we need to compute the adjoint-like action,
Eq. (114). However, when the ExDA is a coboundary ExDA, we can generally solve the dif-
ferential equations in Eqs. (144) and (145) (or Eqs. (167) and (168) in d = 4). The solutions
are

πm
I = ra

I vm
c − e� ra

J ωJ
I em

a , πmn = rab (
vm

a vn
b − e2� em

a en
b

) + e� ωIJ ra
I π

[m
J en]

a . (169)
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By using £vav
m
b = fab

c vm
c , £vae

m
b = 0, and the differential identities, one can easily see that they

indeed satisfy Eqs. (144) and (145) (or Eqs. (167) and (168) in d = 4). They also satisfy πm
I (x0) =

0 and πmn(x0) = 0.

4.2 Generalized frame fields
The generalized frame fields EÂ

M̂ are constructed as

EÂ
M̂ ≡ MÂ

B̂ VB̂
M̂ (170)

by using certain generalized frame fields VÂ
M̂ . Here, by choosing VÂ

M̂ appropriately, we can
show that the EÂ

M̂ satisfy the frame algebra

[EÂ, EB̂]D = −XÂB̂
Ĉ EĈ. (171)

The explicit forms of the generalized frame fields VÂ
M̂ and EÂ

M̂ in each dimension are found
in the following subsections.

4.2.1 d ≥ 5. In this case we introduce a set of generalized vector fields as

VÂ
M̂ =

⎛⎜⎜⎜⎝
vm

a 0 0 0
0 δII 0 0
0 0 �a

m 0
0 0 0 e−2 d

⎞⎟⎟⎟⎠, e−2 d ≡ ∣∣det �a
m

∣∣. (172)

Here, we note that the last row/column vanishes in d ≥ 6. We also note that e−2 d behaves as a
scalar density, which is consistent with the comments below Eq. (19). We can easily show that
they satisfy the algebra

[VÂ,VB̂]D = X̊ÂB̂
Ĉ VĈ, (173)

where X̊ÂB̂
Ĉ denotes the structure constants of the half-maximal ExDA XÂB̂

Ĉ with only
fab

c and fa = fab
b (i.e. the other structure constants are truncated). Then, using Eq. (170)

and the parameterization of MÂ
B̂, we find that the generalized frame fields are given

by

EÂ
M̂ =

⎛⎜⎜⎜⎝
em

a 0 0 0
πb

I em
b e−� ωI

I 0 0
−(

πab + 1
2 δKL πa

K πb
L

)
em

b − e−� πa
K ωKI e−2� ra

m 0
0 0 0 eλ̄−�

⎞⎟⎟⎟⎠, (174)

where we have defined λ̄ ≡ λ − 2 d and used em
a = aa

b vm
b and ra

m = (a−1)b
a �b

m. If we consider
the generalized vector fields EÂ

M̂ ∂M̂ , they can be decomposed as

Ea = ea,

EI = e−� ωI
I (

πm
I ∂m + ∂I

)
,

Ea = e−2� ra
m

[−(
πmn + 1

2 δKL πm
K πn

L
)
∂n − πmI ∂I + ∂̃m]

,

E∗ = eλ̄−� ∂∗, (175)

where πm
I ≡ δJ

I πm
J .
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4.2.2 d = 4. In d = 4 we consider

VÂ
M̂ = e−d

⎛⎜⎝sα
β vm

a 0 0
0 sα

β δII 0
0 0 sα

β �a
m

⎞⎟⎠, sα
β ≡

(
ed 0
0 e−d

)
, e−2 d ≡ ∣∣det �a

m

∣∣, (176)

which again satisfy the algebra in Eq. (173) in d = 4. We then obtain the generalized frame fields
as

EÂ
M̂ = e

λ̄
2

⎛⎜⎝ λ̄α
β em

a 0 0
λ̄α

β πb
I em

a e−� λ̄α
β ωI

J 0
−λ̄α

β
(
πab + 1

2 δKL πa
K πb

L

)
em

b − e−� λ̄α
β πa

K ωKJ e−2� λ̄α
β ra

m

⎞⎟⎠, (177)

where

s̄ ≡
(

e− λ̄
2 0

− e− λ̄
2 γ e

λ̄
2

)
, λ̄ ≡ λ − 2 d . (178)

4.2.3 Generalized parallelizability. Now we show the relation in Eq. (171), i.e. the generalized
parallelizability. This can be shown by using the above parameterizations of EÂ

M̂ , the defini-
tion of the generalized Lie derivative, the algebraic identities, and the differential identities.
However, this requires a relatively long calculation. Here we show the relation by following the
general proof given in Ref. [24].

Let us define the Weitzenböck connection associated with VÂ
M̂ as

ŴÂB̂
Ĉ ≡ VB̂

M̂ VÂ
N̂ ∂N̂VM̂

Ĉ. (179)

Then, the Weitzenböck connection �ÂB̂
Ĉ associated with EÂ

M̂ can be expressed as

�ÂB̂
Ĉ = MÂ

D̂ [
MB̂

Ê (M−1)F̂
Ĉ ŴD̂Ê

F̂ + VD̂
M̂ (M ∂M̂M−1)B̂

Ĉ]
, (180)

and the generalized fluxes X ÂB̂
Ĉ associated with EÂ

M̂ become

X ÂB̂
Ĉ = �ÂB̂

Ĉ − �ĈÂ
B̂ + Y ĈÊ

D̂B̂
�ÊÂ

D̂. (181)

Our task is to prove that X ÂB̂
Ĉ = XÂB̂

Ĉ.
Since we are choosing the section ∂m 
= 0, we have ŴÂB̂

Ĉ = δd
Â

ŴdB̂
Ĉ, where the matrix

(Ŵa)B̂
Ĉ ≡ ŴaB̂

Ĉ is given by

Ŵa = kba
c Kb

c + kda
d (R̃ + βd t0), kab

c ≡ vm
a vn

b ∂n�
c
m. (182)

Here, R̃ ≡ R∗ in d ≥ 5 while R̃ ≡ R++ in d = 4, and R̃ + βd t0 = 0 in d ≥ 6. Using the differential
identity

VD̂
M̂ (M ∂M̂M−1)B̂

Ĉ = δ+e
D̂

(a−1)e
f XeB̂

Ĉ (183)

and the algebraic identity

(a−1)e
f XeB̂

Ĉ = MB̂
D̂ (M−1)Ê

Ĉ XeD̂
Ê , (184)

the Weitzenböck connection �ÂB̂
Ĉ can be expressed as

�ÂB̂
Ĉ = MÂ

D̂ MB̂
Ê (M−1)F̂

Ĉ �̃D̂Ê
F̂ , �̃ÂB̂

Ĉ ≡ δd
Â

(
�̃d

)
B̂

Ĉ, (185)

�̃a ≡ Ŵa + Xa = Xa + kba
c Kb

c + kda
d (R̃ + βd t0). (186)

Now, we find a key identity,


a = Xa + kba
c Kb

c + kba
b (R̃ + βd t0), (187)
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which can be easily seen in each dimension by comparing the explicit forms of 
a and Xa (for
example, Eqs. (37) and (43) in d = 4). Using k[ab]

c = k[ab]
c = 1

2 fab
c, this becomes

�̃a = 
a + k(ab)
c [

Kb
c + δb

c (R̃ + βd t0)
]
. (188)

Moreover, as we observed in Sect. 3.1, the symmetric part k(ab)
c of kab

c does not contribute to
the generalized fluxes. Taking this into account, we can conclude that

�̃ÂB̂
Ĉ = 
ÂB̂

Ĉ + N ÂB̂
Ĉ, (189)

where N ÂB̂
Ĉ (which contains k(ab)

c) does not contribute to the generalized fluxes:

N ÂB̂
Ĉ − N ĈÂ

B̂ + Y ĈÊ
D̂B̂

N ÊÂ
D̂ = 0. (190)

Then, using the duality invariance of the Y-tensor, we find

X ÂB̂
Ĉ = MÂ

D̂ MB̂
Ê (M−1)F̂

Ĉ (

ÂB̂

Ĉ − 
ĈÂ
B̂ + Y ĈÊ

D̂B̂

ÊÂ

D̂)
= MÂ

D̂ MB̂
Ê (M−1)F̂

Ĉ XD̂Ê
F̂ = XÂB̂

Ĉ. (191)

This completes the proof that the generalized fluxes X ÂB̂
Ĉ coincide with the structure constants

XÂB̂
Ĉ of the half-maximal ExDA.

Before closing this section, let us comment on the non-geometric R-fluxes. By looking at the
structure constants of the half-maximal ExDA, we find that Xabc = 0 and XIJ

a = 0. Then, the
generalized parallelizability shows that X abc = 0 and X IJ

a = 0. Here, X abc is known as the non-
geometric R-flux and X IJ

a will also be a similar quantity. By computing these fluxes without
using the algebraic or differential identity, we find

− e2� em
a ωI

K ωJ
L X KL

a = 2 πn
[I ∂nπ

m
J] + (

πmn + 1
2 πmL πn

L

)
∂nωKI ωK

J

+ δIJ
(
πmn + 1

2 πmK πn
K

)
∂n�, (192)

− e4� em
a en

b ep
c X abc = 3

(
π [m|q + 1

2 πqI π
[m
I

) (
∂qπ

np] + πn
J ∂qπ

p]J). (193)

For example, if we set n = 0, the disappearance of these fluxes reduces to

3 π [m|q ∂qπ
np] = 0, (194)

which shows that πmn is a Poisson tensor. We thus regard

2 πn
[I ∂nπ

m
J] + (

πmn + 1
2 πmL πn

L

)
∂nωKI ωK

J + δIJ
(
πmn + 1

2 πmK πn
K

)
∂n� = 0, (195)

3
(
π [m|q + 1

2 πqI π
[m
I

) (
∂qπ

np] + πn
J ∂qπ

p]J
) = 0 (196)

as the definition of the generalized Poisson tensors.

5. Subalgebra and upliftability
In this section we restrict ourselves to the simplest case, n = 0.

5.1 Subalgebra DD+

As mentioned in Sect. 3.1, the half-maximal ExDA in d ≥ 6 is exactly the DD+, whose algebra
is

Ta ◦ Tb = fab
c Tc, T a ◦ T b = fc

ab T c,

Ta ◦ T b = fa
bc Tc − fac

b T c + 2 Za T b,

T a ◦ Tb = − fb
ac Tc + (

fbc
a + 2 δa

b Zc − 2 δa
c Zb

)
T c. (197)
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The Leibniz identities can be summarized as

f[ab
e fc]e

d = 0, 4 f[a
e[c fb]e

d ] − fab
e fe

cd + 4 f[a
cd Zb] = 0, (198)

fe
[ab fd

c]e = 0, fab
c Zc = 0, fa

bc Zc = 0. (199)

If we consider d = 5, 4, the DD+ is realized as a subalgebra of the half-maximal ExDA. How-
ever, the Leibniz identities in Eqs. (60) or (63) of the half-maximal ExDA give additional con-
ditions on the structure constants of the DD+,

fa
cd fcd

b = fa
bc ηc, fab

c ηc = 0
(
ηa ≡ fa − fab

b). (200)

This shows that a DD+ which does not satisfy Eq. (200) cannot be embedded into (or uplifted
to) a half-maximal ExDA in d = 5, 4. Since fa (or ηa) does not appear in the subalgebra in
Eq. (197), it can be chosen arbitrarily such that the uplift condition in Eq. (200) is satisfied.
Here, we consider three sufficient conditions for the conditions in Eq. (200) to be satisfied.

� If we consider a DD+ satisfying

fa
bc fbc

d = 0, (201)

we can always find the trivial solution of Eq. (200), namely ηa = 0 (or fa = fab
b). Therefore,

an arbitrary DD+ satisfying Eq. (201) can be embedded into a half-maximal ExDA.
� Let us also consider a DD+ where the dual algebra is unimodular,

fb
ba = 0. (202)

In this case, the condition in Eq. (200) reduces to

fab
c fc = 0, fa

bc fc = 0, (203)

where we have used Eq. (199). Again, due to the existence of the trivial solution fa = 0, a
DD+ with fb

ba = 0 always has an uplift into a half-maximal ExDA.
� If we define

ζa ≡ fa + fab
b, (204)

we find that the condition in Eq. (200) is equivalent to

fab
c ζc = 0, 3 fa

[bc fbc
d ] = fa

dc ζc. (205)

This shows that a DD+ satisfying

3 fa
[bc fbc

d ] = 0 (206)

also has an uplift into a half-maximal ExDA (with fa = −fab
b).

5.2 Upliftability to EDA
As discussed in Sect. 3.5, a Z2 truncation of an ED + 1(D + 1) EDA gives a half-maximal ExDA.
However, similar to the discussion given in the previous subsection, not all of the half-maximal
ExDAs can be uplifted to an ED + 1(D + 1) EDA. Here we identify the condition that the half-
maximal ExDA can be uplifted to an ED + 1(D + 1) EDA by restricting ourselves to the cases D
≤ 3 (i.e. d ≥ 7).

For D ≤ 3 the EDA is given by Eq. (101) with fa
b1···b4 = 0. As explained in Sect. 3.5, this EDA

contains the half-maximal ExDA as a subalgebra when fa1
2 = 0 is satisfied. The whole set of
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Leibniz identities of the EDA can be found as

f[ab
e fc]e

d = 0, faγ
β fbβ

δ − fbγ
β faβ

δ + fab
c fcγ

δ = 0, fab
c Zc = 0, (207)

4 f[a|d[c1| f|b]
d|c2]
γ − fab

d fd
c1c2
γ − 2 f[a|γ δ f|b]

c1c2
δ − 4 Z[a fb]

c1c2
γ = 0, (208)

fa
bc
γ fcα

γ + 2 fa
bc
α Zc = 0, fc

da
α fd

b1b2
β − 2 fd

a[b1
α fc

b2]d
β = 0, (209)

fc1c2
a fb

c1c2
α = 4 fb

ac
γ fcα

γ . (210)

When fa1
2 = fa2

1 = fa
b1b2
2 = 0 are satisfied, the identification

fab
c = fab

c, fa
bc = − fa

bc
1 , Za = Za + 1

2 fa1
1 (211)

shows that the conditions in Eqs. (207)–(209) are equivalent to the Leibniz identities of the half-
maximal ExDA given in Eq. (59). The condition in Eq. (210) additionally requires the following
condition on the structure constants of the half-maximal ExDA:

fa
c1c2 fc1c2

b = fa
bc ηc, fab

c ηc = 0, (212)

where ηa ≡ 4 fa1
1. Namely, Eq. (212) is the uplift condition for D ≤ 3 and, interestingly, this

has the same form as Eq. (200). If we can find a certain ηa satisfying this condition, the half-
maximal ExDA can be embedded into the EDA with Za and fa1

1 given by

Za = Za − 1
8 ηa, fa1

1 = 1
4 ηa. (213)

If there is no solution for ηa, the half-maximal EDA does not have an uplift to EDA. For
example, if fc1c2

a fb
c1c2 = 0 is satisfied, there is a trivial solution ηa = 0 and the half-maximal

ExDA (or a DD+) has an uplift to EDA.
We note that the uplift condition in Eq. (212) is not duality covariant. It is not even symmetric

under fab
c↔fc

ab. Accordingly, the uplift condition in EQ. (212) (or Eq. (200)) depends on the
choice of the Manin triple. Even if a Manin triple (g|g̃) is upliftable, the dual (g̃|g) may not be
upliftable. The same Drinfel’d double may have another inequivalent Manin triple (g′|g̃′), but
to check its upliftability, we again need to look at the condition in Eq. (212).

A similar uplift condition which is duality covariant has been discussed in Refs. [31,34,35,44].
By assuming the absence of the trombone gauging, the condition for an embedding tensor of
half-maximal supergravity to be upliftable to that of maximal supergravity can be written as

FABC F ABC = 0. (214)

For the half-maximal ExDA, this can also be expressed as

fab
c fc

ab = 0. (215)

The similarity between Eqs. (212) and (215) was pointed out in Ref. [45]. As discussed in
Refs. [34,35], the condition in Eq. (214) is a consequence of the section condition in DFT (if
we assume the absence of the dilaton flux FA), and a violation of this condition is a sign of
non-geometry. In the context of the PL T-duality, for any Drinfel’d double we can construct
the generalized frame fields EA

M satisfying the algebra [EA, EB]D = −XAB
C EC in such a way

that the EA
M depend only on the physical coordinates. Then, a natural question is why the sec-

tion condition can be broken. The answer is related to the DFT dilation. Assuming the absence
of the dilaton flux FA, the DFT dilaton has the general form e−2d = e−� |det �a

m|. This depends
only on the physical coordinates, but when we have fb

ba 
= 0 we need to shift the derivative of
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the dilaton as [16]

∂Md → ∂Md + (0, Im), Im ≡ 1
2 fb

ba vm
a . (216)

This vector field Im should be identified as the Killing vector field in the generalized supergravity
equations of motion, and the Killing equations are equivalent to the section condition of DFT
[46,47]. The Killing equations for the metric, the B-field, and � are ensured by the Leibniz
identities, but the Killing equation for the dilaton, in particular

£I ln
∣∣det �a

m

∣∣ = 1
2 fb

ba �m
c £va�

c
m = − 1

2 fb
ba fac

c = 0, (217)

is not ensured. Indeed, under the Leibniz identities, Eq. (217) is exactly the condition in
Eq. (215).

In the next section we consider concrete examples where the condition in Eq. (215) is vio-
lated. There, assuming FA = 0, the DFT dilaton indeed breaks the section condition. Since the
condition in Eq. (215) is broken, the algebra does not have an uplift to any EDA with vanishing
trombone gauging. However, if the uplift condition in Eq. (212) is satisfied, the half-maximal
ExDA can be embedded into an EDA. This is possible because the EDA has a non-vanishing
trombone gauging, and the condition in Eq. (214) does not apply. Thus, the two conditions in
Eqs. (212) and (214) are different conditions. If one repeats the analysis of Refs. [31,34,35,44]
by allowing for the trombone gauging, one may find the upliftablity condition that modifies the
condition in Eq. (214). Then the condition will be weaker than Eq. (212).

6. Examples
In this section we show several examples of half-maximal ExDAs. We begin with four low-
dimensional examples with n = 0, where the half-maximal ExDA are DD+/ After that, we
consider more complicated examples with n > 0.

6.1 Examples with n = 0
Example 1 (5.iii|60|b) Let us consider a Manin triple (5.iii|60|b) (b 
= 0) [48] whose structure
constants are

f23
2 = −b, f13

1 = −b, f1
23 = 1, f2

13 = 1. (218)

We also introduce Abelian generators {T4, T4} and consider an eight-dimensional Lie algebra.
By introducing the coordinates xm = (x, y, z, w) and a parameterization g = ex T1 ey T2 ez T3 ew T4 ,
the right-invariant vector fields and the Poisson–Lie structure become

ea
m =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0

b x b y 1 0
0 0 0 1

⎞⎟⎟⎟⎠, πmn =

⎛⎜⎜⎜⎝
0 − b (x2−y2 )

2 y 0
b (x2−y2 )

2 0 x 0
−y −x 0 0
0 0 0 0

⎞⎟⎟⎟⎠, � = 0. (219)

They construct the generalized frame fields EA
M that satisfy [EA, EB]D = −XAB

C EC.
This ExDA satisfies f1

ab fab
2 = −2 b and f2

ab fab
1 = −2 b, and by introducing

η1 = η2 = 0, η3 = −2 b, η4 : arbitrary (220)

the uplift condition in Eq. (212) is satisfied. Thus, this is upliftable to an SO(5, 5) EDA.
Example 2 (60|5.iii|b)
Let us consider the T-dual of the previous example,

f23
1 = 1, f13

2 = 1, f2
23 = −b, f1

13 = −b. (221)
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Using the same parameterization as in the previous example, we obtain

ea
m =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0

−y −x 1 0
0 0 0 1

⎞⎟⎟⎟⎠, πmn =

⎛⎜⎜⎜⎝
0 b (x2−y2 )

2 −b x 0

− b (x2−y2 )
2 0 −b y 0

b x b y 0 0
0 0 0 0

⎞⎟⎟⎟⎠, � = 0. (222)

In this case, the uplift condition cannot be satisfied for any fa and this does not have an uplift
to the SO(5, 5) EDA. However, since the condition in Eq. (215) is satisfied, this can be uplifted
to some flux configuration in maximal supergravity. The explicit form of the algebra can be
found by acting T-dualities in all directions on the SO(5, 5) EDA obtained in the previous
example (we choose η4 = 0 for simplicity). The algebra is generated by {Ta, T a

α , T a1a2a3}, and
the non-vanishing products can be found as follows:

T1 ◦ T3 = T2, T1 ◦ T 1
1 = −b T3, T1 ◦ T 2

1 = −T 3
1 , T1 ◦ T 3

1 = b T1,

T1 ◦ T 2
2 = −T 3

2 , T1 ◦ T 123 = −b T 2
2 , T1 ◦ T 124 = −T 134, T1 ◦ T 134 = b T 4

2 ,

T2 ◦ T3 = T1, T2 ◦ T 1
1 = −T 3

1 , T2 ◦ T 2
1 = −b T3, T2 ◦ T 3

1 = b T2,

T2 ◦ T 1
2 = −T 3

2 , T2 ◦ T 123 = b T 1
2 , T2 ◦ T 124 = T 234, T2 ◦ T 234 = b T 4

2 ,

T3 ◦ T1 = −T2, T3 ◦ T2 = −T1, T3 ◦ T 1
1 = T 2

1 , T3 ◦ T 2
1 = T 1

1 ,

T3 ◦ T 1
2 = T 2

2 , T3 ◦ T 2
2 = T 1

2 , T3 ◦ T 134 = T 234, T3 ◦ T 234 = T 134,

T 1
1 ◦ T1 = b T3, T 1

1 ◦ T2 = T 3
1 , T 1

1 ◦ T3 = −T 2
1 , T 1

1 ◦ T 3
1 = −b T 1

1 ,

T 1
1 ◦ T 1

2 = T 123, T 1
1 ◦ T 3

2 = −b T 1
2 , T 1

1 ◦ T 4
2 = T 234, T 1

1 ◦ T 234 = b T 124,

T 2
1 ◦ T1 = T 3

1 , T 2
1 ◦ T2 = b T3, T 2

1 ◦ T3 = −T 1
1 , T 2

1 ◦ T 3
1 = −b T 2

1 ,

T 2
1 ◦ T 2

2 = −T 123, T 2
1 ◦ T 3

2 = −b T 2
2 , T 2

1 ◦ T 4
2 = T 134, T 2

1 ◦ T 134 = −b T 124,

T 3
1 ◦ T1 = −b T1, T 3

1 ◦ T2 = −b T2, T 3
1 ◦ T 1

1 = b T 1
1 , T 3

1 ◦ T 2
1 = b T 2

1 ,

T 3
1 ◦ T 3

2 = −b T 3
2 , T 3

1 ◦ T 4
2 = −b T 4

2 , T 3
1 ◦ T 123 = b T 123, T 3

1 ◦ T 124 = b T 124,

T 1
2 ◦ T2 = T 3

2 , T 1
2 ◦ T3 = −T 2

2 , T 1
2 ◦ T 1

1 = −T 123, T 1
2 ◦ T 4

1 = −T 234,

T 2
2 ◦ T1 = T 3

2 , T 2
2 ◦ T3 = −T 1

2 , T 2
2 ◦ T 2

1 = T 123, T 2
2 ◦ T 4

1 = −T 134,

T 3
2 ◦ T 1

1 = b T 1
2 , T 3

2 ◦ T 2
1 = b T 2

2 , T 3
2 ◦ T 3

1 = b T 3
2 , T 3

2 ◦ T 4
1 = b T 4

2 ,

T 123 ◦ T1 = b T 2
2 , T 123 ◦ T2 = −b T 1

2 , T 123 ◦ T 3
1 = −b T 123, T 123 ◦ T 4

1 = −b T 124.

(223)

This algebra satisfies the Leibniz identities. The subalgebra generated by {Ta ≡ Ta, T a ≡ T a
1 }

is the Lie algebra of (60|5.iii|b), and this is an uplift of the Manin triple (60|5.iii|b).
According to Ref. [24], the structure constants of the SO(5, 5) EDA are given by

XAB
C = 
A

α (tα)BC −
[

1
1+βd

(tα)AD (tα)BC + δDA δCB

]
ϑD, (224)

where 
A
α and ϑA are defined as


A
α ≡ PA

αB
β 
B

β, ϑA = (1 + βd ) 
A
0 − βd 
D

α (tα)AD (225)

by using the structure constants 
A
α and 
A

0 and a certain projector PA
αB

β. Here, by consider-
ing the section condition, 
A

α and 
A
0 are supposed to have only the physical components 
a

α
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and 
a
0. However, the algebra given in Eq. (223) is based on another section. If we construct

the physical component 
a
β and 
a

0 by using

f23
1 = 1, f13

2 = 1, f2
23
1 = 2 b

3 , f1
13
1 = 2 b

3 , f4
34
1 = b

3 , (226)

and also introduce the dual components of 
A
α and 
A

0 as


3
2
α tα = 2 b

3 R1
2, 
3

1
0 = b

3 , (227)

the resulting XAB
C reproduce the algebra in Eq. (223).

In summary, the Manin triple in Eq. (221) does not satisfy the condition in Eq. (212) and
is not uplifted to any EDA. However, since the section condition in Eq. (215) is satisfied, it is
uplifted to a flux configuration, Eq. (223), in maximal supergravity.

Example 3 ({3.v, 1
2 (X2 − X3)}|{3, 0}) Let us consider a coboundary-type DD+,

f13
1 = 1, f23

1 = 1, f2
12 = −1, f3

12 = −1,

f2
13 = −1, f3

13 = −1, Z2 = 1
4 , Z3 = − 1

4 . (228)

This satisfies the uplift condition in Eq. (212) if we introduce

ηa = (0, 2 ξ, 2 − 2 ξ ). (229)

Indeed, this half-maximal ExDA is uplifted to the SL(5) EDA with the structure constants

f13
1 = 1, f23

1 = 1, f2
12
1 = 1, f3

12
1 = 1, f2

13
1 = 1, f3

13
1 = 1,

Z2 = 1−ξ

4 , Z3 = − 2−ξ

4 , f21
1 = ξ

2 , f31
1 = 1−ξ

2 . (230)

Example 4 (3|3.i|b) According to the classification of the six-dimensional Drinfel’d doubles
[48] there are 22 Drinfel’d doubles; among these, three Drinfel’d doubles, DD3, DD4, and DD8,
break the condition in Eq. (215). The corresponding Manin triples are (7a|71/a|b), (6a|61/a.i|b),
and (3|3.i|b). Here we consider (3|3.i|b) as an example.

The structure constants are given by

f12
2 = −1, f12

3 = −1, f13
2 = −1, f13

3 = −1,

f2
12 = −b, f3

12 = −b, f2
13 = −b, f3

13 = −b (b 
= 0), (231)

and one can check that the condition in Eq. (215) is broken: fa
bc fbc

a = 8 b.
In order to show that the section condition is violated, let us construct the generalized frame

fields by using the parameterizations xm = (x, y, z) and g = ez T3 ey T2 ex T1 . We find

EA
M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 −y − z −y − z 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 b (y + z) b (y + z) 1 0 0

−b (y + z) b (y + z)2 b (y + z)2 y + z 1 0
−b (y + z) b (y + z)2 b (y + z)2 y + z 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (232)

and this, of course, does not break the section condition. Requiring the absence of the dilaton
flux FA, the DFT dilaton takes the form

e−2 d = ∣∣det �a
m

∣∣ = e2 x, (233)

and the vector field I given in Eq. (216) becomes

I = 1
2 fb

ba vm
a = b ∂x. (234)
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Then we can clearly see that the dilaton d(x) is not isometric along the I-direction. In other
words, if we include the I into the DFT dilaton, we find d = −x + b x̃, and this clearly breaks
the section condition: ∂M ∂Md 
= 0.

Although the condition in Eq. (215) is broken, the condition in Eq. (212) is satisfied for ηa =
(4, ξ , −ξ ) with an arbitrary ξ . Choosing ξ = 0 and using Eq. (213), we find that this ExDA can
be uplifted to the SL(5) EDA with

f12
2 = −1, f12

3 = −1, f13
2 = −1, f13

3 = −1,

f2
12
1 = b, f3

12
1 = b, f2

13
1 = b, f3

13
1 = b, Z1 = − 1

2 , f11
1 = 1, (235)

which has non-vanishing trombone gauging XAB
B 
= 0. Using xm = (x, y, z) and g =

ez T3 ey T2 ex T1 , we obtain the generalized frame fields as

EA
M = e− 8

5 �
∣∣det em

a

∣∣ 1
5

⎛⎜⎝ em
a 0 0

π ab
α em

b λα
β ra

m 0

0 − 3 εγ δ r
[a1
m π

a2a3]
γ λδ

β

√
3!

ra1
[m1

ra2
m2 ra3

m3]

⎞⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −y − z −y − z 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 b (y + z) b (y + z) 1 0 0 0 0 0 0

−b (y + z) b (y + z)2 b (y + z)2 y + z 1 0 0 0 0 0
−b (y + z) b (y + z)2 b (y + z)2 y + z 0 1 0 0 0 0

0 0 0 0 0 0 e2x 0 0 0
0 0 0 0 0 0 e2x(y + z) e2x 0 0
0 0 0 0 0 0 e2x(y + z) 0 e2x 0
0 0 0 0 0 0 0 b e2x(y + z) −b e2x(y + z) e2x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(236)

which is an uplift of Eq. (232).
If we consider (7a|71/a|b) and (6a|61/a.i|b), both conditions in Eqs. (212) and (215) are broken,

and we do not find any uplift to the maximal theory.

6.2 Examples with n 
= 0
Example 5 Let us consider a half-maximal EDA in d = 4 satisfying fa

b
I 
= 0 and ϑÂ = 0,

f12
2 = 1, f13

3 = −1, f45
6 = 1, f56

4 = 1, f46
5 = −1,

f1
23 = 1, f1

26 = 2, f4
25 = −1, f4

35 = 1, f5
24 = 1, f5

34 = −1,

f1
2

I = pI , f1
3

I = qI , Z1 = − 1
2 , f1 = −1. (237)

This satisfies the Leibniz identities. The structure constants fa
b

I can be expressed as in Eq. (86)
by using

r2
I = 2

3 pI , r3
I = −2 qI , (238)

but fa
bc cannot be expressed as in Eq. (87), and this algebra is not of coboundary type.

If we provide the parameterization

xm = (x, y, z, θ, φ, ψ ), g = ex T1 ey T2 ez T3 eφ T6 eθ T5 eφ T6, (239)

we find

ωI
J = δJ

I , eλ = e−x, e−2� = ex, γ = 0, (240)
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ea
m =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 e−x 0 0 0 0
0 0 ex 0 0 0
0 0 0 − sin φ − cot θ cos φ csc θ cos φ

0 0 0 cos φ − cot θ sin φ csc θ sin φ

0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, πm

I =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
2
3 (1 − e− 3x

2 ) pI

2 (e
x
2 −1)qI

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(241)

πmn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 2 e− x
2

3

[
sinh(x/2) (4 pI qI + 3) − 2 pI qI sinh x

]
0 − e−2x 1

0 0 1 −1
0 0 0

0 0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (242)

Then, the resulting generalized frame fields EÂ
M̂ satisfy the algebra [EÂ, EB̂]D = −XÂB̂

Ĉ EĈ.
Example 6 Let us consider the branch fa −+ = pa 
= 0 in d = 4 with fab

c 
= 0. Performing a
redefinition of the generators Ta, we can always realize Za = fa = δ1

a and fab
c = 2 δ1

[a δc
b]. Using

the parameterization

xm = (x, yi) (i = 2, . . . , 6), g = ex T1 ey2 T2 · · · ey6 T6, (243)

we find the general expression for various tensors:

ea
m = diag(1, e−x, . . . , e−x), ωI

J = δJ
I , eλ = ex, e−2 � = e−2 x,

γ = (ex −1) p1 + ex(p2 y2 + · · · + p6 y6), πm
I = πmn = 0. (244)

They construct the generalized frame fields satisfying [EÂ, EB̂]D = −XÂB̂
Ĉ EĈ.

Example 7 Here we consider an example with faIJ 
= 0. For example, if we consider d = 7 and
n = 3, we find that the ExDA with

f12
3 = 1, f23

1 = 1, f13
2 = −1, f11̇3̇ = 1, f22̇3̇ = 1, f31̇2̇ = 1 (245)

satisfies the Leibniz identities. Using xm = (x, y, z) and g = ex T1 ey T2 ez T3 , we obtain

em
a =

⎛⎜⎝ 1 0 0
sin x tan y cos x − sin x

cos y

− cos x tan y sin x cos x
cos y

⎞⎟⎠, � = πm
I = πmn = 0 ,

ωI
J =

⎛⎜⎝cos x cos z − sin x sin y sin z − sin x sin y cos z − cos x sin z − sin x cos y
cos y sin z cos y cos z − sin y

cos x sin y sin z + sin x cos z cos x sin y cos z − sin x sin z cos x cos y

⎞⎟⎠.

(246)

This ExDA has vanishing fa
bc and fa

b
I, and we can consider the Yang–Baxter deformation,

i.e. the O(3, 6) transformation given by Eq. (91). However, in this case there is no solution to
the homogeneous CYBE, i.e. Eqs. (94)–(98).

Example 8 Here we consider the case where Ta ◦ Tb = fab
c Tc is a non-semisimple Lie algebra,

f12
2 = 1, f13

3 = −1, f1
12 = f1

13 = 1√
2
. (247)
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In this case, we find a solution of the homogeneous CYBE:

ra
I =

⎛⎜⎝ 0 0 0
η1√

2
− η1

2
η1
2

η2√
2

− η2
2

η2
2

⎞⎟⎠, rab =

⎛⎜⎝0 0 0
0 0 η3

0 −η3 0

⎞⎟⎠. (248)

These produce the structure constants fa
b

I and fa
bc through Eqs. (86) and (87) as

f1
2

1 = η1√
2
, f1

2
3 = η1, f1

3
1 = − η2√

2
, f1

3
2 = η2, f1

23 = η1η2, (249)

where η3 does not appear in the structure constants (similar to the case of Abelian Yang–Baxter
deformation).

Using the deformed half-maximal ExDA and the parameterization

xm = (x, y, z), g = ex T1 ey T2 ez T3, (250)

we can compute various tensors:

ea
m =

⎛⎜⎝1 0 0
0 e−x 0
0 0 ex

⎞⎟⎠, ωI
J =

⎛⎜⎝cos x − sin x√
2

− sin x√
2

sin x√
2

cos2
(x

2

) cos x−1
2

sin x√
2

cos x−1
2 cos2

(x
2

)
⎞⎟⎠, � = 0,

πI
m =

⎛⎜⎝0 e−x η1(ex − cos x)√
2

η2(1−ex cos x)√
2

0 η1
2 e−x(sin x − ex +1) η2

2 (ex sin x + ex −1)
0 η1

2 e−x(sin x + ex −1) η2
2 (ex sin x − ex +1)

⎞⎟⎠,

πmn = η1η2 sinh x cos2 (x
2

) ⎛⎜⎝0 0 0
0 0 1
0 −1 0

⎞⎟⎠. (251)

These construct the generalized frame fields satisfying [EÂ, EB̂]D = −XÂB̂
Ĉ EĈ.

7. Conclusions
We have constructed the ExDA for half-maximal supergravities in d ≥ 4. Then, following the
general discussion in Ref. [24], we have proven that the half-maximal ExDA systematically pro-
vides a set of generalized frame fields EÂ

M̂ satisfying [EÂ, EB̂]D = −XÂB̂
Ĉ EĈ. We have also

computed the generalized CYBE associated with the half-maximal ExDA, and provided the
general form of the generalized Poisson–Lie structures for coboundary-type ExDAs.

A possible future direction is to extend the half-maximal ExDA to d = 3. In d = 3, the duality
group is G = O(D + 1, D + 1 + n) and the corresponding ExFT has been studied in Ref. [49].
In d ≥ 4, the half-maximal ExDA with n = 0 was obtained by truncating 29 − d generators from
the generators of the ED + 1(D + 1) EDA via the Z2 truncation. In d = 3, the number of Z2-odd
generators becomes 210 − d and the dimension of the half-maximal ExDA with n = 0 should be
(248 − 210 − 3) = 120. Then, the generators can be parameterized as TÂ = T[A1A2] [49] where A
= 1, … , 2(D + 1) denotes the vector index of O(D + 1, D + 1). In Ref. [24], the E8(8) EDA in
the type IIB picture has already been determined, and it will not be difficult to determine the
explicit form of the half-maximal ExDA (with n = 0) through the Z2 truncation. Its further
extension to n > 0 will also be straightforward.

Another interesting direction is to study the Z2 truncation of the ED + 1(D + 1) EDA in the
M-theory picture. The Z2 projection in Eq. (102) corresponds to putting the S-dual of O9-
planes (and the S-dual of D9-branes) in type IIB theory. Under U-duality transformations,
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O9-planes can be mapped to certain orientifold planes in M-theory. They introduce a different
Z2 projection which reduces the ED + 1(D + 1) EDA in the M-theory picture to a certain half-
maximal ExDA. It will be interesting to find the explicit form of such a half-maximal ExDA.

Here we have concentrated on algebra and the generalized frame fields EÂ
M̂ . Using EÂ

M̂

and a constant matrix ĤÂB̂, we can construct the generalized metric HM̂N̂ of the ExFT, and
by using some parameterization of the generalized metric, we can identify the corresponding
supergravity fields. Then, we can study the extension of the PL T-duality, which rotates the
generators of the Drinfel’d double. A redefinition TÂ → T ′

Â
= CÂ

B̂ TB̂ (CÂ
B̂ ∈ G) can map a

half-maximal ExDA to another half-maximal ExDA, and the new generators T ′
Â

construct new

generalized frame fields E ′
Â

M̂ . Then, we obtain a new generalized metric H′
M̂N̂

which describes
the dual background. It is important future work to prove that the non-Abelian dualityHM̂N̂ →
H′

M̂N̂
is a symmetry of ExFT. To this end, it will be useful to study the flux formulation of

ExFTs in detail. In addition, HM̂N̂ can be parameterized in terms of several theories, such as
heterotic/TD, type I/TD, or type II/K3× TD − 4. To study non-Abelian dualities among these
theories, it is important to study the parameterizations in detail. Moreover, to find various
examples of non-Abelian duality, it is also important to study the classification of inequivalent
redefinitions of generators, similar to Ref. [48].
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Appendix A. Conventions
A.1 Summary of indices
Here we summarize the convention for various indices used in this paper. The generalized co-
ordinates in the half-maximal ExFTs are parameterized as

xM̂ =

⎧⎪⎨⎪⎩
xM = (

xm, xI, xm
)

(d ≥ 6),(
xM, x∗) = (

xm, xI, xm, x∗) (d = 5),
xα̇M = (

xα̇m, xα̇I, xα̇
m
)

(d = 4),
(A1)

where M = 1, … , 2D + n, I = 1̇, . . . , ṅ, m = 1, … , D, and α̇ = +, −, with D ≡ 10 − d. The
index I may be raised/lowered by using the Kronecker delta δIJ . In the ED + 1(D + 1) EFT in the
type IIB picture, the generalized coordinates are denoted as xM.

The generators of the half-maximal ExDA are parameterized as

TÂ =

⎧⎪⎨⎪⎩
TA = (

Ta, TI , T a
)

(d ≥ 6),(
TA, T∗

) = (
Ta, TI , T a, T∗

)
(d = 5),

TαA = (
Tαa, TαI , Tα

a
)

(d = 4),
(A2)

where A = 1, … , 2D + n, I = 1̇, . . . , ṅ, a = 1, … , D, and α = +, −. The index I is raised/lowered
by using the Kronecker delta δIJ. The generators of the ED + 1(D + 1) EDA in the type IIB picture
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are parameterized as

TA =
{

Ta, T a
α , T a1a2a3√

3!
, T

a1 ···a5
α√

5!
, T a1···a6,a

}
, (A3)

where a = 1, . . . , D and α = 1, 2. Here, the multiple indices are totally antisymmetric. When
we make the matrix representation, the indices are further decomposed as

TA =
{

Ta, T a
1 , T a

2 , T a1a2a3√
3!

,
T

a1 ···a5
1√

5!
,

T
a1 ···a5

2√
5!

, T a1···a6,a
}
. (A4)

The generalized Poisson–Lie structures πmn and πm
I are related to πab and πa

I as in Eq. (142).
Sometimes we also use notation such as πm

I = δI
I πm

I and ωI
I = ωI

J δIJ .

A.2 Duality algebra in d ≥ 5
In d ≥ 5, the duality group is R+ × O(D, D + n) and the generators are decomposed as

{ta} =
{

R∗,
Ra1a2√

2!
, RI

a, Ka1
a2,

RIJ√
2
, Ra

I ,
Ra1a2√

2!

}
, (A5)

where a = 1, … , D. The R∗ is the generator of R+
d and it commutes with other generators. The

other O(D, D + n) generators satisfy the following algebra:

[Ka
b, Kc

d ] = δc
b Ka

d − δa
d Kc

b, [Ka
b, RKL] = 0, [Ka

b, Rc
K ] = δc

b Ra
K ,

[Ka
b, RK

c ] = −δa
c RK

b , [Ka
b, Rcd ] = 2 δcd

be Rae, [Ka
b, Rcd ] = −2 δae

cd Rbe,

[RIJ, RKL] = −2
(
δK[I RJ]L − δL[I RJ]K

)
, [RIJ, Rcd ] = 0, [RIJ, Rcd ] = 0,

[RIJ, Rc
K ] = −2 δK[I δL

J] Rc
L, [RIJ, RK

c ] = −2 δK
[I δJ]L RL

c ,

[Rab, Rcd ] = 0, [Rab, Rcd ] = −4 δ
[a
[c Kb]

d ], [Rab, Rc
K ] = 0, [Rab, RK

c ] = −2 δKL δ[a
c Rb]

L ,

[Rab, Rcd ] = 0, [Rab, RK
c ] = 0, [Rab, Rc

K ] = −2 δKL δc
[a RL

b],

[Ra
I , Rb

J ] = −δIJ Rab, [Ra
I , RJ

b ] = −δJ
I Ka

b − δa
b δJK RIK , [RI

a, RJ
b ] = −δIJ Rab. (A6)

In d = 5, we can construct the matrix representations of these generators in the vector repre-
sentation as follows:

R∗ = βd

⎛⎜⎜⎜⎝
δb

a 0 0 0
0 δJ

I 0 0
0 0 δa

b 0
0 0 0 −2

⎞⎟⎟⎟⎠, (A7)

Kc
d ≡

⎛⎜⎜⎜⎝
δc

a δb
d 0 0 0

0 0 0 0
0 0 −δa

d δc
b 0

0 0 0 0

⎞⎟⎟⎟⎠, RKL ≡

⎛⎜⎜⎜⎝
0 0 0 0
0 δKI δJ

L − δLI δJ
K 0 0

0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠, (A8)

Rc1c2 ≡

⎛⎜⎜⎜⎝
0 0 2 δ

c1c2
ab 0

0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠, Rc1c2 ≡

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 0

2 δab
c1c2

0 0 0
0 0 0 0

⎞⎟⎟⎟⎠, (A9)

Rc
K ≡

⎛⎜⎜⎜⎝
0 δc

a δJ
K 0 0

0 0 −δKI δc
b 0

0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠, RK
c ≡

⎛⎜⎜⎜⎝
0 0 0 0

−δb
c δK

I 0 0 0
0 δKJ δa

c 0 0
0 0 0 0

⎞⎟⎟⎟⎠. (A10)

In d ≥ 6, we can obtain the matrix representations by truncating the last row/column of the
above matrices. Consequently, the generator R∗ is proportional to the identity matrix.
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We also define the dual generators as

{ta} =
{

R∗, Ra1a2√
2!

, Ra
I , Ka1

a2, RIJ√
2
, RI

a,
Ra1a2√

2!

}
, (A11)

where R∗ ≡ −(d − 2) R∗ and Ka
b ≡ −Kb

a. Then the Y-tensor computed from Eq. (8) coincides
with the Z2-truncation of the Y-tensor in ED + 1(D + 1) EFT.

A.3 Duality algebra in d = 4
We denote the generators of the duality group G = SL(2) × O(6, 6 + n) collectively as

{ta} =
{

Rα1
α2,

Ra1a2√
2!

, RI
a, Ka1

a2,
RIJ√

2
, Ra

I ,
Ra1a2√

2!

}
, (A12)

where a, b = 1, … , 6, I, J = 1, … , n, and α, β = +, −. The SL(2) generators Rα
β (Rα

α = 0)
satisfy the commutation relations

[Rα
β, Rγ

δ] = δ
γ

β Rα
δ − δα

δ Rγ
β, [Rα

β, (others)] = 0, (A13)

and the other O(6, 6 + n) generators satisfy the same algebra as Eq. (A6). Their matrix repre-
sentations are as follows:

Rγ
δ =

⎛⎜⎝
(
δ

γ
α δ

β

δ − 1
2δ

β
α δ

γ

δ

)
δb

a 0 0
0

(
δ

γ
α δ

β

δ − 1
2δ

β
α δ

γ

δ

)
δJ

I 0
0 0

(
δ

γ
α δ

β

δ − 1
2δ

β
α δ

γ

δ

)
δa

b

⎞⎟⎠, (A14)

Kc
d ≡

⎛⎜⎝δβ
α δc

a δb
d 0 0

0 0 0
0 0 −δβ

α δa
d δc

b

⎞⎟⎠, RKL ≡

⎛⎜⎝0 0 0
0 δβ

α

(
δKI δJ

L − δLI δJ
K

)
0

0 0 0

⎞⎟⎠, (A15)

Rc1c2 ≡

⎛⎜⎝0 0 2 δβ
α δ

c1c2
ab

0 0 0
0 0 0

⎞⎟⎠, Rc1c2 ≡

⎛⎜⎝ 0 0 0
0 0 0

2 δβ
α δab

c1c2
0 0

⎞⎟⎠, (A16)

Rc
K ≡

⎛⎜⎝0 δβ
α δc

a δJ
K 0

0 0 −δKI δβ
α δc

b

0 0 0

⎞⎟⎠, RK
c ≡

⎛⎜⎝ 0 0 0
−δβ

α δb
c δK

I 0 0
0 δKJ δβ

α δa
c 0

⎞⎟⎠. (A17)

We also define the dual generators as

{ta} =
{

Rα1
α2, Ra1a2√

2!
, Ra

I , Ka1
a2, RIJ√

2
, RI

a,
Ra1a2√

2!

}
, (A18)

where

Rα
β ≡ −Rβ

α, Ka
b ≡ −Kb

a. (A19)

These satisfy, for example,

(ta)Â
Ĉ (ta)Ĉ

B̂ = −( 25
2 + n

)
δB̂

Â
, (A20)

(ta)Â
Ĉ (tb)Ĉ

B̂ =
(

−(12 + n) (δβ1
α1

δ
α2
β2

− 1
2 δα2

α1
δ

β1
β2

) δB̂
Â

0

0 −4 δā
b̄
δB̂

Â

)
, (A21)

where δā
b̄

is a restriction of δa
b to O(6, 6 + n) generators. We also find

(ta)Â
B̂ (ta)Ĉ

D̂ = −28 (P(3,1) )Â
B̂

Ĉ
D̂ − 4 (P(1,ad ) )Â

B̂
Ĉ

D̂, (A22)

where we have defined the projectors to the adjoint representations as

(P(3,1) )Â
B̂

Ĉ
D̂ = 1

2(12+n)

(
δδ
α δβ

γ − εαγ εβδ
)
δB

A δD
C (ε+− = 1 = ε+−), (A23)

(P(1,ad ) )Â
B̂

Ĉ
D̂ = 1

4 δβ
α δδ

γ

(
δD

A δB
C − ηAC ηBD)

.
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Appendix B. Explicit form of half-maximal ExDA
In this appendix we summarize the explicit form of the half-maximal ExDA in each dimension.

In d ≥ 6, the half-maximal ExDA is given by

Ta ◦ Tb = fab
c Tc,

Ta ◦ TJ = − fa
c

J Tc + faJ
K TK + Za TJ,

Ta ◦ T b = fa
bc Tc + fa

bK TK − fac
b T c + 2 Za T b,

TI ◦ Tb = fb
c

I Tc − fbI
K TK − Zb TI ,

TI ◦ TJ = fcIJ T c + δIJ Zc T c,

TI ◦ T b = − fc
b

I T c,

T a ◦ Tb = − fb
ac Tc − fb

aK TK + (
fbc

a + 2 δa
b Zc − 2 δa

c Zb
)

T c,

T a ◦ TJ = fc
a

J T c,

T a ◦ T b = fc
ab T c, (B1)

where a, b = 1, …, D ≡ 10 − d and I, J = 1, … , n.
In d = 5, there is an additional generator T∗ and the ExDA has the form

Ta ◦ Tb = fab
c Tc,

Ta ◦ TJ = − fa
c

J Tc + faJ
K TK + Za TJ,

Ta ◦ T b = fa
bc Tc + fa

bK TK − fac
b T c + 2 Za T b,

Ta ◦ T∗ = (Za − fa) T∗,

TI ◦ Tb = fb
c

I Tc − fbI
K TK − Zb TI ,

TI ◦ TJ = fcIJ T c + δIJ Zc T c,

TI ◦ T b = − fc
b

I T c,

TI ◦ T∗ = − fc
c

I T∗,

T a ◦ Tb = − fb
ac Tc − fb

aK TK + (
fbc

a + 2 δa
b Zc − 2 δa

c Zb
)

T c,

T a ◦ TJ = fc
a

J T c,

T a ◦ T b = fc
ab T c,

T a ◦ T∗ = − fc
ca T∗,

T∗ ◦ Tb = 0,

T∗ ◦ TJ = 0,

T∗ ◦ T b = 0,

T∗ ◦ T∗ = 0. (B2)
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In d = 4, the half-maximal ExDA has the following form:

T+a ◦ T+b = fab
c T+c,

T+a ◦ T−b = fa−+ T+b + (
fab

c − fa δc
b

)
T−c,

T+a ◦ T+J = − fa
c

J T+c + faJ
K T+K + Za T+J,

T+a ◦ T−J = − fa
c

J T−c + fa−+ T+J + faJ
K T−K + (Za − fa) T−J,

T+a ◦ T+b = fa
bc T+c + fa

bK T+K − fac
b T+c + 2 Za T+b,

T+a ◦ T−b = fa
bc T−c + fa

bK T−K + fa−+ T+b − fac
b T−c + (2 Za − fa) T−b,

T−a ◦ T+b = − fb−+ T+a + fa T−b,

T−a ◦ T−b = − fb−+ T−a + fa−+ T−b,

T−a ◦ T+J = fa T−J,

T−a ◦ T−J = fa−+ T−J,

T−a ◦ T+b = δb
a fc−+ T+c + fa T−b,

T−a ◦ T−b = fa−+ T−b + δb
a fc−+ T−c,

T+I ◦ T+b = fb
c

I T+c − fbI
K T+K − Zb T+I ,

T+I ◦ T−b = fb
c

I T−c − fc
c

I T−b − fbI
K T−K − Zb T−I ,

T+I ◦ T+J = fcIJ T+c + δIJ Zc T+c,

T+I ◦ T−J = − fc
c

I T−J + fcIJ T−c + δIJ Zc T−c,

T+I ◦ T+b = − fc
b

I T+c,

T+I ◦ T−b = − fc
b

I T−c − fc
c

I T−b,

T−I ◦ T+b = fc
c

I T−b − fb−+ T+I ,

T−I ◦ T−b = − fb−+ T−I ,

T−I ◦ T+J = fc
c

I T−J + δIJ fc−+ T+c,

T−I ◦ T−J = δIJ fc−+ T−c,

T−I ◦ T+b = fc
c

I T−b,

T−I ◦ T−b = 0,

T+a ◦ T+b = − fb
ac T+c − fb

aK T+K + (
fbc

a + 2 δa
b Zc − 2 δa

c Zb
)

T+c,

T+a ◦ T−b = − fb
ac T−c − fc

ca T−b − fb
aK T−K + (

fbc
a + 2 δa

b Zc − 2 δa
c Zb

)
T−c,

T+a ◦ T+J = fc
a

J T+c,

T+a ◦ T−J = − fc
ca T−J + fc

a
J T−c,
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T+a ◦ T+b = fc
ab T+c,

T+a ◦ T−b = fc
ab T−c − fc

ca T−b,

T−a ◦ T+b = fc
ca T−b + (

δa
b fc−+ − δa

c fb−+)
T+c,

T−a ◦ T−b = (
δa

b fc−+ − δa
c fb−+)

T−c,

T−a ◦ T+J = fc
ca T−J,

T−a ◦ T−J = 0,

T−a ◦ T+b = fc
ca T−b,

T−a ◦ T−b = 0. (B3)
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