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Introduction 

Le projet relatif à l'injection, dans le synchrotron du 
CERN, de protons de 50 Mev, prévoit l'utilisation de deux 
paires de lentilles quadrupolaires, destinées à modifier 
la forme et l'ouverture du faisceau. Ces lentilles seront 
identiques, avec une distance focale variable entre 1 à 2 
mètres. 

Dans le but de préciser les propriétés optiques des lentilles 
quadrupolaires, une maquette a été réalisée, qui a 

permis de mesurer les valeurs des diverses composantes du 
champ et des gradients magnétiques en tous points de 
l'espace utile, tandis qu'un programme de calculs menés 
conjointement essayait de chiffrer l'ordre de grandeur des 
diverses aberrations. 

PREMIÈRE PARTIE 

Etude expérimentale 

1. Caractéristiques de la lentille 

Par raison de simplicité de construction mécanique, 
les pièces polaires sont circulaires. Le cercle choisi, tangent 

Fig. 1. 

Fig. 2. 

au sommet de I'hyperbole équilatère théorique d'équation 
XY = 800 mm2, la recoupe en deux points (fig. 1) et a 
pour rayon R = 1,15 a, a étant le rayon du cercle tangent 
aux quatre pièces polaires et égal ici à 40 mm. La 
longueur des pièces polaires est de l= 150 mm, la carcasse 
de forme carrée a 50 cm de côté et une section de 
75 cm2. Chaque support de pièce polaire porte une bobine 

* Cette communication n'a pas figuré au programme des discussions. 
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à section trapézoïdale (fig. 2) comportant 627 spires 
(ruban de cuivre de 4 x 2 mm). 

L'intensité normale de fonctionnement assurant une 
distance focale de l'ordre de 2 mètres est de 4 ampères, 
mais un système de refroidissement permet de fonctionner 
de façon continue jusqu'à 15 ampères. 

2. Champ transversal 

L'approximation des pièces polaires circulaires est 
excellente, car le gradient transversal au centre de la lentille, 
est parfaitement constant dans toutes les directions 
aussi bien dans les plans de symétrie « diagonaux » OX 
et OY que dans les plans de symétrie « médians » Ox et Oy 
(fig. 3) et jusqu'à une distance de l'axe égale à a. Le 
champ transversal croît de façon parfaitement linéaire 
lorsqu'on s'éloigne de l'axe, avec un gradient de 400 
gauss/cm pour I = 4 Amp. 

Si l'on trace les courbes à différentes intensités, cette 
loi se conserve, et en un point donné, le champ est proportionnel 
au courant jusqu'à 10 ampères environ (fig. 4); 
pour des intensités plus fortes, la saturation commence à 
se faire sentir, mais son effet ne dépasse pas 5% vers 
20 ampères. 

Si on se déplace parallèlement à l'axe de la lentille, la 
valeur du champ transversal se maintient constante sur une 
distance d, de l'ordre de 7 cm, au centre de la lentille, 
puis décroît rapidement sur les bords (fig. 5). Le champ de 
fuite est pratiquement nul à 15 cm des faces terminales 
des pièces polaires. Si on accouple deux telles lentilles de 
façon que leurs centres soient distants de 50 cm, il n'y a 

aucune interaction entre les champs de fuite. Lorsqu'on 
s'éloigne de l'axe, le «plateau» s'allonge; les courbes 
restent régulières dans les plans OX et OY, mais des anomalies 
apparaissent lorsqu'on s'approche des angles des 
pièces polaires (fig. 6) dans les plans Ox et Oy. Cet effet 
est déjà marqué à 30 mm de l'axe. Le remplacement de 
l'angle vif des pièces polaires par un léger arrondi (5 mm 
de rayon) n'amène aucune amélioration. Pour a = 60 mm, 
le plateau atteint encore 30 mm au centre. D'où la relation : 
d l - 2 a . 

Les mêmes phénomènes se manifestent sur les courbes 
donnant les variations du gradient transversal. 

3. Longueur équivalente 

La longueur L de la lentille idéale équivalente à la lentille 
réelle peut être définie de deux façons différentes : 
soit à partir du champ magnétique transversal B, par analogie 
avec les lentilles électroniques classiques : 

LB = 1 
+ α 

B dz LB = 1 

∫ B dz LB = 
B„ ∫ B dz LB = 

-∞ 

B dz 

où B0 représente la valeur du champ au centre (z = 0), 
soit à partir du gradient transversal 

LG = 

+ α 

B'dz LG = 
1 

∫ B'dz LG = B7 ∫ B'dz LG = 
- α 

B'dz 

Fig. 3. 
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Fig. 4. 

(avec par exemple B' = ∂BX/∂Y ou B' = ∂BY/∂X), cette 
grandeur intervenant dans les équations de trajectoires 
lorsqu'on utilise précisément le modèle simplifié défini 
plus loin. 

Ces deux grandeurs sont égales au centre, et pratiquement 
confondues dans toute la zone utile. Elles varient dans le 
même sens, et les deux points essentiels à noter sont les 
suivants : 
L est notablement plus grande que la longueur l des pièces 
polaires (195 mm au centre, au lieu de 150, soit (L-l)/l = 
= 30%). 

L décroît légèrement du centre vers les bords : cette diminution 
atteint 1% environ à 30 mm de l'axe et 2% à 
40 mm (fig. 7). Cette décroissance est la même dans toutes 
les directions. La lentille possèdera donc une aberration 
négative d'ouverture. Ce phénomène se produit à toutes 
les intensités. 

Le calcul montre que les aberrations dues à cette faible 
variation de L sont importantes. Il est heureusement 

possible d'y remédier en ajoutant des masselottes d'acier 
doux convenablement disposées aux extrémités des pièces 
polaires (fig. 8). On arrive à rendre L parfaitement constante 
dans toutes les directions jusqu'à 4 cm de l'axe (fig. 9). 
Un profil continu destiné à les remplacer est à l'étude. 

4. Champ magnétique longitudinal 

Dans le champ de fuite apparaît une composante longitudinale 
Bz. Nulle sur l'axe et dans les plans OX et OY, elle 
croît selon une loi parabolique dans les plans Ox et Oy; 
elle atteint rapidement de fortes valeurs au voisinage des 
plans terminaux des faces des pièces polaires (750 gauss 
à 35 mm de l'axe, en un point où le champ transversal 
est de l'ordre de 1.400 gauss) (fig. 10). Suivant des parallèles 
à l'axe, l'action de Bz sera localisée aux deux extrémités 
de la lentille avec un maximum aigu, et l'on peut craindre, 
pour les rayons, une action perturbatrice dont le calcul 
seul peut donner l'importance. La fig. ll représente la 
carte de la répartition spatiale de la grandeur 
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Fig. 5. 

Fig. 6. 

Fig. 7. 

Fig. 8. 
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Fig. 9. 

L = 

+ α 

Bzdz, L = ∫ Bzdz, L = 
0 

Bzdz, 

qui intervient dans le calcul des aberrations avec le modèle 
simplifié. 

5. Dimensionnement des lentilles définitives 

Bien que la répartition du champ transversal dans la 
zone centrale coïncide avec la répartition idéale qui serait 
fournie par quatre pièces polaires hyperboliques, l'effet 
perturbateur des extrémités et des champs de fuite incite 
à n'utiliser pour le faisceau de protons qu'un espace restreint 
au voisinage de l'axe. Pour un faisceau incident 
parallèle de 6 cm. de diamètre (dont certaines particules 
s'éloigneraient à 4 cm de l'axe environ, durant la traversée 
des lentilles), il sera bon d'envisager une valeur de a de 
l'ordre de 6 à 8 cm. Dans le même but, il sera bon de 
prendre une lentille plus longue dans laquelle la longueur 
du « plateau » idéal sera beaucoup plus grande. Nous 
envisageons d'accroître l par un facteur 2. 

6. Méthodes de mesure 

La composante transverse du champ magnétique perpendiculaire 
à l'axe optique Oz a été mesurée avec une bobine 
de petites dimensions entraînée par un moteur synchrone 
et portée par un axe parallèle à Oz. La reproductibilité des 
mesures est meilleure que 1 %. Le signal est proportionnel 
au champ. 

Une bobine tournante longue formée de 12 spires rectangulaires 
de 6 mm de largeur et 600 mm de long, 
bobinées sur une tige de plexiglas nous a permis d'obtenir 
un signal proportionnel à l'intégrale : 

∫ 

+ α 
dz 

∫ 
BX, Y 

dz 
∫ -α 

dz 

de déterminer rapidement la longueur équivalente LB, en 
tous points de l'espace utile, et d'en suivre les variations. 

Il faut noter que tout signal fourni par une bobine tournante 
comporte une partie parasite de fréquence double, 
due à un très léger excentrage de la bobine et à l'existence 
d'un gradient de champ, dans une direction perpendiculaire 
à l'axe de rotation. Ce signal, proportionnel au gradient, 
entache d'erreur les mesures effectuées au voisinage de 
l'axe où le champ est nul, et un filtrage sérieux permet seul 
de l'éliminer. 

Fig. 10. 
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Fig. 11. 

La composante longitudinale du champ magnétique a été 
mesurée à l'aide d'un long solénoïde de faible diamètre 
vibrant parallèlement à l'axe, entraîné par un moteur 
électrodynamique à une fréquence de 50 Hz. L'une des 
extrémités est placée en dehors du champ, l'autre au point 
où l'on fait la mesure. Le signal est proportionnel au champ 
B z en ce point. 

La détermination des gradients transversaux a été 
effectuée dans les plans OX et OY, à l'aide d'un vibreur 
spécialement mis au point : une bobine de très petites 
dimensions est placée à l'extrémité d'une verge rectangu-

Fig. 12. 

laire de plexiglas qu'on fait vibrer transversalement sur le 
mode 5λ/4 (fréquence voisine de 80 Hz). L'amplitude 
atteint 2 mm. Le signal est proportionnel au gradient 
∂BX/∂Y ou ∂BY/∂X. 

DEUXIÈME PARTIE 

Marche des rayons 

1. Calcul du premier ordre 

On a cherché à évaluer la précision du modèle discontinu 
(caractéristique rectangulaire) qui, à cause de sa simplicité, 
est très employé dans les évaluations des projets préliminaires. 
Pour cela on a tenu compte de l'extension du champ 
de fuite en le représentant par un modèle complètement 
intégrable par fonction élémentaire. Tout revient à repré­
senter la fonction k1(z). Nous pouvons prendre un rectangle 

Fig. 13. 

de hauteur K et de longueur L (fig. 12). Nous pouvons aussi 
améliorer cette représentation (fig. 13) en prenant un palier, 
de longueur 2z0, terminé par deux courbes en cloche, 
d'équation : 

k1(z) = 
K 

; - α < z ≤ - z0 k1(z) = 

[1 + ( 
z + z0 

2 2 

)] 
; - α < z ≤ - z0 

[1 + ( b 

2 2 

)] 
et 

k1(Z) = 
K ; + z0 ≤ z < + α k1(Z) = 

[1 + ( 
z - z0 

2 2 

)] 
; + z0 ≤ z < + α k1(Z) = 

[1 + ( b 

2 2 

)] 
; + z0 ≤ z < + α 

1.1 —Il faut adapter le modèle aux résultats des mesures 
de champ. Pour le modèle rectangulaire, un seul paramètre 
L (qui ne doit pas être confondu avec la longueur l des 
électrodes) est nécessaire. On écrit que l'aire de la courbe 
k1(z) est bien représentée. 

∫ 

+ a 
dz = S = KL 

∫ 
k1(z) dz = S = KL 

∫ -α 
dz = S = KL 
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ce qui donne L. Dans le cas du modèle plus évolué, on fait 
le même calcul, ce qui donne : 

S = K[2z0 + π/2.b] 

On ajoute une condition supplémentaire : on fait coïncider 
les pentes maximum de k1(z) (point d'inflexion) et de la 
courbe approchée, ce qui conduit à : 

b = (25 √5/54) • K/P 

avec P : pente de k1(z) au point d'inflexion. 

1.2 — Les calculs donnent les éléments cardinaux. Avec 
le modèle rectangulaire, les résultats classiques sont : 

1 

fx 

= β sin βL 
1 

fy 

= - β sh βL 

ZFx = 
L 
2 

+ fx cos βL zFy = 
L 
2 

+ fy ch βL 

avec β = μ0 K.nl. √2e/MΦ 

L'origine des abscisses est au milieu de la lentille. 

Avec le modèle évolué on trouve : 

[( 
π 

)2 

π 

] a 
= β sin 2 βz0 [( SIN ωl  

2 
)2 + 

COS2 ωl 2 ] - a sin ωl π 
cos 2 βzo 

fx 
= β sin 2 

a [( ωl )2 + 
l - ω l

2 ] - b ωl 

cos 2 
a 

[( 
π 

)2 

π 

] a 
= - β s h 2 βZo [( sin ω2 2 

)2 + 
COS2 ω2 2 ] a sin ω2 π βZo 

fy 

= - β s h 2 
a [( ω2 )2 + 

1 - ω 2
2 ] b ω2 a 

avec : ω1
2 = 1 + 

( 
b 

)2 β2 , ω2
2 = 1 - ( 

b 
)2 β2 et β = μ0 K (√2e/M) (nI √Φ) avec : ω1

2 = 1 + 
( a )2 β2 , ω2

2 = 1 - ( a )2 β2 et β = μ0 K (√2e/M) (nI √Φ) 

ZFX = Zo + fx [β sin 
2βz0 

( 
1 

-
1 

) 
b 

sin ω1 Π - cos 
2βz0 

• COS ω1 Π 
a = a + a 

[β sin 
a ( ω1

2 
-

l-ω2
2 ) 2a 

sin ω1 Π - cos 
a 

• COS ω1 Π 

Z F y = Zo + fy [-β sh 2βz0 

( 
1 

-
1 

) • 
b 

sin ω1 Π - ch 
2βz0 

COS ω2 Π a = a + a 
[-β sh 

a ( ω2
2 -

l-ω2
2 ) • 2a 

sin ω1 Π - ch 
a 

COS ω2 Π 

Exemple d'une lentille pour laquelle S = 5 K et β = 1/15, 
ce qui correspond à une lentille magnétique, de 20 cm 
de long environ, de 4 cm d'ouverture (a = 4 cm), qui 
reçoit des protons de Φ = 50 Mev; chaque bobine de 
pôle compte = 1800 amp-tours et on néglige la réluctance 
du fer. 

On trouve les mêmes valeurs à 1 % près au moins, pour 
les éléments cardinaux, avec le modèle rectangulaire et 
avec le modèle évolué, terminé par deux courbes en cloche. 

2. Aberration chromatique 

On calcule l'influence d'une variation ∆ de l'énergie 
des protons; chaque focale est remplacée par une tache 
elliptique dont on calcule l'épaisseur dans le plan des 
focales pour l'énergie Φ. On a fait le calcul numérique 
pour Φ ≈ 50 Mev et ∆Φ = 0,1 Mev; le rayon incident 
étant parallèle à l'axe optique et distant de 3 cm. de celui-ci. 
La lentille était définie par : 

a = 4.10-2 m 1 = 4 ampères 

L = 19,5.10-2 m nl = 2508 A.T par pôle β = 2,015 

Les focales se trouvaient aux distances Zl et Z2 de la face 
de sortie de la lentille équivalente (l'épaisseur des focales 
est appelée δ1 et δ2): 

Zl = 2,155 m δl = 100 μ (microns) 

Z2 = 5,057 m 82 = 200 μ 

3. Influence du raccourcissement de la longueur equivalente 
LB quand on s'écarte de l'axe 

Lorsqu'on s'écarte beaucoup de l'axe, la longueur du 
plateau de B x et de BY diminue, et la longueur des zones 
de fuite varie. Autrement dit, les valeurs de B x ou BY, à 
une certaine distance de l'axe, ne sont pas proportionnelles 
dans le champ de fuite, à celles qu'on observe à son voi-



Fig. 14a. Sous-focalisation. 

Fig. 14b. Focalisation. 

Fig. 14c. Sur-focalisation. 
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sinage immédiat (le rapport de proportionnalité théorique 
étant r2/r1). 

On a tenté d'évaluer cet effet grossièrement en calculant 
la trajectoire au premier ordre, dans une lentille équivalente 
raccourcie pour des particules circulant loin de l'axe. 
On peut représenter encore le défaut par un élargissement 
en ellipse des focales. Pour une variation de longueur 
équivalente L, dL/L = 1 %, on trouve, le rayon incident 
étant à 3 cm. de l'axe : 

Z1 = 2,155 m δ1= 870 μ. 
Z2 = 5,057 m δ2 = 1250 μ 

L'effet serait donc plus important que celui de l'aberration 
chromatique d'où l'intérêt de rendre L constante dans 
tout l'espace utile. 

4. Aberration du troisième ordre 

On a essayé de serrer la réalité de plus près, en faisant 
un calcul d'aberration au troisième ordre. Le calcul 
correct est tellement complexe qu'on n'a pas pu le mener 
jusqu'au bout. On a dû se contenter jusqu'à présent 
d'évaluations partielles qui sont peu satisfaisantes sur les 
points suivants : 

Première évaluation : 

Modèle rectangulaire, composante vz de la vitesse 
assimilée à v. 

L'action de la composante Bz , est introduite sous 
formes d'impulsions aux deux extrémités de la lentille 
idéale; l'amplitude de ces impulsions est donnée par 
l'intégrale 

I = 

+ α c 

B z d z I = 
∫ 

c 

B z d z I = 
0 

c 

B z d z 

Il y a bon accord entre les valeurs expérimentales de I 
obtenues par intégration graphique des répartitions 

mesurées de BZ, et les valeurs théoriques calculées à 
partir des répartitions rectangulaires idéales. 

Deuxième évaluation : 

Modèle adouci par des demi-cloches, composante vz 
de la vitesse assimilée à v. 

Une discussion encore inachevée semble montrer que : 

1° — L'assimilation de vz à v n'est pas légitime. 

2° — Il faut introduire dans le développement du potentiel 
magnétique, le coefficient des termes en (x4 - y4) qui 
ne peut être négligé dans la lentille réelle, alors qu'il 
disparaît dans les calculs, lorsqu'on se contente du modèle 
rectangulaire. 

Lorsqu'on cherche à introduire ces perfectionnements 
les calculs deviennent si complexes, qu'il semble que la 
méthode de perturbation perde son intérêt. C'est pourquoi 
on a commencé à attaquer ce problème par deux méthodes 
différentes : 

— Calcul pas à pas de quelques trajectoires, à partir des 
champs mesurés ; cependant, si l'on veut éviter l'approximation 
v = vz, l'usage d'une machine à calculer puissante 
semble nécessaire. 

— Expérience directe sur un banc d'optique ionique 
permettant la mesure de l'épaisseur des focales. 

Des expériences préliminaires, effectuées avec des 
électrons et un système de deux lentilles électrostatiques 
à l'échelle 1/10 montrent que, dans les conditions de travail 
les plus mauvaises, faisceau large (4 mm à l'entrée 
de la première lentille), très ouvert (α = 2,5·10-2), l'épaisseur 
moyenne des taches focales est de l'ordre de 0,3 mm 
dans le plan de meilleure mise au point (qui n'est pas forcément 
le plan « de Gauss » envisagé durant les calculs). 
La forme des focales est d'ailleurs assez complexe, comme 
le laissait déjà prévoir le calcul simplifié avec le modèle 
rectangulaire. Les figures 14 a, b et c, très agrandies, 
montrent la forme de la section du faisceau au voisinage 
de la focale du plan « convergent-divergent » du système. 
On peut donc espérer, dans les conditions normales de 
fonctionnement, obtenir des focales ayant une épaisseur 
de 1 à 2 mm. 
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