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Abstract. To study analytically the possible symmetry breakings that may take place in the
adjoint representation of the compact Lie group E8 one may take advantage of the knowledge
of the basic polynomials of its Weyl group, that is of the finite reflection group E8, and of the
(polynomial) equations and inequalities defining its orbit space. This orbit space is stratified and
each of its strata represents a possible symmetry breaking, both for the adjoint representation
of the Lie group E8 and for the defining representation of the finite reflection group E8. The
concrete determination of the equations and inequalities defining the strata is not yet done but
it is possible in principle using rank and positive semi-definiteness conditions on a symmetric
8× 8 matrix whose matrix elements are real polynomials in 8 variables. This matrix, called the
bP -matrix, has already been determined completely. In this article it will be reviewed how one
may determine the equations and inequalities defining the strata of the orbit space and how
these equations and inequalities may help to study spontaneous symmetry breakings. Here the
focus is on E8, because some of the results for E8 are new, but all what it is here said for E8

may be repeated for any other compact simple Lie group. The bP -matrices of all irreducible
reflection groups have in fact already been determined.

1. Basic invariant polynomials and orbit spaces
Orbit spaces may be useful to study with clarity and simplicity functions that are invariant under
transformations of a compact symmetry group, in particular in problems concerning spontaneous
symmetry breakings or structural phase transitions. The invariant functions are in fact constant
on the orbits of the group, and may be studied by means of functions defined on the orbit space
of the group action.

It may happen that different groups share the same orbit space structure. For example, this
may happen for the adjoint representation of a compact connected Lie group G and the defining
representation of the Weyl group W of G. When different groups share the same orbit space, the
study of invariant functions in the orbit space requires exactly the same calculations and yields,
in a certain sense, exactly the same results, for all these groups. Moreover, one may consider
the simplest of all these groups to determine the algebraic and geometric structure of the orbit
space.

Let’s assume that the symmetry group G is a compact group (finite or continuous) acting
linearly on a finite dimensional Euclidean space V . Without loss of generality, with respect to
a orthonormal basis in V , one may identify V with Rn, for a certain n ∈ N, and G with a group
of real orthogonal n× n matrices acting on Rn with the matrix multiplication. In addition, one

GROUP 28: Physical and Mathematical Aspects of Symmetry IOP Publishing
Journal of Physics: Conference Series 284 (2011) 012057 doi:10.1088/1742-6596/284/1/012057

Published under licence by IOP Publishing Ltd 1



may assume that this G-action be effective, that is, with no non-zero vector left invariant by all
the transformations of G.

Let f(x), x ∈ Rn, be a real function of n real variables. f is said to be G-invariant if
f(gx) = f(x), ∀g ∈ G and x ∈ Rn in the domain of f (and this implies that in the domain
of a G-invariant function there are complete orbits of the G-action). The polynomial functions
defined in Rn form an algebra, indicated with R[Rn]. G acts naturally on R[Rn] by defining
(gp)(x) = p(g−1x), ∀p ∈ R[Rn] and x ∈ Rn. p ∈ R[Rn] is then G-invariant if gp = p ∀g ∈ G.
The G-invariant real polynomial functions on Rn form an algebra, indicated by R[Rn]G. For
the linearity of the G-action, if p ∈ R[Rn] is homogeneous of degree d, then gp ∈ R[Rn] is
homogeneous of degree d.

By Hilbert’s theorem on invariants, R[Rn]G is finitely generated, that is, there exist
p1, . . . , pq ∈ R[Rn]G, such that ∀ p ∈ R[Rn]G, there exists a unique polynomial p̂ in q
indeterminates such that p(x) = p̂(p1(x), . . . , pq(x)), ∀x ∈ Rn. The invariant polynomials
p1, . . . , pq, are usually called basic invariants, basic (invariant) polynomials or basic generators,
and they can in all generality be chosen real and homogeneous. Especially in the physical
literature, a set of basic polynomials is sometimes called an integrity basis of the G-action. I
will usually write MIB for a minimal integrity basis p1, . . . , pq. For the minimality condition,
no proper subset of the basic polynomials in a MIB can itself be a MIB. The choice of a set
p1, . . . , pq of basic polynomials is not unique, but the number q and the degrees d1, . . . , dq of the
basic polynomials p1, . . . , pq, do not depend on the MIB chosen and are uniquely determined by
the group G. Any other MIB, formed by a set p ′1, . . . , p

′
q, of q homogeneous invariant polynomials

of the same degrees d1, . . . , dq, may differ from the MIB p1, . . . , pq either for a different choice of
the (orthonormal) coordinate system in Rn, or because the p ′a can be expressed as polynomials
in the pa, with the jacobian matrix J(p) = ||∂p ′(p)/∂p || not singular.

It is usual to order the basic polynomials according to their degrees, for example in such a
way that 2 = d1 ≤ d2 ≤ . . . ≤ dq. One may also put p1(x) = ( x, x ) =

∑n
i=1 x2

i , where ( ·, · ) is
the canonical scalar product in Rn (a natural choice for real orthogonal actions).

A MIB allows one to determine the algebraic equations and inequalities defining a semi-
algebraic set S ⊂ Rq, that can be considered as a concrete representation of the abstract
orbit space Rn/G of the G-action. Moreover, a MIB allows one to determine a one to one
correspondence between the smooth G-invariant functions f(x), x ∈ Rn and the smooth
functions f̂(p), p ∈ S, in such a way that f(x) = f̂(p1(x), . . . , pq(x)), ∀x ∈ Rn in the domain
of f . Then, one may study the G-invariant functions on the set S, and this may sometimes be
convenient and/or enlightening.

The rest of this Section reports some known definitions and results, concerning orbit spaces
of effective actions on Rn of a general compact group G ⊂ O(n).

(i) The orbit of x ∈ Rn is the set Ω(x) = {gx,∀g ∈ G} ⊂ Rn.
(ii) The orbit space of the G-action is the quotient space Rn/G, in which each orbit is reduced

to a single point.
(iii) The isotropy subgroup of x ∈ Rn is the subgroup Gx = {g ∈ G | gx = x} of G.
(iv) The orbit type [Gx] of an orbit Ω(x) is the conjugacy class of the isotropy subgroups of the

points x ∈ Ω(x): [Gx] = {gGxg−1, ∀g ∈ G}. One has in fact Ggx = gGxg−1, ∀g ∈ G.
(v) The stratum of type [Gx] is the set Σ[Gx] = {x ∈ Rn | Gx ∈ [Gx]}, containing all orbits of

orbit type [Gx]. The set of strata form a partition of Rn, called stratification. The number
of different orbit types and strata is finite.

(vi) An orbit type is smaller (or greater) of another orbit type, [H] < [K] (or [K] > [H]), if
H ′ ⊂ K ′ for some H ′ ∈ [H] and K ′ ∈ [K]. Note that this is a partial ordering in the set
of orbit types, given in fact two arbitrary orbit types, it may happen that neither one of
the two orbit types is smaller or greater than the other one. There is a unique smallest
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orbit type [Gp], the corresponding stratum Σ[Gp] is called the principal stratum and is dense
in Rn, all other strata are called singular. There is a unique greatest orbit type [G], the
corresponding stratum Σ[G], for all effective actions, is formed by just one point, the origin
of Rn: Σ[G] ≡ 0 ∈ Rn.

(vii) The basic polynomials separate the orbits. This means that, given two different orbits,
at least one of the q basic polynomials takes a different value on the two orbits. As a
consequence, the orbit map p̄ : Rn → Rq | x → p̄(x) = (p1(x), . . . , pq(x)) maps Rn into a
subset S ⊂ Rq in such a way that there is a one to one correspondence between orbits in Rn

and points in S. The orbit map induces a diffeomorphism between the orbit space Rn/G
and the set S, and for this reason S can be identified with the orbit space. S is connected,
even if G is not connected or is finite. If Σ is a stratum of Rn then p̄(Σ) is said to be a
stratum of S. If [K] > [H], then p̄(Σ[K]) lies in the boundary of p̄(Σ[H]). The interior of S
coincides with the principal stratum p̄(Σ[Gp]) and the boundary of S contains all singular
strata. The origin of Rq is the image through the orbit map of the origin of Rn, in fact
p̄(Σ[G]) = p̄(0) = 0 ∈ Rq, and is the only stratum of S that lies in the boundary of all other
strata of S. The orbit map determines a natural grading of the coordinates p1, . . . , pq of
Rq, such that deg(pa) = deg(pa(x)), ∀a = 1, . . . , q. Both the orbit map and S are defined
through a MIB and depend on the MIB chosen.

(viii) Every polynomial (or C∞) G-invariant function f(x) is constant along the orbits of the G-
action and may be expressed in a unique way as a polynomial (or a C∞) function of the MIB:
f(x) = f̂(p̄(x)) = f̂(p1(x), . . . , pq(x)), ∀x ∈ Rn in the domain of f . The domain of f̂(p) in
Rq may be extended also outside S, possibly in many ways, but to study f(x) one is only
interested in the restriction of f̂(p) to S. If f(x) is a G-invariant homogeneous polynomial
function, then f̂(p) is a homogeneous polynomial function, and deg(f̂(p)) = deg(f(x)),
taking into account the degrees of the graded variables p1, . . . , pq. The correspondence
π : R[Rn]G → R[Rq] : f → f̂ is then one to one and degree preserving.

(ix) For the linearity of the G-action, the points x and λx, ∀λ ∈ R and x ∈ Rn, belong to the
same stratum. Then each ball centered in the origin of Rq intersects all the strata of S and
each hyperplane of Rq of equation p1 =constant > 0 intersects all strata of S different than
the origin. The intersection of S or of each connected component of its strata with each
one of these spheres or hyperplanes is compact and connected. Roughly, S appears like a
pyramid in Rq with vertex at the origin, curved faces, and infinite extension just towards
the positive direction of the p1 axis.

(x) For any stratum Σ ⊂ Rn, and a general point x ∈ Σ, the dimension of the stratum p̄(Σ) ⊂ S
coincides with the rank of the jacobian matrix j(x) = ||∂p(x)/∂x|| and, consequently, with
the rank of the matrix P (x) = j(x)T j(x), evaluated in x. The explicit expressions of the
matrix elements of j(x) and P (x) are the following:

jai(x) =
∂pa(x)

∂xi
, Pab(x) =

n∑

i=1

∂pa(x)
∂xi

∂pb(x)
∂xi

, a, b = 1, . . . , q, i = 1, . . . , n.

P (x) is a real symmetric positive semi-definite matrix whose matrix elements are
homogeneous G-invariant polynomial functions of degrees deg(Pab(x)) = da + db − 2.

(xi) The matrix elements of P (x) may be expressed as polynomials of the MIB: Pab(x) =
P̂ab(p̄(x)), ∀ a, b = 1, . . . , q, x ∈ Rn. One so obtains a real symmetric q × q matrix P̂ (p),
that is positive semi-definite in S ⊂ Rq. The matrix P̂ (p) is called the P̂ -matrix (associated
to the given MIB) and it is a matrix function of the points p ∈ Rq. The P̂ -matrix clearly
depends on the choice of the MIB. Other names that have been used in the literature for
the P̂ -matrix are displacement matrix and discriminant matrix.
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(xii) If the basic polynomials are algebraically independent (this will be the only case considered
in this article because it is the case of the adjoint representations of the compact simple
Lie groups), the set S coincides with the subset of Rq where the P̂ -matrix is positive semi-
definite:

S = {p ∈ Rq | P̂ (p) ≥ 0}.
Given x ∈ Σ ⊂ Rn and p = p̄(x) its image in S, one has dim(p̄(Σ)) = rank(P̂ (p)), ∀ p ∈ p̄(Σ).
The union Sk of all k-dimensional strata of S (k ≤ q) is then the following set:

Sk = {p ∈ Rq | P̂ (p) ≥ 0, rank(P̂ (p)) = k}.

Clearly, Sq coincides with the principal stratum and S0 with the origin of Rq, and there are
strata of S of all dimensions k such that 0 ≤ k ≤ q. To find practically the equations and
inequalities defining Sk, one may require that: 1) all the principal minors of P̂ (p) of order
k + 1 are 0; 2) at least one of those of order k is > 0; 3) all principal minors of order
≤ k are ≥ 0 (remind that the non negativity of just the leading minors of a real symmetric
matrix is not a sufficient condition for its positive semi-definiteness). To determine Sk one
has then to solve a system of algebraic equations and inequalities that may be quite big.

(xiii) The set S is a q-dimensional semi-algebraic set because it is defined just using polynomial
equations and inequalities. As all semi-algebraic sets, S is stratified in primary strata, that
is, it has a connected q-dimensional interior, bordered by connected (q−1)-dimensional faces,
that are bordered by connected (q− 2)-dimensional faces, and so on, down to its unique 0-
dimensional vertex at the origin of Rq. Sk is then the union of all the k-dimensional primary
strata of S. There is a one to one correspondence among the connected components of the
strata determined by the orbit types of the group action and the primary strata of S.

(xiv) A MIB transformation is a change of the MIB: {pa(x)} → {p ′a(x)}, such that ∀a = 1, . . . , q,
p ′a(x) = p̂ ′a(p̄(x)), with the p̂ ′a(p) homogeneous polynomial functions of the variables p ∈ Rq

of degrees da = deg(pa), and the jacobian matrix J(p) = ||∂p̂ ′(p)/∂p || not singular. A MIB
transformation always implies a change of the system of coordinates in Rq: p → p ′, such
that ∀a = 1, . . . , q, p ′a = p̂ ′a(p). A MIB transformation usually implies a change of the
P̂ -matrix and a consequent change of the set S ⊂ Rq. A change of the MIB consequent
just to a change of the orthonormal system of coordinates in Rn is not necessarily a MIB
transformation and never implies a change of the P̂ -matrix and of the set S.
Let us write P̂ (p ′) and P̂ (p) for the P̂ -matrices determined by the bases {p ′a(x)} and
{pa(x)} related by a MIB transformation. The relation between the P̂ -matrices P̂ (p ′) and
P̂ (p) is expressed by the following P̂ -matrix transformation formula:

P̂ (p ′) = JT (p) P̂ (p) J(p)
∣∣∣
p→bp(p ′)

.

This formula is very useful to determine the matrix P̂ (p ′) if one knows the matrix P̂ (p),
corresponding to some other basis {pa(x)}. In fact, using the P̂ -matrix transformation
formula, there is no need to calculate the matrix P (x) corresponding to the basis {p ′a(x)},
a calculation that is often very long and tedious. The equations and inequalities defining
the strata of S in the new variables p ′ may be obtained either through the coordinate
transformation p → p ′ applied to the equations and inequalities defining the strata of S
in the old variables p, or by solving the system of algebraic equations and inequalities
expressing the rank and positive semi-definiteness conditions on the new P̂ -matrix P̂ (p ′).

Details and proofs of most of the statements here recalled may be found in [2, 14, 1] and in
the references therein.
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2. The Chevalley isomorphism of the algebras of polynomial invariants
Let G be a compact connected simple Lie group and g its Lie algebra. Let l be the rank of G
and g. The Weyl group W of G is an irreducible finite reflection group of rank l. We are here
interested only in the defining representation of W , so W ⊂ O(l). It is known that W has a
MIB with l algebraically independent elements of known degrees 2 = d1 ≤ . . . ≤ dl [6, 5].

There is an isomorphism, found by Chevalley [4], between the algebra R[g]Ad(G) of the real
polynomial functions on g, invariant for the adjoint representation of G in g, and the algebra
R[Rl]W of the real polynomial functions on Rl, invariant for the action of W in Rl. Independently,
Harish-Chandra, in [8], Part III, proved the existence of an isomorphism between R[Rl]W and the
center Z(g) of the universal enveloping algebra U(g) of G (the elements of Z(g) are often called
Casimir elements). Because of the Chevalley and Harish-Chandra isomorphisms, both R[g]Ad(G)

and Z(g) are generated by l algebraically independent elements of degrees d1, . . . , dl. In this
Section I will review how Chevalley found the isomorphism between R[g]Ad(G) and R[Rl]W .

The Lie algebra g is a real vector space of dimension n. In g one can consider a basis {Ti},
i = 1, . . . , n, Ti ∈ g, such that any element X ∈ g can be written in the following way:

X =
n∑

i=1

xi Ti, xi ∈ R.

The basic elements {Ti, }, i = 1, . . . , n, are often called the generators of g. A one to
one correspondence between g and Rn is obtained by identifying X ∈ g with the vector
x = (x1, . . . , xn) ∈ Rn.

The group elements g ∈ G are obtained by the exponential law g = exp(X) from the elements
X ∈ g. In what follows we think of X ∈ g and g ∈ G to belong to a given representation (of g
and of G). More precisely, we suppose that the elements of g are represented by anti-hermitian
matrices (so X† = −X) and that the group elements are represented by unitary matrices (so
g† = g−1). The order m of these matrices is the dimension of the representation.

In a representation of g realized by anti-hermitian matrices the Killing form K(Ti, Tj) =
−Tr(T †i Tj) is a real symmetric n × n matrix that can be diagonalized and reduced to the
identity matrix by choosing a proper basis {Ti}. In that case one has K(Ti, Tj) = δij and the
Killing form defines a scalar product in g for which the basis {Ti} is orthonormal.

The adjoint representation Ad(G) of the group G is given by the following linear action of G
in the given representation space of g:

Ad(g) X = gXg−1 = gXg† ∀g ∈ G, X ∈ g,

where the g in the formula, except that one in Ad(g), means the m × m unitary matrix that
represents the abstract element g ∈ G in the given representation of G. Sometimes the group
Ad(G), whose elements are Ad(g), is called the adjoint group of G.

Using the Killing form as the scalar product in g, this action (of G on g) doesn’t change the
norms of the vectors X ∈ g, in fact, by the cyclic property of the trace and the unitarity of
g ∈ G, one has:

||Ad(g)X||2 = ||g X g†||2 = −Tr
(
(g X g†)† g X g†

)
= −Tr(X† X) = ||X||2.

Hence, by a standard result of linear algebra, the linear action of the group Ad(G) in g can
be represented by a group Γ of real orthogonal n × n matrices acting in Rn with the matrix
multiplication. In fact, if Y = Ad(g)X, and x, y ∈ Rn represent X, Y ∈ g with respect to the
orthonormal basis {Ti}, and y = O(g)x, where O(g) ∈ Γ is the real orthogonal n × n matrix
that represents the linear transformation induced by Ad(g) in Rn, one has:

||Y ||2 = ||y||2 = (y, y) = (O(g)x,O(g)x) = (x,O(g)T O(g)x) = (x, x) = ||x||2 = ||X||2.
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Note that in the last formula there are two different, but equivalent, ways to evaluate the norms:
||X||2 = K(X,X) = −Tr(X†X), if X ∈ g, and ||x||2 = (x, x) =

∑n
i=1 x2

i , if x ∈ Rn.
In the following we will always consider the action of Γ in Rn instead of the action of Ad(G)

in g. For what has just been said, the two descriptions are equivalent and the use of Γ allows to
employ all the results reviewed in Section 1.

It is known that, if l = rank(g), there exist an l-dimensional subalgebra h of g, called a
Cartan subalgebra of g, such that all the elements of h commute among themselves. It is
possible, and that will be here supposed, to choose the basic orthonormal elements {Ti} in such
a way that the first l of them generate h, so that g = h ⊕ e, where h and e are subspaces of
g generated by {T1, . . . , Tl} and by {Tl+1, . . . , Tn}, respectively. h may then be identified with
the l-dimensional subspace of Rn of the first l coordinates: for x = (x1, . . . , xl, 0, . . . , 0) ∈ Rn,
we set ξi = xi, ∀i = 1, . . . , l, then ξ = (ξ1, . . . , ξl) ∈ Rl is in a one to one correspondence with
the element X =

∑l
i=1 ξiTi ∈ h. For this reason we will sometimes write h and g also to mean

the vector spaces Rl and Rn of the coefficients ξi and xi, respectively. The l one-parameter
subgroups of G with elements of the form exp(ξiTi), i = 1, . . . , l, (in which no sum over i has to
be understood), generate an l-dimensional Abelian subgroup H of G, the Cartan subgroup of G
that has Lie algebra h.

For the compactness of G, every g ∈ G is conjugated to an element h ∈ H. This means that
all the orbits of the action of the group Γ in g intersect h. As every ξ ∈ h completely specifies
the orbit Ω(ξ) of the action of Γ in g that contains ξ, all the orbits of the action of Γ in g can
be specified by points ξ ∈ h.

Let N(H) = {g ∈ G | gHg−1 ⊆ H} be the normalizer of H in G. If X ∈ h and ε ∈ R,
h = exp(εX) = 11m + εX + O(ε2) ∈ H, and ghg−1 = 11m + ε(gXg−1) + O(ε2). If g ∈ N(H),
ghg−1 ∈ H and then gXg−1 ∈ h. This implies that the restriction of Γ to the elements g ∈ N(H),
is a group ΓN of inner automorphisms of h, under which h is invariant. The matrices of the
linear group ΓN are then block diagonal matrices, formed by the direct sum of an l×l orthogonal
matrix, in correspondence to h, and an (n − l) × (n − l) orthogonal matrix, in correspondence
to e. An invariant polynomial p(x) ∈ R[g]Γ must also be an element of R[g]ΓN , because ΓN

is a subgroup of Γ. Moreover, also the restriction p̃(ξ) of p(x) to h is in R[g]ΓN , because h
is ΓN -invariant. Vice versa, a polynomial p̃(ξ), ξ ∈ h, invariant for the action of ΓN in g,
defines a unique polynomial p(x) ∈ R[g]Γ, such that p̃(ξ) is its restriction to h. In fact, ∀x ∈ g,
∃g ∈ G | O(g)x ∈ h, so that one may define p(x) = p̃(O(g)x). Of course, it may exist a g1 ∈ G,
g1 6= g, such that O(g1)x ∈ h, but then ∃ g′ ∈ N(H) | g′g = g1, and both O(g)x and O(g1)x
must lie in the same orbit of ΓN , so that p̃(O(g)x) = p̃(O(g1)x) and this means that p(x) is well
defined. The polynomial p(x) so defined is Γ-invariant, in fact, the value of p in all the points of
the orbit Ω(x) of the Γ-action is the same as in the points ξ of the intersection Ω(x)∩h. All this
proves the existence of an isomorphism between the algebra R[g]Γ and the restriction R[g]ΓN

∣∣
h

of the algebra R[g]ΓN to h.
The image of the Abelian subgroup H of G in Ad(G) is represented by an Abelian subgroup

ΓH of Γ that acts trivially on h (that is, the elements of ΓH have the identity matrix on the first
l-dimensional block). Then the quotient group ΓN/ΓH acts naturally on h. The Weyl group W
of G is defined as the quotient group N(H)/H, a definition that does not depend on the Cartan
subgroup H ⊂ G. W is in any case a finite group, even if G and H are not. The action of the
group ΓN/ΓH in h is then isomorphic to the action of the group W in h and this also implies
R[g]ΓN

∣∣
h
≡ R[h]W .

All these facts prove that there is an isomorphism between R[g]Γ and R[h]W and that the
restriction to h of a MIB for R[g]Γ gives a MIB for R[h]W and vice versa, a MIB for R[h]W

uniquely specifies a MIB for R[g]Γ.
The relation between the action of Γ in Rn (' g) and of the action of W in Rl (' h), may
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be further described using a Cartan Weyl basis for the complexification gc = g + ig of g.
With a basis for h one may determine the roots and a Cartan Weyl basis for gc, in which it

is usual to write the basic elements as {H1, . . . , Hl, Eαi , E−αi , . . .}, with Hi ∈ h, ∀i = 1, . . . , l,
and Eαi , E−αi ∈ ec, where αi is ranging in the set of the positive roots of h in g. This basis
may be expressed in terms of the basis {Ti} in the following way: Hi = Ti, ∀i = 1, . . . , l,
Eαi = 1√

2
(Tl+2i − iTl+2i−1), E−αi = E†

αi , ∀i = 1, . . . , (n− l)/2, if the {Ti} are ordered properly.

Every root β is a non vanishing vector of Rl and defines a reflection Sβ in Rl,

Sβ ξ = ξ − 2(ξ, β)
(β, β)

β, ∀ ξ ∈ Rl,

sending each point of ξ ∈ Rl to its symmetric with respect to the hyperplane through the origin
of Rl orthogonal to β. The Weyl group W of G (and g) may be defined as the group generated
by all the reflections Sβ, with β a root. All the elements w ∈ W may then be expressed as a
product of a finite number of these reflections. W is then a group of real orthogonal l×l matrices,
irreducible if G is simple. This definition of the Weyl group turns out to be equivalent to the
former, given as the quotient group N(H)/H. All elements w ∈ W send the set of the roots
to itself and the set of the reflecting hyperplanes to itself. The action of w in Rl corresponds
then to a permutation of the roots: αi → wαi, and induces a permutation of the generators of
ec according to the rule: Eαi → Ewαi , for every root αi.

3. Basic invariant polynomials and orbit spaces of the adjoint representations
In this Section I will review how one may determine the equations and inequalities defining the
orbit spaces of the adjoint representations of the compact simple Lie groups. I will continue to
use the notation introduced in the previous Section.

Elements of R[Rn]Γ, that is Γ-invariant real polynomial functions defined on Rn, are obtained
by writing the explicit expressions of the Casimir elements in Z(g) [10] in terms of the n real
coefficients xi of the expansions of the elements X ∈ g in terms of the generators Ti, i = 1, . . . , n.
The explicit expressions of these Casimir polynomials are the following:

I(k)(x) = Tr(Xk), X =
n∑

i=1

xi Ti, xi ∈ R, k ∈ N.

The I(k)(x) so defined are Γ-invariant polynomials, one in fact has:

I(k)(O(g)x) = Tr((gXg†)k) = Tr(gXkg†) = Tr(Xk) = I(k)(x), ∀g ∈ G, x ∈ Rn.

For the results in the previous Section, the restriction of a Casimir polynomial I(k)(x) to
the l dimensional subspace corresponding to the Cartan subalgebra h ⊂ g, gives an invariant
polynomial Ĩ(k)(ξ) for the action of the Weyl group W in Rl:

Ĩ(k)(ξ) = Tr(Xk), X =
l∑

i=1

ξi Ti, ξi ∈ R, k ∈ N.

Vice versa, Ĩ(k)(ξ) uniquely extends and defines the Casimir polynomial I(k)(x).
For a certain set of degrees d1, . . . , dl, the l Casimir polynomials I(da)(x), a = 1, . . . , l, are

algebraically independent and form a MIB of R[g]Γ. Their restrictions to h, Ĩ(da)(ξ), form then
a MIB of l algebraically independent polynomials for R[h]W with the same set of degrees.

An important result is that both the MIB I(da)(x), a = 1, . . . , l, of R[Rn]Γ, and the MIB
Ĩ(da)(ξ), a = 1, . . . , l, of R[Rl]W , determine the same P̂ -matrix. The proof is in [12], Section
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III. For the results in Section 1, this implies that, both the actions of Γ in Rn and of W in Rl

have the same orbit space, with the same geometric stratification. The strata of S correspond
in the two cases of Γ or of W to different orbit types, that is to the conjugacy classes of
the isotropy subgroups of the actions of Γ or of W . Obviously, to a MIB transformation for
R[Rn]Γ (for R[Rl]W ) it corresponds a MIB transformation for R[Rl]W (for R[Rn]Γ), given by the
same transforming equations, if these are written in terms of the basic invariants. This MIB
transformation implies a change of the P̂ -matrix (according to the P̂ -matrix-transformation
formula) and a consequent change of the equations and inequalities defining the orbit space S
and its strata. It happens then that if the MIB {p̃a(ξ)} of R[Rl]W is obtained by restricting to
h a MIB {pa(x)} of R[Rn]Γ, then the MIB’s {p̃a(ξ)} and {pa(x)} determine the same P̂ -matrix
and the same orbit space S ⊂ Rl for the actions of W and Γ. In fact, there exists a unique MIB
transformation that transforms the MIB {Ĩ(da)(ξ)} to the MIB {p̃a(ξ)} and the MIB {I(da)(x)}
to the MIB {pa(x)}, this last one differs from the first one just for the substitutions Ĩ(da) → I(da),
and p̃a → pa, ∀a = 1, . . . , l.

The arguments described in this Section suggest that to determine the orbit space of the
adjoint representation of a simple compact Lie group G, it is possible, and more convenient, to
determine the orbit space of the Weyl group W of G. The main reasons of this convenience are
the following: 1) W is finite while Γ is not; 2) W acts in Rl, while Γ acts in Rn, and l < n; 3)
both W and Γ have the same P̂ -matrix, the same orbit space S and the same equations and
inequalities defining all strata of S, if these equations and inequalities are expressed in terms of
the MIB, and if the MIB of R[Rl]W is obtained by restricting to h a MIB of R[Rn]Γ.

If the rank l is large, given a general MIB {pa(ξ)} of R[Rl]W , it may be very hard to determine
the P̂ -matrix directly from the MIB {pa(ξ)} (that is, through the determination of the matrix
P (ξ)). It is often convenient to use a known P̂ -matrix, corresponding, in general, to another
MIB {p ′a(ξ)} of R[Rl]W , determine the MIB transformation relating the MIB {p ′a(ξ)} to the
MIB {pa(ξ)} and make use of the P̂ -matrix transformation formula. For example, if one knows
the P̂ -matrix corresponding to the MIB {p ′a(ξ)} of R[Rl]W , and one wishes to determine the
P̂ -matrix corresponding to the MIB {I(da)(x)} of R[Rn]Γ, it is convenient to determine the MIB
transformation relating the MIB’s {p ′a(ξ)} and {Ĩ(da)(ξ)} and use the P̂ -matrix transformation
formula. The P̂ -matrices of the finite reflection groups E7 and E8 have been calculated in [16].
The P̂ -matrices of all the other irreducible reflection groups have been calculated in [7, 11, 17, 13].

4. Symmetry breakings in the orbit spaces
We continue here to use the notation of the previous Section and write Γ for the real orthogonal
group acting on Rn that realizes the adjoint representation Ad(G), and W for the Weyl group
of G, acting on Rl as a reflection group. Clearly, n = dim(g) and l = rank(g) = rank(W ).

Let f be a function invariant for the group Γ (or for the group W ). f may be expressed in
a unique way in terms of a given MIB of Γ (or of W ), so f uniquely defines a function f̂ of l

variables such that f(x) = f̂(p1(x), . . . , pl(x)), ∀x in the domain of f . The function f̂ represents
both a Γ-invariant function and a W -invariant function, the only difference is in considering
the l variables in f̂ as the l basic polynomials of Γ or of W . When the MIB of R[Rl]W is the
restriction to h of a MIB of R[Rn]Γ, the actions of W and Γ determine the same orbit space
S ⊂ Rl, with the same stratification. Only this case will be considered in the following. In this
case, when one studies the function f̂ in S, there is no difference between the problem in which
the symmetry group is Γ and the problem in which the symmetry group is W . In both cases
one has in fact to study the function f̂ in the same semi-algebraic connected subset S ⊂ Rl that
represents the orbit space, of Γ and of W .

f̂ depends in general on the l variables corresponding to the l basic polynomials (of Γ or of
W ) and to a certain number of other parameters related to the physical problem one is dealing
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with. If f is an invariant potential function, and one wants to study spontaneous symmetry
breakings or phase transitions, one is interested in the location of the minima of f̂ and in the
orbit type of the stratum hosting the minimum point. Let the minimum point of f̂ be in a given
point of S, belonging to a given stratum that corresponds to a given orbit type. If for some
reasons the parameters in f̂ change with continuity, the minimum point of f̂ , in general, changes
its position with continuity, and it may happen that it changes stratum, changing in this way the
orbit type of the orbit of minimum points (and consequently the residual symmetry), realizing
in this way what is called a spontaneous symmetry breaking or a second order structural phase
transition.

This changing may take place only between neighboring strata of S, because of the continuity
of the changing of the location of the minimum point of a continuous function.

What one has to do to study the spontaneous symmetry breakings in the orbit space S is
summarized in the following points.
1) Determine the equations and inequalities defining the various strata of S. 2) Determine the
orbit types (of the Γ- or of the W -action) corresponding to the various strata of S. 3) Express
the invariant potential function f in terms of the MIB, obtaining in this way a function f̂ of l
variables. 4) Determine the constrained minima of f̂ in the various strata of S, and the range
of the parameters in f̂ for which the absolute minimum of f̂ falls into one or another stratum.
Point 1) is solved using rank and positive semi-definiteness conditions of the P̂ -matrix. Point 2)
is solved by determining the isotropy subgroups in convenient points ξ ∈ Rl (or x ∈ Rn), where
Rl (or Rn) is the space on which W (or Γ) acts, chosen in such a way to have images through
the orbit map in each one of the primary strata of S. It may be useful to remind that points
lying in the boundary of S are images through the orbit map of orbits lying in the set of the
reflecting hyperplanes of W . To each stratum of S it corresponds both an orbit type of W and
an orbit type of Γ, depending on which group action one considers. The two sets of orbit types
are clearly related. Point 4) is solved for example with the method of Lagrange multipliers to
find constrained extrema on the various primary strata of S.

The study of minimization of invariant functions here described can be done analytically,
that is with full precision, because from the P̂ -matrices one may determine all the equations
and inequalities defining the various strata of the orbit space. The calculations are not
straightforward but do not present conceptual difficulties. In practice, one has to work with
systems of algebraic equations and inequalities that may be quite complicated to handle.

5. Results for the adjoint representation of E8

During the last 30 years, the adjoint representation of the compact Lie group E8 has been
many times proposed in models of grand unification theories and of string theories and an exact
computational method to employ in the study of spontaneous symmetry breakings in these
models may be of a certain interest.

As before, let’s write W ⊂ O(8) for the finite reflection group E8 and Γ ⊂ O(248) for the
linear group realizing the adjoint representation of the Lie group E8.

The degrees of a set of basic polynomials p1, . . . , p8, both for R[R8]W and for R[R248]Γ, are
known to be 2, 8, 12, 14, 18, 20, 24, 30. The center Z(e8) of the universal enveloping algebra
U(e8) of E8 is also generated by 8 algebraically independent Casimir elements of the same set of
degrees. Besides the quadratic and the octic (of degree 8) Casimir element [3], to my knowledge,
no other generator of Z(e8) have been explicitly calculated so far. Many authors described how
to construct a set of basic polynomials for R[R8]W . A simple description was given for example
by Mehta in [9], in terms of the linear functions defining the invariant hyperplanes of W . These
basic polynomials were calculated explicitly in [16] and their expressions may be found in the
supplementary material of that article (Ref. 30 of [16]). Their expressions are quite large, for
example, p8(x) is a real homogeneous polynomial function of 8 variables of degree 30 that has
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10592 terms when expanded. The explicit expression of the corresponding P̂ -matrix is also
reported in Ref. 30 of [16]. This P̂ -matrix, using the P̂ -matrix transformation formula, allows
to determine the P̂ -matrices corresponding to any other MIB of R[R8]W (in [16], for example,
this formula was used to calculate the P̂ -matrix corresponding to a flat basis). The geometric
structure of the orbit space S, corresponding both to the group W and to the group Γ can
then be determined explicitly, as described in Section 1 above, and in particular it is possible
to determine explicitly the equations and inequalities of all the strata of S. The calculations
to do that are not yet done and are not trivial because the P̂ -matrix is an 8 × 8 matrix with
elements that are real homogeneous polynomials in 8 variables with degrees ranging from 2 to
58 (by considering the degrees of the graded variables p1, . . . , p8). Anyway, these calculations
are possible because one knows completely the explicit expression of the P̂ -matrix.

The study of the minima of a Γ- (or W -) invariant potential function and of the related
spontaneous symmetry breakings may be performed following the method outlined in Section
4, however, because of the high degrees of the equations that are involved, one encounters quite
complicated systems of algebraic equations and inequalities.
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