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Abstract
Quantum inverse problem (QIP) is the problem of estimating an unknown quantum system from
a set of measurements, whereas the classical counterpart is the inverse problem of estimating a
distribution from a set of observations. In this paper, we present a neural-network-based method
for QIPs, which has been widely explored for its classical counterpart. The proposed method
utilizes the quantumness of the QIPs and takes advantage of the computational power of neural
networks to achieve remarkable efficiency for the quantum state estimation. We test the method
on the problem of maximum entropy estimation of an unknown state ρ from partial information
both numerically and experimentally. Our method yields high fidelity, efficiency and robustness
for both numerical experiments and quantum optical experiments.

1. Introduction

Learning quantum states is an essential task in quantum information processing [1–3]. Typically,
performing measurements on a quantum system, getting readouts, and reconstructing the quantum states is
the way to study the corresponding systems. In general, this process can be written as�c = A(ρ) + �ε, where ρ

is the quantum state of the system, A is a function of ρ, and�c is expectation values obtained from the
measurements that are specified by the function A. The vetcor �ε is the noise vector that is subject to a noise
distribution πnoise. If one knows the state ρ, then�c can be obtained by getting the measurements specified
by A, and we call this process the quantum forward problem (QFP); the opposite direction is then called
the quantum inverse problem (QIP).

Despite of the contexts of quantum systems, when the operator ρ is a diagonal matrix, i.e. a classical
probability distribution, the QIP reduces to its classical counterpart, i.e. the classical inverse problem (IP),
which is known as one of the most important mathematical problems since it estimates parameters that are
not directly measurable, a situation widely applicable in science and technology. From the analytic
perspective, it is a problem of recovering system parameters (elements of diagonal ρ) from observables�c
according to a particular model; from the Bayesian inference viewpoint, the goal is to recover the classical
probability distribution of a diagonal ρ subject to the given�c [4].

IP has been studied for a long time in statistical inference and statistical learning [5, 6]. One of the
difficulties is that IPs are often ill-posed. That means the solution may not exist, not unique when it exists,
or unstable in the sense that a slight change in the input may cause a significant change to the output. Deep
neural networks are state-of-art tools for solving IP [4, 7–12], with several of them focused on the ill-posed
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Figure 1. The schematic diagram of the general method: the green arrow depicts the quantum forward model; the red arrow is
the QIP. We tackle the problem by supervised learning a deep neural network.

cases [4, 7]. These proposals have been broadly applied to biomedical imaging [8, 13–16], geophysics [17],
optical physics [18], and engineering sciences [19] etc.

When A is the function of directly mapping ρ to complete measurements�c, the QIP corresponds to the
so-called quantum state tomography. The standard tomography process requires measurements from d2 − 1
linearly independent observables, where d is the dimension of Hilbert space [20]. It is highly
resource-demanding since the number of measurements grows exponentially with the number of qubits,
making it impractical even in the noisy intermediate-scale quantum (NISQ) era. In general, the goal of
QIPs, from a statistical inference perspective, is to discover the quantum distributions based on observed�c
and then give an estimation based on the distribution. Quantum probability (non-diagonal ρ) is a
noncommutative probability on von Neumann algebra, while classical probability is the commutative
special case (its von Neumann algebra is abelian) [21]. This difference makes quantum probability
distributions even harder to learn. Deep neural networks have great potential to give sound estimations in
such challenging scenarios. In this paper, we develop a method for QIPs using deep neural networks, which
is shown in figure 1. We remark that simple networks are not the only tools for QIPs. There are series of
techniques for classical IP that suit for particular contexts, for example, other network structures [22, 23],
specially designed loss function [4], all sorts of regularizer [7, 24] etc, one can conveniently modify them for
QIPs. To demonstrate our idea clearly and without loss of generality, we only present it in the language of
simple deep networks.

After properly parametrizing the quantum state ρ, deep neural networks offer an excellent opportunity
to fulfill this task by implementing supervised learning techniques. The common concerns of applying
supervised learning techniques are the availability of training data and distribution. In our case, the
knowledge from quantum physics pitches in, providing ways of parameterizing states and physical models
for the QFP. It can generate abundant training and testing data; it also reveals the landscape of the QIP,
which can determine the training data sampling and distribution.

We consider incomplete measurements to demonstrate our deep learning method since the complete
measurements require d2 − 1 operators, which are resource-demanding. An incomplete set of
measurements�c, reference to as partial information, usually does not reveal all system information. A given
�c usually corresponds to multiple preimages ρ. However, with appropriate prior information, the partial
information could have an almost (with probability one) bijective relation with the quantum system. For
example, based on the knowledge that the unknown quantum state has a low rank, compressed sensing
[25–27] can reconstruct the state with Pauli operators much less than d2 − 1; a small number of
measurements can predict many properties in a quantum system [28, 29]; with certain assumptions, one
eigenstate can encode all the information in a Hamiltonian [30–32]. The latter means the measurements of
one eigenstate can help recover the system Hamiltonian and the measured eigenstate. Though the
mathematical connection A between ρ and expectation values�c is clear, it is nontrivial to come up with
effective schemes to solve the QIP while efficiently utilizing the prior information [26].

Our method is particularly effective for these problems with prior information. The almost bijective
relation guaranteed by prior information of the system restricts the corresponding QIP to be likely
well-posed. The method can easily and effectively utilize the prior information of a regarding quantum
system because the information can easily embed in the QFP. The design of specific steps for a giving QIP is
intuitive, as well as the network training. Our framework can not only be applied to solve the problem but
also offer initial values for other Monte Carlo-based methods. We test our scheme on the task of giving
maximum entropy estimation (MEE) from partial information. The method demonstrates high fidelity and
extraordinary efficiency on both numerical data and experimental data from optical devices. It also
manifests the ability to tolerate experimental noise.
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This paper is organized in the following way: section 2 presents and discusses the deep learning method;
section 3 demonstrates the example of giving the MEE ρMEE of an unknown state ρ from partial
information in detail, supported by both numerical and quantum optical experimental results; section 4
then follows with discussion and outlook.

2. The neural networks method

For a quantum physical system, the underlying mechanism is governing by the physical model AF : X → Y
such that

�c = AF(ρ) + �ε, (1)

where ρ ∈ X is the density matrix, �ε ∈ Y is the noise vector (subject to a noise distribution πnoise), and
�c ∈ Y is the expectation values of measuring a fixed set of observables F = {F1, . . . , Fm}. X is the interested
set of d × d density matrices according to given prior information. For example, if we know the states ρ are
pure states, X is then the set of rank-1 density matrices; X is the set of all density matrices if no prior
information is provided. Y is the vector space Rm. The physical model AF is always associated with a set F
of observables to determine which space it maps into. For simplicity, we will use the notation A instead.
Giving ρ to get�c is the QFP, the reverse direction we call the QIP.

When the measurements are not complete—that is, the number m of observables is not enough to
uniquely determine the system, the QIP does not possess a unique solution. Prior information about the
interested system decreases the degree of freedom. Under this prior information, a model A is indeed
bijective or almost bijective (‘almost’ in this context means ‘measure one’, i.e. the function is bijection
except for a measure zero set of exceptions.) That means the system can be reconstructed with fewer
measurements if the prior information has been appropriately used. However, the challenge of how to
efficiently encode the prior information into a practical scheme is demanding [26]. This turns out to be a
blessing for our framework, which is straightforward to utilize such information. This point will be
explained later.

The key observation is that the forward problem is almost always more straightforward than the inverse.
For example, reconstructing an object from its projections is substantially more challenging than making
the projections of a known object. Especially in quantum information theory, the forward problem is
usually clear thanks to the study of quantum physics. Knowing the information of a quantum system, such
as its Hamiltonian or state (density matrix), the measurement outcomes of this system according to a fixed
set F are predictable. Compared to reconstructing information about the system from its measurement
outcomes, the forward direction is significantly easier.

We take advantage of the complexity difference between the two directions and use the easier direction
to help deal with the problematic side. Supervised learning is the relatively mature branch of machine
learning techniques that finds the model between input and output pairs data with labelled examples. On
the contrary, unsupervised learning techniques are normally used while lack access to training data or
having trouble with labelling data [33]. In our problem, data resource for supervised learning is guaranteed.
The QFP contributes to generating training and testing data for supervised learning. The next problem is
the training data distribution. The forward model A contains the information about the landscape of�c
according to ρ. This information guides the training data sampling process, largely determining the training
data distribution.

From another perspective, QIPs are also regression problems to fit given data pairs. Neural networks are
incredibly versatile tools for regression problems. Even simple NNs only with one hidden layer are very
expressive. With nonlinear activation functions between neurons, these ‘vanilla’ NNs can represent arbitrary
functions [34]. Traditionally, regression problems require deliberately chosen techniques to achieve better
performance. However, NNs are extremely flexible. They automatically adapt themselves to different
regression techniques according to the particular scenario. This feature made NN a convenient tool for
solving various QIPs.

Before implementation, we need to parametrize density matrices ρ. The parametrization function
P : X

′ → X is a bijection,
P(�a) = ρ, (2)

where �a ∈ X′, X′ is a vector space. The choice of P is based on X. For example, if the set X is the Gibbs states
of a class of Hamiltonian, P could be the map from Hamiltonian parameters to the Gibbs states.

The training data set is denoted as

T = {(
→
c train,

→
a train)|→c train = (A ◦ P)(

→
a train) +

→
ε ,

→
a train ∈ X′

train},
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where X′
train ⊂ X′ is the finite set of sampled parameters �atrain. The training data naturally implants the prior

information contained in A.
After data preparation, the network can be trained. A neural network is a tunable function

ΦNN : Y → X′. The training process uses training algorithms to tune the parameters embedded in ΦNN to
minimize the distances between the NN output and desired output according to the chosen loss function,
i.e. minimizing

L(�atrain,ΦNN(�ctrain)), (3)

where L : X′ × X′ → R is the loss function. It is chosen to reverberate the parametrization P. The goal is to
bring ρ1 and ρ2 closer by minimizing L(�a1,�a2). The loss function L can be the mean square error or mean
absolute error (MAE) if �as need to be precisely approached on magnitudes. If P focus more on the direction
of �as, a loss function that minimizes angle (e.g. cosine similarity) will be a better option. L can also be a
type of entropy when�as are probability distributions. The choice of P and L, as well as the training data set
T all reflect prior information of the problem.

For testing data generated by the QFP, comparing the ideal ρ and the estimated ρest can tell us the
accuracy of the estimation. A reasonable question to ask is, given a data�cunk with an unknown preimage,
how we can know whether the NN estimation ρest is acceptable. It turns out that QFP can serve as the
mechanism of examining the estimation that come out from a trained NN. Choosing a metric f in Y, one
can compare�cunk and the image of NN output,

f (�cunk,A ◦ P ◦ ΦNN(�cunk)). (4)

Ideally, we want�cunk and (A ◦ P ◦ ΦNN)(�cunk) to be identical, but numerical errors are inevitable in reality.
Bounding the value of equation (4) can bound the confidence of ρest.

In the next section, we will provide an example to demonstrate our method. The task is to give a MEE
based on noiseless partial information of an unknown state. The network takes incomplete measurements
of the unknown quantum state ρ and returns the MEE of ρ. Compared to other algorithms, our method
shows extraordinary efficiency without sacrificing much accuracy. It also shows a remarkable ability to
tolerate experimental error.

3. Learning maximum entropy estimation from partial information

Maximum entropy inference is believed to be the best estimation to present the current knowledge when
only part of the information about the system is provided [35, 36]. The entropy is mostly Shanon entropy
in classical physics and engineering, and is von Neumann entropy for the quantum counterpart.

In quantum system, given the set of incomplete measurement expectation values {ci|ci = tr(ρFi), Fi ∈ F}
of an unknown state ρ for a fixed set of observables F, there may exist more than one quantum state with
the same measurement outcomes. The incompleteness means that the measurements are insufficient for a
full tomography (m < d2 − 1). Denote the set of states as

P = {ρ∗|tr(ρ∗Fi) = tr(ρFi), ∀ Fi ∈ F}.

The unknown state ρ is one of the elements in P. The MEE ρMEE of ρ can be represented as a thermal state

ρMEE =
exp

(
β
∑

iaiFi

)
tr
[
exp

(
β
∑

iaiFi

)] , (5)

where β is the reciprocal temperature of the system and ai’s are real coefficients [37–40]. At the mean time,
ρMEE should satisfy that it has the same measurement outcomes when measuring the same set of operator F
(i.e. ρMEE ∈ P). The thermal representation is unique [37]. The measurement results�c = (c1, . . . , cm) where
ci = tr(ρFi), Fi ∈ F, therefore, possess a one-to-one correspondence with its MEE ρMEE.

An interesting special case is that P only has one element, then ρ = ρMEE. A well-studied example of
such case is when ρ is an unique ground state of H = −

∑
i aiFi, where Fi ∈ F and ai ∈ R [41–43]. This

situation means that if ρ is a unique ground state of H, ρMEE not only has a one-to-one correspondence
with�c, but also is the actual state ρ.

In this particular QIP, the parametrization function P and the forward model A are as follows:

P : β�a → ρMEE (6)

A : ρMEE →�c

4
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Figure 2. (a) β and�a are randomly generated. The Hermitian operator set F associated with the forward model A provides
information for the distribution of β. Generated pairs of (�c,β�a) are training data:�c is the input of the neural network, β�a is the
ideal output. The left block is the parametrization function P, and the right block is the foreword model A for this problem.
(b) The trained network ΦNN is the approximation of P−1 ◦ A−1, which can produce a parameter estimation β ′�a′ according to an
input�c. The right block is the parameterization function P that maps estimated parameters β ′�a′ to ρest.

where �a = (a1, . . . , am) and ρMEE is defined in equation (5). The noise is set to be zero, i.e. �ε = �0.
Supervised learning can train a network ΦNN to approach the inverse function

P−1 ◦ A−1 :�c → β�a. (7)

More specifically, as shown in figure 2(a), we randomly generate many β’s and �a’s, achieving corresponding
measurement results�c. These pairs of (�c,β�a) are used as training data for the neural network. The trained
network ΦNN is the approximation of the function P−1 ◦ A−1. The estimation of MEE

ρest =
exp

(∑
iβ

′a′iFi

)
tr
[
exp

(∑
iβ

′a′iFi

)]

from P ◦ ΦNN(�c), where β′ and a′i are NN estimations of the true values β and ai. To be noticed that when
the unknown state ρ is not a thermal state, the operator −H′ = −

∑
ia

′
iFi is not necessarily the real

Hamiltonian of the system. We call H′ a pseudo Hamiltonian.
We test our method numerically with two systems: (1) F has three 64 by 64 random generated

Hermitian operators; (2) the five-qubit one-dimension lattice,
F = {σ(i)

a ⊗ σ(i+1)
b |σa,σb ∈ P , 1 � i � 4, a + b 
= 0} where P = {σ0 = I,σ1 = σx,σ2 = σy,σ3 = σz} is the

set of Pauli operators with the 2 by 2 identity. The upper index i indicates the qubit which the operator acts
on. Moreover, we test the method with experimental data of an optical set-up, which are derived from
unique ground states associated with fixed Hermitian operator sets. Therefore the MEE estimations ρest are
also the estimation of the true states measured in our experiments.

3.1. Data preparation and network training
Training data preparation is the key to supervised learning since the learning outcome depends heavily on
the training data set.

The data generating procedure is shown in figure 2(a). Parameter �a is drawn from normal N (0, 1)
distribution then normalized. The ‘coldness’ β is randomly sampled from (0, 100]. Generally, when β

reaches ∼30, thermal states are almost pure. Here we allow β goes to 100 for some extreme cases. The
distribution of β in the whole training data set is critical in this process. We will discuss this issue in depth
later. Parameter �a together with the fixed set of operators F set up the operator H =

∑
i βaiFi. The

measurement results�c = (tr(ρF1), . . . , tr(ρFm)) come from trace the product of ρ = exp(H)/tr[exp(H)]
and operator Fi’s. Every pair of β�a and�c counts for a pair of training data.

It turns out that the distribution of β in the training data set is the key to our problem. By data
distribution of β, we mean the proportion of β picked in a given interval I to the amount of data in the
whole training data set. Intuitively, the network should be trained with more data in the place where the
function changes more rapidly. Specifically, the network should see more data on where the slight change of
β causes a significant change on ρ then on�c in the relative sense. Despite the matrix exponential function,
the property also depends on F. Luckily enough, since we know F, we have all the information we need. The
function is steeper while β is small and is smooth while β is relatively large.

However, if we put significantly more data on the narrow steep region (e.g. β ∈ (0, 5)), that may confuse
the network—the network will have bad performance on the wider smooth region since it does not see
enough data. In order to achieve optimal overall performance, one needs to balance between fitting the
rough region and giving enough data of other regions.

5
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First of all, we need a way to measure the ‘roughness’ of the function in a given area according to the
parameter β. We choose how far away the thermal state ρ = exp(

∑
i βaiFi)/tr[exp(

∑
i βaiFi)] is from being

a pure state as the indicator (denote as λ). In other words,

λ = 1 − λ0,

where λ0 is the biggest eigenvalue of ρ.
We divide β into multiple intervals Ii = (i, i + 1] where 0 � i � 99 and i ∈ Z. In each interval Ii, 1000

data points have been sampled. 1000 βs are drawn from uniform distribution in Ii while 1000 normalized �ai

is sampled from normal distribution. These βs, �as and F together form 1000
ρ = exp(

∑
i βaiFi)/tr[exp(

∑
i βaiFi)]. Getting λ from each ρ, we calculate the average of these λs and

denote it as λ̄i. The vector �̄λ = (λ̄1, . . . , λ̄N ) for all intervals is a characterization of the model according to
the change of β (denote N as the number of intervals for generality). Let pi = λ̄i/

∑
iλ̄i and

�pβ = (p1, . . . , pN).

One may consider using �pβ to be the data distribution. However, it transpires that �pβ is not appropriate
since it will concentrate the training data in the lower region.

Referring to our previous arguments, we need to balance the distribution. We take two flattened steps:

(a) Take the average of the first 10 elements in �̄λ and call it λ̄ten, then replace these first ten elements which
are smaller than λ̄ten with it;

(b) Denote
∑

iλ̄i/N as λ̄avrg and then replace elements which are smaller than λ̄avrg with it.

We normalize the resulting vector and denote it as �pflat. It is the data distribution we use in this work.
Three different data generating methods have been compared in detail in appendix A.

The neural networks used in this work are fully-connected feed-forward. It means that the neurons in
one layer are fully connected to the neurons in the next layer, and the information is only passing forward.
The input and output layers are determined by the given length of the measurement results (i.e. the
cardinality of the fixed operator set F). The three random 64 by 64 operator cases have three input and
three output neurons (we refer to it as case 1 later in this paper). The five-qubit 1D lattice example has 51
neurons (5

( 3
1

)
+ 4

( 3
1

) ( 3
1

)
= 51) for input and output layers (we call it case 2). These two networks all

have two hidden layers; each layer has 100 neurons.
The networks in this work are trained with Adam optimizer [44] which is a popular adaptive learning

rate optimization algorithm designed for deep networks. The loss function we chose is MAE

L(�e) =

∑m
i |ei|
m

where�e = �a −�a′ is the error vector between the true value �a and the estimated value �a′. MAE performs
better than mean squared error (MSE, L(�e) =

∑m
i e2

i /m, another commonly used loss function). It is
because the parametrization function P (equation (6)) would require �a′ to be as close to �a as possible to
bring the images close and the square in MSE will make small errors more indistinct.

For case 1, the number of training data pairs is 3010 470. The batch size is 40 000, and we train the
network for 300 epochs. And we use 2005 584 pairs of training data for the five-qubit 1D lattice model. The
batch size is 20 000, and the number of epochs is also 300. How the amount of training data affects the
accuracy of NNs is analyzed in appendix B.

3.2. Numerical results
New data sets are generated to test the performance of trained neural networks. Similar to the procedure of
producing training data in figure 2(a), the testing data are pairs of�c and β�a. β’s are uniformly picked from
(0, 100] and �a’s are normalized.

The estimated MEE ρest comes out from adopting the course in figure 2(b). We compare each ρest with
its true MEE ρMEE by calculating the fidelity. The fidelity function we use is given as [20]

f (ρ1, ρ2) = tr

(√√
ρ1ρ2

√
ρ1

)
.

For case 1, the average fidelity between true MEE ρMEE and the estimated MEE ρest is 99.0%. Figure 3(a)
shows the fidelities of all tested data. The mini-figure is its boxplot [45], which is a graphical way to depict
data through their quartiles. The orange line in the boxplot is the median value which is 99.5%. Statistically,

6
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Figure 3. Testing results: 1000 pairs of new data are tested for both cases. The mini-plots are the boxplots of these fidelities. The
average fidelity for case 1 is 99.0%, for case 2 is 97.1%.

Table 1. Statistics of numerical results.

Mean Median STD

Case 1 99.0% 99.5% 17.0 × 10−3

Case 2 97.1% 98.1% 31.1 × 10−3

Figure 4. Experimental setup. (a) Single-photon pairs are generated by pumping a phase-matched bulk potassium dihydrogen
phosphate crystal with the second harmonics generated from the beta barium borate (β-BBO) crystal. After a polarizing beam
splitter, the idler mode is detected by the detector DT as a trigger of the heralded single-photon source. In contrast, the signal
mode is directed towards the following setup. (b) Single photons are prepared as photonic qutrits encoded in the polarization
and spatial modes through the HWPs and a calcite beam displacer (BD). (c) The measurement part is composed of wave plates
and BDs, forming a three-stage interferometer capable of implementing arbitrary qutrit unitary. After the unitary
transformation, photons are detected by three avalanche photodiodes. By setting the wave-plates with different angles, the
measurement of different operators can be realized.

the circles in the boxplot are outliers which are data points notably different from others, hence lacking
statistical significance. Similarly, figure 3(b) shows the fidelities of the whole testing data set for case 2. The
average fidelity is 97.1%, and the median fidelity is 98.1% (table 1).

3.3. Experimental verification and the effect of error
To verify the performance of our well-trained neural network in processing actual experimental data and its
robustness against experimental noise, we implement a qutrit photonic set-up capable of preparing
different qutrit states and measuring arbitrary operators, as shown in figure 4. Particularly, when
experimental data are generated by unique ground states of a pseudo-Hamiltonian, ρMEE is the exact ground
state measured, and the NN estimation ρest is also the approximation of the real state. Therefore, we
intentionally prepare ground states of a class of pseudo Hamiltonians and feed them into the measurement
devices. By directly comparing the prepared ground states ρexp with ρest, we can reveal the network’s
performance in real experiments.

In our experiment, we choose two set of operators F1 and F2, and each contain three Hermitian
operators. For each set, 300 ground states {ρexp} of different pseudo Hamiltonian are randomly prepared by
changing the setting angles of the two configurable half-wave plates (HWPs) in figure 4(b). Then the

7
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Figure 5. Numerical and experimental fidelities of F1 and F2.

prepared states are input into the measurement part, which is constituted by wave plates, calcite beam
displacers (BDs) and photon detectors, capable of projecting the input states into an arbitrary basis. From
the measurement statistics, expectation values of different operators can be estimated. Thus by this
preparation-and-measurement set-up, we obtain the experimental data set�cexp = (c1,exp, c2,exp, c3,exp). See
appendix C for details.

Before feeding experimental data into the neural networks, we have trained the networks individually
for each operator set. 1010 196 and 1003 808 pairs of noiseless (meaning �ε = �0) numerical data have been
used to train networks for F1 and F2, respectively. The network structure and other settings (e.g. training
algorithm, loss function etc) are in similar fashion with the previous numerical cases. Figure 5(a) shows the
numerical results of F1 for 1000 random generated data. The average fidelity is 99.9%. Figure 5(c) shows the
testing fidelities for F2, and the mean value is 99.8%.

The well-tuned neural networks are now ready for experimental data. Measurement outcomes�cexp

derived from the experiments are inputs of the networks. From the output parameter set β′�a′, the estimated
MEEs ρests can be derived. The fidelities between ρexp and ρest have been calculated and are shown in
figure 5(b) (F1) and figure 5(d) (F2). The mean value of all 300 data points is 99.8% for F1, and 99.7%
for F2.

In this experiment, the measurement outcomes suffer from different systematic errors, such as
inaccuracies of wave plate setting angles, imperfect interference visibility and drifting of the interferometers,
and statistical fluctuations. The average relative errors of different operators ((ci,exp − tr(ρexpFi)/tr(ρexpFi))
range in 0.79% ∼ 2.43% (see more details in appendix C). Even in this level of additional experimental
errors, the networks show almost the same performance in processing the experimental data compared with
the numerical data.

3.4. Comparison with other methods
The MEE

ρMEE =
exp

(
β
∑

iaiFi

)
tr
[
exp

(
β
∑

iaiFi

)] ,
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for given�c = (tr(ρF1), . . . , tr(ρFm)) is an optimization problem. It is closely related to the field of
information geometry, statistical inference, and machine learning.

An iterative algorithm based on the information-geometry viewpoint is proposed in [37], which runs as
follows. First, initialize the system Hamiltonian as an identity operator H = I, so the initial density matrix
ρini = exp(I)/tr[exp(I)] is the maximum mixed state. The following task is to solve the equations
tr(ρFi) = tr(τFi) for each i, or, to be more precisely, find a density matrix τ to minimize∑

i |tr(ρFi) − tr(τFi)|. This is done by iteratively update the Hamiltonian H by H + εFi, so that the density
matrix τ is updated as

τ =
eH

tr(eH)
→ τ ′ =

e H+εFi

tr(eH+εFi)
,

in which the parameter ε is something like a gradient and can be approximated as

ε =
tr(Fiρ) − tr(Fiτ)

tr(F2
i τ) − [tr(Fiτ)]2

for each Fi. Repeat the iteration for several rounds, and we can find a τ as closely to ρ as possible.
Another related method is based on the so-called quantum Boltzmann machine (QBM) [46]. The QBM

uses a different loss function (or objective function) for optimization, i.e. the cross-entropy,

L = −
∑

i

pi log p′i,

with pi and p′i are probability distributions: pi is the ideal case and p′i depending on some parameters. The
learning process of a QBM is to find certain parameters to minimize L. Take pi = C tr(ρFi) and
p′i = C′ tr(τFi), where C and C′

i are normalization constants. The density matrix τ here can also be
expressed as τ = exp(H)/tr[exp(H)]. Since H =

∑
i aiFi, the loss function is now a function of ais. The loss

function L reaches its minimum for pi = p′i, so our goal is to optimize L over possible ais.
We can use the same method that the QBM uses to learn the maximum entropy state. To use the cross

entropy, for Fi with negative eigenvalues, we first renormalize p′is by adding (
−fi min�+ 1)I to Fi, where
fi min is the lowest eigenvalue of Fi. This ensures p′is being positive, and adding unity operator to
Hamiltonian has no effect on its thermal state. Second, since the pi and p′i in cross entropy are probability
distributions, which means

∑
i pi and

∑
ip

′
i are both restricted to 1, we add normalization constants C and

C′ in front of tr(ρFi) and tr(τFi), respectively.
We test both the iterative algorithm and the QMB algorithm using MATLAB for the examples in

appendix B. The iterative algorithm converges to the desired results precisely and effectively. The average
time for an iterative algorithm for each case is about 0.0425 s. As a comparison, if we run the optimization
using the functions provided by MATLAB, the time for each case is about 0.0148 s.

However, the method of QBM cannot provide a precise approximation to the original density matrix.
This fact may be because the gradient is hard to obtain (notice that the forms of the matrix Fi in our cases
are far more complicated than the ones discussed in QBM (see [46]). Also, it may be due to the
normalization of pis we have introduced, which can introduce more issues in the learning process. There
may be ways to improve the training method, which we will leave for future investigation.

Given that the iterative algorithm seems more effective and accurate for optimization, we compare our
supervised learning method with the iterative algorithm. For the case that the measured set F possesses
three 64 by 64 Hermitian operators, our method estimates the test set with 99.0% average fidelity
(section 3.2), setting the error bound as 10−10. As a comparison, the iterative algorithm provides the
outcome states with the fidelity of almost 1 for every data point. In terms of accuracy, the interactive
algorithm is slightly stronger than ours.

By using the same computational device [47], our network can predict 5000 data in less than a second,
while the iterative method requires about 10 min for 100 data. In this sense, our method is more efficient
for estimation once trained without sacrificing much accuracy.

4. Discussion

This paper presents a deep learning method for QIPs. The method shows good performances for both
numerical and experimental data, and robustness against experimental noise. As mentioned in the
introduction, other techniques in IP can also be modified to solve particular QIPs. For conciseness and
consistency, we only discuss simple networks in this paper. This choice left a vast room for future study.

The example we demonstrated is a quantum state learning problem, with the training data numerically
generated. The network can also be trained with noisy experimental data to output idea (noiseless) states.

9
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Figure 6. The three distributions for the operator set F1: the x-axis is the label i of the interval Ii = (i, i + 1] for β. The green,
blue, red dots depict the even distribution�peven, the flattened distribution�pflat and�pβ respectively.

The outcomes from the trained network would naturally mitigate the experimental error. One can use
deliberate approaches to fight against noise in data, such as different NN structures, regularizers, training
algorithms, and loss functions [53]. Our method can also be easily adapted to other setups such as
Hamiltonian learning. An example and detailed discussion can be found in [48].

We show that our method is straightforward to implement for scenarios that prior information grants a
mostly bijective relation between ρ and�c. It can also be used to examine if the prior information is adequate
to ensure the map is almost bijective. The ‘almost’ here means that it is true except a measure zero set of
exceptions. After properly implementing this scheme, if the trained network does not perform well, we may
consider that the prior information is not exactly pinned down an almost one-to-one correspondence.

For more ill-posed problems, there are several techniques can be applied, such as various regularizers
[7], different network structures [14], statistical estimators [11, 49], depending on the particular problem.

Last but not least, the neural networks in the inverse process can be replaced by quantum neural
networks [50–52]. In this case, we may not need the parametrization process P. The modified method has
the potential to implement on NISQ devices.
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Appendix A. Influences of training data distribution

In this section, we show the influence of three different training β distribution on the neural network
performance: (1) evenly distributed �peven = (1/N, . . . , 1/N); (2) the distribution �pβ mentioned in the main
text which only considered the roughness of β; (3) and the flattened distribution �pflat that we used in this
work. (The technical definitions see section 3.1.)

We consider the operator set F1 in appendix C. The three distributions for F1 are shown in figure 6. The
horizontal axis is the index i of interval Ii = (i, i + 1]. The vertical axis shows the percentage of how much
β’s are sampled from a given interval Ii. �pβ is dominantly concentrated on the first few intervals. We train
three networks separately with each distribution. To fairly compare them, we prepare the same amount of
training data for each one and use the same training settings. The number of training data is about 1000 000
(round up the number when the distribution multiplied by 100 000 does not get integers).

10
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Figure 7. Results of two test sets for�peven, �pβ and�pflat (for comparison purpose, we use the same scale for each plot).

Two testing data sets have been generated. The first set has 5000 data points, where 50 different β’s have
been uniformly drawn from every interval Ii. Fidelity boxplots of every five intervals present in figure 7(a)
(�peven), figure 7(c) (�pβ) and figure 7(e) (�pflat). For comparison purposes, we use the same scale for each plot.
The network tuned with the even distribution �peven data set has significantly poor performance when
β ∈ (0, 5] and also has several exceptional outliers on other intervals (figure 7(a)). The network of �pβ is
expected to have high fidelity for β ∈ (0, 5] and substandard performance on other parts (figure 7(c))
because of the data concentration. The network of �pflat has a balance in between (figure 7(e)).

The second test set has 1000 data points, which β’s are uniformly taken from (0, 100]. The testing results
are shown in figure 7(b) (�peven), figure 7(d) (�pβ) and figure 7(f) (�pflat).

Appendix B. The scaling of training data

In this section, by demonstrating with the randomly generated Hermitian set F (F = {F1, F2, F3}, d = 64,
the case 1 in the main text), we show how the number of training data for NNs will affect the average
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Figure 8. The vertical axis shows the average fidelites over a fixed test data set. With the same hyperparameters, the amount of
training data affects the accuracy of neural network.

fidelities of a fixed unseen test set. For comparison, the hyperparameters (such as epochs, learning rate,
batch size etc) are chosen to be the same as the corresponding case in the main text.

In figure 8, the numbers of training data are [26 178, 52 356, 104 712, 523 560, 1020 942, 3010 470]. The
average fidelities on the testing data set improved significantly when the amount of training data increased
from 2.6 × 104 to 1 × 105. The training data saturates after reaching 1 × 106 C.

Appendix C. Experimental details

The two qutrit operator sets F in our experiment are as follows F1 = {F11, F12, F13}, F2 = {F21, F22, F23}
where

F11 =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ , F12 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ , F13 =

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠ ,

F21 =

⎛
⎝2 0 0

0 0 1
0 1 0

⎞
⎠ , F22 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ , F23 =

⎛
⎝0 0 0

0 0 0
0 0 2

⎞
⎠ ,

here Fji stands for the ith operator in the jth set. To demonstrate the neural network’s performance, we
sample 300 ground-states {|ψji〉} of pseudo Hamiltonian {Hj =

∑3
i=1ajiFji} by randomly ranging the

parameter set {aji}. As shown in figure 4, wave plates and a BD are used to distribute single photons in the
superposition of optical polarization and spatial modes, realizing the preparation of these ground states.
Note that only two configurable HWPs are enough for the preparation (no need for quarter-wave plates or
other phase retarders), as the operator sets are all real operators and the ground states should also be real.
The three eigen-modes of the qutrit state are defined as |0〉 = |H〉 ⊗ |s1〉, |1〉 = |H〉 ⊗ |s2〉, |2〉 = |V〉 ⊗ |s2〉,
where |H〉(|V〉) stands for the horizontal (vertical) polarization and |s1〉(|s2〉) stands for the upper (lower)
spatial mode.

As for the measurement of different operators Fji, we use linear optical devices such as wave-plates and
BDs to construct a three-stage interferometer, that is capable of implementing arbitrary qutrit unitary
operation [43]. For the same reason, only HWPs are needed here, and the setup is relatively simpler than
implementing a universal unitary. To estimate tr(ρFji), we apply the unitary transformation

Uji = |0〉〈λ(ji)
0 |+ |1〉〈λ(ji)

1 |+ |2〉〈λ(ji)
2 |

on an input state ρ, here |λ(ji)
k 〉(k = 0, 1, 2) is the corresponding eigen-vector of Fji with eigen-value λ(ji)

k . It
transforms any state from the eigen-basis of Fji into computational or experimental basis. Therefore, from
the measurement statistics measured by the following detectors, the expectation value tr(ρFji) of Fji can be
estimated.

Throughout this experiment, the experimental errors are mainly contributed by systematic errors, as the
statistical fluctuations are very low due to enough trials (above 35 000 registered photons) for each
measurement. The systematic errors include inaccuracies of wave plate setting angles (typically ∼0.2
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Table 2. Relative errors of different operators.

[ci,exp − tr(ρexpFi)]/tr(ρexpFi) Fj1 Fj2 Fj3

F1 2.43% 1.91% 1.73%

F2 0.79% 1.87% 1.31%

degree) in the state preparation and measurement stage and imperfections of the interferometers. Especially
during the measuring progress, slow drift and slight vibrating of the interferometers will cause a decrease in
the interference visibility. In our experiment, the interference visibilities are maintained above 98.5%. The
average relative errors [ci,exp − tr(ρexpFi)]/tr(ρexpFi) of measured expectation values of different operators
are shown in table 2.

ORCID iDs

Aonan Zhang https://orcid.org/0000-0002-6310-4769
Shi-Yao Hou https://orcid.org/0000-0001-9739-2263

References

[1] Rocchetto A, Aaronson S, Severini S, Carvacho G, Poderini D, Agresti I, Bentivegna M and Sciarrino F 2019 Experimental
learning of quantum states Sci. Adv. 5 eaau1946

[2] Torlai G, Mazzola G, Carrasquilla J, Troyer M, Melko R and Carleo G 2018 Neural-network quantum state tomography Nat. Phys.
14 447–50

[3] Cramer M, Plenio M B, Flammia S T, Somma R, Gross D, Bartlett S D, Landon-Cardinal O, Poulin D and Liu Y-K 2010 Efficient
quantum state tomography Nat. Commun. 1 149
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