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We analyze the complexity of quantum state verification in the context of solving systems of linear
equations of the form A�x = �b. We show that any quantum operation that verifies whether a given quantum
state is within a constant distance from the solution of the quantum linear systems problem requires q =
�(κ) uses of a unitary that prepares a quantum state |b〉, proportional to �b, and its inverse in the worst
case. Here, κ is the condition number of matrix A. For typical instances, we show that q = �(

√
κ) with

high probability. These lower bounds are almost achieved if quantum state verification is performed using
known quantum algorithms for the quantum linear systems problem. We also analyze the number of copies
of |b〉 required by verification procedures of the prepare-and-measure type. In this case, the lower bounds
are quadratically worse, being�(κ2) in the worst case and�(κ) in typical instances with high probability.
We discuss the implications of our results to known variational and related approaches to this problem,
where state preparation, gate, and measurement errors will need to decrease rapidly with κ for worst-case
and typical instances if error correction is not used, and present some open problems.

DOI: 10.1103/PRXQuantum.2.010315

I. INTRODUCTION

Quantum computers may solve some problems that
appear to be beyond reach of classical computers. Many
examples of quantum speedups now exist, from the former
result of P. Shor on the factoring problem [1], to opti-
mization [2], the simulation of quantum systems [3], and
beyond. As quantum technologies advance [4], so is the
field of theoretical quantum computing, fueling the quest
for new and fast quantum algorithms.

Along this quest, there has been interest in quantum
algorithms for linear algebra, in particular for a prob-
lem related to solving systems of linear equations of
the form A�x = �b. This problem, which we refer to as
the quantum linear systems problem (QLSP), was intro-
duced by Harrow et al. [5]. There, a quantum algorithm
was given—the HHL algorithm—and its complexity was
shown to be polylogarithmic in N , the dimension of matrix
A, under some assumptions. Because of the potential for
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an exponential quantum speedup and the relevance of
systems of linear equations in science, the results of Ref.
[5] sparked further interest for improved versions of the
HHL algorithm. For example, Refs. [6–9] provide quan-
tum algorithms for the QLSP with provable runtimes that
are almost linear in κ , the condition number of A. These
algorithms run faster than the HHL algorithm, whose
complexity is quadratic in κ , and are almost optimal.

More recently, quantum algorithms for the QLSP
inspired by variational and related approximation appro-
aches were given in Refs. [9–12]. In a variational approach,
the algorithm is designed via an optimization loop that
requires preparing multiple copies of a parameterized
quantum state, measuring a cost function, and using the
measurement information to update the parameters for
the next round of state preparations. This process is
repeated until the cost function is minimized. Variational
approaches open the possibility of preparing quantum
states and solving certain problems with less complexity
than the best-known methods, e.g., shorter circuit depths,
or a fewer number of qubits (cf. Refs. [13–15]), making
them attractive to near-term applications. Similar argu-
ments may also hold for other quantum algorithms, such
as those formulated in the quantum adiabatic model [16].
In this case, one may attempt to execute the evolution in
less time than known upper bounds, with the potential of
solving a problem with improved complexity (cf. Refs.
[17,18]).
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Like all heuristics, the actual runtime of these
approaches may be unknown a priori and the algorithms
stop when a particular criterion is satisfied. For the QLSP,
this requires verifying that the prepared quantum state is
indeed sufficiently close to the desired one. This quantum
state verification (QSV) step requires additional resources
that need to be accounted for when determining the over-
all complexity of such approaches. A question then arises:
Can QSV be performed with low complexity?

In this paper, we answer this question in the negative.
This is striking because the solution to many computa-
tional problems can be verified in significantly less time
than producing the solution itself, such as for NP-complete
problems [19], but this is not the case for the QLSP. In par-
ticular, we show that the complexity for QSV in the QLSP
is �(κ) in the worst case. More precisely, if a quantum
state |b〉 that encodes the vector �b can only be accessed via
its preparation unitary Ub, then the number of uses of Ub,
U−1

b , and their controlled versions cU±1
b needed for QSV is

�(κ) in the worst case. For typical instances of the QLSP,
these unitaries must be implemented �(

√
κ) times with

high probability. As κ can grow rapidly with the problem
size, perhaps scaling with the dimension of A, which is the
case for many applications [20], QSV in the QLSP can be
expensive.

Our main result is a generic lower bound for the com-
plexity of QSV that applies to any instance of the QLSP.
We also prove that optimal QSV, in terms of uses of
cU±1

b (or U±1
b ), can be achieved using a known quantum

algorithm for the QLSP, such as the HHL algorithm [5].
One can run this algorithm to solve the QLSP and prepare
a quantum state |x〉 proportional to �x, and then use the well-
known swap test to verify if a given quantum state is close
to |x〉 [21]. Although the HHL algorithm is not optimal [6–
9], it turns out that it is almost optimal in terms of uses of
cU±1

b .
We also analyze a restricted class of QSV procedures of

the prepare-and-measure type. In this case, we are given
q ≥ 1 copies of the quantum state |b〉 and arbitrarily many
copies of the state to be verified, and the QSV procedure
only involves a joint measurement of all quantum systems.
We prove that q = �(κ2) in the worst case and q = �(κ)

for typical instances of the QLSP with high probability.
These lower bounds are quadratically worse than those for
general QSV procedures.

Our results place limitations for approaches to the QLSP
that require a QSV step. If QSV is performed via the com-
putation of a simple cost function that does not exploit the
structure of Ub, such as in known variational approaches,
then the number of state preparations and projective mea-
surements must increase rapidly (i.e., polynomially) with
κ for worst-case and typical instances. Thus, to avoid
error correction, state-preparation, gate, and measurement
errors need to decrease rapidly with κ , which is unrealistic.
Nevertheless, our lower bounds on the complexity of

QSV, as well as those for solving the QLSP [5], may be
bypassed if the structure of Ub can be exploited, opening
the possibility for faster approaches.

The rest of the paper is organized as follows. In Sec. II
we describe the QLSP in detail. In Sec. III we introduce the
QSV problem for the QLSP and present our main results,
focusing on worst-case and typical instances. In Sec. IV we
describe an almost optimal QSV procedure based on the
HHL algorithm. In Sec. V we analyze the complexity of
QSV procedures of the prepare-and-measure type. In Sec.
VI we give more details on the implications of our results,
the limitations of variational approaches to the QLSP, and
present some open problems. We provide further conclu-
sions in Sec. VII. Detailed proofs of our main results are
given in Appendices A–E.

II. THE QLSP

We introduce the QLSP following Refs. [5–8]. We are
given an N × N Hermitian and nonsingular matrix A, N ≥
2, a vector �b = (b0, b1, . . . , bN−1)

�, and a precision param-
eter ε > 0. The matrix has spectral norm ‖A‖ = 1 and its
condition number, which is the ratio between the absolute
largest and smallest eigenvalues of A, is κ < ∞. We define

|x〉 :=
∑N−1

j =0 xj |j 〉
‖∑N−1

j =0 xj |j 〉‖
, (1)

which is a unit (pure) quantum state proportional
to the solution of the system A�x = �b, where �x =
(x0, x1, . . . , xN−1)

� is the solution. In general, we write
‖|a〉‖ for the Euclidean norm of a quantum state |a〉.
If |b〉 is a quantum state proportional to �b then |x〉 =
A−1|b〉/‖A−1|b〉‖.

The goal in the QLSP is to prepare a (possibly mixed)
quantum state ρ that satisfies

Dρ,x := 1
2‖ρ − |x〉〈x|‖tr ≤ ε, (2)

where ‖X ‖tr = tr(
√

XX †) is the trace norm of X and Dρ,x
is the trace distance.

Equation (2) implies that no experiment can distinguish
ρ from |x〉 with probability greater than ε in a single
shot [22]. Additionally, the expectation of an operator in
ρ differs from that in |x〉 by an amount that is, at most,
proportional to ε. We assume that N = 2n without loss of
generality, so that ρ, |x〉, and |b〉 are n-qubit states.

For the QLSP, we need to specify �b and A in some way.
Like known quantum algorithms, here we assume access
to a unitary Ub and its inverse U−1

b , such that |b〉 = Ub|0〉.
The state |0〉 is some simple state of n qubits, such as the
all-zero state. We further assume access to the controlled
versions of these unitaries, cU±1

b , which are more power-
ful and implement U±1

b only when the state of a control

010315-2



COMPLEXITY OF QUANTUM STATE VERIFICATION. . . PRX QUANTUM 2, 010315 (2021)

qubit is |1〉 and do nothing otherwise. For matrix A, one
may assume access to a procedure UA that computes the
positions and values of the nonzero entries of A, but other
access models could also be of interest. Operations cU±1

b
are treated as “black boxes,” and no assumptions are made
on the inner workings of such unitaries.

Our results regarding the complexity of QSV are lower
bounds on the uses of U±1

b only or, more generally, cU±1
b .

These bounds often have implications on the gate require-
ments for certain QSV approaches as well. Analyzing other
complexities, such as the number of uses of UA required
for QSV, may also be of interest. However, it is reasonable
to expect that early applications of the QLSP will not use
UA but rather some other way of implementing A−1, where
such results would not directly apply.

III. QSV AND MAIN RESULTS

We seek to certify whether Dρ,x ≤ 1
8 or Dρ,x >

1
2 for a

given quantum state ρ. We choose these limits for simplic-
ity, as these suffice for our purposes, but generalization to
an arbitrary gap between the limits is simple. In the QSV
problem the goal is to construct a protocol that, on inputs A
and �b, returns a quantum operation for QSV. We write E for
the quantum operation, which is a completely positive and
trace preserving (CPTP) map, and note that E can access
�b via the action of cU±1

b only. The quantum operation E
takes arbitrarily many copies of ρ as input and outputs a
random bit r as follows:

Pr(r = 1)

{
≥ 2

3 if Dρ,x ≤ 1
8 ,

≤ 1
3 if Dρ,x >

1
2 .

(3)

When r = 1, we claim that ρ “passed the test” or that E
“accepted” ρ, implying that ρ is likely to be close to |x〉.
When r = 0, we claim that ρ “failed the test” or that E
“rejected” ρ, implying that ρ is likely to be far from |x〉.
One can amplify the probabilities of passing or failing the
test from 2

3 to near 1 in either case by repetition and taking
the median of the outcomes.

For a different instance specified by the same matrix A
but different vector �b′, the QSV protocol returns a quantum
operation E ′ that is different from E . The two operations
differ only in the state-preparation unitaries, and E ′ can be
obtained from E by replacing cU±1

b → cU±1
b′ .

In general, E will contain measurements and unitaries,
including U±1

b and cU±1
b , and can be described as in Fig. 1

without loss of generality. In this case, E = Eq+1 ◦ · · · ◦ E1
is a composition of q + 1 ≥ 1 quantum operations Ej . For
j ≤ q, these are

Ej := U sj
b ◦ Fj , (4)

where the Fj are quantum operations that do not use cU±1
b

(or U±1
b ), U sj

b is the quantum operation that implements

FIG. 1. The quantum operation E . Arrows denote the states σj
output by the quantum operations Ej and used as the input to the
following Ej +1. The input state σ0 contains m copies of a state ρ.
The output state σq+1 contains the bit r.

the unitary cU
sj
b on part of the register output by Fj −1,

and sj = ±1. The input to F1 (and E) is a state σ0 com-
posed of m ≥ 1 copies of a quantum state ρ. The output
of Fq+1 (and E) contains the bit r. Note that, if E initially
used unitaries U±1

b that are not controlled, or if these uni-
taries are controlled on the state of a classical bit, these can
still be thought of as cU±1

b with a proper state for the con-
trol qubit (e.g., |1〉). We then measure the complexity of
a generic QSV procedure by the number of cU±1

b required
for its implementation.

As defined, q is the maximum number of cU±1
b needed

to implement E . Nevertheless, the actual number of such
unitaries implemented on any one execution of E , qA,b,
may be random and less than q; only q such unitaries are
needed in the worst case. For example, the operation could
stop once a certain criterion is met, such as a (random)
measurement outcome. Our main result, Theorem 1 below,
places a lower bound on qA,b that must be satisfied with
constant probability by any quantum operation for QSV,
for any m ≥ 1, and for any instance of the QLSP.

Theorem 1. Consider any instance of the QLSP, specified
by A and �b, and any protocol for QSV as above. Then, for
all quantum states ρ that satisfy Dρ,x ≤ 1

8 , the number of
cU±1

b required to implement E on input σ0 = ρ⊗m satisfies

Pr
(

qA,b >
1

13
κ

‖A−1|b〉‖
)

≥ 1
6

. (5)

The proof of Theorem 1 is given in Appendix A. The
basic idea is related to that of Ref. [23] for proving the
lower bound on quantum search but is different in that
the result is probabilistic and the lower bound depends on
the problem instance. It works as follows. For any �b (and
fixed A), it is possible to construct another instance speci-
fied by �b′, where the solutions to the corresponding QLSPs
satisfy Dx,x′ := 1

2‖|x〉〈x| − |x′〉〈x′|‖tr >
5
8 . Thus, Dρ,x′ > 1

2
and E must accept ρ with large probability (greater than
or equal to 2

3 ) while E ′, which is the QSV operation that
uses cU±1

b′ , must reject it with large probability (greater
than or equal to 2

3 ). Otherwise, Eq. (3) is not satisfied.
Simultaneously, the controlled state-preparation unitaries
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for these instances are shown to satisfy ‖cU±1
b − cU±1

b′ ‖ =
O(‖A−1|b〉‖/κ). As E and E ′ differ only in these unitaries
(i.e., the operations Fj are the same), the only way to dis-
tinguish among these two operations, or produce a constant
change in Pr(r) on input σ0, is if the unitaries are used
�(κ/‖A−1|b〉‖) times, with constant probability.

The argument behind Theorem 1 thus provides a rela-
tion between the complexity of QSV and the changes in
the solution of the QLSP under perturbations to the ini-
tial state |b〉. This susceptibility is indeed quantified by
κ/‖A−1 |b〉 ‖, as seen from the following examples.

A. Worst-case instances

Corollary 1. There exist instances of the QLSP such that,
for all quantum states ρ that satisfy Dρ,x ≤ 1

8 , the num-
ber of cU±1

b required to implement E on input σ0 = ρ⊗m

satisfies

Pr
(

qA,b >
1
13
κ

)

≥ 1
6

. (6)

This result is a direct consequence of Theorem 1,
obtained by replacing ‖A−1|b〉‖ → 1, which occurs when
|b〉 is supported on eigenstates of A of eigenvalue ±1 only.
(Note that, in general, ‖A−1|b〉‖ ≥ 1.) For these instances,
the susceptibility is large: a small change in |b〉 can result
in a big change in |x〉. For example, if |b〉 = |x〉 = |1〉
and we replace |b〉 → |b′〉 ∝ |b〉 + (1/κ)|(1/κ)〉, where
|1〉 and |(1/κ)〉 are eigenstates of A of eigenvalue 1 and
1/κ , respectively, the solution to the new QLSP is |x′〉 =
[|1〉 + |(1/κ)〉]/√2. These states satisfy Dx,x′ = √

1/2 >
1
2 . At the same time, the states |b〉 and |b′〉 can be pre-
pared with two unitaries Ub and Ub′ that satisfy ‖U±1

b −
U±1

b′ ‖ = ‖cU±1
b − cU±1

b′ ‖ = O(1/κ). Following Theorem
1, the number of cU±1

b needed to implement the QSV oper-
ation E , on input σ0, is �(κ) with constant probability
(greater than or equal to 1

6 ).

B. Typical instances

The quantity ‖A−1|b〉‖ can take any value in [1, κ], pro-
viding a wide range of lower bounds when κ � 1. It is
important to determine ‖A−1 |b〉 ‖ in typical instances of
the QLSP since a lower bound on the complexity of QSV
in such instances may differ from those in the worst or
best cases. To this end, we consider instances where the
eigenvalues of A are sampled from the uniform distribu-
tion unif{[−1, −1/κ] ∪ [1/κ , 1]} and the amplitudes in the
spectral decomposition of |b〉 are sampled from the so-
called Porter-Thomas distribution (and renormalized) [24].
This scenario resembles that in which the initial state |b〉 is
prepared by a random quantum circuit [25,26]. We obtain
the following result.

Theorem 2. Consider a random instance of the QLSP as
described above. Then, there exists a constant c > 0 such
that

Pr(‖A−1|b〉‖ /∈ [
√
κ/2,

√
3κ/2]) ≤ 4e−cN/κ . (7)

The proof of Theorem 2 is given in Appendix B. In
the asymptotic limit where N � κ , we obtain ‖A−1|b〉‖ =
�(

√
κ) with overwhelming probability. This implies the

following result.

Corollary 2. Consider a random instance of the QLSP
as described above. Then, there exists a constant c > 0
such that, for all quantum states ρ that satisfy Dρ,x ≤ 1

8 ,
the number of cU±1

b required to implement E on input
σ0 = ρ⊗m satisfies

Pr
(

qA,b >
1

16
√
κ

)

≥ 1 − 4e−cN/κ

6
. (8)

Corollary 2 is a direct consequence of Theorems 1 and 2,
where we replaced ‖A−1|b〉‖ → √

3κ/2 and bounded the
joint probability by the product of (1 − 4e−cN/κ), which is
a lower bound on the probability that ‖A−1|b〉‖ ≤ √

3κ/2,
and 1

6 , which is the lower bound on the probability in
Theorem 1 that applies to any instance. Thus, for typical
instances of the QLSP and N/κ = �(1), the complexity
of QSV is �(

√
κ) with constant probability.

IV. OPTIMAL QSV PROCEDURE

According to Theorem 1, any quantum operation for
QSV in the QLSP requires �(κ/‖A−1|b〉‖) uses of cU±1

b
in expectation. An optimal QSV procedure is one that
achieves this bound. In this section, we show that the
former HHL algorithm can provide an almost optimal pro-
cedure for QSV, despite not being an optimal algorithm for
solving the QLSP: the number of calls to the procedure UA
is quadratic, rather than linear, in κ and polynomial in the
inverse of a precision parameter. Other known quantum
algorithms for the QLSP could also be used for optimal
QSV and require fewer UA [6,7].

We use the HHL algorithm to prepare a state ρx that is
close to |x〉. Then, we implement the swap test [21] to gain
information about the distance between ρx and ρ, and thus
between |x〉 and ρ. In Appendix C we show that in order
to satisfy Eq. (3) it suffices to require Dρx ,x = �(1) and to
implement the HHL algorithm and the swap test a constant
number of times.

The HHL algorithm prepares ρx using the unitaries cU±1
b

a number of times that is O(κ/‖A−1|b〉‖) in expectation.
To achieve this, the HHL algorithm first applies an approx-
imation of A−1/κ to |b〉 using quantum phase estimation
and then uses amplitude amplification to amplify the prob-
ability of observing |x〉 ∝ (A−1/κ)|b〉. The expected num-
ber of amplitude amplification rounds is O(κ/‖A−1|b〉‖),
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the inverse of the norm of (A−1/κ) |b〉, if we follow
Ref. [27].

V. PREPARE-AND-MEASURE APPROACHES

The results in Sec. III consider quantum operations for
QSV that assume access to the unitaries cU±1

b . In con-
trast, prepare-and-measure (PM) approaches to QSV do
not make this assumption. In a PM approach we are only
allowed to prepare multiple copies of |b〉 and multiple
copies of ρ, and perform a joint measurement of all sys-
tems that produce the bit r according to Eq. (3). The joint
measurement only involves operations that do not depend
on �b, but they may depend on A.

Any PM protocol for QSV then returns a quantum oper-
ation L that depends on A. This operation can be described
as in Fig. 2 without loss of generality. It is a sequence
of q ≥ 1 operations Fj , where each Fj is independent of
�b and takes as input the state output by Fj −1, together
with a fresh copy of |b〉. The input to F1 is the state
σ0 = ρ⊗m, m ≥ 1, and a copy of |b〉. The output of Fq (and
L) contains the bit r. We measure the complexity of a PM
approach to QSV by the number of copies of |b〉 required
in the input of L.

As defined, q is the maximum number of copies of |b〉
used by L. Nevertheless, the actual number of such states
used in any one execution of L, qA,b, may be random and
less than q; only q such states are required in the worst
case. The following result is the analogue of Theorem 1 for
a PM approach to QSV. It places a lower bound on qA,b that
must be satisfied with constant probability by any quantum
operation for QSV of the PM type, for any m ≥ 1, and for
any instance of the QLSP.

FIG. 2. The quantum operation L of the PM type returned by
the QSV protocol on input A. Arrows denote the states σj output
by the quantum operations Fj and used as the input to the fol-
lowing Fj +1, together with a fresh copy of |b〉. The input state
to L contains m copies of ρ and q copies of |b〉. The output state
contains the bit r.

Theorem 3. Consider any instance of the QLSP specified
by A and �b, and any protocol for QSV of the PM type as
above. Then, for all quantum states ρ that satisfy Dρ,x ≤ 1

8 ,
the number of copies of |b〉 required by L for σ0 = ρ⊗m

satisfies

Pr
(

qA,b >
1

150
κ2

‖A−1|b〉‖2

)

≥ 1
6

. (9)

The detailed proof is given in Appendix D and the basic
idea is similar to that of Theorem 1, in that we consider
two instances of the QLSP, where A is fixed but �b �= �b′. In
this case, the quantum operation L is fixed, but the input
state changes when we replace |b〉 → |b′〉. The number of
copies of this state needs to be sufficiently large to produce
a constant change in Pr(r), according to Eq. (3), setting
the lower bound in Theorem 3. The scaling in Eq. (9) is
quadratically worse than that obtained when one has direct
access to both unitaries cU±1

b . This is because the trace dis-
tance between q copies of |b〉 and q copies of |b′〉 scales as√

q rather than linear in q.
Following Secs. III A and III B,�(κ2) copies of |b〉 will

be needed for the PM approach in the worst case and�(κ)
in the typical case, with constant probability.

VI. IMPLICATIONS AND OPEN PROBLEMS

We analyze some implications of Theorems 1 and 3 in
more detail and provide some open problems, which aim at
bypassing our lower bounds. First, we note that the lower
bounds are independent of m. Even if we had access to a
full classical description of ρ, which could be obtained via
quantum state tomography using m � 1 copies, the QSV
procedures would still need �(κ/‖A−1|b〉‖) uses of cU±1

b
or �[(κ/‖A−1|b〉‖)2] copies of |b〉 with constant proba-
bility, respectively. Our results also suggest that we must
know (or compute) κ beforehand, to be confident that a
given QSV procedure works. For example, if κ � 1 but a
given QSV procedure involves a few (much less than κ)
unitaries cU±1

b or a few copies of |b〉, then Theorems 1 and
3 imply that such a procedure cannot produce the bit r that
satisfies Eq. (3).

Additionally, known variational and related approxima-
tion algorithms for the QLSP also require a (weaker) form
of QSV [9–12]. To this end, these algorithms evaluate a
cost function such as C(ρ) = tr(ρH), which is the expec-
tation of an observable H ≥ 0 in ρ. In general, C ≥ 0, and
C = 0 only when the state is the solution to the QLSP; that
is, C(|x〉〈x|) = 0. The cost function can be used to detect
some states that are close to |x〉. For example, one can set a
threshold Cmin > 0 such that if C(ρ) ≤ Cmin then Dρ,x ≤ 1

8 .
As C is estimated within given confidence, we can set this
to be, at least, 2

3 .
This weaker form of QSV requires a protocol that, on

inputs A and �b, provides a quantum operation E with the
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following properties for the bit r:

Pr(r = 1)

{
≥ 2

3 if C(ρ) ≤ Cmin,
≤ 1

3 if Dρ,x >
1
2 .

(10)

The only difference with the QSV protocol of Sec. III is
that some states with Dρ,x ≤ 1

8 can be rejected by E with
probability greater than 1

3 . This in itself can be an issue for
variational approaches as they will be rejecting many use-
ful states in the optimization loop. Nevertheless, the ideas
behind Theorems 1 and 3 provide similar results for these
weaker QSV procedures.

Theorem 4. Consider any instance of the QLSP, specified
by A and �b, and any protocol for QSV as above. Then, for
all quantum states ρ that satisfy C(ρ) ≤ Cmin, the num-
ber of cU±1

b required to implement E on input σ0 = ρ⊗m

satisfies

Pr
(

qA,b >
1

13
κ

‖A−1|b〉‖
)

≥ 1
6

. (11)

The proof of Theorem 4 follows exactly the same steps
as the proof of Theorem 1 given in Appendix A, except
that in Eq. (A3) we consider states σ0 that are m copies of
a state ρ, where C(ρ) ≤ Cmin.

The complexity of known variational approaches to the
QLSP, as measured by the number of uses of cU±1

b or the
number of copies of |b〉 required for their implementation,
will therefore be large in worst-case and typical instances,
scaling polynomially in κ . For example, one can use the
expectation value of

H = AUbP⊥
0 U−1

b A (12)

as the cost function, where P⊥
0 = 1 − |0〉〈0| is the projec-

tor orthogonal to |0〉. This Hamiltonian is positive semidef-
inite and |x〉 is its unique ground state with zero eigenvalue
[8]. In Appendix E we show that the spectral gap of H
is O(1/κ2) if the eigenvalue of A with the second small-
est magnitude is O(1/κ), which will be the case in most
instances when N � κ . Determining if Dρ,x ≤ 1

8 for these
cases then requires measuring C within additive accuracy
that is also O(1/κ2); that is, Cmin = O(1/κ2). Because
of sampling noise, the overall number of state prepara-
tions, projective measurements, and uses of cU±1

b (or U±1
b )

needed is �(κ4) to obtain the desired accuracy, and this
grows rapidly with κ . Other cost functions may suffer from
similar complications [9–11].

A version of Theorem 3 for the weaker form of QSV
discussed above can also be proven. In this case, Eq. (11)
applies under the additional condition C(ρ) ≤ Cmin.

We note that our lower bounds can be bypassed if the
structure of Ub (or |b〉) can be exploited, opening the pos-
sibility to novel quantum approaches for the QLSP that

work in this scenario. Additionally, the lower bounds are
polynomial in κ for worst-case and typical instances but,
for instances where, e.g., ‖A−1 |b〉 ‖ = �(κ), the number
of uses of cU±1

b or copies of |b〉 for QSV is constant. In
this best-case scenario, the number of uses of cU±1

b needed
by the quantum algorithms for the QLSP in Refs. [5–7] is
also a constant, but the query complexity (uses of UA) is
still polynomial in κ , while the complexity of variational
approaches remains unknown in general.

Other versions of the QLSP for which the goal is to
obtain specific properties of |x〉, rather than preparing |x〉,
may also be of interest. Our lower bounds do not nec-
essarily apply to such versions. For example, computing
the expectation 〈x| O |x〉 for some operator O is equivalent
to computing 〈b| A−1OA−1 |b〉 /‖A−1|b〉‖2. There are many
ways to determine 〈x| O|x〉 from expectations in |b〉 alone,
without requiring the preparation or verification of |x〉.

VII. CONCLUSIONS

We study the complexity of QSV in the context of solv-
ing systems of linear equations. We show that, for worst-
case and typical instances of the QLSP, QSV requires a
number of state-preparation unitaries, and their inverses,
that is polynomial in κ . This complexity is large for many
applications [20].

Our results place limitations for approaches to the QLSP
that require a verification step (e.g., known variational
approaches), where state-preparation, gate, or measure-
ment errors will need to decrease fast with κ for these
instances, if no quantum error correction is used. We
note, however, that our results assume no knowledge on
the inner workings of the state-preparation unitaries. If
such knowledge is provided, it may be exploited for more
efficient QSV and for solving the QLSP faster.

Our formulation of the QSV problem is fairly generic
and concerns the nonadversarial scenario in the sense
of Ref. [28]. Nevertheless, extensions of our results to
the adversarial case, in which the input is not promised
to be m ≥ 1 copies of a state ρ, would be interesting.
Many quantum operations can be used for QSV, including
those that solve the QLSP or provide estimates of vari-
ous distance measures between quantum states, such as
the fidelity. As an example, we provide an optimal QSV
procedure based on the HHL algorithm.

We also discuss a number of open problems that aim
at bypassing our lower bounds. These include analyzing
the complexity of QSV and algorithms for the QLSP in
best-case instances, and relaxations of the QLSP where
only certain properties of the quantum state need to be
reproduced. Our lower bounds for worst-case and typi-
cal instances do not apply to these cases, opening the
possibility to faster quantum algorithms.
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APPENDIX A: PROOF OF THEOREM 1

We consider any QSV protocol that, for (any) inputs A
and �b, provides a quantum operation E that satisfies Eq.
(3). As explained, E can be described as in Fig. 1. We let q
be the total number of relevant unitaries, that is, the number
of cU±1

b needed to describe this operation. Note, however,
that the actual number of such unitaries needed on any one
execution of the operation and on any one instance of the
QLSP, qA,b, may be random and less than q. For example,
the operation can stop after a certain number of amplitude
amplification rounds (this would be the case if we use the
HHL algorithm for QSV) or after a certain measurement
outcome. Then, without loss of generality, each Ej in Fig.
1 outputs a (random) bit s that indicates whether a stopping
criteria has been reached (s = 1) or not (s = 0). Once s is
in state 1—say after the execution of Ej —the remaining
operations Ej +1, . . . , Eq+1 act trivially and do not alter the
state; such operations are controlled on the state of s.

The proof of the lower bound considers a pair of
instances of the QLSP specified by some fixed A and
vectors �b and �b′, but such that |x〉 and |x′〉 satisfy
Dx,x′ := 1

2 |||x′〉〈x′| − |x〉〈x|||tr > 5
8 . Here, |x′〉 is the solu-

tion to the QLSP for initial state |b′〉 = Ub′ |0〉, i.e., |x′〉 :=
A−1|b′〉/‖A−1|b′〉‖. We write E and E ′ for the quantum
operations output by the QSV protocol in either instance.
These operations use the controlled unitaries cU±1

b and
cU±1

b′ , respectively, at most q times. Note that E ′ can be
obtained from E by replacing cU±1

b → cU±1
b′ .

According to Eq. (3), E must accept a state ρ that satis-
fies Dρ,x ≤ 1

8 with high probability (greater than or equal
to 2

3 ), while E ′ must reject the same state ρ with high
probability (greater than or equal to 2

3 ) since

Dρ,x′ ≥ |Dx,x′ − Dρ,x| > 5
8 − 1

8 = 1
2 . (A1)

We define

q0 :=
⎢
⎢
⎢
⎣ 1

6 max|ψ〉
√

1 − | 〈ψ | cU−1
b cUb′ |ψ〉 |2

⎥
⎥
⎥
⎦ . (A2)

We first show that, with probability at least 1
6 , more than q0

unitaries cU±1
b are needed to implement E when the input

state σ0 contains m ≥ 1 copies of a state ρ that satisfies
Dρ,x ≤ 1

8 . Our proof is by contradiction. Let us assume
that, with probability P > 5

6 , the operation E requires
qA,b ≤ q0 unitaries in this input. On the one hand, in order
to satisfy Eq. (3), the probability of s = 1 and r = 1 after
this many uses of cU±1

b must be larger than 1
2 . This follows

from the observation that such probability takes its mini-
mum value (greater than 1

2 ) if the QSV procedure always
outputs r = 1, in that input, when more than q0 unitaries
are used. On the other hand, the probability of s = 1 and
r = 1 after qA,b ≤ q0 uses of cU±1

b′ must be at most 1
3 for

the operation E ′ acting on the input state σ0 in order to sat-
isfy Eq. (3). This follows from the observation that such
probability takes its maximum value if the QSV procedure
always outputs r = 0 when more than q0 unitaries are used.

We consider the action of E and E ′ on the same input
state σ0. The states produced by these operations after q0
uses of cU±1

b and cU±1
b′ satisfy

1
2‖Eq0 ◦ · · · ◦ E1(σ0)− E ′

q0
◦ · · · ◦ E ′

1(σ0)‖tr

= 1
2

∥
∥
∥
∥

q0∑

j =1

E ′
q0

◦ · · · ◦ E ′
j +1 ◦ (Ej − E ′

j )

◦ Ej −1 ◦ · · · ◦ E1(σ0)

∥
∥
∥
∥

tr

≤ 1
2

q0∑

j =1

‖(Ej − E ′
j )(σj −1)‖tr

= 1
2

q0∑

j =1

‖(U sj
b − U sj

b′ ) ◦ Fj (σj −1)‖tr

≤ q0‖Ub − Ub′‖�

= q0 max
|ψ〉

√

1 − | 〈ψ | cU−1
b cUb′ |ψ〉|2

≤ 1
6 . (A3)

The state σj is obtained after the action of Ej ◦ · · · ◦ E1 on
σ0, and U sj

b and U sj
b′ are the quantum operations that imple-

ment the unitaries cU
sj
b and cU

sj
b′ , respectively (sj = ±1).

The diamond norm of two channels E and E ′ is defined
in the standard way as ‖E − E ′‖� = maxτ 1

2‖I ⊗ E(τ )−
I ⊗ E ′(τ )‖tr, where I is a trivial operation acting on a
different subsystem and τ is the state of the composite
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system. Note that ‖Ub − Ub′‖� = ‖U−1
b − U−1

b′ ‖�. The last
equality in Eq. (A3) follows directly from the property
1
2‖|ψ1〉〈ψ1| − |ψ2〉〈ψ2|‖tr =

√
1 − |〈ψ1|ψ2〉|2, where |ψ1〉

and |ψ2〉 are any two unit states, and the last inequality in
Eq. (A3) follows from Eq. (A2).

Using the operational meaning of the trace distance, E ′
would therefore accept σ0 using qA,b ≤ q0 unitaries cU±1

b′ ,
with probability larger than 1

2 − 1
6 = 1

3 . But this contra-
dicts Eq. (3). It follows that the probability that E uses
qA,b ≤ q0 unitaries cU±1

b satisfies P ≤ 5
6 . Equivalently, the

probability that E uses more than q0 such unitaries in this
input is, at least, 1

6 .

1. Pairs of instances

For every instance of the QLSP specified by an A and �b,
we construct another one that satisfies the assumptions of
the previous analysis and will provide the lower bound in
Theorem 1. We assume that A has an eigenvalue 1/κ but, if
A has an eigenvalue −1/κ instead, a simple modification in
the following proof (a redefinition of |b̃〉 below) provides
the same result. We write

|b〉 = v|(1/κ)〉 + v⊥|(1/κ)⊥〉, (A4)

where the unit state |(1/κ)〉 is an eigenstate of A of
eigenvalue 1/κ , |(1/κ)⊥〉 is a unit state orthogonal to
|(1/κ)〉, and v ≥ 0, v⊥ ≥ 0, v2 + (v⊥)2 = 1. In the case
|b〉 = |(1/κ)〉, i.e., v = 1, |(1/κ)⊥〉 can be any unit state
orthogonal to |(1/κ)〉. We define

|φ⊥〉 := A−1|(1/κ)⊥〉
‖A−1|(1/κ)⊥〉‖ , (A5)

which is also a unit state orthogonal to |(1/κ)〉. Then

|x〉 ∝ κv|(1/κ)〉 + ‖A−1|(1/κ)⊥〉‖v⊥|φ⊥〉, (A6)

and we note that

1 ≤ ‖A−1|(1/κ)⊥〉‖ ≤ κ . (A7)

The other instance is defined such that

|b′〉 = |b̃〉
‖|b̃〉‖ ,

|b̃〉 := |b〉 + ‖A−1|b〉‖
κ

[

− ∣
∣
(
1/κ

)〉 +
(

1
5

)
∣
∣
(
1/κ

)⊥〉
]

.

(A8)

With this choice, we obtain |b′〉 �= 0 and

|x′〉 ∝ |x〉 − ∣
∣
(
1/κ

)〉 + ‖A−1|(1/κ)⊥〉‖
5κ

|φ⊥〉. (A9)

We give a geometric representation of pairs of these
instances in Fig. 3, pictured in the corresponding two-
dimensional subspaces.

A–1

A–1

FIG. 3. Geometric representation of three pairs of instances
used to prove Theorem 1, assuming that A has an eigenvalue 1/κ .

The initial states for the corresponding two instances
satisfy

‖|b〉 − |b′〉‖ ≤ ‖|b〉 − |b̃〉‖ + ‖|b̃〉 − |b′〉‖
= ‖|b〉 − |b̃〉‖ + ‖(‖|b̃〉‖ − 1)|b′〉‖
= ‖|b〉 − |b̃〉‖ + |‖|b̃〉‖ − 1|
= ‖|b〉 − |b̃〉‖ + |‖|b̃〉‖ − ‖|b〉‖|
≤ 2‖|b̃〉 − |b〉‖

≤ 2
√

26
5

‖A−1|b〉‖
κ

. (A10)

Then, there exist two unitaries Ub and Ub′ that prepare the
states |b〉 and |b′〉, respectively, and satisfy

‖Ub − Ub′‖ = ‖cUb − cUb′‖
= ‖|b〉 − |b′〉‖

≤ 2
√

26
5

‖A−1|b〉‖
κ

. (A11)

These unitaries can be explicitly constructed in many
ways; for example, Ub′ can be Ub followed by a rotation in
the two-dimensional subspace, along an axis that is orthog-
onal to the plane formed by |b〉 and |b′〉, which takes |b〉 to
|b′〉:

Ub′ = eiθM Ub, (A12)

θ = arccos(〈b′|b〉), (A13)

M = i|b〉〈b⊥| − i|b⊥〉 〈b| , (A14)

|b⊥〉 = (1 − |b〉〈b|)|b′〉/||(1 − |b〉〈b|)|b′〉||. (A15)

Note that 1 ≥ 〈b′|b〉 ≥ 0 so that π/2 ≥ θ ≥ 0. Addition-
ally, these unitaries satisfy

010315-8



COMPLEXITY OF QUANTUM STATE VERIFICATION. . . PRX QUANTUM 2, 010315 (2021)

max
|ψ〉

√

1 − | 〈ψ | cU−1
b cUb′ |ψ〉|2 = max

|ψ〉

√

1 − |〈ψ ||0〉〈0| ⊗ 1 + |1〉〈1| ⊗ U−1
b Ub′ |ψ〉 |2

= max
|ψ〉

√
1 − |〈ψ ||0〉〈0| ⊗ 1 + |1〉〈1| ⊗ eiθM |ψ〉|2

≤ max
|ψ〉

√
1 − |〈ψ |(|0〉〈0| + cos θ |1〉〈1|)⊗ 1|ψ〉|2

≤
√

1 − (cos θ)2

= sin θ

≤ ‖|b〉 − |b′〉‖

≤ 2
√

26
5

‖A−1|b〉‖
κ

. (A16)

The state |x′〉 in Eq. (A9) is closest to |x〉 when
‖A−1|(1/κ)⊥〉‖ = κ and |x〉 = |φ⊥〉, as can be observed
from Fig. 3. In this case |x′〉 = √

1/61[6|φ⊥〉 − 5|(1/κ)〉]
and |〈x|x′〉| = 6/

√
61. Then, in general,

Dx′,x = 1
2‖|x′〉〈x′| − |x〉〈x|‖tr

=
√

1 − |〈x|x′〉|2
≥

√
25/61

> 5
8 . (A17)

Thus, these pairs of instances satisfy the assumptions of the
previous analysis. Equations (A2) and (A16) imply that,
with probability at least 1

6 , more than

q0 ≥
⌊

5

12
√

26

κ

‖A−1|b〉‖
⌋

≥
⌊

1
13

κ

‖A−1|b〉‖
⌋

(A18)

unitaries cU±1
b are required to implement E when the input

state contains m copies of ρ, and Dρ,x ≤ 1
8 .

APPENDIX B: PROOF OF THEOREM 2

Let |b̄〉 = ∑
λ aλ|λ〉 be a quantum state proportional to

|b〉, i.e., |b〉 := |b̄〉/‖|b̄〉‖, and |λ〉 be an eigenvector of A of
eigenvalue λ. In particular, the amplitudes of |b̄〉 satisfy

Pr(pλ) = Ne−Npλ , (B1)

where pλ = |aλ|2 and Pr(pλ) is the Porter-Thomas distri-
bution. Standard probability rules imply that

Pr
{∥
∥
∥
∥A−1|b〉

∥
∥
∥
∥ /∈

[√
κ

2
,

√
3κ
2

]}

= Pr
{‖A−1|b̄〉‖

‖|b̄〉‖ /∈
[√

κ

2
,

√
3κ
2

]}

= Pr
{(‖A−1|b̄〉‖

‖|b̄〉‖

)2

/∈
[
κ

2
,

3κ
2

]}

≤ Pr
{

‖|b̄〉‖2 /∈
[

5
6

,
3
2

]}

+ Pr
{

‖A−1|b̄〉‖2 /∈
[
3κ
4

,
5κ
4

]}

.

(B2)

We upper bound each term of Eq. (B2) below.
First we focus on ‖|b̄〉‖2 = ∑

λ pλ. We apply Chernoff’s
bound twice; once for establishing an upper bound on the
probability that ‖|b̄〉‖2 ≥ 3

2 and then on the probability that
‖|b̄〉‖2 ≤ 5

6 . Since the pλ are independent and identically
distributed, we obtain

Pr
{‖|b̄〉‖2 ≥ 3

2

} ≤ min
t>0

e−3tN/2(E[etNpλ])N , (B3)

Pr
{‖|b̄〉‖2 ≤ 5

6

} ≤ min
t>0

e5tN/6(E[e−tNpλ])N , (B4)

where E[·] is the expectation value. For the Porter-Thomas
distribution and 0 < t < 1,

E[etNpλ] = 1
1 − t

, (B5)

and, for t > 0,

E[e−tNpλ] = 1
1 + t

. (B6)
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The minimization over t in Eqs. (B3) and (B4) can be
performed analytically. Nevertheless, we can pick a suit-
able value for 0 < t < 1 such that the upper bounds decay
exponentially with N . In particular, for t = 1

4 , we obtain

Pr
{‖|b̄〉‖2 ≥ 3

2

} ≤ e−3N/8( 4
3

)N ≤ e−0.087N (B7)

and

Pr
{‖|b̄〉‖2 ≤ 5

6

} ≤ e5N/24( 4
5

)N ≤ e−0.014N . (B8)

Next we focus on ‖A−1|b̄〉‖2 = ∑
λ pλ/λ2 and assume

that the eigenvalues are sampled from unif{[−1, −1/κ] ∪
[1/κ , 1]}, that is, the uniform distribution in [−1, −1/κ] ∪
[1/κ , 1]. Chernoff’s bound implies that

Pr{‖A−1|b̄〉‖2 ≥ 5κ/4} ≤ min
t>0

e−5tNκ/4(E[etNpλ/λ2
])N ,

(B9)

Pr{‖A−1|b̄〉‖2 ≤ 3κ/4} ≤ min
t>0

e3tNκ/4(E[e−tNpλ/λ2
])N .

(B10)

Again, we can perform the minimization in t but it suf-
fices to pick a suitable t that provides useful, exponentially
decaying bounds. In particular, for t = 1/(8κ2),

E[etNpλ/λ2
] = 1

1 − 1/κ

∫ 1

1/κ
dλ

∫ ∞

0
dpλN e−Npλ etNpλ/λ2

= 1
1 − 1/κ

∫ 1

1/κ
dλ

1
1 − t/λ2

≤ 1
1 − 1/κ

∫ 1

1/κ
dλ

[

1 +
(

8
7

)
t
λ2

]

= 1 + 8tκ/7

≤ e8tκ/7

= e1/(7κ) (B11)

and

E[e−tNpλ/λ2
] = 1

1 − 1/κ

∫ 1

1/κ
dλ

∫ ∞

0
dpλN e−Npλ e−tNpλ/λ2

= 1
1 − 1/κ

∫ 1

1/κ
dλ

1
1 + t/λ2

≤ 1
1 − 1/κ

∫ 1

1/κ
dλ

[

1 −
(

8
9

)
t
λ2

]

= 1 − 8tκ/9

≤ e−8tκ/9

= e−1/(9κ). (B12)

Using these bounds in Eqs. (B9) and (B10) gives

Pr{‖A−1|b̄〉‖2 ≥ 5κ/4} ≤ e−0.013N/κ , (B13)

Pr{‖A−1|b̄〉‖2 ≤ 3κ/4} ≤ e−0.017N/κ . (B14)

Last, since κ ≥ 1, the right-hand side of Eq. (B2) can be
upper bounded by

e−0.087N + e−0.014N + e−0.013N/κ + e−0.017N/κ ≤ 4e−0.013N/κ .
(B15)

APPENDIX C: QSV VIA THE HHL ALGORITHM

We construct an operation for QSV that uses a number
of cU±1

b that is almost optimal. This operation first solves
the QLSP and then compares the outcome to the state one
wishes to verify. Several algorithms can be used for solv-
ing the QLSP but, for simplicity, we consider the HHL
algorithm here. The HHL algorithm is not optimal for solv-
ing the QLSP in terms of its scaling with respect to κ or a
precision parameter [6,8]. However, it turns out that it can
be used in a QSV algorithm that is almost optimal in terms
of the uses of cU±1

b because for this purpose we only need
to prepare states that are within a constant distance from
|x〉.

A key subroutine of the HHL algorithm is based
on quantum phase estimation and implements a con-
ditional rotation on an ancillary qubit as follows. Let
|b〉 = ∑

λ bλ|λ〉 and ‖|b〉‖ = 1. If we ignore errors for the
moment, this subroutine implements a unitary U such that

U|b〉|0〉|0 · · · 0〉

→
∑

λ

bλ|λ〉
(

1
κλ

|0〉 +
√

1 − 1
κ2λ2 |1〉

)

|0 · · · 0〉

=
(

A−1

κ
|b〉

)

|0〉|0 · · · 0〉 + [h(A)|b〉]|1〉|0 · · · 0〉, (C1)

where h(A) does not implement the matrix inversion. The
unitary U depends on A and implements other two-qubit
gates (e.g., for the quantum Fourier transform) but does
not use cU±1

b (or U±1
b ). If the ancillary qubit is measured

and the outcome is |0〉, then the first register is exactly in
the state |x〉. This occurs with probability

psuccess =
∑

λ

|bλ|2
κ2λ2 =

(‖A−1 |b〉 ‖
κ

)2

. (C2)

Rather than measuring this qubit, one can implement
amplitude amplification to boost the probability of mea-
suring this qubit in |0〉 and preparing |x〉 to almost 1. This
approach would require O(1/√psuccess) reflections over
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the state U|b〉|0〉|0 · · · 0〉 in expectation, which translates
to O(κ/‖A−1|b〉‖) uses of cU±1

b in expectation, following
Ref. [27].

Once the state |x〉 is prepared, we can perform QSV
via the swap or Hadamard test [21]. Using one copy of
ρ and one copy of |x〉, the swap test performs a joint
operation and outputs a bit r′ that satisfies Pr(r′ = 1) =
(1 + 〈x| ρ|x〉)/2. If Dρ,x ≤ 1

8 then 〈x| ρ|x〉 ≥ 1 − Dρ,x ≥
1 − 1

8 and Pr(r′ = 1) ≥ 15
16 . If Dρ,x >

1
2 then 〈x| ρ|x〉 ≤

1 − D2
ρ,x < 1 − 1

4 and Pr(r′ = 1) < 7
8 . To produce the bit

r with the desired properties of Eq. (3), we can implement
the swap test and sample r′, say, 64 times. Let r = 1 only
when the Hamming weight of the string is 59 or more, and
r = 0 otherwise. Then,

Pr(r = 1) =
5∑

k=0

64!
k! (64 − k)!

[1 − Pr(r′ = 1)]k

× [Pr(r′ = 1)]64−k, (C3)

and if Dρ,x ≤ 1
8 or Dρ,x >

1
2 , we obtain Pr(r = 1) ≥ 0.79 >

2
3 or Pr(r = 1) < 0.18 < 1

3 , respectively. As the swap test
is used a constant number of times, the above QSV pro-
cedure can be implemented using the HHL algorithm a
constant number of times or, equivalently, using the uni-
taries cU±1

b a number of times that is O(κ/‖A−1 |b〉 ‖) in
expectation.

1. Effects of errors

The previous analysis would suffice to prove that the
HHL algorithm is optimal for QSV if U could be imple-
mented exactly. However, due to imprecise quantum phase
estimation, the HHL algorithm implements a unitary Ũ
that approximates the transformation in Eq. (C1). Once the
ancillary qubits are discarded, the quantum state prepared
by HHL algorithm is ρx and satisfies

Dρx ,x ≤ ε (C4)

for arbitrary ε > 0. While the actual value of ε may not
affect the number of cU±1

b needed to implement the QSV
procedure, we show that a constant ε suffices.

Let ε ≤ 1
100 . Then, when the input to the swap test is one

copy of ρ and one copy of ρx, the test produces a bit r′ satis-
fying Pr(r′ = 1) ≥ 15

16 − 1
100 if Dρ,x ≤ 1

8 and Pr(r′ = 1) <
7
8 + 1

100 if Dρ,x >
1
2 . That is, the probabilities of the exact

case analysis can only be modified by, at most, ε. This is
due to a property of the trace distance being nonincreas-
ing under quantum operations (CPTP maps). As before, we
can produce the bit r that satisfies Eq. (3) by sampling r′,
say, 64 times. Let r = 1 when the Hamming weight of the
string is 59 or more, and r = 0 otherwise. If we compute
Eq. (C3) for this case, we obtain Pr(r = 1) ≥ 0.68 > 2

3 if
Dρ,x ≤ 1

8 and Pr(r = 1) < 0.25 < 1
3 if Dρ,x >

1
2 .

In Ref. [5] it was shown that the probability of success
in the preparation of ρx, p̃success, satisfies

|p̃success − psuccess|
psuccess

= O(ε). (C5)

This implies that p̃success = �(psuccess), so that the over-
all number of amplitude amplification rounds in the HHL
algorithm is O(1/√psuccess) in expectation. As the HHL
algorithm and the swap test are needed a constant number
of times, the unitaries cU±1

b are used O(κ/‖A−1|b〉‖) times
in expectation.

APPENDIX D: PROOF OF THEOREM 3

Let L be the quantum operation provided by a QSV pro-
tocol of the PM type on input A, as described in Fig. 2. We
let q be the number of copies of |b〉 in the input state of
L. However, the actual number of such states used on any
one execution of L, qA,b, may be random and less than q.
As in Appendix A, we can assume, without loss of gener-
ality, that each Fj outputs a bit s that indicates whether a
stopping criteria has been reached (s = 1) or not (s = 0).
Once s is in state 1—say after the execution of Lj (or
Fj )—the remaining operations Fj +1, . . . ,Fq act trivially,
do not require the preparation of further copies of |b〉, and
do not alter the state; such operations are controlled on the
state of s.

The proof closely follows that of Theorem 1 given in
Appendix A. It considers a pair of instances of the QLSP
specified by some fixed A and vectors �b and �b′ such that
|x〉 and |x′〉 satisfy Dx,x′ > 5

8 . Then, according to Eq. (3),
the operation L that uses copies of |b〉 must accept a state
ρ that satisfies Dρ,x ≤ 1

8 with high probability (greater than
or equal to 2

3 ). The operation L that uses copies of |b′〉 must
reject ρ with high probability (greater than or equal to 2

3 ),
because this input state corresponds to the other instance.

We define

q0 :=
⌊

1
36(1 − |〈b|b′〉|2)

⌋

. (D1)

We first show that, with probability at least 1
6 , more than q0

copies of |b〉 are used by L when the input state σ0 contains
m ≥ 1 copies of a state ρ that satisfies Dρ,x ≤ 1

8 . The proof
is also by contradiction. Let us assume that, with probabil-
ity P > 5

6 , the operation L requires qA,b ≤ q0 copies of |b〉.
Then, in order to satisfy Eq. (3), the probability of s = 1
and r = 1 in the state output by Lq0 must be larger than
1
2 . In addition, as the trace distance is nonincreasing under
quantum operations (CPTP maps),

010315-11
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1
2‖Lq0(ρ

⊗m ⊗ |b〉 〈b|⊗q0)− Lq0(ρ
⊗m ⊗ |b′〉 〈b′|⊗q0)‖tr ≤ D|b〉⊗q0 ,|b′〉⊗q0

=
√

1 − |〈b|b′〉|2q0

≤
√

q0(1 − |〈b|b′〉|2)
≤ 1

6 . (D2)

Therefore, under the assumptions and using the opera-
tional meaning of the trace distance, L would accept ρ
using qA,b ≤ q0 copies of |b′〉 with probability larger than
1
2 − 1

6 = 1
3 . But this contradicts Eq. (3), which states that

the probability of r = 1 should be, at most, 1
3 in this case.

It follows that the probability that L requires more than q0
copies of |b〉 in this input is lower bounded by 1

6 .
From Eqs. (A13) and (A11), it follows that

1 − |〈b| b′〉|2 = (sin θ)2

≤ ‖|b〉 − |b′〉‖2

≤ 104
25

(‖A−1|b〉‖
κ

)2

. (D3)

Equations (D1) and (D3) imply that, with probability at
least 1

6 , more than

q0 ≥
⌊

25
3744

(
κ

‖A−1|b〉‖
)2⌋

≥
⌊

1
150

(
κ

‖A−1|b〉‖
)2⌋

(D4)

copies of state |b〉 are required to implement L when the
input state contains m copies of ρ, and Dρ,x ≤ 1

8 .

APPENDIX E: SPECTRAL PROPERTIES OF H

We analyze some spectral properties of H = AP⊥
b A,

where P⊥
b = 1 − |b〉〈b| is a projector orthogonal to |b〉 [8].

Since H is of the form B†B, then H ≥ 0 and

H |x〉 = AP⊥
b A|x〉 = A

P⊥
b |b〉

‖A−1|b〉‖ = 0. (E1)

Moreover, |x〉 is the unique eigenstate of eigenvalue 0.
For any |x⊥〉, such that 〈x⊥| x〉 = 0, the gap of Hamilto-

nian H can be bounded as

� ≤ 〈x⊥|H |x⊥〉
= 〈x⊥|A2|x⊥〉 − |〈x⊥|A|b〉|2

≤ 〈x⊥|A2|x⊥〉. (E2)

By assumption, the absolute smallest eigenvalue of A is
1/κ and we let λss denote the eigenvalue with the sec-
ond smallest magnitude. We write |(1/κ)〉 and |λss〉 for the

corresponding eigenstates. Without loss of generality

|x〉 = a|(1/κ)〉 + b|λss〉 +
√

1 − a2 − b2|γ 〉, (E3)

where |γ 〉 is a unit state orthogonal to the two-dimensional
subspace spanned by |(1/κ)〉 and |λss〉. In this subspace,
there exists a unit state |x⊥〉 that is orthogonal to |x〉, that
is, 〈x⊥|x〉 = 0. It satisfies 〈x⊥|A2|x⊥〉 ≤ λ2

ss and, together
with Eq. (E2), we obtain� ≤ λ2

ss. In particular, this implies
that � = O(1/κ2) whenever A has at least two eigenval-
ues of magnitude O(1/κ), which will be the case in most
instances when N � κ .
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