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The laws of thermodynamics put limits to the efficiencies of thermal machines. Analogues of these
laws are now established for quantum engines weakly and passively coupled to the environment
providing a framework to find improvements to their performance. Systems whose interaction with
the environment is actively controlled do not fall in that framework. Here we consider systems
actively and locally coupled to the environment, evolving with a so-called boundary-driven Lindblad
equation. Starting from a unitary description of the system plus the environment we simultaneously
obtain the Lindblad equation and the appropriate expressions for heat, work and entropy-production
of the system extending the framework for the analysis of new, and some already proposed,
quantum heat engines. We illustrate our findings in spin 1/2 chains and explain why an XX chain
coupled in this way to a single heat bath relaxes to thermodynamic-equilibrium while and XY chain
does not. Additionally, we show that an XX chain coupled to a left and a right heat baths behaves as
a quantum engine, a heater or refrigerator depending on the parameters, with efficiencies bounded
by Carnot efficiencies.

Considerable experimental progress in various physical systems has been achieved toward the goal of
controlling the dynamics of open quantum systems and their interactions with the environment'=. For
quantum computations or digital coherent quantum simulations, one may wish to have a system that
is well isolated from the environment. For dissipative variants of quantum computations* or creating
new scenarios for non-equilibrium many-body systems, one would need to engineer the coupling to the
environment. Recently, a setting in which the quantum system of interest interacts at its boundaries with
an external quantum probe such that their coupling can be localized and can be switched on and off
repeatedly with a controlled and well-defined state for the probe prior to the interaction has been exper-
imentally realized®. This repeated interaction scheme has also been theoretically studied®’. Importantly,
the dynamics in an appropriate limit is a boundary-driven Lindblad equation. In this article, we explore
the question of what is the thermodynamic cost of having such operations on an open quantum system
and what are the thermodynamical quantities, such as heat and work that will determine the efficiency of
quantum engines operating in this manner. Boundary-driven Lindblad equations have been intensively
studied theoretically, particularly for one-dimensional quantum chains’*°, and powerful techniques have
been developed to find their non-equilibrium steady states (NESS)'?'°. These equations are also fre-
quently used to describe quantum engines®®?* and other complex open quantum systems coupled to
one or several environments**~?” because they are easy to implement. Nevertheless, a boundary driven
Lindblad equation does not correctly describe a quantum system passively and weakly coupled to a
heat-bath as often occurs in natural systems. It was pointed out recently®® that inconsistencies with the
second law of thermodynamics may arise in this case and a careful examination of the coupling between
a quantum refrigerator and the heat-baths® reveals why boundary driven models are inappropriate for
these situations. For a system passively and weakly coupled to one or several heat-baths the master
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equation derived in the Born-Markov-secular approximation® yields a proper description of the system
and the correct balance of heat flows and irreversible entropy production.

Thus, for our study, we consider explicitly the active (time-dependent) type of interaction between the
system and the environment implemented in® and the model developed in®’. We apply the results of*!*
to derive the appropriate thermodynamical quantities and, in particular, we focus in the limit where the
system is described by a boundary driven Lindblad equation.

Our main result is that driving at the boundaries, even though it looks like a work-free operation,
actually might bring work to the system. We illustrate our findings on boundary-driven spin 1/2 chains
coupled to one or two heat baths. We show that an XX spin 1/2 chain coupled in this way to a single
heat bath relaxes to thermodynamic equilibrium while an XY does not because it is driven out of equi-
librium by the power produced by the coupling to the heat bath. When two baths are connected to the
chain, we observe that for different parameters, the chain operates as a quantum heat engine, refriger-
ator or heater, and we determine their efficiencies in the simple case of a chain of two sites. The rest of
the paper is organized as follows. We start by reviewing first the thermodynamics of Markovian open
quantum systems in the weak coupling limit**-*¢ and second a formulation®! where the “universe’, system
plus the environment, evolves unitarily. After that, we consider the repeated interaction scenario for the
system and the environment from which the boundary-driven Lindblad equation and the appropriate
thermodynamical quantities for the open system are obtained. Then we illustrate our results in XX and
XY spin 1/2 chains and offer our conclusions. Finally we have collected in section Methods some details
of the calculations.

Thermodynamics of open quantum systems

Open system weakly and passively coupled to the environment. Let us briefly review the usual
formulation of thermodynamics in open quantum systems®~*¢. Consider an open system described by a
master equation in the Lindblad form

dpq

— = —i[H(t), p.] + > 2

dt S( ) ps ; r(ps) (1)
where the environment consists of several heat-baths r whose action on the system is represented by the
dissipator

Z,(p) = Y QLI PLYT — ALITLY, p})
i

with [+, -] the commutator and {-, -} the anti-commutator. The operators L are system operators and
represent the action of the environment over the system. When this equation is obtained from the weak
coupling limit for a time independent system, one finds global Lindblad operators L/ that are
eigen-operator of the Hamiltonian H*. For simplicity, we consider that the system can only exchange
energy and no particles with the environment.

Now consider the internal energy U (t) = tr(H(t) pg(t)) and the entropy S(t) = —k Tr(ps(t)ln

pg(t)). The first law of thermodynamics U = W + Q splits the rate of change of internal energy in two,
power W (t) and heat flow Q(t) = >, Q,(t) with one contribution per heat-bath. For system passively
and weakly coupled to the heat-baths, these quantities are defined as

W () = il (1) pg (0], Q, (1) = te[Hy (1), (o (1)). @)

In section Methods: Heat from a given reservoir in the weak-coupling limit we justify these definitions.
Note that if the Hamiltonian of the system is time independent, no work can be performed on the system
and only heat is exchanged with the baths. In that case the system will typically reach a steady state.
Consider now this to be the situation. The second law states the positivity of the entropy production
(d,S/dt > 0), which is the difference between the time-derivative of the entropy
S(t) = =X, kg Tr(Z,(pg)In py(t))and the entropy flow from the environment to the system 3, 3,Q,.

d;S

— _S_Z,BQ = kBZTr< (P (ln pg— In wy (Hs)))

3)

The canonical distribution w, (H) = exp(—(3,H)/Z, appears in the last equality of Eq. (3) due to the
definition of heat that we plug in the first equality in Eq. (3). The second law d,S/dt > 0 in Eq. (3) holds
if for every r, po = —i[Hg, p] + & ( p) relaxes towards the unique equlhbrlum state wj; (H). This is
the local-detailed-balance condition® i.e. if a single heat-bath is in contact with the system detailed
balance as defined in***® holds. This property of the dissipators &, is satisfied in quantum master equa-
tions obtained in the weak-coupling and with the Born-Markov-secular approximation (global Lindblad
equation). This framework has been applied successfully to the study of thermodynamic properties and
efficiencies of engines?**-41,
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In boundary-driven systems the Lindblad operators L/ act locally on the boundaries of the system
and in general the corresponding Lindblad equation does not satisfy local-detailed-balance. We come
back to this point later. Following recent developments in the physics of non-equilibrium systems that
have emphasized the importance of time reversal symmetry at the microscopic level of description®?, a
formulation of quantum thermodynamics in which the system plus the environment evolves unitarily
has been proposed®'. We consider this framework to analyze boundary driven systems.

“universe” under unitary evolution. Let a system and an environment with Hamiltonians H ¢(¢) and H, (time
independent), respectively, coupled by an interaction potential V() evolve with total Hamiltonian
H(t) = Hg(t) + Hg + V (t). The environment might consists of several heat baths p, = ®, w; (H,)
withw (H) = e “OH:/7_the initial density matrix for the reservoir r. Initially, the system and heat baths are
uncorrelated p, (0) = p(0) ® p,. For arbitrary strength coupling between the system and environment®,
the internal energy is defined by E (t) = Tr(p,, (t) (Hs (t) + V (t))), and the first law relates its changes
to work and heat AE (t) = W (t) + Q(t) with the work W (t) = Tr(p,, (t) H o (t) — p,,(0) H 0 (0))
performed on the system in the time interval [0, ¢], which is also given by

t . )
W) = [ e el () (HS() + V() @
and the total heat flow Q (t) = 2, Q,(¢) split in reservoir contributions

Q1) = Tr(H,p, (0)) — Tr(H,p,, (1)) (5)

given by minus the change in energy of the r-reservoir.

Considering S(t) = —kp Trg(pg(t)In p(t)) as the thermodynamic entropy of the system and
AS(t) =S(t) — S(0), it is found that AS(t) = AS(t) + A;S(f) with the entropy flow
AS(t) =3, 5,Q, (t) determined by the heat flows in Eq. (5) and the entropy production®

AiS(#) = D (py, (D) Is(1) @ pp) > 0, (6)

with D (a||b) = Tr(a In a) — Tr(a In b). Unitarity, expressed through the invariance of
Tr(p,,(t)In p, (t)) under the time evolution of the full system, plays a crucial role in the splitting of
entropy change in the entropy flow and a positive entropy production. In the weak-coupling limit V' — 0
and assuming that the open system satisfies a Lindblad equation obtained from the Born-Markov-secular
approximation®, the rate of entropy production d,S/dt > 0 and the above expressions for work and heat
take the standard form given in Eq. (3) and Eq. (2) respectively. This is shown in section methods by
considering the method of full-counting statistics*’. However, the Lindblad models investigated in’-1%!2-
1828 are not obtained from the weak-coupling limit and do not satisfy local-detailed-balance. Thus to
obtain the appropriate expressions for the thermodynamical quantities in boundary driven systems we
apply in the next section the previous formulation, in particular Eqs (4),(5),(6), to a system plus envi-
ronment evolving unitarily in which the reduced density matrix for the system satisfy a boundary driven
Lindblad equation in an exact limit.

The repeated interaction scheme

Let us consider a finite system with time-independent Hamiltonian Hg and left (L) and right (R) reser-
voirs composed of an infinite set of identical non-interacting finite systems with Hamiltonian H/, i.e.,
H, = >, H,", where r is L or R. Each H," interacts with the system for a time span 7. This interaction is
always of the same form, but to emphasize that interactions occur with different copies H;' + Hy in
different time intervals, we write it as V (1) = V" ift € [(n — 1)7, nT]with V"' = V' 4+ V. Att =0,
the system and reservoirs are decoupled, ie., p, = ps(0) ® p,, with p((0) arbitrary and p, = ®”pf’
where p = w; (H L) ®w s, (H »). Att = 07, the system begins to interact with the first copy H} + Hp,
and after a lapse of time T, “the state of the total system is p, (7) = U,[p4(0) ® p|] Ul ® Py @ Pyeen
Then, at t=7+ 0, the interaction with the first copy is replaced by an interaction with the second copy
for a time 7 and so on. A recursion relation for the state of the system is obtained®” by tracing out the
nth copy of the environment (denoted as Tr,)

ps(n7) = Tr,[U,pg((n = 1)7) ® p U1 (7)

The unitaries are U, = e HHSTHIHHEVY) This is the repeated interaction scheme. For simplicity we
considered only two heat-baths but the generalization to several reservoirs is straight forward.

Let us consider the change of thermodynamical quantities in the time intervals of length 7. Crucially,
due to the resetting of the heat baths, the interaction term is time dependent. According to Eq. (4) for
time-independent Hg, work is performed at the discrete times n7 where the interaction between the
system and the environment changes because the copy in interaction changes. Performing the integral
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inEq. (4) betweenaninitialtimenT — eandafinaltiment + &, weobtain AW, = Tr g ( (vt - V1000
in the limite — 0. We simplify this expression with the standard® assumption that Tr, (V,'w; (H,") ) = 0.
This condition will be repeatedly used; it allows us to split AW, = AW, + AW, (we drop the index
nT) with

AW, = ~Tr (V] Uyps(In — 117) © p,Uj). ®)

We use Tr, to denote the trace over the r=L or r=R system and Tr to denote the full trace.
The heat flow from the bath to the system in the time interval of length 7 where the system interacts
with the nth copy is evaluated from Eq. (5)

AQ, = Te(HTp, — o). 9)

where p/ = Trg(U,pq([n — 1]7) ® an:{ ) is the density matrix of the nth copy of the environment at
the end of the interaction with the system.

The entropy production A;S in the time lapse 7 is obtained from Eq. (6), and after some manipula-
tions*"*2, it can be written as the sum

AS=D(plp,) +1(S:n") >0

where the mutual information I (S": n’) = S (pg(n7)) + S(p,) — S(U,p4([n—1]7) @ p,Uy) quantifies
the correlations built up between the system and the nth copy after time 7. Note that D (p![|p,) > 0 and
I(8": n') > 0 and vanishing entropy production requires p , = p and the absence of correlations
between the system and the copy I (§’: n’) = 0. Note that because before the interaction the state of the
system is arbitrary and uncorrelated with the product of thermal states of the copy, the theory of3!3
applies independently of the correlations built between the system and previous copies.

Heat, work and boundary-driven Lindblad equation. The index n is associated with the copy that
interacts in the interval of time [(n — 1) 7, n7], but the copies are all identical prior to the interaction
(a tensor product of two canonical distributions) and the interaction V/" is always of the same form.
Because no confusion will arise, we drop the label # and denote the interaction V=3,V the
Hamiltonian of the bath copy H, and the state p = w; ® wy Withwy = wy (H,). It was shown®” that
for V, that satisfies Trr[er ﬂr] = 0 and whose strength is scaled with 7as V, = v,/~/T, the system evo-

lution Eq. (7) in the limit 7 — 0 converges to a Lindblad evolution (see methods)

o = —i[Hs, p] + 3.9,
pS [ S pS] Z,: (ps) (10)
with 7, (p¢) = Trr["r(ﬁs ® wy )VEJ _ % Trr{vr27 Py ® wpy } This equation applied to particular systems
provides boundary-driven Lindblad equations.

Consider now W, = AW,/ and Q, = AQ,/7 with AW, in Eq. (8) and AQ, in Eq. (9). In the limit
T — 0 with V = v//T, we obtain (see methods)

w:Dr(HS+Hr)7 Qr: 7Dr(Hr) (11)

where D (A) = Tr[(v,Av, — %{vf, A})ps(t) ® wﬁr]' Note the first law 3°,(Q, + W,) = (Hj),, where

(Hg), = Trg(Hgps (1)) = X, D, (Hy). Finally, we express the entropy production rate as the difference
between the time derivative of the von Neumann entropy and the entropy flow

s
dt

= _TrS(‘@(ps(t))ln ps(t)) - ;ﬁrQr >0 (12)

where the first term is computed using Eq. (10) with 2 = Y. &, and the second term is computed from
Eq. (11). Eqs (11),(12) provide appropriate thermodynamic expressions for systems evolving with Eq.
(10). Now we illustrate our findings in spin 1/2 chains.

Spin models
Consider an XY spin 1/2 chain with Hamiltonian

| X N-1
Hg = Ezhjajz -2 (]ijXUJ‘erl + ]yUJyUJ);I)'
=1 = (13)

In the repeated interaction scheme we consider the couplings
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Figure 1. As a function of time ¢ plots of W (blue), —Q (black) and d,S/dt (red) for an XX (J,=1= 1)
and —W (blue, dashed), +Q (back, dashed) and —d,S/dt (red, dashed) for an XY (J,=1 =0.5],) chain. In
both cases, the chain has N=5 sites with h;=1, i=1,5 coupled with A=1 to a single left bath of 3=1
and h=1.

Vi =J (o]0 + 0/0)), Vo =Ig(ogon + o} o) (14)

to a left r=L and a right r=R spin 1/2 reservoir copy with Hamiltonians H, = h, /207, and we take
hy=h, and hz= hy. To obtain the boundary-driven Lindblad model, we scale J, = \/)\,/7. The canon-
ical density matricesw are fully characterized by the magnetization M, = Tr(0,’w; | = — tanh(6,h,/2).

Evaluating the second term on the right-hand side of Eq. (10) yields the dissipator in the Lindblad
from 7, (p) = Zpee W RLE LI — {LFTLY, p}lwithy " = X, (1 £ M,), Lj = 0" and Ly = oy
where aji = (cr]-" =+ io} ) /2. Note that Ny = e P

This system does not satisfy local-detailed-balance with respect to the Gibbs state, i.e. w 5, = e s /Z,
is not the solution of 0 = — i [Hy, p] + Z,(p) with r either R or L because 7, (w; ) = 0. What can be
shown is that these dissipators thermalize the single spin in the boundary if we disconnect it from the
rest of the chain. Indeed let us consider the L dissipator

Z.(p) = '7L+( [20’1+p01_ - {0'1_0'1+, P}]‘f‘eﬁLh‘ [20'1_P0'1+ - {01+01_a pi)

upon evaluation we see that &, (e ” ihei’/ %) = 0. This is the generic situation in boundary driven
Lindblad systems.

The expression for power and heat Eq. (11) can be evaluated using the system hamiltonian Eq. (13),
the coupling Eq. (14), the bath hamiltonian h,0,7/2 and the corresponding wg- One obtain (we take
AL=Ar =)

Q= 2h A(M| — Trg(oy pg(t))) (15)

and
WL =2A TrS((]xale'ZX + ]yglyggl)ps(t))' (16)

Replacing the indices {L, 1, 2} by {R, N, N — 1} in Egs (15),(16) one has the corresponding QR and WR.
To compute this quantities, we obtain py(t) by solving the Lindblad equation*.

Consider the case in which the system interacts with one bath (for instance the left bath, but we drop
the label L). In general, two situations can occur: the system relaxes to thermodynamic equilibrium in
which all current vanishes or the system reaches a NESS if it is externally driven.

XX chain coupled to one bath. An XX spin chain (J,=],) in a uniform magnetic field #;= h coupled to
a single bath relaxes to equilibrium: the entropy production rate, heat flows and power vanish. The equi-
librium density matrix is not generally a canonical distribution but rather, as one can prove, is given by
a generalized Gibbs state w; (H,) with H;, = %ZIJLI o;> which is a conserved quantity, i.e.,[Hg, H,| = 0.
This state is a product state of the canonical density matrices wj for each spin of the chain and all equal
to the one of the reservoir copy. Therefore, I (8': n') = 0 and p/ = p , ie., d;S/dt = 0. Figure 1 illus-
trates the relaxation to this equilibrium state by depicting the ﬁecaying power, heat flow and entropy
production rate.

XY chain coupled to a single bath. For an XY chain, we found that the system reaches a driven NESS.
In this NESS, entropy production is strictly positive and constant, and because (Hg) = 0, the first law
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Figure 2. For a N 5 sﬁeéé chain with J,=J,=3, h,=h;=h,=5, h;=hz =2, 3;=0.8, Bz=1.2, and
A=1, we depict QL ,Qp W and (d;S/ dt)NESS as a function of h; =h,. There are two special
valuses for hL At h, =3, where h 1 = Brhp all quantities vanish (equilibrium state). Ath; = hy = 2,

QNE S —QR and thus WN g 0 (non-driven steady state).

gives W = — Q. Furthermore, by combining the first and second laws, we have that W =dS/dt >0
because in NESS, S = 0. See Fig. 1.

XX chain coupled to two baths. Consider a hot left and a cold right heat baths (3, < ;) connected by
an XX spin 1/2 chain with the Hamiltonian in Eq. (13) with J,= L=] The NESS in the special case of
a uniform magnetic field was analyzed in’. The power and heat from the reservoir to the system are given
by Eqgs (15),(16). In Fig. 2, we plot Q;, Qz, W = W, + W and d,S/dt in the NESS as functions of h;.
We observe that the heat flows can change sign and that for hy=h;, they have opposite signs, i.e.,
Q; + Qg = 0, which means that W = 0. We also observe in Fig. 2 that d,S/dt > 0 and vanishes only
when phy = §,h;, that is, the second law holds even when heat flows from cold to hot, as is the case
for h; > Brhy/B,, a situation that would appear to be a contradiction to the Clausius statement of the
second law if we do not realize the presence of W.

The previous numerical study of boundary-driven spin chains can be complemented with exact results
for power and heat in a two-site boundary-driven spin chain obtained from a full analytical solution of
the NESS (see methods). In the NESS, the expression for power Eq. (16) and heat Eq. (15) can be written
in terms of the spin current*

j 4 (M — M)
s (h; — hp)* + 16]% + 16)\°

as Q; = —hij, Qr = hgj, and W = (h, — hy)j. Thus, for hy = hy, there is no power, but as the pre-
vious expression shows, this does not mean that the spin current vanishes. Moreover, the entropy pro-
duction rate in the NESS is

d, S
= (Bihy — /BRhR)js

i.e., the spin current j and the affinity (3, h; — [ghy) characterize the rate of entropy production in the
NESS, and because M, = —tanh((,h,/2), the sign of the entropy production rate is given by
(B h, — Brhyg) (tanh (B h,/2) — tanh(Bghg/2)) > 0, where the equality holds only if 3, h; = Gghp.
Let us end this analysis by noting that for 3; < (g, this system behaves as a heat engine for
B1/Br < hg/hy < 1with efficiency n = —W/Q, =1 — hp/h, <1 — 3,/Bp =1, asa refrlgerator
for hyp/h;, < B1/Bx < 1 with efficiency " = Qp/W = 1/(h,/hy — 1) < 1/(8,/Bx — 1) =7} and
asaheater for h, /h; > 1. Note that the efficiencies are independent of temperature. These are steady-state
operating engines analogous to those in*.

Discussion

In conclusion, the repeated interaction scheme provides a physical description of a system interacting
with an environment that, in an appropriate limit, provides a boundary-driven Lindblad equation for the
system. The Lindblad operators that appear in this equation are determined by the interaction of the
system with the environment, the Hamiltonian of the copies that form the bath and, importantly, by the
fact that it is refreshed constantly. By computing the thermodynamical quantities for the full system plus
the environment, one can derive the corresponding expressions for the boundary-driven model. One
important observation is that due to the refreshing of the reservoir, work is done or extracted by the
external agent in charge of this refreshing. This power drives the system out of equilibrium. Note that
this power appears even if the system Hamiltonian and Lindblad operators are time independent. We
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applied our results to spin chains. In the single bath case, we found that an XX spin chain with a homo-
geneous magnetic field relaxes to thermal equilibrium, i.e., a state with zero entropy production, while
an XY spin chain reaches a driven NESS, a state with a non-zero entropy production d,S/dt = W > 0.
In the two heat bath case, the XX chain for different temperatures 5, = 3, and a homogeneous mag-
netic field reaches a non-driven W = 0 NESS and an equilibrium state for 3,h;, = 3zhp where the
entropy production rate, power, heat flows and spin currents vanish. For inhomogeneous magnetic fields,
the chain reaches a driven W = 0 NESS. Jumping to a broader context, this work shows that the knowl-
edge of a Lindblad equation for an open system does not determine the heat flows or other thermody-
namical quantities. These quantities also depend on the properties of the environment and how the
system is coupled to it. Here, we have obtained appropriate expressions for heat flows and power for
interactions with an environment of a type recently implemented in a laboratory®. But when the reservoir
is weakly and passively coupled to the system, i.e. there is no work cost in achieving the coupling, the
system is appropriately described by a global®® Lindblad equation and the thermodynamical quantities
by Eq. (2). Finally, this work is also an extension of quantum thermodynamics to a class of open quantum
systems without local-detailed-balance.

Methods

We provide here some details of the calculations mentioned in the main text.

Work, heat and boundary-driven Lindblad equation from the repeated interaction scheme.
For completeness we derive Eq. (10) and Eq. (11) of the main text. Consider Ap(nT) = py(n7 + 7)
—ps(nr). We have from Eq. (7) of the main text that

Apy (n7) = Trp[Upg (n7) @ p,UT — pg(n7) @ p,] (17)

where we have dropped the label # from U and p, in Eq. (7) because the copies are identical and the
interaction V" = 3_, V" is always of the same form. The trace Tr, over the state p,= pp=wg @ wg,

—it (Hg+H +Hp+V

is denoted Trg. The unitaryU = e )in (17) is expanded for small 7 considering the scaling

V =v/~Tand H, = Hy + H; + Hy
L , v? 1 3 2
U=1-ivrz — |iHy+ — |7 — ={H,, viT2 + O(7°).
2 2 (18)
Now, because Try[vp,] = 0 the leading order in the right hand side of (17) is O(7). Thus, we divide by
7 and take the limit 7 — 0 and n — oo such that t = n7 and obtain

, . 1
Ps = -1 [HSa ps] + TrE[V (ps ® PE)V] - E TrE{V27 Pg ® pE}

where the equality Try([H, p,]) = 0 was used.

Now we use Tr, to denote the trace over the r=L or r=R system and Tr the full trace. Because
v=2>_,v,and Tr, [v,wz] = 0,itis possible to split the last two terms in contributions for each reservoir
giving Eq. (10) in the text:

ps = —i[Hg, pg] + Zr:@,(ps) (19)
. 1 2
with 9r(ps) = Trr[vr(ps & wﬂ,)vr] 5 Trr{vrv ps & wﬁ,}‘
We continue with the derivation of Eq. (11) of the main text. Let us start from AQ, = Tr (H," lp, — pn'] )
ie. Eq. (9), where p/ = Trg(U,p([n — 1]7) @ p, U!). Dropping as before the label n, in the limit
V — v//T and T — 0 we can replace U by (18). The leading order of AQ, is O(7)

AQ}’ =T Tr[[errvr - %{Vrza Hr}]ps([n - I]T) & pE]
or (Q, = AQ,/T)

) 1,

Qr = —TI‘[[V’H,V, - E{Vra Hr}]ps(t) ® wﬂ,] (20)
Consider Eq. (8) now i.e. AW, = —Tr(V,'U,ps([n — 1]7) ® p, U;). As before we drop the label 7. The
leading order is also O(r) but we need U up to O(7*?) because V is O(1/~7), Trg(Vp,) = 0 and
Trg([(Hg + Hg), Vlpg ® pp) = 0. We obtain
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AW, =171 Tr[[v,(HS +H,)v, — %{Vf’ Hg + H,}}ps([n —1]7) ® wﬂr]
or W, =AW,/

W= Tr[[v,(HS +H,), — %{Vg, Hq + H,}}ps(t) ® wﬁ,] o

Expressions (20) and (21) correspond to those in Eq. (11) from the main text.

The two spin XX chain with inhomogeneous magnetic field. Consider a XX two sites spin chain
and the corresponding Lindblad dynamics Eq. (1) with Hg given by Eq. (13) main text (with J,=],=],
h,=h; and h,= hy) and the Lindblad dissipator

2,(p) = > ARLFpLIT —{LFTLY, p}]
pe{+,—}

;=
acterized by the correlation functions (oy°) , (0;), Y = i {0/ 0, — 0i°0}), and X = (o7°0; + 0/ 0]),
where (- ) = Trg(-p,(t)). They satisfy a close system of equations:

withy™ = A (1 £ M,), L = 0;" and Ly = o, where ¢ = (g" + iay>/2 This system is fully char-

”;_): = —4XX —i(hy — h,)Y (22)

d(;tf)t = 4\ (M, — {o7),) + 2i]Y (23)
WD i (pa— to3),) — 20v (24)

‘i’i_’; = i(h, — he)X — 4] ({05), — (o7"),) — 4\Y (25)

From Egs (15,16) in the main text we note that W, = 2\JX = W, while the first term in the right hand
side of (23) is 2Q;/h; and the corresponding term in (24) is 2Qy/hy. Moreover the spin current* is
] = iJY. In the steady state the left-hand-side of the system (22),(23),(24),(25) vanishes and
W W, + Wy = (h, — hR)] Q, = - hij and Qp = hgj- The current given in the main text is
obtained by solving the full system in the NESS.

Heat from a given reservoir in the weak-coupling limit. Consider a system coupled to several
reservoirs as discussed in “universe” under unitary evolution. The heat that comes from one of them,
for instance the r=L reservoir is Q2 = TT[H1(0,4,(0) = £, (£))] The methods developed in full counting
statistics gives Q; = i0,G (\) |,_,= — iTr(t0,Z (1)), _, where Z,p = —i (Hpyp — pHyp ) is a
modified evolution super-operator with pr —, g} = ¢ (A/2)H, H, ¢! (~/2H., When this modification is
done for a system in the weak couplmg Born-Markov- secuiar approximation one obtain*®*

Z\p = — i[Hg, p] + 22, Z, ,p where only the dissipator associated to the r= L reservoir depends on \ as

DY = D3 b (W) (™24 YAP —{AP A, YD) + Iy (w)e ™ QAP YAV — {A[AF, YY) (26)
I w

Here A}’ are system eigen-operators obtained from the coupling of the system to the left reservoir®*464’

and b, (w) = e "R, (w). A slow time dependence of the system can be included, see’. From Eq. (26)
we obtain

_i(a)\gL,A)L\,OY = 2) w(h (W) A YAP — by (W) APYA[™). (27)
- lw

Thus Qp = —i Tr[(9,Z,,) pg(t)1],_, where we used that in this limit the dynamics is Markovian. We
have to compare this with the heat flow defined in section ‘open system weakly and passively coupled to
the environment”, Q/(t) = tr(HgZ (pg)) = tr(pS@I (Hy)), where the dissipator Z; in the same weak
coupling Born-Markov-secular approximation is given by &, ,_, from which we compute
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T _ w + w w w - w fw 4w )
91 (Hs) = 2%; (h (W) A A hy (W) A A (28)

To obtain this we used [Hs, Al“”f AZD,J} = 0. Taking the trace in Eq. (27) and in Eq. (28) the desired

equality —i Tr[(0,Z;,) pg(t)] |,_, = tr(HsZ,(p)) is found. Now, since the heat flow to a system
weakly and passively coupled to the L heat-bath is given by Q, (t) = tr(H;Z, ( pg) )» the corresponding
definition for work follows and the entropy production given in Eq. (3) as well.
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