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Abstract

Extra dimensions provide a very useful tool for physics beyond the standard model,
particularly in the quest for unification of the forces. In this thesis we explore several
interesting models and aspects of extra dimensions that could help in the formulation
of a viable theory. Motivated by String/ M-theory, we are especially interested in
models that can describe both the observable 4-dimensional (4D) world and an extra
dimensional space, consisting of 6 or 7 compactified dimensions. We discuss the basics
of extra dimensions, including compactification, dimensional reduction and the general
calculation of the Kaluza Klein mass spectrum. We then specialize to three interesting
models of extra dimensions and calculate the energy scale at which the Kaluza Klein
modes should become visible. We show how the ADD scenario and the Randall Sun-
drum scenario describe a universe containing branes to confine our observable world
and solve the hierarchy problem between the fundamental scales. Within the Randall
Sundrum scenarios, we cover the subjects of localization of gravity, the KK spectrum
and stability issues. In the last chapter we consider solutions to Freund-Rubin universes
in which the extra dimensions are naturally compactified by an extra-dimensional flux
field. Solutions to a similar setup have led to interesting models like the Kinoshita
ansatz. We will discuss these solutions and their stability, showing that a stable solu-
tion could emerge from a warping of the extra dimensional space.
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1 Layman summary

Extra dimensions may form the basis of some fundamental theories in physics. You may
wonder why we would believe in extra dimensions, how they are described in physics and
how we search for them. In this thesis, our aim is to understand the most important aspects
of extra dimensions and to lay out some interesting models that could lead to a realistic
theory in the future.

Why extra dimensions?

The quest for unification Our observable world consists of 3 spatial dimensions
{x1, x2, x3} and 1 dimension describing time {t}. According to relativity, these apparently
separate coordinates are related by the speed of light c and they can be combined into one
set called the space-time coordinates, {ct, x1, x2, x3}. 1,

Space-time coordinates form the basis of Einstein’s theory of General Relativity (GR),
which describes the geometry of the universe, the behavior of gravity and in that sense,
physics at large length scales. For physics at small length scales (e.g. particle physics), we
use another theory called the Standard Model (SM). The SM describes electromagnetism,
the weak and the strong nuclear forces and it is build upon the framework of quantum
mechanics. Now what physicists would like, is to find one unifying theory that includes both
GR and quantum mechanics: one formal mathematical structure to describes all of reality
as we know it exists. Unfortunately though, it turns out to be extremely difficult, if not
impossible, to reconcile GR with quantum mechanics and in particular to unify gravity with
the other forces in nature.

The quest for unification may be considered the holy grail of modern physics and it
turns out that extra dimensions provide a very useful tool in addressing problems with this
unification. In fact, the most promising unifying theories, including String theory, are only
consistently written in a universe that consists of 10 or 11 space-time dimensions. This
implies the existence of an extra 6 or 7 spatial dimensions!

Obviously we see only 3 spatial dimensions, so we should ask ourselves how and where
these extra dimensions are hiding and how we could possibly observe them in the near future.

What will extra dimensions look like?

Kaluza Klein theory One of the first models to describe extra dimensions was intro-
duced by Theodor Kaluza and Oscar Klein in 1921. According to Kaluza and Klein (KK),
extra dimensions could be curled up on tiny circles, too small to be observed by current
observational methods. This mechanism is called compactification.

A good way to understand compactification, is by imagining a garden hose. From a large
distance, the garden hose looks like a line, a one-dimensional object. When you come closer

1Don’t worry, this is the only formula! I only put it in here, because it shows that time has been multiplied
by the speed of light to become a length-like quantity: [time]× [speed] = sec. × meter

sec. = meter = [length].
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however, you observe that the line is actually a tube, a curled up 2-dimensional surface.
In a way, the second dimension was this hidden from us when we were too far away, or in
other words, when the hose was too small to be observed completely. Now compare the
long direction of the garden hose to the regular (visible) spatial dimension and the curled up
direction to the hidden (extra) dimension. We can only see the extra dimension if we come
close enough! As an extension to the garden hose, we could add another curled up extra
dimension, to obtain a ”donut” or a torus of higher dimension. Extra dimensional toruses
could exist at every point in space, but be too small to be observed with current methods.

Figure 1: compactification of 1 and 2 extra dimensions respectively [2].

In the original KK theory, the extra dimensions are expected to have a radius of the
order of the Planck length, `Pl ∼ 10−33 cm. The chance of observing extra dimensions at
this scale is practically zero, even in the future.

Large extra dimensions In 1998 three scientists named Arkani-Hamed, Dimopoulos
and Dvali (ADD) came up with a new model based on the idea of Kaluza and Klein, only with
much larger extra dimensions. In this model our world is confined to a (3+1)-dimensional
membrane. Nothing, except for gravity, can move into the extra dimensional space.

The purpose of ADD was to solve the hierarchy problem, which corresponds to the ques-
tion: “Why is gravity so much weaker than the other forces in nature?”. Their explanation
lies in the assumption that gravity dilutes into the extra dimensional volume, for any dis-
tance smaller than the radius of compactification. At larger distances, the usual behavior is
recovered, but with an already weakened strength. The other forces are stuck on the brane
and just spread out over 3 spatial dimensions, thereby seeming stronger than gravity.

Figure 2: ADD Braneworlds http://backreaction.blogspot.nl/2006/07/extra-dimensions.html

According to ADD theory, we could observe a change in the gravitational potential for
distances smaller than the compactification scale. Currently, gravity has been measured to
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behave normal up to distances of the about 0, 1 µm. So according to ADD, the ’large’ extra
dimensions could not be larger than a µm.

Warped braneworlds In 1999 Lisa Randall and Raman Sundrum proposed an al-
ternative solution to the hierarchy problem, that is referred to as the warped braneworlds
scenario.

In the Randall Sundrum scenarios (RS), the universe consists of two parallel (3 + 1)-
branes, called the “Planck-brane” and the “weak-brane”. Our world is constrained to live
on the weak brane, but the forces are unified on the Planck Brane. Unlike the ADD model,
RS take into account the mass of the branes which leads to a deformation of the space-time
in between the branes. This deformation is called warping and it affects the strength of
gravity as we measure it at different points in space. RS state that all forces have equal
strength at the Planck-brane, but due to the warping of space-time, gravity seems much
weaker on the weak brane than at the Planck brane.

Figure 3: Warping of the extra dimension, localizes gravity to the Planck brane.

Both the ADD model and the RS scenario predict massive particles coming from extra
dimensions. These would become observable in particle collider experiments at high enough
energies. No such particles have been observed thus far.

Alternative scenarios In the ADD and RS scenarios the extra dimensions are assumed
to be quite large, but unless evidence predicts differently, the most natural size for extra
dimensions is still the Planck length, `Pl. It turns out that the form and shape of the extra
dimensional manifolds can be chosen such that it fits important quantities in the standard
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model. We should imagine a universe with a complicated manifold of tiny extra dimensions
at every single point in space.

Figure 4: Manifolds of tiny extra dimensions at every point in space. http://www.speed-
light.info

Unlike the large extra dimension-scenarios, these theories do not predict low energy
features of extra dimensions. Therefore it will be difficult to find evidence of similar models.

Besides the models described above, many more exotic theories exist, including infinitely
large extra dimensions and theories in which our observable world is only a projection of a
higher dimensional reality. Until we find any signatures of extra dimensions, it is hard to
tell which theory is right. The most fundamental questions thus remain unanswered, but
hopefully in the future, new high energy experiments can tell us more about the size and
shape of extra dimensions, if they exist at all. It is only a matter of time until we will find
out.
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2 Introduction

It seems quite likely that extra dimensions of space will play an important role in the even-
tual unified theory of interactions. Currently the most promising candidate for a complete
unifying theory is String-theory (or M-theory) and it is only consistently written in a uni-
verse with 10 (or 11) space-time dimensions, thus requiring the existence of 6 or 7 extra
spatial dimensions. These extra dimensions are usually expected to be compactified onto
tiny circles of size comparable to the Planck length `Pl ∼ 10−33 cm, or equivalently, the
inverse Planck scale M−1

Pl . 2

The original idea of compactified extra dimensions springs from Kaluza Klein theory.
In 1921 Theodor Kaluza tried to unify gravity and electromagnetism by introducing one
extra spatial dimension. His approach was to apply general relativity to a five- rather
than four -dimensional space-time manifold and show that the photon originates from extra
components of the metric. In order to explain the unobserved extra dimension, Oscar Klein
suggested that the extra dimension could be compactified at a size R ∼ M−1

Pl . In that case
the observable world becomes effectively 4 dimensional.

An important side-effect of compactification is a hypothetical phenomenon called the
Kaluza Klein tower. Due to the circular topology of the extra dimension, all fields would
have quantized momenta with respect to the extra dimension. In 4D this could become
observable as a series of higher dimensional particles with masses inversely proportional to
the compactification scale, R, i.e.: mn ∼ |n|/R. This series is called the Kaluza Klein (KK)
mass spectrum or the KK tower. Obviously for a compactification scale R ∼ M−1

Pl , the KK
masses would be too high to be probed by current observational methods.

The Planck scale is obtained from the fundamental constants in physics. It is the energy
scale at which quantum gravity effects should become important,

MPlc
2 =

(
~c5

GN

)1/2

= 1.22× 1018 GeV. (1)

It is the most natural scale in physics and therefore, the Planck length `Pl ∼M−1
Pl , is a logic

choice for the compactification scale. However, developments in string theory and studies
by Horava and Witten showed, that the extra dimensions might be much larger than `Pl
[13]. This was the start of a revival of extra dimensional theories and over the past decades,
all kinds of models were developed. We can distinct large extra dimensions and infinitely
large (non-compactified) extra dimensions, models with flat internal geometry and simple
compactifications, but also very complex manifolds. Models that include higher-dimensional
hyper surfaces to constrain our observable world to 4D and parallel universes and many more
complex and exotic scenarios. Don’t even get us started on projective theories or models
with massive gravity.

Triggered by the variety and possibilities of different and fantastic scenarios, we aim to
understand the physics required and caused by extra dimensions. We are motivated by the
search for a viable theory of extra dimensions, that is both consistent with our observable

2Note that we work in natural units, where c = ~ ≡ 1. See appendix A
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world and could fit into a unifying theory like string theory. Obviously we do not aim to find
such a complete and perfect theory, but we would like to make some comparisons between
existing models and describe their strengths and weaknesses.

Since we are particularly interested in theories that could describe a universe with (3+1)
external dimensions and 6 or 7 extra spatial dimensions, our general focus will be on Kaluza
Klein theories with compactified extra dimensions. We will consider several different models
that have become important over the years and discuss their formalism, consistency and
stability. We will also pay attention to the observability, by calculating or estimating the
corresponding KK mass spectrum, to make a statement on whether it is reasonable to search
for extra dimensions and if so, at what energy scale we should expect to find KK masses?

The setup of these notes is as follows. We will start by understanding the basics of
extra dimensions and Kaluza Klein theory, in order to get familiar with the concept of
compactification and dimensional reduction. Dimensional reduction is a method that is used
to describe our 4D world within the higher dimensional picture. We will also show how the
Kaluza Klein tower follows from this.

In the chapters that follow, we will specialize to two families of extra dimensional models.
In chapter three we will focus on the so-called brane world scenarios, which were developed
at the end of the 20th century. These include the theory of large extra dimensions [16],
and the Randall Sundrum scenarios [17], [18]. Within these models, our observable world
is constrained to live on a four -dimensional hyper surface (called a brane), within a higher
dimensional (bulk) space-time and only gravity propagates through the bulk. These models
became particularly popular because they solve the long-standing hierarchy problem between
the Planck scale and the electroweak scale, MPl : MEW ∼ 1016 and they predict signatures
of quantum gravity at the TeV -scale. Nevertheless, each of these models suffers theoretical
weaknesses. We will discuss the formalism of both models, how they solve the hierarchy
problem and discuss their most important features.

In the last chapter, we consider a completely different family of extra dimensional models.
Within these models, there are no branes and a higher dimensional flux field leads to the
spontaneous compactification of the extra dimensional space. This mechanism is referred
to as flux-compactification and it was first described by Freund and Rubin in 1980 [24]. A
series of solutions to this setup has been developed over the past decades. We will consider
two types of solutions. One is a basic solution, referred to as a (regular) de Sitter solution
and the other one is a generalization to the first type, in which the extra dimensional space
is internally deformed. The latter is based on an Ansatz by Kinoshita [30].

We will try to compare the consistency, stability and observability (in terms of the KK
spectrum) of the different scenarios. Throughout these notes we will work in natural (Planck)
units, setting c = ~ ≡ 1, such that all quantities can be expressed in terms of energy
dimensions.3

3See Appendix A
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3 Preliminaries and basics of extra dimensions

In the following we will briefly summarize the most important aspects of extra dimensional
theories, focussing on GR and field theory. It is quite straight forward to extend the theories
to higher dimensions, but it will become useful to have all the basics at hand before we go to
more complicated calculations within higher dimensional space times. To fix conventions and
notations I will start with a short overview of GR in arbitrary dimensions and an introduction
to the techniques that we will use later on.

3.1 GR in arbitrary dimensions

We define the total number of dimensions to be D ≡ 4+n, where 4 refers to the (3+1) space-
time dimensions of our observable world and n is the number of extra spatial dimensions.
We will use the coordinates xµ to denote the ‘regular’ space-time dimensions and any higher
dimensional coordinate system will be denoted by a capital Roman index, M , which runs
over both the ’normal’ and the extra dimensions. We will use lowercase Roman indices to
denote the extra dimensional coordinates explicitly. It is convention to skip the index 4, to
express the difference between the regular and extra dimensions. Extra dimensions will thus
start counting from 5 up, so

xM = (xµ, x5, ..., x4+n). (2)

The infinitesimal distance is related to the coordinates and the bulk metric tensor, gMN by

ds2 = gMNdx
MdxN , (3)

just like in 4D GR. We use the sign convention (-,+,+,...,+) for the metric. Now, starting
from a given metric tensor gMN and its inverse gMN , the Christoffel symbols are defined by

ΓPMN =
1

2
gPQ (∂MgNQ + ∂NgQM − ∂QgMN) . (4)

From the Christoffel symbols, we calculate the Riemann tensor RP
QMN , the Ricci tensor

RMN and the Ricci scalar R, which embody the geometry of space-time curvature. They are
respectively defined:

RP
QMN = ∂MΓPNQ − ∂NΓPMQ + ΓPMLΓLNQ − ΓPNLΓLMQ

RMN = RL
MLN

R = gMNRMN .

Note that the metric tensor is dimensionless, [g] = 0. Therefore the Christoffel symbols,

ΓBMN ∝ gAB∂MgNB (5)

carry dimension [Γ] = 1, the Ricci tensor, RMN ∝ Γ2 will always carry dimension [RMN ] = 2
and the curvature scalar R also has dimension [R] = 2. It turns out that the dimension of
these quantities are independent of the number of extra dimensions!
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We can use this to generalize the Einstein-Hilbert action to higher dimensions. Assuming
it takes the same form as the 4D version, for n extra dimensions we have

S4+n ∼
∫ √
−g4+nR4+n d

4+nx. (6)

Now in natural units, the action should be dimensionless. This implies that we have to
equilibrate the extra spatial (lenghtlike) dimensions by the appropriate power of the fun-
damental Planck scale in (4 + n) dimensions, M(4+n). The fundamental Planck scale is the
generalization of the 4D Planck scale, MPl to higher dimensions:

M4+nc
2 =

(
~n+1cn+5

G4+n

) 1
(n+2)

, (7)

or in natural units, c = ~ = 1, it becomes Mn+2
n+4 ∼ G−1

4+n, where G4+n is the higher di-
mensional gravitational constant. The key note, is that gravity is a property of space-time,
thus it is related to the complete space-time volume and therefore the higher dimensional
gravitational constant does not have to be equal to the 4D gravitational constant. In fact
we can define GN = G4+n/Vn, where Vn is the extra dimensional volume.4

In a higher dimensional space-time, our 4D Newtonian constant, could thus be considered
an effective quantity, that is related to the fundamental quantity by a volumetric scaling. We
will get back to this subject in chapter 3 and 4. Consequently, the 4D fundamental Planck
scale MPl, is not so fundamental at all. The higher dimensional fundamental scale is usually
defined as M4+n ≡ M∗. For convenience we will use this definition for general space times,
throughout the rest of these notes.

The fundamental Planck scale is an energy scale by definition, so it carries dimension
[M∗]=1. Earlier we found that [R] = 2 and [g] = 0 in any number of dimensions and dx4+n

carries dimension −(4 + n). We thus need an extra factor of Mn+2
∗ to make the action

dimensionless, i.e.

S4+n = −M2+n
∗

∫ √
−g4+nR4+n d

4+nx. (8)

Now that we have found our higher dimensional action, we can apply the Lagrangian
formalism, to obtain the general Einstein equations by varying the action S4+n with respect to
the metric tensor gMN , setting the variation δS = 0. Note that the given action, corresponds
to empty space-time, thus leading to the Einstein equations in vacuum: GMN = 0.

To describe non-vacuum space-times we should add extra terms to the action, describing
the matter fields, i.e.

S =
1

16πG(D)

SH + SM , (9)

where SM is the action for the matter fields and the Hilbert-term is normalized by the Planck
scale as above. Following through the same procedure of varying the action, we will obtain

4See Appendix B

11



the general Einstein equations in non-vacuum:

RMN −
1

2
gMNR + gMNΛ = 8πG(D)TMN , (10)

where the energy momentum tensor is defined by

TMN =
−2√
−g

δSM
δgMN

(11)

and we have added a higher dimensional cosmological constant Λ for completeness.
We are usually interested in the 4D phenomena that follow from a higher-dimensional

theory as formulated above. The effective 4D theory is obtained from the higher dimensional
one, by integrating over the extra dimensions. In order to do so, we need more information
about the extra dimensions, in particular the general metric.
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3.2 Form fields

In the discussion of extra-dimensional models, we will encounter several different matter
fields in the action. One type of field we will encounter in section 5, are vector-fields like
the electromagnetic field and more generally form fields giving rise to higher rank flux-fields
in the equations of motion. To understand these fields I will briefly review the basics of
differential forms.

3.2.1 Differential forms

Differential forms are a special class of tensors. In general a differential p-form is a completely
anti-symmetric (0, p) tensor. Note that a scalar is a 0-form, a vector is a 1-form and the
Levi-Civita symbol εµνρσ is an example of a 4-form. Without getting into the theory of
p-forms to far, I will discuss some basic useful properties that we will encounter later.

Given a p-form A and a q-form B, we can take the anti-symmetrized tensor product,
better known as the wedge product, to form a (p+ q)-form:

(A ∧B)µ1...µp+q =
(p+ q)!

p!q!
A[µ1...µpBµp+1...µp+q ]. (12)

Another useful feature is the exterior derivative d, which is defined as an appropriately
normalized and anti-symmetrized partial derivative. It differentiates p-form fields to obtain
(p+ 1)-form fields.

(dA)µ1...µp+1 = (p+ 1)∂[µ1Aµ2...µp+1]. (13)

An important property of exterior differentiation is that for any form, A,

d(dA) = 0. (14)

Finally, one last useful operation on differential forms is the Hodge Duality. The Hodge star
operator is defined on an n-dimensional manifold as a map from p-forms to (n− p)-forms,

(∗A)µ1...µn−p =
1

p!
εν1...νpµ1...µn−pAν1...µp , (15)

mapping A to “A dual”.

3.2.2 Flux fields

The operations on forms, defined above, allow us to write the properties of the write the
properties of electromagnetism in a very convenient form. First note that the electromagnetic
field strength tensor, Fµν can be written in terms of the wedge product between two one-
forms, namely the partial derivative of the vector field Aµ:

Fµν = ∂µ ∧ Aν = ∂[µAν] = ∂µAν − ∂νAµ. (16)
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From that it follows immediately that

dF = 0, (17)

which is in fact just another way of writing the third and fourth Maxwell equations. The
first and second Maxwell equations can be expressed as an equation between 3-forms:

d(∗F ) = ∗J (18)

where the 1-form current J is just the current four-vector with index lowered. Including
electromagnetism in the theory of GR, we obtain the Einstein-Maxwell action:

S =
1

16πG

∫ √
−g
(
R− 1

4
FµνF

µν

)
d4 x (19)

and the energy-momentum tensor, corresponding to this action using (11), is:

TEMµν = F λ
µFλν −

1

4
FαβF

αβgµν (20)

Note that electromagnetism is described by the two-form (flux) field-strength tensor Fµν ,
corresponding to the one-form (vector) field Aµ. Generally the flux tensor is always one
rank higher than the propagating field it describes.

Extension to higher dimensions Generalizing the above theory to arbitrary dimensions,
D, the higher dimensional action for an abelian vector field, AM(xP ) is the Maxwell action

SEM(D) = −1

4

∫
dDx

√
−g(D)FMNF

MN , (21)

where FMN ≡ ∇MAN − ∇NAM is the field stregth tensor as usual. We can generalize the
above to a p-form field AM1...Mp in arbitrary dimensions. It is described by a rank (p + 1)
field strength tensor FM1M2...Mp+1 = (p+ 1)∇[M1AM2...Mp+1] and its action is

S(D) = − 1

2(p+ 1)!

∫
dDx

√
−g(D)FM1M2...Mp+1F

M1M2...Mp+1, (22)

which corresponds to the energy momentum tensor

TMN = FL
M1...Mp

FLN1...Np −
1

(2p!)
FM1...Mp+1F

M1...Mp+1gMN . (23)
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3.3 Graviton dynamics

Gravitons are hypothetical particles that we think of as the mediator of gravitation and in
the quantum field-theoretical sense they are expected to be massless helicity-2-bosons. We
will be interested in the dynamics of higher dimensional gravitons and the the observability
of their spectrum in 4-dimensional space-time. We will briefly review the most common
methods for examining the dynamics of these hypothetical particles.

3.3.1 Perturbation theory

In GR graviton dynamics are often studied by introducing a small perturbation to the
background space-time

g(0)
µν → gµν = g(0)

µν + hµν , (24)

where g
(0)
µν can be any curved space-time metric. For a sufficiently small perturbation,

|hµν |2 � 1, this decomposition will lead to a linearized version of general relativity, where
effects higher than first order in hµν are being ignored. The linearized Einstein equations
will effectively describe the propagation of a symmetric tensor field hµν on a background

space-time g
(0)
µν and from examining these, we obtain the equations of motion obeyed by the

perturbation.
Following the procedure of [1] we find the general linearized Einstein tensor

Gµν = 1/2

(
∂σ∂νh

σ
µ = ∂σ∂µh

σ
ν − ∂µ∂νh−�hµν − g(0)

µν ∂ρ∂λh
ρλ + g(0)

µν�h
)
. (25)

Generally we can decompose the metric perturbation into ‘irreducible representations’ of
the rotation group. hµν is a (0, 2) tensor, but under rotations the 00 component transforms
as a scalar, the 0i components form a 3-vector and the ij components form a two-index
symmetric spatial tensor, which can be further decomposed into a trace and a trace-free
part. In this way, the perturbation hµν can be written as

h00 = −2Φ (26)

h0i = wi (27)

hij = 2sij − 2Ψij, (28)

where sij encodes the traceless part of hij and Ψij is the trace.
To proceed, we will generally use the degrees of freedom to pick a convenient gauge.

Picking a gauge can simplify the Einstein equations, and we may try to solve them in
order to understand the dynamics of the perturbation, or as we would like to see it: the
‘propagating graviton’.

Higher dimensional gravitons The gravitational field in D = 4 + n dimensions is de-
scribed by the symmetric metric tensor gMN = ηMN + hMN , where awe have assumed the
general background metric to be globally flat Minkowski space-time ηMN . To pick a conve-
nient gauge, we are interested in the number of degrees of freedom.
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In D dimensions, there are D(D + 1)/2 independent components of a symmetric tensor,
but many degrees of freedom can be removed by the general coordinate transformation (D-
dimensional) hMN → hMN + ∂MξN + ∂NξM .

We can impose D conditions to fix the gauge. If we choose for example the harmonic
gauge, ∂Mh

M
N = 1/2∂Nh

M
M , then any transformations that satisfy �ξM = 0 are still allowed.

AgainD conditions can be imposed. In general the number of independent degrees of freedom
becomes

D(D + 1)

2
− 2D =

D(D − 3)

2
. (29)

The choice for a convenient gauge depends on the geometry of the model.

3.3.2 Scalar fields in curved spacetime

The method of perturbation theory is an extensive procedure, that we may want to avoid. A
less precise, but easier approach to study gravitons in a curved background, is by examining
the equations of motion of a massless scalar field. It turns out that the dynamics of a free
massless scalar field give a reasonable approximation to the behavior of gravitons.

In the classical theory, the equations of motion for a real scalar field φ(xµ) in flat
(Minkowski) space-time are derived from the action

S =
1

2

∫
(ηµν∂µφ∂νφ−m2φ2) d4x. (30)

From the variational principle we find the equations of motion for the free scalar field, better
known as the the Klein Gordon equations

�φ−m2 φ. (31)

Generalizing this procedure to higher dimensional and curved space-time, requires replacing
all terms in the action by their covariant form in 4 + n dimensions, i.e.

• ηµν → gMN

• d4x→ d4+nx
√
−g4+n, i.e. the invariant volume element

• ∂ → D.

Note that for the scalar field, the covariant derivative, D, is just the regular partial derivative,
so we get:

S =
1

2

∫ √
−g4+n(gMN∂Mφ∂Nφ−m2φ2) dDx (32)

varying the action and requiring the variation to be zero, δS = 0, leads to the Euler-Lagrange
equations for the free scalar field in non-Euclidean space-time

∂M
∂L

∂(∂MΦ)
=
∂L

∂Φ
. (33)

The Euler-Lagrange equations give us the equations of motion for the field, and by applying
the appropriate boundary conditions, we can calculate the spectrum of higher dimensional
gravitons in several models.
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4 Kaluza Klein theory and compactification

Rewinding back to the late 1910’s, classical Maxwell’s theory was well-established and Ein-
stein had just developed his theory of General Relativity. Little was yet known or understood
about the weak and the strong interactions, so in the search for a unifying theory the time
seemed ripe to merge electromagnetism and gravity. As we mentioned in the introduction,
one of the first attempts at such a formalism was put forth by the German mathemati-
cian Theodor Kaluza in 1921. In his paper “Zum Unittsproblem in der Physik” [4], he
succesfully demonstrated that by choosing the right metric ansatz, five-dimensional general
relativity in vacuum, GAB = 0, contains four-dimensional general relativity in the presence
of a (4-dimensionsal) electromagnetic field, satisfying Maxwell’s laws (Gαβ = T

(EM)
αβ ).

Various modifications of Kaluza’s theory were suggested in the years after. Among which
the proposal of Oscar Klein in 1926, suggesting compactification of the extra dimension.
Eventually Kaluza Klein (KK) theory failed due to several inconsistencies with the standard
model 5, but the idea was never completely abandoned. It gained renewed interest decades
later, due to developments in supergravity and string theory and it forms the basis of most
of the theories that we will consider later on.

Kaluza Klein theory has come to dominate higher dimensional unified physics. Therefore
it is illustrative to follow the steps and understand the formalism behind it.

4.1 Original formalism

Kaluza’s idea was to prove that all matter forces are just a manifestation of pure geometry.
He therefore assumed that the universe in higher dimensions is empty and that all matter in
4-dimensional space-time springs from extra components of the higher dimensional metric.
This suggests that the 5-dimensional energy momentum tensor, TAB = 0, so we start from
the Einstein equations in 5-dimensional empty space-time:

GAB = 0, (34)

where GAB ≡ RAB − 1
2
RgAB, or equivalently

RAB = 0. (35)

As we have seen in the previous section, the 5D Einstein equations can be derived from the
5D gravitational action

S5 =
1

16πG5

∫ √
−g5 R5 dx

4dy, (36)

with respect to the 5D metric tensor g5. G5 is the 5D gravitational constant and y ≡ x5 is
the coordinate of the extra dimension. The 5-dimensional Ricci tensor and the Christoffel

5KK theory encountered several difficulties. One of them was the deviation of predicted electron mass
and electric ratio from experimental data. Moreover according to the Witten no go theorem, KK theories
have severe difficulties obtaining massless fermions, chirally coupled to the KK gauge fields in 4D, as required
by the SM. [9]
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symbols are related to the 5-dimensional metric tensor just like in the 4-dimensional theory:

RAB = ∂CΓCAB − ∂BΓCAC + ΓCABΓDCD − ΓCADΓDBD (37)

ΓCAB =
1

2
gCD(∂AgBD + ∂BgDA − ∂DgAB). (38)

Thus, aside from the indices running over one extra value, all is exactly as in 4D and the
choice of the metric tensor determines everything. Kaluza chose to parametrize the metric
in the following form

(gAB) =

(
gαβ + κ2φ2AαAβ κφ2Aα

κφ2Aβ φ2

)
, (39)

where we can identify the four-dimensional metric tensor, gαβ, the electromagnetic four-
potetial, Aα and some scalar field, φ. The electromagnetic potential is scaled by a constant,
κ = 4

√
πG(4), in order to get the right multiplicative factors in the action later on. The

next step would be, plugging in the metric, the Ricci tensor and the Christoffel symbols,
and applying the principle of least action to find the equations of motion. In order to do so,
Kaluza applied the so-called cylinder condition, implying that we drop all derivatives with
respect to the fifth coordinate. Varying the action then leads to the following equations of
motion:

Gαβ = κ2φ2

2
TEMαβ − 1

φ
[∇α(∂αφ)− gαβ�φ]

∇αFαβ = −3∂
αφ
φ
Fαβ,

�φ = κ2φ3

4
FαβF

αβ,

(40)

where TEMαβ = 1
4
gαβFγδFγδ − F γ

αFβγ is the electromagnetic energy-momentum tensor and
Fαβ ≡ ∂αAβ − ∂βAα. There are 10 + 4 + 1 = 15 equations, which is to be expected since
there must be 15 independent elements in the 5-dimensional metric.

Choosing the scalar field φ to be constant throughout spacetime, the third equation drops
out and the first two of equations are exactly the Einstein Maxwell equations! Kaluza chose
to set φ = 1, and obtained the following result in 1921:

Gαβ = 8πG(4) T
EM
αβ ,

∇αFαβ = 0,
(41)

The reason for setting φ = 1, was that at the time of writing the appearance of the scalar
field was considered a problem. It was only acknowledged much later, that the condition
φ = constant, is only consistent with the third of the field equations when FαβF

αβ = 0. This
was first pointed out by Jordan and Thiry [5], [6]. Nowadays, the field φ is associated with
the so-called radion, a hypothetical particle related to the size of the extra dimension.
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4.2 Compactification

Kaluza introduced the extra dimension as a mathematical tool, but the physical interpre-
tation of this unobserved extra dimension came from Oscar Klein in 1926. Klein suggested
that the extra dimension could be compactified on a circle of size 2πR ∼ M−1

Pl , thus identi-
fying the points y = 0 and y = 2πR of the extra dimension. This circular topology makes
it possible to Fourier expand the metric and all fields with respect to the extra dimension,
such that we can write

gAB(xµ, y) =
n=∞∑
n=−∞

g
(n)
αβ (xµ) einy/R, (42)

Aα(xµ, y) =
n=∞∑
n=−∞

A(n)
α (xµ) einy/R, (43)

φ(xµ, y) =
n=∞∑
n=−∞

φ(n)(xµ) einy/R, (44)

where the superscript (n) refers to the nth Fourier mode. Note that we can interpret each
mode as having a momentum in the y-direction of size |n|/R. Klein assumed R to be
extremely small, such that all modes n > 0 would have stayed out of reach for experiments.
Observable physics then depends only on the zero mode n = 0, which is independent of y
and this could explain how physics is effectively four -dimensional at ‘low’ energies.

An important question that one should ask is how this compactification arises. What
mechanism leads to this distinction in the characteristics between the normal- and extra
dimension and moreover, how is such a setup stabilized?

Several theories exist, that have tried to explain the occurance of compactification. An
elaborate discussion of different compactification mechanisms is given by Bailin and Love
[10]. In general, we should be able to recover a ‘ground state’ solution corresponding to the
four -dimensional Minkowski space-time plus a compactified d-dimensional manifold. Such a
coaxing of space-time, generally goes at the cost of altering the higher-dimensional vacuum
Einstein equations. Several approaches have been considered, including the addition of
torsion by or higher derivative terms onto the Einstein action.

A more common way to achieve the requested setup though, is by adding an explicit
higher dimensional energy-momentum tensor to the theory, which may lead to the sponta-
neous compactification of the extra dimensions. Such an approach sacrifices Kaluza’s original
idea of a purely geometrical unified theory. Still, spontaneous compactification has become a
common method to reconcile extra dimensions with the observed 4-dimensional reality. One
example of this is the spontaneous compactification of the extra dimensions, induced by a
higher dimensional flux field. This was first shown by Freund and Rubin in 1980 [24] and
for obvious reasons it is referred to as flux compactification. We will explicitly rederive the
results in the last chapter.
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4.3 Dimensional reduction

To understand how the effective 4 dimensional theory is obtained from the higher dimensional
model, we use the method of dimensional reduction. In the following we will use Kaluza Klein
theory as an example, to explicitly show how an effective 4D theory is derived from the 5D
theory with one flat and compactified extra dimension. Assuming that the extra dimension
is flat, the effective space is just the product space of our four-dimensional Minkowski space-
time, M4 and a circle S1: denoted M4⊗S1. I will closely follow the notation and derivation
of [7].

4.3.1 Scalar fields

Consider a massless scalar field extending over the complete bulk space-time. Due to the
circular topology in the y-direction, it obeys

Φ(xµ, y) = Φ(xµ, y + 2πR), (45)

and we can express it as a Fourier decomposition:

Φ(xµ, y) =
1√
2πR

∞∑
n=−∞

φn(xµ) · ei
n
R
y. (46)

The expansion coëfficients φn are referred to as the ‘modes’ of the field and they only depend
on the ‘ordinary’ space-time coordinates xµ. Note that the field is real, which implies that
φ(−n) = φ(n)†. Plugging this decomposition into the 5D scalar action, we obtain

S =

∫
d5x

1

2
∂MΦ(xµ, y)∂MΦ(xµ, y)

=

∫
d4x

∑
m,n

(
dy

1

2πR
ei
m+n
R

y

)
1

2
∂µφ

(m)(xµ)∂µφ(n)(xµ) +
mn

R
φ(m)(xµ)φ(n)(xµ)

=

∫
d4x

1

2

(∑
n

∂µφ
(−n)∂µφ(n) − n2

R2
φ(−n)φ(n)

)

=

∫
d4x

(
1

2
∂µφ

(0)∂µφ(0) +
∞∑
n=1

(
∂µφ

(n)†∂µφ(n) − n2

R2
φ(n)†φ(n)

))
.

It turns out that the the zero mode (n = 0) obeys the Klein-Gordon equation for a massless
scalar field and the higher modes form a series obeying the 4-dimensional Klein-Gordon
equation for a massive scalarfield with mass m2 = n2

R2 .
From the four-dimensional point of view thus, the spectrum of the 5-dimensional massless

scalar field consists of

• One real massless scalar field, φ0, called the zero-mode, which corresponds to the 4D
particle.
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• A series of 4-dimensional massive scalar fields
∑

n φn with masses mn = | n
R
|, called the

Kaluza Klein tower. The massive particles are referred to as Kaluza-Klein states.

At energies small compared to R−1, only the x5-independent massless zero-mode is im-
portant, so the physics is effectively 4-dimensional. At energies above R−1, the KK-states
come into play and forces would behave 5-dimensional.

We can easily generalize this to massive scalar fields and higher numbers of extra di-
mensions. If the scalar field has a 5D mass m0, then the 4D KK modes will have a mass
m2
n = m2

0 + n2

R2 . For extra compactified dimensions, with radius R5, R6..etc we add an extra
term for each dimension. The general formula for the KK masses is then given by

m2
n = m2

0 +
n∑
i=1

j2
i

R2
i

(47)

where j corresponds to the jth mode in the KK tower and i sums over the number of extra
dimensions.

4.3.2 Gauge fields

As a next step, we consider a vector field in 5D, AM(xµ, y), with one dimension compactified
on a circle. The action for the 5D vector field is

S =

∫
dx4 dy

(
−1

4
FMNF

MN

)
(48)

=

∫
dx4 dy

(
−1

4
FµνF

µν +
1

2
(∂µA5 − ∂5Aµ)(∂µA5 − ∂5A

µ)

)
. (49)

Again we can perform a Fourier decomposition along the compact dimension

AM(xµ, y) =
1√
2πR

∑
n

A
(n)
M (xµ)ei

n
R
y. (50)

Note that under a Fourier decomposition, the derivative can be replaced by ∂ → i(n/R), so
the action can be written like

S =

∫
d4x

∑
n

(
F (n)
µν F

(n)µν +
1

2
(∂µA

(−n)
5 + i

n

R
A(n)
µ )(∂µA

(n)
5 − i

n

R
A(n)µ)

)
. (51)

We can remove the mixed terms in this expression, by performing a gauge transformation
that makes A5, constant along the extra dimension:

A(n)
µ → A(n)

µ − i
R

n
∂µA

(n)
5 , (52)

A
(n)
5 → 0 for n 6= 0. (53)
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In this gauge, the action becomes

S =

∫
dx4

(
−1

4
F (0)
µν F

(0)µν +
1

2
∂µA

(0)
5

1

2
∂µA

(0)
5

)
+2
∑
n≥1

(
−1

4
F (−n)
µν F (n)µν +

1

2

n2

R2
A(−n)
µ A(n)

µ

)
.

From the 4D point of view, the 5D Maxwell action thus describes a 4D gauge field and a
real scalar field in the zero mode. The nonzero modes describe a massive vector field.

In general, starting with a (4 +n)-dimensional gauge theory with n dimensions compact-
ified on a torus, the zero modes will contain a 4D gauge field together with n adjoint scalars.
Each higher KK mode will have a 4D massive vector field and (n− 1) massive adjoints.

4.3.3 Gravitons

Finally, let’s consider the gravitational field. It is a bit more complicated than the scalar field
and the vector field described above. We consider the graviton as the higher dimensional
fluctuation of the general metric in a flat background (for now).

gMN = ηMN + hMN . (54)

From the effective four-dimensional point of view the fluctuations hMN would have several
different 4D Lorentz components. An explicit decomposition of the higher dimensional gravi-
ton is given in [11] and [12]. I will summarize the most important findings. All the effective
fields will have a KK decomposition of the form:

hMN(xµ, y) =
∑
n̄

hn̄MN(xµ)ein̄ȳ/R (55)

where the n-dimensional vector n̄, corresponds to the Kaluza Klein numbers along the various
extra dimensions.

A 5D graviton with one dimension compactified decomposes into

hMN = hµν ⊕ hµ5 ⊕ h55. (56)

The zero modes, h(0), contain a 4D graviton, a massless vector and a real scalar. The nonzero
modes h

(n)
µ5 and h

(n)
55 are absorbed into h

(n)
µν to form massive spin-2 fields.

As a generalization to (4 + n) dimensions: the zero modes consist of a 4D graviton, n
massless vectors and n(n + 1)/2 scalars. The nonzero modes have a massive spin-2 tensor,
(n − 1) massive vector fields and n(n − 1)/2 massive scalars. We can depict the different
elements of the higher dimensional graviton in a (4 + n)× (4 + n) matrix as:(

hk̄µν hk̄µa
hk̄µa hk̄ab

)
, (57)
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The 4D graviton and its KK modes hk̄µν live in the upper left 4× 4 part of the matrix. The

4D vectors and their KK modes, hk̄µa, live in the off-diagonal blocks (the graviphotons). The

4D scalar fields and their KK modes, hk̄ab live in the lower right n× n block of the graviton
matrix (the graviscalar fields). One of these graviscalars corresponds to the partial trace of
h: haa and is called the radion.

Notice that the 4D graviton h
(0)
µν is massless, because the higher dimensional graviton

hMN is massless itself. It turns out that only the 4D graviton, the radion and their KK
modes couple to matter fields. Other fields do not couple to directly. For the purpose of
observing extra dimensional phenomena in 4D, most articles focus only on the graviton and
the radion.
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4.4 Matching 4D observables to the higher dimensional theory

In order to understand how big the extra dimensions could be without being observed, we
should understand how the fundamental scales match the higher dimensional theory. Using
the method of dimensional reduction again, we can derive how the coupling constants of
gravity and the gauge fields are contained into the higher dimensional theory. This will give
us a bound on the compactification scale. Note that we will assume that all fields freely
propagate through the bulk for now.

4.4.1 Gravitational coupling

We will start with the calculation of the Planck scale in 4 + n dimensions. Remember that
the relation between the coupling constant G(4+n) and the Planck scale in (4 + n) dimensions
is M2+n

(4+n) ∼ G−1
(4+n). We are interested in how the effective 4D action is contained into the

higher dimensional one. Therefore we perturb the 4D part of the metric and calculate the
relations between the 4D Planck scale, MPl and the (4+n)-dimensional Planck scale M(4+n).
For now we assume that the extra dimensions are flat and compact, so our perturbed metric
should be of the form

ds2 = (ηµν + hµν)dx
µdxν − r2dΩ2

(n), (58)

where r is the compactification scale of the n-dimensional torus and dΩ2
(n) corresponds to

the spherically symmetric line element of the extra dimensional space (Note that we use r
instead of R here, to not get confused with the Ricci scalar). ηµν is the flat Minkowski metric
of the 4D universe and hµν is the perturbation, corresponding to the way the 4D graviton
is contained in the higher dimensional metric. From the definitions for the determinant and
the Ricci scalar we find the relations

√
g(4+n) = rn

√
g(4), (59)

R(4+n) = R(4). (60)

Plugging evertythig into the 4 + n-dimensional action we obtain

S4+n = −Mn+2
∗

∫
rn dΩ(n)

∫
d4x
√
g(4)R(4) (61)

= −Mn+2
∗ Vn

∫
d4x
√
g(4)R(4) (62)

Note that integrating over dΩ(n) gives the volume of the extra dimensional space Vn, which
in the case of equally sized, compact extra dimension would be Vn = (2πr)n. Comparing
this to the 4D action, we find the relation between the 4D Planck scale and the fundamental
Planckscale:

M2
Pl = (2πr)n Mn+2

∗ . (63)
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4.4.2 Gauge coupling

Repeating the same procedure for gauge couplings, we start from the gauge action

SEM(4+n) = −1

4

∫
d4+nx

1

g2
∗

√
−g(4+n)FMNF

MN , (64)

where g∗ is defined as the fundamental gauge coupling. The 4D field strength tensor Fµν is
simply contained in the higher dimensional tensor FMN , so using (58), we can integrate over
the extra dimensional space like before

SEM(4) = −1

4

∫
d4x

Vn
g2
∗

√
g(4)FµνF

µν . (65)

The relation between the gauge couplings is thus

1

g2
eff

=
Vn
g2
∗
. (66)

The “fundamental” gauge coupling g∗ is not dimensionless. In fact it has energy dimension
[g∗] = −n

2
. We should ask what its natural size would be. Assuming that its strength is

set by the fundamental Planck scale, just like the gravitational coupling g∗ ∼ 1

M
n/2
∗

, we find

from equating (67) and (66), that the compactification scale r ∼ 1
MPl

.
This implies that in a higher dimensional theory, a natural size for the compactification

scale would be of the order of the inverse Planck scale. This is what Kaluza and Klein
proposed in their theory too. Unfortunately, the chance of observing such small scales, is
practically zero. Current experimental methods go up to energies of about 102 TeV in
particle colliders. This is a factor 1014 smaller than the energy we needed to directly observe
the extra dimensions.
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5 Braneworlds

In the previous section we discussed how a small compactification scale R ∼ 10−33 cm, as
proposed by Klein, explains why we do not observe any signatures of the extra dimensions.
However, as we mentioned in the introduction, in the 90’s Witten and Horava [13], suggested
that the extra dimensions could possibly be larger than was originally assumed. The question
to be answered then was how large these extra dimensions could actually be, without getting
into conflict with current observations.

Now, while the SM fields had been accurately measured up to weak scale energies ∼ 10−17

cm, gravity had only been probed directly up to distances of about a mm. This implies that
gravity-only dimensions could be hiding from us at sub millimeter scales!

This was the original idea of Arkani-Hamed, Dimopoulos and Dvali (ADD) in 1998. They
suggested that extra dimensions could be as large as a mm and yet remain hidden from
experiment [16]. Such a formalism is only realizable in a universe, where our observable
world and the SM fields are constrained to live on a (3+1)-dimensional hyper surface within
the higher dimensional (bulk) space-time. This way, the extra dimensions could only be
probed with gravity and constraints from particle physics, do not apply.

Such hypersurfaces are called branes (from membrane) and the idea is very similar to D-
brane models [14], which are a fundamental aspect of string theory. String theory D-branes
are surfaces on which open strings can end. The open strings give rise to all kinds of fields,
like the gauge fields. Gravitons on the other hand are represented by closed strings and they
can not be bound to the branes [13], [15]. D-branes are usually characterized by the number
of spatial dimensions of their surface. A p-brane, thus describes a (p+ 1)-dimensional hyper
surface.

Basically there are two good reasons for confining the standard model fields to a brane
in extra dimensional theories. First of all, it opens up new ways of addressing the large
hierarchy between the Planck scale and the electroweak scale, MPl : MEW ∼ 1016. 6 Second,
if extra dimensions are large, we would be able to find them in the near future and we could
observe effects of extra dimensions and/ or quantum gravity at relatively low energy scales.

In the following we will explore two models that both address the hierarchy problem
and predict (low-energy) observable signatures of extra dimensions. In both models the SM
fields are confined to a 3-brane within a higher dimensional bulk space-time, therefore they
are referred to as brane-world scenarios. The first one is the ADD scenario, which we have
briefly introduced just here. Second are the Randall Sundrum scenarios, which describe a
universe with parallel universes and warped extra dimensions.

6As we mentioned before, the Planck scale is related to the strength of gravity and considered a fun-
damental scale in physics. However, its size causes a theoretical puzzle, because it differs so much from
the electroweak scale. The electroweak scale is the energy scale at which the electroweak forces are unified.
It is fixed by the Higgs vacuum expectation value at MEW ∼ 1 TeV . The problem arises when one tries
to calculate the physical Higgs mass, from one-loop order corrections, using a cut-off regularization. The
natural cut-off is usually believed to be the Planck scale, but that implies an adjustment of order 1016 in
order to get a Higgs mass mH ∼MEW . This large fine-tuning is knows as the hierarchy problem.
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5.1 Large extra dimensions

In the previous section we found how the effective 4D Planck scale is related to the (4 + n)
dimensional fundamental Planckscale, by the volume of the extra dimensional space, Vn:

M2
Pl = Vn M

n+2
∗ , (67)

where Vn = (2πR)n for equally sized compactified extra dimensions. Remember that this
relation implicitly tells us, how the strength of gravity in higher dimensions G∗ is related to
its 4D effectivel value, GN . Now ADD suggested that if Vn is large enough, the fundamental
Planck scale could be as small as the electroweak scale. In that sense the only fundamental
scale in nature would be the electroweak scale and the hierarchy problem would be solved!

Obviously the ADD scenario led to great excitement among physicists. Not in the least
place, because it suggests signatures of quantum gravity at weak scale energies. It seemed
like physics was on the verge of observing the unified fundaments of nature directly!

To calculate the size that the extra dimensions should have in order to get M∗ = MEW ,
we use the relation above and choose M∗ ∼ 103 GeV and MPl ∼ 1019 GeV . From this we can
derive a relation between the compactification scale R and the number of extra dimensions
n:

1

R
= M∗

(
MPl

M∗

) 2
n

' 10−
32
n TeV, (68)

and using a conversion factor 1 GeV −1 = 2 · 10−14 cm, we obtain:

R ∼ 2 · 10−17 · 10
32
n cm. (69)

This is the constraint equation for the compactification scale R, such that the hierarchy
problem can be solved.

Another interpretation of the ADD scenario and the way it solves the hierarchy problem,
is expressed in terms of the weakness of gravity compared to the other forces in nature. The
key of the solution lies in the assumption that higher dimensional gravity dilutes into the
extra dimensional volume, for any distance smaller than the radius of compactification. At
larger distances, the usual behavior is recovered, but with an already weakened strength. The
other forces are stuck on the 3-brane and spread their power over just 3 spatial dimensions.
Therefore they seem stronger than gravity. We can explicitly calculate how gravity behaves
in a higher dimensional universe, for small and large r. In both limits, Newton’s force law
would become

F (r) ∼ 1

Mn+2
∗

1

rn+2
for r << 2πR, (70)

F (r) ∼ 1

Mn+2
∗

1

(2πR)nr2
for r >> 2πR. (71)

This suggests that we could observe deviations of Newtonian gravity at distances smaller
than the compactification scale, r << 2πR. Using the formula (69), we can calculate the
corresponding scale at which these deviations should become visible, for every value of n.

27



Figure 5: gravity diluting in extra dimensional volume

n 1 2 3 4 5 6 7
R (cm) 2 · 1013 10−3 10−8 10−11 10−14 10−15 10−15

Obviously, n = 1 is ruled out, because it implies the extra dimension to be the size of an
astronomical unit. That would have made it quite hard to go unnoticed for so long. n = 2,
implies extra dimensions at the size of a millimeter, 7 but this has been ruled out by direct
measurements of the gravitational potential.

According to the original theory, the hierarchy problem can thus only be solved within
the ADD model, for n ≥ 3, but since we are interested in finding a scenario that describes
6 or 7 extra dimensions, that is not the biggest problem.

Although very popular and exciting for a long time, there are some weaknesses to the
ADD scenario. First of all, solving the hierarchy the way ADD does it, goes at the cost of a
new hierarchy problem. As we have calculated above, the inverse compactification scale 1/R
can reach values between a µm. and 10−15cm. ∼. Although this seems appealing, it is still a
factor 103 larger than the electroweak scale. We are thus left with a hierarchy between the
inverse compactification scale and the electroweak scale. No logical explanation has been
given for the large compactification scale.

Second, if the SM fields are confined to a brane, this brane could lead to a deformation
of the bulk. In the ADD scenario, this is not being taken into account.

7At the time of writing this was about the distance that could be probed for gravity, so you can imagine
the feast of excitement among gravity specialists.
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5.2 Warped braneworlds

The Randall Sundrum braneworld scenarios were introduced in 1999 as an alternative solu-
tion to the hierarchy problem. They extend the idea of the ADD scenario, by taking into
account the brane tension and they overcomes the new hierarchy between the weak scale
and the inverse compactification scale R.

Brane tension can be compared to the mass of the brane and it leads to a bending of the
extra-dimensional geometry, referred to as warping. To work with branes and brane-tension
we need a theory that describes the interactions on the brane and those in the bulk. For
a general setup, with n extra dimensions, ȳn, branes labeled by an index i, and fixed at
the extra dimensional coordinates ȳi, the total action is just the sum of the bulk and brane
terms:

S = Sbulk +
∑
i

Sbranei

Sbulk =

∫ √
−g(4+n)(M

3
∗R(4+n) − Λ)d4x dny

Sbranei = −λi
∫ √

−giδ(ȳ − ȳi) d4xdny.

Note that the higher dimensional vacuum energy density Λ does not have to be zero or
even small. The original Randall Sundrum scenarios existed of just a 5D bulk space-time,
with a negative cosmological constant. The extra dimensional space-time is bounded by two
3-branes at fixed points. The bulk is in fact just a slice of AdS5 space-time. To obtain a
static Einstein solution, a fine-tuning between the tension of the branes and the cosmological
constant is necessary. 8.

In the following we will derive the main aspects of the RS scenarios. There are two
scenarios, referred to as RS1 and RS2 respectively. RS1 addresses the hierarchy problem as
an alternative to the ADD scenario and RS2 proves the possibility of an infinitely large extra
dimension. We will derive the metric, the fine-tuning condition and address the hierarchy
problem as is done in the original theory. Finally we will calculate the KK mass spectrum
for both models.

5.2.1 RS1 formalism

The first Randall Sundrum scenario describes a five-dimensional bulk space-time enclosed
by two 3-branes. To specify conditions at the boundaries of the bulk, the extra dimension
is compactified on a circle of which the upper and lower half are identified. Mathemati-
cally speaking, we consider an S1/Z2 orbifold, where S1 is the circle group and Z2 is the
multiplicative group (−1, 1).

The two 3-branes are located at the orbifold fixed points y1 = 0 and y2 = πR ≡ L and
our world is confined to the brane at y2 = L. Taking y to be periodic with period 2L, it is

8This fine-tuning was considered one of the weakness of the model, but it could be stabilized by an extra
massive scalar field in the bulk creating potential minima at the positions of the branes [19]
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enough to consider only the space between y1 and y2.

The metric The metric should be a solution to the 5-dimensional Einstein equations,
preserving Poincaré invariance on the 4D brane. This leads to the metric ansatz

ds2 = e−2A(y)ηµνdx
µdxν + dy2, (72)

where x5 ≡ y and e−2A(y) is called the warp factor. The warp factor is some function of the
fifth coordinate only, which is to be derived from the Einstein equations. Note that due to
this factor, the metric is non-factorizable, but by a simple coordinate transformation, we can
change to a conformally invariant metric.

To determine the function A(y) we use the 5D Einstein equations within the bulk (for-
getting about the branes for now):

GMN = RMN −
1

2
gMNR = κ2TMN , (73)

where κ is defined for convenience by

κ2 =
1

2M3
Pl

(74)

and the energy-momentum tensor is defined from the 5D action

TMN =
−2√
−g

δSM
δgMN

= −gMNΛ. (75)
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Working out the Einstein tensors for the given metric we obtain

GMN =

{
Gµν = (6A′2 − 3A′′);
G55 = 6A′2.

}
(76)

and plugging this back into the Einstein equations, we obtain a definition for A′(y) from the
55-component of the Einstein tensor :

A′2 =
−Λ

12M3
∗
. (77)

Note: In order to get real solutions for A, we need Λ < 0. If Λ is positive, A ∈ C and we
would get an oscillating warp factor. This is not a relevant scenario for our purposes, thus
we require the 5D cosmological constant, Λ to be negative, i.e. the bulk space is an anti-de
Sitter space.

Now defining

A′2 = −Λ
12M3

∗
≡ k2

A′ = ±k
A(y) = ±ky

Since we have assumed an orbifold symmetry in the y-direction, A(y) should be invariant
under the transformation y → −y, and we can choose

A(y) = k|y|. (78)

Plugging this into the metric ansatz, we have arrived at the Randall Sundrum metric:

ds2 = e−2k|y|ηµνdx
µdxν + dy2, (79)

with k ≡ −Λ
12M3

∗
and −L ≤ y ≤ L.

Next, looking at the µν-component of the Einstein tensor

Gµν = 6(A′2 − 3A′′)gµν . (80)

We can plug in the values for A(y), A′(y) and A′′(y) derived from the 55-component, namely

A(y) = k|y|
A′(y) = k × sgn(y)

= k(Θ(y)−Θ(−y))

but for the second order derivative of a Θ function, the boundaries become important and
we have to add some information. If we were to use the function A(y) as given above, we
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would consider only one boundary at y = 0 and the second derivative would just be

A′′(y) =
δ

δy
(k(Θ(y)−Θ(−y))

= k(
δ

δy
Θ(y)− δ

δy
Θ(−y))

= k(δ(y)−−δ(y))

= −2kδ(y).

Note that this function gives a spike at the position of the brane at y = 0. For the second
brane, we should introduce another boundary and thus another delta-function at y = L,
giving

A′′(y) = −2k(δ(y)− δ(y)) (81)

Plugging all this into the µν-component of the Einstein tensor, we obtain

Gµν = 6k2gµν − 6k(δ(y)− δ(y − L))gµν . (82)

Now since

κ2Tµν =
−Λ

2M3
Pl

gµν = 6k2gµν , (83)

we immediately see that the first term of the Einstein tensor is equal to the µν component of
the energy momentum tensor times the 5D Newton constant. However, the other two terms
have to be resolved in another way. This is where the brane tensions come in.

Defining the tensions of the 2 branes; λ1 and λ2, we can solve the inequality in the
Einstein equation, by adding the tension terms to the action

Si = −λi
∫ √

−giδ(y − yi) d4x dy, (84)

where i ∈ (1, 2) and gi are the induced metrics of the branes, defined by

ds2 = giµνdx
µdxν

= gµν(x, yi)dx
µdxν ,

with that y1 = 0 and y2 = L. The induced metrics g(i)µν define the distances along the
3-branes and g55 = 1, so the metric determinants are just g1 = gδ(y)g55 = gδ(y) and
g2 = gδ(y − L).

The extra terms in the energy-momentum tensor that follow from this are just

T iµν =
−2√
−g

δSi
δgµν

= λigµνδ(y − yi). (85)

We can now solve for the brane tensions to satisfy the Einstein equations:

Gµν = Tµν + T 1
µν + T 2

µν

= 6k2gµν − 6k(δ(y)− δ(y − L))gµν .
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So the brane tensions have to satisfy

−12kM3
∗ (δ(y)− δ(y − L)) = λ1δ(y)− λ2(y − L) (86)

λ1 = −λ2 = 12kM3
Pl. (87)

Since we have expressed the brane tensions in terms of k and we have earlier defined

k2 =
−Λ

12M3
∗
, (88)

we can also express the 5D cosmological constant, Λ in terms of the brane tensions:

Λ =
−λ2

1

12M3
∗
. (89)

These conditions are called the fine-tuning conditions of the RS model. There is a static
solution to the Einstein equations if and only if the 2 fine-tuning conditions are satisfied.

5.2.2 Solving the hierarchy problem in RS

How does gravity behave with respect to the warped extra dimension? The answer is obtained
from the way the 5D action S5 contains the 4D action S4 at the weak-brane. The effective
4D action follows from integrating over the y-coordinate within the 5D action, using the
background metric parametrized by ds2 = e−2k|y|ηµνdx

µdxν + dy2. This produces a term
with the schematic form

Seff 3 M3

∫
d4x

∫ +L

−L
e−4k|y|

√
g(4)e2k|y|R(4) dy

=

[
M3

k
(1− e−2k|yc|)

] ∫ √
−g(4)R(4) d4x.

Comparing this to the 4D action, S4, we see that the relation between the 4D Planck-scale
MPl and the Fundamental Planck-scale, M∗ is given by

M2
Pl =

M3

k
(1− e−2k|yc|). (90)

Assuming yc is quite large, it turns out that the size of the Planck-scale hardly depends on
the size of the extra dimensions. We can choose M∗ ∼ k ∼MPl and still solve the hierarchy
problem.

Solving the hierarchy problem Assuming that the SM fields are trapped on the negative
tension (weak-)brane and considering the Higgs scalar field, H, one can use a similar method
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as the one above, to show that any fundamental mass parameter is red-shifted on the negative
tension brane according to the warp-factor. We consider the Higgs scalar field action:

SHiggs =

∫
d4x
√
−g
[
gµνDµH

†DνH − λ(H†H − v2
0)2
]

(91)

=

∫
d4xe−4k|yc|

[
e2k|yc|ηµνDµH

†DνH − λ(H†H − v2
0)2
]
, (92)

where v is the vacuum expectation value of the Higgs field. To get a canonically normalized
action, one should redefine the Higgs field like H = ekycH̄. The action in terms of this new
definition becomes

SHiggs =

∫
d4x

[
ηµνDµH̄

†DνH̄ − λ(H̄†H̄ − (e−k|yc|v2
0)2
]
. (93)

From this we see that the Higgs scalar is exponentially suppressed over the extra dimensional
space. The effective vev, that we observe is thus much lower than the real value:

v = e−k|yc|v0 (94)

The bare Higgs mass could thus be of the order of the Planck scale, while the physical Higgs
mass is redshifted down to the weak scale. To generate a mass parameter of order 1TeV
with M∗ ∼ k ∼ MPl one only needs kyc ∼ ln(1016) ∼ 30. This is how the size of the extra
dimension is determined in the RS scenario.

Comparing the two parameters in the fifth dimension, we see that the Planck-scale is
more or less constant, while the mass-parameters for the SM fields are redshifted to lower
scales away from the (positive tension) Planck-brane. Since we measure the scales on the
(negative tension) TeV-brane, this solves the hierarchy problem.
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5.2.3 Calculation of the KK spectrum

We will estimate the mass spectrum of the KK modes in the RS model, by calculating the
spectrum of a massless scalar field in the 5D RS space-time. We start from the Lagrangian
density for a massless scalar field in the 5D RS background is

L =
1

2

√
|g|(gMN∂MΦ∂NΦ), (95)

and derive the wave-equations in the form of the Euler-Lagrange equations, by the variational
principle

∂M
∂L

∂(∂MΦ)
=
∂L

∂Φ
. (96)

The RS metric was given by

ds2 = e−2k|y|ηµνdx
µdxν + dy2, (97)

but it is more convenient to write it in a conformally invariant form, defining:

dz2 = e2k|y|dy2

e−2k|y| =
1

(k|z|+ 1)2

k|z| = ek|y| − 1,

where the last definition is chosen to identify the zero-value of z with the zero-value of y. In
terms of our new variable z, the metric is then

ds2 =
1

(k|z|+ 1)2
ηMNdx

MdxN (98)

or
ds2 = e−2A(z)ηMNdx

MdxN , (99)

where I have defined the function A(z) = ln(k|z|+ 1). In tensor notation then

{gMN} = e−2k|z|{ηMN}
{gMN} = e2k|z|{ηMN}

so the square root of the metric determinant becomes

√
−g =

√√√√√√√√√
∣∣∣∣∣∣∣∣∣∣
−e2A(z) 0 0 0 0

0 e2A(z) 0 0 0
0 0 e2A(z) 0 0
0 0 0 e2A(z) 0
0 0 0 0 e2A(z)

∣∣∣∣∣∣∣∣∣∣
= e5A(z) (100)
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Plugging all quantities into the Lagrangian, we obtain

L =
1

2
e3A(z)(ηMN∂MΦ∂NΦ), (101)

and the Euler-Lagrange equations give:

∂M
∂L

∂(∂MΦ)
= ∂M(e3A(z)ηMN∂NΦ)

∂L

∂Φ
= 0.

Splitting off the z-dependent parts, we obtain the wave-equation

e3A(z)(∂µ∂
µΦ− ∂z∂zΦ− 3(∂zA(z))∂zΦ) = 0. (102)

Assuming that the full particle field in 4D Minkowski space-time, M4, is the holographic
picture of the 5D field Φ(xµ, z), we would look for solutions to the wave-equation that are
the product of a free field in 4D Minkowski space-time multiplied by a function depending
on the fifth variable, z, i.e.

Φ(xµ, z) ∼ e−ip·xφ(z), (103)

where p ·x = pµxµ. Plugging this into the wave-equation above, we obtain the wave-equation
for the z-dependent part of the field, φ(z)

∂2
zφ(z)− 3(∂zA(z))∂zφ(z)− p2φ(z) = 0. (104)

We hope to find discrete masses of the scalar particle in 4 dimensions, with values m2 = p2.
Therefore it would be convenient to have an equation of the form of a Schrödinger equation

−∂2
zψ + V (z)ψ = m2ψ. (105)

To do so we need to get rid of the single-derivative term (−3∂zA(z)∂zφ) and introduce the
relation

φ(z) = ef(z)ψ(z), (106)

where f(z) is just a test function, that we can choose, such that the linear derivative terms
cancel. We obtain from the definition above

∂zφ = ef(z)(∂zfψ + ∂zψ)

∂2
zφ = ef(z)((∂zf)2ψ + (∂2

zf)ψ + 2∂zf∂ψ + ∂2
zψ)

Inserting this into the z-dependent wave-equation and dividing by ef(z), we obtain

−∂2
zψ − (2∂zf + 3∂zA)∂zψ − (∂2

z + (∂zf)2 + 3(∂zA)∂zf)ψ = m2ψ (107)

So choosing f(z) such that ∂zf = −3
2
∂zA, the linear terms cancel and we have our wave-

equation in the Schrödinger form

−∂2
zψ + (

3

2
∂2
zA+ (

3

2
∂zA)2)ψ = m2ψ, (108)
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where compared to the general Schrödinger equation, the potential V (z) is given by

V (z) ∼ 3

2
∂2
zA+ (

3

2
∂zA)2. (109)

We defined A(z) = ln(k|z|+ 1), so its derivatives are

∂zA(z) =
k · sgn(z)

k|z|+ 1

∂2
zA(z) =

−2kδ(z)

k|z|+ 1
+

k2

(k|z|+ 1)2
.

Note that squaring the sgn(z) function, just gives 1 everywhere. Plugging it all into the
wave equation, gives

−∂2
zψ + (

15

4

k2

(k|z|+ 1)2
− 3

kδ(z)

k|z|+ 1
)ψ = m2ψ. (110)

Note that the introduction of a second brane would introduce an extra delta-function in the
second derivative of the the function A(z), i.e. an extra brane at z+L leads to the following
potential

V (z) =
15

4

k2

(k|z|+ 1)2
− 3k(δ(z)− δ(z − L)

k|z|+ 1
(111)

For obvious reasons, this potential is called the vulcano potential. It is a typical aspect of
the RS models because it is important for the localization of gravity.
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Solving the wave-equation We have found an equation that looks like the Schrödinger
equation with a vulcano-shaped potential and we need to solve it to find the mass-spectrum
of the KK modes. We will find a series of solutions ψn, with corresponding mass mn, where
the zero-mode ψ0 is the solution to the equation

−∂2
zψ0 +

(
15

4

k2

(k|z|+ 1)2
− 3k(δ(z)− δ(z − L)

k|z|+ 1

)
ψ0 = 0. (112)

Rewriting this in terms of the function A(z) we get the easier equation

−∂2
zψ0 +

(
(
3

2
∂2
zA)2 − 3

2
∂2
zA(z)

)
ψ0 = 0, (113)

which is solved by the wave-function

ψ0 = e−
3
2
A = (k|z|+ 1)−

3
2 . (114)

This equation corresponds to the way gravitation behaves; it falls off exponentially in the
z-direction away from the brane.

Between the Boundaries, the massive KK gravitons solve the wave-equation

−∂2
zψn +

(
15

4

k2

(k|z|+ 1)2

)
ψn = m2ψn. (115)

This equation can be brought into the form of the general Bessel’s equation(
−∂2

y −
1

y
∂y +

(ν2 − 1)

y2

)
Jν = 0, (116)

of which the solution is a Bessel function Jν of order ν. To bring the wave-equation into
the right form, we first introduce Jν(y) = y−

1
2ψν(y). Inserting this into the Bessel-equation,

gives (
−∂2

y +
4ν2 − 1

4y2

)
ψ(y) = ψ(y). (117)

Now put y ≡ m(k|z|+1
k

= |z|+ 1
k
), and multiply by m2 to obtain:(

−∂z +
4ν2 − 1

4

k2

(k|z|+ 1)2

)
ψ = m2ψ. (118)

Comparing this to our original wave-equation for the KK gravitons in the space between the
boundaries (115), we see that the equations are equal for ν = 2, thus the solutions to (115)
are second-order Bessel functions of the first kind, J2. For integer ν, the Bessel functions J+ν

and J−ν are linearly dependent, so to form a basis of solutions, we also need Bessel functions
of the second kind, referred to as Yν . The general solution to the wave-equation for the
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massive KK modes, is thus given by linear combinations of second order Bessel functions of
the first- and second kind, i.e.:

ψn = (|z|+ 1/k)
1
2 [anJ2(mn(|z|+ 1/k)) + bnY2(mn(|z|+ 1/k))] , (119)

with coefficients, an and bn.
To better understand the KK modes, we can study the small and large argument limits

of the Bessel-functions. For small mn(|z| + 1
k
) the second order Bessel functions can be

approximated by

J2(mn(|z|+ 1/k)) ∼ m2
n(|z|+ 1/k)2

8
, (120)

Y2(mn(|z|+ 1/k)) ∼ − 4

πm2(|z|+ 1/k)2
− 1

π
. (121)

Note that the zero-mode wave function ψ0 is the limit of (m(|z| + 1
k
))Y2(m(|z| + 1

k
) when

m→ 0. For large mz the Bessel-functions are approximated by

√
zJ2(mnz) ∼

√
4

πm
cos

(
mnz −

5

4
π

)
(122)

√
zY2(mnz) ∼

√
2

πm
sin

(
mnz −

5

4
π)

)
(123)

These solutions allow any value of m, so the spectrum is continuous. To obtain a discrete
spectrum we need to add some boundary conditions.

Discrete KK spectrum In the RS1 model, the z-coordinate is confined to the values
0 ≤ z ≤ Lz, by the 2 branes. The presence of these branes induces the quantization of the
KK masses.

We can demand the functions ψn(z) to vanish at the boundaries. That means taking
ψn(0) = ψn(Lz) ≡ 0, which turns out to be a good approximation. This boundary condition
selects discrete values of m, determined by the zeros of the Bessel functions, because ψ ∼
z

1
2J2. We work in the large distance limit mz >> 1, so we can use the approximations to

the Bessel functions (123); J(m(|z|+ 1/k))→ J(mz).
Defining the coordinate jn2 , to correspond to the nth zero-point of the second order Bessel

function, we find the KK mass spectrum by equating

J2(mnLz) = J2(jm0 ) ≡ 0. (124)

By approximation, the spectrum is thus quantized in units of Lz, i.e. the distance between
the two branes defines the quantization of the KK masses; mn ∼ jn0 /Lz.

For small values of ν the zeros of the Bessel functions can be approximated by

jnν ' (n+
ν

2
− 1

4
)π − 4ν2 − 1

8π(n+ ν
2
− 1

4
)
− ... (125)
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So for ν = 2, we get

jn2 ' (n+
2

2
− 1

4
)π − 4 · 22 − 1

8π(n+ 2
2
− 1

4
)

= (n+
3

4
)π − 15

8π(n+ 3
4
)
. (126)

We can conclude that the KK modes have a small probability to tunnel to z = 0 due
to the potential wall. The solutions described by the Bessel functions, correspond to a KK
tower with a mass splitting of ∆m ∼ L−1

z ∼ k(e−k|yc|), where yc is the distance of between
the Planck- and the weak brane in the y-coordinates. Now with k ∼MPl and kyc ∼ 30, one
achieves a mass splitting of the order of ∆m ∼ 1TeV .

5.2.4 Radius stabilization

The RS1 model solves the hierarchy problem with a fine-tuning between the brane-tensions
and the 5D cosmological constant, and a static interbrane spacing L = πR. To stabilize
the setup we would need a mechanism that fixes the space between the branes. Some early
discussions on this subject and related issues can be found [19], [20].

Goldberger and Wise [19] proposed to introduce a bulk scalar field to the theory, to
stabilize the positions of the branes by breaking translational invariance along the extra
dimension and creating potential minima at the brane-positions.

If the scalar field has localized interaction terms on the branes, which develop non-zero
vacuum expectation values for φ, one can obtain non-trivial minima for a potential that
stabilizes the branes’ positions.

One may wonder whether the vacuum energy might disturb the background and in fact
it does. However this correction is negligible. This follows from the Einstein-scalar field
calculations as done in the references mentioned above.

Other proposals for stabilizing yc exist and can be found in [21].

5.3 RS II

In the previous scenario, Randall and Sundrum described a space with one compact extra
dimension, bounded by two 3-branes. Their aim was to solve the hierarchy problem. In the
next model, the so-called RS II scenario, the set-up is basically the same, except that the
second boundary at z = Lz is taken to infinity and the SM fields are moved to the brane
at z = 0. Taking the second brane to infinity is in fact the same as completely removing it
from the space-time.

From equation (90) we see that removing the effect of removing the second brane on the
Planck scale is

M2
Pl =

M3

k
. (127)

Thus, the Planck scale remains finite, which is a good hint that gravity might remain effec-
tively four-dimensional on the brane. The solution for the metric in the two brane context
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remains valid, as long as we stick to the fine-tuning between brane tension and bulk cosmo-
logical constant. The KK modes can therefore be approximated by the continuum modes,
since there is no second boundary

ψn = (|z|+ 1/k)
1
2 [anJ2(mn(|z|+ 1/k)) + bnY2(mn(|z|+ 1/k))] . (128)

Having found the complete KK spectrum and pretending all SM fields are trapped on the
positive brane at z = 0, we can calculate the gravitational potential between two point
masses m1 and m2. This potential is the result of the exchange of the zero-mode and KK
modes. The zero modes gives us the expected Newtonian potential, while the continuum KK
modes produce a potential of the Yukawa type, constituting corrections to the Newtonian
potential

V (r) ∼ GNm1m2

r
+

1

M3

∫ ∞
0

m1m2e
−mr

r
ψ2(0) dm

V (r) ∼ GNm1m2

(
1

r
+

∫ ∞
0

m

k2

e−mr

r
dm

)
V (r) ∼ GNm1m2

r

(
1 +

1

r2k2

)
.

Note that I used GN
k

= 1
M3 and ψ2(0) ∼ m

k
in the limit of large z. We see from this that the

potential uncovers corrections to the Newtonian potential, only at distances of the order of
the inverse fundamental gravity scale: M3

∗ .

5.3.1 Higher dimensional warped braneworlds

The RS2 model does not solve the hierarchy problem, like RS1 does, but it provides an
alternative to compactification. What makes it even more interesting is that it could be

41



extended to higher numbers of extra dimensions, e.g. 6 or 7. Following the approach of [22],
our world could be confined to the intersection of n (2 + n)-branes in a (4 + n)-dimensional
AdSn space-time. The bulk cosmological constant would thus be negative and all the branes
would have positive tension, λi. Consequently the graviton would be localized on the in-
tersection of all branes, which can be confirmed by solving the Einstein equations for this
particular setup with n (2 + n)-branes and a cosmological constant, Λ

S =

∫
d4x dny

√
−g(4+n)

(
M2+n
∗ R(4+n) − Λ

)
−
∑
i

λi

∫
d4x dn−1y

√
−g(3+n). (129)

If the branes are all orthogonal to each other, the metric would be conformally flat and
by using the appropriate bulk coordinates, it could be written as

ds2 = Ω(z)
(
ηµνd

µxdνx− δijdzidzj
)
, (130)

where the warp factor is Ω(z) = (k
∑

i |zi| + 1)−1 and the curvature parameter k is defined
by

k2 =
2Λ

M2+n
∗ n(n+ 2)(n+ 3)

. (131)

Note that this is a generalization of the conformally invariant 5D RS metric (98). From this
the generalized fine-tuning conditions become

Λ =
λ2

M2+n
∗

n(n+ 3)

(n+ 2)
(132)

and the effective Planck scale would be related to the fundamental Planck scale by

M2
Pl = M2+n

∗

∫
dnzΩ(2+n) = M2+n

∗
2nn

n
2

(n+ 1)!
Ln. (133)

Similar to the 5D case we can find a Schrodinger like wave-equatuation for the graviton,
which would be of the form[

−1

2
m2 +

(
−1

2
∇2
z + V (z)

)]
ψ = 0, (134)

with the potential being

V (z) =
n(n+ 2)(n+ 4)k2

8
Ω− (n+ 2)k

2
Ω
∑
i

δ(zi). (135)

Note that the massless bound state solution is of the form Ψ ∼ Ω(n+2)/2(z) localized at the
brane intersection (zi = 0) . The potential falls off to zero for large z. Just like the 5D RS2
case, the higher modes with small masses are suppressed.

For a more extensive and complete discussion on the extended RS2 model, including a
calculation of the KK spectrum see for instance [23].
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6 Solutions to flux compactification

In the following section we will discuss an alternative family of extra dimensional models,
which is based on the mechanism of flux-compactification. Flux compactification was first
introduced by Peter Freund and Mark Rubin in 1980 and was originally proposed as a
building block for 11D Supergravity. It shows that in a (p + q)-dimensional gravitational
theory, the presence of a q-form flux field F(q) can lead to the natural compactification of
either p or q spatial dimensions [24]. In a similar setup, several forms of Einstein solutions
may exist. We will discuss the origin and stability of such solutions.

6.1 Flux compactification

To understand the mechanism of flux compactification, we will start by deriving the original
results from Freund and Rubin.

6.1.1 Freund Rubin compactication

The easiest example of Freund-Rubin compactification starts from d-dimensional Einstein-
Maxwell theory and shows that a 2-form flux field FMN can lead to the compactification of
either 2 or (d− 2) spatial dimensions if we choose a specific form fro the metric and the flux
field. The d-dimensional Einstein-Maxwell equations read

RMN − 1
2
RgMN = −8πG

(
FM
P F PN − 1

4
FABF

ABgMN
)

(136)

∇MF
MN = 0, (137)

Now we choose solutions such that

• the d-dimenional space-time is the product of a p-dimensional manifold Mp and a
q-dimensional manifold Nq. I will use capital Latin letters (M,N) to indicate the
complete set of spacetime coordinates onM×N , the Greek indices correspond to the
coordinates on Mp and the lower-case Latin indices correspond to the coordinates on
Nq.i.e.:

gMN =

(
gµν(x

ρ) 0
0 gmn(xp)

)
, (138)

Note that the capital Latin letters (M,N) indicate the complete set of spacetime
coordinates on M×N , the Greek indices correspond to the coordinates on Mp and
the lower-case Latin indices correspond to the coordinates on Nq.

• and the flux field is proportional to the levi-civita tensor:

FMN = (εMN/
√
−g)f (139)

εMN =
cccεµν : M = µ,N = ν

0 : otherwise
(140)

where f has dimensions of mass squared.
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Note that the scalar term FABF
AB in the Einstein equations gives an overall cosmological

constant term:

FABF
AB = (εAB ·

√
−g)f · (εAB/

√
−g)f

= 2f 2sgn(g),

and after plugging everything into the Einstein equations, it follows that the first term on
the RHS of the Einstein equations is only non-zero for M = µ and N = ν, when it is
proportional to gµν . Everything thus reduces to cosmological terms with different constants
on the two manifolds. Now defining the scalar curvatures Rd−2 = gmnR

mn and R2 = gµνR
µν ,

and the total scalar curvature R = R2 +Rd−2, we find from the Einstein equations that

Rd−2 = λ , R2 = −2
d− 3

d− 2
λ, (141)

where λ ≡ 8πG f 2 sgn(g2).
Proof: From contracting the complete Einstein equations with the inverse metric, we

obtain an expression for the complete Ricci scalar R:(
1− d

2

)
R = −8πG[FPNF

PN − 1

4
FABF

AB · d]

= −8πG[(2− d

2
)f 2 · sgn(g2)],

Doing the same thing for the two submanifolds, by contracting with the appropriate sub-
metric, we get two equations in which we can plug in the above expression for R.

R(d−2) −
1

2
(d− 2)R = −8πG[−1

4
FABF

AB · (d− 2)]

R(d−2) + (1− d

2
)R = 8πG[

d− 2

2
f 2 · sgn(g2)]

R(d−2) = 8πGf 2 sgn(g2)

[
d− 2

2
+ (2− d

2
)

]
= 8πGf 2 sgn(g2) ≡ λ.

Similarly we find for M2:

R2 +R = −8πGf 2sgn(g2)

R2 = −8πGf 2sgn(g2)

[
1 +

2− d
2

1− d
2

]

= −2
(d− 3)

(d− 2)
λ.

Note that since d ≥ 4, it follows from Gf 2 > 0 that R2 and Rd−2 have opposite signs, while
Rd−2 and g2 have the same sign. This implies that when the time-dimension is in M2 then
Nd−2 is compact and vice versa.
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6.1.2 General flux compactification

In a similar but more general way, we can derive that a p-form flux field in a (p + q)-
dimensional gravitational theory can stabilize the compactification of either p or q dimen-
sions.

The action for a (p+ q)-dimensional Einstein-Maxwell theory is

S =
1

16πG

∫
dxd
√
−g
(
R− 2Λ− 1

q!
F 2

(q)

)
, (142)

where R is the total scalar curvature, F(q) is the q-form flux field and g = det(gMN), the
determinant of the total metric. For generality I have included a cosmological term Λ, which
can later be chosen to have any positive, negative or null-value. The notation of the indices
is as before. Varying the action with respect to the metric leads to the Einstein equations:

RMN − 1

2
RgMN = −8πGTMN , (143)

TMN = FM
L1...Lq−1

FL1...Lq−1N − 1

2q!
F 2gMN − ΛgMN , (144)

∇MF
ML1...Lq−1 = 0, (145)

Contracting the Einstein tensor with the inverse metric gMN gives an expression for the Ricci
scalar R of the complete space

(p+ q − 2)R = (p+ q)Λ− p− q
q!

, (146)

which we can substitute back into into (143) to obtain a general expression for the Riemann
tensor:

RMN =
1

(q − 1)!
FM
L1...Lq−1

FL1...Lq−1N − 1

q!

q − 1

p+ q − 2
F 2gMN +

2

p+ q − 2
ΛgMN . (147)

Solutions Again we look for solutions of the formMp×Nq, such that the metric is given
by

gMN =

(
gµν(x

ρ) 0
0 gmn(xp)

)
(148)

and the curvature scalar can be written as the sum of the two scalars on the separate
manifolds R = RMp +RNq and the scalars RMp and RNq are given by

RMp
µν =

1

(q − 1)!
F µ
L1...Lq−1

FL1...Lq−1ν − 1

q!

q − 1

p+ q − 2
F 2gµν +

2

p+ q − 2
Λgµν (149)

RNqmn =
1

(q − 1)!
Fm
L1...Lq−1

FL1...Lq−1n − 1

q!

q − 1

p+ q − 2
F 2gmn +

2

p+ q − 2
Λgmn (150)
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Now again choosing the q-form Flux field proportional to the completely anti-symmetric
tensor on Nq with strength b (following the notation of [bron])

FM1...Mq =
{ bεm1...mq : Mi = mi

0 : otherwise
(151)

we obtain the Ricci scalars on the two manifolds after contracting with the inverse metric

RMp =
1

p+ q − 2
(−b2(q − 1) + 2Λ), (152)

RNq =
1

p+ q − 2
(b2(p− 1) + 2Λ). (153)

Note that setting the cosmological constant equal to zero returns the original result of
Freund and Rubin. Again, the scalars have opposite sign and the Euclidean signature (+...+)
of the manifold Nq implies that it is compact.

6.2 Solutions

We showed that in a p+ q-dimensional bulk space-time, with factorized geometry,Mp×Nq,
the presence of a q-form flux field can naturally compactify either p or q spatial dimensions.
An interesting scenario would be a setup with 7 compactified spatial dimensions and (3 + 1)
external dimensions, which correspond to the universe we observe. In the search for a viable
theory we should also ensure the stability of such a setup.

We are interested in Einstein solutions within a similar setup. If the space-time is max-
imally symmetric, the solution is of the form (A)dSp ×Mq, where p and q are the number
of macroscopic and internal dimensions, respectively. Including a cosmological constant in
the theory, we can also use the above theory to describe cosmological models. The stability
of these solutions has been investigated by Wolfe et al. [25], Bousso [27] and Martin [26]. It
turns out that for dS-models, no stable solutions exist for q > 4. To write a viable theory
in 11 dimensions, we thus need another solution.

Unstable solutions suggest the existence of a different class of solutions at the points of
marginal stability. Kinoshita [30] [31] suggested a generalization of the dSq × Sq solutions
that corresponds to a warping of the internal sphere. In a second paper, the dynamical
stability of this new branch of solutions has been related to the thermodynamic stability of
the model.

In the following we will study both type of solutions and discuss their stability.
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6.3 de Sitter solutions

In chapter 3, we found the Ricci scalars for the two manifoldsMp and Nq, from the general
flux compactification (153):

RMp =
1

p+ q − 2
(−b2(q − 1) + 2Λ), (154)

RNq =
1

p+ q − 2
(b2(p− 1) + 2Λ). (155)

Choosing a positive cosmological constant in the bulk, Λ > 0, we can find background
solutions of the form dSp×Sq, i.e. a p-dimensional de Sitter space-time times a q-dimensional
sphere. Solutions of this form are interesting, because de Sitter or quasi-de Sitter spacetimes
describe the inflationary epoch of the universe at its early stages and also the present universe
in its period of accelerated expansion. The constraints and stability of such configurations,
have been investigated by [28], [27] and [26]. We will see that solutions of this form are
unstable for any q ≥ 5.

6.3.1 Constraint equations

De Sitter space-time is parametrized by the Hubble parameter H and the q-sphere by its
radius ρ. The line-element can thus be written as

ds2 = −dt2 + e2Htdx̄2
(p−1) + ρ2dΩ2

q. (156)

The curvature scalars of the separate manifolds are thus given by

RdSp = p(p− 1)H2 (157)

RSq =
q(q − 1)

ρ2
. (158)

Equating these to the above Ricci scalars from the Eistein equations (155), we obtain rela-
tions between the parameters H, b and ρ:

1

p+ q − 2
(−b2(q − 1) + 2Λ) = (p− 1)H2 (159)

1

p+ q − 2
(b2(p− 1) + 2Λ) = (q−1)

ρ2
. (160)

This can be easily rearranged into the form given by Kinoshita:

(q − 1)ρ−2 − (p− 1)H2 = b2 (161)

(q − 1)2ρ−2 + (p− 1)H2 = 2Λ. (162)

and we obtain the constraint equation for the parameter space in which solutions exist:

(p− 1)(p+ q − 2)H2 + b2(q − 1) = 2Λ. (163)
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6.3.2 Stability of dSp × Sq

Analysis of the above solution under small perturbations, shows the instabilities that may
occur among the family of de Sitter solutions. At points of marginal stability, new solutions
may occur. The analysis is done by perturbing the metric (156) and searching for solutions
that satisfy the linearized Einstein-Maxwell equations (see appendix).

According to the work done by Martin [26] and Bousso [27], linear perturbations in this
background show two channels of instabilities in the scalar sector with respect to the p-
dimensional de Sitter symmetry 9. To summarize the most important findings, for q = 2 and
q = 3 there is one channel of instability and an additional one for q ≥ 4. Both channels lead
to a stability condition, implying that the mass squared of this particular mode will not be
tachyonic. For q = 2 and q = 3 this implies

H2 ≤ 2Λ(p− 2)

(p− 1)2(p+ q − 2)
, or b2 ≥ 2Λ

(p− 1)(q − 1)
. (164)

Solutions for fluxes higher than this critical value are stable. For q = 4 there is an additional
tachyonic mode, which is constrained by:

H2 ≥ 2Λ[2 + q − 3pq + (p− 1)q2]

q(q − 3)(p− 1)2(p+ q − 2)
, or b2 ≤ 4Λ

q(p− 1)(q − 3)
(165)

So solutions for q = 4 are only stable within the range of (164) and (165). For q ≥ 5, there
is no stable solution of the form dSp×Sq for any flux value. this means that we should look
for alternative solutions if we want to write a theory with 6 or 7 extra dimensions.

6.4 Warped solutions

At the parameter values (b,H), where the solutions of the form dSp×Sq are unstable, other
solutions may exist that are more stable. In [30] a generalized form of the dSp × Sq class
solutions is suggested, that includes a warp factor depending on the internal coordinates. In
this scenario the q-dimensional internal space is a deformed sphere. The general geometry
of such solutions is described by the general metric

ds2 = A2(y)[−dt2 + e2Htdx̄2
p−1] +B2(y)gmndy

mdyn, (166)

where both the internal and external space contain a warp factor depending on the internal
coordinates y, and gmn is the q-dimensional metric describing the compact internal manifold
Sq. Assuming spherical symmetry and using coordinate freedom, to let the warp factors
depend on only one internal coordinate, the metric reduces to a simpler form:

ds2 = A(y)2[−dt2 + e2Htdx̄2
p−1] +B(r)2dr2 + C(r)2dΩ2

q−1 (167)

= e2Φ(r)[−dt2 + e2Htdx̄2
p−1] + e−

2p
q−2 Φr[dr2 + a2(r)dΩ2

q−1], (168)

9the dSp × Sq solution is stable against vector and tensor perturbations.
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and the q-form flux field is again proprotional to the Levi-Civita tensor, but in order to
satisfy the Maxwell equations, we need to take into account the specific powers of A(y) and
B(r):

FL1...Lq−1 =
b

Ap
·Bq−1√gmndr ∧ dΩq−1, (169)

So in the case described above this becomes:

FL1...Lq =
{
b · e−pΦ(r)e−

2p(q−1)
q−2

Φ(r)εl1...lq if Li = li
0 otherwise

(170)

Setting Φ = 0 returns the trivial solution.

Einstein Maxwell solutions From the Einstein equations we may derive constraints on
the Φ and a(r), so we would like to solve the field equations in terms of the functions Φ and
a(r). The first step is to plug in our definition of the flux field (170) and its contractions
into the field equations (150),(150). The nonzero terms are then given by:

Rtt =
−1

p+ q − 2
e2Φ
(
b2e−2pΦ + 2Λ

)
(171)

Rxixi =
−1

p+ q − 2
e2Φe2Ht

(
(q − 1)b2e−2pΦ + 2Λ

)
(172)

Rrr =
1

p+ q − 2

(
(p− 1)b2e−

2p(q−1)
q−2

Phi + 2Λe−
2p
q−2

)
(173)

Rϕjϕj =
a2

p+ q − 2

(
(p− 1)b2e−

2p(q−1)
q−2

Phi + 2Λe−
2p
q−2

)
. (174)

Note here that we use the fact that the fluxfield is zero within the external dimensions
(t, x̄) and the levi-civitá tensor has the property that εµ1...µqε

µ1...µq = q!. To solve the above
equations in terms of Φ and a(r), we need to find appropriate expressions for the Christoffel
symbols, Riemann- and Ricci tensors. The non-vanishing Christoffel symbols are

Γttr = Φ′

Γtxixi = H e2Ht

Γxixit = H

Γxirxi = Φ′

Γrtt = Φ′ e( 2p
q−2

+2)Φ

Γrxixi = −Φ′ e( 2p
q−2

+2)Φ+2Ht

Γrrr = −
(

p

q − 2

)
Φ′

Γrϕjϕj = −aa′ +
(

p

q − 2

)
a2Φ′

Γϕjrϕj =
a′

a
−
(

p

q − 2

)
Φ′,
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where the prime defines the derivative with respect to the coordinate r and ϕ is the variable
of the q-shpere, Ωq−1

dΩ2
q−1 =

q−1∑
j=1

j−1∏
l=1

sin2ϕldϕ
2
j . (175)

Note that the indices i and j on the x and ϕ coordinates run over (p − 1) and (q − 1),
respectively. For simplicity we will forget about the Christoffel symbols coming from the
internal spherical coordinates, because they do not add interesting information to the theory.
From Christoffel symbols we obtain the Ricci tensors: 10

Rtt =

(
Φ′′ + (q − 1)

a′

a
Φ′
)
e2Φ( p

q−2
+1) − (p− 1)H2 (176)

Rxixi = −e( 2p
q−2

+2)Φ+2Ht

(
Φ′′ − (q − 1)

a′

a
Φ

)
+ (p− 1)H2e2Ht (177)

Rrr = −(q − 1)
a′′

a
+
p(q − 1)

q − 2

a′

a
Φ′ − p(p+ q − 2)

q − 2
+ pΦ′′ (178)

Rϕ1ϕ1 =
p

q − 2
a2Φ′′ +

p(q − 1)

q − 2
a2a′Φ′ − (q − 2)(a′2 − 1)

a′′

a
. (179)

Note the implicit summation over the (p − 1) x and the (q − 1) ϕ coordinates. Now we
equate (171-174) to (176-179) to find expressions for the Einstein equations in terms of the
functions Φ and a(r). We obtain a set of 4 equations.

From the Rtt equation we get:

Φ′′ + (q − 1)a
′

a
Φ′ = (180)

q−1
p+q−2

b2e−
2p(q−1)
q−2

Φ + (p− 1)H2e−
2(p+q−2)
q−2

Φ − 2Λ
p+q−2

e−
2p
q−2

Φ, (181)

From the Rxx equations

Φ′′ + (q − 1)a
′

a
Φ′ = (182)

q−1
p+q+2

b2e−
2p
q−2

Φ + (p− 1)H2e−
2(p+q−2)
q−2

Φ − 2Λ
p+q−2

e−
2p
q−2

Φ, (183)

From the Rrr equations

p
q−2

(
Φ′′ + (q − 1)a

′

a
Φ′ − (p+ q − 2)Φ′2

)
− (q − 1)a

′′

a
= (184)

p−1
p+q+2

b2e−
2p(q−1)
q−2

Φ + + 2Λ
p+q−2

e−
2p
q−2

Φ, (185)

and from the Rϕϕ equation

p
q−2

(
Φ′′ + (q − 1)a

′

a
Φ′
)
− a′′

a
− (q − 2)a

′2−1
a2

= (186)

p−1
p+q+2

b2e−
2p(q−1)
q−2

Φ + 2Λ
p+q−2

e−
2p
q−2

Φ. (187)

10The Ricci tensors for general coordinates ϕj include an extra function of spherical coordinates in the
last term. For our purposes we will only need the ϕ1ϕ1 Ricci tensor, but for a derivation, see Appendix D.
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We now have a coupled system of second order equations, which we can use to put constraints
on the functions Φ and a(r).

To reduce the set of equations, notice that the last two equations are equal on the right
hand side. From this it follows that

a′′

a
− a′2 − 1

a2
= −p(p+ q − 2)

(q − 2)2
Φ′2 (188)

Another expression for a′′

a
is found by substation of the Rxx equation into the Rϕϕ equation.

This way we can eliminate the first and second derivatives of Φ, to obtain:

a′′

a
= −(q − 2)

a′2 − 1

a2
− 2Λ

q − 2
e−

2p
q−2

Φ +
2p(p− 1)

q − 2
H2e−

2(p+q−2)
q−2

Φ +
1

q − 2
b2e−

2p(q−1)
q−2

Φ. (189)

Equating the above equations, we obtain an equation without second derivatives

(q − 1)(q − 2)
a′2 − 1

a2
=
p(p+ q − 2)

q − 2
Φ′2 + b2e−

2p(q−1)
q−2

Φ

+p(p− 1)H2e−
2(p+q−2)
q−2

Φ − 2Λe−
2p
q−2

Φ.

Effectively there are two independent equations that determine the allowed values of the
functions Φ(r) and a(r), namely (188), (183). The constraint equation obtained above can
be rewritten in terms of a normalized cosmological constant, following the notations of [30].
This is done by a rescaling b→ bΛ1/2, H → HΛ1/2, a→ aΛ−1/2 and r → rΛ−1/2.

6.4.1 Stability and spectrum of warped solutions

The above equations determine the values of the functions Φ(r) and a(r). Numerical solutions
have been calculated by the authors of the original article. It turns out that the points of
marginal stability from the dSp×Sq solutions correspond to the same values for the warped
solutions. This is in agreement with the original idea, that the warped solutions emerge from
these points [30].

We are interested in the stability and KK spectrum of solutions of this form. Following
the same approach as in the previous subsection, we are looking for Einstein solutions to
linear perturbations of the background metric. In [31], the authors assume that the both
manifolds within the background solutions are Einstein manifolds. One can then decompose
the (p+ q)-dimensional space-time into scalar-type, vector-type and tensor-type components
with respect to gµν and gmn. With this decomposition, one obtains decoupled perturbation
equations in each sector. We are only interesed in perturbations, which are scalar-type
quantities with respect to both manifolds, Mp and Nq.

Without getting into the lengthy and difficult calculation that is done by [31], we will use
their results to estimate the mass-splitting of the Kaluza Klein spectrum. The masses of the
KK modes are defined by the eigenvalues of the Laplacian operator on the scalar harmonics
Y (x)within the de Sitter space with Hubble expansion rate, H:

∇2Y (x) = µ2Y (x), (190)
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where µ2 is the KK mass squared and ∇µ is the covariant derivative with respect to the
metric gµν . If the spectrum of µ2 is non-negative, we can conclude that the background
space-time is dynamically stable. The mass eigenvalues are given by [?]

µ2
± = −λ+

(q − 1)(p− 2)

p+ q − 2
b2 − (p− 1)H2

±

√[
(q − 1)(p− 2)

p+ q − 2
b2 − (p− 1)H2

]2

+
4(q − 1)(p− 1)

p+ q − 2
b2λ,

where λ are the eigenvalues of the Laplacian D2 on Sq with radius ρ, as defined in the
appendix by D2Y (y) = −λY (y), and λ = l(l+ q − 1)ρ−2. For each multipole moment l, the
scalar perturbations thus have two independent modes corresponding to the eigenvalues µ2.
Only one of them is physical however. The other one is a gauge mode.

In the case l = 0 we have a physical mode with

µ2(l = 0) = 2
(q − 1)(p− 2)

p+ q − 2
b2 − 2(p− 1)H2 (191)

We are interested in the mass eigenvalues for a scenario that fits our observable world. We
will therefore use the relations between the parameters b, H and Λ, in the case p = 4, q = 7
to estimate the mass spectrum.

With the Hubble expansion rate in 4D, being 70 kms−1 Mpc−1 ∼ 10−42 GeV << 1, the
parameter relations (161, 162) reduce to

6ρ−2 = b2

62ρ−2 = 2Λ

and the KK masses are reduced to µ2 ∼ b2. Remember that in this particular scenario, there
are no branes, so all fields propagate through the extra dimensional space. The compactifica-
tion scale R ∼ ρ is thus bounded by the experimental observations, that have tested the SM
fields up to distances of about 102 TeV, which corresponds to distances of abot ∼ 10−19 cm.
This would be the upper limit of the compactification scale. On the other hand, we could
assume that R ∼ MPl ∼ 1016 TeV, as KK supposed. Assuming that the extra dimensional
space is more or less spherical and recognizing that µ2 ∼ b2 ∼ ρ−2, we can estimate the
upper and lower limit for the KK masses,

1016 TeV ≥ µ ≥ 102 TeV, (192)

Thus in this rough approximation, the KK masses should be somewhere between 102 and
1016 TeV. It should be mentioned though, that there is no particular reason why the extra
dimensions should be as large as 10−19 cm, besides that it forms an upper bound by obser-
vation. Also we did not take into account the warping factor. A good reference and method
for calculating KK spectra on general manifolds can be found in [33]. In general, negatively
curved manifolds have higher KK masses.

In our opinion, the Planck scale, seems the most natural compactification scale for uni-
versal extra dimensions. In that case, the chance of probing the extra dimensions and finding
KK gravitons directly is terribly small. At least in the near future.
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7 Summary and conclusion

We have discussed several models of extra dimensions, focussing on extensions of Kaluza
Klein theory. We started from the the ADD scenario and the Randall Sundrum scenarios
and we ended with some solutions to flux compactification.

We have shown how models with large extra dimensions like the ADD scenario and the
Randall Sundrum scenario, could help to solve the hierarchy problem between the fundamen-
tal scales in nature. Both scenarios introduce branes into the theory, but only the Randall
Sundrum scenario takes into account the tension of the brane(s) and the effect of that tension
on the internal geometry.

The fact that the ADD scenario does not consider this is one of to weaknesses of the model.
Moreover the ADD scenario creates a new hierarchy problem, by using the compactification
scale R as a variable to solve the hierarchy problem. The problem has thus been shifted and
not solved. For these reasons the ADD scenario is not a very complete or realistic theory in
itself.

The Randall Sundrum scenarios are more realistic and complete than the ADD model.
However we should take into account that an extra massive scalar field is needed to stabilize
the setup in RS1. Also, RS1 describes a universe with 5 space-time dimensions, but it is
not extended to higher dimensional theories. The RS2 scenario does not solve the hierarchy
problem. However, it does not have the problem of fine-tuning and we have seen that it is
extendable to higher dimensions, possibly to D=10 or 11.

Both the ADD scenario and the Randall Sundrum scenarios predict (relatively) light KK
modes, that could be observable in high energy experiments. no such particles have been
found yet.

Solutions to flux compactification give a very different perspective on extra dimensions.
Freund-Rubin compactification could account for the natural compactification of 6 or 7
spatial dimensions, while leaving (3 + 1) untouched. The search for a stable solution that
preserves our 4D observations, has led to the warped ansatz, which seems like an interesting
model to do further research on. Other solutions could be possible as well, but have not
been explicitly described yet. The fact that no branes are needed in these models, makes it
easier to find a stable and solution. However, this implies that extra dimensions should be
very small and Kaluza Klein modes will have high masses, that will not be easy to observe.

Within these notes we have focussed on the subject of stability and the Kaluza Klein
spectrum of the considered extra dimensional scenarios. We have not been able to discuss the
possibility of including the SM within the theory. Neither have we discussed the possibility
to extend the theories to realistic string theoretical models. When it comes to realistic model
building, the Randall Sundrum is probably the most developed and therefore currently the
most interesting. The Kinoshita ansatz seems very interesting as well, but since it is quite
young, we can not make a clear statement about it being very realistic or not, yet.

An interesting construction, reproducing the key features of the RS setup within a con-
crete string theory embedding is discussed in [36]. It shows that the original RS proposal can
be realized by considering flux compactifications and branes, including a so-called Klebanov-
Strassler throat [37]. Such a “warped throat” looks like a RS background plus 5 compact
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extra dimensions. The question on how to include the SM in this scenario is considered in
[38]. Similar constructions, named “ubiquitous stringy throats” 11, have been related to dark
matter scenarios [39]. It seems like there is no stopping the creativity in physics when it
comes to extra dimensional models.

In the case of the Kinoshita model, further research should tell us, whether this scenario
fits in to a string theoretical model as well. We should note however, that even if string
theory appears to not be true, extra dimensions may still exist.

Obviously, we have only been able to cover just a glimpse of all the theory and scenarios
of extra dimensions 12. Therefore, we can not make a sure statement about what the extra
dimensions should look like in general. However, since no (light) Kaluza Klein modes have
been observed so far, we do not expect very large extra dimensions to exist. We assume that
the Planck Scale is the most natural scale for extra dimensional compactification after all
and consequently, we do not expect to see any light KK modes soon.

All in all, to summarize our findings into one catchy conclusion, our statement has be-
come:

“We ain’t seen nothing yet, and we probably will not for a while”.

Having said that, we do not mean to imply that the topic of extra dimensions should be put
aside, due to a lack of observable evidence. On the contrary. We prefer a future scenario in
which crazy models of extra dimensions become abundant and physicists create all kinds of
excuses to look for extra dimensions of space in every experiment they build.

After all, the excitement of the possibilities is half the fun and what would physics be
without something to fantasize about...? Very boring indeed, so let’s keep searching.

11The theory is about as exotic as the name itself. It is worth scaring yourself.
12Some interesting models, that we have not been able to discuss include ‘massive gravity’, (a good

introduction is given by [34]) and infinite volume extra dimensions [35].
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A Planckian system of units

We obtain the Planck scale from the Planckian system of units, which expresses all quantities
in terms of the most important physical constants:

~ = 1.05457266× 10−34 J · s,
c = 2.99792458× 108 m/s,

G = 6.67259× 10−11 N ·m2/kg2.

Using dimensional analysis, we obtain the Planckian units for mass, length, time and energy:
The Planck Mass :

mPl ∼
(
~c
G

)1/2

= 2.18× 10−5 g, (193)

The Planck Length:

`Pl ∼
(
~G
c3

)1/2

= 1.62× 10−33 cm, (194)

The Planck time:

tPl ∼
(
~G
c5

)1/2

= 5.39× 10−44 sec, (195)

The Planck Energy :

MPl ∼ mPlc
2 =

(
~c5

G

)1/2

= 1.22× 1019 GeV (196)

The reduced Planck mass is defined as M̄Pl/
√

8π = 2.4× 1018 GeV.
In natural units we set c = ~ ≡ 1. This way we can express any Planck quantity in terms
of the energy scale `−1

Pl ∼ t−1
Pl ∼ mPl ∼MPl.

A useful conversion factor is: 1 GeV−1 ∼ 1,97 ×10−16 m.
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B Spheres in arbitrary dimensions

We are interested in the flux of a field through a sphere in arbitrary dimensions, d. Therefore
we want to know the volume of the higher dimensional spherical shell.13 In a d dimensional
space Rd, with coordinates {x1, x2, ..., xd}, we define a (d− 1)-sphere, S(d−1) of radius R, by
the mathematical region

S(d−1)(R) = x2
1 + x2

2 + ...+ x2
d = R2. (197)

The corresponding d-Ball, Bd is defined by the region it encloses:

Bd(R) = x2
1 + x2

2 + ...+ x2
d ≤ R2, (198)

but is not relevant for our purposes.
In arbitrary d, the volume of a sphere of radius R, is related to the volume of a sphere

of unit radius by:
vol[Sd−2(R)] = R(d−1)vol[S(d−1)], (199)

where the volume of a sphere of unit radius is defined by

vol[S(d−1)] =
2π

d
2

Γ(d
2
)
, (200)

and Γ(d
2
), is the Gamma function:

Γ(x) =

∫ ∞
0

dt e−tt(x−1), x > 0. (201)

For d=1 and d=2, the Gamma function Γ(d
2
) is easily calculated:

Γ(1/2) =

∫ ∞
0

dt e−tt(−1/2) =
√
π, (202)

Γ(1) =

∫ ∞
0

dt e−tt0 = 1, (203)

and for all other values of d, the Gamma function follows from the relation

Γ(x) = (x− 1) Γ(x− 1). (204)

Finally, we have arrived at the general volume of a (d-1)-sphere S(d−1) in d-space:

vol[S(d−1)(R)] = R(d−1) 2π
d
2

Γ(d
2
)
. (205)

The flux of a field at a distance R form the origin, in D = d + 1 space-time dimensions, is
the strength of the field divided by the above volume.

13For generality, we use to mathematical definition, volume, for the shell. In d = 3, a spherical shell
corresponds to a 2-dimensional volume, i.e. a surface.
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C Perturbation theory

C.1 Linearized Einstein equations

The most general perturbation to the metric would be

ds2 = (gµν + δgµν)dx
µdxν + δgµndx

µdyn + (gmn + δgmn)dymdyn. (206)

in Martin’s analysis [26], the de Donder gauge is chosen, such that the metric perturbations
are explicitly

δgµν =

(
2Ψ− 2q

p− 2
Φ

)
gµν + hµν , (207)

δgµν = 2Φgmn + hmn, (208)

δgµn = Vµn. (209)

Note that the tensor perturbations are traceless and symmetric.
The linearized Ricci tensor is given by the standard formula

δRMN =
1

2
(∇M∇Lh

L
N +∇N∇Lh

L
M −∇M∇Nh

L
L −∇L∇Lh

M
N ), (210)

where the right hand side corresponds to the energy momentum tensor, which sources the
curvature. The complete linearization of the source requires some manipulation. The com-
plete calculation can be found in [26].

C.2 Linearized Maxwell equations

The fluctuations of the q-form flux field can be represented by the exterior derivative of a
(q − 1)-form potential A(q−1):

δF(q) = dA(q−1). (211)

For the higher dimensional flux fields, the perturbation of ∇NFNL2...Lq leads to

0 = δ(gMN∇MFNL2...Lq)

= δ[gMN(∂MFNL2...Lq − ΓKMNFKL2...Lq − (q − 1)ΓKML2
FNKL3...Lq)],

where the perturbed (linearized) Christoffel symbol is given by

δΓPMN =
1

2
gPL(∇MhNL +∇NhML − hMN). (212)
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C.3 Harmonic expansion

The metric fluctuations can be expanded in terms of summations over various modes of
spherical harmonics:

Φ(x, y) =
∑
α

Φα(x)Y α(y)

Ψ(x, y) =
∑
α

Ψα(x)Y α(y)

Vµν(x, y)
∑
α

V α
µ (x)Y α

n (y)

hmn(x, y) =
∑
α

hα(x)Y α
mn(y).

Each mode should satisfy the Klein Gordon equation for a massless scalar field

[�−m2
α]Φα = 0. (213)

Modes with a negative eigenvalue mα are referred to as tachyonic modes. If such modes
exist for some perturbation, we state that the background solution is unstable against that
particular perturbation.

In the case of the Freund Rubin solutions, we only care about the scalar modes of the
p-dimensional manifold MP . In this case we will denote the d’Alembetrian operator in the
dSp space by �x, corresponding to eigenvalues m2 and for the extra dimensional space Sq,
we will use the Laplacian operate �y, corresponding to eigenvalues λ. For q-spheres the
eigenvalues of the Laplacian operator are given by λ = l(l + q − 1), with l = 0, 1, 2, ....
Thus l represents a particular mode of the perturbation. A summation over the eigenmodes,
represented by l, is in fact the same as summing over the index α in the harmonic expansion.

On the q-sphere of radius ρ, the eigenvalues of the Lapacian are given by ρ2�yY = −λY .
In practice this amounts to replacing all ρ2�y by λY . In the external space, we can explicitly
write out the above scalar field equation on the internal space following [29]

�xΦ
α −m2

αΦα = [−∂2
t + (p− 1)H∂t + e−2Ht∇̄2 −m2

α]Φα− = 0, (214)

where ∇̄2 is the (p − 1)-dimensional Laplacian. Taking the Fourier expansion of the scalar
field Φ, we obtain a linear differential equation in terms of the Fourier modes. The form of
the equation tells us that for m2 < 0, solutions will diverge exponentially.
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D Spherically symmetric Ricci tensors

We consider a spherically symmetric Euclidean manifold of q dimensions and radius r = 1:

ds2 = dΩ2
q, (215)

which can written out explicitly as

dΩ2
q−1 =

q−1∑
j=1

j−1∏
l=1

sin2ϕldϕ
2
j

= dϕ2
1 + sin2ϕ1dϕ2

2 + sin2ϕ1sin2ϕ2dϕ2
3 + ...+ sin2ϕ1sin2ϕ2...sin

2ϕq−1dϕ2
q.

The non-zero Christoffel symbols are complicated functions of the different variables, but in
the Ricci tensor everything reduces to the simple form

Rϕjϕj =

j−1∏
i=1

(q − 1) sin2 ϕi (216)

or more explicitly, for the case (q = 4)

Rϕ1ϕ1 = 3

Rϕ2ϕ2 = 3 sin2 ϕ1

Rϕ3ϕ3 = 3 sin2 ϕ1 sin2 ϕ2

Rϕ4ϕ4 = 3 sin2 ϕ1 sin2 ϕ2 sin2 ϕ3.
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