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ABSTRACT 

The filamentation instability of the electron and positron 

colliding beams in a storage ring are investigated within the 

framework of the rigid beam model and the Vlasov-Maxwell equa- 

tions, and closed algebraic dispersion relations for the complex 

eigenfrequency w are obtained. It is shown that the typical 

growth rate of instability is a substantial fraction of the 

electron plasma frequency ti pe' thereby severely limiting the 

electron density in a storage ring. Moreover, the influence of 

collective self-field effects on the electron and positron col- 

liding beams in the storage ring is investigated. The analysis 

is carried out, distinguishing the cases, where (a) the particle 

motions are in a very coherent orbit, and (b) the randomness 

dominates the operational condition of a storage ring (e.g., the 

incoherent collision location by small fluctuation, etc.) In 
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either case, it is shown that the self-fields effects play a 

dominant role in the stability behavior of transverse orbit or 
4\ 

the expansion of the beam cross section. 
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INTRODUCTION 

There is a growing interest in the equilibrium and stability properties 

of the electron-positron colliding beams in a storage-ring facility. l-3 * 

recent experiment 4 with colliding electron-positron beams at DESY has shown 

the broadening of the beam cross section, thereby leading to reduction of 

luminosity. To address this serious problem, we examine the filamentation 

instability' of electron-positron beams and the influence of the collective 

self-field5 on the electron-positron colliding beams in the storage ring. 

For the analytic simplicity, we assume that beams have cylindrical shape 

and are azimuthally symmetric in the equilibrium state. Equilibrium and 

stability properties of planar geometric beaus are to be presentd in a 

subsequent publication. 

In Sec. II, we treat the filamentation instability' of colliding 

electron-positron beams with finite-geometry effects included. Stability 

analysis of dipole oscillation is carried out in Sec. II.A, within the 

framework of a rigid beam model, which provides a simple instructive 

description. In Sec. II.B, the analysis for the high harmonic perturba- 

tions with R&2 (where R is azimuthal harmonic number) is carried out within 

the framework of the Vlasov-Maxwell equations. An important conclusion of 

the present analysis is that the typical growth rate of the filamentation 

instability is of the order of the electron plasma frequency 0 pe' 
thereby 

severely limmiting the electron density in a storage ring. However, the 

analysis of broadening of beam cross section by repeating interaction bet- 

ween electron and positron beams is not completed yet. 

The influence of the collective self-fields5 on the electron and posi- 

tron colliding beams in the storage ring is investigated in Sec. III. The 
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theoretical analysis is carried out, distinguishing the two cases, where 

(a) the particle motions are in a very coherent orbit and (b) the random- 

ness dominates the operational condition of storage ring (e.g., incoherent 

collision location by fluctuation, etc.). In either case, it has been 

found that the self-fields effects play a dominant role in the stability 

behavior of transverse orbit and the expansion of beam cross section. 
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II. FILAMENTATION INSTABILITY 

Electron and positron colliding beams in storage ring are likely sub- 

ject to various macro- and micro-instabilities. 336 Perhaps one of the most 

important instabilities of the electron and positron colliding beam in a 

storage ring is the filamentation instability. The unstable modes 

propagates nearly perpendicular to the beam with mixed electrostatic and 

electromagnetic components, the latter destabilizing and the former 

stabilizing. The perturbed magnetic field is mostly in the plane perpen- 

dicular to the beam and the Lorentz force causes the beam to filamentate, 

similar to the Weibel instability. Unlike the Weibel modes, which are 

purely electromagnetic for counter-streaming electron beams, the linear 

perturbations of colliding electron-positron beams cause both charge and 

current perturbations giving rise to mixed polarizations. Furthermore, for 

the case of colliding-beams with radial dimension smaller than the colli- 

sionless skin depth c/w P' 
the finite geometry becomes important and the 

usual assumption of infinite, homogeneous medium is no longer valid. In 

this paper, we treat the filamentation instability of colliding 

electron-positron beams with finite geometry effects included. For sim- 

plicity, we assume in this section that this colliding beam is straight and 

infinite along the axial direction. 

The analysis is carried out within the framework of both the rigid 

beam model and the Vlasov-Maxwell equations. As illustrated in Fig! 1, the 

equilibrium configuration consists of intense relativistic electron and 

positron beams propagating opposite to each other with axial velocity 
6 A 

BP c sz for the positron beam and Be c gz for the electron beam, where 

2, is a unit vector along the z-direction and c is the speed of light in 
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vacua and BP=-6,. Moreover, both beams have the same radius Rb and the 

same characteristic energy Yb mc2. It is also assumed that the ratio of - 

the beam radius to the collisionless skin depth c/w 
P 

is small, i.e., 

=N.-- (1) 

where j=e,p denote electrons and positrons, respectively, v j is Budker's 

parameter, N. = 2~ ,/i dr r ni 
J 

(r) is the number of particles per unit 

axial length, n:(r) is the equilibrium particle density of beam component 

, 
J9 -e and m are the charge and rest-mass, respectively, of electron. As 

shown in Fig. 1, we introduce a cylindrical polar coordinate system 

(r,e,z) l All equilibrium properties are assumed to be azimuthally sym- 

metric (a/30=0) and independent of axial coordinate (a/az=O). 

A. Rigid Beam Model 

In order to illustrate the physical mechanism of this filamentation 

instability, we carry out the stability analysis in this section within the 

framework of a "rigid beam" model. For the purpose of analytic simplica- 

tion, we also specialize to the case of sharp-boundary profiles in which 

the equilibrium density profiles are rectangular, i.e., 

= const, 

n(j!(r) = 
3 

O<r<Rb, 

0, otherwise, 
(2) 

where j=e and p. Making use of Eq. (2), it is straightforward to show 

that the equilibrium radial electron field produced by particles of species 

j is given by 
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. - 

h 
Ejr(r) = 

2nejnjr , O<r<Rb , 

2xejnjRE/r , r>R b' 

(3) - 

where e j is the charge of particles of beam component j (i.e., ej=-e for 

j=e and ej=e for j=p). Similarly, the equilibrium azimuthal magnetic field 

produced by particles of species j can be expressed as ,. 
2nejnjBjr , O<rtRb , 

Bje(r) = h 
2ne n B R2/r , 

jjjb 
r>R b' 

where Vj=bjc is the axial drift velocity and c is the speed of light in 

vacua. 

In the subsequent analysis, we introduce the center of mass 

(4) 

coordinates (Xj,Yj) for the beam component of specis j. In the equilibrium 

state, we assume that 

(Xj’Yj) = (0, 0) , 

for j=e, and p. It is also assumed that 

x; + Y2 << 
j 6 

(5) 

(6) 

The restriction to small perturbation amplitudes makes the subsequent sta- 

bility analysis tractable. The transverse motion of a single particle of 

species j is determined approximately from 

Id --r c dt -j x ,BJ 9 (7) 
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where 
Zj 

= (xj,yj) is the position coordinate for a particle of species j 

and j$ and B, are the total electric and magnetic fields, and mJ=ybm is the 

relativistic mass. Assuming g and E can be approximated by their equili- 

brium values, we substitute Eqs. (3) and (4) into Eq. (7). The equation of 

motion for the x direction can be expressed as 

d2 
"j - x dt2 j 

(8) 

Neglecting momentum spread, Eq. (8) can be averaged over the beam cross 

section. After some straightforward algebra, we obtain the approximate 

equation for average motion on the x direction, 

d2 L) 

“1 dt2 'j 
=2nej 1 nkek(l - bjBkjjXj- J$I l 

k 
(9) 

Similarly, the equation for average motion in the y direction is given 

6 
2aej i; tek ( 1 - BjBk)(Yj - Yk) l 

Defining 

2 j = ‘j + iy’ J 

and making use of Eqs. (9) and (lo), we obtain 

d2 
zzj = q k “kek (1 - ‘jBk)(‘j - ‘k) l 

(10) 

(11) 

(12) 
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J J J
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d ‘ '_..2_ z =__.12 “kek [1- BjBks - 2k) . (12)
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We seek oscillatory wave solutions to Eq. (12) of the form 

Z 
j 

= ij exp {ilkz[z + Bjc t) - Wt]j (13) 

where ti is the complex eigenfrequency, Z. 
J 

= const is the perturbed ampli- 

tude, and the axial wavenumber kz is limited to the range 

k2R2 < 1 zb- l 

(14) 

Equation (14) assures the approximate validity of Eq. (12) for wave pertur- 

bations with a/&+0. Substituting Eq. (13) into Eq. (12), we obtain 

[(~-kz6~c)~ +Zsei z "kek(l-8jBk)] Zj = T k nkek(l~-SjBk) Zk . (15) 
"j k 

h 

Equation (15) gives two homogeneous equations relating the amplitudes Ze 
A A 

and Z . 
P 

Setting the determinant of the coefficients of Z 
j 

equal to zero 

gives 2x2 matrix dispersion equation that determines the complex eigenfre- 

quency w. After some straightforward algebra, we obtain the dispersion 

relation 

h A 
[(u + kZc)2 - vie (np/ne)l lb - kZc )2- Jel = wp4, (kpie) , (16) 

2 . 
where w 

pe 
= 4xe2ne/Ybm is the electron plasma frequency-squared and use 

has been made of Be=-ge=l, which is consistent with present experimental 

parameters. 

Assuming that both electron and positron beams have the same density, 
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and defining 

a = kZc + u 
pe ' 

b = kZc - w 
pe ' 

we simplify the dispersion relation in Eq. (16) as 

(u2-a2)(02-b2) = mze , 

which provides a necessary and sufficient condition 

w 4 > a2b2 I k2c2,w2 
pe ( z pe)2 

for instability. For the unstable branch, the perturbation is purely 

growing with the growth rate 

= 1ml.l = {i(Y) + 2J2 -F} 
2 b2 2 a2+b2 l/2 

0.l . 
i 

(17) 

(18) 

(19) 

(20) 

The maximum growth rate of instability can occur at a=0 or b=O, thereby 

giving 

(ui), = (51'2-2)1'2upe " 0.5 ape . 

For colliding beams interacting over a finite distance L, the axial 

wavenumber k, is k,=2nn/L where n=1,2,.... In this case, the condition for 

a=0 becomes LWpe /c=2xn. The finite interaction length also imposes a 

severe condition for the instability to grow significantly before the beam 

exit. Although a small growth of perturbations during one individual 
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interaction of electron and positron beams, we expect that due to this 

filamentation instability, the repating interactions between both beams -. 

eventually convert the longitudinal energy of the beams into the transverse 

energy of beams and the field energy of perturbations, thereby broadening 

the beam cross section and leading to reduction of luminosity. However, 

the analysis of broadening of beam cross section is particularly difficult 

and is currently under investigation by the authors. 

B. Vlasov Description 

In the previous section, we have investigated the stability properties 

of dipole oscillation in the transverse instability for the electron and 

positron colliding beams, within the context of rigid beam model. Although 

a dipole oscillation in a rigid beam model provides a simple instructive 

description, it is necessary to investigate stability properties for 

perturbations with high azimuthal harmonic number 222 within the framework 

of the Vlasov-Maxwell equations. 

For beams of well-defined energy and momentum, an equilibrium 

associated with the steady-state (a/at=O) beam distribution function, 

h 

f"(H,Pe,P 
j Z ) = & G(H-wjPy-Yjm=2)6(Pz-~b~j=~ , 

b 

is particularly suited for stability analysis, where the total energy, 

H = (m2c4 + ~~2~)~‘~’ ejGo(r), (23) 

(22) 

the canonical angular momentum, 
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Pe = we , (24) 

and the axial canonical momentum 

pz = P, + (ej/c)Az(r) , (25) 

are the three single-particle constants of the motion in the equilibrium 
A 

fields, and aj is the beam rotational frequency of species j and Y. is a 
J 

constant. In Eqs. (23)-(25), O,(r) is the equilibrium self-electric 

potential, AZ(r) is the axial component of vector potential for the 

azimuthal self-magnetic field, and p = (pr,pO,pz) denotes mechanical 

momentum and is related to the particle velocity ,v 

2 2 2 -l/2 by v_=(p/m)(l+p /m c ) . 

Since the r-6 kinetic energy of particles is small-in comparison with 

the characteristic energy Ybmc2, it is straightforward to show that the 

term H-wjP8 in Eq. (22) can be approximated by7 

2 
PI 

H - ujPe = ybmc2 + 2Ybm + L y u&l2 r2 , 
2b j 

where 

and 

n: = 
J ( 

l-BjBk) . 

(26) 

(27) 
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P6 = rpg ) (24)

4“
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potential, A:(r) is the axial component of vector potential for the

azimuthal self-magnetic field, and p = (pr,pe,pz) denotes mechanical

momentum and is related to the particle velocity 3

by g=[R/m)[1+pz/m2c2]-l/2.

Since the r-9 kinetic energy of particles is small‘in comparison with

the characteristic ener y Y mcz, it is straightforward to show that the8 b
term H-ie in Eq. (22) can be approximated by7

2
PiH-wP =mc2+———+lY 1192.1'2je 2m 2 b J ’ (26)

where

and

2 - _ _ ___1-‘ “ _nj _ (w,-—wj](w.-HU.) - w. m £11k ekh Bjsk) - <27)
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h 

In Eq. (27), the laminar rotation frequency wj is defined by 

Substituting Eq. (26) into Eq. (22), we find the equilibrium particle 

density profile 

n;(r) = ld3p f;(W'6,Rz) 

A 

nj , 

0 , 

O(rtRb , 

otherwise, 

where the beam radius Rb is defined by 

g = 2c2[;j-Yb)/Yb"; 

(28) 

(29) 

(30) 

for j=e,p. Equation(30) ensures that the electron and positron beams have 

the common beam radius Rb. It is important to note from Eqs. (27) and (30) 

that the radially confined equilibrium exists only for the rotational 

frequency wj satisfying 

A A 
--w <w <w . 

j j j 

Additional equilibriium properties associated with the distribution 

function in Eq. (22) are discussed in Ref. 7. 

In order to obtain the dispersion relation for filamentation 

instability of the electron and positron beams, we make use of the 

(31) 

linearized Vlasov-Maxwell equations. For perturbations with azimuthal 
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linearized Vlasov-Maxwell equations. For perturbations with azimuthal
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harmonic number II and axial wavenumber kZ, a perturbed quantity &Q&t) 

can be expressed as G$(_x,t)=i(r)exp{i(Pe+k,z-ot)} , where w is the complex - 

- 
eigenfrequency. The present stability analysis is carried out in long 

parallel wavelength and low frequency perturbation satisfying kZ b<&2+l, 2R2 

I--& I 2,,Q2+1 . With this assmption, the axial components of perturbed 

field E,(r) and B,(r) are negligible and the Maxwell equations of perturbed 

potentials can be expressed as 

(-)&r$ - $) i(r) = n - 4xP(r) 

and 

i$ & r ;, - $j i(r) = - fi j (r) 
c z 

(32) 

(33) 

A A 

where 4(r) is the perturbed electrostatic potential, o(r) is the perturbed 
A n 

charge density, A(r) and JZ(r) are the axial components of the perturbed 

vector potential and current density, respectively. Components of 
A A 

perturbed fields can be expressed in terms of 4(r) and A(r) as 
h 
Ee = -iG h-1 / r, i,(r) = - WWk), ir(r) = igi(r)/r, and 
,. A 
Bg(r) = -(a/ar)A(r). 

In order to calculate perturbed charge and current densities, we solve 

the linearized Vlasov equation to obtain the perturbed distribution 

function-/ 
0 

; 
j 

(r,2) = ejYbm afi 
Pl apl 

aj(r) + (u-""j-kzfljc) 

I 
0 A , 

X 

(34) 
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22 A
r -?J ¢(r) = - mu) <32)/—

\

NI
H lo

:§_
3r r 0)

and

a a gL_ " _ 4n *3—; r at - 2) Mr) — -C— s <33)( NI
H

where ¢(r) is the perturbed electrostatic potential, 0(r) is the perturbed

charge density, A(r) and Jz(r) are the axial components of the perturbed

vector potential and current density, respectively. Components of

perturbed fields can be expressed in terms of ¢(r) and A(r) as
Are = -11$(r)/r, Er(r) = - (e/ar)$(r), §r(r) = iz2(r)/r, and
§9(r) = -(a/8r)£(r).

In order to calculate perturbed charge and current densities, we solve

the linearized Vlasov equation to obtain the perturbed distribution

function7 0
A e.m 3f, A )
f.r =-l——l '.r)+ w—EwrkBtJ(’2) pi api {VJ ( J 2]

0 (34)
x J dT 1 wj(r )exp[1 2(9 -9)-i(w-sjc)T]} ,
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where the perturbed electrostatic potential qj(r) in the frame of 
A A e 

reference moving with velocity Bjc is defined by qj(r)=Q1(r)qjA(r) and use 

has bren made of pz/YbmzB 
j 

consistent with Eq. (1). It is useful to 

introduce the polar momentum variables (p,,$) in the rotating frame 

defined by p, + YbWjy = pI co&, p sin+. Note also that 
Y 

- YbrnjX = PI 

the Cartesian coordinates (x,y) are related to the polar coordinates (r,4) 

by x=r co.s.0 and y=r sine. In this context, the transverse equation of 

motion of particles can be expressed as 7 

A sin0sinw.r + 
J 

Y’ (‘I) = (l/wj)[(pi/Ybm)sin*usinljr + mjcOsYsin~jr 
A 

+ rG; sin8coswjTl- j 

(35) 

A 

where r=t'-t, and the harmonic frequency w. is defined in Eq. (28). 
J 

Upon integration of Eq. (34), the perturbed charge density can be 

found to be 

A 

p(r) = 2.rre2 L Y m j b 1, dpl pl jy:pzhc lij (r) + (w-gwj-kzSjc)ljl l 

(36) 

where the orbit integral I. 
J 

is defined by 

dr jj(r')exp ii[e(e'-e)-(~-k,B,c)T]} l (37) 

Similarly the perturbed axial current density can be obtained. For 

analytic traceability, we will consider here a class of special solutions 
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A A A A
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T = l/w. [ /Y m sin sinw,T + rw,c05951nw.T + rw.sin6cosw.T-Y<>(J><Plb) ¢> J J J 3 31
(35)

where T=t -t, and the harmonic frequency mj is defined in Eq. (28).

Upon integration of Eq. (34), the perturbed charge density can be

found to be

0
A 2 (n 00 L

0(r) = 2fie z m dp‘L p‘L dn,
J 0 —w l

0
2

0
)

Hr

l$j(r) + (w—zwj—kzsiI,J .
Pi J

(36)

where the orbit integral Ij is defined by

2n 0 A ,
I, = ij §$ J dT wj(r’)exp {i[2[e _e)_[w_kzs cjr]} . (37)

0 _ j

Similarly the perturbed axial current density can be obtained. For

analytic traceability, we will consider here a class of special solutions
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for which the perturbed charge and current density are localized on the 

beam surface, i.e., equal to zero except at r=Rb. More general 

pertu$ations, particularly the body wave perturbations, are to be 

presented in a subsequent publication. In this case, it follows from Eqs. 
A 

(32) and (33) that the. function.qj(r) has the simple form $j(r) = 
A 

i(r)-BjA(r) = Cjre for O<d$,. Substituting Eq. (35) into Eq. (37) it is 

readily shown that h 
h ,. 

I = 
j 

dr exp[-i(w-kZ6jc)rl[(wj+wj)exp(i~j~) 

(38) 

- (wj-"j)exp(-ijjr)lQ . 

After some straightforward algebra that utilizes Eqs. (22), (36) and (38), 

Eq. (32) can be expressed as 

where u2 A 
pj 

= 4xe2 nj/Ybm is the plasma frequency 

component j, R: = (Wj~j)(~fCj) is defined in 

defined by 

- squared of beam 

Eq. (27) and rj(w) is 

h Q Q 
w-&.-k B.c 

rj(") =-1+ As--J-x- w-kzgjc+Lwj-2nw. 
J 

,. n 

(40) 

Similarly, Eq. (33) can be expressed as 

3 

ia a Q2 A --r--- 
r ar ar r2 I A(r) = - 1 Bjjj(r) 

WL. 
rj(@)6(r-Rb) . (41) 

j 

where use has been again made of the approximation pz/ybm % Bjc consistent 

with Eq. (1). 
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A. A l

— w.—w, ex (—iw.T)](33)p3

After some straightforward algebra that utilizes Eqs. (22), (36) and (38),

Eq. (32) can be expressed as

22 A w
a a $1 , _ ‘ _B;L _3; r 31: “ _2 (I) — _ 2 1b.”) 2 1301)) .6(r Rb) ’ (39)

r J J €2i

HI
H

where mil: Aflez nj/m is the plasma frequency - squared of beam

component j, 9: = (wjdflj)(wj+wj) is defined in Eq. (27) and Fj(m) is

defined by

8,—w, 2
Tjfln) =—1+[._:L_.l]

2&.
J

2 A

E 2: w‘fiwj'i‘zsjc (“WT
! l~ ! - “ _ A -“:0 n ( n) w kZBjc+2wj aj [wj wj (40)

Similarly, Eq. (33) can be expressed as

22 A A w .
:‘5; r 5;'- —§] A(r) = - Z ij(r) ggzL>Fj(w)6(r—Rb) . (41)

J i

where use has been again made of the approximation pZ/m Q'Bjc consistent

with Eq. (1).
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As the right-hand sides of the coupled differential equations (39) and 

- ; (4l),are equal to zero except at the surface of the beam r=Rb, they can be 

solved in a straightforward manner to give 

Ck = 2‘(1-ekBj) L - 
j 2-e": 

rjm. - 
J 

(42) 

In the case when the beams are located inside the cylindrical conducting 

wall with radius R,, the term Ck in the left-hand side of Eq. (42) is 

replaced by [1-(Rb/Rc)2]-'Ck. Note that the absolute value of 

w 2r @)/a2 
pj j j 

in Eq. (42) is of the order of unity or less. It follows from 

Eq. (42) that the condition for a nontrivial solution (Cj not all zero) is 

given by 

(43) 

where use has been made of B p=-8e=1 and yb '2<<1, which is consistent with 

present experimental parameters. Equation (42), when combined with Eq. 

(40), constitutes one of the main results of this paper and can be used to 

investigate filamentation stability properties for a broad range of system 

parameters. 

As an example, we restrict the investigation of dispersion relation 

(43) to the case, 'where both beams are in a cold fluid rotational 
,. 

equilibrium characterized by wj+fw.. 
J 

A careful examination of expression 

for rj(u) show that7 

Qinl 2 
L 

0 2 
. 

W.-al. 
3 J c 1 fEi- r (w) = 

2U12 j j - 2(w-kzejci~wj)[w-kzBjcr(e-2)'jI 

(44) 
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l - (w2 m2 /22 9
PP Pe

2 2p Qe) Fp(w) Te(w) = O ,
(43)

where use has been made of Bp=-Be=l and Yb'2<<1, which is consistent with

present experimental parameters. Equation (42), when combined with Eq.

(40), constitutes one of the main results of this paper and can be used to

investigate filamentation stability properties for a broad range of system

parameters.

As an example, we restrict the investigation of dispersion relation

(43) to the case,lwhere both beams are in a cold fluid rotational

equilibrium characterized by wj+t;j- A careful examination of expression

for Pj(m) show that7

lim wz, “,2. (44)
w +¢m -—EJ— rjm) = 133 ‘
jjz _-~_—_*Zlflj 2(m sjc+l)[w kzejc+(£ 2)wj]
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Therefore, in a cold fluid limit, the dispersion relation in Eq. (43) can 

be wnsiderably simplified. After some algebraic manipulation we can show 

that for the fundamental mode perturbation (i.e., a=l>, the dispersion 

relation in Eq. (43) is identical to Eq. (16) obtained within the framework 

of rigid beam model. The stability analysis of Eq. (43) for a broad range 

of harmonic number R and rotational frequency o j is currently under 

investigation by the authors. Nonlinearly the beams become filamentated 

first, then the current filaments of the same sign attract each other to 

form a broader beam. Finally, we conclude this section by pointing out 

that the understanding in broadening in beam cross section by repeating 

interactions of beams is not completed yet. And this area is currently 

under investigation by the authors. 
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III. COLLECTIVE SELF-FIELD EFFECTS 

In this section, we examine the influence of the collective self- 

-5 fields on the electron and positron colliding beams in the storage ring. 

While the forces of the self-generated electric and magnetic field of a 

highly relativistic electron (positron) beam on an electron (positron) 

cancel out to order a(~-*), i.e., Er + BcB,zO(~-2) the forces of the 

electric and magnetic fields of the electron beam on the colliding 

positrons are additive leading to radial acceleration. This effect of the 

collective self-fields of one species on the other species of the colliding 

beams imparts considerable transverse energy, thereby substantially 

increasing the beam transverse dimensions upon collision. In order to make 

the problem simple, we assume that the colliding section of the storage 

ring is straight. The theoretical analysis is carried out, distinguishing 

the two cases, where (a) the particle motions are in a-very coherent orbit 

and (b) the randomness dominates the operational condition of storage ring 

(e-g*, incoherent collision location by fluctuation, etc.). In either 

case, it is found that the self-fields effects play a dominant role in the 

stability behavior of transverse orbit or the expansion of beam cross 

section. For present experimental parameters4 at DESY, the cross section 

of the beam can be expanded to ten times of its original area within 5 

milliseconds operational time. Without loss of generality, we assume in 

Fig. 1 that the front edges of both beams arrive in z=O at time t-0. 

The axial orbit of particles of beam component j is given by 

’ = ‘j+Y (45) 

where the initial position z. is restricted to satisfy 
J 

zj(zj+EjL) < 0 . (46) 
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Here E 
j 

= sgn e. and e. 
J J 

is the charge of the particles of beam component j. 

The particle density profile of beam component j is expressed as 
- 

ny(r,z.t) = nj(r,z)U[(Bjct-z)(z+cjL-BjCt)] , (47) 

where the Heaviside step function U(x) is defined by 

r 

0. xc0 ( 
U(x) = (48) 

1, x>o. 

For a specific choice of the beam density nj(r.z) in Eq. (47), the 

potentials for the self-fields are to be calculated from the Maxwell 

equations. The Poisson equation can be approximated by 

i a -- 
r ar r,z,t) = - 4nle.no(r,z,t) , 

j J J 
(49) 

where $(r,z,t) is the self-electric potential. In obtaining Eq. (49), we 

neglect the term proportional to a2$/a2z, under the assumption that the 

axial length L of the beam is much larger than the beam radius and the 

effects of the leading edge of the beams are thus neglected. Furthermore. 

the z-component of the VxBS(x) Maxwell equation is expressed as 

1 a rar r & AE(r,z,t) = - 4nle.B.no(r,z,t) , (50) 
j J J J 

where Ai(r,z,t) isthe z-component of the self-vector potential. Other com- 

ponents of the vector potential are negligible because of Eq. (1). Defining 

the effective self-potential $y(r,z,zj) =O-B.AS, and making use of Eqs. (45) 
Jz 

(47), (491, and (50), we have 

r 

r,z,zj) = - 87rek $ dr'r'nk(r',z) 
0 

(51) 

x u[(zj-2Z)(2Z-Zj+EkL) 1 , 
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Here §j= sgn ej and ej is the charge of the particles of beam component j.

The particle density profile of beam component j is expressed as

n§<r,z.t) = nj(r,2)U[(Bjct—2)(2+ejL~Bjct)] . (47)

where the Heaviside step function U(x) is defined by

O. x< 0 ,
U(X) = (48)

l, x> O .

For a specific choice of the beam density nj(r.z) in Eq. (47), the

potentials for the self-fields are to be calculated from the Maxwell

equations. The Poisson equation can be approximated by

l 3 3;»§;-r §;-¢(r,z,t) = — 4nZejn§(r,z,t) , (49)
3

where ¢(r,z,t) is the self-electric potential. In obtaining Eq. (49), we

neglect the term proportional to 32¢/822, under the assumption that the

axial length L of the beam is much larger than the beam radius and the

effects of the leading edge of the beams are thus neglected. Furthermore.

the z—component of the VxBS(%) Maxwell equation is expressed as
'\I’\:

l 3 3 s o_.__. __ = - Or 8r r 3r Az(r,z,t) 4n§ej8jnj(r.2.t) , (5 )

where A:(r,z,t) is‘the z-component of the self—vector potential. Other com-

ponents of the vector potential are negligible because of Eq. (1). Defining

the effective self—potential ¢:(r,z,zj) =¢-BjA:, and making use of Eqs. (45)

(47), (49), and (50), we have

r
3 S l v V v

§;-wj(r,z,zj) = — 81rek ;>Jodr r nk(r ,z) (51)

x U[(zj—22)(22—zj+EkL)] ,
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where k#j. In obtaining Eq. (Sl),use has been made of yb -2= (l-+1. 

fn order to make the problem simple, we carry out the analysis in the 

average applied field provided externally by the periodic quadrupole mag- 

netic field, similar to that used in the previous study'. In this regard, 

the applied focussing force can be obtained from the axial component of 

the effective vector potential 

22 AzXt (r) = -(ybm/2eBp) wf r (52) 

where w f is the focussing oscillation frequency determined by the 

quadrupole field gradient. 

The total energy of particles of the beam component j is given by 

l/2 
H= (m2c4+c2p2) + ej$(r,Z,t) 9 (53) 

p\r 
where the lower case p denotes mechanical momentum and is related to the 

2 2 2 l/2 
particle velocity v by v= p/m(l+p /m c ) . Since the r-8 kinetic 

% % Q/ QJ 
energy of particles is small in comparison with the characteristic energy 

ybmc 2 and vj/yb<<l in Eq. (l), it is straightforward to show that Eq. (53) 

can be approximated by 

P2+P2 
H = ybmc2 + x 

1 2 2 
*ybm 

+ ej$g(r,z,zj) + 7 ybm wf r , (54) 

2 2 -l 
where yb = (l-Bj) . From Eq. (54), we obtain the equation of motion for 

z(t) = x(t)+iy(t) (55) 

where i= (-1)1'2. Making use of Eqs. (45) and (55), and 8:=1, the 

equation of motion for particles of the beam component j is given by 

2 
: 8ne2 . Z rr d2Z *i 

(56) 
dz* - 71, Ybmc2 

dr'r'nk(r',z)U[(z j-2z) (2z-zj+EkL> 1 +2 z = 0 
C 
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particle velocity v by v==p/m(l+p2/m c ) Since the r-e kinetic
m m m m

energy of particles is small in comparison with the characteristic energy

)1m2 and vj/Yb<<l in Eq. (1), it is straightforward to show that Eq. (53)

can be approximated by

2 P2232 3 1 2 2
H = mc + EVEEXI+ ejwj(r,z,zj) + E'm wf r , (54)

—l
2 2

where Yb = (l-Bj) - From Eq- (54), we obtain the equation of motion for

Z(t) = x(t)'tiy(t) (55)

/2where i.= (—l)l . Making use of Eqs. (45)and (55), and B§=l, the

equation of motion for particles of the beam component j is given by

2
2 2 fr mf

° ié- dr'r'n (r',z)U[(z,-22)(22-z.+e L)]4“—— Z = O (56)
2 k J 3 k 2

dz y me r o c
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where kfj and z. is defined in Eq. (45). Equation (56) determines the transverse 
J 

position of particles of beam component j, thereby providing the information 
* 

of the particle density nj(r,z), which in turn governs the equations of 

motion for particles of the beam component k. In this regard, the coupled 

differential equation (56) for j=e and p can be used to investigate the 

temporal profile evolutions of various beam properties for a broad range of 

initial parameters. 

As an example, we consider a tenuous positron beam satisfying 

z2 pp << (c/L)2 , (57) 

-2 where w = 
PP 

4nnpe2/ybm is the average positron plasma frequency-squared 

in the laboratory frame. Equation (57) assures that all the electrons 

move on the straight paths with constant radius r during the collision. 

Assuming the electron density profile as 
n 

ne(T,d = 
ney r<% , 

(58) 
0 , otherwise, 

the transverse equation of motion for positron can be expressed as 

2 2 
d2Z w 
- + -z z 
dz2 c2 

lJ[(zp-22)(22-z 
P 

-L)] 
Wf 

+- z = 0 , 
C2 

(59) 

where w 2 
w 

= 4nnee2!ybm is the electron plasma frequency-squared. 

Without loss of generality, we assume that there is one pair of electron 

and positron beams in the entire system, thereby indicating that the whole 

storage ring can be represented by two focusing sectors. Each sector consists 

of a self-beam focusing set (the region in which beams collide) and an 

applied focusing set. The subsequent analysis is carried out distinguishing 

the two cases: (a) the positrons move on a very coherent orbit, and (b) the 
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2 2ww
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dz c p p c

2d Z____ 592 < >’

A

where wge = Annee2(ybm is the electron plasma frequency-squared.
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and positron beams in the entire system, thereby indicating that the whole

storage ring can be represented by two focusing sectors. Each sector consists

of a self—beam focusing set (the region in which beams collide) and an

applied focusing set. The subsequent analysis is carried out distinguishing

the two cases: (a) the positrons move on a very coherent orbit, and (b) the
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axial location of collision as well as the beam length fluctuates incoherently, 

thereby the ensemble average can be feasible. 

- 

A. Stability Analysis of Coherent Positron Orbit 

The stability properties of individual particle orbit can be determined 

from the transformation matrix of one sector8 for a very coherent positron 

orbit. Assuming that a positron has an initial condition Z=Zl and 

2' = (dZ/dz) =Z; at 2= zp/2, it can be shown from Eq. (59) that the transverse 

orbit of this positron is given by 

Z=Zl~~s[(~T/c)(z-zp/2)l+ (Z;clwT)sin[(wT/c)(z-zp/2)1 , (60) 

for zp/2<z<zn/2+L. Here the frequency uT= (w2 +02y2 pe f ' From Eq. (60) 

it is also straightforward to show that the transverse position Z 
2 

and orbit 

slope Z,J of positron, when it emerges from the right-hand side of the 

electron beam, is given by 

COS(OTL/2C) (c/w T )sin(w L/2c) T 
(61) 

-(wT/c)sin(wT /2c) COS(WTL/2C) 

Similarly, when the applied focusing section has been traversed, the 

position and orbit slope are given by 

( z3 
cos@ (c/wf)sinO Z2 

= 
1 1 

z3 1 I( -(w /c)sinO f coso I I- z2 

(62) 

where the phase shift @= f o (S-L)/2c and S is the length of the whole circum- 

ference of storage ring. 

Therefore, from Eqs. (61) and (62),we obtain the trace of the trans- 

formation matrix M for a sector 
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I

2

electron beam, is given by

slope Z of positron, when it emerges from the right-hand side of the

cos(wTL/2c) (c/wT)sin(wTL/2c) Z
= (61)

Z —(mT/c)sin(wT /2c) cos(wTL/2c) 2

Similarly, when the applied focusing section has been traversed, the

position and orbit slope are given by

Z cos® (c/mf)sin® 22
_‘ (62)

1

Z —(wf/c)sin© cos¢ 22

where the phase shift ¢==mf(S-L)/2c and S is the length of the whole circum-

ference of storage ring.

Therefore, from Eqs. (61) and (62),we obtain the trace of the trans-

formation matrix M for a sector
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UTL UT *f @TL 
TrM = 2 cosa cos( 2c -) - (-+-)sin@ sin(x) , (63) 

@f WT - 

which is the sum of the elements of the principal diagonal of the transforma- 

tion matrix M. The necessary and sufficient condition for stable transverse 

orbit is 
8 

I$TrM]zl . (64) 

As a typical example in the present experiment,4 we consider the system 

parameters w pe=lOg rad/sec, L=2cm, 

these parameters into Eq. (63) gives 

which violates the inequality in Eq. 

where n is an integer. We therefore 

and w = f 2~10~ rad/sec. Substituting 

approximately TrM/2 = cos@ -sinQ, 

(64) for the range (n-0.5)n < 0 <nT, 

conclude that the collective self-fields 

effects (ape) of the electron and positron colliding beams play a signifi- 

cant role in the stability behavior of transverse particle orbit. 

B. Expansion of Beam Cross Section with Ensemble Average 

In order to investigate the expansion of beam cross section for uncon- 

trollable collision (incoherent collision location, etc.), we define 

2 * 2 1 1* 
rl = ZIZl + (c/w,) zlzl , (651 

which represents the maximum radial deviation from the axis of symmetry 

before collision. In Eq. (65) , the asterisk (*) denotes the complex 

conjugate. During the collision (zp/2 <z <zp/2+L), the transverse orbit 

of a positron in Eq. (60) can also be expressed as 

Z = A cos[(~,/~)(~-~~/2)+u] , (66) 

where A is the maximum amplitude and c1 is the initial phase angle which is 
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wTL wT wf wTL

Trbi = 2 cos¢ cos(—§EO - q;;4~6;)sin® Sin(—§Efi , (63)

which is the sum of the elements of the principal diagonal of the transforma—

tion matrix M. rThe necessary and Sufficient condition for stable transverse

orbit is

@— $e : 1 . (64)

4
As a typical example in the present experiment, we consider the system

parameters mpe==109 rad/sec, l.=2cm, and u) = ZXI07 rad/sec. Substitutingf

these parameters into Eq. (63) gives approximately TrM/Z =cos® —sin©,

which violates the inequality in Eq. (64) for the range (n-0.5)n <o <nn,

where n is an integer. We therefore conclude that the collective self—fields

effects (wpe) of the electron and positron colliding beams play a signifi—

cant role in the stability behavior of transverse particle orbit.

B. Expansion of Beam Cross Section with Ensemble Average

In order to investigate the expansion of beam cross section for uncon—

trollable collision (incoherent collision location, etc.), we define

* 201*2r1 — ll + (c/wf) 2121 , (65)

which represents the maximum radial deviation from the axis of symmetry

before collision. In Eq.(65) , the asterisk (*) denotes the complex

conjugate. During the collision (Zn/2 <z <zp/2-rL), the transverse orbit

of a positron in Eq. (60) can also be expressed as

Z = A cos[(wT/c)(z-zP/2)4-a] , (66)

where A is the maximum amplitude and a is the initial phase angle which is
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defined by a=tan-l[-(c/tiT)Z;/Zl]. The maximum radial deviation for ranee z 

satisfying zp/2 < z < zp/2+L is determined from 
- 

AA* = r2,/Il+ (Wpe/wf)2sin2al , (67) 

where use has been made of Eqs.'(65) and (66), and w = 
T ( 

w + 02) 1’2 
pe f * From 

Eq. (66), the positron position Z2 and orbit slope Z; can be expressed as 

z2 = A cos[ (wTL/2d +a] 3 

1 
z2 = -A(wT/c)sin[(wTL/2c) +a] 9 

thereby giving the relation 

r2 
( 1 

2 l+(w e/wf)2sin2[ (wTL/2c)+al 
- = 

l+(~~~/w~)~sin~a 
1 (68) 

'1 

from which the maximum radial deviation r2 after collision is determined. 

Depending on the phase angle a, positrons gain (or lose) the 

transverse energy by the collision according to r2/rl>l (or r2/rlil). The 

net gain of the transverse energy (or temperature) by the collision is 

determined from the phase angle average of Eq. (68). We therefore define 

I 
2lT 

<ri/r;>= -& da 
l+(w eiwf)2sin2[(wTL/2c)+cr] 

(69) 
0 1+(w pe/wf)2sin2a 

f (CC) 

for future notational convenience. In Eq. (691, the phase angle distribution 

f(a) is a positive'definite function normalized by 
2n 

da f(a) = 2~. For 
0 

uniform distribution (f=l), we obtain 

<ri/r>= cos(F) + 
l+u2e/24 wTL 

(MU2 /w2Y2 
[l-cos(- c >I- (70) 

pe f 

Evidently, we note from Eq. (70) that the value <ri/r:> approaches unity 
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4»

AA* = ri/[li-(wpe/wf)zsin2a] a (67)

where use has been made of Eqs.(65) and (6b), and wT=s(w -+w:)l/2. From
pe

'

Eq. (66), the positron position 22 and orbit slope 22 can be expressed as

N II A cos[(mTL/2C)'+0] ,
N II —A(wT/c)sin[(wTL/2c)-+a] ,

thereby giving the relation

_2 _ 2 2 , (68)
1+(wpe/wf) sin a

(r )2 1+(wpe/mf)zsin2[(wTL/ZC)+U]

r1

from which the maximum radial deviation r2 after collision is determined.

Depending on the phase angle a, positrons gain (or lose) the

transverse energy by the collision according to r2/r1>1 (or rZ/rl<l). The

net gain of the transverse energy (or temperature) by the collision is

determined from the phase angle average of Eq. (68). We therefore define

2 2
2n 1+(w /w ) Sin [(w L/Zc)+u]2 2 _ 1 pe f T

<r2/rl>— 2'; 0 d0. 2 2 f(a) (69)
1+(wpe/wf) Sln a

for future notational convenience. In Eq.(69), the phase angle distribution

I o I ‘ D D 2 Trf(d) 18 a pos1t1ve definite function normalized by [0 da f(o)==2n. For

uniform distribution (f=l), we obtain

222 w L 1+w /2w w L
<(r2/ri;>= cos( E )-+( 5e 2f1/2 [l-cos(—E—)]. (70)

l+w lw )pe f

Evidently, we note from Eq. (70) that the value <r§/ri> approaches unity
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when the beam length (L) or density (W pe) decreases to zero. Moreover, the 
2 2 

Value <r /r > - 21 is always greater than unity. 

AS a typical example in the present experiment, we evaluate Eq.(70) 

for w 
pe 

=lOg radlsec, L =2cm and wf =2x107 rad/sec. Substituting these 

('701, we find <r:/r:> ~1.025. parameters into Eq. Therefore, in these 

particular parameters, the cross section of the beam is increased by 2.5 

percent of its original area after each collision. However, we assume 

that the positrons are uniformly distributed in the phase angle c1 whenever 

beams start collision, which is consistent with the ensemble average 

scheme. The cross section of the positron beam can be expanded to ten 

times of its original area for <ri/rt> =1.025 after 100 times collisions, 

which corresponds to the operational time (S/2c)log1.025= 5 milliseconds 

for the circumferential legnth S=3x106cm of storage ring. 
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IV. CONCLUSIONS 

In this paper, we have examined the filamentation instability and the 
4 

influence of the collective self-fields on the electron-positron colliding 

beams in the storage ring. In Sec. II, we have investigated the stability 

properties of filamentation instability of electron-positron colliding 

beam. An important conclusion of this stability analysis is that the 

typical growth rate of the filamentation instability is order of the 

electron plasma frequency, thereby severely limiting the electron density 

in a storage ring. Influence of collective self-field effects on the 

electron and positron colliding beams has been investigated in Sec. III. 

The theoretical analysis has been carried out, distinguishing the two 

cases, where (a) the particle motions are in a very coherent orbit and (b) 

the randomness dominates the operational condition of storage ring (e.g., 

incoherent collision location by fluctuation, etc.). In either case, it 

has been found that the self-fields effects play a dominant role in the 

stability behavior of transverse orbit and the expansion of beam cross 

section. 
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