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ABSTRACT

The filamentation instability of the electron and positron
colliding beams in a storage ring are investigated within the
framework of the rigid beam model and the Vlasov-Maxwell equa-
tions, and closed algebraic dispersion relations for the complex
eigenfrequency w are obtained. It is shown that the typical
growth rate of instability i1s a substantial fraction of the
electron plasma frequency wpe’ thereby severely limiting the
electron density in a storage ring. Moreover, the ipfluence of
collective seif-field effects on the electron and positron col-
liding beams in the storage ring is investigated. The analysis
is carried out, distinguishing the cases, where (a) the particle
motions are in a very coherent orbit, and (b) the randomness
dominates the operational condition of a storage ring (e.g., the

incoherent tollision location by small fluctuation, etc.) In
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either case, it is shown that the self-fields effects play a

dominant role in the stability behavior of transverse orbit or

-

the expansion of the beam cross section.
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INTRODUCTION

-

There is a growing interest in the equilibrium and stability properties
of the electron-positron colliding beams in a storage-ring facility.1-3 A
recent experimént4 with colliding electron;positron beams at DESY has shown
the broadening of the beam cross section, thereby leading to reduction of
luminosity. To address this serious problem, we examine the filamentation
instability3 of electron-positron beams and the influence of the collective
self-field5 on the electron-positron colliding beams in the storage ring.
For the analytic simplicity, we assume that beams have cylindrical shape
and are azimuthally symmetric in the equilibrium state. Equilibrium and
stability properties of planar geometric beams are to be presentd in a
subsequent publication.

In Sec. II, we treat the filamentation instability3

of colliding
electron~-positron beams with finite-geometry effects included. Stability
analysis of dipole oscillation is carried out in Sec. II.A, within the
framework of a rigid beam model, which provides a simple instructive
description. In Sec. II.B, the analysis for the high harmonic perturba-
tions with %282 (where & is azimuthal harmonic number) is carried out within
the framework of the Vlasov-Maxwell equations. An important conclusion of
the present analysis is that the typical growth rate of the filamentation

instability is of the order of the electron plasma frequency w thereby

pe’

severely limmiting the electron density in a storage ring. However, the
analysis of broadening of beam cross section by repeating interaction bet-
ween electron and positron beams is not completed yet.

5

The influence of the collective self-fields” on the electron and posi-

tron colliding beams in the storage ring is investigated in Sec. III. The
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theoretical analysis is carried out, distinguishing the two cases, where
(a) the particle motions are in a very coherent orbit and (b) the random-
ness‘;ominates the operational condition of storage ring (e.g., incoherent
collision location by fluctuation, etc.). 1In either case, it has been

found that the self-fields effects play a dominant role in the stability

behavior of transverse orbit and the expansion of beam cross section.
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II. FILAMENTATION INSTABILITY

-

Electron and positron colliding beams in storage ring are likely sub-
ject to various macro- and micro-instabilities.3’6 Perhaps one of the most
important instabilities of the electron aﬂd positronhcolliding beam in a
storage ring is the filamentation iInstability. The unstable modes
propagates nearly perpendicular to the beam with mixed electrostatic and
electromagnetic components, the latter destabilizing and the former
stabilizing. The perturbed magnetic field is mostly in the plane perpen-
dicular to the beam and the Lorentz force causes the beam to filamentate,
similar to the Weibel instability. Unlike the Weibel modes, which are
purely electromagnetic for counter-streaming electron beams, the linear
perturbations of colliding electron-positron beams cause both charge and
current perturbations giving rise to mixed polarizations. Furthermore, for
the case of colliding-beams with radial dimension smaller than the colli-~

sionless skin depth c¢/w_, the finite geometry becomes important and the

p?
usual assumption of infinite, homogeneous medium is no longer valid. 1In
this paper, we treat the filamentation instability of colliding
electron~positron beams with finite geometry effects included. TFor sim-
plicity, we assume in this section that this colliding beam is straight and
infinite along the axial direction.

The analysis is carried out within the framework of both the rigid
beam model and the Vlasov-Maxwell equations. As illustrated in Figt 1, the
equilibrium configuration consists of intense relativistic electron and
positron beams propagating opposite to each other with axial velocity

~ ~

Bp ce, for the positron beam and Be ce, for the electron beam, where

A

g, is a unit vector along the z-direction and c¢ is the speed of light in
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vacuo and Bp=—5e. Moreover, both beams have the same radius Ry and the

" same characteristic energy Yy mcz. It is also assumed that the ratio of

-

the beam radius to the collisionless skin depth c/wp is small, i.e.,

' e2 1 ‘
=N, —; — << 1 , (1)
J mc2 Yb

cﬁLAF‘

where j=e,p denote electrons and positrons, respectively, vj is Budker’s
parameter, Nj = 27 f: dr r n? (r) is the number of particles per unit
axial length, ng(r) is the equilibrium particle density of beam component
j, -e and m are the charge and rest-mass, respectively, of electron. As
shown in Fig. 1, we introduce a cylindrical polar coordinate system
(r,6,z). All equilibrium properties are assumed to be azimuthally sym-

metric (9/36=0) and independent of axial coordinate (3/0z=0).

A. Rigid Beam Model

In order to illustrate the physical mechanism of this filamentation
instability, we carry out the stability analysis in this section within the
framework of a "rigid beam" model. For the purpose of analytic simplica-
tion, we also specialize to the case of sharp-boundary profiles in which
the equilibrium density profiles are rectangular, i.e.,

b’

nd(ry = (2)
J 0, otherwise,

nj = const, 0<r<R

where j=e and p. Making use of Eq. (2), it is straightforward to show
that the equilibrium radial electron field produced by particles of species

j is given by
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~

2Te n.r , O<r<R, ,
B, () = I3, b (3)
- 2ﬂejanb/r , r>Rb ,

where ey is the charge of particles of beam component j (i.e., ej=-e for
j=e and ej=e for j=p). Similarly, the equilibrium azimuthal magnetic field

produced by particles of species j can be expressed as

~

2ne, n . B.,r O<r<R, ,
i3y b

Byg(r) = (4)

” 2
2ﬂejnj8ij/r . r>Rb ,

where Vj=8jc is the axial drift velocity and c is the speed of light in
vacuo.

In the subsequent analysis, we introduce the center of mass
coordinates (Xj,Yj) for the beam component of specis j. 1In the equilibrium

state, we assume that
X.,Y,) = (0, 0) , 5
( 5° J) (0, 0) (5)
for j=e, and p. It is also assumed that
2 2 2
X, +Y, << . 6
3 Y <R (6)

The restriction to small perturbation amplitudes makes the subsequent sta-
bility analysis tractable. The transverse motion of a single particle of
species j is determined approximately from

2

4 =e, (E+

m r
34273 3

Olv—

d
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where Ej = (Xj’yj) is the position coordinate for a particle of species j
and E and B are the total electric and magnetic fields, and my=Y m is the
relativistic mass. Assuming E and B can be approximated by their equili-
brium values, we substitute Eqs. (3) and (4) into Eq. (7). The equation of
motion for the x direction can be expressed as
2 A
m, 4= x. = 21e L me {1 -8.8 J(x, - XkJ . (8)
3 qp2 3 SR 3
dt k
Neglecting momentum spread, Eq. (8) can be averaged over the beam cross
section. After some straightforward algebra, we obtain the approximate
equation for average motion on the x direction,
d2 A
\ 3
my X —Zﬂej L nkek(l - Bjek)(xj xk) . (9)
dt k
Similarly, the equation for average motion in the y direction is given

by
d2 ~
dt k
Defining
Z, =X, + iy, (11)
| 3

and making use of Egs. (9) and (10), we obtain

gy m et ) ey, (1-88,)(z, - 7,)
—_— 2, = e 1-8.8 Z, - 12 . (12)
dt2 j mj K e € jk j k
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We seek oscillatory wave solutions to Eq. (12) of the form

-y

A

Zj = Zj exp {i[kz[z + Bjc t) - wtji (13)

where w is the complex eigenfrequency, Zj = const is the perturbed ampli-

tude, and the axial wavenumber k, 1s limited to the range

R

N N
o N

<1 . (14)

Equation (14) assures the approximate validity of Eq. (12) for wave pertur-

bations with 9/9z%0. Substituting Eq. (13) into Eq. (12), we obtain

2ne A 2re A -
_ 9 . ) ~ . ‘
[(w szjc) +-—;;l % nkek(l BjBk)J Z —;;l % nkek[l-BjBk) Zk . (15)

Equation (15) gives two homogeneous equations relating the amplitudes Ze

and Zp . Setting the determinant of the coefficients of Z, equal to zero

]
gives 2x2 matrix dispersion equation that determines the complex eigenfre-

quency w. After some straightforward algebra, we obtain the dispersion

relation
o+ ie)? =2 (a )l - k)2l ] ol () . ae

where w;e = 4ﬂe2ne/me is the electron plasma frequency-squared and use
has been made of Be=—8e:1, which is consistent with present experimental
parameters.

Assuming that both electron and positron beams have the same density,
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and defining

a = kzc + wpe . b = kzc - wpe s (17)

we simplify the dispersion relation in Eq. (16) as

2 2y, 2 .2y _ 4
(') (w™b") =0 s (18)

which provides a necessary and sufficient condition

w® > a%? = (x

22
pe z

2 2
c -wpe) (19)
for instability. For the unstable branch, the perturbation is purely

growing with the growth rate

2.2 2 1/2 2.2 1/2
o, = T = {[(B5) +ud ] -2 (20)

The maximum growth rate of instability can occur at a=0 or b=0, thereby

giving

, _ 1/2 1/2 - ,
[wi]m = [5 2) wpe ~ 0.5 wpe . (21)
For colliding beams interacting over a finite distance L, the axial
wavenumber k, is kz=2ﬂn/L where n=1,2,.... In this case, the condition for
a=0 becomes pre/c=2ﬂn. The finite interaction length also imposes a

severe condition for the instability to grow significantly before the beam

exit. Although a small growth of perturbations during omne individual
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interaction of electron and positron beams, we expect that due to this
filamentation instability, the repating interactions between both beams
“even;;ally convert the longitudinal energy of the beams into the transverse
energy of beams and the field energy of perturbations, thereby broadening
the beam crossvsectidn and leading to reduétion of luﬁinosity. However,

the analysis of broadening of beam cross section 1s particularly difficult

and is currently under investigation by the authors.

B. Vlasov Description

In the previous section, we have investigated the stability properties
of dipole oscillation in the transverse instability for the electron and
positron colliding beams, within the context of rigid beam model. Although
a dipole oscillation in a rigid beam model provides a simple instructive
description, it is necessary to investigate stability properties for
perturbations with high azimuthal harmonic number £22 within the framework
of the Vlasov-Maxwell equations.

For beams of well-defined energy and momentum, an equilibrium
associated with the steady-state (9/9t=0) beam distribution function,

~

n ~
0 -1 - 2 »
fj(H,Pe,Pz) FiYom 5[H-ij9 Y me )G(Pz meﬁjcj , (22)

i

is particularly suited for stability analysis, where the total energy,
2 4 2_2,1/2
Ho= (n%™ + ep")7 T+ 250, (r), (23)

the canonical angular momentum,
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Pe = rpg ’ (24)

e

and the axial canonical momentum

P = ﬁz + (ej/c)Az(r) , (25)

are the three single-particle constants of the motion in the equilibrium
fields, and wj is the beam rotational frequency of species j and ;j is a
constant. In Eqs. (23)-(25), ¢o(r) is the equilibrium self-electric
potential, Ai(r) is the axial component of vector potential for the
azimuthal self-magnetic field, and p = (pr,pe,pz) denotes mechanical
momentum and is related to the particle velocity ¥

by g=(2/m)(1+g2/m2c2)-1/2.

Since the r-6 kinetic energy of particles is small in comparison with

the characteristic energy mecz, it is straightforward to show that the

term H-ije in Eq. (22) can be approximated by7
P 2
2 1l 1 2 2
- = D ——— -_— 2
H ije mec + Zme + 2 Ybnfj r-, (26)
where
2 2,-1 2
Yb = (1_8 J » P TP + (Pa - mew-rj s
and
2 (0 - 2 ey - ]
Q) = (W, = Jlw, 0, ) = w0 - e (1-8.B ) » 27)
3 (J J)(J J) 3 me%nkk( ik (
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In Eq. (27), the laminar rotation frequency wj is defined by

- ~ e, - 1/2
Wy = [- —1me IZ( n, e, (1-8j8k)] . (28)

Substituting Eq. (26j into Eq. (22), we find the equilibrium particle

density profile

o 3 o
nj(r) = [dp £ (H,Pg,P))
nj . 0<r<Rb s
= (29)
0, otherwise,
where the beam radius Ry is defined by
2 2,° 2
= - 2
R, = 27y, v ) vy ; (30)

for j=e,p. Equation(30) ensures that the electron and positron beams have
the common beam radius Rb‘ It is important to note from Eqs. (27) and (30)
that the radially confined equilibrium exists only for the rotational

frequency w; satisfying

3

W, W, <W, . (31)

Additional equilibriium properties associated with the distribution
function in Eq. (22) are discussed in Ref. 7.

In order to obtain the dispersion relation for filamentation
instability of the electron and positron beams, we make use of the

linearized Vlasov-Maxwell equations. For perturbations with azimuthal
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harmonic number £ and axial wavenumber kz, a perturbed quantity 6¢(x,t)
can be expressed as 6¢(5,t)=;(r)exp{i(26+kzz-wt)} , where w 1s the complex
“eige;%requency. The present stability analysis is carried out in long
parallel wavelength and low frequency perturbation satisfying k§R§<<£2+l,
Iwa/c|2<<£2+1 . With this aésmption, thé axial comﬁonents of perturbed

field Ez(r) and Bz(r) are negligible and the Maxwell equations of perturbed

potentials can be expressed as

2 .

13 ) 2 -
Emrn - i@ = mm (32)
and
Cl_é_ r 2 _.&i) Ar) = =5 3 0y (33)
r or or r2 T T Yz

where %(r) is the perturbed electrostatic potential, ;(r) is the perturbed
charge density, ;(r) and 3Z(r) are the axial components of the perturbed
vector potential and current density, respectively. Components of
perturbed fields can be expressed in terms of &(r) and A(r) as

By = ~126(r) /r, E_(r) = - (3/31)6(x), B_(r) = 4A(r)/r, and

gs(r) = —(B/Br)g(r).

In order to calculate perturbed charge and current densities, we solve

the linearized Vlasov equation to obtain the perturbed distribution

function7
0
~ e.me of ~ )
f.(r =12 _J y.(r) + (w-4w .-k B.c
352 P, 3p, { j ( iz]

0 (34)
x J dt 1 wj(r Yexpli £ (6 -e)-i(w-kzsjc)r]} .
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where the perturbed electrostatic potential wj(r) in the frame of

reference moving with velocity Bjc is defined by wj(r)=¢(r)—BjA(r) and use

has been made of pz/me=Bj consistent with Eq. (1). It is useful to
introduce the polar momentum variables (pl,¢) in the rotating frame
defined by Py + mewjy =P cosd, py - mewjx =P sind. Note also that
the Cartesian coordinates (x,y) are related to the polar coordinates (r,9)
by x=r cos® and y=r sinf. 1In this context, the transverse equation of

motion of particles can be expressed as’

A ~ ~ ~

x (1) = ([1/w /Y. m)cosd sin w,T - rw,sinfsinw,T + rw,cosbcosw,T
(0) = (1/w )@, /ym)cose 5 5 3 3 41
) = (1/w ) /Y.m)sindsinw ., T + rw,cos9sinw.T + rw.sinBcosw.Tl-
y (1) =« J(plb) 3 i ; ; ;
(35)
where T=t’-t, and the harmonic frequency mj is defined in Eq. (28).
Upon integration of Eq. (34), the perturbed charge density can be

found to be

o
A 2 2 00 oo L af. A 2’ J
p(r) = 2me” ) meJ dp, p; ap_p 37 H)J. (r) + (w- wj-kzsjcjlj .
j 0 —o + 7L
(36)
where the orbit integral Ij is defined by
ZTTQ O - ’
I, =41 dr v, (r*)exp {i[2(6 -6)~(wk B c)T]} . (37)
] o &, ] z J

Similarly the perturbed axial current density can be obtained. For

analytic traceability, we will consider here a class of special solutions
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for which the perturbed charge and current density are localized on the
beam surface, i.e., equal to zero except at r=R,. More general
ﬁertu;%ations, particularly the body wave perturbations, are to be
presented in a subsequent publication. In this case, it follows from Egs.
(32) and (33) thét the-function‘wj(r) has the simple form @j(r) =
%(r)—Bj;(r) = erg for O<r<Rb. Substituting Eq. (35) into Eq. (37) it is

readily shown that

iwj(r) ~ -
Ij = ZEET;E-J_m dT exp[—l(w—szjc)T][(wj+wj)exp(1wjr)
b (38)

A ~ Q/
- (w,-w,)exp(-iw,T)]
(J J) p( i
After some straightforward algebra that utilizes Eqs. (22), (36) and (38),

Eq. (32) can be expressed as

2
2 - w .
1 3 3 L\ - _PJ -
—I: —a—; r ?{ - _2 (r) - = z w(r) 2 TJ(U)) 6(r R‘b) ’ (39)
r J J Qj

~

2 2
wher we = 4me” n. /Y
°re b3 i"'®

~ ~

m is the plasma frequency - squared of beam

component j, Qz= (w,=w, ) (W +w

is defined in Eq. (27) and T.(w) is
jjJJj) q. (27) J(

defined by
0, —w R w—Lw k B +o.\n
. . - - c LW,
T (w) =_1+(_.LA__1] Z h| ]
] 20, ) 2 n'(1~n)' w-k B cHeb, —2nw [w.—w. (40)
J n= h| j J 1
Similarly, Eq. (33) can be expressed as
) 2
1 3 3 2 - EJ
T3 F3p T —2] A(r) = Z B w (r) T, (w)G(r—R_b) . (41)

r ] JRb

where use has been again made of the approximation P, /y m B ¢ consistent

with Eq. (1).
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As the right~hand sides of the coupled differential equations (39) and
. (41), are equal to zero except at the surface of the beam r=Rb, they can be

solved in a straightforward manner to give

. . 2
w .,
c, = 1(1-88.) 2L 1 (u)c (42)
k : . -
g K 2293? 3]

In the case when the beams are located inside the cylindrical conducting
wall with radius Rc’ the term Ck in the left-hand side of Eq. (42) is
replaced by [1-(Rb/Rc)2]—ICk- Note that the absolute value of

wpgrj(w)/ﬂé in Eq. (42) is of the order of unity or less. It follows from

Eq. (42) that the condition for a nontrivial solution (Cj not all zero) 1is

given by -

2 2
w__w
PP Ppe

2 .2 2
1-¢( /2 Qp Qe) Fp(w) Fe(w) =0,

(43)

where use has been made of Bp=-Be=l and Yb'2<<1, which 1s consistent with
present experimental parameters. Equation (42), when combined with Eq.
(40), constitutes one of the main results of this paper and can be used to
investigate filamentation stability properties for a broad range of system
parameters.

As an example, we restrict the investigation of dispersion relation
(43) to the case, ‘where both beams are in a cold fluid rotational

equilibrium characterized by *iwj- A careful examination of expression

b
for Pj(w) show that/

gim . | . Wl (44)
m,+1mj —Pl T.(w) = PJ -

J J _ _ -~ _ _ _ ~
229, _ 2 (w szjc+2wj)[w szjc+(£ 2)wj]
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Therefore, in a cold fluid limit, the dispersion relation in Eq. (43) can

_ be considerably simplified. After some algebraic manipulation we can show
that for the fundamental mode perturbation (i.e., £=1), the dispersion
relation in Eq. (43) 1is identical to Eq. (16) obtained within the framework
of rigid beam model. The stability analysis of Eq. (43) for a broad range
of harmonic number £ and rotational frequency wj is currently under
investigation by the authors. Nonlinearly the beams become filamentated
first, then the current filaments of the same sign attract each other to
form a broader beam. Finally, we conclude this section by pointing out
that the understanding in broadening in beam cross section by repeating

interactions of beams is not completed yet. And this area is currently

under investigation by the authors.
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ITI. COLLECTIVE SELF~FIELD EFFECTS

In this section, we examine the influence of the collective self-
fiei;ss on the electron and positron colliding beams in the storage ring.
While the forces of the self-generated electric and magnetic field of a
highly relativistic electron (positron) béam on an eiectron (positron)
cancel out to order O(Y-z), i.e., Er + BCB6=0(Y_2) the forces of the
electric and magnetic fields of the electron beam on the colliding
positrons are additive leading to radial acceleration. This effect of the
collective self-fields of one species on the other specles of the colliding
beams imparts considerable transverse energy, thereby substantially
increasing the beam transverse dimensions upon collision. In order to make
the problem simple, we assume that the colliding section of the storage
ring is straight. The theoretical analysis is carried out, distinguishing
the two cases, where (a) the particle motions are in a-very coherent orbit
and (b) the randomness dominates the operational condition of storage ring
(e.g., incoherent collision location by fluctuation, etc.). In either
case, it is found that the self-fields effects play a dominant role in the
stability behavior of transverse orbit or the expansion of beam cross

4

section. For present experimental parameters” at DESY, the cross section

of the beam can be expanded to ten times of its original area within 5
milliseconds operational time. Without loss of generality, we assume in

Fig. 1 that the front edges of both beams arrive in 2z=0 at time t=0.
The axial orbit of particles of beam component j is given by
z = z,+8,ct (45)
] |
where the initial position zj is restricted to satisfy

z.(z,+e.L) <0 . (46)
it



134

Here §j= sgn ej and ej is the charge of the particles of beam component j.

The particle density profile of beam component j is expressed as

-

n?(r,z\w = nj(r,Z)U[(Bth—Z)(z+st~Bjct)] . 47)

where the Heaviside step function U(x) is defined by

0. x<0 ,
U(x) = (48)
1, x>0 .

For a specific choice of the beam density nj(r,z) in Eq. (47), the
potentials for the self-fields are to be calculated from the Maxwell

equations. The Poisson equation can be approximated by

1 9 3
plevnl s 5;-¢(r,z,t) = - 4wzejn§(r,z,t) R (49)
J

where ¢(r,z,t) is the self-electric potential. In obtaining Eq. (49), we
neglect the term proportional to 82¢/822, under the assumption that the
axial length L of the beam is much larger than the beam radius and the
effects of the leading edge of the beams are thus neglected. Furthermore,

the z-component of the VxBS(z) Maxwell equation is expressed as
NN

—_— T — As(r,z,t) = - Z&TTZe,B.nC,)(r,Z,t) [ (SO)

s ,

where Az(r,z,t) is 'the z-component of the self-vector potential. Other com-
ponents of the vector potential are negligible because of Eq. (1). Defining
the effective self-potential wi(r,z,zj) =¢-8jA2, and making use of Egs. (45)

(47), (49), and (50), we have

r

9 .S
5;-wj(r,z,zj) = - 87ne l—f dr'r'n

- (r',z) (51)
(o]

k

x U[(zj-ZZ)(Zz-zj+€kL)] )
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where k#j. In obtaining Eq. (51), use has been made of yg_2= (1—6§)<<1.

In order to make the problem simple, we carry out the analysis in the

average applied field provided externally by the periodic quadrupole mag-
netic field, similar to that used in the previous study6. In this regard,
the applied focussing force can be obtained from the axial component of

the effective vector potential

22

Aext (r) = _(me/ZeBp) we T (52)

Z

where we is the focussing oscillation frequency determined by the

quadrupole field gradient.

The total energy of particles of the beam component j is given by

1/2
2
H= @c'+c?p?d) + e 4(r,2,0), (53)
Y]

where the lower case p denotes mechanical momentum and is related to the

2 2,1/2

particle velocity v by v==p/m(l+p2/m ¢ Since the r-6 kinetic
n VY "

energy of particles is small in comparison with the characteristic energy

ybmc2 and vj/Yb<<l in Eq. (1), it is straightforward to show that Eq. (53)
can be approximated by
p2+p2
2 X s 1 2 2
H = Y me + E;;EX'+ ejwj(r,z,zj) + 3 Y W r (54)
2 2 71
where y, = (l—Bj) . From Eq. (54), we obtain the equation of motion for
z(t) = x(t) +iy(t) (55)

2

where i= (—l)l/ . Making use of Eqs. (45) and (55), and B§=l, the

equation of motion for particles of the beam component j is given by

2

2 2 ,~r wf
9—%+ 8"62 : -% J dr'r'nk(r',Z)U[(Z.—ZZ)(Zz-zj+skL)] +—52=0 (56

dz Yy, mc r o J c
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where k#j and zj is defined in Eq. (45). Equation (56) determines the transverse
position of particles of beam component j, thereby providing the information

o% the‘éarticle density nj(r,z), which in turn governs the equations of

motion for particles of the beam component k. In this regard, the coupled
differential equation (56) for jﬁe and p caﬂ be used td investigate the

temporal profile evolutions of various beam properties for a broad range of

initial parameters.

As an example, we consider a tenuous positron beam satisfying

ol << (c/L)2 R (57)
PP

where aip = 4ﬂﬁpe2/ybm is the average positron plasma frequency-squared
in the laboratory frame. Equation (57) assures that all the electrons

move on the straight paths with constant radius r during the collision.
Assuming the electron density profile as

ne, r<Rb s (58)

n (r,z) =
e ,
0 , otherwise,

the transverse equation of motion for positron can be expressed as

dZZ w2e wﬁ
S22 4+ 227 y[(z ~22)(2z-z -L)] +—= 2 =0, (59)
d22 c2 P P c2

where wie = 4ﬂ;ee2(ybm is the electron plasma frequency-squared.

Without loss of generality, we assume that there is one pair of electron
and positron beams in the entire system, thereby indicating that the whole
storage ring can be represented by two focusing sectors. Each sector consists
of a self-beam focusing set (the region in which beams collide) and an
applied focusing set. The subsequent analysis is carried out distinguishing

the two cases: (a) the positrons move on a very coherent orbit, and (b) the
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axial location of collision as well as the beam length fluctuates incoherently,

thereby the ensemble average can be feasible.

A. Stability Analysis of Coherent Positron Orbit

The stability properties of individual particle orbit can be determined

from the transformation matrix of one sector8 for a very coherent positron

orbit. Assuming that a positron has an initial condition Z=Z1 and
Z'==(dZ/dz)==Zi at z==zp/2, it can be shown from Eq. (59) that the transverse

orbit of this positron is given by

z=2)cosl (wp/e) (z-z /2] + (Zyc/up) sinl up/e) (=2 /D] (60)
for z /2<z<z /2+L. Here the frequenc = ( 2 + 2)1/2 From E (60)
P o . q Y wp Whe we . q.

it is also straightforward to show that the transverse position 22 and orbit

1

slope 22

of positron, when it emerges from the right-hand side of the

electron beam, is given by

z, cos(wTL/Zc) (c/wT131n(wTL/2c) Z1
= (61)
! 1
Z, —(mT/c)51n(mT /2¢) cos(mTL/ZC) Zy
Similarly, when the applied focusing section has been traversed, the
position and orbit slope are given by
Z3 cosd (c/mf)sin® 22 ’
= (62)
1
Z; —(wf/c)sin® cosd 22

where the phase shift ¢==wf(S-L)/2c and S is the length of the whole circum-
ference of storage ring.
Therefore, from Eqs. (61) and (62), we obtain the trace of the trans-

formation matrix M for a sector
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_ STy fygine sin(—— 63
TrM = 2 cosd cos( C) (w +- )sing Sm(2C s ( ‘)

-

which is the sum of the elements of the principal diagonal of the transforma-

tion matrix M. . The necessary and sufficient condition for stable transverse

orbit is

T TrM[ <1 . (64)

4
As a typical example in the present experiment, we consider the system

= ZXI07 rad/sec. Substituting

parameters wpe= 109 rad/sec, L =2cm, and g

these parameters into Eq. (63) gives approximately Tr M/2 =cos¢ =-sind,

which violates the inequality in Eq. (64) for the range (n-0.5)7 <¢ <nam,
where n is an integer. We therefore conclude that the collective self-fields
effects (wpe) of the electron and positron colliding bgams play a signifi-

cant role in the stability behavior of transverse particle orbit.

B. Expansion of Beam Cross Section with Ensemble Average

In order to investigate the expansion of beam cross section for uncon-

trollable collision (incoherent collision location, etc.), we define

2 _ * 22' 1¥
r] = ZlZl + (c/wf) 121 . (65)

which represents the maximum radial deviation from the axis of symmetry
before collision. 1In Eq.(65) , the asterisk (*) denotes the complex

conjugate. During the collision (zp/2 <z <zp/2-+L), the transverse orbit

of a positron in Eq. (60) can also be expressed as
Z=A cos[(wT/c)(z—zp/2)4-a] R (66)

where A is the maximum amplitude and o is the initial phase angle which is
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. -1 '
defined by o = tan [—(c/wT)Zl/Zl]. The maximum radial deviation for rance z

satisfying zp/Z <Z‘<Zp/2'+L is determined from

-

AA* = ri/[u (wpe/wf)zsinza] , (67)

where use has been made of Egs. (65) and (66), and wT=é(w -+w§)1/2. From
pe
)

Eq. (66), the positron position 22 and orbit slope 22 can be expressed as

N
fl

A cos[(wTL/2C)'+d] s

N
1l

—A(wT/c)sin[(wTL/Zc)-+a] ,

thereby giving the relation

e ) (68)

(r2)2 l+(wpe/wf)zsin2[(wTL/ZC)+a]
1

1+(wpe/wf)zsin2a

from which the maximum radial deviation r, after collision is determined.
Depending on the phase angle a, positrons gain (or lose) the

transverse energy by the collision according to r2/r1>1 (or rz/rl<1). The

net gain of the transverse energy (or temperature) by the collision is

determined from the phase angle average of Eq. (68). We therefore define

2 2
2n 14w Jw.) sin"[(w.,L/2c)+u]
2,2 1 pe’“s T
<r2/rl>- 2—TT- o da

5 5 £(c) (69)
1+(wpe/wf) sin“o

for future notational convenience. In Eq. (69), the phase angle distribution
. . I3 ‘ I3 2 Tr ’
f(a) is a positive definite function normalized by J da f(a) = 2n. For
o .

uniform distribution (f=1), we obtain

2

2
2 WL 1+~ /2w WL
<r2/r15= cos ( z )+( 12)e 2f1/2 [1'°°S(%)]' (70)
4w, Jwy)
pe’ f

Evidently, we note from Eq. (70) that the value <r§/ri> approaches unity
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when the beam length (L) or density (wpe) decreases to zero. Moreover, the
2,2
uvalugh<r2/rl> is always greater than unity.

As a typical example in the present experiment, we evaluate Eg. (70)

for wpe==109 rad/sec, L= 2cm and wf==2><107 rad/sec. Substituting these
parameters into Eq. (70), we find <r§/ri> =1,025. Thérefore, in these

particular parameters, the cross section of the beam is increased by 2.5

percent of its original area after each collision. However, we assume

that the positrons are uniformly distributed in the phase angle o whenever
beams start collision, which is consistent with the ensemble average
scheme. The cross section of the positron beam can be expanded to ten
times of its original area for <r§/ri> =1.025 after 100 times collisionms,
which corresponds to the operational time (S/2c)logl.025=5 milliseconds

for the circumferential legnth S==BX106cm of storage ring.
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IV. CONCLUSIONS

In this paper, we have examined the filamentation instability and the
influence of the collective self-fields on the electron-positron colliding
beams in the storage ring. In Sec. II, we have investigated the stability
properties of filamentation inétability of‘electron—pésitron colliding
beam. An important conclusion of this stability analysis is that the
typical growth rate of the filamentation instability is order of the
electron plasma frequency, thereby severely limiting the electron density
in a storage ring. Influence of collective self-field effects on the
electron and positron colliding beams has been investigated in Sec. III.
The theoretical analysis has been carried out, distinguishing the two
cases, where (a) the particle motions are in a very coherent orbit and (b)
the randomness dominates the operational condition of storage ring (e.g.,
incoherent collision location by fluctuation, etc.). In either case, it
has been found that the self-fields effects play a dominant role in the

stability behavior of transverse orbit and the expansion of beam cross

section.
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FIGURE CAPTION

Fig. 1 System configuration and coordinate system.
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