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Abstract

Imaginary-time evolution is a powerful tool for obtaining the ground state of a
quantum system, but the complexity of classical algorithms designed for simulating
imaginary-time evolution will increase significantly as the size of the quantum system
becomes larger. Here, a probabilistic quantum algorithm based on Taylor expansion
for implementing imaginary-time evolution is introduced. For Hamiltonians
composed of Pauli product terms, the quantum circuit requires only a single ancillary
qubit and is exclusively constructed using elementary single-qubit and two-qubit
gates. Furthermore, similar principles are used to extend the algorithm to the case
where the Hamiltonian takes a more general form. The algorithm only requires
negligible precomputed numerical calculations, without the need for complex
classical pre-mathematical calculations or optimization loops. We demonstrate the
algorithm by solving the ground state energy of hydrogen molecules and Heisenberg
Hamiltonians. Moreover, we conducted experiments on real quantum computers
through the quantum cloud platform to find the ground state energy of Heisenberg
Hamiltonians. Our work extends the methods for realizing imaginary-time evolution
on quantum computers, and our algorithm exhibits potential for implementation on
near-term quantum devices, particularly when the Hamiltonian consists of Pauli
product terms.

Keywords: Quantum algorithm; Linear combination of unitaries; Imaginary-time
evolution; Ground state simulation

1 Introduction

Imaginary-time evolution (ITE), functioning as a mathematical tool, has exerted a signif-
icant influence on various conundrums within quantum physics. This encompasses tasks
like resolving the ground state of a Hamiltonian [1-17], analyzing properties at finite tem-
peratures [9, 18], simulating dynamics in real-time [19, 20], and executing quantum sim-
ulations for non-Hermitian systems [21, 22]. Utilizing a classical computer, we have the
capability to simulate imaginary-time evolution through the evaluation of the propagator,
subsequently applying it to the wave function of the system. Furthermore, a range of as-
sociated classical techniques are available, including quantum Monte Carlo [20, 23, 24],
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density matrix renormalization group [25, 26], and tensor networks [27]. However, the
dimension of the Hilbert space experiences exponential growth in tandem with the scale
of the quantum system, rendering the tasks unmanageable for classical computers [28].

The quantum computer stands as a promising instrument for the efficient simulation of
quantum systems [29-31]. However, realizing the ITE operation on a quantum computer
is not as straightforward as its counterpart on a classical computer, owing to the non-
unitary nature of ITE [32]. This characteristic renders a direct implementation through a
sequence of elementary quantum gates impossible. There are primarily three indirect but
practical methods to implement ITE on a quantum computer. The first method known
as variational ITE (VITE) [5-7, 33, 34] employs the framework of variational quantum
algorithms. Initially, it addresses the optimization parameters of a unitary ansatz using
McLachlan’s variational principle on a classical computer [35]. Subsequently, the param-
eters within the ansatz circuit are refined to generate a converged state, approximat-
ing the actual ground state [36]. The second method, known as quantum ITE (QITE)
[8-10, 37, 38], employs classical methods to solve the linear equation. Subsequently, it
embarks on a variational quest to identify a unitary process that provides a close approx-
imation to the exact evolved states. The third method, known as probabilistic ITE (PITE)
[12-14, 39-41], exploits measurements to implement non-unitary operations. Through
the application of unitary operations within the expanded Hilbert space, one can achieve
the intended final state within a specific subspace of the ancillary qubits.

The three types of ITE mentioned above are not necessarily mutually exclusive. In fact,
there are mathematical connections between VITE and QITE, and a combination of QITE
and PITE was proposed recently [42]. Nonetheless, each of these methods presents its own
limitations. For instance, classical optimizers within VITE might exhibit slow convergence
and struggle to fully exploit the computational capabilities of quantum computers. QITE
involves intricate precomputed mathematical processes, whereas PITE requires the exe-
cution of iterative circuits, each of which must be applied successfully. Therefore, design-
ing new quantum approaches to implement imaginary-time evolution, with the aim of
minimizing the aforementioned drawbacks, becomes particularly important.

In this paper, we propose a probabilistic quantum algorithm for implementing imagi-
nary-time evolution based on Taylor expansion. In the proposed algorithm, when the
Hamiltonian consists of Pauli product terms, which is the most general and significant
case. The imaginary-time evolution operator in each Trotter step can be approximated by
a linear combination of an identity operator and a Pauli product operator through Taylor
expansion. This can be achieved using the technique of linear combination of unitaries
(LCU) with only one ancillary qubit [43-45]. The quantum circuit is composed entirely
of elementary single-qubit and two-qubit gates, which is highly compatible with quantum
devices in the NISQ era. Furthermore, we extend the algorithm to cases where the Hamil-
tonian takes a more general form. The algorithm only requires negligible precomputed
numerical calculations, without the need for complex classical pre-mathematical calcu-
lations or optimization loops. Numerical simulations are conducted to solve the ground
states of hydrogen molecular Hamiltonians and Heisenberg Hamiltonians. We also an-
alyze the complexity and success probability of the algorithm and provide a method for
enhancing the success probability. Experiments on real quantum computers via a cloud
platform are used to further validate the feasibility of the algorithms. Our work extends
the methods for realizing imaginary-time evolution on quantum computers. When the
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Hamiltonian consists of Pauli-product terms, our algorithm has the potential to be imple-
mented on near-term quantum devices.

This paper is organized as follows. In Sect. 2, we give a description of the TTITE al-
gorithm. Section 3 shows some numerical simulation results. In Sect. 4, we analyze the
Trotter decomposition error and the Taylor expansion error. Section 5 analyzes the com-
plexity and proposes a method to improve the success probability. In Sect. 6, we discuss
the generalized TTITE algorithm in the case where Hamiltonian is not composed of Pauli

terms. We show some experimental results on the quantum cloud platform in Sect. 7.

2 Method

2.1 Imaginary-time evolution

Imaginary-time evolution serves as a mathematical tool commonly employed to numer-
ically determine highly accurate approximations to the ground state. The concept of
imaginary-time evolution can be understood as follows: by defining the imaginary-time,
T = it, and substituting it into the Schrodinger equation ih% = H|y), where H repre-
sents a hermitian Hamiltonian, we obtain the imaginary-time Schrodinger equation

aly)
dr

=H|y). (1)

Given an initial state [Y(0)), we denote the solution to Eq. (1) as |¢¥(7)) =
A(T)e 7 |(0)), where e H* represents a non-unitary evolution operator, and A(7) =

1/\/ (¥ (0)] e72H7 |4(0)) serves as a normalization parameter. Assuming that the initial
state |1/(0)) is not orthogonal to the ground state of the Hamiltonian H, a sufficiently
long imaginary-time evolution will result in the state at imaginary-time t closely approx-
imating the ground state of the Hamiltonian H.

In the context of implementing imaginary-time evolution, classical methods face expo-
nential growth in computational resources required as the system size increases. There-
fore, it is natural to consider the quantum version of the imaginary-time evolution al-
gorithm as a solution to overcome these exponential bottlenecks. The realization of the
imaginary-time evolution on quantum circuits relies on the precise implementation of the

aforementioned non-unitary evolution operator e /%,

2.2 Trotter-Taylor imaginary-time evolution (TTITE)

For an n-qubit Hamiltonian H = )", ¢;i; composed of Pauli product terms, where c; rep-

n

resents real coefficients in the linear combination, /; = ® :105; denotes the Pauli product

; j
terms, and o, represents either a Pauli matrix or an identity matrix acting on the j-th qubit,

witha € {O, X, y,z} (we adopt the notation oy = I).

Our objective is to execute the non-unitary operator e~*

on quantum circuits. To ac-
complish this, we begin by employing the Trotter approximation [46, 47] to decompose

the imaginary-time propagator into
e—Hr — (e—clhlAr . e—cmhmAr)E + O(AT) (2)

For the sake of descriptive convenience, we refer to S (A7) = (e‘clhlm e e‘c’”h’"“) as a

h,’A‘[

Trotter segment and 7; (At) = e asa Trotter step. After a single Trotter step, a quan-
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tum state |y) is transformed as follows (after normalization):

[¥') = e M8 ). 3)

T:(At) remains a non-unitary operator. The realization of the non-unitary operator
Ti(At) has become the key to implementing non-unitary imaginary-time propaga-
tor e717,

A matrix exponential, resembling 7;(At), can be defined using a Taylor series expansion.

Consequently, T;(A7) satisfies the following equation:

R VA
Tan~ TRan =Y 98y, @

1
o T

where T®(At) denotes the R-order Taylor expansion. Due to the fact that, when j is even,

h/ =1, and when jis odd, Wi =h;. Equation (4) can be rewritten as:

Ti(At)~ TX(AT) = o + Bh, (5)

where o = Zﬁo’j:em (_Ci]ft)j and B = Y% o xoad (_C",(A!T)k. When R — oo, Ti(AT) = TR(AT).

In order to realize the non-unitary operation 7;(At) in a quantum circuit, we add an
ancillary qubit |0). The scheme is based on the linear combination of unitaries, which is a
technique widely used in algorithm design [43, 44, 48]. Algorithm 1 and Fig. 1(a) outline
the realization of a Trotter step T;(At) in the TTITE algorithm, with details of each step
as follows:

Step 1: the encoding of the ancillary and work systems. For the n-qubit work system, the
initial state is |y), which needs to have a finite overlap with the ground state. For the one-
qubit ancillary system, the encoding process is realized by a single-qubit gate R, () acting

— o H
on the state |0), where 6 = 2arccos ( W) We denote the whole state of the composite

Algorithm 1 Trotter step T;(At) for the TTITE algorithm

Input: the state |/), the Trotter segment duration Az, the coefficient ¢;, the Pauli product term
h;i, and the Taylor expansion order R.

Output: the state |').

Step 1 Initialize the ancillary and the work systems to the state

'4’1>:<¢£+ﬁz 10) + ¢af+,sz |1>)|w>,

—c: e Ak
where o = Zf:o,j:even ¢ Clﬁ‘f)/ and ﬂ = Zf:(),k:odd ¢ Cllﬁr) .

Step 2 Apply the controlled unitary CU = |0) (0] ® Iy + |1) (1| ® h; on both the work and
ancillary registers. We obtain

|62) = == (@0} [} + BI1) I [9)).

a2+p2
Step 3 Perform the Hadamard operation on the ancillary qubit. The state of the whole system
becomes

p3) = W [10) (e + Bhy) 1Y) + |1) (o — Bhy) [¥)].

Step 4 Measure the ancillary qubit. If the result is |0), we successfully obtain the state

|64) = aregrm U0 (@ + Bhi) 1Y)
Readout: The output state of the work system is |1//’>.
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Figure 1 Quantum circuit for implementing TTITE. a) Element component of quantum circuit for
implementing Ti(AT). |1//> and |0) denote the initial state of the work and ancillary systems, respectively. The
controlled operation that acted on the work system are CU in Eq. (7). At the end of the circuit, we measure the
final state of the ancillary system. If the ancillary qubit is |0), the work system collapses into state |1/f/). b) The
explicit form of the operation CU. o, represents Pauli matrix or 2 x 2 identity matrix acting on the ith qubit.

¢) Modular quantum circuits for the realization of S(A ). d) Modular quantum circuits for the realization of
—HT
e

system as

). (6)

o B
1) = (\/Wﬁalo)+ \/mlh) v

Step 2: this part introduces an ancillary qubit-controlled unitary operation CU to en-

tangle the ancillary and work systems. Here,
CU =10) (0] ® Ion + (1) (1] & A, 7)

where I, is the 2" x 2" identity matrix. Afterward, the ancillary and work qubits are en-

tangled, and state |¢,) is transformed into

1
|¢2>=W(“MHW)*ZBH)MW»- (8)

In fact, CU can be further simplified into several one-qubit-controlled Pauli operators, as

shown in Fig. 1(b).
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Step 3: a Hadamard gate is performed on the ancillary qubit. The state of the whole
system becomes

1
V2 (a?+B?)

Step 4: finally, the ancillary qubit is measured. If the ancillary qubit is |0), we successfully

|ps) = [10) (e + Bhy) |¥r) + 11) (el = Bhy) [¥)]. )

obtain the state

1
=————[|0) (] + Bh; , 10
|a) Il By [l [10) (e + Bhy) |¥)] (10)

and the work system is in the state W/) = T;(At)|¥). The success probability of obtaining
|0) in the measurement is given by

P, W IT(AD) I 1)

To avoid repetitive measurements for state reconstruction and the repeated execution
of the initial state preparation procedure for the work system, we can embed the circuit
in Fig. 1(a) as a primitive circuit within a larger quantum system. In Fig. 1(c), the ancillary
systems include m qubits with the same process as above and the composite quantum
system includes m + n qubits. After measuring the ancillary system and obtaining a state
SADIY) T which is equivalent to the initial state

ISCAT)[Y)]
|¥) evolved over a Trotter segment denoted by S(At) (after normalization).

of |0)®", the state of the work system is

Similarly, multiple Trotter segments in the Trotter expansion can be employed using
similar methods as described above, at the expense of augmenting the number of ancillary
qubits, shown in Fig. 1(d). This approach effectively reduces the resource consumption at-
tributed to repetitive measurements and initial state preparation. If all the ancillary qubits
are |0), we can directly get the target quantum state |y(t)) = A(t)e™"* |1(0)) in the work
system, which is an approximation to the ground state of Hamiltonian H.

3 Numerical simulation

To demonstrate the correctness and performance of the algorithm, we conducted numeri-
cal simulations to solve the ground state and ground-state energy of two physical systems:
the hydrogen molecule and the Heisenberg Hamiltonian.

3.1 Hydrogen molecule

To tackle the task of determining the ground state and ground-state energy of H, on a
quantum computer [49], we employ the STO-3G basis set and employ the Jordan-Wigner
transformation [50, 51]. This approach allows us to derive Hamiltonians consisting of Pauli
matrices Hy, = ), ¢;(D)o,. - - - o, which can be implemented on # qubits, with the coeffi-
cients ¢;(D) being dependent on the interatomic distance D. Consequently, the Hamilto-
nian for H, can be effectively encoded onto 4 qubits [41]. Subsequently, further mapping
is applied to compactly encode the H, Hamiltonian onto 2 qubits (see details in Ref. [52]),
resulting in the H, Hamiltonian taking the form of

Hy, = co(D) + ¢c1(D)a} + co(D)a? + c3(D)a}o? + ca(D)o o2, (12)

X
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Figure 2 Numerical simulation results for the ground state of the hydrogen molecule with D = 0.35 A. Captions
"E-ITE theory”, "E-Trotter ITE’, and “E-Proposeddepict the convergence of energy £, with “E-ITE
theory'representing the theoretical results of ITE, “E-Trotter [TE"representing the theoretical results of ITE
under Trotter decomposition, and “E-Proposedrepresenting the results of the proposed algorithm under a
5th-order Taylor expansion. Similarly, Captions “F-ITE theory’, “F-Trotter ITE’, and “F-Proposed‘illustrate the
variations in fidelity £

where the coefficients at different D are available in the supplementary information of
Ref. [52].

In numerical simulations, we use 1 qubit as an ancillary system and 2 qubits as work
systems to represent the Hy molecule. We begin by conducting a numerical simulation at
a fixed atomic distance of D = 0.35 A. The initial state is chosen as |+) |+), and the total
imaginary-time evolution duration is v = 3, with a Trotter segment duration of At = 0.3.
Energy E; = (Y(1)| H |y(7)) and fidelity F (|{(1)), |gs)) = |<1p(1:)|gs)|2 where |gs) repre-
sents the ground state of Hamiltonian H, are two metrics used to evaluate the performance

of the algorithm. The variation of energy E; and fidelity F with imaginary-time evolu-
tion time t is shown in Fig. 2. The results of the proposed algorithm are compared with
the theoretical results of the imaginary-time evolution and the theoretical results of the
imaginary-time evolution under Trotter decomposition. In this case, the proposed algo-
rithm performs a 5th-order Taylor expansion (expansion to the 4th term) in each Trotter
step. As the evolution time 7 increases, after 10 evolution steps, the energy E; converges
to the exact value, the fidelity F rises to 1, and the proposed algorithm closely aligns with
the theoretical situation.

To obtain the most stable molecular structure, we vary the interatomic distance to map
the potential energy surface of the H, molecule, as shown in Fig. 3. The initial state is cho-
sen as ¢i1—9 |00) + \/Ll—9 |01) + \/% [10) + \/% [11), and the Trotter segment duration is still
At =0.3. We analyze the performance of the proposed algorithm for 2nd and 10th-order
Taylor expansions (expansions to 1st and 9th-order terms) in each Trotter step. The result
(r =0.3, T = 1.2, T = 3) are compared with the initial state energies (v = 0) and the ground-
state energies obtained by diagonalization. The results show that for each Trotter step, the
Taylor expansion to the 2nd and 10th order is always effective, which indicates that our
algorithm only needs to perform a low-order Taylor expansion to achieve a good approx-
imation (even if a higher-order expansion is required, it only adds some trivial classical
computations). Besides, the lowest energy of the potential energy surface corresponds to
the interatomic distance of about 0.75 A, which is consistent with the theoretical value.



Yi et al. EPJ Quantum Technology (2025) 12:43 Page 8 of 22

Initial energy
= GS energy
0.00 1 —@— 1=0.3, order 2

7=0.3, order 10
@ —@— T=1.2, order 2
| T=1.2, order 10
—@— T=3,order 2
T=3, order_10

Energy E+
| | |
e < <
~ W [\S]
W S (9,

@
P
o ®® oo

—1.001

0.5 1.0 1.5 2.0
Interatomic distance D

Figure 3 H, energy as a function of T and the interatomic distance D. Captions “t = 0.3, order_2"and “t =0.3,
order_10"respectively depict the Hy energy after imaginary-time evolution at T = 0.3 using the proposed
algorithm with 2nd and 10th-order Taylor expansions, under different interatomic distances. The remaining
captions have similar implications

3.2 Heisenberg spin-1/2 chain Hamiltonian
We then consider the following Heisenberg spin-1/2 chain Hamiltonian with open bound-

aries,
n-1 n
i _j+l i _j+l i _j+l j
Hgeisenberg = —J E (afcojc + a§o§ +0j0o] ) -h E al, (13)
=1 j=1

where J is the coupling strength and 7 is the static magnetic field [53]. We first perform
numerical simulations with the Heisenberg model with » = 6 and J = & = 1. The initial
state is chosen as |+)®6, and the total imaginary-time evolution duration is v = 2, with
a Trotter segment duration of At = 0.1. In Fig. 4, we show the variation of energy E.
and fidelity F with evolution time 7. The results demonstrate an alignment between the
outcomes of the proposed algorithm and the theoretical results obtained from the Trot-
ter decomposition-based imaginary-time evolution, which also shows that the discrepan-
cies between the outcomes of the proposed algorithm and the theoretical results of the
imaginary-time evolution are mainly caused by the Trotter decomposition. Furthermore,
the results of the proposed algorithm with 2nd and 10th-order expansions (expansions
to 1st and 9th-order terms) at each single Trotter step are also in good agreement, which
again shows that our algorithm needs only a low Taylor expansion order to achieve high
accuracy.

To study the performance of the algorithm at different problem sizes, we perform nu-
merical simulations with the Heisenberg model with n = 3,6,9,12 for the case of J = 1 = 1.
For each problem size, the initial state is chosen as |+)®", and the total imaginary-time
evolution duration is v = 2, with a Trotter segment duration of At = 0.1. At each sin-

gle Trotter step, a 5th-order Taylor expansion (expansion to the 4th term) is applied. For
Ev—Epin
Emax—Emin

comparison purposes, the normalized energy NE; = is used to scale the different
energies E; to the interval [0, 1]. E,,;;;, and E,,,, are the minimum and maximum energy
of the Hamiltonian, respectively, which are calculated exactly. NE; = O corresponds to the
energy E; as the ground state energy. The results in Fig. 5 show that in all cases, the nor-

malized energy NE; converges to 0 and the fidelity F increases to 1 as the evolution time
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Figure 4 Numerical simulation results for the Heisenberg ground state with n =6 and J=h = 1. Captions "E-ITE
theory”, "E-Trotter ITE’, "E-Proposed_order_2" and "E-Proposed_order_10"depict the convergence of energy
Er, with “E-ITE theoryrepresenting the theoretical results of ITE, “E-Trotter ITE"representing the theoretical
results of ITE under Trotter decomposition, “E-Proposed_order_2"and “E-Proposed_order_10"representing the
results of the proposed algorithm under a 2nd and 10th-order Taylor expansion. Similarly, Captions “F-ITE
theory’, “F-Trotter ITE’, “F-Proposed_order_2", and “F-Proposed_order_10"illustrate the variations in fidelity £

Normalized energy NE;
Fidelity F

00 05 1.0 1.5 2.0

Time T

Figure 5 Numerical simulation results for the Heisenberg ground state at different scales for /=1, h = 1. Captions
“NE-n_3", “NE-n_6", “NE-n_9", and “NE-n_12"represent the convergence of normalized energy NE; forn =3,
n=6,n=9and n=12, respectively. Similarly, Captions “F-n_3", "F-n_6", "F-n_9", and “F-n_12"illustrate the
variations in fidelity F

increases. The proposed algorithm maintains the validity of the ground state solution de-
spite the exponential growth of the dimensionality of the Hamiltonian quantities.

4 Error analysis

Here we provide a detailed analysis of the impact of the Trotter decomposition error and
Taylor expansion error on the algorithm. We begin by examining the disparity between
the corresponding imaginary-time evolution operator e~"'random™ and the Taylor expansion

approximation operator T%(t) = Z;R:o (-;y Hiandom, using a random Hamiltonian H,udom

consisting of a tensor product of 6 Pauli operators as an example. We define the similarity

A-B .
AT and the dis-

parity between operators A and B as €(4, B) = 1 — ¢s(A, B). Figure 6(a) illustrates the error

between operators A and B in terms of cosine similarity cs(A4, B) =



Yi et al. EPJ Quantum Technology (2025) 12:43 Page 10 of 22

a b
) ) Ls
8 0.25
~
x s
S 6 0.20 g 1.0
3 w “E’ w
§ 0.15 ’g @ ‘g
= 4 3 5 53}
& 0.10 £ 0.5
0.05 3
) .
0.00 0.0
2.5 5.0 7.5 10.0 10 20 30
2-norm: ||HrandomT|| 2-norm: ||HT||
C d
) L5 : IS
~ ~
@ Taylor order: 2 @ Taylor order: 10
5 1.0 g 1.0
g v £ w
2 = 2 g
B = 5 o
2 05 g 05
= =
1
0.0 . . 0.0
10 20 30 10 20 30
2-norm: ||HT|| 2-norm: ||HT||
Figure 6 Analysis of Taylor expansion error and Trotter decomposition error. a) The error map of
€ (e‘HrandomT, TR(r)), where Hygndom is a random Hamiltonian consisting of a tensor product of 6 Pauli
operators. The labeled dashed lines form a low-error area with € < 0.01. b) The error map of
€ (efHHE"“’"bE’QT,S(Ar)L) where Heisenberg i1 @ Heisenberg Hamiltonian with n =6, /=137 and h=0.23.
¢) The error map of € (efHHE’SE’"bE’QT,S(Ar)f). d) The error map of € (efHHe"Se”be’gr,S(Ar)]oL)

€ (e‘Hmndom’, TR (r)) and its relation with parameters R and || Hyzudom T ||, Wwhere R is the Tay-
lor expansion order and ||H;zudomT || is the 2-norm. As the imaginary-time t increases, it
is observed that a linear growth of R is sufficient to ensure a satisfactory approximation
(error € = 0.01) between the Taylor expansion approximation operator and the imaginary-
time evolution operator. This indicates that we do not require a significant amount of
classical resources in order to achieve a high-quality approximation of the corresponding
imaginary-time evolution operator.

We further investigate the impact of Trotter decomposition error on the algorithm.
Taking the example of a Heisenberg Hamiltonian with n = 6, / = 1.37 and 4 = 0.23, we
examine the error between the imaginary-time evolution operator e /Heisenbere™ and the
Trotter decomposition operator S(At)t, where At = 7/L. Figure 6(b) illustrates the er-
, where

ror € (e‘HHe"W”"&’I,S(AI)L) and its relation with parameters L and HHHeisenbergr
L is the number of Trotter decomposition segments. Finally, we conduct a compre-
hensive analysis of the combined impact of the Trotter decomposition error and Tay-
lor expansion error on the algorithm. Specifically, for each Trotter step T;(At) in the
Trotter segment S(At), we perform second-order and 10th-order Taylor expansions.
That is S(At), = []; T?(A7) and S(A1)y = []; T/°(A7). Figure 6(c) illustrates the er-
ror € (e_HHeiSe”befgf,S(Ar)zL) and its relation with parameters L and HHHel-se,,bergr”. Fig-
ure 6(d) illustrates the error ¢ (e‘HHeiW”bf’g ’,S(Ar)mL) and its relation with parameters L

and ||HHe,vsenbe,gr H The error maps of Fig. 6(c) and Fig. 6(d) are almost identical to the er-
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ror map of Fig. 6(b), indicating that the errors in the algorithm primarily come from the
Trotter decomposition. This also reiterates that a low-order Taylor expansion can provide
a high level of approximation accuracy.

In summary, the error introduced by the Taylor expansion has a negligible impact on
the performance of the algorithm and requires only minimal classical computational re-
sources. In contrast, the Trotter decomposition error is the primary source of inaccu-
racy, requiring a careful balance between computational precision and resource consump-
tion. Nevertheless, since Trotter decomposition error is a well-known challenge in algo-
rithms that employ Trotterization and has been extensively studied, existing research can
be leveraged to further improve performance.

5 Performance and complexity analysis
We analyzed the performance and complexity of the algorithm in four aspects: qubit re-
sources, gate complexity, evolutionary efficiency, and measurement probability. For qubit

—cihi At

resources, the implementation of operator e requires the introduction of an ancil-

lary qubit. Therefore, we need #n + mL qubits for an m-term Hamiltonian in total, where

L = t/At is the number of Trotter segment. For gate complexity, the operator e"47

can
be decomposed into O(n) basic gates, and a total of O(nmlL) basic gates are needed for an
m-term Hamiltonian.

Next, we must determine the parameter L. Alternatively, we need to ascertain the value
of T when At is provided. It is crucial to do this before proceeding with the algorithm to
avoid measuring the expectation values during the algorithm procedure. Such measure-
ments could destroy the state of the work qubits and halt the algorithm. To determine
L, we demonstrate that after the evolution of imaginary-time t, the square of the fidelity

between [(7)) and the exact ground state |Ey) is restricted to

2
)< lao|
= laol® + (1 - |ao|?) e 2 max’

F2(|y(v)), |Eo) (14)

where |ag|? is the initial fidelity at T = 0, €24 is the gap between the highest excited state
and the ground state (see Appendix A for proof). When the square of the fidelity between
|¥ (7)) and |Ep) is greater than 1 — e, the imaginary-time length

T =O(Ql log1>, (15)

max e

is linearly dependent on the inverse of the energy gap of Hamiltonian, and logarithmi-
cally dependent on the inverse of output error. In the above analysis, we did not take into
account the errors caused by Trotter decomposition, which can be reduced by utilizing

higher-order Trotter decompositions, such as
e HT = [(e’clhl% .. _emehm%) X (e’clhl% .. ~676mhm%)] A +0 (AT2) : (16)
We also analyze the success probability of our algorithm, and Lemma 1 below gives that

the success probability P(s - A7) of our algorithm in each Trotter segment does not ex-

ponentially decrease to zero with the increasing imaginary-time t. Instead, the success



Yi et al. EPJ Quantum Technology (2025) 12:43 Page 12 of 22

10y —{&, @0}k, @ 10)

) . T, (A7) )
) — L1 T, A )l

Figure 7 Improved circuits for enhancing the success probability of the TTITE algorithm

probability of each Trotter segment is monotonically increasing. Here, the success prob-
ability P(s - A7) corresponds to the measurement result when we have obtained the state
|Y ((s—1)A7)) (see Appendix B for proof).

Lemma 1 The success probability of each Trotter segment is an increasing sequence such
that

P(AT) <PQ2AT) <--- < P(LAT). (17)
To further improve the success probability of the algorithm, we can make slight adjust-
ments to the quantum circuit. For each Trotter step, which corresponds to implementing

the operator e"i27, we modify the R,(#) gate to R,(¢) in Step 1 of Algorithm 1, where
0’ = 2arccos ( / ﬁ) As a result, the state of the composite system changes from |¢;) to

N o | B
’4’1>‘(~/a+,3'°>+ a+ﬂ|1>)|w>. (18)

In addition, we replace the Hadamard gate in Step 3 with a R,(9)" gate, and the state of

the composite system changes from |¢3) to

1
83)= 5 100 @l + ) ) +10) (~/aBl + abh) 1) | 19)

Similarly, if the ancillary qubit is |0), the work system is in the state T;(At) |/). The corre-
sponding quantum circuit diagram is shown in Fig. 7. The success probability of obtaining
|0) in the measurement is given by

P = % I Ti(AT) [¥)]I% (20)
(@ +p)

Obviously, due to the fact that (« + 8)* <2 (® + %), we obtain P, > P.

We studied the success probability of the algorithm using the example of solving the
ground state of the hydrogen molecule with D = 0.25 A, and the results are shown in Fig. 8.

6 Generalization of algorithm

In this section, we aim to extend the TTITE algorithm to encompass scenarios where the
Hamiltonian is not restricted to being a sum of Pauli terms. In general, the Hamiltonian
is written as H = ) 1", H[i], and the imaginary-time operator is decomposed into

et = (AT e’H["ﬂA’)ﬁ +O(A71). (21)
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Figure 8 Analysis of probability. Captions “order_10, prob_1"and “order_10, prob_2"represent the success
probabilities of the circuits in Fig. 1(a) and Fig. 7 under a 10th-order Taylor expansion. Captions “order_2,
prob_1"and “order_2, prob_2"represent the success probabilities of the circuits in Fig. 1(a) and Fig. 7 under a
2nd-order Taylor expansion

1) d o
2 o

Ty (A7)
, , _ T (a0 1p)
—iH[k]AT 21H[k]AT] ~k
1% o G o ) (7 A1)

Figure 9 Quantum circuit for implementing T (AT). \1//) and |S) denote the initial state of the work and

ancillary systems, respectively. At the end of the circuit, we measure the final state of the ancillary system. If all
T ADIY)

[0

the ancillary qubits are |0), the work system collapses into state

For a Trotter step Tx(AT) = e K17 \e can approximate it as
e*H[k]A‘[ =2I + afefiH[k]AT + a+eiH[k]AT + O(Afs), (22)

where @™ = —(1 +i)/2 and o* = —(1 — i)/2 (see Appendix C for proof). Obviously, the form
of Eq. (22) is a linear combination of some unitary operations, and we can implement the
operator Tr(AT) ona quantum circuit in Fig. 9 with the following steps:

Step a: the initialization of the ancillary and work system. Specifically, the work system is
initialized to |¥) and the ancillary system is initialized to %(|00) +]01) +a~ |10) + ™ |11)).

We denote the state of the composite system as

~ 1 _
1) = E(|oo>+|01> +a”[10) +a* |11)) ). (23)

Step b: two controlled unitary operators are introduced to entangle the ancillary and
work systems. The first operator [0) (0]; &) Ipn + 1) (1]; ® e HKIAT is a 1-controlled uni-
tary evolution, controlled by the first ancillary qubit. The second one is a two-qubit con-

trolled operator, if both ancillary qubits are in state |1), unitary operator e?/X147 will be
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Figure 10 Numerical simulation results for Generalized TTITE algorithm. Captions “E-ITE theory”, “E-ITE taylor”,
and "E-ITE general'depict the convergence of energy £, with “E-ITE theoryrepresenting the theoretical
results of ITE, “E-ITE taylor"representing the results of TTITE under 5th-order Taylor expansion, and “E-ITE
general'representing the results of generalized TTITE. Similarly, Captions “F-ITE theory’, “F-ITE taylor’, and “F-ITE
generalillustrate the variations in fidelity £

applied to the work system. The state |$1> is transformed into

~ 1 . .
[92)= 5 (100 [9) + 101 1) +a” 110) 5 [y) + @t LD MR 1y). - 29)
Step c: Hadamard gates are performed on both ancillary qubits and then the ancillary
system is measured. If both the ancillary qubits are |0), we successfully obtain the state

|63) = N[100) (21 + ame HIHAT 1 o HIKATY [y ] (25)

where N is the normalization parameter.
We apply the generalized TTITE to the simulations of the Heisenberg Hamiltonian with

n=8and] = h = 1. Instead of taking ¢;4; as H[i], we consider —] (0,{0,{“ + ajafl + aiaé+1)

(wherej=1,...,n—1)as H[p] (wherep=1,...,n—1) and —hZ;’zlaé as H[n]. As shown in
Fig. 10, the results of the generalized TTITE algorithm are compared with the theoretical
results of the imaginary-time evolution and the results of the TTITE algorithm under
5th-order Taylor expansion. The results indicate that the generalized TTITE algorithm
and the TTITE algorithm exhibit similar performance, effectively addressing the ground
state problem.

7 Experimental results

We further verify the correctness of the proposed algorithm by conducting experiments
on a real quantum computer through the quantum cloud platform. Our results are based
on the “Quafu”open cloud platform, which provides three superconducting quantum pro-
cessors, namely ScQ-10, ScQ-18, and ScQ-136. Specifically, we take a Heisenberg Hamil-
tonian with n =2, =1 and 4 = 5 as an example. The two-qubit Heisenberg Hamiltonian
contains 5 non-identity terms, each corresponding to a non-unitary evolution operator
when we apply the algorithm,

61 = exp (haxlAr) ,
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For each Trotter segment, we select At = 0.02, and for each non-unitary evolution oper-
ator, we perform a 10th-order Taylor expansion. In the experiments, we need to apply Q1
62, 63, 64, 65 on the work system in turn, as a cycle. At the end of each iteration, we need
to measure the expected value of energy to demonstrate the convergence of the algorithm.
The quantum circuits used to implement ék (k=1,2,3,4,5) is shown in Fig. 11. These cir-
cuits consist of the following four parts, corresponding to steps 1 to 4 in Algorithm 1:

(1) The blue blocks correspond to step 1 in Algorithm 1 for the initial encoding of
the ancillary and work systems. As the state of the work system only evolves in the real-
coefficient subspace spanned by |00) and [11), the preparation only requires a R,(f) gate
and a CNOT gate. The angular parameter of R,(8) can be obtained from the tomography
and measurement results of the previous quantum circuit. For the first Trotter step, the
input state of the work system is % (100) +|11)), which can be achieved by replacing R,(8)
gate with Hadamard gate.

(2) The yellow blocks correspond to step 2 in Algorithm 1 for entangling the ancillary
and work systems.

(3) The green blocks correspond to step 3 in Algorithm 1.

(4) The red blocks correspond to step 4 in Algorithm 1 for measurement. For each
quantum circuit, we conduct experiments on three superconducting quantum processors,
ScQ-10, ScQ-18, and ScQ-136. Each quantum processor performs 50,000 measurements
to eliminate the effect of noise. After the measurement of the Qs circuit, we calculate the
expected value of energy.

In Fig. 11(f), the experimental results of the “Quafu’quantum cloud platform overlap

well with the theoretical results, confirming the feasibility of the algorithm.

8 Discussion and conclusion

The PITE algorithm proposed in this paper, TTITE, can effectively prepare the ground
state of a Hamiltonian, making it highly significant in both physical implications and prac-
tical applications. The PITE algorithm overcomes several limitations present in recent
methods. For instance, it avoids the classical bottleneck caused by classical optimization
loops in certain VITE algorithms and the accuracy constraints imposed by fixed ansatz.
Moreover, it eliminates the restrictions on Hamiltonian locality and the need for com-
plex precomputed mathematical operations found in some QITE algorithms. Compared
to similar PITE algorithms, when the Hamiltonian consists of Pauli product terms, the
proposed TTITE algorithm eliminates the need for relatively complex controlled e #4¢
operations, as required in Ref. [12, 40], and instead relies on fundamental single-qubit ro-
tation gates and two-qubit gates, thereby simplifying the quantum circuit. Additionally,
unlike the method in Ref. [14, 40], which introduces multiple ancillary qubits, TTITE re-
quires only a single ancillary qubit, effectively reducing quantum resource consumption.
Furthermore, it avoids the reliance on computationally intensive classical operations such
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as singular value decomposition, as seen in Ref. [13, 14], and instead requires only a neg-
ligible Taylor series expansion, significantly improving the efficiency of the algorithm.

A major limitation of PITE-type algorithms, including the one proposed in this paper,
is that the total success probability decreases exponentially as the number of Trotter seg-
ments increases. Although we have demonstrated that the success probability of each in-
dividual Trotter segment increases with the evolution time, the exponential decline in the
total success probability remains unavoidable. This issue involves a trade-oftf between algo-
rithm accuracy and resource consumption. For a fixed imaginary-time evolution duration
7, a larger Trotter segment At results in fewer total steps, which is beneficial for both
success probability and resource efficiency. However, this also leads to a larger Trotter er-
ror, potentially compromising algorithm accuracy. Conversely, a smaller Trotter segment
At reduces the Trotter error and ensures higher accuracy but requires more steps, lead-
ing to lower success probability and higher resource consumption. Such trade-offs are a
common challenge in many quantum algorithms that rely on Trotter decomposition.

We have proposed a method to improve the success probability of Trotter segment by
making only simple modifications to the quantum circuit structure. In addition to this
approach, several other methods can also enhance the success probability: 1) Amplitude
amplification techniques can be incorporated after the quantum circuit of each Trotter
segment to boost the success probability, as demonstrated in Ref. [14, 54]. 2) The total
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success probability largely depends on the required imaginary-time evolution duration t
for convergence to the ground state. This duration is primarily influenced by two factors:
Intrinsic properties of the system, such as the energy gap between the ground state and
the first excited state, which is difficult to modify. Choice of the initial state. Selecting an
initial state with good overlap with the ground state can significantly reduce the required
evolution time 7. In this work, the chosen initial states exhibit relatively poor overlap, but
using improved initial states, such as the Hartree-Fock (HF) state, could lead to better
performance. 3) Reducing Trotter error can also improve the success probability. Trotter
error is determined by the intrinsic complexity of the Hamiltonian. For instance, when
many non-commuting terms are applied sequentially, the error increases. If the Hamilto-
nian contains a large number of commuting terms, optimizing the ordering of local terms
can maximize the number of commuting partitions [55, 56]. Additionally, a randomized
ordering of Hamiltonian terms can be considered to mitigate Trotter error [57].

Future research will focus on further exploring methods and techniques to enhance the
success probability of the algorithm, investigating its convergence behavior across a wider
range of scenarios and larger problem instances, and analyzing the effects of noise on its
performance.

In conclusion, we have proposed a probabilistic quantum algorithm based on Taylor
expansion for implementing imaginary-time evolution. When the Hamiltonian is com-
posed of Pauli product terms, the quantum circuit requires the introduction of only one
ancillary qubit and is entirely composed of fundamental single-qubit and two-qubit gates.
This demonstrates the potential of the proposed algorithm for implementation on near-
term quantum devices. Furthermore, we generalize the algorithm to address more general
cases, where the Hamiltonian is not composed of Pauli product terms. We demonstrated
the performance and feasibility of the algorithm with numerical simulations and exper-
iments using hydrogen molecules and Heisenberg Hamiltonians as examples. We also
analyzed the complexity and success probability of the algorithm and provided precise
methods for enhancing the success probability. Error analysis conducted on the algorithm
indicates that, during the simulation of imaginary-time evolution, the Trotter decompo-
sition error constitutes the primary source of inaccuracies. The introduced errors from
the Taylor expansion are minimal and can be enhanced through straightforward classical
computations. Our work extends the methods for realizing imaginary-time evolution on
quantum computers, with the potential for implementation on near-term quantum de-

vices under specific conditions.

Appendix A: Derivation of output fidelity and analysis of evolutionary
efficiency

In general, the Hamiltonian of a quantum system is Hermitian, and its eigenvalues are

all real numbers. Consider an N-dimensional system, assuming that the eigenvalues and

eigenvectors are {(E;, |E;)) f\igl, and the eigenvalues are sorted as Ey < E; < --- < Eyn_3.

The initial state |1/ (0)) can be represented as a linear expansion of eigenstates

N-1
V() =) alE). (A1)
i=0
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After the evolution under the imaginary-time 7, the state |(0)) becomes

e |y (0))
Y (1)) = fH . (A.2)
VW) e2H [y(0))
The square of the fidelity between |/ (7)) and the ground state |E) is
F2(|y(1)), | Eo)) = [{¥ ()| Eo)I?
_ (¥ e 7 |Ey) (Eol ™™ |9(0))
(¥ (0)] e=2H7 |y(0))
~ |610|23_2EOT
YN laiPe 2k
|aol®
= . A3
laol* + Y lai e 2 EiFo) (A3
Defining E; — Ey = ;. It is evident that €; < Qx_; and Zf\ial |a;]? = 1, thus we have:
2
< |0l (A.4)

= aol? + (1 - |a0|2) e2roN-1’

Furthermore, we can find the relation between the imaginary-time length  and the output
fidelity error e = 1 — F?:

1 1-el-|ag|?
r> ln( ¢ '“"'). (A5)

20N e laol?

So the imaginary-time length 7 is linearly dependent on the inverse of the energy gap of
Hamiltonian, and logarithmically dependent on the inverse of output error.

Appendix B: Derivation of the increasing property of success probability

As shown in the main text, a Trotter segment is S(At) = T, (A7) - T1 (A7), where
_c:h: —c;A —ciA

T; (AT) = e A = ol + Bihy, ot = 3750 oven (CI—,”] and B; = 3% oaa (Cl—,r)} The suc-

cess probability of each Trotter segment is

1
P(s+1)Ar]= E” T (AT) -+ Ty (AT) [ (SAT)IP, (B.1)

where C = \/ 2m (a12 + ,312) e (am2 + ,3,,,2). After making a measurement, we get the state
| ((s+ 1) At)) with probability P[(s + 1) At].
By the same trick, the success probability of obtaining state | ((s + 2) At)) is given by

1
Pl(s+2) At] = Elle (A7) TL (AD) Y ((s+ 1) AD) 1> (B.2)

According to the Trotter theorem, we know that when At is small enough, we have
T, (AT)--- T} (A1) ~ 127 Therefore, Eq. (B.1) and Eq. (B.2) can be approximated as:

Pl(s+2)At] = é”e*‘Ar W (s+1) AT |

Page 18 of 22
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1
Pls+1) At] = o le o7y (saD)) .

State | (sAt)) and | ((s + 1) AT)) can be represented as linear combinations of eigen-
states, namely |¢ (sAT)) = Zﬁgl a}lE;) and |y ((s+1) A1) = Zﬁgl ai*!|E;), where
SN |ail” = 1and YN @ = 1.

We now show P[(s + 2) At] > P[(s + 1) At] by showing i{gfj;iﬂ > 1. That is

Pls+2) ATl [ |y (s+ 1) Ay’

P+ D)ATI [etar [y san)|?

XN e Pe2Ein
S a2

Y affertar 3 (B.3)
(S5 e

AT 5 ,2E

By using the inequality e~ AT for i < j, we have

N-1 N-1 2
Z }a‘;{ZeJLE,-Ar _ (Z |a?|ze2EiAr)

i=0 i=0
N-1 9 N-1
_AF; 2 _oF; 2 _oF:
e 4E,At’aﬂ d]s‘ _ § :6 2E1Ar|d§| e 2EjAt

ij=0 i,j=0

S
4

—2E;AtT (e—ZEiAr _ e—2EjAr) ’a§|2

S
a;

(e2EaT _ e—ZE,-Ar)2|a;|2 2 > 0. (B.4)

S
a;

Pl(s+2)At]
P[(s+1)At] > 1

Next, we derive P (LAt), where L = t/At. That is

Therefore, we obtain

1
P(LA7) = c 27 |y (L - DAT)) Hz. (B.5)

Since at the L-th Trotter segment, the state is essentially converged to the ground state,
| (L - 1)A1)) & |Eo). We have

—2EyAT

C

1 e
I”-

P(LAT) = —| ™7 |E)

(B.6)

al

Appendix C: General expansion derivation of e"*

According to the Taylor expansion of the matrix exponential, the non-unitary imaginary-

—Hrt

time evolution operator e™* can be expressed as

e =T A+ A AP+ A — AP+ A AT+ A% — ...,
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where A/ = ;—!’Hj . In the same way, two unitary operators representing forward and back-

ward time evolution can also be expanded as

M =T+iA+(-DA> + (-DA> +A*+ -,

M = [+ (DA +(-DA* +iA3+ A+ ..
Then we can rewrite the non-unitary imaginary-time operator as
e =2l +ame™ 1 ateT 1+ O(7?), (C1)

which is a linear combination of three unitary operators.
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ITE, imaginary-time evolution; VITE, variational imaginary-time evolution; QITE, quantum imaginary-time evolution; PITE,
probabilistic imaginary-time evolution; LCU, linear combination of unitaries; NISQ, noisy intermediate-scale quantum;
TTITE, Trotter-Taylor imaginary-time evolution.
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