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Abstract We transfer the scenario of quantum network
nonlocal correlation to the vicinity of a black hole’s event
horizon, aiming to evaluate the impact of Hawking effect on
network nonlocality within this specific context. In an entan-
glement swapping network with two bipartite resources and
three parties, we examine two scenarios with distinct Hawk-
ing radiation locations: one where it affects the endpoint par-
ties’ system and another where it impacts all parties’ system.
In both cases, network nonlocality decays due to Hawking
radiation and disappears entirely when the Hawking tem-
perature reaches a critical threshold. However, we observe
a striking phenomenon: when resource states are maximally
entangled and the affected system belongs to the endpoint
participants, network nonlocality diminishes but does not
vanish throughout the radiation process. Subsequently, we
extend our investigation to star and chain networks to evalu-
ate how resource quantity and distribution influence network
nonlocality under Hawking radiation. Our results indicate
that star networks exhibit greater resilience against Hawking
radiation in maintaining nonlocality.

1 Introduction

Quantum technology is a key enabler for future communica-
tion infrastructure. Building on this potential, it can be used
to construct relevant network architectures to promote space
exploration [1]. Quantum technologies in space are explored
and investigated [2], such as quantum key distribution for
secure satellite communications [3], quantum-enhanced nav-
igation systems [4], and quantum sensor networks [5] for
earth observation.
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In fact, quantum states emitted into space may have their
correlations altered by environmental factors such as extreme
temperatures, magnetic fields, and cosmic radiation [1]. This
is because Einstein’s theories predicted that the gravitational
collapse of a massive enough star would form a black hole
[6,7]. Furthermore, Stephen Hawking proposed that black
holes emit radiation through quantum effects, a phenomenon
now known as Hawking radiation [8]. Hawking radiation
theory suggests that near a black hole’s event horizon, quan-
tum fluctuations can cause virtual particle pairs to separate,
with some particles escaping as radiation while introducing
thermal noise. This process serves as a crucial link between
quantum mechanics and gravity, playing a central role in the
infamous information paradox of black holes [9,10].

In recent years, many scholars have focused on investigat-
ing the changes that quantum resources undergo in curved
spacetime, providing a crucial perspective and significant
insights into the fundamental interactions between quantum
mechanics and gravity. Among these studies, the impact of
Hawking radiation on quantum resources in Schwarzschild
spacetime has attracted particular attention. Research has
covered topics including quantum steering [11,12], coher-
ence [13], entanglement [14,15], discord [16], nonlocality
[17-22], the entropy uncertainty relation [23], and quan-
tum teleportation [24], yielding groundbreaking results. For
example, Wu et al. [24] found that under a specific initial
state, the Hawking effect can create net fidelity of quan-
tum teleportation, offering new possibilities for the trans-
mission of quantum information under extreme conditions.
As research advances, some scholars have expanded their
research focus to broader curved spacetime backgrounds
[25,26] and other gravitational effects [27,28], further prob-
ing quantum resource behavior in complex environments.
These studies provide new theoretical foundations for quan-
tum mechanics and general relativity interactions and lay
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groundwork for extreme-condition quantum information
applications. However, it is worth noting that these studies
are generally based on single source.

As the demand for large-scale, long-distance communi-
cation grows, many scholars are studying quantum correla-
tions in quantum networks [29]. For example, researchers
have explored the definition and criteria of nonlocal corre-
lations in networks with different structures [30-32]. They
have found that even if the resources are in mixed states,
just one entangled state may lead to nonlocal correlations in
the network. The network nonlocality, as an important quan-
tum resource, fundamentally underlie various applications of
quantum networks such as computing, sensing, and secured
long-distance communications [33-36].

The generation of quantum correlations in a quantum net-
work depends on its resources and topology. If a quantum net-
work’s topology is fixed, the multiple particles in the network
may fall into the curved spacetime near a black hole. This
differs from the evolution of single-source quantum entan-
glement under Hawking radiation. This may hinder the for-
mation of quantum network nonlocal correlations in space
and impact relevant application scenarios. It is natural to ask
whether the network nonlocal correlations still exist under
Hawking radiation. Since quantum networks with different
structures show diverse characteristics under Hawking radi-
ation, we can use this effect to explore more stable network
structures. This question relates to quantum communication
foundations and may inspire future space exploration com-
munication technologies.

In this study, we first focus on the influence of Hawking
radiation on nonlocal correlations in an entanglement swap-
ping (ES) network in the context of the Schwarzschild black
hole. Initially, we assumed that only the marginal parties fall
freely toward the event horizon and then extended the set-
ting to the entire network state. Secondly, we expanded the
research to more general chain networks and star networks.
Through calculations and numerical analysis, we found that
the decay of nonlocal correlations in the network depends not
only on the network’s topology but also on the parameters
and locations of the resource states within it. The structure
of this article is as follows: in Sect.2, we present the basic
background knowledge required for the study; in Sect. 3, we
give the general evolution law of states in curved spacetime;
in Sect. 4, we present the main research results of this article;
finally, in Sect. 5, we summarize the article.

2 Prerequisites
In this section, we briefly recall the quantization of Dirac

fields in the background of Schwarzschild black hole and the
network nonlocal correlations.

@ Springer

2.1 Dirac fields in the Schwarzschild space-time

In the present analysis, we choose the initial state to be of
the fermionic type. This allows us to be on the same foot-
ing with other recent studies on quantum correlations in the
relativistic setting, which frequently consider Dirac particles
[14,24]. In our further discussion, for simplicity, the gravita-
tional constant G, the Planck constant 7, the speed of light c,
and the Boltzmann constant kg are assumed to be equal to 1.

In order to describe the vacuum state of the curved space-
time for fermions, one can start with the following Dirac
equation:

(iy“elD, —m)® =0,

where m is the fermion mass, y“ are the Dirac matrices, el
is vierbein, D, = 9, — ﬁwﬁbaab, Oab = 5{Ya» Vb}, wzb is

the spin connection, and ® represents a spinor field.
By using the metric of the Schwarzschild black hole

—1
oM oM
ds* = —(1 - —>dt2 + <1 — —) dr?
r r

+ r2(d6? + sin® 0dp?),

where r and M represent the radius and mass of the black
hole, the solutions of the Dirac equation in regions / (the Uni-
verse, physically accessible) and 717 (inside the black hole,
physically inaccessible) are given by [37]:

(Dli+=‘;§€7iwu, q>11(1+:%.eiwu’ (1)
where k is the wave vector used to label the modes, £ denotes
the four-component Dirac spinor composed of the spinorial
spherical harmonics, w is the monochromatic frequency of
the Dirac field, u = t — r, with the tortoise coordinate r, =
r+2MlIn ’E/%,IM .

In order to obtain a complete basis for the analytic modes
with positive energy, the Kruskal coordinates are utilized
to perform analytical continuation in accordance with the
Damour—Ruffini method [38]. The resulting Dirac fields are
expanded in the appropriate Kruskal basis, as follows:

1
b= /dk—
/2 cosh(dm Mw)
x [dlolt + o™ yalTol= +a/"Toll7],
(2)

where cll( and d}F with I = (I, II) are the fermion anni-
hilation operators and antifermion creation operators acting
on the Kruskal vacuum. The superscripts on the kets {+, —}
denote the particle and antiparticle vacua, respectively.
Next, by using the Bogoliubov transformation, it is possi-
ble to establish the relation between operators in a black hole
and the Kruskal space-time [39]. In particular, the vacuum
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and excited states of the black hole coordinates correspond
to the Kruskal two-mode squeezed states as follows:

10);" = A—10k) T 10-k) 7, + A+ 1) T 11-k) 7
1) — L) 10217,

3

with the Bogoliubov coefficients A1 = (ei% + 1)’%, where

T = ﬁ is the Hawking temperature [40]. Hereafter, for
simplicity, we consider w = 1, Ink)l+ = |n); and [n_x);; =
[n)rr.

2.2 Network nonlocal correlations

Considering a general network &, consisting of g parties,
namely, A;, As, ..., Ay, and n sources p1, p2, ..., pn, cach
party A; can perform the measurement labeled by x; (x; €
{0, 1}) with its outcomes a;(a; € {0, 1}). The behavior of
this network is local if its probability distribution satisfies

n q
P(alx) = /Q]"[du,-(m [1pGajlx;. Ap), “)

i=1 j=1

where a = (ay,...,a4), X = (x1,...,Xq), A; denotes the
hidden variable distributed by source p;, u;(};) is the prob-
ability distribution for A; with f ni(Aj)dr; = 1, and A;
denotes the set of classical variables associated with party
Aj;. Otherwise, the behavior is network nonlocal [30]. Recall
that a network is k-independent network if there are k parties
that do not share any source with each other, and we denote
I' = {i1, i2, ..., ix} as the set of indices of all independent
nodes. The joint correlations derived from a network with
classical variables satisfy the following inequality [30]:

B=I(g. 0t +|J(qg.kF <1 )

where the correlators I (g, k) and J (g, k) are defined as

1
(g, k) = 3 D (A Ay Ay,

xj,jer

J(q. k) = 2ik Y (DI (A Ay, - Ay,
xj,jer

herein Ay, is the observable of the party A; (i = 1,2...q)
and (A, Ay, - Ay,) = Ya(= D=1 P(a[x) and P(alx)
are defined in Eq. (4). This is a set of n-local nonlinear
correlation inequalities derived from the assumption of k-
independent network. Any violation of Ineq. (5) by a physical
system will be seen as a nonlocality witness for the present
network.

The chain network with n + 1 parties and n sources shown
in Fig.1 can be considered as a 2-independent network.
According to Ref. [41], with respect to the generic quan-
tum state P41 42 ® 04243 @ -« - ® Pgn gn+1, the maximal value
of B in Eq. (5) is given by

Pl

oL

n

Fig. 1 The chain network scenario. Here, we choose A; and A,
as the marginal node, and the source S; distributes the quantum state
P i pi+1 to party A; and party A; 1 (i =1,2...n)

Fig. 2 The star network scenario. Here, we choose .A; as the interme-
diate node, and the source S; distributes the quantum state p 41 4i+1 to
party A and party A4 (i =1,2...n)

n

[Ts + ]i[ag“, ©)
i=l

i=1

max
chain

where & Y) and (Sg) are the two largest (positive) eigenvalues
i AT+ T ji gi+1 with 3;” > 8;”, and T'yi 4i+1 18
the correlation matrix of p4i 4i+1. Notably, in the subsequent
discussion of this paper, the correlation matrix of the quantum
state p4p is denoted as Tap, where Tap = (#;;) with i, j €
{x,y,z}and t;; = tr(papo; ® 0;).

While the star network with n + 1 parties and n sources
shown in Fig.2 can be considered as an n-independent net-
work. According to Ref. [42], with respect to the generic
quantum state p 4142 ® 4143 ® - -+ ® P41 gn+1, the maximal
value of B is given by

of the matrix /T

n n
i)\ 2 i)\ 2
B = ] +[]es)n ™
i=l1 i=I

At this time, (SY) and 8§i) are the two largest eigenvalues of

the matrix ,/ TLAH'] T41 pi+1 with (Sii) > Séi), and T 41 4i+1 1S

the correlation matrix of p41 4i+1.

3 The evolution law of quantum states in curved
space-time

Note that any two-qubit state can be transformed into a Bell
diagonal state through local unitary transformations, without

@ Springer
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changing its nonlocality. Therefore, we consider the initial
states to be Bell diagonal states, which can be represented as

’%
| 3
PAB=4(Iz®12+a~a®Iz+lz®b~0+zti0i®0i):

1

®)

whereo = (01, 07, 03),0; (i = 1, 2, 3) stand for Pauli matri-
ces. a, b € R3 denote local bloch vectors. In the following,
we will provide the correlation matrices for the physically
accessible and inaccessible states after particles interact with
Hawking radiation in two cases.

Case 1: Only one subsystem stays at an asymptotically
flat region, while the other traverses the event horizon of the
black hole.

Using the Kruskal basis shown in Eq. (3) for Alice while
keeping Bob stationary, we can reformulate the complete
three-partite quantum state pa, 4,, g associated with the sub-
systems A; and B observed by Alice and Bob, respectively,
and the subsystem A, observed by anti-Alice in the interior
of a black hole.

Since the interior region of black hole is causally dis-
connected from the exterior region, Alice and Bob cannot
access the modes in the interior region of black hole. By
tracing over the inaccessible mode A;;, we can obtain the
reduced density matrix p4, p. We know that in the framework
of unitary quantum mechanics, information preservation is
obligatory. Although exploring the interior of a black hole
is physically impractical, the complete state of our tripar-
tite system is known and maintains unitarity. Consequently,
applying a partial tracing operation on the modes A; within
this tripartite state yields the reduced density matrix pa,, 5.

Table 1 For the quantum state given by Eq. (8), when Alice freely tra-
verses the event horizon, T4, p denotes the correlation matrix of the
physically accessible quantum state p,,p, while T4,,p denotes the
correlation matrix of the physically inaccessible quantum state p4,, 5.
Bob’s case is similar

Alice freely traverses the event horizon

i 0 0
Tap = 0 A_ 0
—b])»%r —bzki l’3)\.27 — b3)“<2F
HAy 0 0
TA”B = 0 —nit 0

biA% boa2 b3A2 — 1322

Bob freely traverses the event horizon

tA_ 0 —al)&.
Tap, = 0 i —az)&_
0 0 nx2—anl
gy 0 air*
Tap, = 0 —tAy a
0 0 a2 —n22

@ Springer

Table 2 For the quantum state given by Eq. (8), when Alice and
Bob freely traverse the event horizon, T4, g, denotes the correlation
matrix of the physically accessible quantum state p4, g,, while T4, B,
denotes the correlation matrix of the physically inaccessible quantum
state pA,, By, -

Both Alice and Bob traverse the event horizon

1Az 0 —ai A2 A
Ta; B = 0 tz)»% —azkik,
—b1a3 A —bpa2 A A% — (a3 +b3)2222 + 132
tl)“i 0 al)\-z_)»+
Tay By = 0 fﬂ\i —aA? g

biA2ag —bodZ g A% — (a3 + b)AZAZ + At

Similar operations can be applied to system B, but detailed
descriptions are not provided here. Finally, the correlation
matrices of the quantum states after different operations are
presented in Table 1. The detailed calculation process can be
found in the Appendix.

Case 2: Both Alice and Bob traverse the event horizon of
the black hole.

Applying the transformation of Eq. (3) to both Alice and
Bob, we derive a four-partite state pa, 4,8, B;,- This state
involves modes A; and B; observed by Alice and Bob, and
modes A;; and By observed by anti-Alice and anti-Bob in
the interior of a black hole. Tracing over the inaccessible
modes A;; and By gives the reduced density matrix p4, g, .
Similarly, tracing over the accessible modes A; and B; yields
PA;; By - The correlation matrices for pa, 5, and pa,, B,, are
listed in the Table 2.

4 Results and discussion
4.1 Evolution of non-bilocality in the ES network

We start with the ES network characterized by the network
state p41 42 ® p 42 43, Which corresponds to the simplest forms
of the chain network (Fig. 1) and the star network (Fig. 2). We
refer to the nonlocal correlations generated by the ES network
as nonbilocal correlations or non-bilocality. Considering that
the resources p4i 4i+1 (i = 1, 2) distributed on the network is
generated from the following family of two-qubit state [43]

0 i1 = ;]00)(00] + (1 — v;)[sin? x1]01) (01
+ cos? x;[10)(10] + sin x; cos x; (]01)(10] + |10){01])],

where v; € [0, 1], and x; € [0, %] (i = 1,2). This class of
states has played an important role in demonstrating hidden
nonlocality in chain networks [44]. Rewrite it in the Bloch—
Fano decomposition yields

1
Ppi i+l = Z{Iz ®I +[vi — (1 —vj)cos2x1]oz @I
+[v; + (1 —v;)cos2x1]l) ® o3 + (1 — v;) sin2x101 ® 01
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pAlA: ® pAzAJ
! @

Fig. 3 Schematic diagram of our physical model with particle A% in
the exterior of a black hole (BH), and particles Al and A3 traversed
the event horizon of the BH. The wavy lines show the entanglement
between particles. Input state is provided by Eq. (9) and the physically
accessible output state has form p, e ® py2 A

+(1 —v;)sin2x10p ® 02 + Qu; — 1)o3 ® 03}. ©)]

Note that the structure of p4i 4i+1 conforms to Eq. (8).

We will investigate the impact of Hawking radiation on the
non-bilocality of p 41 42 ® p42 43 in two scenarios. Scenario 1
is depicted in Fig. 3, where we focus on the changes in A! and
A3. Consequently, the final physically accessible network
state is p41 42 ® Pa243-

According to Table 1 and Eq. (9), we can get the correla-
tion matrices of p AlA2 and p 42 A3 respectively as follows

iV 00
0 0 g4
where tl(l) = tz(l) = A_(1 — vy)sin2xy, t3(1) = 22 Qv —

1) — 2% vy + (1 — vy) cos 2x1].

1?0 0
TA2A§ = 0 téz) 0 5
0 0
where tl(z) = téz) = A_(1 — vp)sin2xy, t3(2) = A2 Quy —

1) — 2% [v2 — (1 — v2) cos 2x3].

According to Eq. (6) with n = 2, the B{)‘i‘f‘g‘c(pA}Az ®
02 A;) depends not only on the state parameters v; and x;
(i = 1,2), but also on the Hawking temperature 7. Here,
we present the calculation results for several specific initial
resource states, as shown in Fig. 4.

As illustrated in Fig.4, By, (pA}Az ® ,oAzA?) decreases
as the Hawking temperature 7 rises, indicating that thermal
noise from the Hawking temperature induces non-bilocality
decay in p 4142 ® p42 43. The extent of this decay varies case-
by-case. When the initial states p41 42 and p42 43 are maxi-

0 —_ =n
144N 1.4 x 10 \‘ — 1=0,=0 [ v2=0,x=5%
| 1.3 % 10° N v2=0,x=¢
\ \. = v2=02,x=7
N 0
134 \ 1.2 x 10 \.
" \ 0 \‘
- W 1.1x 10 \
I 1|\ b
< [\
1.2+ [\ \ 100 4 ......................\.\_.._.._
® i\ T T
< W\ 1072 | 10° 102 10  10°
S “ \ T (log scale)
o 8
J \
g% 11 \ \.
Q \ N,
\ ~.
-.
\\ re——
104 reeeees \_\———
~
~
~ed
o9f——F— 1 TP
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Fig. 4 By (py 142 ®p 2 A%) as a function of the Hawking temperature
T for the initial p 41 42 being a maximally entangled state (i.e. vi = Oand
x| = %); while p42 43 is selected from three different states, with their
parameters being vo = 0, x; = 7 (maximally entangled state), vy =
0,x; = % (entangled pure state), and v2 = 0.2, xo = T (entangled
mixed state). The subfigure illustrates the variation of BEX with T on

biloc
big

a logarithmic scale when v, = 0, x = %

mally entangled, we have

V2
\/e_%—kl
NG

Since limy_s oo — = 1. This implies that even a suffi-
Ve T+1

Bilioe(Pat a2 ® p247) = V20 = (10)

ciently high Hawking temperature will only lead to the weak-
ening of non-bilocality, not its complete disappearance. We
have fully demonstrated this phenomenon in the subfigure of
Fig.4 using logarithmic scaling. However, in the other two
cases, we observe the “death” of non-bilocality when the
Hawking temperature reaches a critical threshold. It is worth
noting that the weaker the initial nonlocality, the sooner the
“death” occurs. What if the resource states on the network
have the same initial non-bilocality?

To reduce the complexity of the calculations, we set v; =
v2 = 0, in which case p i gi+1 = [V 4i gi+1) (W 4i gi+1], where
[V i gi+1) = sinx;|01) 4+ cos x;[10), (@ =1,2).
Then for the initial network state p 41 42 ® p 42 43, the maximal

value of B is

BEX (pa1 42 ® pa243) = /1 + sin 2x; sin 2x;. (11)

In Fig.5, we present the results of By (,oA}Ag ® :OA2A~}) for
different combinations of sin 2x; and sin 2x;. Note that each
set of values ensures that the result of Eq. (11) is +/1.64.

It can be seen that under the same initial non-bilocality, a
larger sin 2x| causes Byt (04 142 @ py243) to decrease more
rapidly, indicating faster decay of non-bilocality. Conversely,
a larger sin 2xp enhances the robustness of non-bilocality

@ Springer
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Fig. 5 Let pyigi+1 = ¥ 4i gi+1) (Wi gi+1 ], (i = 1,2). The quantities
B (p4 142 ® P2 ,43) are considered as functions of the Hawking tem-

perature T for four different network states, all of which maintain initial
Btr:i]]a(fc(pAlAz ® ,OAZAS) = m

against thermal noise. According to the Horodecki criterion
[45], the maximal Clauser—-Horne—Shimony—Holt (CHSH)
value for [Y4i gi+1) (i = 1,2) is

B (o o) = 241+ sin 25,

So, a higher sin 2x; corresponds to a stronger quantum non-
locality. Thus, when considering | 4i 4i+1) as the resource
state, Fig. 5 indicates that if only the marginal particles are
affected by the Hawking radiation, assigning quantum states
with stronger correlation to p42 43 will enhance the robust-
ness of the ES network against the thermal noise generated
by Hawking radiation.

3In Eig.3, reducing A } and A? while retaining A} ; and
Ay, vyields the network state P}, a2 ® Pa243,- Due to
the causal disconnection between the interior and exterior
regions, an observer or detector outside the black hole can-
not access information from the interior regions. Thus, the
state py1 42 ® py243 15 deemed physically inaccessible.
Neverthefess, the glof)al quantum state remains unitary and
pure. With a prevailing consensus among physicists, includ-
ing Hawking, favoring the conservation of quantum informa-
tion, we can theoretically investigate these inaccessible sce-
narios. To understand where lost quantum correlations reside,
we will now examine how Hawking decoherence influences
the correlation of network state p,1 ,» ® p,2,3 in these
physically inaccessible contexts. At A

We still analyze the three network state resources uti-
lized in Fig.4. Substituting specific parameters from the
Table 1 into T4,,p and T4p,, gives the correlation matri-
ce]:axfor Pal, a2 and p 42 e re.spectively. l.sigur.eé plots
Biiioe(Pal a2 ® pp243 ) as functions of T'. It is evident that
each example presents similar results. Specifically, in the
absence of Hawking decoherence, Biiid. (041 42 ® £p243 )

@ Springer

02 “T Papar @ pazp

Paja? @ Paa;

00 25 50 75 100 125 150 175 200
T

Fig. 6 Biiio. (04142 ®pp243) and BEiid (041 42 ®p 4243 ,) as functions
of the Hawking temperature 7" for three initial network states p,1 42 ®
PA2p3

is zero, but as T increases, it gradually increases and even-
tually stabilizes. Although Hawking radiation enhances its
correlation, we have not observed any non-bilocality in any
instances. Notably, as the Hawking temperature 7' increases,
both Bg}f‘oxc(pA}Az ®,0A2A§) and Bgi‘fg‘c(pA}[Az ®,0A2A;l) even-
tually stabilize at the same value.

In scenario 2, we consider the case where all particles of
the network state p 41 42 ® p 42 43, composed of pure entangled
states | 4i 4i+1), (i = 1, 2), freely traverse the event horizon.
In this case, the physically inaccessible network state can be
expressed as p,1 42 ® P42 43, and the corresponding correla-
tiol;)l matrix c%ﬁ? f)globtgi?llf:glfrom T4, B, in tﬁe Tabl%: 2.

According to Fig.7, we present two key results. First,
for ps1 42 ® py243 composed entirely of maximally entan-
gled states, the blue curve shows that B2 (041 42 @ 042 43)
decreases continuously with increasin;ﬂoﬁawfl?iﬁé tem?a’e%—
ture 7. Its non-bilocality experiences a “death” at T =

1 e . . _
Y TETR This is different from the result in Scenario 1. Sec

ond, we examine three distinct network states p 4142 ® p42 43
with the same initial value By (04142 ® p4243) = v/ 1.64.
The three colored curves depict how non-bilocality dimin-
ishes for these states as 7' increases. Although B> (o4 142 ®
Pa2 43) converges to the same stable value as T — oo, the
subplots show varying initial decay rates among the three
states. From this figure, we conclude that when all particles
of ps142 ® py243 traverse the event horizon and the pure
states |y 4i 4i+1), (i = 1, 2) are regarded as resource states,
assigning stronger quantum correlations to one of the quan-
tum states can enhance the robustness of the ES network

against thermal noise.
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—— sin2x; =sin2x; =1
=== sin2x;=1,sin2x, =0.64

—— sin2x; =0.96,sin2x, =2/3
sin2x; =sin2x, =0.8

1.4+

1.2+

1.0 4

(Paza? ® Paza3)

max
biloc

B

0.8 . . . . 8 1.0

0.6

Fig. 7 Byt (o4 142 ® py2 A%) as a function of the Hawking temper-

ature T'. Two specific results are shown, one is initial By (04142 ®
pa2a3) = /2 (blue curve), and the other is B (pa142 @ pa243) =
M(orange, green, and red curve). The subfigure demonstrates the
trend of the latter case for T € (0, 1]

4.2 Evolution of nonlocality in n-locality scenario

For a general network E,, consisting of ¢ parties and n
sources, which can be regarded as a k-independent network,
its non-n-local correlation is detected by violating Ineq. (5).
When n resources are fixed, regardless of how they interact
with Hawking radiation, the decay of non-n-locality depends
not only on the Hawking temperature but also on the number
of parties ¢ and the independent number k.

We consider the chain and star network scenarios illus-
trated in Figs.1 and 2, respectively. Assume all resource
states are maximally entangled states, then based on Eq. (6)
and Eq. (7), g}ﬁ‘l’l‘n = BiaX = V2. Obviously, both star and
chain networks can generate non-n-local correlations now.
We will investigate whether the non-n-local correlations of
these two networks can persist within the context of a black
hole under two scenarios.

In the first scenario, for each bipartite quantum state con-
stituting the quantum network, one subsystem remains in the
exterior region of a black hole while the other traverses the
black hole’s event horizon. For a chain network with sources
P ai ai+1, we consider the evolution occurring in subsystem
Altl (i =1,2,...,n), at this point, the effect of Hawking
radiation on its non-n-locality is characterized by

B‘r:r}]l?i(n(PAlAi ® Lp243 @+ B Pynpr+1)-

For a star network with n sources, only subsystem A’+! of
patai+t (i = 1,2,...,n) traverses the black hole’s event
horizon, while the effect of Hawking radiation on its non-n-

1.4 4 — B&, Vn
— B, n=3
— Bidn, n=

127 == BB n=5

1.0 e \: .........................................................

Q

0.8 1

O e e A e ——

0.4 1

0 2 4 6 8 10

Fig. 8 B, (04142 ® pg243 @ -+ ® pagant1) and BgX(py142 ®
Parp3 @ @ Py 4n+1) as functions of the Hawking temperature 7" for
1

different n. Initial p4i 4i+1 and p 41 441§ = 1, 2, ... n are all maximally
entangled states

locality is characterized by
B?tl:;&(pAlA% ® ;OAIA3 ®---® PA1A7+1)~

Given our consideration that all sources are distributed in the
maximally entangled state \%QOI) + [10)), the maximum
Bell inequality violation for the chain network is given by

2
Bl (0ala2 ® paa g3 @ -+ @ pgrant1) = V2AL

and for the star network, it is given by
Biar (Pa142 ® pa143 @ -+ @ pg1pni1) = V2i-.

In Fig. 8, we show how B3 and Bia* vary with increas-
ing Hawking temperature 7. It is noted that for a star net-
work with n resources, By = /2)_, which matches the
result of Eq. (10). Given that the subfigures in Fig.4 have
already demonstrated +/24_ on a logarithmic scale over a
sufficiently large range of Hawking temperatures, we here
only present the trends in ordinary coordinates. This result
indicates that the non-n-locality of the star network dimin-
ishes but does not fully disappear. In contrast, for the chain
network, non-n-locality will die out. Notably, as n increases,
Bia*  decreases more rapidly, leading to an earlier onset of
non-n-locality “death”.

In the second scenario, the entire network is situated
within the black hole horizon and experiences Hawking radi-
ation, the effects of Hawking radiation on non-n-locality of
chain network and star network are characterized by

Behain (04142 © Pp223 ® -+ @ Py gni1) = ez

@ Springer
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Fig. 9 Biin (04142 ® Pa243 © -+ @ pynyret) and B (o142 @
Palal @ @ Pyt g ) as functions of the Hawking temperature 7" for

different n. Initial p 4i gi+1 and p1 4i+1 7 = 1,2, ... n are all maximally
entangled states

and
Biar (Pa142 ® P14 ® -+ ® Patpn+1) = V222,

respectively. In Fig.9, we present the changing trends of
o, and BEEY with the Hawking temperature T. We find
that non-n-locality decays more rapidly compared to the first
scenario, and the non-n-locality of the star network also
undergoes “death” at a certain critical temperature.

Overall, the star network shows more advantages than
the chain network in resisting the decay of non-n-locality
caused by Hawking radiation. The chain network’s sensitiv-
ity to thermal noise from Hawking radiation increases with
more intermediate nodes.

5 Conclusion

In this study, we characterized the nonlocal correlations of
quantum networks within Schwarzschild spacetime. First, we
present the variation law governing the quantum state corre-
lation matrix in curved spacetime. Based on this, we ana-
lyze changes in non-bilocal correlations under two scenar-
ios, starting with the simplest ES network configuration. It is
evident that the Hawking effect degrades non-bilocal correla-
tion, and this degradation is closely related to the initial non-
locality of the network. Furthermore, utilizing a pure entan-
gled state | 4i4i+1) = sinx;|01) + cosx;[10), (i = 1,2)
as a resource and maintaining constant initial non-bilocal
correlation, we discovered that different states and their dis-
tribution methods can lead to significantly divergent attenu-
ation trends. Specifically, when only marginal particles are
affected by Hawking radiation, maximizing the correlation

@ Springer

of right-hand resource states better enhances the resilience
of the ES network to Hawking effects. When all particles
are subjected to Hawking radiation, it is better to maximize
the correlation on one side of the resource state as much as
possible. Our research also indicates that it is impossible to
establish physically inaccessible non-bilocal correlation.

In larger-scale networks, we observed that even identical
states distributed across different network topologies can lead
to markedly different variations in nonlocal correlations. We
validate this finding in general chain and star networks, with
results showing that star networks are more robust against
thermal noise from Hawking radiation. Overall, this investi-
gation deepens the understanding of quantum networks oper-
ating within curved spacetime.
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6 Appendix

First of all, the identity matrix I, and the Pauli matrices
o = (o1, 02,03) after interaction with the Hawking radi-
ation Eq. (3) is given by

Lriry = 22100){00] + A_a4(|00)(11] + [11)(00])
HALIT(L] +[10)(10],
o111 = A-(100)(10] + [10){00]) + A4.(I11)(10] + [10)(11]),
21,11y = i(h—([10)(00] — [00)(10]) + A+ (|10){11] — |11){10]),
31,11y = 22100){00] 4 A4 (|00} (11] + [11)(00])
+2Z 1) (11] — [10)(10].
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By tracing over the inaccessible mode |-);y, it reduced as

Lagy=h—3i03, oiq) = Ao,
2 12)
02(1) = A-02, o3(1) = AZ03.
By tracing over the accessible mode |-)7, it reduced as
L =Iz+)»2_03, o1(I]) = AyO71,
1) r + (13)

02(11) = —A402, o3(11) = —)»10}

For the quantum state given by Eq. (8), if Hawking radia-
tion only acts on system A, the physically accessible quantum
state can be expressed as

1
PAIB =7 ((12 - /\%473) ®@L+a-(h_01,A-02,1203) @1
+(y —2203) @b -0 + 1101 ® 01 +h_0y @)

+Z3A2_a3 ® (T3> s

where a,b € R> represent local bloch vectors. a =
(ai,az,a3) and b = (by, by, b3). Leta’ = (a1A_, axA_, a3
22— ki), obviously |a’| < 1 due to the range of A_, then
the reduced state py4, g finally has form

1
pap=7(L®L+a 0 ®Lh+h®b-o+ni0®0
+0i_o) @0y — bl)&_(f?, Qo1 — bz)&_(r?, ® op

+(t3)»2, - b3)»2+)03 ® 0'3) ,

and its correlation matrix is

tHA_ 0 0
TA]B = 0 tz)\.f 0
—bl)\ﬁ_ —bz)&_ tgkz_ — b3)\3_

For the correlation matrix T4, p of pa,,p, simply make
the corresponding substitutions using Eq. (13). Similar oper-
ations applied to system B can obtain T4 g, and T4 g,, . If both
Alice and Bob hover in the interior of a black hole, T4, g, and
T4, B;; can be obtained by transforming the two subsystems
of pap simultaneously using Eq. (12) or Eq. (13).
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