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Abstract We transfer the scenario of quantum network
nonlocal correlation to the vicinity of a black hole’s event
horizon, aiming to evaluate the impact of Hawking effect on
network nonlocality within this specific context. In an entan-
glement swapping network with two bipartite resources and
three parties, we examine two scenarios with distinct Hawk-
ing radiation locations: one where it affects the endpoint par-
ties’ system and another where it impacts all parties’ system.
In both cases, network nonlocality decays due to Hawking
radiation and disappears entirely when the Hawking tem-
perature reaches a critical threshold. However, we observe
a striking phenomenon: when resource states are maximally
entangled and the affected system belongs to the endpoint
participants, network nonlocality diminishes but does not
vanish throughout the radiation process. Subsequently, we
extend our investigation to star and chain networks to evalu-
ate how resource quantity and distribution influence network
nonlocality under Hawking radiation. Our results indicate
that star networks exhibit greater resilience against Hawking
radiation in maintaining nonlocality.

1 Introduction

Quantum technology is a key enabler for future communica-
tion infrastructure. Building on this potential, it can be used
to construct relevant network architectures to promote space
exploration [1]. Quantum technologies in space are explored
and investigated [2], such as quantum key distribution for
secure satellite communications [3], quantum-enhanced nav-
igation systems [4], and quantum sensor networks [5] for
earth observation.
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In fact, quantum states emitted into space may have their
correlations altered by environmental factors such as extreme
temperatures, magnetic fields, and cosmic radiation [1]. This
is because Einstein’s theories predicted that the gravitational
collapse of a massive enough star would form a black hole
[6,7]. Furthermore, Stephen Hawking proposed that black
holes emit radiation through quantum effects, a phenomenon
now known as Hawking radiation [8]. Hawking radiation
theory suggests that near a black hole’s event horizon, quan-
tum fluctuations can cause virtual particle pairs to separate,
with some particles escaping as radiation while introducing
thermal noise. This process serves as a crucial link between
quantum mechanics and gravity, playing a central role in the
infamous information paradox of black holes [9,10].

In recent years, many scholars have focused on investigat-
ing the changes that quantum resources undergo in curved
spacetime, providing a crucial perspective and significant
insights into the fundamental interactions between quantum
mechanics and gravity. Among these studies, the impact of
Hawking radiation on quantum resources in Schwarzschild
spacetime has attracted particular attention. Research has
covered topics including quantum steering [11,12], coher-
ence [13], entanglement [14,15], discord [16], nonlocality
[17–22], the entropy uncertainty relation [23], and quan-
tum teleportation [24], yielding groundbreaking results. For
example, Wu et al. [24] found that under a specific initial
state, the Hawking effect can create net fidelity of quan-
tum teleportation, offering new possibilities for the trans-
mission of quantum information under extreme conditions.
As research advances, some scholars have expanded their
research focus to broader curved spacetime backgrounds
[25,26] and other gravitational effects [27,28], further prob-
ing quantum resource behavior in complex environments.
These studies provide new theoretical foundations for quan-
tum mechanics and general relativity interactions and lay
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groundwork for extreme-condition quantum information
applications. However, it is worth noting that these studies
are generally based on single source.

As the demand for large-scale, long-distance communi-
cation grows, many scholars are studying quantum correla-
tions in quantum networks [29]. For example, researchers
have explored the definition and criteria of nonlocal corre-
lations in networks with different structures [30–32]. They
have found that even if the resources are in mixed states,
just one entangled state may lead to nonlocal correlations in
the network. The network nonlocality, as an important quan-
tum resource, fundamentally underlie various applications of
quantum networks such as computing, sensing, and secured
long-distance communications [33–36].

The generation of quantum correlations in a quantum net-
work depends on its resources and topology. If a quantum net-
work’s topology is fixed, the multiple particles in the network
may fall into the curved spacetime near a black hole. This
differs from the evolution of single-source quantum entan-
glement under Hawking radiation. This may hinder the for-
mation of quantum network nonlocal correlations in space
and impact relevant application scenarios. It is natural to ask
whether the network nonlocal correlations still exist under
Hawking radiation. Since quantum networks with different
structures show diverse characteristics under Hawking radi-
ation, we can use this effect to explore more stable network
structures. This question relates to quantum communication
foundations and may inspire future space exploration com-
munication technologies.

In this study, we first focus on the influence of Hawking
radiation on nonlocal correlations in an entanglement swap-
ping (ES) network in the context of the Schwarzschild black
hole. Initially, we assumed that only the marginal parties fall
freely toward the event horizon and then extended the set-
ting to the entire network state. Secondly, we expanded the
research to more general chain networks and star networks.
Through calculations and numerical analysis, we found that
the decay of nonlocal correlations in the network depends not
only on the network’s topology but also on the parameters
and locations of the resource states within it. The structure
of this article is as follows: in Sect. 2, we present the basic
background knowledge required for the study; in Sect. 3, we
give the general evolution law of states in curved spacetime;
in Sect. 4, we present the main research results of this article;
finally, in Sect. 5, we summarize the article.

2 Prerequisites

In this section, we briefly recall the quantization of Dirac
fields in the background of Schwarzschild black hole and the
network nonlocal correlations.

2.1 Dirac fields in the Schwarzschild space-time

In the present analysis, we choose the initial state to be of
the fermionic type. This allows us to be on the same foot-
ing with other recent studies on quantum correlations in the
relativistic setting, which frequently consider Dirac particles
[14,24]. In our further discussion, for simplicity, the gravita-
tional constant G, the Planck constant h̄, the speed of light c,
and the Boltzmann constant kB are assumed to be equal to 1.

In order to describe the vacuum state of the curved space-
time for fermions, one can start with the following Dirac
equation:

(iγ aeμ
a Dμ − m)� = 0,

where m is the fermion mass, γ a are the Dirac matrices, eμ
a

is vierbein, Dμ = ∂μ − i
4wab

μ σab, σab = i
2 {γa, γb}, wab

μ is
the spin connection, and � represents a spinor field.

By using the metric of the Schwarzschild black hole

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2

+ r2(dθ2 + sin2 θdϕ2),

where r and M represent the radius and mass of the black
hole, the solutions of the Dirac equation in regions I (the Uni-
verse, physically accessible) and I I (inside the black hole,
physically inaccessible) are given by [37]:

�I+
k = ξe−iwu, �I I+

k = ξeiwu, (1)

where k is the wave vector used to label the modes, ξ denotes
the four-component Dirac spinor composed of the spinorial
spherical harmonics, w is the monochromatic frequency of
the Dirac field, u = t − r∗ with the tortoise coordinate r∗ =
r + 2M ln r−2M

2M .
In order to obtain a complete basis for the analytic modes

with positive energy, the Kruskal coordinates are utilized
to perform analytical continuation in accordance with the
Damour–Ruffini method [38]. The resulting Dirac fields are
expanded in the appropriate Kruskal basis, as follows:

� =
∫

dk
1√

2 cosh(4πMw)

× [cIk�I+
k + cI Ik �I I+

k + d I†
k �I−

k + d I I†
k �I I−

k ],
(2)

where cIk and dI†k with I = (I, I I ) are the fermion anni-
hilation operators and antifermion creation operators acting
on the Kruskal vacuum. The superscripts on the kets {+,−}
denote the particle and antiparticle vacua, respectively.

Next, by using the Bogoliubov transformation, it is possi-
ble to establish the relation between operators in a black hole
and the Kruskal space-time [39]. In particular, the vacuum

123



Eur. Phys. J. C           (2025) 85:669 Page 3 of 9   669 

and excited states of the black hole coordinates correspond
to the Kruskal two-mode squeezed states as follows:

|0〉+k → λ−|0k〉+I |0−k〉−I I + λ+|1k〉+I |1−k〉−I I ,
|1〉+k → |1k〉+I |0−k〉−I I ,

(3)

with the Bogoliubov coefficients λ± = (e± w
T + 1)− 1

2 , where
T = 1

8πM is the Hawking temperature [40]. Hereafter, for
simplicity, we consider ω = 1, |nk〉+I = |n〉I and |n−k〉−I I =
|n〉I I .

2.2 Network nonlocal correlations

Considering a general network �q,n consisting of q parties,
namely,A1,A2, . . . ,Aq , and n sources ρ1, ρ2, . . . , ρn , each
party Ai can perform the measurement labeled by xi (xi ∈
{0, 1}) with its outcomes ai (ai ∈ {0, 1}). The behavior of
this network is local if its probability distribution satisfies

P(a|x) =
∫

�

n∏
i=1

dμi (λi )

q∏
j=1

p(a j |x j ,� j ), (4)

where a = (a1, . . . , aq), x = (x1, . . . , xq), λi denotes the
hidden variable distributed by source ρi , μi (λi ) is the prob-
ability distribution for λi with

∫
μi (λi )dλi = 1, and � j

denotes the set of classical variables associated with party
A j . Otherwise, the behavior is network nonlocal [30]. Recall
that a network is k-independent network if there are k parties
that do not share any source with each other, and we denote
� = {i1, i2, . . . , ik} as the set of indices of all independent
nodes. The joint correlations derived from a network with
classical variables satisfy the following inequality [30]:

B = |I (q, k)| 1
k + |J (q, k)| 1

k ≤ 1 (5)

where the correlators I (q, k) and J (q, k) are defined as

I (q, k) = 1

2k
∑

x j , j∈�

〈Ax1 Ax2 · · · Axq 〉,

J (q, k) = 1

2k
∑

x j , j∈�

(−1)
∑

j∈� x j 〈Ax1 Ax2 · · · Axq 〉,

herein Axi is the observable of the party Ai (i = 1, 2 . . . q)

and 〈Ax1 Ax2 · · · Axq 〉 = ∑
a(−1)

∑q
j=1 a j P(a|x) and P(a|x)

are defined in Eq. (4). This is a set of n-local nonlinear
correlation inequalities derived from the assumption of k-
independent network. Any violation of Ineq. (5) by a physical
system will be seen as a nonlocality witness for the present
network.

The chain network with n+1 parties and n sources shown
in Fig. 1 can be considered as a 2-independent network.
According to Ref. [41], with respect to the generic quan-
tum state ρA1A2 ⊗ρA2A3 ⊗· · ·⊗ρAn An+1 , the maximal value
of B in Eq. (5) is given by

Fig. 1 The chain network scenario. Here, we choose A1 and An+1
as the marginal node, and the source Si distributes the quantum state
ρAi Ai+1 to party Ai and party Ai+1 (i = 1, 2 . . . n)

Fig. 2 The star network scenario. Here, we choose A1 as the interme-
diate node, and the source Si distributes the quantum state ρA1 Ai+1 to
party A1 and party Ai+1 (i = 1, 2 . . . n)

Bmax
chain =

√√√√ n∏
i=1

δ
(i)
1 +

n∏
i=1

δ
(i)
2 , (6)

where δ
(i)
1 and δ

(i)
2 are the two largest (positive) eigenvalues

of the matrix
√
T †
Ai Ai+1TAi Ai+1 with δ

(i)
1 > δ

(i)
2 , and TAi Ai+1 is

the correlation matrix of ρAi Ai+1 . Notably, in the subsequent
discussion of this paper, the correlation matrix of the quantum
state ρAB is denoted as TAB , where TAB = (ti j ) with i, j ∈
{x, y, z} and ti j = tr(ρABσi ⊗ σ j ).

While the star network with n + 1 parties and n sources
shown in Fig. 2 can be considered as an n-independent net-
work. According to Ref. [42], with respect to the generic
quantum state ρA1A2 ⊗ ρA1A3 ⊗ · · · ⊗ ρA1An+1 , the maximal
value of B is given by

Bmax
star =

√√√√ n∏
i=1

(δ
(i)
1 )

2
n +

n∏
i=1

(δ
(i)
2 )

2
n . (7)

At this time, δ
(i)
1 and δ

(i)
2 are the two largest eigenvalues of

the matrix
√
T †
A1Ai+1TA1Ai+1 with δ

(i)
1 > δ

(i)
2 , and TA1Ai+1 is

the correlation matrix of ρA1Ai+1 .

3 The evolution law of quantum states in curved
space-time

Note that any two-qubit state can be transformed into a Bell
diagonal state through local unitary transformations, without
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changing its nonlocality. Therefore, we consider the initial
states to be Bell diagonal states, which can be represented as

ρAB = 1

4

(
I2 ⊗ I2 + a · σ ⊗ I2 + I2 ⊗ b · σ +

3∑
i

tiσi ⊗ σi

)
,

(8)

whereσ = (σ1, σ2, σ3),σi (i = 1, 2, 3) stand for Pauli matri-
ces. a,b ∈ R

3 denote local bloch vectors. In the following,
we will provide the correlation matrices for the physically
accessible and inaccessible states after particles interact with
Hawking radiation in two cases.

Case 1: Only one subsystem stays at an asymptotically
flat region, while the other traverses the event horizon of the
black hole.

Using the Kruskal basis shown in Eq. (3) for Alice while
keeping Bob stationary, we can reformulate the complete
three-partite quantum state ρAI AI I B associated with the sub-
systems AI and B observed by Alice and Bob, respectively,
and the subsystem AI I , observed by anti-Alice in the interior
of a black hole.

Since the interior region of black hole is causally dis-
connected from the exterior region, Alice and Bob cannot
access the modes in the interior region of black hole. By
tracing over the inaccessible mode AI I , we can obtain the
reduced density matrix ρAI B . We know that in the framework
of unitary quantum mechanics, information preservation is
obligatory. Although exploring the interior of a black hole
is physically impractical, the complete state of our tripar-
tite system is known and maintains unitarity. Consequently,
applying a partial tracing operation on the modes AI within
this tripartite state yields the reduced density matrix ρAI I B .

Table 1 For the quantum state given by Eq. (8), when Alice freely tra-
verses the event horizon, TAI B denotes the correlation matrix of the
physically accessible quantum state ρAI B , while TAI I B denotes the
correlation matrix of the physically inaccessible quantum state ρAI I B .
Bob’s case is similar

Alice freely traverses the event horizon

TAI B =
⎛
⎝ t1λ− 0 0

0 t2λ− 0
−b1λ

2+ −b2λ
2+ t3λ2− − b3λ

2+

⎞
⎠

TAI I B =
⎛
⎝ t1λ+ 0 0

0 −t2λ+ 0
b1λ

2− b2λ
2− b3λ

2− − t3λ2+

⎞
⎠

Bob freely traverses the event horizon

TABI =
⎛
⎝ t1λ− 0 −a1λ

2+
0 t2λ− −a2λ

2+
0 0 t3λ2− − a3λ

2+

⎞
⎠

TABI I =
⎛
⎝ t1λ+ 0 a1λ

2−
0 −t2λ+ a2λ

2−
0 0 a3λ

2− − t3λ2+

⎞
⎠

Table 2 For the quantum state given by Eq. (8), when Alice and
Bob freely traverse the event horizon, TAI BI denotes the correlation
matrix of the physically accessible quantum state ρAI BI , while TAI I BI I

denotes the correlation matrix of the physically inaccessible quantum
state ρAI I BI I .

Both Alice and Bob traverse the event horizon

TAI BI =
⎛
⎝ t1λ2− 0 −a1λ

2+λ−
0 t2λ2− −a2λ

2+λ−
−b1λ

2+λ− −b2λ
2+λ− λ4+ − (a3 + b3)λ

2+λ2− + t3λ4−

⎞
⎠

TAI I BI I =
⎛
⎝ t1λ2+ 0 a1λ

2−λ+
0 t2λ2+ −a2λ

2−λ+
b1λ

2−λ+ −b2λ
2−λ+ λ4− − (a3 + b3)λ

2+λ2− + t3λ4+

⎞
⎠

Similar operations can be applied to system B, but detailed
descriptions are not provided here. Finally, the correlation
matrices of the quantum states after different operations are
presented in Table 1. The detailed calculation process can be
found in the Appendix.

Case 2: Both Alice and Bob traverse the event horizon of
the black hole.

Applying the transformation of Eq. (3) to both Alice and
Bob, we derive a four-partite state ρAI AI I BI BI I . This state
involves modes AI and BI observed by Alice and Bob, and
modes AI I and BI I observed by anti-Alice and anti-Bob in
the interior of a black hole. Tracing over the inaccessible
modes AI I and BI I gives the reduced density matrix ρAI BI .
Similarly, tracing over the accessible modes AI and BI yields
ρAI I BI I . The correlation matrices for ρAI BI and ρAI I BI I are
listed in the Table 2.

4 Results and discussion

4.1 Evolution of non-bilocality in the ES network

We start with the ES network characterized by the network
state ρA1A2 ⊗ρA2A3 , which corresponds to the simplest forms
of the chain network (Fig. 1) and the star network (Fig. 2). We
refer to the nonlocal correlations generated by the ES network
as nonbilocal correlations or non-bilocality. Considering that
the resources ρAi Ai+1 (i = 1, 2) distributed on the network is
generated from the following family of two-qubit state [43]

ρAi Ai+1 = vi |00〉〈00| + (1 − vi )[sin2 x1|01〉〈01|
+ cos2 xi |10〉〈10| + sin xi cos xi (|01〉〈10| + |10〉〈01|)],

where vi ∈ [0, 1], and xi ∈ [0, π
4 ] (i = 1, 2). This class of

states has played an important role in demonstrating hidden
nonlocality in chain networks [44]. Rewrite it in the Bloch–
Fano decomposition yields

ρAi Ai+1 = 1

4
{I2 ⊗ I2 + [vi − (1 − vi ) cos 2x1]σ3 ⊗ I2

+[vi + (1 − vi ) cos 2x1]I2 ⊗ σ3 + (1 − vi ) sin 2x1σ1 ⊗ σ1
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Fig. 3 Schematic diagram of our physical model with particle A2 in
the exterior of a black hole (BH), and particles A1 and A3 traversed
the event horizon of the BH. The wavy lines show the entanglement
between particles. Input state is provided by Eq. (9) and the physically
accessible output state has form ρA1

I A
2 ⊗ ρA2 A3

I

+(1 − vi ) sin 2x1σ2 ⊗ σ2 + (2vi − 1)σ3 ⊗ σ3}. (9)

Note that the structure of ρAi Ai+1 conforms to Eq. (8).
We will investigate the impact of Hawking radiation on the

non-bilocality of ρA1A2 ⊗ρA2A3 in two scenarios. Scenario 1
is depicted in Fig. 3, where we focus on the changes in A1 and
A3. Consequently, the final physically accessible network
state is ρA1

I A
2 ⊗ ρA2A3

I
.

According to Table 1 and Eq. (9), we can get the correla-
tion matrices of ρA1

I A
2 and ρA2A3

I
respectively as follows

TA1
I A

2 =
⎛
⎜⎝
t (1)
1 0 0

0 t (1)
2 0

0 0 t (1)
3

⎞
⎟⎠ ,

where t (1)
1 = t (1)

2 = λ−(1 − v1) sin 2x1, t (1)
3 = λ2−(2v1 −

1) − λ2+[v1 + (1 − v1) cos 2x1].

TA2A3
I
=

⎛
⎜⎝
t (2)
1 0 0

0 t (2)
2 0

0 0 t (2)
3

⎞
⎟⎠ ,

where t (2)
1 = t (2)

2 = λ−(1 − v2) sin 2x2, t (2)
3 = λ2−(2v2 −

1) − λ2+[v2 − (1 − v2) cos 2x2].
According to Eq. (6) with n = 2, the Bmax

biloc(ρA1
I A

2 ⊗
ρA2A3

I
) depends not only on the state parameters vi and xi

(i = 1, 2), but also on the Hawking temperature T . Here,
we present the calculation results for several specific initial
resource states, as shown in Fig. 4.

As illustrated in Fig. 4, Bmax
biloc(ρA1

I A
2 ⊗ ρA2A3

I
) decreases

as the Hawking temperature T rises, indicating that thermal
noise from the Hawking temperature induces non-bilocality
decay in ρA1A2 ⊗ρA2A3 . The extent of this decay varies case-
by-case. When the initial states ρA1A2 and ρA2A3 are maxi-

Fig. 4 Bmax
biloc(ρA1

I A
2 ⊗ρA2 A3

I
) as a function of the Hawking temperature

T for the initial ρA1 A2 being a maximally entangled state (i.e. v1 = 0 and
x1 = π

4 ); while ρA2 A3 is selected from three different states, with their
parameters being v2 = 0, x2 = π

4 (maximally entangled state), v2 =
0, x2 = π

6 (entangled pure state), and v2 = 0.2, x2 = π
4 (entangled

mixed state). The subfigure illustrates the variation of Bmax
biloc with T on

a logarithmic scale when v2 = 0, x2 = π
4

mally entangled, we have

Bmax
biloc(ρA1

I A
2 ⊗ ρA2A3

I
) = √

2λ− =
√

2√
e− 1

T + 1

. (10)

Since limT→∞
√

2√
e− 1

T +1
= 1. This implies that even a suffi-

ciently high Hawking temperature will only lead to the weak-
ening of non-bilocality, not its complete disappearance. We
have fully demonstrated this phenomenon in the subfigure of
Fig. 4 using logarithmic scaling. However, in the other two
cases, we observe the “death” of non-bilocality when the
Hawking temperature reaches a critical threshold. It is worth
noting that the weaker the initial nonlocality, the sooner the
“death” occurs. What if the resource states on the network
have the same initial non-bilocality?

To reduce the complexity of the calculations, we set v1 =
v2 = 0, in which case ρAi Ai+1 = |ψAi Ai+1〉〈ψAi Ai+1 |, where

|ψAi Ai+1〉 = sin xi |01〉 + cos xi |10〉, (i = 1, 2).

Then for the initial network state ρA1A2 ⊗ρA2A3 , the maximal
value of B is

Bmax
biloc(ρA1A2 ⊗ ρA2A3) = √

1 + sin 2x1 sin 2x2. (11)

In Fig. 5, we present the results of Bmax
biloc(ρA1

I A
2 ⊗ρA2A3

I
) for

different combinations of sin 2x1 and sin 2x2. Note that each
set of values ensures that the result of Eq. (11) is

√
1.64.

It can be seen that under the same initial non-bilocality, a
larger sin 2x1 causesBmax

biloc(ρA1
I A

2 ⊗ρA2A3
I
) to decrease more

rapidly, indicating faster decay of non-bilocality. Conversely,
a larger sin 2x2 enhances the robustness of non-bilocality
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Fig. 5 Let ρAi Ai+1 = |ψAi Ai+1 〉〈ψAi Ai+1 |, (i = 1, 2). The quantities
Bmax

biloc(ρA1
I A

2 ⊗ρA2 A3
I
) are considered as functions of the Hawking tem-

perature T for four different network states, all of which maintain initial
Bmax

biloc(ρA1 A2 ⊗ ρA2 A3 ) = √
1.64

against thermal noise. According to the Horodecki criterion
[45], the maximal Clauser–Horne–Shimony–Holt (CHSH)
value for |ψAi Ai+1〉 (i = 1, 2) is

Bmax
CHSH(ρAi Ai+1) = 2

√
1 + sin2 2xi .

So, a higher sin 2xi corresponds to a stronger quantum non-
locality. Thus, when considering |ψAi Ai+1〉 as the resource
state, Fig. 5 indicates that if only the marginal particles are
affected by the Hawking radiation, assigning quantum states
with stronger correlation to ρA2A3 will enhance the robust-
ness of the ES network against the thermal noise generated
by Hawking radiation.

In Fig. 3, reducing A1
I and A3

I while retaining A1
I I and

A3
I I yields the network state ρA1

I I A
2 ⊗ ρA2A3

I I
. Due to

the causal disconnection between the interior and exterior
regions, an observer or detector outside the black hole can-
not access information from the interior regions. Thus, the
state ρA1

I I A
2 ⊗ ρA2A3

I I
is deemed physically inaccessible.

Nevertheless, the global quantum state remains unitary and
pure. With a prevailing consensus among physicists, includ-
ing Hawking, favoring the conservation of quantum informa-
tion, we can theoretically investigate these inaccessible sce-
narios. To understand where lost quantum correlations reside,
we will now examine how Hawking decoherence influences
the correlation of network state ρA1

I I A
2 ⊗ ρA2A3

I I
in these

physically inaccessible contexts.
We still analyze the three network state resources uti-

lized in Fig. 4. Substituting specific parameters from the
Table 1 into TAI I B and TABI I gives the correlation matri-
ces for ρA1

I I A
2 and ρA2A3

I I
, respectively. Figure 6 plots

Bmax
biloc(ρA1

I I A
2 ⊗ ρA2A3

I I
) as functions of T . It is evident that

each example presents similar results. Specifically, in the
absence of Hawking decoherence, Bmax

biloc(ρA1
I I A

2 ⊗ ρA2A3
I I

)

Fig. 6 Bmax
biloc(ρA1

I A
2 ⊗ρA2 A3

I
) andBmax

biloc(ρA1
I I A

2 ⊗ρA2 A3
I I

) as functions
of the Hawking temperature T for three initial network states ρA1 A2 ⊗
ρA2 A3

is zero, but as T increases, it gradually increases and even-
tually stabilizes. Although Hawking radiation enhances its
correlation, we have not observed any non-bilocality in any
instances. Notably, as the Hawking temperature T increases,
bothBmax

biloc(ρA1
I A

2⊗ρA2A3
I
) andBmax

biloc(ρA1
I I A

2⊗ρA2A3
I I

) even-
tually stabilize at the same value.

In scenario 2, we consider the case where all particles of
the network state ρA1A2 ⊗ρA2A3 , composed of pure entangled
states |ψAi Ai+1〉, (i = 1, 2), freely traverse the event horizon.
In this case, the physically inaccessible network state can be
expressed as ρA1

I A
2
I
⊗ ρA2

I A
3
I
, and the corresponding correla-

tion matrix can be obtained from TAI BI in the Table 2.
According to Fig. 7, we present two key results. First,

for ρA1A2 ⊗ ρA2A3 composed entirely of maximally entan-
gled states, the blue curve shows that Bmax

biloc(ρA1
I A

2
I
⊗ ρA2

I A
3
I
)

decreases continuously with increasing Hawking tempera-
ture T . Its non-bilocality experiences a “death” at T =

1
ln(

√
2+1)

. This is different from the result in Scenario 1. Sec-

ond, we examine three distinct network states ρA1A2 ⊗ρA2A3

with the same initial value Bmax
biloc(ρA1A2 ⊗ ρA2A3) = √

1.64.
The three colored curves depict how non-bilocality dimin-
ishes for these states as T increases. AlthoughBmax

biloc(ρA1
I A

2
I
⊗

ρA2
I A

3
I
) converges to the same stable value as T → ∞, the

subplots show varying initial decay rates among the three
states. From this figure, we conclude that when all particles
of ρA1A2 ⊗ ρA2A3 traverse the event horizon and the pure
states |ψAi Ai+1〉, (i = 1, 2) are regarded as resource states,
assigning stronger quantum correlations to one of the quan-
tum states can enhance the robustness of the ES network
against thermal noise.
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Fig. 7 Bmax
biloc(ρA1

I A
2
I

⊗ ρA2
I A

3
I
) as a function of the Hawking temper-

ature T . Two specific results are shown, one is initial Bmax
biloc(ρA1 A2 ⊗

ρA2 A3 ) = √
2 (blue curve), and the other is Bmax

biloc(ρA1 A2 ⊗ ρA2 A3 ) =√
1.64(orange, green, and red curve). The subfigure demonstrates the

trend of the latter case for T ∈ (0, 1]

4.2 Evolution of nonlocality in n-locality scenario

For a general network �q,n consisting of q parties and n
sources, which can be regarded as a k-independent network,
its non-n-local correlation is detected by violating Ineq. (5).
When n resources are fixed, regardless of how they interact
with Hawking radiation, the decay of non-n-locality depends
not only on the Hawking temperature but also on the number
of parties q and the independent number k.

We consider the chain and star network scenarios illus-
trated in Figs. 1 and 2, respectively. Assume all resource
states are maximally entangled states, then based on Eq. (6)
and Eq. (7), Bmax

chain = Bmax
star = √

2. Obviously, both star and
chain networks can generate non-n-local correlations now.
We will investigate whether the non-n-local correlations of
these two networks can persist within the context of a black
hole under two scenarios.

In the first scenario, for each bipartite quantum state con-
stituting the quantum network, one subsystem remains in the
exterior region of a black hole while the other traverses the
black hole’s event horizon. For a chain network with sources
ρAi Ai+1 , we consider the evolution occurring in subsystem
Ai+1 (i = 1, 2, . . . , n), at this point, the effect of Hawking
radiation on its non-n-locality is characterized by

Bmax
chain(ρA1A2

I
⊗ ρA2A3

I
⊗ · · · ⊗ ρAn An+1

I
).

For a star network with n sources, only subsystem Ai+1 of
ρA1Ai+1 (i = 1, 2, . . . , n) traverses the black hole’s event
horizon, while the effect of Hawking radiation on its non-n-

Fig. 8 Bmax
chain(ρA1

I A
2 ⊗ ρA2

I A
3 ⊗ · · · ⊗ ρAn

I A
n+1 ) and Bmax

star (ρA1 A2
I

⊗
ρA1 A3

I
⊗· · ·⊗ρA1 An+1

I
) as functions of the Hawking temperature T for

different n. Initial ρAi Ai+1 and ρA1 Ai+1 i = 1, 2, . . . n are all maximally
entangled states

locality is characterized by

Bmax
star (ρA1A2

I
⊗ ρA1A3

I
⊗ · · · ⊗ ρA1An+1

I
).

Given our consideration that all sources are distributed in the
maximally entangled state 1√

2
(|01〉 + |10〉), the maximum

Bell inequality violation for the chain network is given by

Bmax
chain(ρA1

I A
2 ⊗ ρA2

I A
3 ⊗ · · · ⊗ ρAn

I A
n+1) = √

2λ
2
n−

and for the star network, it is given by

Bmax
star (ρA1A2

I
⊗ ρA1A3

I
⊗ · · · ⊗ ρA1An+1

I
) = √

2λ−.

In Fig. 8, we show how Bmax
chain and Bmax

star vary with increas-
ing Hawking temperature T . It is noted that for a star net-
work with n resources, Bmax

star = √
2λ−, which matches the

result of Eq. (10). Given that the subfigures in Fig. 4 have
already demonstrated

√
2λ− on a logarithmic scale over a

sufficiently large range of Hawking temperatures, we here
only present the trends in ordinary coordinates. This result
indicates that the non-n-locality of the star network dimin-
ishes but does not fully disappear. In contrast, for the chain
network, non-n-locality will die out. Notably, as n increases,
Bmax

chain decreases more rapidly, leading to an earlier onset of
non-n-locality “death”.

In the second scenario, the entire network is situated
within the black hole horizon and experiences Hawking radi-
ation, the effects of Hawking radiation on non-n-locality of
chain network and star network are characterized by

Bmax
chain(ρA1

I A
2
I
⊗ ρA2

I A
3
I
⊗ · · · ⊗ ρAn

I A
n+1
I

) = √
2λn−
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Fig. 9 Bmax
chain(ρA1

I A
2
I

⊗ ρA2
I A

3
I

⊗ · · · ⊗ ρAn
I A

n+1
I

) and Bmax
star (ρA1

I A
2
I

⊗
ρA1

I A
3
I
⊗· · ·⊗ρA1

I A
n+1
I

) as functions of the Hawking temperature T for

different n. Initial ρAi Ai+1 and ρA1 Ai+1 i = 1, 2, . . . n are all maximally
entangled states

and

Bmax
star (ρA1

I A
2
I
⊗ ρA1

I A
3
I
⊗ · · · ⊗ ρA1

I A
n+1
I

) = √
2λ2−,

respectively. In Fig. 9, we present the changing trends of
Bmax

chain and Bmax
star with the Hawking temperature T . We find

that non-n-locality decays more rapidly compared to the first
scenario, and the non-n-locality of the star network also
undergoes “death” at a certain critical temperature.

Overall, the star network shows more advantages than
the chain network in resisting the decay of non-n-locality
caused by Hawking radiation. The chain network’s sensitiv-
ity to thermal noise from Hawking radiation increases with
more intermediate nodes.

5 Conclusion

In this study, we characterized the nonlocal correlations of
quantum networks within Schwarzschild spacetime. First, we
present the variation law governing the quantum state corre-
lation matrix in curved spacetime. Based on this, we ana-
lyze changes in non-bilocal correlations under two scenar-
ios, starting with the simplest ES network configuration. It is
evident that the Hawking effect degrades non-bilocal correla-
tion, and this degradation is closely related to the initial non-
locality of the network. Furthermore, utilizing a pure entan-
gled state |ψAi Ai+1〉 = sin xi |01〉 + cos xi |10〉, (i = 1, 2)

as a resource and maintaining constant initial non-bilocal
correlation, we discovered that different states and their dis-
tribution methods can lead to significantly divergent attenu-
ation trends. Specifically, when only marginal particles are
affected by Hawking radiation, maximizing the correlation

of right-hand resource states better enhances the resilience
of the ES network to Hawking effects. When all particles
are subjected to Hawking radiation, it is better to maximize
the correlation on one side of the resource state as much as
possible. Our research also indicates that it is impossible to
establish physically inaccessible non-bilocal correlation.

In larger-scale networks, we observed that even identical
states distributed across different network topologies can lead
to markedly different variations in nonlocal correlations. We
validate this finding in general chain and star networks, with
results showing that star networks are more robust against
thermal noise from Hawking radiation. Overall, this investi-
gation deepens the understanding of quantum networks oper-
ating within curved spacetime.
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6 Appendix

First of all, the identity matrix I2 and the Pauli matrices
σ = (σ1, σ2, σ3) after interaction with the Hawking radi-
ation Eq. (3) is given by

I2(I,I I ) = λ2−|00〉〈00| + λ−λ+(|00〉〈11| + |11〉〈00|)
+λ2+|11〉〈11| + |10〉〈10|,

σ1(I,I I ) = λ−(|00〉〈10| + |10〉〈00|) + λ+(|11〉〈10| + |10〉〈11|),
σ2(I,I I ) = i(λ−(|10〉〈00| − |00〉〈10|) + λ+(|10〉〈11| − |11〉〈10|)),
σ3(I,I I ) = λ2−|00〉〈00| + λ−λ+(|00〉〈11| + |11〉〈00|)

+λ2+|11〉〈11| − |10〉〈10|.
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By tracing over the inaccessible mode |·〉I I , it reduced as

I2(I ) = I2 − λ2+σ3, σ1(I ) = λ−σ1,

σ2(I ) = λ−σ2, σ3(I ) = λ2−σ3.
(12)

By tracing over the accessible mode |·〉I , it reduced as

I2(I I ) = I2 + λ2−σ3, σ1(I I ) = λ+σ1,

σ2(I I ) = −λ+σ2, σ3(I I ) = −λ2+σ3.
(13)

For the quantum state given by Eq. (8), if Hawking radia-
tion only acts on system A, the physically accessible quantum
state can be expressed as

ρAI B =1

4

(
(I2 − λ2+σ3) ⊗ I2 + a · (λ−σ1, λ−σ2, λ2−σ3) ⊗ I2

+(I2 − λ2+σ3) ⊗ b · σ + t1λ−σ1 ⊗ σ1 + t2λ−σ2 ⊗ σ2

+t3λ2−σ3 ⊗ σ3

)
,

where a,b ∈ R
3 represent local bloch vectors. a =

(a1, a2, a3) and b = (b1, b2, b3). Let a′ = (a1λ−, a2λ−, a3

λ2− − λ2+), obviously |a′| ≤ 1 due to the range of λ−, then
the reduced state ρAI B finally has form

ρAI B =1

4

(
I2 ⊗ I2 + a′ · σ ⊗ I2 + I2 ⊗ b · σ + t1λ−σ1 ⊗ σ1

+t2λ−σ2 ⊗ σ2 − b1λ2+σ3 ⊗ σ1 − b2λ2+σ3 ⊗ σ2

+(t3λ2− − b3λ2+)σ3 ⊗ σ3

)
,

and its correlation matrix is

TAI B =
⎛
⎝ t1λ− 0 0

0 t2λ− 0
−b1λ

2+ −b2λ
2+ t3λ2− − b3λ

2+

⎞
⎠ .

For the correlation matrix TAI I B of ρAI I B , simply make
the corresponding substitutions using Eq. (13). Similar oper-
ations applied to system B can obtain TABI and TABI I . If both
Alice and Bob hover in the interior of a black hole, TAI BI and
TAI I BI I can be obtained by transforming the two subsystems
of ρAB simultaneously using Eq. (12) or Eq. (13).
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